
© 2015 Qingzhou Luo

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Illinois Digital Environment for Access to Learning and Scholarship Repository

https://core.ac.uk/display/158310998?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://mir.cs.illinois.edu/~qluo2/

TESTING, RUNTIME VERIFICATION, AND ANALYSIS OF CONCURRENT
PROGRAMS

BY

QINGZHOU LUO

DISSERTATION

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Computer Science

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2015

Urbana, Illinois

Doctoral Committee:

Professor Grigore Roşu, Chair
Professor Darko Marinov
Professor Tao Xie
Dr. Klaus Havelund, NASA Jet Propulsion Laboratory

HTTP://MIR.CS.ILLINOIS.EDU/\protect \unhbox \voidb@x \penalty \@M \ {}QLUO2/
http://fsl.cs.uiuc.edu/~grosu/
http://mir.cs.illinois.edu/marinov/
http://web.engr.illinois.edu/~taoxie/
http://www.havelund.com

Abstract

With the development of multi-core processors, concurrent programs are becoming more

and more popular. Among several models, the multithreaded shared-memory model is the

predominant programming paradigm for developing concurrent programs. However, because

of non-deterministic scheduling, multithreaded code is hard to develop and test. Concurrency

bugs, such as data races, atomicity violations, and deadlocks, are hard to detect and fix in

multithreaded programs.

To test and verify multithreaded programs, two sets of techniques are needed. The first

one is to enforce thread schedules and runtime properties efficiently. Being able to enforce

desired thread schedules and runtime properties would greatly help developers to develop

reliable multithreaded code. The second one is to explore the state space of multithreaded

programs efficiently. Systematic state-space exploration could guarantee correctness for mul-

tithreaded code, however, it is usually time consuming and thus infeasible in most cases.

This dissertation presents several techniques to address challenges arising in testing and

runtime verification of multithreaded programs. The first two techniques are the IMUnit

framework for enforcing testing schedules and the EnforceMOP system for enforcing run-

time properties for multithreaded programs. An experimental evaluation shows that our

techniques can enforce thread schedules and runtime properties effectively and efficiently,

and have their own advantages over existing techniques. The other techniques are the RV-

Causal framework and the CAPP technique in the ReEx framework for efficient state-space

exploration of multithreaded code. RV-Causal employs the idea of the maximal causal

model for state-space exploration in a novel way to reduce the exploration cost, without

ii

losing the ability to detect certain types of concurrency bugs. The results show that RV-

Causal outperforms existing techniques by finding concurrency bugs and exploring the

entire state space much more efficiently.

iii

To my family

iv

Acknowledgments

Nothing would be possible for me to achieve without the enormous support from the people

around me. I want to take this chance to express my gratitude to all the people, although I

know I can never thank them enough.

Specifically, I would like to thank:

• Prof. Darko Marinov for his guidance, advice and support through my PhD study.

Darko taught me so many basic things at the very beginning, and I will never forget

the most important lessons I have learned from Darko: stay curious, care for details

and work hard.

• Prof. Grigore Roşu for teaching me how to look at things by their nature rather than

their appearance. I also want to thank Grigore for letting me know how to stay focused

on one thing and do solid work.

• Prof. Tao Xie and Dr. Klaus Havelund for their great advice and help for serving on

my PhD committee.

• Prof. Danny Dig for his wise advice and collaboration.

• My colleagues from the Mir group, including Milos Gligoric, Vilas Jagannath, Adrian

Nistor, Yu Lin, Farah Hariri, and Lamyaa Eloussi, for their vital collaboration during

my PhD study.

• My colleagues from the FSL group, including Yi Zhang, Choonghwan Lee, Dongyun

v

Jin, Jeff Huang, and Brandon Moore for their collaboration and fun moments we spent

together.

• John Micco for his great help during my two internships at Google. John always

answered my questions instantly, and our flaky tests study would be impossible without

the help and mentoring from John.

• Dr. Mihai Budiu for his feedback and guidance during my internship at MSR.

• My friends at UIUC, including Peiwen Wu, Xinying Zong, Hanze Ying, Yanfeng Zhang,

Kai-wei Chang and many others, for keeping my five years colorful.

• My friends at Champaign Table Tennis Club, including Bryant, Robert, Junmei, David,

Nianhua and many others, for keeping me healthy and happy.

• My parents for their unconditional support at anytime and anywhere, and my wife

Qian for her unbounded support, tolerance and love for me. Last but not least, my

daughter Evelyn for the unlimited happiness she brought to me in the last year of my

PhD study.

I apologize to anyone that I may have inadvertently omitted and thank them for being

a part of the journey of my PhD study.

vi

Table of Contents

Chapter 1 Introduction . 1
1.1 Thesis Statement . 3
1.2 Enforcement of Testing Schedules and Runtime Properties 3

1.2.1 Enforcing Schedules for Multithreaded Tests 3
1.2.2 Runtime Property Enforcement for Concurrent Programs 5

1.3 Efficient State-Space Exploration . 7
1.3.1 Efficient Exploration of Multithreaded Regression Tests 7
1.3.2 Systematic Testing of Concurrent Programs with Maximal Causality . 8

1.4 Dissertation Organization . 11

Chapter 2 Background . 12
2.1 Testing and Exploration of Multithreaded Programs 12

2.1.1 Enforcing Correct Thread Schedules . 14
2.1.2 Exploring State Space . 14

2.2 Runtime Verification of Multithreaded Programs 16
2.2.1 JavaMOP . 17
2.2.2 Maximal Causal Model . 18

Chapter 3 Enforcement of Testing Schedules and Runtime Properties . . 20
3.1 Improved Multithreaded Unit Testing . 20

3.1.1 Example . 21
3.1.2 Schedule Language . 25
3.1.3 Enforcing & Checking . 28

3.2 EnforceMOP: A Runtime Property Enforcement System 31
3.2.1 Motivation . 31
3.2.2 Approach and Implementation . 38
3.2.3 Applications and Evaluation . 43
3.2.4 Discussion . 57

Chapter 4 Efficient State-Space Exploration 59
4.1 Stateless State-Space Exploration with ReEx . 59

4.1.1 Introduction . 59
4.1.2 Exploration Strategy . 61

4.2 Systematic Concurrency Testing with Maximal Causality 68
4.2.1 Motivating Example . 68

vii

4.2.2 Approach . 72
4.2.3 Implementation . 77
4.2.4 Evaluation . 81
4.2.5 Discussion . 85

Chapter 5 Related Work . 88
5.1 Testing and Runtime Verification of Multithreaded Programs 88
5.2 Efficient State-Space Exploration of Multithreaded Programs 90

Chapter 6 Conclusions and Future Work . 92

References . 95

viii

Chapter 1

Introduction

Concurrent programs are getting more and more popular with the advancement of multi-core

processors. To extract greater performance from multi-core processors, developers need to

write parallel code, either from scratch or by transforming sequential code. The predominant

paradigm for writing parallel code is that of shared memory where multiple threads of control

communicate by reading and writing shared data objects. Shared-memory multithreaded

code is often afflicted by bugs such as data races, atomicity violations, and deadlocks. These

bugs are hard to detect because multithreaded code can demonstrate different behavior based

on the scheduling of threads, and the bugs may only be triggered by a small specific set of

schedules. Hence it is challenging to build reliable multithreaded software.

Testing and runtime verification are two different ways to improve the reliability of soft-

ware. A test for a program consists of test input, test code, and test oracles (test asser-

tions). When a test is being executed, its test oracle will decide whether the test passes or

not. A test failure usually indicates that there are bugs inside the system under test (SUT).

Runtime verification takes a different approach from testing to improve software reliability.

Runtime verification takes user defined events and properties (which are usually temporal

orders between events) as input, and checks whether those properties hold or not at runtime.

Whenever a property violation is found, recovery code can be executed, which can be any

code, in particular a warning being displayed to the user.

While both testing and runtime verification are known to be effective for sequential pro-

grams, applying them for concurrent programs faces some new challenges. Because of the

non-deterministic scheduling of multithreaded code, the first challenge is how to enforce cer-

1

tain schedules when testing or verifying multithreaded programs. For testing, a deterministic

schedule is needed because it would help in validating the test oracles. For runtime verifica-

tion, since there are multiple possible thread schedules for a given multithreaded program,

the fact that no violation is detected in one particular schedule does not guarantee that the

desired property will hold in all possible schedules. The second challenge is how to efficiently

explore all the possible thread schedules. Testing or runtime verification cannot cover all the

possible thread schedules that a given multithreaded program can manifest, therefore tech-

niques for exploring all the possible thread schedules are needed to guarantee correctness.

Existing techniques enumerate all the possible thread schedules for a given multithreaded

program; however this task is usually very time consuming and thus infeasible in most cases.

In this dissertation we aim to address the above issues of testing and runtime verifica-

tion for multithreaded programs. First, we propose techniques for expressing and enforcing

schedules in multithreaded tests, as well as an extension to the JavaMOP runtime verifica-

tion framework to enforce formal properties for multithreaded programs. Second, we also

propose techniques for efficient state-space exploration to find concurrency bugs in multi-

threaded programs. Evaluations show that our proposed techniques provide efficient ways

to enforce testing schedules and runtime properties, and also make state-space exploration

for multithreaded programs much more efficient compared to existing techniques.

2

1.1 Thesis Statement

Our thesis statement is the following:

It is possible to improve the reliability of multithreaded programs by (1) effectively

enforcing correct thread schedules and temporal properties and (2) efficiently exploring

interleavings that could possibly trigger concurrency bugs.

To confirm this statement, this dissertation presents two main bodies of research or-

ganized as follows: (1) the IMUnit framework for writing multithreaded tests and the En-

forceMOP system for enforcing any general temporal properties for multithreaded programs,

and (2) the CAPP technique for change-aware exploration of multithreaded tests and the

RV-Causal framework for exploration reduction based on the maximal causal model.

1.2 Enforcement of Testing Schedules and Runtime

Properties

1.2.1 Enforcing Schedules for Multithreaded Tests

To validate multithreaded code, developers write multithreaded unit tests. A multithreaded

test creates and executes two or more threads (and/or invokes code under test that itself

creates and executes two or more threads). Each test execution follows some schedule/inter-

leaving of the multiple threads, and different schedules can give different results. Developers

often want to enforce a particular schedule for a test. For example, consider having two

threads, one that executes a method m, and the other that executes a method m′. Develop-

ers may want to ensure in one test that m finishes before m′ starts on the other thread and in

another test that m′ finishes before m starts (and in more tests that m and m′ interleave in

certain ways). Without controlling the schedule, it is impossible to write precise assertions

3

about the execution because the results can differ in the two scenarios, and it is impossible

to guarantee which scenarios were covered during testing, even if multiple testing runs are

performed.

To control the schedule of multithreaded tests, developers mostly use a combination

of timed delays in the various test threads. In Java, the delay is performed with the

Thread.sleep method, so we call this approach sleep-based. A sleep pauses a thread while

other threads continue execution. Using a combination of sleeps, developers attempt to

enforce the desired schedule on the execution of a multithreaded test, and then assert the

intended result for the desired schedule. A sleep-based test can fail when an undesired

schedule gets executed even if the code under test has no bug (false positive). Dually, a

sleep-based test can pass when an unintended schedule gets executed even if the code under

test has a bug (false negative). Indeed, sleeps are an unreliable and inefficient mechanism

for enforcing schedules because sleeps are based on real time. To use sleeps, one has to

estimate the real-time duration for which to delay a thread while the other threads perform

their work. This is usually estimated by trial and error, starting from a small duration and

increasing it until the test passes consistently on the developer’s machine. The estimated

duration depends on the execution environment (hardware/software configuration and the

load on the machine) on which the delay time is being estimated. Therefore, when the

same test is executed in a different environment, the intended schedule may not be enforced

leading to false positives/negatives. Moreover, sleep can be very inaccurate even on a single

machine [57]. In an attempt to mitigate the unreliability of sleep, developers often end up

over-estimating the duration, which in turn leads to slow running multithreaded tests.

We present a new framework, called IMUnit, which aims to address these issues with

multithreaded unit testing. IMUnit introduces a novel language that enables natural and

explicit specification of schedules for multithreaded unit tests. Semantically, the basic entity

in an IMUnit schedule is an event that an execution can produce at various points (e.g., a

thread starting/finishing the execution of a method, or a thread getting blocked). We call the

4

IMUnit approach event-based. An IMUnit schedule itself is a (monitorable) property [23,65]

on the sequence of events. More precisely, each schedule is expressed as a set of desirable

event orderings, where each event ordering specifies the order between a pair of events (note

that an IMUnit schedule need not specify a total order between all events but only the

necessary partial order).

1.2.2 Runtime Property Enforcement for Concurrent Programs

Other than testing, runtime verification combines formal methods and testing to check crit-

ical properties of a program dynamically. The key idea is that software system properties,

often defined using temporal formalisms, can be used to generate program monitors. Any

property violation is reported or resolved immediately rather than waiting for a bug to man-

ifest. Runtime verification has been proven to be a promising technique to increase software

reliability, with a large number of runtime verification techniques and tools developed, in-

cluding Hawk/Eraser [27], MOP [22], PQL [64], PTQL [38] and Tracematch [1], among many

others.

While runtime verification can effectively detect property violations, and sometimes even

recover from such violations, unfortunately it provides no guarantee that properties are never

violated. This is particularly problematic in multithreaded systems, where non-deterministic

thread scheduling may hide potentially critical errors. For example, consider a concurrent

database where one thread is in charge of authorizing users, and each user is assigned a

thread for fetching data. The underlying property is that any user should be authorized

before getting data, so for any given user the corresponding thread should wait until the

first thread finishes authorizing. Runtime verification approaches can monitor the program

execution and report violations of this property for each user, but cannot prove correctness:

a successful run gives no guarantee that other runs, under different thread schedules, will

also be successful.

The conventional approach is to employ language-specific synchronization mechanisms or

5

ad-hoc sleep commands to enforce such properties when developing or testing multithreaded

programs. For instance, Java provides a synchronized keyword, a Thread.sleep() method,

and several other classes in the java.util.concurrent package. However, there are certain

limitations when using these constructs to enforce arbitrary properties in multithreaded

programs: (1) it is non-trivial and error-prone to use these constructs when the property to

be enforced is complex, as shown later in this dissertation; and (2) all these constructs are

mingled with the original program. Therefore, these constructs are not modular, and they

also make it hard to identify and reason about the underlying properties that the developers

are attempting to enforce.

Here we present EnforceMOP, a novel framework for enforcing complex properties in

multithreaded programs. The properties are enforced at runtime and do not require to

modify the source code, so they can be modularly maintained. We show that EnforceMOP

can be used effectively both in developing and in testing multithreaded programs.

We make the following specific contributions:

Technique: We propose a technique to enforce arbitrarily complex safety properties in

multithreaded programs. The properties can be expressed using various formalisms.

Implementation: EnforceMOP is implemented in Java on top of JavaMOP [23], a

state-of-the-art runtime verification framework. Following the philosophy of JavaMOP, En-

forceMOP is implemented in a logic-independent way.

Evaluation: We evaluated the effectiveness of EnforceMOP in two aspects. First, as

a framework to enforce general properties when developing multithreaded programs, specif-

ically to enforce correct behaviors of such programs. Second, as a testing framework to

enforce thread schedules when unit testing multithreaded programs, specifically to enforce

schedules in 185 existing multithreaded unit tests, and compared it with several existing

testing frameworks.

6

1.3 Efficient State-Space Exploration

1.3.1 Efficient Exploration of Multithreaded Regression Tests

Ensuring the reliability of multithreaded code has been an active area of research with

several promising recent results [16, 17, 26, 33, 34, 52, 67, 70, 75]. Most of these tools execute

multithreaded tests and check for the presence of faults. Since multithreaded code can

have different behavior for different thread schedules/interleavings, these tools conceptually

explore the code for a large number of schedules. As a result, the tools typically take fairly

long time to check code. Moreover, most existing tools are change-unaware: they check only

one version of code at a time, and do not exploit the fact that code evolves over several

versions during development and maintenance.

Regression testing involves re-executing the tests for a program when its code changes to

ensure that the changes have not introduced a fault that causes test failures. As programs

evolve and grow, their test suites also grow, and over time it becomes expensive to re-execute

all the tests. The problem is exacerbated when test suites contain multithreaded tests that

are generally long running. While many techniques have been proposed to alleviate this

problem for sequential tests [90], there is much less work for multithreaded code [36, 89].

We propose a novel technique, called Change-Aware Preemption Prioritization (CAPP),

that uses information about the changes in software evolution to prioritize the exploration

of schedules in a multithreaded regression test. The goal of CAPP is to find a fault faster,

if one exists. Our technique decides in what order to explore thread schedules based on how

test exploration dynamically encounters changed code.

CAPP is a general technique that can be instantiated with different definitions of code

changes and types of ordering for schedules. We present 14 heuristics that consider changes

at the level of source-code lines/statements, methods, classes, or fields affected by the change,

and that consider orderings based on whether all or only some executing threads are encoun-

tering changed code.

7

1.3.2 Systematic Testing of Concurrent Programs with Maximal

Causality

A fundamental challenge in testing concurrent programs is how to effectively cover the

astronomical thread interleaving or scheduling space to either find out the buggy thread

interleaving or prove the program is correct. In theory, a bug may be hidden anywhere

in the state space and finding it is as hard as finding a needle in a haystack. Worse, the

diversity of the exercised interleavings tends to be highly correlated with the execution

environments [69,91]. Naively executing the program on the same platform repeatedly (such

as stress testing) results in redundant exploration of similar interleavings, keeping the buggy

interleaving space still uncovered.

Systematic testing approaches [18, 66, 68, 69, 88, 91] offer a more promising solution for

testing concurrent programs. They avoid testing repeated interleavings by actively control-

ling the thread scheduler to systematically explore all legal but distinct interleavings. If

a buggy interleaving is hit during the exploration, then that interleaving can be used to

reproduce the bug. If no buggy interleaving is found after the exploration finishes, then

the concurrent program is proven to be correct. Systematic testing is more effective than

straightforwardly repeated execution of the concurrent program because it guarantees that

each test execution covers a different interleaving. However, the core challenge still remains:

to cover the astronomical scheduling space, the same astronomical number of test executions

must be done.

Researchers have proposed various methods to reduce the exploration space for system-

atic testing approaches. For example, context bounding techniques [66,68] limit the number

of preemptions each explored interleaving could have, and coverage-driven techniques [88,91]

and priority-based techniques [18,48,69] prioritize schedules during exploration. Those tech-

niques have been proven to be effective for finding certain bugs in concurrent programs. How-

ever, they only try to select or prioritize schedules in exploration space, so those techniques

8

cannot prove the program is correct and may also miss bugs.

Several researchers have also proposed partial-order reduction techniques [35, 37] to re-

duce the cost of state-space exploration. The idea is to only explore schedules that lead to

different program states. For example, dynamic partial-order reduction (DPOR) techniques

[35] prune state space by looking at all the currently active transitions and only explore one

of them if they do not interfere with one another. DPOR can indeed greatly reduce state-

space exploration cost. However, it is based on happens-before causality, and thus, it does

not prune the maximal possible number of interleavings. In other words, many interleavings

explored by DPOR could possibly belong to the same maximal causal model [82].

We propose a new approach that systematically explores the interleaving space with

substantially fewer number of test executions. Our key insight is to look at the state-space

exploration problem from the perspective of the causal model (instead of interleavings), which

characterizes a set of legal interleavings that are causally equivalent and can be derived from

one another. These causal sets have the important property that if any single interleaving is

tested then there is no need to test any other interleaving in the same causal set. Moreover,

the checking of each causal set can be done offline and in parallel, so our technique is

particularly suitable when online testing is more expensive than offline checking.

Generally speaking, the classical happens-before relationship [56] (HB) yields such a

causal model. HB characterizes the set of interleavings in which the order between operations

can be altered if they have no HB relation. However, HB is rather strict, in that its power

of characterizing causality is quite limited. Instead, our approach builds upon the maximal

causal model [82] (MCM) technique, which yields the largest possible causal equivalence

classes. In other words, from any single execution trace, MCM is able to derive the largest

causal set of legal interleavings w.r.t. that trace. Underpinned by this property, our approach

minimizes the number of executions that are needed to run to cover the entire scheduling

space w.r.t. a given input.

A main technical challenge here is how to systematically generate new schedules such

9

that: (1) no two subspaces (corresponding to two different traces) overlap, and (2) all the

subspaces together cover the entire scheduling space. Our approach works by pivoting around

the value of reads in the trace. Specifically, we ensure that each generated new schedule has

at least one new event: a read event that reads a new data (i.e., a different value from that in

other schedules). All such new events are considered and their corresponding schedules are

generated, as long as the schedule is legal (permitted by MCM). In this way, we guarantee

that no two schedules are redundant in terms of MCM, i.e., the corresponding trace of each

schedule contains at least one distinct event compared to others. Moreover, because the

generated schedules consider all possible legal combinations of read values, our approach

would cover the entire state space eventually.

We make the following specific contributions:

• A new systematic concurrency testing approach that leverages the maximal causal

model to minimize the number of executions needed to execute, and shifts the runtime

computation cost to offline inference and property checking through constraint solving.

• A schedule generation technique that systematically generates new schedules that cover

distinct thread interleavings until the whole scheduling space is covered.

• A set of evaluations that shows that our technique is able to find concurrency bugs

and explore the entire state space more efficiently and effectively than the existing

techniques.

10

1.4 Dissertation Organization

The rest of this dissertation is organized as follows:

• Chapter 2 presents a brief overview of background techniques used in this disserta-

tion, such as the JavaMOP framework, the ReEx framework, and the Maximal Causal

Model. It serves as the foundation for the rest of this dissertation.

• Chapter 3 presents our enforcement approach for executing multithreaded programs

and tests. It describes the IMUnit framework and the EnforceMOP system, a runtime

system for enforcing any temporal properties in multithreaded programs.

• Chapter 4 presents our exploration approach for testing and verifying multithreaded

programs. We first briefly present the CAPP framework, which prioritizes thread

schedules based on the changes between two versions. We then present theRV-Causal

framework in detail for efficient state-space exploration based on the maximal causal

model.

• Chapter 5 presents an overview of research related to this dissertation.

• Chapter 6 concludes this dissertation, followed by various possible future work direc-

tions based on this work.

11

Chapter 2

Background

This chapter presents the technical background for techniques presented in this dissertation.

Section 2.1 presents two different approaches for testing multithreaded programs: enforcing

the correct thread schedules and exploring the entire state space. Section 2.2 introduces the

runtime verification techniques and explains how they apply to multithreaded programs.

2.1 Testing and Exploration of Multithreaded

Programs

With the advent of multi-core processors, concurrent programs become more and more

popular in practice. Concurrent programs provide an efficient yet convenient way to do

multiple tasks at the same time. Among others, the multithreaded, shared-memory paradigm

is the dominating programming paradigm so far. A multithreaded program consists of several

threads being executed at the same time. All the threads can access the same memory

region of the process, so they can read or modify shared variables concurrently. Although

this model is convenient for programmers to write multithreaded code, it also introduces

non-determinism in the program caused by the different execution orders between threads.

Such non-determinism is very hard to test, reproduce and fix. Here we use an example to

demonstrate it.

In Figure 2.1, two threads are started concurrently in the program. They both access the

same field value of a same object. Depending on the execution order of those two threads,

12

1 class Counter {
2
3 public int value = 0 ;
4
5 public stat ic void main (Str ing [] a rgs) {
6
7 f ina l Counter c = new Counter () ;
8
9 Thread t1 = new Thread (new Runnable () {

10 @Override
11 public void run () {
12 int temp = c . value ;
13 temp++;
14 c . value = temp ;
15 }
16 }) ;
17
18 Thread t2 = new Thread (new Runnable () {
19 @Override
20 public void run () {
21 int temp = c . value ;
22 temp++;
23 c . value = temp ;
24 }
25 }) ;
26
27 t1 . s t a r t () ;
28 t2 . s t a r t () ;
29
30 t1 . j o i n () ;
31 t2 . j o i n () ;
32
33 System . out . p r i n t l n (c . value) ;
34 }
35 }

Figure 2.1: Counter example

the result of value could vary. For example, if t1 finishes execution before t2 starts, then

value will have the value 2. In another execution, if t2 starts to execute in the middle of the

execution of t1 on line 13 (which is called as a context switch or preemption), then value

will have the value 1. Therefore, different thread schedules will lead to different results of

the program’s execution.

There are several different approaches to addressing the non-determinism of multithreaded

programs. The first one is to use some synchronization mechanisms to enforce the correct

schedules that is being executed, thus only a subset among all the possible thread schedules

can be executed. The second approach is to systematically explore all the possible thread

schedules in the program. Any problematic schedules will be found during the exploration,

therefore they can be fixed by developers. In the rest of this section we introduce the

13

background of both approaches.

2.1.1 Enforcing Correct Thread Schedules

One way to address the issue of non-determinism of multithreaded programs is to enforce

only a subset thread schedules that can be executed. In practice, developers often achieve

this goal by inserting Thread.sleep statements in the program to force a context switch at

certain points. For example, developers can insert Thread.sleep before line 21 in Figure 2.1,

right before the start of t2. By doing this, it is likely that t1 will first finish execution before

t2 starts.

Enforcement of certain thread schedules can be used for both testing and development

of multithreaded programs. When testing multithreaded programs, developers usually want

to test a specific scenario, and the test oracle (assertion) depends on the thread schedules

to be tested. When developing multithreaded programs, it is also convenient to be able to

enforce certain schedules to avoid bugs or to improve performance.

However using Thread.sleep statements has its own drawbacks, such as being not in-

tuitive, error prone and impacting performance. Researchers have developed various tech-

niques to overcome those disadvantages of using Thread.sleep, such as ConAn [59] and

MultithreadTC [78]. In Chapter 3 of this dissertation, we present the IMUnit framework for

enforcing testing schedules, and the EnforceMOP system for enforcing both testing sched-

ules and temporal properties at runtime. We also compare IMUnit and EnforceMOP with

existing approaches.

2.1.2 Exploring State Space

Another way to address the issue of non-determinism in multithreaded programs is to sys-

tematically explore all the possible thread schedules. By doing this, the problematic thread

schedules can be found and fixed by developers before they occur in practice. Exploration

14

of multithreaded programs works by incrementally executing different thread schedules until

all the thread schedules have been enumerated. Since a context switch can occur at many

different points in the program, all the possible thread schedules for a given program can be

organized as a exploration tree, with the root being the start of the program and each edge

representing a choice of a particular thread to execute at that given point. In Figure 2.2 we

present the exploration tree for the program in Figure 2.1.

Start

T1: read T2: read

T2: readT1: write

T2: read

T2: write

T1: write T2: write

T2: write T1: write

T2: writeT1: read

T1: write

T2: write

T2: write T1: read

T1: write T1: write

value: 2 value: 1 value: 1 value: 1 value: 1 value: 2

Figure 2.2: Exploration Tree

Each thread performs a read operation for the shared variable followed by a write op-

eration. When the program starts, it can choose to run t1 first or t2 first. After the first

read operation, it can also choose to continue executing the first thread with its write oper-

ation, or context switch to another thread. By enumerating all the possible choices in the

programs’ execution, we get a tree-like graph shown in Figure 2.2. Each leaf node represents

a completed thread schedule for the program, with possibly different execution result.

Exploration can help discovering buggy thread schedules, but it also has the problem of

state-space explosion. At each choice point there are multiple threads can be chosen from,

15

so the total number of thread schedules is exponential to the number of choice points in the

program. There are different ways to explore the entire state space efficiently. The first one

is called stateful exploration, which models the program state at each step and use backtrack

and state comparison to explore new schedules. The advantage of this approach is that it can

merge same states together, thus alleviating the problem of state space explosion. However

it comes with the cost that it has to model and maintain the program state. Java PathFinder

(JPF) [53] is the state-of-the-art stateful exploration tool for Java programs. It works on

Java bytecode by modeling all the different kinds of bytecode instructions respectively.

Another approach (stateless exploration) is to do exploration without modeling the pro-

gram states explicitly. Each schedule is recorded by keeping track of all the choices made

during its execution. After finishing one execution, the program will re-execute from the

very beginning, but mutate the recorded choice points to force the program to execute a new

schedule. Compared to stateful exploration, stateless exploration does not need to model

and maintain the program state, thus it can finish executing a single thread schedule faster.

However, the total number of schedules may be much larger because of the duplicated pro-

gram states are not discovered and merged. The ReEx framework is a stateless exploration

tool developed by ourselves for Java programs. ReEx also works on Java bytecode, and it

supports different exploration strategies to select or prioritize the schedules to be explored.

The rest of this dissertation makes use of ReEx heavily to demonstrate and evaluate our

techniques.

2.2 Runtime Verification of Multithreaded Programs

Runtime verification is another way to improve software reliability by combining formal

methods with testing. It takes as input a set of user defined events and formal properties,

and verifies those properties at runtime. Since runtime verification does not aim to statically

verify all the possible hypothetical executions, it has the potential to be used more widely

16

in practice.

For multithreaded programs, runtime verification techniques will only verify the current

thread schedule that is being executed. Therefore, it could potentially miss buggy sched-

ules. In this section, we first introduce the state-of-the-art runtime verification framework

JavaMOP [65]. Then we introduce the maximal causal model [82] and show how runtime

verification techniques can help verifying multithreaded programs. Later on in this disserta-

tion, we show how our techniques built upon JavaMOP and the maximal causal model can

help enforcing and exploring thread schedules efficiently.

2.2.1 JavaMOP

JavaMOP is the state-of-the-art runtime verification framework for Java programs. Each

JavaMOP specification contains a few components: event definition defined by using AspectJ-

like language, formal properties which can be written in a few different formalisms, and error

handler code to be executed when the underlying properties are violated. Each JavaMOP

specification is compiled into AspectJ code, and at runtime the AspectJ code will be weaved

into the original program. If during the programs’ execution a violation is detected, the user

defined handler code will be executed.

JavaMOP also has many advanced features:

• It is parametric as each event is not only bound to the method call, but also to the

parameter objects and the receiver object. This gives JavaMOP the flexibility to define

more complex properties.

• It is highly optimized by using the indexing trees and the weak reference map. As shown

in our previous evaluation [63], JavaMOP only incurs relatively small performance

overhead when being used to monitor hundreds of properties simultaneously.

• It supports various formalisms with different expressiveness, such as Extended Reg-

ular Expression (ERE), Context Free Grammar (CFG) and so on. Moreover, it also

17

supports user to define their own logic plugin. The underlying monitoring algorithms

of JavaMOP does not depend on the specific formalism in use.

JavaMOP serves as the foundation for much of the work of this dissertation. In particular,

EnforceMOP introduced in Chapter 3 is an extension of JavaMOP for enforcing properties

at runtime for multithreaded programs.

2.2.2 Maximal Causal Model

Predictive analysis is an application of runtime verification techniques for multithreaded

programs. The idea of predictive analysis is, given one execution trace of a multithreaded

program, to build a model that represents the alternative executions (all the feasible execu-

tions) of the original program, and find errors such as data races and atomicity violations

in those alternative executions. Even if the original execution does not trigger any error,

predictive analysis may still find hidden errors in the alternative executions without the need

to execute the program again. Because of its ability to find bugs, many researchers have

used predictive analysis to find data races [24,44], atomicity violations [83] and NullPointer

Exceptions [32].

The core of predictive analysis is to build a model using the information gained from

the current execution. The maximal causal model [82] contains the maximal number of

executions that one can extract from one particular execution. It is proven to be maximal

with two axioms: prefix closedness (events cannot be divided and should be generated in

execution order) and local determinism (each event is determined by its prior events in the

same thread). The details of the maximal causal model can be found in Chapter 4 and the

proof of its maximality can be found in [82]. Because of its maximality, the maximal causal

model outperforms other existing predictive models for detecting errors in multithreaded

programs. In this dissertation, we are using the idea of the maximal causal model in another

way for exploration of multithreaded programs: we systematically generate and explore all

18

the maximal causal models. Since each model represents a large (maximal possible) number

of executions, in this dissertation it is shown that our technique provides great benefits for

reducing the cost of state-space exploration of multithreaded programs.

19

Chapter 3

Enforcement of Testing Schedules and
Runtime Properties

In this chapter we present our techniques for enforcing testing schedules and runtime proper-

ties for multithreaded programs. We first present the IMUnit framework for expressing and

enforcing schedules for multithreaded unit tests; then we present the EnforceMOP frame-

work for enforcing runtime properties. Our evaluation shows our techniques are able to

enforce thread schedules and properties more effective and efficient compared to existing

frameworks.

Note that the contributions presented in this chapter has already been published in the

form of conference papers. IMUnit has been published at the European Software Engi-

neering Conference and the ACM SIGSOFT Symposium on the Foundations of Software

Engineering 2011 (ESEC/FSE 2011) [46], EnforceMOP has been published at the Interna-

tional Symposium on Software Testing and Analysis 2013 (ISSTA 2013) [61]. The author of

this dissertation is the main author or co-author of above papers, and would like to thank

anonymous reviewers for valuable feedback.

3.1 Improved Multithreaded Unit Testing

This section presents the contributions of the IMUnit framework, which was developed to

improve the expression and execution of multithreaded tests.

20

3.1.1 Example

We now illustrate IMUnit with the help of an example multithreaded unit test for the

ArrayBlockingQueue class provided by the java.util.concurrent (JSR-166) package [49].

ArrayBlockingQueue is an array-backed implementation of a bounded blocking queue. One

of the operations provided by ArrayBlockingQueue is add, which performs a non-blocking

insertion of the given element at the tail of the queue. If add is performed on a full queue,

it throws an exception. Another operation provided by ArrayBlockingQueue is take, which

removes and returns the object at the head of the queue. If take is performed on an empty

queue, it blocks until an element is inserted into the queue. These operations could have bugs

that get triggered when the take and add operations execute on different threads. Consider

specifying some scenarios for these operations (In fact, the JSR-166 TCK provides over 100

tests for various scenarios for similar classes).

1 @Test
2 public void testTakeWithAdd() {
3 ArrayBlockingQueue<Integer> q;
4 q = new ArrayBlockingQueue<Integer>(1);
5 Thread addThread = new Thread(
6 new CheckedRunnable() {
7 public void realRun() {
8 q.add(1);
9 Thread.sleep(150);

10 q.add(2);
11 }
12 }, ”addThread”);
13 addThread.start();
14 Thread.sleep(50);
15 Integer taken = q.take();
16 assertTrue(taken == 1 && q.isEmpty());
17 taken = q.take();
18 assertTrue(taken == 2 && q.isEmpty());
19 addThread.join();
20 }

(a) JUnit

Figure 3.1: Multithreaded unit test for ArrayBlockingQueue

Figure 3.1 shows a multithreaded unit test for ArrayBlockingQueue exercising the add

and take operations in some scenarios. In particular, Figure 3.1(a) shows the test written as

21

a regular JUnit test method, with sleeps used to specify the required schedule. We invite the

reader to consider what scenarios are specified with that test (without looking at the other

figures). It should be clear that it is very difficult to understand which schedule is being

exercised by reading the code of this unit test. While the sleeps provide hints as to which

thread is waiting for another thread to perform operations, it is unclear which operations

are intended to be performed by the other thread before the sleep finishes.

The test actually checks that take performs correctly both without and with blocking,

when used in conjunction with add from another thread. To check both scenarios, the

test exercises a particular schedule where the first add operation finishes before the first take

operation starts, and the second take operation blocks before the second add operation starts.

Line 14 shows the first sleep which is intended to pause the main thread1 while the thread

addThread finishes the first add operation. Line 9 shows the second sleep which is intended

to pause the thread addThread while the main thread finishes the first take operation and

then proceeds to block while performing the second take operation. If the specified schedule

is not enforced during the execution of the test, it will result in false positives/negatives.

Figure 3.2(b) shows the same test logic written using MultithreadedTC [78]. Note that it

departs greatly from the traditional JUnit where each test is a method. In MultithreadedTC,

each test has to be written as a class, and each method in the test class contains the code

executed by a thread in the test. The intended schedule is specified with respect to one

global, logical clock. Since this clock measures time in ticks, we call the approach tick-

based. When a thread executes a waitForTick operation, it is blocked until the global clock

reaches the required tick value. The clock advances implicitly by one tick only when all the

threads are blocked (and at least one blocked thread is executing a waitForTick operation).

While a MultithreadedTC test does not rely on real time, and is thus more reliable than a

sleep-based test, the intended schedule is still not immediately clear upon reading the test

1JVM names the thread that starts the execution main by default, although the name can be changed
later.

22

1 @Test
2 @Schedule(”afterAdd1->beforeTake1,
3 [beforeTake2]->beforeAdd2”)
4 public void testTakeWithAdd() {
5 ArrayBlockingQueue<Integer> q;
6 q = new ArrayBlockingQueue<Integer>(1);
7 Thread addThread = new Thread(
8 new CheckedRunnable() {
9 public void realRun() {

10 q.add(1);
11 @Event(”afterAdd1”)
12 @Event(”beforeAdd2”)
13 q.add(2);
14 }
15 }, ”addThread”);
16 addThread.start();
17 @Event(”beforeTake1”)
18 Integer taken = q.take();
19 assertTrue(taken == 1 && q.isEmpty());
20 @Event(”beforeTake2”)
21 taken = q.take();
22 assertTrue(taken == 2 && q.isEmpty());
23 addThread.join();
24 }

(a) IMUnit

1 public class TestTakeWithAdd
2 extends MultithreadedTest {
3

4 ArrayBlockingQueue<Integer> q;
5

6 @Override
7 public void initialize() {
8 q = new ArrayBlockingQueue<Integer>(1);
9 }

10

11 public void addThread() {
12 q.add(1);
13 waitForTick(2);
14 q.add(2);
15 }
16

17 public void takeThread() {
18 waitForTick(1);
19 Integer taken = q.take();
20 assertTrue(taken == 1 && q.isEmpty());
21 taken = q.take();
22 assertTick(2);
23 assertTrue(taken == 2 && q.isEmpty());
24 }
25 }

(b) MultithreadedTC

Figure 3.2: ArrayBlockingQueue test written in IMUnit and MultithreadedTC

code. It is especially not clear when waitForTick operations are blocked/unblocked, because

ticks are achieved implicitly when all the threads are blocked.

Figure 3.2(a) shows the same test logic written using IMUnit. The interesting events

encountered during the test execution are marked with the @Event annotations, which our

IMUnit tool properly translates into code for test execution. Since @Schedule annotations

appear on methods, they are already fully supported in the current version of Java, and the

intended schedule is specified with a @Schedule annotation that contains a comma-separated

set of orderings among events. An ordering is specified using the binary operator ->, where

intuitively the left event is intended to execute before the right event. An event specified

within square brackets denotes that the thread executing that event is intended to block

after that event. It should be clear from reading the schedule that the thread addThread

should finish the first add operation before the main thread starts the first take operation,

23

<Event Name> : := { <Id> ” .” } <Id>
<Thread Name> : := <Id>
<Basic Event> : := <Event Name> [”@” <Thread Name>]

| ” s t a r t ” ”@” <Thread Name>
| ”end” ”@” <Thread Name>

<Block Event> : := ” [” <Basic Event> ”]”
<Condition> : := <Basic Event>

| <Block Event>
| <Condition> ” | | ” <Condition>
| <Condition> ”&&” <Condition>
| ”(” <Condition> ”)”

<Ordering> : := <Condition> ”->” <Basic Event>
<Schedule> : := { <Ordering> [” , ”] }

Figure 3.3: Syntax of the IMUnit schedule language

and that the main thread should block while performing the second take operation before

the thread addThread starts the second add operation.

We now revisit in the context of this example the issues with multithreaded unit tests

listed in the introduction. In terms of readability, we believe that making the schedules

explicit as in IMUnit allows easier understanding and maintenance of the schedules and code

for both testing and debugging. In terms of modularity, note that IMUnit allows extracting

the thread addThread as a helper thread (with its events) that can be reused in another

test (In fact, many tests in the JSR-166 TCK [49] use such helper methods). Also, IMUnit

allows specifying multiples schedules for the same test code. In contrast, reusing one of

the thread methods from the MultithreadedTC test class becomes more involved, requiring

subclassing tests, parametrizing tick values with variables, and providing appropriate values

for those variables. In terms of reliability, IMUnit does not rely on real time and hence has

no problems with unintended schedules. In terms of migration costs, note that the IMUnit

test more closely resembles a traditional JUnit test than a MultithreadedTC test. This

similarity eases the transition of legacy tests into IMUnit: in brief, add @Event annotations,

add @Schedule, and remove sleep calls.

24

3.1.2 Schedule Language

We next describe the syntax and semantics of the language that is used in IMUnit’s schedules.

Concrete Syntax

Figure 3.3 shows the concrete syntax of the implemented IMUnit schedule language. An

IMUnit schedule is a comma-separated set of orderings. Each ordering defines a condition

that must hold before a basic event can take place. A basic event is an event name possibly

tagged with its issuing thread name when that is not understood from the context. An event

name is any identifier, possibly prefixed with a package name (a list of dot-separated identi-

fiers). There are two implicit event names for each thread, start and end, indicating when

the thread starts and when it terminates. Any other event must be explicitly introduced by

the user with the @Event annotation (see Figure 3.2(a)). A condition is a conjunctive/dis-

junctive combination of basic and block events, where block events are written as basic

events in square brackets. A block event [e′] in the condition c of an ordering c → e states

that e′ must precede e and, additionally, the thread of e′ is blocked when e takes place.

Schedule Logic

It is more convenient to define a richer logic than what is currently supported by our IMUnit

implementation; the additional features are natural and thus may also be needed in future

experiments. The semantics of our logic is given in Section 3.1.2; here is its syntax as a

CFG:

a ∶∶= start ∣ end ∣ block ∣ unblock ∣ event names

t ∶∶= thread names

e ∶∶= a@t

ϕ ∶∶= [t] ∣ ϕ→ ϕ ∣ usual propositional connectives

The intuition for [t] is “thread t is blocked” and for ϕ → ψ “if ψ held in the past, then

ϕ must have held at some moment before ψ”. We call these two temporal operators the

25

blockness and the ordering operators, respectively. For uniformity, all events are tagged with

their thread. There are four implicit events. start@t and end@t were discussed above. The

other two are block@t and unblock@t, corresponding to when t gets blocked and unblocked2.

For example, the following formula in our logic

(a1@t1 ∧ ([t2] ∨ (¬(start(t2)→ a1@t1))))→ a2@t2

∧ (a2@t2 ∧ ([t1] ∨ (end(t1)→ a2@t2)))→ a2@t2

says that if event a2 is generated by thread t2 then: (1) event a1 must have been generated

before that and, when a1 was generated, t2 was either blocked or not started yet; and (2)

when a2 is generated by t2, t1 is either blocked or terminated. As explained shortly, every

event except for block and unblock is restricted to appear at most once in any execution

trace. Above we assumed that a1, a2 ∉ {block ,unblock}.

Before we give the precise semantics, we explain how our current IMUnit language shown

in Figure 3.3, whose design was driven exclusively by practical needs, fits as a fragment of

the richer logic. An IMUnit schedule is a conjunction (we use comma instead of ∧) of

orderings, and schedules cannot be nested. Since generating block and unblock events is

expensive, IMUnit currently disallows their explicit use in schedules. Moreover, to reduce

their implicit use to a fast check of whether a thread is blocked or not, IMUnit also disallows

the explicit use of [t] formulas. Instead, it allows block events of the form [a@t] (note the

square brackets) in conditions. Since negations are not allowed in IMUnit and since we can

show (after we discuss the semantics) that (ϕ1 ∨ ϕ2) → ψ equals (ϕ1 → ψ) ∨ (ϕ2 → ψ), we

can reduce any IMUnit schedule to a Boolean combination of orderings ϕ → e, where ϕ is

a conjunction of basic events or block events. All that is left to show is how block events

are desugared. Consider an IMUnit schedule (ϕ ∧ [a1@t1]) → a2@t2, saying that a1@t1

and ϕ must precede a2@t2 and t1 is blocked when a2@t2 occurs. This can be expressed as

2It is expensive to explicitly generate block/unblock events in Java precisely when they take place, as it
requires to poll each thread about its status; our currently implemented fragment only needs, through its
restricted syntax, to check if a given thread is currently blocked or not, which is fast.

26

((ϕ∧a1@t1)→ a2@t2)∧ ((a2@t2 ∧ [t1])→ a2@t2), relying on the fact that a2@t2 can happen

at most once.

Semantics

Our schedule logic is a carefully chosen fragment of past-time linear temporal logic (PTLTL)

over special well-formed multithreaded system execution traces.

Program executions are abstracted as finite traces of events τ = e1e2 . . . en. Unlike in

conventional LTL, our traces are finite because unit tests always terminate. Traces must

satisfy the obvious condition that events corresponding to thread t can only appear while

the thread is alive, that is, between start@t and end@t. Using PTLTL, this requirement

states that for any trace τ and any event a@t with a ∉ {start , end}, the following holds

τ ⊧ ¬⟐ (a@t ∧ (⟐end@t ∨ ¬⟐ start@t))

where ⟐ stands for “eventually in the past”. Moreover, except for block@t and unblock@t

events, we assume that each event appears at most once in a trace. With PTLTL, this says

that the following must hold (� is “previously”)

τ ⊧ ¬⟐ (a@t ∧�⟐ a@t)

for any trace τ and any a@t with a ≠ block and a ≠ unblock .

The semantics of our logic is defined as follows:

e1e2 . . . en ⊧ e iff e = en

τ ⊧ ϕ ∧/∨ ψ iff τ ⊧ ϕ and/or τ ⊧ ψ

e1e2 . . . en ⊧ [t] iff (∃1 ≤ i ≤ n) (e1 = block@t and (∀i < j ≤ n) ej ≠ unblock@t)

e1e2 . . . en ⊧ ϕ→ ψ iff (∀1 ≤ i ≤ n) e1e2 . . . ei /⊧ ψ or

(∃1 ≤ i ≤ n) (e1e2 . . . ei ⊧ ψ and (∃1 ≤ j ≤ i) e1e2...ej ⊧ ϕ)

It is not hard to see that the two new operators [t] and ϕ→ ψ can be expressed in terms

27

of PTLTL as

[t] ≡ ¬unblock@t S block@t

ϕ→ ψ ≡ �¬ψ ∨ ⟐(ψ ∧⟐ϕ)

where S stands for “since” and � for “always in the past”.

3.1.3 Enforcing & Checking

We now describe the IMUnit Runner, our tool for enforcing/checking schedules for IMUnit

multithreaded unit tests. The tool executes each test for each IMUnit schedule (a test can

have multiple schedules) and has two operation modes. In the active mode, it controls the

thread scheduler to enforce an execution of the test that satisfies the given schedule. In the

passive mode, it observes and checks the execution provided by the JVM against the given

schedule.

Our runner is implemented using JavaMOP [23, 65], a high-performance runtime mon-

itoring framework for Java. JavaMOP is generic in the property specification formalism

and provides several such formalisms as logic plugins, including past-time linear temporal

logic (PTLTL). Although our schedule language is a semantic fragment of PTLTL (see Sec-

tion 3.1.2), enforcing PTLTL specifications in their full generality on multithreaded programs

is a rather expensive problem.

Instead, we have developed a custom JavaMOP logic plugin for our current IMUnit

schedule language from Figure 3.3. This plugin synthesizes a corresponding monitor that

either enforces or checks a given IMUnit schedule, depending on the running mode. The

monitor is infused within the test program by means of appropriate instrumentation in such

a way that the schedule is enforced or checked at runtime, depending on the mode. Since

JavaMOP takes care of all the low-level instrumentation and monitor integration details for

us (after a straightforward mapping of IMUnit events into JavaMOP events), here we only

briefly discuss our new JavaMOP logic plugin. It takes as input an IMUnit schedule and

generates as output a monitor written in pseudo-code; a Java shell for this language then

28

1 switch (event){
2 case afterAdd1 :
3 occur red a fte rAdd1 = true ; wakeAll () ;
4 case beforeTake2 :
5 thread be fo reTake2 = currentThread () ;
6 occur red be fo reTake2 = true ; wakeAll () ;
7 case beforeTake1 :
8 while (! (occur red a fte rAdd1))
9 wait () ;

10 occur red be fo reTake1 = true ; wakeAll () ;
11 case beforeAdd2 :
12 while (! (occur red be fo reTake2 && blocked (thread be fo reTake2)))
13 wait () ;
14 occur red be fo reAdd2 = true ; wakeAll () ;
15 }

Figure 3.4: Monitor for the Schedule in Figure 3.2(a)

turns the monitor into AspectJ code, which is further woven into the test program. In the

active mode, the resulting monitor enforces the schedule by blocking the violating thread

until all the conditions from the schedule are satisfied. In the passive mode, it simply prints

an error when its corresponding schedule is violated.

A generated monitor for an IMUnit schedule only observes the defined events. When an

event e occurs, the monitor checks all the conditions that the event should satisfy according

to the schedule, i.e., a Boolean combination of basic events and block events (Figure 3.3).

The status of each basic event is maintained by a Boolean variable which is true iff the

event occurred in the past. The status of a block event is checked as a conjunction of this

variable and its thread’s blocked state when e occurs. In the active mode, the thread of e

will be blocked until this Boolean expression becomes true. If the condition contains any

block event, periodic polling is used for checking thread states. Thus, IMUnit pauses threads

only if their events are getting out of order for the schedule. This way, IMUnit allows both

parallel execution and serialization, depending on the schedule. In the passive mode, the

monitor will simply print an error message when any Boolean expression is false.

As an example, Figure 3.4 shows the active-mode monitor generated for the schedule

in Figure 3.2(a). When events afterAdd1 and beforeTake2 occur, the monitor just sets

the corresponding Boolean variables, as there is no condition for those events. For event

29

beforeTake1, it checks if there was an event afterAdd1 in the past by checking the vari-

able occurred beforeTake2. The thread will be blocked until afterAdd1 occurs. For event

beforeAdd2, in addition to checking the Boolean variable for beforeTake2, it also checks

whether the thread of the event beforeTake2 is blocked. The thread of the event beforeAdd2

will be blocked until both are satisfied.

30

3.2 EnforceMOP: A Runtime Property Enforcement

System

In this section we present EnforceMOP, a novel framework for enforcing complex properties

in multithreaded programs. The properties are enforced at runtime and do not require to

modify the source code, so they can be modularly maintained. We show that EnforceMOP

can be used effectively both in developing and in testing multithreaded programs.

3.2.1 Motivation

EnforceMOP can be used (1) to enforce general properties and (2) to enforce specific testing

schedules in mutithreaded systems. Here we discuss two real world examples, one in each

category, and show how EnforceMOP is used in each.

Enforcing General Properties

As stated in JavaDoc, an ArrayList is not allowed to be iterated and structurally modified

at the same time [73].

The iterators returned by this class’s iterator and listIterator methods are fail-fast: if the list

is structurally modified at any time after the iterator is created, ...the iterator will throw a

ConcurrentModificationException.

However, it is very easy for developers to violate this. Moreover, it can be difficult to find

and fix this error in multithreaded programs, because: (1) when using ArrayList, program-

mers are unaware of how it will be used in other threads; (2) the non-deterministic behavior

of multithreaded programs makes it harder to reproduce and debug the problem. For ex-

ample, as shown in a bug report in JFreeChart [71], one thread is iterating an ArrayList

while another thread is attempting to call add() on the same ArrayList concurrently. As

a result, a ConcurrentModificationException is non-deterministically thrown.

31

1 enforce SafeList Iteration(Collection c, Iterator i) {
2 creation event create after(Collection c) returning(Iterator i) :
3 call(Iterator Iterable+.iterator()) && target(c) {}
4

5 event modify before(Collection c) :
6 (
7 call(∗ Collection+.add∗(..)) ||
8 call(∗ Collection+.clear(..)) ||
9 call(∗ Collection+.offer∗(..)) ||

10 call(∗ Collection+.pop(..)) ||
11 call(∗ Collection+.push(..)) ||
12 call(∗ Collection+.remove∗(..)) ||
13 call(∗ Collection+.retain∗(..))
14) && target(c) {}
15

16 event next before(Iterator i) :
17 call(∗ Iterator.next(..)) && target(i) {}
18

19 event hasnextfalse after(Iterator i) returning(boolean b) :
20 call(∗ Iterator+.hasNext()) && target(i) && condition(!b) {}
21

22 fsm :
23 na [
24 create −> init
25]
26 init [
27 next −> unsafe
28 hasnextfalse −> safe
29]
30 unsafe [
31 next −> unsafe
32 hasnextfalse −> safe
33]
34 safe [
35 modify −> safe
36 hasnextfalse −> safe
37 next −> safe
38]
39

40 @nonfail {}
41

42 @deadlock { System.out.println(”Deadlock detected!”); }
43 }

Figure 3.5: Safe List Iteration Specification

We can easily state the property of safe iteration in JavaMOP [22, 23], as shown in

Figure 3.5 (ignore the gray areas for now, which are parts of the EnforceMOP extension).

Monitoring-oriented programming (MOP) is a generic multi-formalism monitoring frame-

work, which takes an implementation and a set of specifications as input, and checks whether

the implementation violates the specifications at run time. JavaMOP is the Java instance

32

of MOP, currently using AspectJ [54] for event specification and instrumentation. As shown

in Figure 3.5, a JavaMOP specification consists of four parts. The first is the specification

header, with modifiers and parameters. Each parameters instance yields a monitor instance.

Here, the Collection and Iterator parameters indicate that a different monitor will be

generated for each combination of instances of these two parameters. Monitors correspond-

ing to different parameter instances will not interfere with each other. More details can be

found in [22, 23]. The second part describes all the relevant events, which serve as an ab-

straction of the running program. Those events drive the monitor from one state to another

state.

Figure 3.6: Safe List Iteration FSM

The third part is the actual property, starting with the logic plugin in which it is stated.

In Figure 3.5 we use the finite state machine (FSM) plugin to state the property depicted in

Figure 3.6. A monitor begins with the Init state after an iterator is created for an ArrayList

instance. Now if next() is called on the iterator then the monitor enters the Unsafe state.

Any transitions not defined in the FSM will cause the monitor to enter a default fail state,

33

indicating ArrayList was modified while an iteration is in progress. Method hasNext()

returns false when the iterator has finished its job (we assume hasNext() is always called

before next(), which is common practice), generating event hasNextFalse that makes the

monitor enter its Safe state, indicating that modifications to the ArrayList are now allowed.

EnforceMOP has been purposely designed to require minimal learning effort from exist-

ing JavaMOP users. It should take less than one minute to change an existing JavaMOP

specification into an EnforceMOP specification that enforces rather than monitors the for-

mer in multi-threaded systems. First, one needs to use the new enforce modifier (grayed

in Figure 3.5). Second, one has to specify the desired state or group of states which the

monitor should not be allowed to leave. Third, one may optionally use the new @deadlock

handler to provide code to be executed in case of deadlock. We discuss the latter two in

more detail below.

EnforceMOP enforces monitors to remain in certain states by controlling thread sched-

ules. JavaMOP already allows users to associate code to monitor states, to be executed

when the monitor reaches those states. Using the same notation, EnforceMOP enforces the

monitor to never leave the specified states. Each logic plugin provides and documents its

own monitor state names. The FSM plugin allows users to define and name groups of states,

and provides a predefined group of states named nonfail including all the states except

fail. In our example, we state that we want EnforceMOP to never allow the monitors to

leave their nonfail group of states. If a monitor attempts to execute a transition not shown

in Figure 3.6, for example execute event modify in state unsafe, the thread scheduling code

generated by EnforceMOP will block the unsafe thread and thus guarantee safe iteration

behaviors. For example, when one thread is iterating over the list so the monitor is in the

unsafe state, any other thread attempting to modify the same list will get blocked until

the end of the iteration is reached; then they are unblocked and allowed to perform their

modifications.

Since EnforceMOP blocks threads during execution, it may directly or indirectly cause

34

1 @Test
2 public void testPutWithTake() throws InterruptedException {
3 final SynchronousQueue q = new SynchronousQueue();
4 Thread t = new Thread(new CheckedRunnable() {
5 public void realRun() throws InterruptedException {
6 int added = 0;
7 try {
8 while (true) {
9 q.put(added);

10 ++added;
11 }
12 } catch (InterruptedException success) {
13 assertEquals(”PutWithTake”, 1, added);
14 }
15 }}, ”putThread”);
16 t.start();
17 Thread.sleep(SHORT DELAY MS);
18 assertEquals(”PutWithTake”,0, q.take());
19 Thread.sleep(SHORT DELAY MS);
20 t.interrupt();
21 t.join();
22 }

Figure 3.7: Original SynchronousQueue Test in TCK

program deadlock. For example, when the specified property is impossible to enforce (that

is, any thread schedule yields an execution that violates the property), all threads will

eventually block, resulting in a deadlock. The @deadlock handler tells the monitor what

to do when a deadlock occurs. Here we chose to output an error message when a deadlock

happens, but in general one can execute any code (shutdown the system, restart a certain

thread, etc).

Enforcing Specific Testing Schedules

When writing a unit test for a multithreaded program, it is vital to have the ability to

specify and enforce a desired thread schedule when running that test. Consider the real-life

multithreaded test in Figure 3.7, borrowed from the TCK unit tests of SynchronousQueue

in java.util.concurrent. SynchronousQueue is a special kind of queue where the thread

executing put blocks when the queue is full and the thread executing take blocks when the

35

queue is empty. Thread putThread is calling put inside a loop to fill the queue. When

the queue is full, putThread blocks. The desired thread schedule is: the main thread first

waits for putThread to block, then takes one element and checks it (line 18), then waits for

putThread to block again, and then interrupts it. This schedule is achieved in the TCK unit

test using sleep statements, which as discussed in [46] and in Section 3.2.3 are non-modular,

unreliable and slow.

EnforceMOP is an ideal vehicle to enforce specific testing schedules for multithreaded

unit tests. The idea is to separate the functionality of the unit test from the desired schedule,

and to implement the former as an unrestricted program (e.g., by removing the grayed sleep

statements in Figure 3.7) and to enforce the latter with EnforceMOP. Figure 3.8 shows the

EnforceMOP specification of the schedule meant in Figure 3.7. The event beforeput is

generated right before calling method put, and events beforeinterrupt and beforetake

right before calling methods interrupt and take, respectively. EnforceMOP defines a new

pointcut, threadBlocked, telling the thread that is executing the event to wait until the

specified thread is blocked. In this example, when the main thread is about to call the

method take or interrupt, it waits until putThread gets blocked. We used the Extended

Regular Expression (ERE) plugin (+ means one or more repetitions) to specify the actual

schedule (line 19). Thus, the main thread blocks before it calls the method take until event

beforeput occurs at least once and putThread blocks, then it unblocks and checks the

assertion, and then it blocks again before it calls the interrupt until beforeput occurs and

putThread blocks. The desired schedule is thus specified modularly, reliably and, as seen in

Section 3.2.3, efficiently.

As discussed later in this chapter, it is not easy to use existing multithreaded testing

frameworks to specify this particular schedule, because it involves a loop. EnforceMOP can

support repeating events in a thread schedule using the bare capabilities of the its logic

plugins, e.g., the ERE +.

EnforceMOP has been implemented independent of specification formalisms to support

36

1 enforce SynchronousQueueTest testPutWithTake() {
2

3 String putThread = ””;
4

5 event beforeinterrupt before() :
6 call(∗ Thread+.interrupt()) && threadBlocked(putThread){}
7

8 event beforetake before() :
9 call(∗ SynchronousQueue+.take()) && threadBlocked(putThread){}

10

11 event beforeput before() :
12 call(∗ SynchronousQueue+.put(..)) {
13 if (putThread.equals(””)) {
14 putThread = Thread.currentThread().getName();
15 }
16 }
17

18

19 ere : beforeput+ beforetake beforeput+ beforeinterrupt
20

21 @nonfail {}
22

23 @deadlock {System.out.println(”Deadlock detected!”);}
24 }

Figure 3.8: EnforceMOP Schedule for Test in Figure 3.7

enforcing arbitrarily complex properties. Those properties can be application-independent

(such as the safe list iteration property above) or application-specific (such as the specific

schedule in the multithreaded unit test above). Different property specification formalisms

have different expressiveness, and the flexibility to use any of them helps users specify a

wide variety of properties precisely and elegantly. For example, we show that FSM cannot

express some useful properties which are expressible with other formalisms. Additionally,

EnforceMOP supports parametric specifications, so different (enforcing) monitor instances

are created for different parameter instances.

EnforceMOP can be thought of as a semantic-based synchronization approach, comple-

mentary to the traditional syntax -based synchronization approach: the semantics is em-

bodied in the formal specification for each property. EnforceMOP allows developers to

declaratively and modularly state the actual properties they want to enforce in their pro-

37

grams, and thus by avoiding over-synchronization it has the potential to be more efficient

than traditional synchronization mechanisms, as empirically shown later in this chapter.

3.2.2 Approach and Implementation

Here we give an overview of EnforceMOP, with particular emphasis on how it smoothly

integrates with JavaMOP. The key challenge of this integration was to design the enforcement

mechanisms in a formalism-independent way. Figure 3.9 recalls the overall architecture of

JavaMOP. It consists of a Java-specific client and language-independent logic plugins. The

logic plugin manager makes available to the client various logic plugins (discussed shortly),

by taking as input a formula written in a specific logic and outputting language-independent

monitoring pseudocode. This pseudocode is then used to generate Java and AspectJ code,

which is finally woven into the original program to monitor.

Logic Plugins and Enforcement Categories

Each EnforceMOP specification requires a property over the specified events, formalized

using one of the available logic plugins. Some formalisms are more convenient or more

efficient than others in some situations. EnforceMOP currently supports for enforcement all

the logic formalisms supported by JavaMOP for monitoring. We briefly recall them:

Finite State Machine (FSM): A finite state machine consisting of a set of states and a

set of state transitions. Each transition is triggered by an event.

Extended Regular Expression (ERE): A regular expression extended with complement;

each letter is an event.

Linear Temporal Logic (LTL): A future time linear temporal logic formula describing

good or bad prefixes.

Past Time Linear Temporal Logic (PTLTL): A linear temporal logic formula with tem-

poral operators referring to the past states of the execution trace.

38

Figure 3.9: JavaMOP Overall Architecture

Context Free Grammar (CFG): A context free grammar defined in BNF, where each

terminal is an event.

String Rewriting System (SRS): Turing-complete string rewriting formalism, where each

alphabet is an event.

39

Once a specific logic formalism is chosen, the next step is to choose in which way the

property is enforced. For example, one can specify the correct behaviors of the system,

and enforce the monitor to always obey the specification; alternatively, one can specify the

adverse behaviors of a system, and enforce the monitor to never satisfy the specification.

To accommodate all the existing logic plugins, EnforceMOP provides a set of pre-defined

categories (a category can be viewed as a set of monitor states) to be enforced. As shown

in Table 3.1, different logic formalisms have different corresponding categories. We describe

each pre-defined category:

fail : When the monitor encounters an event not accepted in the current state (in FSM), or

the current trace does not match any prefix of the given pattern (in ERE and CFG).

In SRS, fail can be defined by the user.

nonfail : The opposite of fail, when the incoming event is accepted by the current state, or

the current trace matches one prefix of the given pattern.

succeed : In SRS, succeed is defined by the user to trigger when certain patterns are

matched.

match: Corresponds to a situation wherein the trace matches the entire specified pattern.

nonmatch: Corresponds to a situation wherein the trace does not match the entire specified

pattern.

violation: Occurs when the trace is not a prefix of any trace that satisfies the given formula

in LTL and PTLTL.

validation: Corresponds to a situation wherein the trace satisfies the given formula in

PTLTL.

Some plugins allow users to define their own categories, which can then be enforced using

EnforceMOP. For example, FSM allows to define an alias of a group of states. EnforceMOP

can then enforce the monitor to stay in one of those.

40

Logic Support Categories
FSM fail/nonfail
ERE fail/nonfail/match/nonmatch
LTL violation
PTLTL violation/validation
CFG fail/nonfail/match/nonmatch
SRS fail/nonfail/succeed

Table 3.1: Predefined Categories for each Logic Plugin

The Property Enforcing Algorithm

The key challenge in the design and development of EnforceMOP was to engineer its enforce-

ment mechanism to work in a logic-formalism-independent way, to allow its users to choose

any of the specification formalisms above for their properties and to enforce any of their

categories. The problem is that different logic formalisms have different underlying repre-

sentations of their monitors; for example, FSM uses lists of arrays to represent states and

transitions, while CFG uses stacks to represent push down automata. However, all monitors

share a common interface: take any given event and trigger a corresponding (logic-specific)

transition.

The key idea of our monitor-independent enforcing algorithm is quite simple: use the

common interface with a clone of the original monitor to decide whether to allow the current

event to be executed on the original monitor, or to block the current thread. The algorithm

is presented in Figure 3.10. The new event is sent to the cloned monitor, to check using its

logic-specific semantics, which is irrelevant to EnforceMOP, whether the property we want

to enforce would be violated if we let the event go through. If yes, then we block the current

thread. If not, then it is safe for the original monitor to execute this event, so we let the

event go through. We invoke the blocked thread and repeat the process above whenever

a new event is generated in any other thread. Since a monitor is shared between different

threads, its status may be changed by events executed in other threads. Whenever we find

out that executing the pending event on the cloned monitor will not violate the property we

want to enforce, we will unblock the thread and resume its execution.

41

1 // Inputs
2 Set<Category> violationCategories;
3 Event event;
4 Monitor origMonitor;
5

6 void enforceProperty() {
7 do {
8 clonedMonitor = origMonitor.clone();
9 clonedMonitor.execute(event);

10 if (clonedMonitor.status ∈ violationCategories) {
11 clonedMonitor = null; // for garbage collection
12 wait;
13 }
14 else {
15 clonedMonitor = null; // for garbage collection
16 break;
17 }
18 } while (true);
19 origMonitor.execute(event);
20 notify all waiting monitors;
21 }

Figure 3.10: Algorithm for Enforcing Properties

Deadlock Detection

When enforcing a property, it could be possible that all the threads get blocked by Enforce-

MOP, so the program deadlocks. This happens when the program reaches a state in which

any event to be executed by any thread would violate the property. Since property violations

can mean anything depending upon the application and the property, our approach is to

provide the mechanism and let the user decide how to use it, that is, how to proceed at

deadlock. Specifically, EnforceMOP provides an on-the-fly deadlock detection mechanism

which works as follows. Every newly started thread is recorded in a global map. A separate

deadlock detection thread checks this map periodically. When all the threads in the map

are blocked, a deadlock occurred. The @deadlock handler serves like any other JavaMOP

handlers, so users can take arbitrary actions when a deadlock happens; for example, restart

the system or print error messages.

42

Implementation

We implemented EnforceMOP in Java as an extension of JavaMOP. JavaMOP takes a prop-

erty file as input and generates an AspectJ file that contains monitor, recovery and in-

strumentation code, which is then compiled and woven into the original program using any

AspectJ compiler. We added enforce as a new keyword modifier to JavaMOP properties, in a

way that any existing JavaMOP property can be turned into an EnforceMOP by only adding

the enforce modifier. To generate code to enforce a property, we extended the code generator

in JavaMOP with a new class, EnforceMonitor, which is responsible for generating all the

code to enforce a property when the enforce modifier is used.

As already noted in previous work on specifying thread schedules [46,78], it is crucial to

have the ability to trigger an event when a specific thread gets blocked. For that reason,

we added a new pointcut to EnforceMOP, threadBlocked. It takes a thread name as

argument and triggers an event in the monitor only when that specific thread is blocked.

We implemented this by using the threadStart pointcut of JavaMOP to add any thread to

a global thread map when it starts. Then threadBlocked is easily implemented by polling

the state of that specific thread in the map.

3.2.3 Applications and Evaluation

We envision EnforceMOP to be used: (1) as a framework to enforce general complex safety

properties at runtime; and (2) as a testing framework to enforce specific schedules when unit

testing multithreaded applications. We next evaluate the effectiveness of EnforceMOP in

these two aspects. We first present a number of applications using EnforceMOP to enforce

general properties, then we use it to enforce specific testing thread schedules and compare

it with several other multithreaded testing frameworks.

43

Enforcing General Properties

Safe Iteration As shown in Figures 3.5 and 3.6, EnforceMOP can be used to guaran-

tee safe iteration of a collection in multithreaded programs. Motivated by a real bug in

JFreeChart [71], we used EnforceMOP to specify and enforce correct behaviors of iterating

a collection in multithreaded programs. In the test case attached with the bug report, two

threads are created and one of them adds a new element to the collection while the other

iterates through the collection. These two actions are repeated many times, so in the orig-

inal program the ConcurrentModificationException is thrown almost every time when

the test case executes. After we applied the property in Figure 3.5 using EnforceMOP, the

exception never gets thrown after 100 times of execution of the same test case.

Mutual Exclusion

Another bug in JFreeChart [72] is caused by concurrent execution between any modifi-

cation method and hashCode on the same ArrayList. The root cause of this bug is similar

to the previous one: JDK’s hashCode method iterates through all the elements of the list in

order to compute the hash value of the whole list. So a ConcurrentModificationException

will be thrown if hashCode and any other modification method are called at the same time.

However, since the iteration of the list is encapsulated in hashCode, what users actually want

is the mutual exclusion only between the execution of hashCode and the execution of other

modification methods. This cannot be easily done using Java synchronization mechanisms.

Suppose we only want the execution of hashCode and any other modification method to be

mutually exclusive, but any other pairs of methods to be allowed to execute concurrently. If

we blindly use the synchronized keyword on all these then all the methods become mutu-

ally exclusive of each other, thus over-synchronizing the program and harming performance

(for example, two threads could safely execute hashCode concurrently).

One can try to use a ReadWriteLock from j.u.c instead, for example to use ReadLock

in hashCode and WriteLock in all modification methods. However, concurrent execution

44

1 enforce SafeListCFG(List l) {
2

3 event beforehashcode before(List l) :
4 call(∗ Object+.hashCode(..)) && target(l) {}
5

6 event afterhashcode after(List l) :
7 call(∗ Object+.hashCode(..)) && target(l) {}
8

9 event beforemodify before(List l) :
10 (
11 call(∗ List+.add∗(..)) ||
12 call(∗ List+.remove(..)) ||
13 call(∗ List+.retain∗(..)) ||
14 call(∗ List+.clear(..)) ||
15 call(∗ List+.set∗(..))
16) && target(l) {}
17

18 event aftermodify after(List l) :
19 (
20 call(∗ List+.add∗(..)) ||
21 call(∗ List+.remove(..)) ||
22 call(∗ List+.retain∗(..)) ||
23 call(∗ List+.clear(..)) ||
24 call(∗ List+.set∗(..))
25) && target(l) {}
26

27 cfg :
28 S −> A S | B S | epsilon,
29 A −> A beforehashcode A afterhashcode | epsilon,
30 B −> B beforemodify B aftermodify | epsilon
31

32 @nonfail {}
33

34 @deadlock { System.out.println(”Deadlock detected!”); }
35 }

Figure 3.11: Mutual Exclusion between HashCode and List Modification using CFG

between any two modification methods would still be prohibited, thus reducing the potential

for parallelism3. Mutual exclusion is a common property desired in multithreaded programs,

but without careful consideration it is very easy to over-synchronize and thus hurt the

performance.

3The concurrent use of ArrayList is known to be problematic; one should instead use concurrent data-
structures from j.u.c. We use it here only to show how to enforce mutual exclusion between groups of
methods with EnforceMOP.

45

Figure 3.11 shows how to enforce mutual exclusion for this specific case using Enforce-

MOP with the CFG plugin. The property is parametric in the list, so operations on different

list instances will not interfere with each other. Since we want to enforce mutual exclusion

between method calls, we use both before and after pointcuts to describe events. There

are four types of events in this property: beforehashcode and afterhashcode indicate

the start and end of the execution of hashCode, and beforemodify and aftermodify rep-

resent the start and end of all the modification methods on ArrayList. The property is

defined using a CFG, which allows us to pair the start and the end events of the execution of

hashCode or of modification methods. While the execution of hashCode is in progress (event

afterhashcode has not been encountered), the execution of any modification methods is

not allowed (event beforemodify is not allowed).

Although the SRS plugin is the most expressive formalism available with EnforceMOP

(it is Turing-complete), we often found it in our experiments that SRS is quite convenient to

specify even simpler properties. For example, we can replace the CFG in Figure 3.11 with

the following equivalent SRS:

srs :

beforemodify aftermodify -> #epsilon .

beforehashcode afterhashcode -> #epsilon .

beforemodify afterhashcode -> #fail .

beforehashcode aftermodify -> #fail .

beforemodify beforehashcode -> #fail .

beforehashcode beforemodify -> #fail .

The SRS rules apply on the trace as it is being generated to keep it in a canonical form. In

our case, consecutive event pairs beforehashcode and afterhashcode, and beforemodify

and aftermodify, will dissolve (#epsilon is the empty string), and the other four event

pairs will force the monitor to fail. In Figure 3.11 we enforce the monitor to never enter

46

its fail state (line 32), so whenever a thread wants to call a modification method while a

hashCode method call is in progress, EnforceMOP will block that thread. Note that we only

make hashCode and the group of the modification methods mutually exclusive, but no more

than that. For example, the sequences beforehashcode beforehashcode afterhashcode

afterhashcode and beforemodify beforemodify aftermodify aftermodify are both ac-

cepted. This allows maximum parallelism in the program. Note that this property cannot

be expressed with FSM because the numbers of method start and end events should match,

and FSM does not have the expressiveness to count the number of occurrences of events.

But it can be elegantly specified with CFG or SRS, showing the advantage of supporting

multiple logic formalisms.

Read Write Lock

Here we address a performance problem in Log4J [9] caused by over-synchronization.

The class Category is supposed to be thread safe, so the synchronized keyword is used in

many of its methods (append, addAppender and removeAppender). Each Category object

has a list of appenders; the method append calls methods on all the elements in the list

but it does not modify the list itself. The synchronized keyword guarantees the mutual

exclusion between any methods, but it is not needed when two threads are both executing

append. In the bug report [9] one developer mentioned “...observing plenty of threads waiting

on this synchronization...”.

We completely removed the usage of synchronized and used EnforceMOP instead to

specify precisely the desired synchronization between those method pairs. The property

is written using SRS and is shown in Figure 3.12. We first group the methods into two

sets: methods that will not modify the list (append) and methods that will modify the list

(addAppender, removeAppender and removeAllAppenders). Then we define events to mark

the start and end of those methods. The property is similar to the previous one, except

one more rule: beforemodify beforemodify -> #fail. This prevents two modification

methods (e.g., addAppender and removeAppender) from happening in parallel, to avoid

47

1 enforce SafeAppendSRS(Category c) {
2

3 event beforeappend before(Category c) :
4 call(∗ Category+.append(..)) && target(c) {}
5

6 event afterappend after(Category c) :
7 call(∗ Category+.append(..)) && target(c) {}
8

9 event beforemodify before(Category c) :
10 (
11 call(∗ Category+.addAppender(..)) ||
12 call(∗ Category+.removeAppender(..)) ||
13 call(∗ Category+.removeAllAppenders(..))
14) && target(c) {}
15

16 event aftermodify after(Category c) :
17 (
18 call(∗ Category+.addAppender(..)) ||
19 call(∗ Category+.removeAppender(..)) ||
20 call(∗ Category+.removeAllAppenders(..))
21) && target(c) {}
22

23 srs :
24 beforemodify aftermodify −> #epsilon .
25 beforeappend afterappend −> #epsilon .
26 beforemodify afterappend −> #fail .
27 beforeappend aftermodify −> #fail .
28 beforemodify beforeappend −> #fail .
29 beforeappend beforemodify −> #fail .
30 beforemodify beforemodify −> #fail .
31

32 @nonfail {}
33

34 @deadlock { System.out.println(”Deadlock detected!”); }
35 }

Figure 3.12: Mutual Exclusion Property between Method Pairs in Log4J using SRS

inconsistency. We disallow the parallel execution of any modification method and append,

but we do allow parallel execution between append methods. This increases parallelism and

matches the intention of the developer.

We wrote a test case to reproduce the performance problem in [9] caused by over-

synchronization. We created 50 threads, half of them calling method append and another

half calling methods addAppender and removeAppender in parallel. We collected running

48

No Sync Original (Over-Sync) EnforceMOP ReadWriteLock

44.4 500.8 49.7 221.3

Table 3.2: Test execution time (ms) for different synchronization mechanisms

time with the following configurations: the original over-synchronized code with the use of

synchronized; EnforceMOP enforcing proper synchronization as shown in Figure 3.12; a

ReadWriteLock implementation proposed by the developer in the bug report and the orig-

inal code with all synchronized keywords completely removed as a base line to show the

performance overhead. For each configuration we run the test case 10 times and get the

average running time. Results are shown in Table 3.2.

From the results we can see that EnforceMOP performs much better than the original

over-synchronized version, since it increases the maximal parallelism of the application. En-

forceMOP also outperforms ReadWriteLock. Since the parallelism allowed by EnforceMOP

is the same as with ReadWriteLock , we think the reason for our better performance is due

to the fact that ReadWriteLock in Java involves calling a lot of library code and maintaining

the lock status (since it’s reentrant), while JavaMOP is highly optimized.

Dining Philosophers

Five philosophers sit next to each other around a round table. There are five forks placed

between each pair of adjacent philosophers. Each philosopher needs to pick up the two forks

around him to eat and they are allowed to eat at the same time. Each fork can only be

used by one philosopher at any time. A deadlock happens when each philosopher picks up

a different fork at the same time, and all of them are attempting to pick the other to start

eating.

To implement the dining philosophers problem, locks are typically used to enforce the

property that one fork can only be taken by one philosopher at any time. Instead, we first use

EnforceMOP to enforce this property, so no synchronization code is needed in the program

at all. Then we enforce the property stating that at most four philosophers can eat at the

49

1 public class Phil implements Runnable {
2

3 public Fork leftFork, rightFork;
4

5 public void getLeftFork() { leftFork.acquire(); }
6 public void releaseLeftFork() { leftFork.release(); }
7 ...
8

9 public void run() {
10 getLeftFork();
11 getRightFork();
12 eat();
13 releaseLeftFork();
14 releaseRightFork();
15 }
16 }

Figure 3.13: Source code of dining philosophers without synchronization

same time, which guarantee deadlock freedom.

Synchronization Free Implementation

The sketch of our code is shown in Figure 3.13. Each philosopher is represented by a

Runnable object and runs concurrently. A philosopher stars eating after he grabs his left

fork first and then his right fork next. Then he also releases his left fork first and his right

fork second. There is no synchronization or lock used in the source code, so the correctness

property of dining philosophers—no folk can be taken by two philosophers at the same

time—is not guaranteed.

We use EnforceMOP to enforce the property of exclusive use of forks shown in Figure 3.14.

This property is parametrized by a Fork instance. Event acquire corresponds to the start

of method call acquire on a Fork instance and event release to the end of method call

release. This property guarantees that when a fork is being used, it cannot be used again

until released. Any other thread attempting to call acquire on a Fork instance at state

busy will be blocked. Thus EnforceMOP yields a correct and elegant implementation of the

dining philosophers problem without any explicit synchronization mechanism.

Deadlock Free Property

50

Figure 3.14: Exclusive use of Forks Property in FSM

The above property only guarantees the correct usage of forks. Deadlock is possible

when each philosopher takes his left fork at the same time. We use EnforceMOP to enforce

a property to avoid deadlock in our implementation, as shown in Figure 3.15. The idea

behind it is that we only allow at most four philosophers to attempt to eat at the same time,

so at least one philosopher would be able to grab both forks and eat. Then he will release

both forks and other philosophers will be able to eat. Event useLeftFork marks the start

of method call getLeftFork, and event releaseLeftFork marks the end of method call

releaseRightFork. Each state serves as a counter of how many philosophers are attempt-

ing to eat. At state Four any philosopher attempting to grab forks will be blocked until

a previous philosopherreleases all his forks. Unlike the previous property in Figure 3.14,

this deadlock avoidance property is not parametric. It serves as a central coordinator to

coordinate philosophers. With this property and the previous property in Figure 3.14, we

are able to enforce the correct behavior of dining philosophers and avoid deadlocks at the

same time, without using any synchronization in the source code.

Fair Thread Scheduler

In multithreaded programs fairness is a property of a thread scheduler which ensures

every thread gets its turn to execute eventually. In practice the lack of fairness may cause

thread starvation bugs [12, 45].

51

Figure 3.15: Deadlock Avoidance Property in FSM

1 enforce FairScheduler(Task t) {
2

3 event workone before(Task t) :
4 call(∗ Task+.doWork(..)) && threadName(”t1”) && target(t) {}
5

6 event worktwo before(Task t) :
7 call(∗ Task+.doWork(..)) && threadName(”t2”) && target(t) {}
8

9 event afterwork after(Task t) :
10 call(∗ Task+.doWork(..)) && target(t) {}
11

12 fsm :
13 Init [workone −> ExecOne
14 worktwo −> ExecTwo]
15 ExecOne [afterwork −> OneDone]
16 ExecTwo [afterwork −> TwoDone]
17 OneDone [worktwo −> Finish]
18 TwoDone [workone −> Finish]
19 Finish [afterwork −> Init]
20

21 @nonfail {}
22

23 @deadlock { System.out.println(”Deadlock detected!”); }
24 }

Figure 3.16: Fair Scheduler Property

Here we show how EnforceMOP can be used to ensure a simple thread scheduling fairness

property. Consider a program executing two threads, where each thread executes a loop with

the same number of iterations. In each loop iteration a method doWork is called. Inside the

doWork method each thread sleeps a random interval of time (this is meant to simulate

real scenarios where workload is unknown). If we run the program without controlling the

52

Figure 3.17: Fair Scheduler FSM

schedules, it is possible that one thread progresses much faster than the other. At extreme,

one thread may not even get scheduled to start running before another terminates. We can

use EnforceMOP to specify and enforce a simple thread scheduling fairness property that

is less restrictive than deterministic alternate execution, but still avoids starvation: as soon

as one thread finishes an iteration of its loop, it gets blocked waiting for the other thread

to also finish an iteration of its loop; once both threads complete their loop iteration, one

of the threads will be (non-deterministically) allowed to start its next loop iteration, and so

on. We can specify this property in EnforceMOP using an FSM, as shown in Figures 3.16

and 3.17. When one thread finishes executing one iteration of doWork (in state OneDone or

TwoDone), it waits the other thread to finish its execution of doWork. After both threads

finish, the monitor switches to its Init state.

Although this example is purposely simplistic, it shows that EnforceMOP can be used to

specify and enforce fair thread scheduling policies. For instance, in a website where each user

is served by a thread, it is important to guarantee no user would wait for a long time. With

EnforceMOP it is possible to enforce such properties in a modular way, without introducing

53

any ad-hoc synchronization code in the system.

Enforcing Specific Testing Schedules

Multithreaded programs exhibit different behaviors under different thread schedules. Thus

it is vital to have the ability to control thread schedules when performing unit testing.

EnforceMOP can also be used as a testing framework to control thread schedules for each

unit test. In that case, each property file is associated with some unit test, and serves as

a thread schedule specification. In this section we first present our experience with using

EnforceMOP as a testing framework to specify schedules in multithreaded unit tests. Then

we compare EnforceMOP with several other testing frameworks for multithreaded programs.

Experience

To evaluate the effectiveness of using EnforceMOP as a testing framework, we took

existing multithreaded unit tests and translated them to use EnforceMOP. Most of those

tests used sleep or other ad-hoc synchronization mechanisms to control thread schedules.

We first removed all the schedule control statements in those tests, and then wrote one

property file for each testing schedule. We took the subject programs used in previous

work [46, 78], and in total we translated 185 tests, as shown in Table 3.3.

When using EnforceMOP to specify thread schedules for a given unit test, the event

sequences are already known and fixed. So in most cases there’s no need to use complex

logic formalisms; it is sufficient to only simply state the events to be executed in order.

Indeed, we have used ERE in most of the cases, since the event sequences in a schedule is

trivially an ERE expression. In some other cases, we have used PTLTL to specify schedules.

PTLTL can be used to check whether a condition about past holds when a new event occurs,

so it is suitable for enforcing the order of events.

Although most unit tests are quite simple, there are still cases where one event may

occur many times. EnforceMOP is able to deal with repeating events. For example, making

use of the * and + ERE constructs, properties can be expressed where an event can occur

54

multiple times. More details on how EnforceMOP handles repeating events are mentioned

in the comparison with IMUnit in Section 3.2.3.

Comparison with IMUnit

IMUnit [46] is a framework used to specify and control thread schedules in multithreaded

unit tests. An event in IMUnit is fired explicitly by inserting a method call in the test code.

A schedule in IMUnit is given as an annotation within a unit test, and it consists of several

orderings between events. For example, a -> b specifies event b should only happen when

event a has already happened. We compare EnforceMOP with IMUnit in the following

aspects.

Expressiveness

IMUnit is also built upon JavaMOP, but its underlying schedule logic is a fragment of

PTLTL which does not support repeating events. Consider the same example in Figure 3.7.

With IMUnit we can insert events around the put method call, but since the method call is

made inside a loop we cannot specify in the test schedule the exact number of occurrences of

an event. As already shown in Figure 3.8 with the help of operator + in ERE, EnforceMOP

is able to express such schedules. The paper [46] mentioned that there were a few more tests

where IMUnit was not able to express the schedules because of repeating events. We have

successfully used EnforceMOP to specify and enforce the desired test schedules for all those

cases. In fact, in our previous examples for specifying general properties, many events are

repeating events and can happen anywhere in the program. Unlike IMUnit, EnforceMOP

does not use the exact code location to specify an event; instead, it uses pointcuts to match

for events. This way, EnforceMOP supports repeating events as long as the chosen logic

plugin supports them.

Performance

The performance of IMUnit was evaluated by comparing the time to run all tests with

the time to run all the original sleep base tests. Since most of the sleep bases tests are

over estimating the time needed for sleep operations, IMUnit tests were able to provide over

55

3x speed up over the original tests. We repeated the same set of experiments here. We

used EnforceMOP to translate all the sleep based tests IMUnit used in experiments and

calculated the speedup of using EnforceMOP to enforce schedules versus the original tests.

The results are shown in Table 3.4. We are able to achieve same or better speed up with

EnforceMOP.

Comparison with MultithreadedTC

MultithreadedTC [78] is another unit testing framework, used to specify schedules in

multithreaded tests using ticks. In multithreadedTC each test has to be written as a class,

and each method in the class contains the code to be executed by a thread in a test. The

test schedule is specified in terms of number of ticks with respect to a global logical clock.

The method waitForTick takes a number as an argument, and it will block the current

thread until the global clock reaches that number. The global clock will advance when all

the threads are blocked.

Although MultithreadedTC is successfully applied on a number of tests [78], it requires

users to change the original test a lot. EnforceMOP does not require users to change the

original code at all, the schedule specification file (property) is in a separate file, so it

is possible to have multiple schedules applied on a same test. Moreover, the schedule in

MultithreadedTC is implicitly embedded using ticks. It may be non-trivial to infer a schedule

from a MultithreadedTC test for a complicated test case. In terms of functionality, blocking

events in MultithreadedTC are also implicit. Threads blocked by MultithreadedTC will be

unblocked when all the threads are blocked. This makes it very hard to specify the scenario

where one thread waits for another thread to get blocked using MultithreadedTC, while it

is easy to do in EnforceMOP (and also in IMUnit).

Comparison with ConAn

ConAn [59] is a framework used to generate test driver code and schedules based on user

provided scripts. Similar to MultithreadedTC, ConAn also employs ticks to specify logical

time in thread schedules. A test in ConAn consists of a set of #tick blocks. Inside each

56

Subject Tests

Collections [2] 11
Hadoop [4] 1
JBoss-Cache [50] 20
Lucene [5] 2
Mina [6] 1
Pool [3] 2
Sysunit [25] 10
JSR-166 TCK [49] 138

∑ 185

Table 3.3: Subject Programs Statistics

Subject Original EnforceMOP Speedup

Collections 2.22 0.26 8.54
Hadoop 1.39 0.38 3.66
JBoss-Cache 73.07 38.89 1.88
Lucene 10.78 2.87 3.76
Mina 0.24 0.14 1.71
Pool 1.48 0.076 19.47
Sysunit 14.47 0.30 48.23
JSR-166 TCK 16.67 6.48 2.57

GeometricMean 5.56

Table 3.4: Test execution time (s)

#tick block there are a number of #thread blocks. Each #thread block contains the code

that will be executed by a thread, and ConAn will generate tests based on that.

Since ConAn is also based on ticks, it also suffers from understandability when the

schedule to be specified becomes complicated. Moreover, ConAn does not support blocking

events. Ticks in ConAn advance automatically after a fixed amount of time, making it

unable to express certain schedules EnforceMOP and other frameworks are able to express.

3.2.4 Discussion

EnforceMOP is implemented by executing the incoming event one step ahead using a cloned

monitor. Depending upon the chosen logic formalism to express properties, it may be possible

that “one step lookahead” is not enough and could cause a deadlock, even though the

property is enforceable. For example, consider the ERE property get* put. When event

57

put happens in one thread, EnforceMOP has no way to know whether event get will happen

in the future or not (because code reachability is an undecidable problem). Executing event

put as soon as it occurs will not violate the property, but if event get happens afterward

then the monitor will deadlock because event sequence put get violates the property. This

deadlock can be avoided if EnforceMOP blocked the thread executing event put until all

the occurrences of event get have happened. To achieve this, an exploration capability of

EnforceMOP would be desirable. Whenever an event arrives and either blocking the current

thread or not will not violate any property, record the current program location as a choice

point and make a choice about whether to block current thread. After the current execution

finishes, re-execute the program from the beginning until reaching the previous choice point,

and make a different choice. This way all the possible event sequences will be enumerated

so it can be checked which event sequences will obey all the properties without causing

deadlocks.

In our experience of using EnforceMOP so far, we have not seen many cases where

exploration would be needed. Consequently, we leave it as future work to be investigated if

we see more scenarios where exploration would be useful.

58

Chapter 4

Efficient State-Space Exploration

In this chapter we present techniques that help state-space exploration for multithreaded

programs. We first present the ReEx framework and our various exploration strategies

developed for the ReEx framework. After that, we present the RV-Causal framework, an

exploration strategy that employs maximal causal model during state-space exploration. We

compareRV-Causal with existing techniques on several read world multithreaded programs

and show our improvement.

Note that the contributions presented in this chapter has already been published in the

form of a conference paper and a technical report. ReEx and CAPP has been published

at the International Symposium on Software Testing and Analysis 2011 (ISSTA 2011) [48],

RV-Causal has been published as a technical report at UIUC [60]. The author of this disser-

tation is the main author or co-author of above papers, and would like to thank anonymous

reviewers for valuable feedback.

4.1 Stateless State-Space Exploration with ReEx

4.1.1 Introduction

As introduced in Chapter 2, the ReEx framework is a stateless exploration tool for mul-

tithreaded Java programs. It uses dynamic bytecode instrumentation to manipulate the

original program, so that it can systematically re-execute the program with different thread

schedules. During the instrumentation, all the synchronization operations and shared fields

59

1 // Schedule prefix for the current execution
2 List⟨String⟩ currentSchedulePrefix;
3

4 // Exploration queue
5 Queue⟨List⟨String⟩⟩ toExplore;
6

7 // Exploration strategy
8 Strategy strategy;
9

10 // Current choice index
11 int currentChoiceIndex;
12

13 // Get schedule prefix before the next re−execution
14 void startExecution() {
15 if (toExplore != ∅) {
16 currentSchedulePrefix = toExplore.poll();
17 } else {
18 return;
19 }
20 currentChoiceIndex = 0;
21 }
22

23 // Execute transitions at each choice point
24 void executeTransition() {
25 if (|currentSchedulePrefix| > currentChoiceIndex) {
26 pickThread(currentSchedulePrefix.get(currentChoiceIndex));
27 } else {
28 strategy.chooseThread(currentSchedulePrefix, toExplore);
29 }
30 ++currentChoiceInde;
31 }

Figure 4.1: Exploration Algorithm

access operations will be instrumented by ReEx, so their execution orders can be controlled.

The re-execution process will finish if a bug is found (an exception is thrown or a deadlock

is found), or if ReEx finishes enumerating all the possible thread schedules. ReEx is an open

source tool [79] and it has been used extensively in our early work [48].

Because of the large number of possible thread schedules in multithreaded programs,

it is usually infeasible to execute all the thread schedules. Therefore, ReEx employs var-

ious exploration strategies to select or prioritize schedules during state-space exploration.

Figure 4.1 shows the exploration algorithm for ReEx.

On line 2, there is a global schedule prefix for each execution. It is used for ReEx to replay

the program up to the previous choice point to avoid duplicate execution. The schedule prefix

60

is generated by the exploration strategy and it is also stored in a global queue toExplore

on line 5. There is also a global variable for the choice point index which indicates where

the current execution is at. In the beginning of each execution, a new schedule prefix is

fetched from the head of the toExplore queue, and the choice point index is reset. During

the execution, whenever a choice point is reached (encountering a synchronization event or

shared variable access event), executeTransition on line 23 will be called. If the current

choice point index is smaller than the size of the schedule prefix, then the execution will

pick the thread according to the schedule prefix. Otherwise, ReEx will let the underlying

exploration strategy to decide which thread to choose on line 28. The exploration strategy

will not only select threads for the current execution, but it would also modify toExplore to

prioritize/insert new schedule prefixes generated from the current execution. Those schedule

prefixes will be used later on during the exploration.

From the above algorithm we can easily see that the exploration strategy decides how

ReEx would explore the entire state space. It can also decide which part of the state space

will be explored and which part will be ignored. In the rest of this section we will introduce a

few exploration strategies we have developed in the ReEx framework for efficient state-space

exploration.

4.1.2 Exploration Strategy

Depth/Breadth First Strategies

Depth/Breadth first strategies are the basic exploration strategies in the ReEx framework.

They both explore the entire state space without any reduction, meaning that all the possible

thread schedules will be executed. Depth first strategy always chooses the current thread to

execute whenever it is possible to do so. When a choice point is reached, it first checks what

are all the enabled threads. If the thread that executes the last transition is still active, it

will choose that thread to execute and put all the other choices into toExplore queue for

61

future exploration. If the last thread is not active, it will randomly choose another thread

to execute. Breadth first strategy, on the other hand, will first choose the other threads to

execute whenever it is possible.

Depth/Breadth first strategies are easy to understand and implement, and they will

eventually cover the entire state space. However, in many cases it is impractical to finish

the exploration of the entire state space. For detecting concurrency bugs, depth/breadth

first strategies also cannot hit the bugs as fast as other exploration strategies would do.

Therefore we use them as a comparison baseline in our evaluation.

Iterative Context Bounding Strategy

Our second exploration strategy in the ReEx framework is called iterative context bounding

strategy. It is inspired by the idea from Chess [67], so we also call it Chess strategy in the

rest of this dissertation. Chess is based on a critical finding for concurrency bugs, that most

concurrency bugs can be exposed within a small number of preemptions. Therefore, it is

useful to first explore schedules with fewer preemptions, since they may expose the bugs

faster without the need to explore the entire state space.

Chess prioritizes schedules based on the number of preemptions in them. It first explores

schedules without any preemption, that is each thread will continue execution until it finishes

or waits for some other actions. Then, it will explores schedules with one preemption,

two preemptions, and etc. In most settings two preemptions are enough to expose most

concurrency bugs.

In our implementation of Chess in the ReEx framework, we uses Priority Queue for

toExplore. During the exploration we maintain a counter for the current preemption limit.

At each choice point, we choose the threads that if being chosen, would not exceed the

preemption limit. In the meantime, we put the other choices in the corresponding priority

queue indexed by their preemption numbers. When the queue of the current preemption

limit is empty, we increase the preemption limit and get the queue with the corresponding

62

preemption limit.

Chess strategy performs very well for finding concurrency bugs, as shown by other re-

searchers [67]. Also Chess is a schedule prioritization technique and it is orthogonal to other

exploration strategies. Therefore, Chess can be combined with other strategies, making it

more appealing for detecting concurrency bugs.

Change-Aware Preemption Prioritization Strategy

Most software bugs, including concurrency bugs, are introduced by incremental changes

to the software. Regression testing is the most widely practiced method for ensuring the

validity of evolving software. Regression testing involves re-executing the tests for a program

when its code changes to ensure that the changes have not introduced a fault that causes

test failures. As programs evolve and grow, their test suites also grow, and over time it

becomes expensive to re-execute all the tests. The problem is exacerbated when test suites

contain multithreaded tests that are generally long running. Therefore, many researches

have been done to find bugs faster for evolving software, such as test selection, prioritization

and minimization.

Our another exploration strategy in ReEx, Change-Aware Preemption Prioritization

(CAPP) strategy, is inspired by the ideas from regression testing research. The basic idea

for CAPP is to collect change information between two versions of a program and use that

information to reduce the cost for exploration. For example, suppose a bug is introduced

in the change between version one and version two. CAPP will compute the change infor-

mation between version one and two, and during the exploration for version two CAPP will

use such information to prioritize schedules which contain those changes. Schedules that do

not touch those changes will be executed later on with low priorities.

CAPP contains two core parts: 1) Collect change information. CAPP organizes changes

between program versions as Impacted Code Points (ICPs), and it uses different kinds of

ICPs based on changed code lines/statements, methods, and classes, and the impact of these

63

changes onto fields. 2) Prioritize schedules based on various change-aware heuristics. CAPP

can use various heuristics to identify and prioritize change-impacted preemptions based on

the set of collected ICPs. We will elaborate on these two parts in this section.

Collecting Impacted Code Points

Collecting ICPs is similar to change-impact analysis [74, 80, 84]. However, the goal of

collecting ICPs is to identify points that are more likely to affect fault-revealing schedules

and hence should be prioritized earlier. Note that we do not ensure that the collected ICPs

capture the sound or complete impact of changes: CAPP can identify fewer points than really

impacted (because CAPP performs prioritization and not selection/pruning, the points not

identified will be explored later), and CAPP can identify more points than really impacted

(because those points may be helpful in finding an appropriate schedule). Intuitively, our

focus is on capturing the impact of the changes on the communication among threads, i.e.,

capturing the schedule-relevant points in the code. Since concurrency faults are related

to synchronization orders and shared-memory accesses, CAPP collects not only directly

changed code elements but also their impact on synchronized regions (blocks/methods) and

fields (of shared objects).

An ICP is defined as a 4-tuple ⟨C,M,L,F ⟩, where C is a class name, M is a method

name, L is a line number, and F is a field name. An element of the tuple may be � to de-

note a “don’t care” value. For example, the ICP ⟨org.apache.mina...ProtocolCodecFilter,

filterWrite(), 325, �⟩ denotes that line 325, which is in the method filterWrite() of the

class org.apache.mina...ProtocolCodecFilter, is impacted by the changes. As another ex-

ample, the ICP ⟨java.util.concurrent.ConcurrentLinkedQueue, �, �, head⟩ denotes that

the field head of the class java.util.concurrent.ConcurrentLinkedQueue is impacted by the

changes.

Our CAPP implementation utilizes a multi-step process to collect the set of ICPs. First,

a diff utility (specifically, the Eclipse JDK structure diff [85]) is used to collect a set of lines

that have been changed. This results in a set of ICPs where only the third element, i.e., the

64

line, is specified. Then four analyses are performed on the abstract syntax tree (AST) of the

changed code to fill in the missing elements of the partial ICPs and add additional ICPs.

First, any partial ICPs with changed lines that affect a synchronized region (e.g., adding

the synchronized keyword to methods, changing the scope of a synchronized block, etc.)

are expanded to include the entire region (method/block).

Second, for each partial ICP, the method and class that contain the changed lines are

identified and filled into the partial ICP. This is straightforward except for some special

cases such as inner or anonymous classes.

Third, for any field accesses (reads or writes) within impacted lines, additional ICPs are

added that specify change-impacted fields. For example, if the changed code has an access

o.f for some object o of type C, an ICP ⟨C, �, �, f⟩ is added. Note that this ICP includes no

(changed) lines. Indeed, it encodes that any access to the field is potentially relevant and

not only the accesses within the changed code.

Fourth, additional change-impacted field ICPs are collected by determining the read- and

write-sets [81] of all methods that are directly invoked from the impacted lines, and using

fields from these sets. In case of dynamic dispatch, our implementation does not compute

any precise call graph but simply approximates the set of callees using the statically declared

type of the receiver objects.

Exploration with Change-Aware Heuristics

The exploration algorithm of CAPP is also based on the algorithm described in Figure 4.1.

At each choice point during exploration, CAPP will decide whether the next transition of

the thread matches ICPs or not. If it matches, then the schedule with the transition will be

selected to execute; otherwise it will be put in toExplore queue for later execution. The key

question is how to decide whether a transition matches collected ICPs or not. CAPP uses a

family of heuristics and each heuristic has a different matching mode. Next we introduce all

those heuristics in details.

Each heuristic takes two parameters, the prioritization mode and the ICP match mode.

65

The prioritization mode can be BASIC (no prioritization), ALL, or SOME. It stipulates the

conditions under which enabled transitions are kept for the current iteration (or postponed

for the next iteration):

ALL (A) keeps all of the transitions if they are all executing a change-impacted point in

the code (as determined by the ICPs). Otherwise, if one or more transitions are not

executing a change-impacted point, only one of them is kept. The intuition behind

this mode is to prioritize preemptions only among threads that are executing change-

impacted code, and to force threads that are not executing change-impacted code to

reach change-impacted areas (or become disabled).

SOME (S) keeps all of the transitions if there exists at least one transition in the set that is

executing a change-impacted point in the code. Otherwise, if no transition is executing

a change-impacted point, only the transition of the currently executing thread is kept.

The intuition behind this mode is to prioritize preemptions between threads that are

executing change-impacted code and other threads that are not.

Note that both modes perform prioritization only if a preemption is possible. If a pre-

emption is not possible, all the enabled transitions are returned. Also note that the prioriti-

zation mode relies on the ICP match mode to decide which transitions/threads are executing

change-impacted code.

There are seven ICP match modes that determine whether a transition is executing

changed-impacted code, based on the impactedCodePoints set of collected ICPs. The match

modes compare the program counter (i.e., the currently executing line/statement that be-

longs to some method in some class) and potentially stack trace (which has a number of

program counters based on the call chain) of a transition/thread being executed with the

collected ICPs:

CLASS (C) checks if the class of the program counter matches the class of an ICP.

66

CLASS ON STACK (CO) checks if the stack trace contains a class specified in an ICP.

METHOD (M) checks if the method of the program counter matches a method specified in an

ICP.

METHOD ON STACK (MO) checks if the stack trace contains a method specified in an ICP.

LINE (L) checks if the line matches a line specified in an ICP.

LINE ON STACK (LO) checks if the stack trace contains a line specified in an ICP.

FIELD (F) checks if a field being accessed at a program counter (if any) matches a field

specified in an ICP.

The combination of the two (non-BASIC) prioritization modes and seven ICP match modes

results in 14 different heuristics with which Change-Aware Preemption Prioritization can be

instantiated. We refer to the heuristics using the respective ICP match mode and prioriti-

zation mode. For example, LS is the Line Some heuristic that uses the LINE match mode

and the SOME prioritization mode, and COA is the Class On-stack All heuristic that uses the

CLASS ON STACK match mode and the ALL prioritization mode.

67

4.2 Systematic Concurrency Testing with Maximal

Causality

In this section we introduce RV-Causal, a novel approach for exploration of multithreaded

programs using the maximal causal model. It provides reduction of exploration cost without

losing the ability to find concurrency bugs. RV-Causal is implemented also as an explo-

ration strategy in ReEx and we also compare RV-Causal with several existing exploration

strategies in ReEx.

4.2.1 Motivating Example

Figure 4.2 shows an overview of our approach. Given a certain input, starting with any

schedule, our approach systematically covers the entire interleaving space w.r.t. the input

by iteratively generating and executing new schedules. In each iteration, RV-Causal takes

the trace (an ordered sequence of events) emitted from executing a schedule on the program

with our scheduler and monitor, computes a causal set of interleavings corresponding to the

schedule according to MCM, and generates new schedules that are not in this causal set.

Each causal set is distinct and accounts for a different subspace of the whole scheduling space.

To enable checking runtime properties (i.e., safety and liveness properties) over this causal

set offline, we encode MCM as a formula of first order logical constraints over a set of order

variables (denoting the possible order of each event in the execution), such that any solution

to the formula corresponds to a legal interleaving represented by the value of order variables.

By encoding the runtime properties as additional constraints and solving a conjunction of

the formula and the property constraints with an SMT solver, we can determine whether a

property holds or not for all the interleavings in the causal set.

We illustrate our proposed approach using the example in Figure 4.3. Three threads T1,

T2 and T3 are started concurrently, each one has an outer loop with two iterations. x and

y are shared variables among those threads. An error will be triggered in T3 if (1) y == 3

68

s0s1 s2 s3 ...s3.1s1.1...s1.1.2.2

whole scheduling space a schedule

a set of schedules
captured by MCM

Schedule 1

Schedule 2

Schedule 3

…

Scheduler and Monitor

RVCausal

Execution

Trace 1

Figure 4.2: Overview

and (2) x > 1 are both satisfied, as shown at line 12. For (1) to be true, line 9 must be

executed after line 14; for (2) to be true, line 2 must be executed between line 7 and line 8.

69

T1

initially x=y=0

lock(l)
x=1
y=1
unlock(l);

1:
2:
3:
4:

T2

lock(l)
x=0
unlock(l);
if(x>0){
y++
x=2

}

T3

if(x>1){
if(y==3){
Error

else
y=2

}
}

loop twice: loop twice: loop twice:

5:
6:
7:
8:
9:
10:

11:
12:
13:

14:

: lock/unlock

/ : read/write

/

error-triggering schedule

x
y

1 1 0 0 2 2
1 1 2 3 2 2

Figure 4.3: Example

The exact buggy schedule is described in Figure 4.3 with four different types of events: R

(Read), W (Write), L (Lock) and U (Unlock), and each event is annotated with line number

and loop iteration number. For example, R2
8 means the read event at line 8 in the second

loop iteration.

This bug is hard to find by existing state space exploration tools. The reason is that

there is a large number of schedules in this program and the bug is hidden deeply with

complex thread interleavings. We ran this program with a stateless exploration tool similar

to CHESS [68] and used the same iterative context bounding exploration strategy, which is

usually the most efficient for finding concurrency bugs. It took 58478 schedules until it hit

the bug.

Our approach differs from existing techniques by covering a set of schedules from one

70

single execution. With the maximal causal model [82] as the foundation, our approach is

able to analyze an exponential and provably maximal number of schedules derived from one

single execution trace. From a high level view, our approach works in an iterative manner.

In each iteration, we work on one schedule and generate more new schedules, which consists

of three functional steps:

Record trace from one execution: We record in this step the necessary information

for constructing the maximal causal model. All the reads and writes to shared data will be

recorded as well as their value operands. Note that the trace collected here is not required

to hit the bug. For example, in the second iteration of T2, at line 9 we may read the value

1 for y. This will not trigger the error in line 13.

Generate causally different schedules: We use the trace collected in the previous

step to construct a maximal causal model. Each maximal causal model contains a set of

schedules and our approach will analyze those schedules offline. However, this is still not

enough to cover the entire state space. A key novelty of our approach is to systematically

generating causally different schedules by forcing reads in the program to read different

values. For example, suppose we have a trace R2
9 reads value 1 and W 1

14 writes value 2, and

R2
9 happens before W

1
14. Our approach will try to force R2

9 to read a different value, 2 in this

case, written by W 1
14. All the corresponding constraints will be generated and solved by an

SMT solver. If they are satisfiable, such a schedule will be generated.

Note that there may be multiple read operations in the program, so our approach will

generate multiple schedules from one input trace. In each generated schedule there will

be at least one read operation that reads a different value from the original trace, thus

guaranteeing that each generated schedule falls into a different causal model.

Figure 4.4 illustrates the schedule generation for our example. S0 is the schedule in the

initial trace. In the first iteration, we generate four new schedules (S1, S2, S3, S4), which

enforce the four reads (R1
8, R

2
8 R

1
11, and R2

11), respectively, to read value 1. In the second

iteration, we continue to work on the traces corresponding to Si (i=1,2,3,4 in parallel), and

71

generate S1.1, S1.2,. . . ,S2.1, S2.2, etc. All schedules form a hierarchy, with each child

schedule enforcing a different read value. Again, each new schedule may produce a trace

containing new read events and/or write values, which can generate new children schedules.

For example, our approach will eventually generate the schedule S1.1.2.2, which enforces

R2
12 to read 3 and triggers the error.

Re-execute program following generated schedules: our generated schedules

contain the execution order of threads so they can be used as input for our scheduler to re-

execute the program. All the generated schedules will be place into a priority queue. After

executing a new schedule in the queue, more causally different schedules may be generated

and put in the queue. Our approach will terminate when the queue becomes empty, meaning

that there is no more causally different schedule. This is the indication that the entire state

space is covered.

4.2.2 Approach

Maximal Causal Model

Our approach builds upon the maximal causal model (MCM) foundation, first presented

in [82] (for sequential consistency). We briefly review it below.

Multithreaded programs P are abstracted as the prefix-closed sets of finite traces that

they can produce when completely or partially executed, called P-feasible traces. A trace

is abstracted as a sequence of events. Events are operations performed by threads on con-

current objects, abstracted as tuples of attribute-value pairs. For example, (thread= t1,op=

read, target=x,data=1) is a read event by thread t1 to memory location x with value 1. We

consider the following common event types:

• begin(t)/end(t): the first/last event of thread t;

• read(t, x, v)/write(t, x, v): read/write a value v on a variable x;

72

• lock(t, l)/unlock(t, l): acquire/release a lock l;

• fork(t, t′): fork a new thread t′;

• join(t, t′): block until thread t′ terminates;

The sets of P-feasible traces must obey some basic consistency axioms. We proposed

two axioms: prefix closedness and local determinism. The former says that the prefixes of

a P-feasible trace are also P-feasible. The latter says that each thread has a deterministic

behavior, that is, only the previous events of a thread (and not other events of other threads)

determine the next event of the thread, although if that event is a read then it is allowed

to get its value from the latest write. These two axioms allow us to associate a causal

model feasible(τ) to any consistent trace τ , which comprises precisely the traces that can be

generated by any program that can generate τ . As shown in [82], feasible(τ) is both sound

and maximal: any program which can generate τ can also generate all traces in feasible(τ),

and for any trace τ ′ not in feasible(τ) there exists a program generating τ which cannot

generate τ ′. Comparatively, conventional happens-before causal models consisting of all the

legal interleavings of τ and their prefixes are not maximal [82].

In our approach, we realize MCM using constraints and represent feasible(τ) by a formula

Φ of first order logic clauses over a set of order variables, each of which corresponds to an

event in τ . Any solution to Φ denotes a legal schedule that can produce a corresponding

trace in feasible(τ). We next describe our constraint modeling.

Constraint Modeling

From a high level view, Φ contains only variables of the form Oe corresponding to events

e, which denote the order of the events in a trace in feasible(τ). Φ is constructed by a

conjunction of three sub-formulas: Φ = Φmhb ∧ Φlock ∧ Φrw.

Must happen-before constraints (Φmhb) The must happen-before (MHB) constraints

requires that (1) the total orders of the events in each thread are always the same; (2) a

73

s0

s1 s2 s3 s4

s1 1 s1 2 s1 3 s4 1 s4 2 s4 3

s1 1 2 1 s1 1 2 2 s4 3 1 1 s4 3 1 2

0
1 1 0 0

x y

1 1 0 0 2 2 1 1 2 3 2 2

e ty

1 1 2 2

1 1 1 0 0 2

1 1 2

Figure 4.4: Technical overview of schedule generation

begin event can happen only as a first event in a thread and only after the thread is forked

by another thread; (3) an end event can happen only as the last event in a thread, and a

join event can happen only after the end event of the joined thread. MHB yield an obvious

partial order ≺ on the events of τ which must be respected by any trace in feasible(τ). We

74

can specify ≺ easily as constraints over the O variables: we start with Φmhb ≡ true and

conjunct it with a constraint Oe1 < Oe2 whenever e1 and e2 are events by the same thread

and e1 occurs before e2, or when e1 is an event of the form fork(t, t′) and e2 of the form

begin(t′), etc.

Locking Constraints (Φlock) Lock mutual exclusion semantics requires that two se-

quences of events protected by the same lock do not interleave. Φlock captures the ordering

constraints over the lock lock and unlock events. For each lock l, we extract the set Sl of

all the corresponding pairs (a, r) of lock/unlock events on l, following the program order

locking semantics: the unlock is paired with the most recent lock on the same lock by the

same thread. Then we conjunct Φlock with the formula

⋀
(a,r),(a′,r′)∈Sl

(Or < Oa′ ∨ Or′ < Oa)

Read-write constraints (Φrw) The read-write constraints ensure that every event in the

trace is feasible. For an event to be feasible, all the events that must happen-before it should

also be feasible. Moreover, any read event that must happen-before it should read the same

value as that in the original trace. Consider a read event r, say read(t, x, v), we letW r be the

set of write(, x,) events in τ (here ‘-’ denotes any value), and W r
v the set of write(, x, v)

events in τ , then we have the formula defining its feasibility as following:

Φrw(r) = ⋁
w∈W r

v

(Φrw(w) ∧ Ow<Or⋀
w≠w′∈W r

(Ow′ <Ow ∨ Or<Ow′))

The above states that the read event r = read(t, x, v) may read the value v on x written by

any write event w = write(, x, v) in W r
v (the top disjunction), subject to the condition that

the order of w is smaller than that of r and there is no interfering write(, x,) in between.

Moreover, w itself must be concretely feasible, which is ensured by Φrw(w). Similarly,

Φrw(w) is defined by requiring all the reads that must happen-before it are feasible. Φrw is

75

a conjunction of Φrw(r) for all reads in the considered trace.

Schedule Generation

The goal of schedule generation is to generate schedules that produce traces not in feasible(τ).

Intuitively, this problem is the opposite of constraint modeling in Section 4.2.2 which encodes

feasible(τ). Hence, we can directly leverage the constructed formulae in Φ and negate those

that can be negated. Clearly, the only type of such constraints is Φrw, in which the mapping

from read to write may be changed: rather than enforcing a read to read the same value

as that in τ , we can instead enforce it to read a different value. The new formula Φ′ then

encodes a feasible schedule that can produce a different trace (with at least one new event:

the read event with a different value). When being re-executed, this new event might change

the control flow of the thread, producing more new events. A caveat of this process is that

when enforcing a read to read a different value, we must make sure all the reads that must

happen before it are matched with writes that write the same values as that in τ . Otherwise,

this read event may not be feasible.

Therefore, our algorithm enumerates each read event in τ on the set of all values by

the writes on the same variable. For each value that is different from what it reads in τ ,

we construct Φ′ that constrains the read to read the value. We then invoke a constraint

solver (such as Z3) to solve Φ′. If the solver returns a solution, the solution represents a new

schedule which is feasible and in which the read will read that new value. Note that each

read only concerns about the distinct values but not distinct writes. If there are multiple

writes writing the same value, it suffices to generate only one new schedule for all of them.

This is another salient advantage of our approach: it avoids generating redundant schedules

that have the same effect on the program state.

An important property of our algorithm is that it would eventually cover the entire

scheduling space.

Proof. (Sketch) For each read, for each new value it can read, our approach generates a new

76

schedule. Suppose there exists a schedule s not covered, then it must be the case that s

contains a new event. There could only be two possibilities for this new event: (1) it is a

previously observed event, but reads a new value; (2) it is a previously unseen event. The

case (1) is actually impossible, because our algorithm guarantees generating a new schedule

for each such read. For (2), it must be the case that the event depends on a branch, the

condition of which none of our generated schedules satisfies. However, this means that

the branch condition depends on at least one previous read reading a new value, which

contradicts to the fact that we already generated one schedule for each read with a different

value.

4.2.3 Implementation

Overflow

Our implementation is on top of ReEx [48], a stateless state-space exploration tool. ReEx

is a Java framework used to re-execute multithreaded Java programs based on different

exploration strategies. It already has a set of exploration strategies, such as iterative context

bounding exploration strategy (Chess) and depth first exploration strategy. We implement

our technique as another strategy in ReEx. We use ASM to instrument Java bytecode, such

that after each execution all the necessary information is stored in a trace object. In our

implemented exploration strategy that trace object serves as input to build constraint model.

We solve all the constraints (using Z3) to generate new schedules such that read operation

will read a different value. All the new generated schedules will be put in a queue and

our exploration strategy will pick the next schedule in the queue to re-execute the program

and generate new trace objects. After the queue becomes empty, no new schedule will be

generated and the exploration will finish.

77

Generation of Read Write Matching Pairs

The main part of our implementation is to generate all the possible read write matching

pairs, such that the only one read will read a different value, while all other preceding reads

read the same values. The algorithm is described in Figure 4.5.

The basic idea of the algorithm is to find all the values a specific read could possi-

ble read of, and then recursively generate matching pairs for all those values. Line 5,

getDependentNodes returns all the nodes that should happen before the input node. Those

nodes need to appear if the input node will appear in the new schedule. Figure 4.6 describes

how we compute dependency nodes. The first case is that two nodes are in the same thread

following the program order, then the later node must happen after the early node. In the

second case the first thread starts the second thread, then the start node should happen

before the very first node from the second thread. In the third case one thread joins on

another thread, which means the last node of the joined thread should happen before the

join node. In the last case we handle the semantics of wait-notify by modeling wait oper-

ation as wait followed by unlock and lock. Therefore, the wait node should happen before

notify node, and notify node should happen before the next node (lock node) following wait

node in that thread. By taking into consideration of all the possible should happen before

relationships in the program, we transitively compute all the dependency nodes for a given

node and use that result in the main algorithm.

On line 10, constructAllReadWritePairs gets all the values that were written to the

same address in previous trace, and calls constructReadWritePairs to get the mappings

between a read to a specific write node. On line 24, constructReadWritePairs takes as

input a list of read nodes to be matched, and recursively generates and stores the result in a

map. This algorithm will terminate on line 37 and 54 when the list of read nodes is empty.

Note that for each read node paired with each possible value it could read, we only need to

generate one valid schedule. So we use the global variable foundSchedule to terminate the

78

1 // Global variables
2 boolean foundSchedule = false;
3

4 // Get dependent nodes
5 Set⟨AbstractNode⟩ getDependentNodes(Trace trace, AbstractNode node) {
6 // return all the nodes that should happen before the current node
7 }
8

9 // Construct read write pairs
10 void constructAllReadWritePairs(Trace trace, ReadNode targetReadNode) {
11 Set⟨AbstractNode⟩ dependentNodes = getDependentNodes(trace, targetReadNode);
12 Set⟨String⟩ allValues = trace.getAllWriteValuesOnAddr(targetReadNode);
13 for (value ∈ allValues) {
14 if (value == targetReadNode.value) {
15 // match targetReadNode with a different value than the previous trace
16 continue;
17 }
18 foundSchedule = false;
19 constructReadWritePairs(trace, getReadNodes(dependentNodes), dependentNodes,
20 targetReadNode, value, new HashMap⟨ReadNode, AbstractNode⟩());
21 }
22 }
23

24 void constructReadWritePairs(Trace trace, List⟨AbstractNode⟩ readNodes,
25 Set⟨AbstractNode⟩ dependentNodes, ReadNode targetReadNode, String value,
26 Map⟨ReadNode, AbstractNode⟩ readWriteMapping) {
27 if (foundSchedule) {
28 return;
29 }
30 if (readNodes == ∅) {
31 if (readWriteMapping != ∅) {
32 if (canGenerateSchedule(readWriteMapping, targetReadNode, value)) {
33 generateSchedule(readWriteMapping, targetReadNode, value);
34 foundSchedule = true;
35 }
36 }
37 return;
38 }
39

40 ReadNode currentReadNode = removeFirst(readNodes);
41

42 // Already matched or impossible to match currentReadNode
43 while (currentReadNode ∈ readWriteMapping.keySet() || (currentReadNode != targetReadNode
44 && trace.getWriteNodesWithSameValue(currentReadNode) == ∅) {
45 if (readNodes == ∅) {
46 currentReadNode = removeFirst(readNodes);
47 } else {
48 if (readWriteMapping != ∅) {
49 if (canGenerateSchedule(readWriteMapping, targetReadNode, value)) {
50 generateSchedule(readWriteMapping, targetReadNode, value);
51 foundSchedule = true;
52 }
53 }
54 return;
55 }
56 }
57

58 Set⟨WriteNode⟩ writeNodes = trace.getWriteNodesWithSameValue(currentReadNode);
59 for (writeNode ∈ writeNodes) {
60 // Optimizations to prune impossible cases
61 readWriteMapping.put(currentReadNode, writeNode);
62 readNodes.addAll(getReadNodes(getDepedentNodes(trace, writeNode)));
63 dependentNodes.addAll(getDepedentNodes(trace, writeNode));
64 constructReadWritePairs(trace, readNodes, dependentNodes, targetReadNode, value, readWriteMapping);
65 }
66

67 // Handle matching with initial values
68 }

Figure 4.5: Generate Read Write Matching Pairs

79

T2.start

First Node

T1.join

Last Node

T1 T2

T2T1T1

wait

T1 T2

notify

node

Intra -

thread

Start

thread

Join

thread

Wait -

notify

Figure 4.6: Compute dependency nodes

execution earlier in that case for optimization purpose. When the list of read nodes is not

empty, the algorithm will get the first read node and pair it with a write node with the same

value, put this information in the result map, and recursively execute the algorithm.

Handling matching with initial values:

One problem we encountered during implementation is that for uninitialized variables,

JVM will use default values for their data types. Those values are not written by any write

nodes, therefore they are not captured in the trace. We handle those nodes in a specific

way by using a map to store its initial values. When accessing those variables, we will not

only look for existing write nodes in the trace, but also search for the map to find its initial

values. For the simplicity purpose, the details of this part is not included in the presented

algorithm here.

Optimization:

80

Table 4.1: Subject Faults and Programs Statistics
Source Error

Airline [29] Assertion Violation

Account [29] Assertion Violation

Allocation [29] Assertion Violation

BubbleSort [29] Assertion Violation

Lang [7] Assertion Violation

Pool [11] Assertion Violation

Log4J1 [10] NullPointer Exception

Log4J2 [8] NullPointer Exception

Logger [51] NullPointer Exception

If we naively pair all the read nodes with possible write nodes in the trace, we may end up

with too many possible pairings. Many of those pairings are impossible because of program

order constraints. However, we also do not want to check and prune too many impossible

pairings in our algorithm, because SMT solver is used to check validity and generate valid

schedule. In our implementation, we have done some simple Optimization to quickly check

and prune some cases. For example, if there is a cycle between two read write pairs from two

different threads, then it is impossible because we are using sequential consistent memory

model. Also, if another write nodes that writes a different value to the same address and it

should happen before the paired read node and after the paired write node, then it is also

impossible for the read node to read the value from the paired write node. The details of

those optimization are also omitted on line 60. In practice, those simple optimization give

us good performance improvement without losing the benefits of using SMT solver.

4.2.4 Evaluation

Methodology and Subjects

In order to evaluate our technique, we have performed two sets of experiments. First we

want to see how RV-Causal would help detecting concurrency bugs. Second, we want to

see how RV-Causal would reduce the cost of state-space exploration.

Our subject programs are described in Table 4.1. We collected several concurrency

81

programs from SIR [29] and also from several large open source systems. Each program

has a concurrency bug caused by thread scheduling, associated with a multithreaded unit

test which will expose the bug. However, those unit tests will only fail under certain thread

schedules. We clarify those bugs into two categories. The first one is Assertion Violation,

caused by test oracles being violated at the end of the test execution; the second one is

NullPointer Exception, caused by dereferencing null pointer in test execution.

RV-Causal explores only one schedule in each causal model, and it is useful to find those

concurrency bugs because Assertion Violation and NullPointer Exception are both

caused by a read operation matched with a “wrong” operation in one execution. Therefore,

it suffices to explore only one schedule in each causal model to reveal those bugs. We think

most concurrency bugs fall in those categories except Deadlock. We leave that to future

work for RV-Causal.

The main objective of our evaluation is to first see how many thread schedules it would

take for RV-Causal to hit those bugs, compared with other existing techniques and tools.

We then fix those bugs and see how many schedules RV-Causal would take to finish

exploring the entire state space. This shows how much state space reduction we can gain by

using the maximal causal model.

During our experiments, we compare RV-Causal with DepthFirst Strategy (DFS) and

Iterative Context Bounding Strategy [67] (Chess) implemented in ReEx [48]. We choose

number of schedules as the metric in our experiments because it was proven to be effective

for evaluating state-space exploration techniques in previous work [47].

State-Space Exploration Results

Find concurrency bugs

Table 4.2 summarizes our results of using RV-Causal to find concurrency bugs, com-

pared with DFS and Chess. We set the time limit to be 15 minutes for each subject program,

if the exploration does not terminate within that time limit we mark it as TIMEOUT.

82

Table 4.2: Number of Schedules to Find Bugs
Depth First Search Chess RV-Causal

Airline 7 42 3
Account 196 14 4
Allocation TIMEOUT 15 2
BubbleSort TIMEOUT 166 9
Lang TIMEOUT 18 20
Pool TIMEOUT 128 164
Log4J1 123 8 3
Log4J2 20 29 5
Logger 20 9 3

Overall RV-Causal takes substantially fewer schedules to find bugs than using DFS

or Chess exploration strategies. DFS is the basic exploration strategy, which exhaustively

enumerates all possible thread schedules one by one until it hits the bugs. Because of the

potential large number of possible thread interleavings, DFS cannot finish in time for 5 out

of 9 subject programs. Chess is using iterative context bounding approach [67] with bound

2. It only explores schedules with preemptions less or equal to 2, so it does not guarantee to

find the bug. However in practice it works very well, as it finds all the bugs in the 9 subject

programs. RV-Causal takes even fewer schedules to find those bugs in 7 out of 9 subject

programs. That is because many schedules DFS and Chess explores fall into the same causal

model, so that RV-Causal will only execute one of them. By forcing a read operation to

read a different value in each newly generated schedule, RV-Causal is more likely to lead

the program into a new state (e.g., executing a new branch or writing a different value to a

shared memory location), thus easier to hit concurrency bugs.

For example, consider the code snippet used in Allocation example in Figure 4.7. A

few threads are accessing the shared resultBuf array concurrently in run method. Using

DFS or Chess strategy, many context switch points will be created inside those for loops on

line 2 and 7, even if threads are accessing different elements of the array. RV-Causal will

look for the actual dynamic memory locations in each trace and only generate new schedules

which lead to different values written to resultBuf array, therefore it will not create those

unnecessary context switch points.

83

1 void run () {
2 for (int i = 0 ; i < r e s u l tBu f . l ength ; i++) {
3 r e su l tBu f [i] =
4 vec tor . getFreeBlockAndMarkAsAllocated () ;
5 }
6
7 for (int i = 0 ; i < r e s u l tBu f . l ength ; i++) {
8 i f (r e s u l tBu f [i] != −1) {
9 vec tor . markAsFreeBlock (r e su l tBu f [i]) ;
10 }
11 }
12 }
13
14 public int getFreeBlockAndMarkAsAllocated () {
15 // bug f i x : synchronized (t h i s) {
16 int f r e eB lock Index = getFreeBlockIndex () ;
17 i f (f r e eB lock Index != −1) {
18 markAsAllocatedBlock (f r eeB lock Index) ;
19 }
20 return f r e eB lock Index ;
21 // }
22 }

Figure 4.7: Allocation example

Explore entire state space

Table 4.3 summarizes our results of using RV-Causal to explore the entire state space

on the fixed subject programs. Since all the concurrency bugs are fixed in those subject

programs, ReEx will finish exploration only when all the possible thread interleavings are

enumerated. Because of the exponential number of thread schedules for multithreaded pro-

grams, the naive DFS approach would not be able to finish exploration for 8 out of 9 subject

programs. Chess, as a contrast, is able to finish exploration for most subject programs.

However, that is due to the fact that Chess only explores thread schedules with preemptions

less than 3 among all the possible thread schedules. Therefore, using the Chess approach

could possibly miss concurrency bugs (although it was proven to be effective in practice and

in our experiments).

RV-Causal takes significantly less schedules to finish exploration in most subject pro-

84

Table 4.3: Number of Schedules to Finish Exploration
Depth First Search Chess RV-Causal

Airline TIMEOUT 8309 17
Account TIMEOUT 819 5
Allocation TIMEOUT 16311 22
BubbleSort TIMEOUT 115827 103
Lang TIMEOUT 9990 334
Pool TIMEOUT TIMEOUT TIMEOUT
Log4J1 329 329 3
Log4J2 TIMEOUT TIMEOUT 9
Logger 577 138 2

grams, except in POOL where all three approaches could not finish exploration within the

time limit. The improvement also comes from the fact that RV-Causal only explores

one schedule from each causal model. Consider the example in Figure 4.7 again. The bug

was fixed by locking getFreeBlockAndMarkAsAllocated method. However Chess and DFS

will still explore many alternate interleavings in other methods, resulting in a much larger

number of schedules to finish exploration.

Note in some of our subject programs, RV-Causal takes very few schedules to finish

exploration. In those programs, developers fixed the bugs by wrapping accesses to shared

variables with common locks, or using thread local variables instead of shared variables. In

those cases, the total number of causal models decreased significantly compared with those

programs before applying their fixes.

4.2.5 Discussion

Comparison with Dynamic Partial Order Reduction

Dynamic Partial Order Reduction (DPOR) is a well known technique for reducing the cost

of state-space exploration [35]. The main idea behind DPOR is to look for conflicting and co-

enabled transition when program executes. Two transitions are conflicting with each other if

at least one of them is a write operation. Whenever two transactions that are accessing the

same memory location and are both enabled, a backtrack point will be created to explore

85

the alternative path.

In [35], the authors presented the following example:

T1 ∶ x = 1;x = 2;

T2 ∶ y = 1;x = 3;

T1 and T2 are two different threads executing concurrently. Suppose the first interleaving is

< T1−T1−T2−T2 >. A backtrack point will be created after executing the first instruction in

T1, resulting in interleaving < T1−T2−T2−T1 >. Similarly, a backtrack point will be created

before executing the first instruction in T1, resulting in interleaving < T2 − T2 − T1 − T1 >.

The rationale behind DPOR is that if two transitions are conflicting with each other, then

executing them in different orders will lead the program into different states. However, the

main difference between DPOR andRV-Causal is that DPOR only looks at all the currently

enabled transitions. In other words, it does not take into account the “causal effects” of those

transitions. Back into the above example, DPOR would not consider whether there are any

read operation that will read those values that being written earlier. Even if there is such a

read operation, DPOR would also not consider whether it will read the same value or not.

If there is another write operation writes to the same location but with a different value,

then all the above interleavings would not show any causally difference.

RV-Causal, on the other hand, looks for interleavings that will result the program fall

into another different causal model. Therefore, for a write operation to be considered as a

backtrack point, there must be a read operation that reads its value; moreover, it must read a

different value than in the previous execution. For example, executing the above program in

RV-Causal would only exercise one interleaving, since there is no read operation following

those write operations. RV-Causal achieves this goal by modeling the entire program

execution and find a viable solution for its causal model. Therefore, RV-Causal is able to

further reduce the state space for exploration compared to DPOR.

86

Deadlock Bugs

Currently our technique tracks each read and write values in the trace and generates different

traces such that at least one read will read a new value, due to the definition of the maximal

causal model.

Consider a simple example with nested locks: thread T1 acquires lock L1 first and then

lock L2, and then it releases L2 followed by L1; thread T2 acquires lock L2 first then lock

L1, and then releases L1 followed by L2. After the program finishes executing the first

trace (suppose the program does not deadlock in the first trace), RV-Causal will finish

exploration because it could not find any new causally different trace. However this program

could potentially deadlock if a context switch happens after each thread acquires their first

lock.

The reason for our technique to miss this deadlock bug is that when constructing con-

straints, we only generate synchronization consistent traces. That is, we only generate traces

in which each lock operation will successfully get the lock. The same goes for wait/notify

operations in the program. We currently cannot generate schedules that manifest deadlocks

caused by missing notification.

To solve this problem, we need to model lock/unlock and wait/notify operations differ-

ently. We will need to model those operations as special kinds of read/write operations and

match them with different values in each execution. By doing this our technique will be able

to explore schedules that could lead to deadlocks.

87

Chapter 5

Related Work

5.1 Testing and Runtime Verification of

Multithreaded Programs

Most existing work on runtime verification [1, 22, 23, 27, 38, 40, 55, 64] have hardwired spec-

ification languages. For example, Java-MaC [55] uses a customized language for interval

temporal logic and PaX [40] only supports LTL. Moreover, all existing runtime verifica-

tion frameworks monitor rather than enforce properties. JavaMOP [22, 23] is a parametric

runtime verification framework which supports multiple logic formalisms. EnforceMOP is

extending JavaMOP with the ability to enforce properties in multithreaded programs.

Many approaches have been proposed to test and verify multithreaded programs, such

as static/dynamic analysis [16, 33, 34], testing [26, 31, 46, 59, 76–78], and state-space explo-

ration [19, 39, 67]. For enforcing certain schedules in multithreaded code, ConAn [58, 59]

and MultithreadedTC [78] introduce unit testing frameworks that allow developers to specify

and enforce schedules when writing multithreaded unit tests. ConAn [59] uses a scripting

language for specifying method sequences and test schedules to generate test driver code for

multithreaded programs. MultithreadedTC [78] employed ticks to specify thread schedules.

Our earlier work IMUnit [46] proposed a language with event annotations to specify schedules

in multithreaded unit tests. EnforceMOP supports all the features of the above frameworks,

as described in Section 3.2.3. Moreover, with the underlying power of various logic for-

malisms, EnforceMOP can enforce complex schedules precisely and concisely. For finding

88

bugs in multithreaded code, Falcon [76] and CTrigger [77] employ different mechanisms to

improve the probability of context switch and reveal unknown concurrency bugs. Other

researchers have also proposed techniques for deterministic record and replay multithreaded

programs in order to detect and manifest concurrency bugs [21,43,62]. ConCrash [62] records

both thread schedules and method call stack in order to automatically generate unit tests

to reproduce concurrency errors after an exception is thrown. Leap [43] is a more recent

system which uses local ordering when recording and replaying thread schedules for concur-

rent programs. Our enforcement and checking mechanism in comparison is targeted towards

ensuring the user-specified schedule rather than replaying a previously observed execution.

Moreover, EnforceMOP does not aim to find bugs; rather, it is used as a testing framework

to specify schedules in multithreaded unit tests.

Our enforcement approach follows the same line of research on automated enforcement

of synchronization constraints [14, 15, 20, 28]. Compared with previous approaches, En-

forceMOP works on a popular programming language (Java) and supports arbitrary events

defined by users. In particular, EnforceMOP currently supports any pointcut that can be

captured by AspectJ and it can also be easily extended in future. Moreover, parametric

events and various formalisms give EnforceMOP more flexibility to define and enforce syn-

chronization properties.

A data-centric synchronization approach to avoiding certain concurrency errors is pro-

posed in [30, 86]. Their idea is to group fields into atomic sets and automatically enforce

the atomicity when accessing those fields at runtime. EnforceMOP follows the same idea

of semantic synchronization, but, with its various logic formalisms, EnforceMOP is able to

express more complex properties than atomicity. For example, in our evaluation of En-

forceMOP, we showed that we can enforce mutual exclusion between a pair of two specific

methods; this is a special and finer grained instance of atomicity.

89

5.2 Efficient State-Space Exploration of

Multithreaded Programs

Many work have been proposed for state-space exploration of multithreaded programs. There

are typically two ways to explore the state space: stateful search and stateless search. State-

less search [41, 87] models the state of the program when it executes and use the modeled

states to check for errors. For example, Java PathFinder [87] is an explicit state-space ex-

ploration tool for checking Java programs. It uses state comparison to do backtracking in its

search process. Stateless search [48,67] does not model the state of the program. Instead, it

re-executes the program at all the possible choice points to enumerate all the possible output

of program execution. Our work here is built on top of a stateless state-space exploration

tool ReEx, however it is possible to extend our work for stateful state-space exploration

tools.

Since the entire state space for a multithreaded program is large, it is usually infeasible

to explore the whole state space. Researchers have proposed different heuristics to find

concurrency bug faster when doing exploration. Chess [67] is built on top of the fact that

most concurrency bugs can be found within a small number of preemptions. It then proposes

an iterative preemption bounding approach to first explore schedules with a smaller number

of preemptions. Following work [13] limits preemptions in a set of selected methods to further

improve efficiency of finding concurrency bugs. Wang et el. proposes another heuristic which

uses PSet coverage information as a guideline when exploring state space [88]. Our earlier

work [48] employs a set of heuristics to utilize the change information between program

revisions to find concurrency bugs faster. Compared to existing heuristic based work, we do

not sacrifice coverage for efficiency when exploring state space. Since our approach is based

on maximal causality model, we are able to find bugs faster while being guaranteed to cover

all the possible behaviors of multithreaded programs.

There is a rich body of work on using predictive analysis for concurrent programs to find

90

concurrency bugs, including data races [24, 44], atomicity violations [83] and NullPointer

Exceptions [32]. Those techniques differ with one another by the underlying model they are

using to represent the program’s execution. PENELOPE [83] employs a set of access patterns

to synthesize and generate schedules to reveal atomicity violations. Compared to PENE-

LOPE, our work RV-Causal uses the maximal causal model to represent the programs’

execution, rather than heuristics-based techniques used in PENELOPE. The maximal causal

model guarantees that RV-Causal outperforms existing predictive analysis techniques by

the number of feasible schedules inferred from one execution. For data races, jPredictor [24]

and RV-Predict [44] both employs sound causal models in their approaches. RV-Predict

uses the maximal causal model with control flow to find races, therefore it could find more

races than jPredictor and other predictive analysis techniques. RV-Causal also employs

the maximal causal model for finding concurrency bugs, but it aims to enumerate all the

possible causal models the program can manifest. Therefore, RV-Causal is not sensitive

to the input trace, and it can be combined with existing predictive analysis techniques as

described in Chapter 6.

Dynamic partial order reduction [35] explores the relationship between enabled transi-

tions during each step of state space exploration. If switching the order of two co-enabled

steps does not result in new program state, then it is safer to pick one instead of trying both

of them. Our approach tracks the value of each read and write instructions and also takes

into account all the constraints when building maximal causality model, which makes our

approach subsumes previous partial order reduction work.

91

Chapter 6

Conclusions and Future Work

Multithreaded programs are hard to develop and test due to the non-deterministic thread

scheduler. In this dissertation we present two main bodies of research. First, we present

the IMUnit framework for enforcing testing schedules and the EnforceMOP system for en-

forcing runtime properties. Second, we present the CAPP framework and the RV-Causal

framework for efficient state-space exploration of multithreaded programs. We believe our

contributions can help developers to develop more reliable multithreaded code. Here we also

present directions for potential future work.

Combine RV-Causal with predictive analysis tools:

One motivation of RV-Causal is that we want to augment the effectiveness of existing

predictive analysis techniques. Predictive analysis of multithreaded programs takes one trace

and predicts concurrency errors based on that one execution. RVPredict [44] is the most

recent work based on the maximal causal model. It subsumes all the other existing work by

having the maximal predictive power based on one execution. However, RVPredict is still

based on one trace, so if the input trace does not cover the buggy space, RVPredict will not

be able to find the bug. Moreover, running RVPredict multiple times may generate traces

that fall into the same causal model, resulting in the same set of errors being reported.

We want to combine our technique with RVPredict and evaluate how many more new

bugs can be found by generating traces in another causal model. After RVPredict finishes

the prediction for one execution, we want to use RV-Causal to generate new traces. Each

trace represents a different causal model, so RVPredict may find completely different set

of errors from the new trace. The users of RVPredict can decide whether/when to stop

92

generating new traces.

Extend RV-Causal to consider deadlock:

Currently RV-Causal tracks the values of all the read and write operations in the trace

and generates different traces such that at least one read operation will read a new value.

As described in Chapter 4, we cannot handle deadlock bugs at the moment.

The reason for RV-Causal to miss those deadlock bugs is that when we construct

constraints, we only generate synchronization consistent traces. That is, we only generate

traces which guarantee that each lock operation will successfully get the lock, and each wait

operation will be successfully notified. We currently cannot generate schedules that manifest

deadlock caused by nested locks or missing notification.

To solve this problem, we need to model lock/unlock and wait/notify operations differ-

ently. We will need to consider those operations as a special kind of read/write operations

and match them with different values in the newly generated execution. By doing this,

our technique will be able to generate schedules that could expose those deadlock bugs in

multithreaded programs.

Evaluate more extensively and compare with DPOR:

In this dissertation, we compare RV-Causal with DPOR by analyzing a small example

to demonstrate the advantages of our technique. Although we have shown clearly that RV-

Causal would provide more reduction during state-space exploration, it would be more

convincing if we also implement DPOR in the ReEx framework and compare it with RV-

Causal on our benchmarks. In general, DPOR is based on the happens-before relationship

in multithreaded programs, and it was proven before that maximal causal model would

subsume happens-before causal model [82]. However, it would still be useful to compare

those techniques experimentally.

Explore monitored multithreaded programs:

Another topic for future work is that to combine the JavaMOP framework with state-

space exploration tools. JavaMOP currently only works for a single execution of a given

93

program. Combining JavaMOP with a state-space exploration engine would allow us to

systematically explore all the possible executions for a multithreaded program in order to

find potential property violations.

Combine runtime verification techniques with testing:

Runtime verification techniques, such as the JavaMOP framework, are very good can-

didates for being integrated with testing tools. Currently JavaMOP is not widely used in

testing practice mainly because 1) it is not very clear for programmers to decide what prop-

erties to write and how to write them; 2) the tool itself requires complex set-up. We want

to use runtime verification techniques in real world programs to find bugs. We plan to find

properties whose violations do not directly lead to exceptions (otherwise those violations

will already be caught without using runtime verification techniques), but could potentially

lead the program to a bad state. Bugs caused by those properties violations may manifest

themselves in a very late stage, and runtime verification techniques can help developers to

find them much earlier. In specific, we want to conduct more comprehensive evaluation to

see how to use JavaMOP to find new bugs and to help developers to diagnose the root cause

of a bug.

Enable runtime verification for message-passing programs:

Currently runtime verification techniques are mostly used for shared-memory programs.

We think a possible future research is to use those techniques on message-passing systems.

To achieve that, each message in the system needs to be intercepted and analyzed by our

techniques. Moreover, we can employ the idea of EnforceMOP to modify, forward or drop

malicious messages, in order to enforce correct properties for the entire system. Our initial

work on using JavaMOP for robot operating system (ROS) [42] proved this concept on a

real message-passing system, therefore we believe this would be a promising direction for

future research.

94

References

[1] Chris Allan, Pavel Avgustinov, Aske Simon Christensen, Laurie J. Hendren, Sascha
Kuzins, Ondrej Lhoták, Oege de Moor, Damien Sereni, Ganesh Sittampalam, and Julian
Tibble, Adding trace matching with free variables to AspectJ, OOPSLA, 2005.

[2] Apache Software Foundation, Apache Commons Collections,
http://commons.apache.org/collections/.

[3] Apache Software Foundation, Apache Commons Pool,
http://commons.apache.org/pool/.

[4] Apache Software Foundation, Apache Hadoop, http://hadoop.apache.org/.

[5] Apache Software Foundation, Apache Lucene, http://lucene.apache.org/.

[6] Apache Software Foundation, Apache MINA, http://mina.apache.org/.

[7] Apache Software Foundation, LANG-481, https://goo.gl/V5xdN6.

[8] Apache Software Foundation, LOG4J-44032, https://goo.gl/NehbGh.

[9] Apache Software Foundation, LOG4J-50213, https://goo.gl/BhBnOq.

[10] Apache Software Foundation, LOG4J-509, https://goo.gl/rtZZLp.

[11] Apache Software Foundation, POOL-120, https://goo.gl/jsr1nN.

[12] Apache Software Foundation, TOMCAT-25841, https://goo.gl/RYgi4f.

[13] Thomas Ball, Sebastian Burckhardt, Katherine Coons, Madanlal Musuvathi, and Shaz
Qadeer, Preemption sealing for efficient concurrency testing, TACAS, 2010.

[14] Reimer Behrends and R. E. Kurt Stirewalt, The universe model: an approach for im-
proving the modularity and reliability of concurrent programs, FSE, 2000.

[15] Aysu Betin-Can and Tevfik Bultan, Verifiable concurrent programming using concur-
rency controllers, ASE, 2004.

[16] Eric Bodden and Klaus Havelund, Racer: Effective race detection using AspectJ, ISSTA,
2008.

95

http://commons.apache.org/collections/
http://commons.apache.org/pool/
http://hadoop.apache.org/
http://lucene.apache.org/
http://mina.apache.org/
https://goo.gl/V5xdN6
https://goo.gl/NehbGh
https://goo.gl/BhBnOq
https://goo.gl/rtZZLp
https://goo.gl/jsr1nN
https://goo.gl/RYgi4f

[17] Sebastian Burckhardt, Chris Dern, Madanlal Musuvathi, and Roy Tan, Line-Up: A
Complete and Automatic Linearizability Checker, PLDI, 2010.

[18] Sebastian Burckhardt, Pravesh Kothari, Madanlal Musuvathi, and Santosh Na-
garakatte, A randomized scheduler with probabilistic guarantees of finding bugs, AS-
PLOS, 2010.

[19] Jacob Burnim, Tayfun Elmas, George Necula, and Koushik Sen, CONCURRIT: Testing
concurrent programs with programmable state-space exploration, HotPar, 2012.

[20] Roy H. Campbell and A. Nico Habermann, The specification of process synchronization
by path expressions, OS, 1974.

[21] Richard H. Carver and Kou-Chung Tai, Replay and testing for concurrent programs,
IEEE Software (1991).

[22] Feng Chen and Grigore Roşu, Java-MOP: A monitoring oriented programming envi-
ronment for java, TACAS, 2005.

[23] Feng Chen and Grigore Roşu, MOP: An efficient and generic runtime verification frame-
work, OOPSLA, 2007.

[24] Feng Chen, Traian Florin Şerbănuţă, and Grigore Roşu, jPredictor: a predictive runtime
analysis tool for Java, ICSE, 2008.

[25] Codehaus, Sysunit, http://docs.codehaus.org/display/SYSUNIT/Home.

[26] Katherine Coons, Sebastian Burckhardt, and Madanlal Musuvathi, Gambit: Effective
Unit Testing for Concurrency Libraries, PPoPP, 2010.

[27] Marcelo d’Amorim and Klaus Havelund, Event-based runtime verification of java pro-
grams, WODA, 2005.

[28] Xianghua Deng, Matthew B. Dwyer, John Hatcliff, and Masaaki Mizuno, Invariant-
based specification, synthesis, and verification of synchronization in concurrent pro-
grams, ICSE, 2002.

[29] Hyunsook Do, Sebastian G. Elbaum, and Gregg Rothermel, Supporting controlled exper-
imentation with testing techniques: An infrastructure and its potential impact., Springer
ESE (2005).

[30] Julian Dolby, Christian Hammer, Daniel Marino, Frank Tip, Mandana Vaziri, and Jan
Vitek, A data-centric approach to synchronization, ACM TOPLAS (2012).

[31] Orit Edelstein, Eitan Farchi, Evgeny Goldin, Yarden Nir, Gil Ratsaby, and Shmuel Ur,
Framework for Testing Multi-Threaded Java Programs, Wiley CCPE (2003).

[32] Azadeh Farzan, P. Madhusudan, Niloofar Razavi, and Francesco Sorrentino, Predicting
null-pointer dereferences in concurrent programs, FSE, 2012.

96

http://docs.codehaus.org/display/SYSUNIT/Home

[33] Cormac Flanagan and Stephen N. Freund, Fasttrack: Efficient and precise dynamic race
detection, PLDI, 2009.

[34] Cormac Flanagan, Stephen N. Freund, and Jaeheon Yi, Velodrome: A sound and com-
plete dynamic atomicity checker for multithreaded programs, PLDI, 2008.

[35] Cormac Flanagan and Patrice Godefroid, Dynamic partial-order reduction for model
checking software, POPL, 2005.

[36] Milos Gligoric, Vilas Jagannath, and Darko Marinov, MuTMuT: Efficient exploration
for mutation testing of multithreaded code, ICST, 2010.

[37] Patrice Godefroid, Partial-Order methods for the verification of concurrent systems -
an approach to the state-explosion problem, Springer LNCS, 1996.

[38] Simon Goldsmith, Robert O’Callahan, and Alexander Aiken, Relational queries over
program traces, OOPSLA, 2005.

[39] Klaus Havelund and Thomas Pressburger, Model checking Java programs using Java
PathFinder, Springer STTT (1999).

[40] Klaus Havelund and Grigore Rosu, An overview of the runtime verification tool Java
PathExplorer, Springer FMSD (2004).

[41] Gerald Holzmann, The model checker SPIN, IEEE TSE (1997).

[42] Jeff Huang, Cansu Erdogan, Yi Zhang, Brandon M. Moore, Qingzhou Luo, Aravind
Sundaresan, and Grigore Rosu, ROSRV: runtime verification for robots, RV, 2014.

[43] Jeff Huang, Peng Liu, and Charles Zhang, Leap: lightweight deterministic multi-
processor replay of concurrent Java programs, FSE, 2010.

[44] Jeff Huang, Patrick Meredith, and Grigore Rosu, Maximal sound predictive race detec-
tion with control flow abstraction, PLDI, 2014.

[45] IBM, ECLIPSE-369251, https://bugs.eclipse.org/bugs/show_bug.cgi?id=369251.

[46] Vilas Jagannath, Milos Gligoric, Dongyun Jin, Qingzhou Luo, Grigore Rosu, and Darko
Marinov, Improved multithreaded unit testing, FSE, 2011.

[47] Vilas Jagannath, Matt Kirn, Yu Lin, and Darko Marinov, Evaluating machine-
independent metrics for state-space exploration, ICST, 2012.

[48] Vilas Jagannath, Qingzhou Luo, and Darko Marinov, Change-aware preemption prior-
itization, ISSTA, 2011.

[49] Java Community Process, JSR 166: Concurrency utilities,
http://g.oswego.edu/dl/concurrency-interest/.

[50] JBoss Community, JBoss Cache, http://www.jboss.org/jbosscache.

97

https://bugs.eclipse.org/bugs/show_bug.cgi?id=369251
http://g.oswego.edu/dl/concurrency-interest/
http://www.jboss.org/jbosscache

[51] JDK, LOGGER-4779253, http://goo.gl/qYDwXL.

[52] Pallavi Joshi, Mayur Naik, and Koushik Sen, An effective dynamic analysis for detecting
generalized deadlocks, FSE, 2010.

[53] JPF home page, http://babelfish.arc.nasa.gov/trac/jpf/.

[54] Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jeffrey Palm, and
William G. Griswold, An overview of AspectJ, ECOOP, 2001.

[55] Moonjoo Kim, Sampath Kannan, Insup Lee, Oleg Sokolsky, and Mahesh Viswanathan,
Java-MaC: a run-time assurance tool for Java programs, Elsevier ENTCS (2001).

[56] Leslie Lamport, Time, clocks, and the ordering of events in a distributed system, ACM
CACM (1978).

[57] Lassi Project, Sleep testcase, http://tinyurl.com/4hk9zdr.

[58] Brad Long, Daniel Hoffman, and Paul A. Strooper, A concurrency test tool for Java
monitors, ASE, 2001.

[59] Brad Long, Daniel Hoffman, and Paul A. Strooper, Tool support for testing concurrent
Java components, IEEE TSE (2003).

[60] Qingzhou Luo, Jeff Huang, and Grigore Rosu, Systematic Concurrency Testing with
Maximal Causality, Tech. report, University of Illinois Urbana Champaign, 2015.

[61] Qingzhou Luo and Grigore Rosu, EnforceMOP: a runtime property enforcement system
for multithreaded programs, ISSTA, 2013.

[62] Qingzhou Luo, Sai Zhang, Jianjun Zhao, and Min Hu, A lightweight and portable ap-
proach to making concurrent failures reproducible, FASE, 2010.

[63] Qingzhou Luo, Yi Zhang, Choonghwan Lee, Dongyun Jin, Patrick O’Neil Meredith,
Traian-Florin Serbanuta, and Grigore Rosu, Rv-monitor: Efficient parametric runtime
verification with simultaneous properties, RV, 2014.

[64] Michael C. Martin, V. Benjamin Livshits, and Monica S. Lam, Finding application
errors and security flaws using PQL: a program query language, OOPSLA, 2005.

[65] Patrick O’Neil Meredith, Dongyun Jin, Dennis Griffith, Feng Chen, and Grigore Roşu,
An overview of the MOP runtime verification framework, Springer STTT (2011).

[66] Madan Musuvathi and Shaz Qadeer, Chess: systematic stress testing of concurrent
software, LOPSTR, 2006.

[67] Madanlal Musuvathi and Shaz Qadeer, Iterative context bounding for systematic testing
of multithreaded programs, PLDI, 2007.

98

http://goo.gl/qYDwXL
http://babelfish.arc.nasa.gov/trac/jpf/
http://tinyurl.com/4hk9zdr

[68] Madanlal Musuvathi, Shaz Qadeer, Thomas Ball, Gérard Basler, Piramanayagam A.
Nainar, and Iulian Neamtiu, Finding and reproducing heisenbugs in concurrent pro-
grams, OSDI, 2008.

[69] Santosh Nagarakatte, Sebastian Burckhardt, Milo M.K. Martin, and Madanlal Musu-
vathi, Multicore acceleration of priority-based schedulers for concurrency bug detection,
PLDI, 2012.

[70] Mayur Naik, Alex Aiken, and John Whaley, Effective static race detection for Java,
PLDI, 2006.

[71] Object Refinery, JFREECHART-1051, http://goo.gl/SdkWfC.

[72] Object Refinery, JFREECHART-187, http://goo.gl/zXrXRO.

[73] Oracle, JavaDoc ArrayList, http://goo.gl/1aoDol.

[74] Alessandro Orso, Taweesup Apiwattanapong, and Mary Jean Harrold, Leveraging field
data for impact analysis and regression testing, ESEC/FSE, 2003.

[75] Chang-Seo Park and Koushik Sen, Randomized active atomicity violation detection in
concurrent programs, FSE, 2008.

[76] Sangmin Park, Richard W. Vuduc, and Mary Jean Harrold, Falcon: fault localization
in concurrent programs, ICSE, 2010.

[77] Soyeon Park, Shan Lu, and Yuanyuan Zhou, CTrigger: Exposing atomicity violation
bugs from their hiding places, ASPLOS, 2009.

[78] William Pugh and Nathaniel Ayewah, Unit testing concurrent software, ASE, 2007.

[79] ReEx home page, http://mir.cs.illinois.edu/reex/.

[80] Xiaoxia Ren, Fenil Shah, Frank Tip, Barbara Ryder, and Ophelia Chesley, Chianti: A
tool for change impact analysis of Java programs, OOPSLA, 2004.

[81] Atanas Rountev, Precise identification of side-effect-free methods in Java, ICSM, 2004.

[82] Traian Florin Serbanuta, Feng Chen, and Grigore Rosu, Maximal causal models for
sequentially consistent systems, RV, 2012.

[83] Francesco Sorrentino, Azadeh Farzan, and P. Madhusudan, PENELOPE: weaving
threads to expose atomicity violations, FSE, 2010.

[84] Amitabh Srivastava and Jay Thiagarajan, Effectively prioritizing tests in development
environment, ISSTA, 2002.

[85] The Eclipse Foundation, Eclipse JDT UI, http://www.eclipse.org/jdt/ui/.

99

http://goo.gl/SdkWfC
http://goo.gl/zXrXRO
http://goo.gl/1aoDol
http://mir.cs.illinois.edu/reex/
http://www.eclipse.org/jdt/ui/

[86] Mandana Vaziri, Frank Tip, and Julian Dolby, Associating synchronization constraints
with data in an object-oriented language, POPL, 2006.

[87] Willem Visser, Klaus Havelund, Guillaume P. Brat, Seungjoon Park, and Flavio Lerda,
Model checking programs, Springer ASE (2003).

[88] Chao Wang, Mahmoud Said, and Aarti Gupta, Coverage guided systematic concurrency
testing, ICSE, 2011.

[89] Guowei Yang, Matthew B. Dwyer, and Gregg Rothermel, Regression model checking,
ICSM, 2009.

[90] Shin Yoo and Mark Harman, Regression testing minimization, selection and prioritiza-
tion: A survey, Wiley STVR (2010).

[91] Jie Yu, Satish Narayanasamy, Cristiano Pereira, and Gilles Pokam, Maple: A coverage-
driven testing tool for multithreaded programs, OOPSLA, 2012.

100

	Chapter 1 Introduction
	Thesis Statement
	Enforcement of Testing Schedules and Runtime Properties
	Enforcing Schedules for Multithreaded Tests
	Runtime Property Enforcement for Concurrent Programs

	Efficient State-Space Exploration
	Efficient Exploration of Multithreaded Regression Tests
	Systematic Testing of Concurrent Programs with Maximal Causality

	Dissertation Organization

	Chapter 2 Background
	Testing and Exploration of Multithreaded Programs
	Enforcing Correct Thread Schedules
	Exploring State Space

	Runtime Verification of Multithreaded Programs
	JavaMOP
	Maximal Causal Model

	Chapter 3 Enforcement of Testing Schedules and Runtime Properties
	Improved Multithreaded Unit Testing
	Example
	Schedule Language
	Enforcing & Checking

	EnforceMOP: A Runtime Property Enforcement System
	Motivation
	Approach and Implementation
	Applications and Evaluation
	Discussion

	Chapter 4 Efficient State-Space Exploration
	Stateless State-Space Exploration with ReEx
	Introduction
	Exploration Strategy

	Systematic Concurrency Testing with Maximal Causality
	Motivating Example
	Approach
	Implementation
	Evaluation
	Discussion

	Chapter 5 Related Work
	Testing and Runtime Verification of Multithreaded Programs
	Efficient State-Space Exploration of Multithreaded Programs

	Chapter 6 Conclusions and Future Work
	References

