227 research outputs found

    Preventing Atomicity Violations with Contracts

    Full text link
    Software developers are expected to protect concurrent accesses to shared regions of memory with some mutual exclusion primitive that ensures atomicity properties to a sequence of program statements. This approach prevents data races but may fail to provide all necessary correctness properties.The composition of correlated atomic operations without further synchronization may cause atomicity violations. Atomic violations may be avoided by grouping the correlated atomic regions in a single larger atomic scope. Concurrent programs are particularly prone to atomicity violations when they use services provided by third party packages or modules, since the programmer may fail to identify which services are correlated. In this paper we propose to use contracts for concurrency, where the developer of a module writes a set of contract terms that specify which methods are correlated and must be executed in the same atomic scope. These contracts are then used to verify the correctness of the main program with respect to the usage of the module(s). If a contract is well defined and complete, and the main program respects it, then the program is safe from atomicity violations with respect to that module. We also propose a static analysis based methodology to verify contracts for concurrency that we applied to some real-world software packages. The bug we found in Tomcat 6.0 was immediately acknowledged and corrected by its development team

    Rigorous concurrency analysis of multithreaded programs

    Get PDF
    technical reportThis paper explores the practicality of conducting program analysis for multithreaded software using constraint solv- ing. By precisely defining the underlying memory consis- tency rules in addition to the intra-thread program seman- tics, our approach orders a unique advantage for program ver- ification | it provides an accurate and exhaustive coverage of all thread interleavings for any given memory model. We demonstrate how this can be achieved by formalizing sequen- tial consistency for a source language that supports control branches and a monitor-style mutual exclusion mechanism. We then discuss how to formulate programmer expectations as constraints and propose three concrete applications of this approach: execution validation, race detection, and atom- icity analysis. Finally, we describe the implementation of a formal analysis tool using constraint logic programming, with promising initial results for reasoning about small but non-trivial concurrent programs

    Permission-Based Separation Logic for Multithreaded Java Programs

    Get PDF
    This paper presents a program logic for reasoning about multithreaded Java-like programs with dynamic thread creation, thread joining and reentrant object monitors. The logic is based on concurrent separation logic. It is the first detailed adaptation of concurrent separation logic to a multithreaded Java-like language. The program logic associates a unique static access permission with each heap location, ensuring exclusive write accesses and ruling out data races. Concurrent reads are supported through fractional permissions. Permissions can be transferred between threads upon thread starting, thread joining, initial monitor entrancies and final monitor exits. In order to distinguish between initial monitor entrancies and monitor reentrancies, auxiliary variables keep track of multisets of currently held monitors. Data abstraction and behavioral subtyping are facilitated through abstract predicates, which are also used to represent monitor invariants, preconditions for thread starting and postconditions for thread joining. Value-parametrized types allow to conveniently capture common strong global invariants, like static object ownership relations. The program logic is presented for a model language with Java-like classes and interfaces, the soundness of the program logic is proven, and a number of illustrative examples are presented

    Context-Based Synchronization of Concurrent Process Using Aspect-Oriented Programming

    Get PDF
    Resource access synchronization within concurrent processes or threads is implemented using various constructs such as semaphores, monitor locks, Mutex, etc. The algorithm supporting most of these structures works by keeping at bay all other concurrent processes or threads till the current process accessing the resource has successfully relinquished the resource. This works very well as race conditions are controlled and shared data state remains consistent. The problem with this approach is performance in terms of system response. When each thread has to wait for the other to finish accessing the resource before it can proceed, a long line waiting threads can easily build-up, which obviously translates to relatively slow system response. In this paper, we propose contextual synchronization model to avoid where applicable, the unnecessary build-up of threads waiting for access to the resource. This model describes different contexts within which a resource access can be executed. Each model is ascribed different priorities of which different policies were applied. The most important feature of this model is that the context representing plain resource access will not cause any race condition if all other threads are accessing from the same context. The result of our experiment shows that context-based synchronization performs better than Java given the same number of threads. Keywords: Aspect-oriented programming, synchronization, resource, and concurrent process

    Modularizing and Specifying Protocols among Threads

    Full text link
    We identify three problems with current techniques for implementing protocols among threads, which complicate and impair the scalability of multicore software development: implementing synchronization, implementing coordination, and modularizing protocols. To mend these deficiencies, we argue for the use of domain-specific languages (DSL) based on existing models of concurrency. To demonstrate the feasibility of this proposal, we explain how to use the model of concurrency Reo as a high-level protocol DSL, which offers appropriate abstractions and a natural separation of protocols and computations. We describe a Reo-to-Java compiler and illustrate its use through examples.Comment: In Proceedings PLACES 2012, arXiv:1302.579

    Testing, runtime verification, and analysis of concurrent programs

    Get PDF
    With the development of multi-core processors, concurrent programs are becoming more and more popular. Among several models, the multithreaded shared-memory model is the predominant programming paradigm for developing concurrent programs. However, because of non-deterministic scheduling, multithreaded code is hard to develop and test. Concurrency bugs, such as data races, atomicity violations, and deadlocks, are hard to detect and fix in multithreaded programs. To test and verify multithreaded programs, two sets of techniques are needed. The first one is to enforce thread schedules and runtime properties efficiently. Being able to enforce desired thread schedules and runtime properties would greatly help developers to develop reliable multithreaded code. The second one is to explore the state space of multithreaded programs efficiently. Systematic state-space exploration could guarantee correctness for mul- tithreaded code, however, it is usually time consuming and thus infeasible in most cases. This dissertation presents several techniques to address challenges arising in testing and runtime verification of multithreaded programs. The first two techniques are the IMUnit framework for enforcing testing schedules and the EnforceMOP system for enforcing runtime properties for multithreaded programs. An experimental evaluation shows that our techniques can enforce thread schedules and runtime properties effectively and efficiently, and have their own advantages over existing techniques. The other techniques are the RV-Causal framework and the CAPP technique in the ReEx framework for efficient state-space exploration of multithreaded code. RV-Causal employs the idea of the maximal causal model for state-space exploration in a novel way to reduce the exploration cost, without losing the ability to detect certain types of concurrency bugs. The results show that RV-Causal outperforms existing techniques by finding concurrency bugs and exploring the entire state space much more efficiently

    A Method and Tool for Finding Concurrency Bugs Involving Multiple Variables with Application to Modern Distributed Systems

    Get PDF
    Concurrency bugs are extremely hard to detect due to huge interleaving space. They are happening in the real world more often because of the prevalence of multi-threaded programs taking advantage of multi-core hardware, and microservice based distributed systems moving more and more applications to the cloud. As the most common non-deadlock concurrency bugs, atomicity violations are studied in many recent works, however, those methods are applicable only to single-variable atomicity violation, and don\u27t consider the specific challenge in distributed systems that have both pessimistic and optimistic concurrency control. This dissertation presents a tool using model checking to predict atomicity violation concurrency bugs involving two shared variables or shared resources. We developed a unique method inferring correlation between shared variables in multi-threaded programs and shared resources in microservice based distributed systems, that is based on dynamic analysis and is able to detect the correlation that would be missed by static analysis. For multi-threaded programs, we use a binary instrumentation tool to capture runtime information about shared variables and synchronization events, and for microservice based distributed systems, we use a web proxy to capture HTTP based traffic about API calls and the shared resources they access including distributed locks. Based on the detected correlation and runtime trace, the tool is powerful and can explore a vast interleaving space of a multi-threaded program or a microservice based distributed system given a small set of captured test runs. It is applicable to large real-world systems and can predict atomicity violations missed by other related works for multi-threaded programs and a couple of previous unknown atomicity violation in real world open source microservice based systems. A limitation is that redundant model checking may be performed if two recorded interleaved traces yield the same partial order model

    Preventing atomicity violations with contracts

    Get PDF
    Concurrent programming is a difficult and error-prone task because the programmer must reason about multiple threads of execution and their possible interleavings. A concurrent program must synchronize the concurrent accesses to shared memory regions, but this is not enough to prevent all anomalies that can arise in a concurrent setting. The programmer can misidentify the scope of the regions of code that need to be atomic, resulting in atomicity violations and failing to ensure the correct behavior of the program. Executing a sequence of atomic operations may lead to incorrect results when these operations are co-related. In this case, the programmer may be required to enforce the sequential execution of those operations as a whole to avoid atomicity violations. This situation is specially common when the developer makes use of services from third-party packages or modules. This thesis proposes a methodology, based on the design by contract methodology, to specify which sequences of operations must be executed atomically. We developed an analysis that statically verifies that a client of a module is respecting its contract, allowing the programmer to identify the source of possible atomicity violations.Fundação para a Ciência e Tecnologia - research project Synergy-VM(PTDC/EIA-EIA/113613/2009
    corecore