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Abstract

A promising direction in deep learning research consists in learning representations and simultaneously
discovering cluster structure in unlabeled data by optimizing a discriminative loss function. As opposed
to supervised deep learning, this line of research is in its infancy, and how to design and optimize suitable
loss functions to train deep neural networks for clustering is still an open question. Our contribution to
this emerging field is a new deep clustering network that leverages the discriminative power of information-
theoretic divergence measures, which have been shown to be effective in traditional clustering. We propose a
novel loss function that incorporates geometric regularization constraints, thus avoiding degenerate structures
of the resulting clustering partition. Experiments on synthetic benchmarks and real datasets show that the
proposed network achieves competitive performance with respect to other state-of-the-art methods, scales
well to large datasets, and does not require pre-training steps.
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1. Introduction

Deep neural networks [1, 2] excel at hierarchical representation learning [3], and yield state-of-the-art
performance in image classification [1], object detection [4], segmentation [5, 6], time series prediction [7]
and speech recognition [8], to name a few. However, deep networks are usually trained in a supervised
manner, hence requiring a large amount of labeled data. This is a challenge in many application domains.

Clustering [9, 10], one of the fundamental areas in machine learning, aims at categorizing unlabeled
data into groups (clusters). A promising direction in deep learning research is to learn representations and
simultaneously discover cluster structure in unlabeled data by optimizing a discriminative loss function.
Deep Embedded Clustering (DEC) [11] exemplifies this line of work and represents, to the best of our
knowledge, the state-of-the-art. DEC is based on an optimization strategy in which a neural network is pre-
trained by means of an autoencoder and then fine-tuned by jointly optimizing cluster centroids in output
space and the underlying feature representation. Another example is [12], where the authors propose a
joint optimization for dimensionality reduction using a neural network and k-means clustering. Alternative
approaches to unsupervised deep learning based on adversarial networks have recently been proposed [13].
These approaches are different in spirit but can also be used for clustering [14, 15].

In this work, we propose what we called the Deep Divergence-based Clustering (DDC) algorithm. Our
method takes inspiration from the vast literature on traditional clustering techniques that optimize dis-
criminative loss functions based on information-theoretic measures [16–19]. The main motivation for this
choice is that the divergence, as a measure of dissimilarity between clusters represented by their probability
density functions, builds on two fundamental objectives (Figure 1): the separation between clusters and
the compactness within clusters. These are desirable properties to increase identifiability of nonparametric
mixtures [20]. Our new divergence-based loss function for deep clustering supports end-to-end learning and
explicitly exploits knowledge about the geometry of the output space during the optimization. DDC achieves
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Figure 1: Our approach takes advantage of the power of deep learning to extract features and perform clustering in an end-to-
end manner. The proposed loss function is rooted in two fundamental objectives of clustering: separation and compactness of
clusters.

state-of-the-art performance without requiring hand-crafted feature design, reducing also the importance of
a pre-training phase.

A preliminary version of this paper appeared in [21]. The preliminary version was targeted towards
image clustering combining a convolutional neural network architecture with our proposed clustering loss
function. Here, we extend our work by (i) modifying the proposed architecture such that it can also handle
textual data; (ii) conducting experiments and comparisons on additional datasets (including textual data –
Reuters dataset); (iii) providing a thorough analysis of the proposed cost function and its components via
ablation experiments; (iv) illustrating and discussing the functioning of the method in controlled settings; (v)
interpreting predictions of the network by means of guided backpropagation [22]; and finally (vi) providing
a more thorough literature background discussion, placing our work into a broader context.

This paper is structured as follows. Section 2 provides an overview of related works. Section 3 presents the
proposed methodology for performing clustering with deep networks. In Section 4, we show the experimental
results on several datasets and analyze the proposed cost function in detail. Finally, in Section 5 we draw
conclusions and point to future directions.

2. Related work

Common approaches to unsupervised deep learning include methods based on deep belief networks,
autoencoders, and generative adversarial networks [3, 13]. These methods have been mainly used for unsu-
pervised pre-training [23]. Deep belief networks were the first of these models to be proposed and consist of
stacked restricted Boltzmann machines that are trained in a greedy fashion [24]. Once trained, deep belief
networks can be used to initialize neural networks.

Although several types of autoencoders have been proposed, all share a common underlying architecture
consisting of an encoding and a decoding layer. The encoder is responsible for producing a hidden represen-
tation; the decoder re-generates inputs from the hidden representation. Both can efficiently be learned using
backpropagation, by minimizing the reconstruction loss between original input and decoder output. Varia-
tions include, among others, denoising autoencoders [25], which regularize the original autoencoder model
by adding noise to inputs and then changing the objective to both include reconstruction and denoising,
contractive autoencoders [26], and more recently autoencoders that are regularized by preserving similarities
in input space [27]. Variational autoencoders [28] have been used recently for several unsupervised tasks,
such as image generation [29] and segmentation [30]. This approach assumes that data are generated from
directed graphical models and uses a variational approach to learn latent representations.

Adversarial generative models [13] are more recent approaches to unsupervised deep learning. Here, two
networks are trained: one is responsible for discriminating between real and generated images; the other is
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responsible for generating realistic-enough images to confuse the first network.
Clustering is a classic information processing problem, particularly important in machine learning [9, 31–

34]. Countless approaches exist for clustering, with mean shift [35], k-means and expectation–maximization
algorithms [36], being some of the most well-known ones. In the last decade, spectral clustering played a
prominent role in the field, see for instance [10, 37–40]. Spectral clustering exploits the spectrum of similarity
matrices to partition input data. Although these methods have demonstrated good performance in complex
problems, they suffer from lack of scalability with respect to the number of input data points; cubic com-
putational complexity for eigensolvers and quadratic complexity in terms of memory occupation. Attempts
to solve these problems have been made by designing approximations or employing different optimization
techniques [41–43].

Only a few methods have been proposed to exploit deep learning architectures for clustering, thereby tak-
ing advantage of hierarchical feature representations learned by such networks. CatGAN [14], and AAE [15]
are based on the idea of adversarial networks. CatGAN is a method for learning a discriminative model,
trained by optimizing a loss function implementing two different objectives. The first accounts for mutual
information and predicted categorical distribution of classes in the data. The second objective maximizes
the robustness of the discriminative network against an adversarial generative model. AAE instead assumes
that data are generated from two latent variables, one associated with a categorical distribution and the
other with a Gaussian distribution, and uses two adversarial networks to impose these distributions on the
data representation. In a recent contribution [44], the authors propose an unsupervised training algorithm
for CNNs and test its performance on image classification problems. The idea is to deal with the so-called
“feature collapse problem” by mapping the learned features on random targets uniformly distributed on
a d-dimensional unit sphere. A combination of recurrent and convolutional networks has also been used
to perform image clustering by interpreting agglomerative clustering as a recurrent process [45]. Another
recent approach to clustering based on the idea of hierarchical feature representation learning is provided
by Zhang [46], who proposes a multilayer bootstrap network where each layer performs multiple mutually
independent k-centroids clusterings. Each layer gets trained individually in a bottom-up fashion and the
input of consecutive layers is an indicator vector of which centroids are closest to a given input. Unlike the
previously discussed methods, the multilayer bootstrap network does not offer end-to-end training.

To the best of our knowledge, DEC [11] is the method that is most closely related to our approach, as it
is also founded on traditional clustering approaches. DEC simultaneously learns a feature representation as
well as a cluster assignment in a two-step procedure. In the first step, soft assignments are computed between
the data and cluster centroids based on a Student’s t-distribution. Then, the parameters are optimized by
matching soft assignments to a target distribution, which expresses confidence in assignments. The matching
is performed by minimizing the Kullback-Leibler divergence. However, the effectiveness of DEC depends on a
pre-training step implemented with autoencoders and does require explicit feature design to handle complex
image data, e.g., Histogram of Oriented Gradients (HOG) features [47].

3. Deep clustering

We first describe, in Section 3.1 the proposed clustering loss function and present a description of the
overall algorithm in Section 3.2. Successively, in Section 3.3, we discuss the deep network architectures
that we propose to use for clustering problems, namely one that is based on convolutional layers for image
clustering and one based on fully connected layers for vectorial data. Finally, we discuss scalability in
Section 3.4.

Inspired by recent successes of introducing companion losses [48] to supervised deep learning models, we
propose a loss function for clustering that includes terms computed over several network layers. The details
of the loss function are outlined in what follows.

3.1. The loss function for clustering

The design of a loss function that allows the network to learn via gradient descent the intrinsic cluster
structure in the input data is a fundamental part of this work. As illustrated in Figure 2 and explained
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Figure 2: Schematic depiction of the proposed architecture for image datasets and details of the loss function. The network
consists of two convolution layers (each one followed by a pooling layer, not depicted in the figure) and a fully connected (FC)
layer. Each layer is followed by a non-linear ReLU transformation. Finally, a fully connected output layer implements a logistic
function (softmax). The unsupervised loss function operates on the kernel matrix Kh encoding data similarities evaluated
on the hidden representation, and the values of the cluster assignment returned by the softmax function. The orthogonality
constraint is derived from cluster assignments, while separation and compactness constraints come from the Cauchy-Schwarz
divergence, computed on the similarity matrix (weighted by cluster assignments). The convolutional layers are replaced when
non-image data are considered.

below, in addition to exploiting the geometry of the output space induced by the softmax activation, we
adopt a kernel-based approach to estimate the divergence between clusters.

3.1.1. Loss term based on information-theoretic divergence measures

An information-theoretic divergence measure computes the dissimilarity between probability density func-
tions (PDFs). For a clustering application, one would model each cluster by its PDF and optimize cluster
assignments such that the divergence between their PDFs is maximized. Several different formulations of
divergence measures exist in the literature [49], many of which are suitable for clustering. In this work, we
focus on one particular divergence measure that has been proven useful for clustering in the past, namely
the Cauchy-Schwarz (CS) divergence [19, 50], also referred to as the Information Cut in a graph clustering
perspective [17]. The CS divergence can be used in multi-cluster problems (i.e., problems with more than
two clusters) by averaging the pairwise divergence over all pairs of cluster PDFs.

Considering k ≥ 2 distinct PDFs, the CS divergence is defined as

Dcs(p1, . . . , pk) = − log

1

k

k−1∑
i=1

∑
j>i

∫
pi(x)pj(x)dx√∫
p2i (x)dx

∫
p2j (x)dx

 . (1)

For a pair of PDFs, pi and pj , we have 0 ≤ Dcs(p1, p2) <∞, where we obtain the minimum value iff pi = pj .
Thus, in order to maximize cluster separation and compactness, we want the divergence to be as large as
possible. Since the logarithm is a monotonic function, maximizing (1) is in practice equivalent to minimizing
the argument of the logarithm. We observe that the minimum is obtained when the numerator is small
and the denominator is large. Intuitively, this fact implies that the similarity between samples in different
clusters is small (numerator) and similarity of samples within the same cluster is large (denominator).

In this paper, we make use of the divergence in (1) to measure the distance between clusters. Since the
underlying true densities pi, pj are unknown, we follow a data-driven approach and approximate the PDFs
using a Parzen window estimator, configured with a Gaussian kernel having bandwidth σ. We define the
matrix K ∈ Rn×n that encodes the similarities between n input data. The matrix element ki,j stores the
value exp(−d(xi,xj)

2/(2σ2)), where d(xi,xj) is the Euclidean distance between data point xi and xj . Using
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the Parzen window estimator, the CS divergence can be expressed as [50]

Dcs = − log

1

k

k−1∑
i=1

∑
j>i

∑
q∈Ci

∑
l∈Cj

kq,l√ ∑
q,q′∈Ci

kq,q′
∑

l,l′∈Cj

kl,l′

 . (2)

Note that this estimate in (2) of the CS divergence can also be interpreted as measuring the cosine of the
angle between cluster means in a Reproducing Kernel Hilbert Space [50] and is closely related to maximum
mean discrepancy [51]. Assume that we have a n × k cluster assignment matrix A = [αq,i], with elements
αq,i ∈ {0, 1} that represent the crisp cluster assignment of data point q to cluster Ci. Thus, each data point
q is represented by a one-hot vector. Then,

∑
q∈Ci

∑
l∈Cj

kq,l =

n∑
q,l=1

αq,iαl,jkq,l = αTi Kαj ,

where αi is the i-th column of A. The CS-divergence becomes Dcs = − log (dα), where

dα =
1

k

k−1∑
i=1

∑
j>i

αTi Kαj√
αTi KαiαTj Kαj

. (3)

The formulation of the CS-divergence in (2) generalizes to soft cluster assignments, αq,i, preserving the
differentiability of the loss function. In our architecture, the soft cluster assignments correspond to the
softmax outputs and thereby the probability of a data point q to belong to cluster Ci.

The similarity values in K depend on the data representation. In particular, as data are processed by
the neural network, several non-linear transformations map inputs onto different feature spaces, representing
different levels of abstraction. The kernel bandwidth σ is computed based on the statistics of the learned
representations. More details can be found in Section 4.6. To take advantage of the different representations
and use the idea of companion losses for restricting the intermediate representations of the network, we use
the hidden representation computed by the last fully connected layer before the output layer in addition
to the soft cluster assignments produced by the softmax output layer. We do this by computing a (kernel)
similarity matrix Khid, which, by considering the corresponding dhid,α in (3), yields a similarity score.

3.1.2. Loss term based on the geometry of the output space

The output space has a fixed number of dimensions (corresponding to the number of output neu-
rons/clusters) and a precise geometry induced by the softmax activations used in the output layer (whose
elements sum to 1), which we exploit in our algorithm:

1. The output space is a simplex in Rk;

2. A data points degree of membership to a given cluster is maximized if the cluster assignment lies in a
corner of the simplex (i.e., αq,i = 1 if data point q is fully assigned to cluster Ci);

3. Following from the previous point, cluster assignment vectors of data points assigned to different
clusters, in the optimal case, should be orthogonal to each other.

This intuition about the geometry enables us to introduce a term that avoids degenerate solutions by
addressing the aforementioned problem of collapsing features/clusters and encourages diversity in cluster
assignment. For a given cluster assignment matrix, A, the strictly upper triangular elements of AAT ,
denoted by triu(AAT ), consists of inner products between cluster assignment vectors. Unless explicitly
stated, triu(AAT ) will denote the sum of these elements. Note that we do not include the elements on the
diagonal. Further, AAT will consist entirely of non-negative elements because A is non-negative; cluster
assignment vectors are orthogonal if and only if these inner products are zero. Thus, our criterion consists
of enforcing low values in the upper triangular elements. This also has the effect of a regularization term
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(a) Sample dataset.
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(b) Outcome of k-means.
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(c) Outcome of DDC.

Figure 3: Illustration of DDC clustering outcome on a synthetic dataset, showing the capability of learning non-linear structures.

if the number of clusters is smaller than the number of input data points. Indeed, not all data points in
the restricted space can be orthogonal to each other, forcing data points to repel each other, thereby acting
against the terms that try to improve similarity. This term also encourages a balanced distribution of data
points in the different classes, which makes our loss ideal for problems with balanced classes. Alternative
regularization methods that are not based on the balanced class assumption will be investigated in future
work.

The fact that cluster assignment vectors are orthogonal, however, does not imply that such vectors are
embedded in a corner of the simplex. As an example, assume that αq,i = 1 and αl,i = 0. Due to the
restrictions of the simplex geometry, it follows that αq,k = 0, k 6= i and therefore αTq αl = 0 independently
of the values of αl,k, k 6= i. Thus, l is not restricted to a simplex corner. Therefore, in order to enforce
closeness to a corner of the simplex, we define an additional term for the loss function that reads

mq,i = exp(−‖αq − ei‖2),

where ei ∈ Rk is a vector denoting the ith corner of the simplex; representing cluster Ci. This exponential
evaluates to one only when αq is located in a corner of the simplex. We make use of this fact by defining a
third similarity term dhid,m, where mi = [mq,i] ∈ Rn takes the place of αi in (3).

3.1.3. The final clustering loss function

The weights in the neural network architecture described in Section 3.3 can then be trained by minimizing
the sum of the three different terms discussed in the previous section:

L = dhid,α + triu(AAT ) + dhid,m

=
1

k

k−1∑
i=1

∑
j>i

αTi Khidαj√
αTi KhidαiαTj Khidαj

+ triu(AAT ) +
1

k

k−1∑
i=1

∑
j>i

mT
i Khidmj√

mT
i KhidmimT

j Khidmj

(4)

As a proof of concept, we illustrate the functioning of our clustering method on a classical synthetic
dataset where one class is represented by a small circle and the other class is a ring. Note, that we use a
fully-connected architecture (described in Section 3.3) for these experiments as we are considering non-image
data. The dataset is shown in Figure 3a. Figure 3b and 3c illustrate the clustering outcome using k-means
and the proposed method, respectively. It can be observed that the proposed method captures the highly
nonlinear structure in the data and is able to discover clusters of non-spherical shapes, a highly desirable
quality of clustering algorithms [31].

Further, in Figure 4 we visualize the output space for a three-cluster experiment. We chose three classes
of the MNIST dataset (for dataset details see Section 4) and visualize the output space configuration during
three different stages of the optimization process. As expected, the proposed clustering loss function (4)
attempts to separate the data points by grouping similar points in ideal cluster centers located at the
corners of the simplex. Note, we are using the convolutional architecture described in Section 3.3 as we are
considering images in this experiment.
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(a) Epoch 0. (b) Epoch 5. (c) Epoch 15.

Figure 4: Illustration of DDC output space for three class MNIST training. Colors indicate class information of data points.

3.2. Description of complete algorithm

Algorithm 1 Deep Divergence-Based Clustering

Input: X = {xi}ni=1

Output: Cluster assignments A = {αi}ni=1

1: Randomly initialize network parameters Θ
2: while not converged do
3: Sample data batch X (b) from X
4: Obtain assignment vectors A(b) and hidden representations H(b)

5: Compute mq,i = exp(−‖αq − ei‖2), ∀ αq ∈ A(b)

6: Estimate kernel bandwidth σ and compute K
(b)
hid from H(b)

7: Compute loss with (4) and update Θ with gradient descent
8: end while

In this section, we summarize the proposed algorithm. For a given data batch, the assignment vectors
and the hidden representation are obtained via a single forward pass. Based on the hidden representation,
the kernel bandwidth, σ, is estimated and the kernel matrix is computed. From the assignment vectors, the
distance to each of the ideal cluster centers (simplex corners) is computed, obtaining mq for each data point
q in a given minibatch. Using Equation 4, we then can compute the loss based on the kernel matrix, the
assignment vector αq, and mq. Finally, all weights in the network are updated using Adam [52]. The full
algorithm is outlined in Algorithm 1.

3.3. Architecture overview

The network architecture is a design choice, and as such there are many options. In this paper, we choose
an approach based on convolutional neural networks to process different image datasets, using a LeNet-
inspired architecture [53]. We selected LeNet since it is a well-known benchmark network that supports
end-to-end learning and has been widely used for image classification. The architecture is depicted in Fig. 2.
It consists of two convolutional layers: the first one with 32 and the second one with 64 5× 5 filters, each of
them followed by a 2× 2 max pooling layer and a ReLU activation. The last convolutional layer is followed
by a fully connected layer with 100 nodes, another ReLU nonlinearity and, finally, the softmax output layer,
whose dimensionality corresponds to the number of desired clusters. Batch-normalization [54] is applied in
the fully connected layer. This design choice was made to increase the models’ robustness and is explained
in Section 4.6.

Our approach can also be applied to cluster data that are not images simply by replacing the convolutional
and pooling layers with fully connected layers. In particular, for the experiments conducted on non-image
data, we use an architecture with four fully connected layers of size 200− 200− 500−C. The 500 unit fully

7



connected layer includes batch-normalization and the C unit layer corresponds to the softmax output layer
with dimensionality equal to the number of clusters.

Recently, theoretical advances in the theory of neural networks [55] highlighted how the metric structure
of input data is preserved by deep neural networks with random i.i.d Gaussian weights. One restriction is
the fact that this is only true in the case where the intrinsic dimensionality of the data is proportional to the
network width. However, [55] proved that the intrinsic dimensionality of the data does not increase as the data
propagate through the network, which suggests that the width of the network (the number of hidden units
per layer) that we consider for our experiments should suffice. This theoretical property supports the design
choice behind the proposed loss function, which estimates the divergence over the hidden representation,
rather than in input space.

3.4. Main memory footprint

Using gradient-based optimization in neural networks allows us to process large datasets, overcoming well-
known limitations of spectral methods mentioned in the introduction with regards to memory requirements.
The memory cost of our approach is kept low by the use of mini-batch training and scales linearly with
the number of input data points, n, compared to the quadratic or super quadratic complexities encountered
in spectral methods. The proposed method scales quadratically with the mini-batch size m as the kernel
matrix is computed over the hidden representation for a given mini-batch; however, this is generally not an
issue as m� n.

4. Experiments

We evaluate DDC on the MNIST handwritten image dataset as it represents a well-known benchmark
dataset in the literature. In addition, we evaluate our algorithm on two more challenging real-world datasets:
one dataset for detection of seal pups in aerial images here referred to as the SEALS-dataset and the Reuters
dataset for news story clustering. In the results, we compare our method to four alternative clustering
approaches.

4.1. MNIST dataset

The MNIST dataset contains 70000 handwritten images of the digits 0 to 9 [53] and consists of images
that were originally in the National Institute of Standards and Technology (NIST) dataset. The images are
grayscale with the digits centered in the 28× 28 images.

4.2. SEALS dataset

The SEALS-3 dataset consists of several thousand aerial RGB images acquired during surveys in the
West Ice east of Greenland in 2007 and 2012 and east of New Foundland, Canada, in 2012. The images are
acquired from approximately 300m altitude, and the pixel spacing is about 3cm (depending on the exact
flight altitude). A typical image size is 11500× 7500 pixels. From these images 64× 64 image crops of harp
seal pups, hooded seal pups and background (non-seals) were extracted and down-sampled to 28× 28 to fit
our chosen architecture. As the smallest class consists of 1000 images, we select a reduced set of 1000 images
from each class to create a balanced dataset. Figure 5 shows example images for the three classes in the
SEALS-3 dataset.

As the background class contains a large variety of images, such as white snow and black water im-
ages, unsupervised algorithms are likely to partition these instances into different clusters. Therefore, we
additionally created and tested another dataset (SEALS-2), where the background class was not included.

4.3. Reuters dataset

The Reuters dataset consists of 800000 news stories that have been manually categorized into a category
tree [56]. In this work, similarly to [11], we chose the four root categories as labels, removed stories that
are labeled with multiple root categories and represent each news story as a feature vector consisting of the
Term Frequency-Inverse Document Frequency (TF-IDF) of the 2000 most frequently occurring word stems.
As done for the SEALS dataset, we select 54000 datapoints from each class in order to balance the dataset.
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Class 1: Harp seals

Class 2: Hooded seals

Class 3: Background

Figure 5: Examples from the SEALS-3 dataset. The top row displays examples from the harp seal class, the middle row from
the hooded seal, and the bottom row from the background class.

4.4. Performance measures

To evaluate the partition quality obtained after training, we consider two different supervised measures.
The first measure is the Normalized mutual information (NMI), defined as

NMI =
I(l, c)

1
2 [H(l) +H(c)]

, (5)

where I(·, ·) andH(·) denote mutual information and entropy functionals, respectively. The second evaluation
metric is the unsupervised clustering accuracy

ACC = max
M

∑n
i=1 δ(li =M(ci))

n
, (6)

where li refers to the ground truth label, ci to the assigned cluster of data point i, and δ(·) is the Dirac
delta. M is the mapping function that corresponds to the optimal one-to-one assignment of clusters to label
classes implemented by means of the Hungarian algorithm [57], which solves the linear assignment problem
of assigning a cluster to its label class in polynomial time.

4.5. Baseline methods

As methods for comparison, we use k-means (with the so-called k-means++ initialization [58]) as a well-
known baseline and a hierarchical information theoretic clustering approach [19] based on implicit cluster
density estimation using 1) a k-NN approach (ITC-kNN) and 2) a parzen window approach (ITC-parzen).
Further we compare our approach to a representative subset of state-of-the-art methods in clustering, namely
Deep Embedded Clustering (DEC) [11]1, Spectral Embedded Clustering (SEC) [39], and Local Discriminant
Models and Global Integration (LDMGI) [40]. SEC and LDMGI are spectral clustering algorithms based on
the foundations discussed in [38]. In SEC, the authors jointly optimize the normalized cut loss function and
a linear transformation from input to the embedding space for spectral clustering, such that the transformed
data is close to the embedded data. The similarity is modeled using a Gaussian kernel. LDMGI optimizes a
similar objective function, but the Laplacian matrix is learned by exploiting manifold structure and discrimi-
nant information, in contrast to most spectral clustering methods where the Laplacian is calculated by using
a Gaussian kernel. Both of these methods use spectral rotation [59] to obtain the final cluster assignments
instead of k-means, which is common for many spectral clustering methods. To the authors best knowledge,

1Caffe version of DEC publicly available: https://github.com/piiswrong/dec
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Cluster 1

Cluster 2

Cluster 3

Figure 6: Clustering result for the three classes in the SEALS-3 dataset. The first cluster appears to correspond to hooded
seals, whereas the other two clusters correspond to a mix of background and seal images.

these two methods represent the current state-of-the-art in spectral clustering, outperforming conventional
spectral clustering methods in a wide variety of clustering tasks [39, 40].

Following the experiment setup of [11], the parameters in the baseline models are set according to the
suggestions in their respective papers, varying their hyperparameters over 9 possible choices. For each
one, we run the baseline models 20 times. The best result is shown in the experiments. Due to the lack
of hyperparameters in k-means (except the number of clusters k, which is fixed in our experiments), the
accuracy for the best run from 20 different random initializations is reported.

4.6. Implementation

The proposed network model is trained end-to-end by using Adam [52] and implemented using the
Theano framework [60]. For each image datasets we used the same convolutional architecture and for each
vectorial datasets we used the same fully connected architecture. Training is performed on mini-batches of
size 100. By avoiding a fine-tuning for each problem at hand, we show the robustness of our architecture.
Training is performed with a learning rate of 0.001 for the convolutional neural network and 10−5 for the
fully connected network. The network is trained for 70000 iterations and the ordering of the mini-batches
was reshuffled at each epoch. Weights of the network are initialized following [61]. Following the rule-of-
thumb in [37], σ of the Gaussian kernel was chosen to be 15% of the median pairwise Euclidean distances
between the feature representation produced by the first fully-connected layer, which produced satisfying
results for all datasets. The median is adaptive and recomputed as part of the cost function evaluation.
In our experiments, we observed that this rule-of-thumb benefited considerably from activation rescaling
through batch-normalization.

As DDC is prone to get stuck in local minima, a common problem for unsupervised deep architectures,
we run DDC for 20 runs and report the accuracy of the run with the lowest value of our unsupervised loss
function. We also report the results of a voting scheme of the top three runs according to our unsupervised
loss function. Following [19, 62], clustering results of the best performing run are used as a starting point
and the clustering results of the other two runs are aligned to it via the mapping function provided by the
Hungarian algorithm in an unsupervised manner. Once the results are aligned, we combine them via a simple
voting procedure and compute the final unsupervised clustering accuracy using (6). In the following, this
network ensemble is referred to as DDC-VOTE. Note that the voting procedure is completely unsupervised
and is commonly used in ensemble approaches.

4.7. Results

We compare DDC and DDC-VOTE to the baseline algorithms on the MNIST and SEALS datasets and
observe that they outperform the baseline methods on all datasets. The results can be found in Table
1. Due to very high computational complexity, the ITC algorithm could not be evaluated on MNIST and
large datasets in general. This also highlights an important advantage of our formulation with regards to
previous clustering approaches based on the CS divergence. Unlike cluster algorithms that estimate the
optimal number of clusters from data, our method and the baseline approaches require the user to specify
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Figure 7: (a) Results for the SEALS-3 dataset when clustering into ten clusters. (b) Clustering result for the ten-class MNIST
dataset.

the number of clusters beforehand. By following a common practice, we have chosen the number of clusters
equal to the number of classes in the corresponding datasets. It can be observed that DDC-VOTE generally
outperforms DDC, except in the case of the SEALS-3 dataset, where all tested clustering algorithms perform
poorly due to the high variation characterizing the background class. Methods based on adversarial networks,
namely AAE and CatGAN, have shown to perform well on the MNIST clustering task (the only real dataset
analyzed in these papers), by clustering the dataset into a large number of groups (≥ 16), and mapping these
into the 10 original classes in a post-processing step. A similar approach could potentially be employed by
DDC to boost performance and will be explored in future work.

In what follows, we qualitatively analyze obtained clustering performance. Figure 6 displays clustering
results for the SEALS-3 dataset, where each row corresponds to the top ten scoring images for each of the
three clusters. It is possible to note that the clustering result for the second and third cluster corresponds
to a mix of background and seal images, with the third one containing white background images and harp
seals and the second cluster containing black background images and hooded seals. As clustering is an
unsupervised task and does not necessarily agree with the available supervised information, this result is not
unexpected due to the fact that the background class includes large variations.

To further illustrate the clusters found in the dataset, we increased the number of clusters for the SEALS-3
dataset to 10. Figure 7a shows an overview over the learned clusters. It can be observed that DDC generally
finds reasonable clusters, for example by grouping water (dark patches) in one cluster and white background
images in another. Also, it is possible to note that DDC generally groups the two different seal classes into
separate clusters and assigns images containing both water and snow to a specific class.

Figure 7b illustrates clustering results on MNIST. Interestingly, each cluster represents a distinct number.
However, it can be observed that the 7’s and 9’s are mixed, which is expected due to their shape similarity.
Furthermore, the MNIST dataset contains 1’s that are straight and 1’s that are rotated. Our results indicate
that some of the far leaning 1’s are clustered together with the 2 class, which has a similar diagonal line.

The results for the SEALS-3 dataset coincide with our intuition that the background class is likely to be
divided into different classes. For the SEALS-2 dataset, we observe that DDC outperforms the competitor
algorithms by a large margin (Table 1). As the SEALS dataset is less structured and more challenging
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Cluster 1

Cluster 2

Figure 8: Clustering result for the two classes in the SEALS-2 dataset. DDC groups the two seal types in distinct clusters. The
dark seals in the top row corresponding to hooded seals and the light seals in the bottom row corresponding to harp seals. The
red box indicates a mismatch.

Table 1: Clustering accuracy for DDC, DDC-VOTE, and the baseline models. Best results are highlighted in bold.

Datasets Method NMI ACC[%]

MNIST

K-means 0.50 53.33
ITC (parzen) - -
ITC (kNN) - -

SEC 0.77 68.82
LDMGI 0.81 83.03
DEC 0.81 84.31
DDC 0.83 86.58

DDC-VOTE 0.87 88.49

SEALS-3

K-means 0.13 51.33
ITC (parzen) 0.003 35.30
ITC (kNN) 0.10 53.95

SEC 0.15 49.00
LDMGI 0.13 50.43
DEC 0.17 50.33
DDC 0.14 55.97

DDC-VOTE 0.13 53.30

SEALS-2

K-means 0.015 56.85
ITC (parzen) 0.003 51.55
ITC (kNN) 0.020 57.20

SEC 0.021 58.15
LDMGI 0.018 57.85
DEC 0.005 54.04
DDC 0.15 72.05

DDC-VOTE 0.18 74.65

Reuters

K-means 0.38 60.5
ITC (parzen) - -
ITC (kNN) - -

SEC - -
LDMGI - -
DEC 0.38 63.79
DDC 0.50 73.06

DDC-VOTE 0.51 77.62
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Figure 9: (a) Comparison of the supervised accuracy with the unsupervised loss function (Loss) and its three terms (l1 =
dhid,α,l2 = triu(AAT ), and l3 = dhid,m) during training. (b) Values of the loss function and its three terms when training the
network using a supervised loss function (Sup Loss). Note, the losses have been rescaled to range [0,1].

datasets, we observe that methods that operate directly in pixel space (i.e., raw input space) perform poorly,
stressing the importance of extracting higher-level features for clustering. Figure 8 shows clustering results
for DDC, where it can be clearly observed that hooded seals and harp seals are separated into two distinct
clusters.

The proposed clustering cost function is not dependent on the convolutional architecture used in the
previous two experiments and can also be used for training fully connected neural networks – which are
used when working with vectorial data. For this purpose, we consider the Reuters dataset and substitute
convolutional layers with fully connected ones as described in Section 3.3. Results are shown in Table 1,
where it is possible to observe that DDC outperforms the competitors. Note that, due to the size of the
Reuters dataset, running LDMGI and SEC was impossible as a consequence of their memory requirements
discussed in Section 3.4. Note that, from the results presented in [11], we can see that DEC still performs
well when handling the imbalanced Reuters dataset, where the balanced assumption of DDC does not hold.

4.8. Loss function

In the following, we analyze the proposed loss function (4), providing empirical evidence of the importance
of the different terms; moreover, we evaluate whether the different terms in the loss are related to the
performance of the model. Figure 9a shows the different terms in the loss function during the training phase
as we monitor the accuracy of the best run on MNIST. It is clearly possible to observe that all terms (and
also the overall loss) agree reasonably well with the overall clustering accuracy.

Considering that the network architecture is identical to networks used in supervised approaches and the
availability of labels in our datasets, we can also monitor the terms of the loss function during supervised
training. Figure 9b shows how each term in the loss function and the overall loss decrease as we perform
supervised training on MNIST using a cross-entropy loss function. Again, it is possible to notice that
the individual terms have a similar decreasing trend. Note that large variations in the second loss term
correspond to the aforementioned regularization effect (see Sect. 3.1.2).

In order to further analyze our method, we perform an ablation experiment [63] to investigate the effect
of the different terms on the clustering result. To this end, we recompute clustering accuracy on MNIST
and Reuters for all different combinations of cost function terms. We repeat the experiments five times (20
runs each), compute the overall accuracy for the run with the lowest cost function each time and report the
mean, standard deviation and the maximum accuracy values over these five results. The maximum accuracy
value is reported solely in order to illustrate the maximum potential of the proposed method. In practice,

13



Table 2: Results of the ablation experiment for the MNIST and the Reuters datasets, illustrating the effect of the three different
terms (l1 = dhid,α,l2 = triu(AAT ), and l3 = dhid,m) composing the loss function (4).

MNIST Reuters

Cost Mean ± std Max Mean ± std Max

l1 26.1± 2.9 31.5 39.3± 4.8 48.7
l2 48.9± 1.5 51.8 41.1± 2.9 46.0
l3 74.0± 2.9 77.0 70.2± 6.4 78.8

l1+l2 71.9± 8.0 83.5 66.0± 8.2 75.9
l1+l3 84.7± 5.1 88.6 64.8± 5.2 72.7
l2+l3 74.8± 5.5 84.3 70.3± 4.4 75.4

l1+l2+l3 80.8± 5.8 87.5 69.8± 7.3 82.6

Figure 10: Kernel matrix computed over the learned hidden representation. White colors correspond to low values in the kernel
matrix, whereas dark values indicate large values.

the strategy from Section 4.6 would be used, wherein the best models according to the unsupervised cost
function from each run are combined, denoted as DDC-Vote. Note, this differs from the results reported
in Table 1 for DDC, where we report the accuracy only over 20 runs. Results for the MNIST and Reuters
datasets are reported in Table 2. Our results illustrate that, by using all three terms together, we generally
obtain better performance. However, the contribution of each term to the final performance is not consistent
over all datasets. For instance, we observe that the l2 regularization term does not improve the overall result
on the MNIST dataset, but does have a positive effect on the Reuters dataset.

The three terms in the loss function (4) were equally weighted in all experiments. However, better
performance might be achieved by weighing such terms according to the data properties. For instance,
decreasing the importance on l2 = triu(AAT ) might allow our method to better handle imbalanced data
sets. The analysis of more advanced weighting schemes is left for future work.

We further conducted experiments where we replaced the CS divergence (2) with a symmetrized Kullback-
Leibler (KL) divergence, the divergence used by DEC. However, in our experiments we noticed that the
performance of the proposed method drops considerably. On MNIST DDC with KL divergence only obtains
an accuracy of 53.66%. Further, using a cosine similarity together with the KL divergence for DDC obtains
35.48% accuracy. We hypothesize that this is mainly due to the fact that the KL divergence encourages
separation of clusters, but does not necessarily enforces their compactness. A more thorough analysis of
alternative divergence measures is left for future work.
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Figure 11: Interpretability results for a random subset of MNIST examples using the guided backpropagation technique.

4.9. Learned representation

Figure 10 illustrates the final kernel matrix K computed over the hidden layer for the best MNIST run.
Here, unlike in the case of training, where data points are fed to the model in a random order, the data
points have been sorted according to their class labels. A clear block structure is evident from the figure.
White and black values indicate low and high similarity, respectively. However, especially the 4 and 9 class
show high in-between class similarity, which is not surprising due to their closeness in shape.

4.10. Interpretability of neural network predictions

A recent trend in deep learning is the development of methods to interpret predictions of neural networks
trained with supervised information [22, 64]. However, interpretability is not only a problem in supervised
settings. It could be argued that it is even more essential for unsupervised training, where learning is task-
driven. One such approach is the guided backpropagation [22], which allows visualizing pixels in the image
that are most influential for a given output decision. We use this technique to visualize what the model
learns to recognize MNIST images. Figure 11 illustrates the results for 10 random numbers of the MNIST
dataset. Red pixels indicate pixels positively correlated with the output, in our case the input to the softmax
layer (the unnormalized class score) and lowering the value of the red pixels will lead to a reduced class score.
We observe that our method focuses on features that are unique for a specific number. This includes, for
instance, the loop for the 6 and the top part of the 4. Rendering of the interpretability results overlaying
the MNIST number was inspired by [65].

5. Conclusion and future work

In this paper, we proposed a novel approach to clustering, dubbed DDC, which (i) takes advantage of
the power of deep learning architectures, (ii) is trainable end-to-end in a fully unsupervised way, (iii) does
not require pre-training or complex feature design such as HOG [47] and SIFT [66], and finally (iv) achieves
results that outperform or are comparable with state-of-the-art methods on two real-world image datasets
and a news story text dataset. We have also evaluated the performance of an ensemble DDC approach, which
generally outperformed a single DDC model in the considered benchmarks. Overall, experimental results
presented here are promising and stress the importance of unsupervised learning in modern deep learning
methods.

In future works, we intend to study the robustness of our method. Further, we will explore alternative
loss function formulations, including approaches that are not based on divergence measures and information-
theoretic learning. Finally, it would be interesting to explore the use of the proposed method for related
clustering settings, such as for instance multi-view clustering [33] and constraint clustering [67].
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