957 research outputs found

    Nearly Optimal Deterministic Algorithm for Sparse Walsh-Hadamard Transform

    Get PDF
    For every fixed constant α>0\alpha > 0, we design an algorithm for computing the kk-sparse Walsh-Hadamard transform of an NN-dimensional vector xRNx \in \mathbb{R}^N in time k1+α(logN)O(1)k^{1+\alpha} (\log N)^{O(1)}. Specifically, the algorithm is given query access to xx and computes a kk-sparse x~RN\tilde{x} \in \mathbb{R}^N satisfying x~x^1cx^Hk(x^)1\|\tilde{x} - \hat{x}\|_1 \leq c \|\hat{x} - H_k(\hat{x})\|_1, for an absolute constant c>0c > 0, where x^\hat{x} is the transform of xx and Hk(x^)H_k(\hat{x}) is its best kk-sparse approximation. Our algorithm is fully deterministic and only uses non-adaptive queries to xx (i.e., all queries are determined and performed in parallel when the algorithm starts). An important technical tool that we use is a construction of nearly optimal and linear lossless condensers which is a careful instantiation of the GUV condenser (Guruswami, Umans, Vadhan, JACM 2009). Moreover, we design a deterministic and non-adaptive 1/1\ell_1/\ell_1 compressed sensing scheme based on general lossless condensers that is equipped with a fast reconstruction algorithm running in time k1+α(logN)O(1)k^{1+\alpha} (\log N)^{O(1)} (for the GUV-based condenser) and is of independent interest. Our scheme significantly simplifies and improves an earlier expander-based construction due to Berinde, Gilbert, Indyk, Karloff, Strauss (Allerton 2008). Our methods use linear lossless condensers in a black box fashion; therefore, any future improvement on explicit constructions of such condensers would immediately translate to improved parameters in our framework (potentially leading to k(logN)O(1)k (\log N)^{O(1)} reconstruction time with a reduced exponent in the poly-logarithmic factor, and eliminating the extra parameter α\alpha). Finally, by allowing the algorithm to use randomness, while still using non-adaptive queries, the running time of the algorithm can be improved to O~(klog3N)\tilde{O}(k \log^3 N)

    Light field image processing: an overview

    Get PDF
    Light field imaging has emerged as a technology allowing to capture richer visual information from our world. As opposed to traditional photography, which captures a 2D projection of the light in the scene integrating the angular domain, light fields collect radiance from rays in all directions, demultiplexing the angular information lost in conventional photography. On the one hand, this higher dimensional representation of visual data offers powerful capabilities for scene understanding, and substantially improves the performance of traditional computer vision problems such as depth sensing, post-capture refocusing, segmentation, video stabilization, material classification, etc. On the other hand, the high-dimensionality of light fields also brings up new challenges in terms of data capture, data compression, content editing, and display. Taking these two elements together, research in light field image processing has become increasingly popular in the computer vision, computer graphics, and signal processing communities. In this paper, we present a comprehensive overview and discussion of research in this field over the past 20 years. We focus on all aspects of light field image processing, including basic light field representation and theory, acquisition, super-resolution, depth estimation, compression, editing, processing algorithms for light field display, and computer vision applications of light field data

    Image compression and energy harvesting for energy constrained sensors

    Get PDF
    Title from PDF of title page, viewed on June 21, 2013Dissertation advisor: Walter D. Leon-SalasVitaIncludes bibliographic references (pages 176-[187])Thesis (Ph.D.)--School of Computing and Engineering. University of Missouri--Kansas City, 2013The advances in complementary metal-oxide-semiconductor (CMOS) technology have led to the integration of all components of electronic system into a single integrated circuit. Ultra-low power circuit techniques have reduced the power consumption of circuits. Moreover, solar cells with improved efficiency can be integrated on chip to harvest energy from sunlight. As a result of all the above, a new class of miniaturized electronic systems known as self-powered system on a chip has emerged. There is an increasing research interest in the area of self-powered devices which provide cost-effective solutions especially when these devices are used in the areas that changing or replacing batteries is too costly. Therefore, image compression and energy harvesting are studied in this dissertation. The integration of energy harvesting, image compression, and an image sensor on the same chip provides the energy source to charge a battery, reduces the data rate, and improves the performance of wireless image sensors. Integrated circuits of image compression, solar energy harvesting, and image sensors are studied, designed, and analyzed in this work. In this dissertation, a hybrid image sensor that can perform the tasks of sensing and energy harvesting is presented. Photodiodes of hybrid image sensor can be programmed as image sensors or energy harvesting cells. The hybrid image sensor can harvest energy in between frames, in sleep mode, and even when it is taking images. When sensing images and harvesting energy are both needed at the same time, some pixels have to work as sensing pixels, and the others have to work as solar cells. Since some pixels are devoted to harvest energy, the resolution of the image will be reduced. To preserve the resolution or to keep the fair resolution when a lot of energy collection is needed, image reconstruction algorithms and compressive sensing theory provide solutions to achieve a good image quality. On the other hand, when the battery has enough charge, image compression comes into the picture. Multiresolution decomposition image compression provides a way to compress image data in order to reduce the energy need from data transmission. The solution provided in this dissertation not only harvests energy but also saves energy resulting long lasting wireless sensors. The problem was first studied at the system level to identify the best system-level configuration which was then implemented on silicon. As a proof of concept, a 32 x 32 array of hybrid image sensor, a 32 x 32 array of image sensor with multiresolution decomposition compression, and a compressive sensing converter have been designed and fabricated in a standard 0.5 [micrometer] CMOS process. Printed circuit broads also have been designed to test and verify the proposed and fabricated chips. VHDL and Matlab codes were written to generate the proper signals to control, and read out data from chips. Image processing and recovery were carried out in Matlab. DC-DC converters were designed to boost the inherently low voltage output of the photodiodes. The DC-DC converter has also been improved to increase the efficiency of power transformation.Introduction -- Hybrid imager system and circuit design -- Hybrid imager energy harvesting and image acquisition results and discussion -- Detailed description and mathematical analysis for a circuit of energy harvesting using on-chip solar cells -- Multiresolution decomposition for lossless and near-lossless compression -- An incremental [sigma-delta] converter for compressive sensing -- Detailed description of a sigma-delta random demodulator converter architecture for compressive sensing applications -- Conclusion -- Appendix A. Chip pin-out -- Appendix B. Schematics -- Appendix C. Pictures of custom PC

    Sensor Signal and Information Processing II

    Get PDF
    In the current age of information explosion, newly invented technological sensors and software are now tightly integrated with our everyday lives. Many sensor processing algorithms have incorporated some forms of computational intelligence as part of their core framework in problem solving. These algorithms have the capacity to generalize and discover knowledge for themselves and learn new information whenever unseen data are captured. The primary aim of sensor processing is to develop techniques to interpret, understand, and act on information contained in the data. The interest of this book is in developing intelligent signal processing in order to pave the way for smart sensors. This involves mathematical advancement of nonlinear signal processing theory and its applications that extend far beyond traditional techniques. It bridges the boundary between theory and application, developing novel theoretically inspired methodologies targeting both longstanding and emergent signal processing applications. The topic ranges from phishing detection to integration of terrestrial laser scanning, and from fault diagnosis to bio-inspiring filtering. The book will appeal to established practitioners, along with researchers and students in the emerging field of smart sensors processing

    Convolutional Deblurring for Natural Imaging

    Full text link
    In this paper, we propose a novel design of image deblurring in the form of one-shot convolution filtering that can directly convolve with naturally blurred images for restoration. The problem of optical blurring is a common disadvantage to many imaging applications that suffer from optical imperfections. Despite numerous deconvolution methods that blindly estimate blurring in either inclusive or exclusive forms, they are practically challenging due to high computational cost and low image reconstruction quality. Both conditions of high accuracy and high speed are prerequisites for high-throughput imaging platforms in digital archiving. In such platforms, deblurring is required after image acquisition before being stored, previewed, or processed for high-level interpretation. Therefore, on-the-fly correction of such images is important to avoid possible time delays, mitigate computational expenses, and increase image perception quality. We bridge this gap by synthesizing a deconvolution kernel as a linear combination of Finite Impulse Response (FIR) even-derivative filters that can be directly convolved with blurry input images to boost the frequency fall-off of the Point Spread Function (PSF) associated with the optical blur. We employ a Gaussian low-pass filter to decouple the image denoising problem for image edge deblurring. Furthermore, we propose a blind approach to estimate the PSF statistics for two Gaussian and Laplacian models that are common in many imaging pipelines. Thorough experiments are designed to test and validate the efficiency of the proposed method using 2054 naturally blurred images across six imaging applications and seven state-of-the-art deconvolution methods.Comment: 15 pages, for publication in IEEE Transaction Image Processin

    Combined Industry, Space and Earth Science Data Compression Workshop

    Get PDF
    The sixth annual Space and Earth Science Data Compression Workshop and the third annual Data Compression Industry Workshop were held as a single combined workshop. The workshop was held April 4, 1996 in Snowbird, Utah in conjunction with the 1996 IEEE Data Compression Conference, which was held at the same location March 31 - April 3, 1996. The Space and Earth Science Data Compression sessions seek to explore opportunities for data compression to enhance the collection, analysis, and retrieval of space and earth science data. Of particular interest is data compression research that is integrated into, or has the potential to be integrated into, a particular space or earth science data information system. Preference is given to data compression research that takes into account the scien- tist's data requirements, and the constraints imposed by the data collection, transmission, distribution and archival systems

    Sparse representation based hyperspectral image compression and classification

    Get PDF
    Abstract This thesis presents a research work on applying sparse representation to lossy hyperspectral image compression and hyperspectral image classification. The proposed lossy hyperspectral image compression framework introduces two types of dictionaries distinguished by the terms sparse representation spectral dictionary (SRSD) and multi-scale spectral dictionary (MSSD), respectively. The former is learnt in the spectral domain to exploit the spectral correlations, and the latter in wavelet multi-scale spectral domain to exploit both spatial and spectral correlations in hyperspectral images. To alleviate the computational demand of dictionary learning, either a base dictionary trained offline or an update of the base dictionary is employed in the compression framework. The proposed compression method is evaluated in terms of different objective metrics, and compared to selected state-of-the-art hyperspectral image compression schemes, including JPEG 2000. The numerical results demonstrate the effectiveness and competitiveness of both SRSD and MSSD approaches. For the proposed hyperspectral image classification method, we utilize the sparse coefficients for training support vector machine (SVM) and k-nearest neighbour (kNN) classifiers. In particular, the discriminative character of the sparse coefficients is enhanced by incorporating contextual information using local mean filters. The classification performance is evaluated and compared to a number of similar or representative methods. The results show that our approach could outperform other approaches based on SVM or sparse representation. This thesis makes the following contributions. It provides a relatively thorough investigation of applying sparse representation to lossy hyperspectral image compression. Specifically, it reveals the effectiveness of sparse representation for the exploitation of spectral correlations in hyperspectral images. In addition, we have shown that the discriminative character of sparse coefficients can lead to superior performance in hyperspectral image classification.EM201
    corecore