5,582 research outputs found

    Animal sound classification using dissimilarity spaces

    Get PDF
    The classifier system proposed in this work combines the dissimilarity spaces produced by a set of Siamese neural networks (SNNs) designed using four different backbones with different clustering techniques for training SVMs for automated animal audio classification. The system is evaluated on two animal audio datasets: one for cat and another for bird vocalizations. The proposed approach uses clustering methods to determine a set of centroids (in both a supervised and unsupervised fashion) from the spectrograms in the dataset. Such centroids are exploited to generate the dissimilarity space through the Siamese networks. In addition to feeding the SNNs with spectrograms, experiments process the spectrograms using the heterogeneous auto-similarities of characteristics. Once the similarity spaces are computed, each pattern is \u201cprojected\u201d into the space to obtain a vector space representation; this descriptor is then coupled to a support vector machine (SVM) to classify a spectrogram by its dissimilarity vector. Results demonstrate that the proposed approach performs competitively (without ad-hoc optimization of the clustering methods) on both animal vocalization datasets. To further demonstrate the power of the proposed system, the best standalone approach is also evaluated on the challenging Dataset for Environmental Sound Classification (ESC50) dataset

    Ensemble deep learning: A review

    Get PDF
    Ensemble learning combines several individual models to obtain better generalization performance. Currently, deep learning models with multilayer processing architecture is showing better performance as compared to the shallow or traditional classification models. Deep ensemble learning models combine the advantages of both the deep learning models as well as the ensemble learning such that the final model has better generalization performance. This paper reviews the state-of-art deep ensemble models and hence serves as an extensive summary for the researchers. The ensemble models are broadly categorised into ensemble models like bagging, boosting and stacking, negative correlation based deep ensemble models, explicit/implicit ensembles, homogeneous /heterogeneous ensemble, decision fusion strategies, unsupervised, semi-supervised, reinforcement learning and online/incremental, multilabel based deep ensemble models. Application of deep ensemble models in different domains is also briefly discussed. Finally, we conclude this paper with some future recommendations and research directions

    Deep Divergence-Based Approach to Clustering

    Get PDF
    A promising direction in deep learning research consists in learning representations and simultaneously discovering cluster structure in unlabeled data by optimizing a discriminative loss function. As opposed to supervised deep learning, this line of research is in its infancy, and how to design and optimize suitable loss functions to train deep neural networks for clustering is still an open question. Our contribution to this emerging field is a new deep clustering network that leverages the discriminative power of information-theoretic divergence measures, which have been shown to be effective in traditional clustering. We propose a novel loss function that incorporates geometric regularization constraints, thus avoiding degenerate structures of the resulting clustering partition. Experiments on synthetic benchmarks and real datasets show that the proposed network achieves competitive performance with respect to other state-of-the-art methods, scales well to large datasets, and does not require pre-training steps

    Adaptive Cooperative Learning Methodology for Oil Spillage Pattern Clustering and Prediction

    Get PDF
    The serious environmental, economic and social consequences of oil spillages could devastate any nation of the world. Notable aftermath of this effect include loss of (or serious threat to) lives, huge financial losses, and colossal damage to the ecosystem. Hence, understanding the pattern and  making precise predictions in real time is required (as opposed to existing rough and discrete prediction) to give decision makers a more realistic picture of environment. This paper seeks to address this problem by exploiting oil spillage features with sets of collected data of oil spillage scenarios. The proposed system integrates three state-of-the-art tools: self organizing maps, (SOM), ensembles of deep neural network (k-DNN) and adaptive neuro-fuzzy inference system (ANFIS). It begins with unsupervised learning using SOM, where four natural clusters were discovered and used in making the data suitable for classification and prediction (supervised learning) by ensembles of k-DNN and ANFIS. Results obtained showed the significant classification and prediction improvements, which is largely attributed to the hybrid learning approach, ensemble learning and cognitive reasoning capabilities. However, optimization of k-DNN structure and weights would be needed for speed enhancement. The system would provide a means of understanding the nature, type and severity of oil spillages thereby facilitating a rapid response to impending oils spillages. Keywords: SOM, ANFIS, Fuzzy Logic, Neural Network, Oil Spillage, Ensemble Learnin
    corecore