

West African Journal of Industrial and Academic Research Vol.5 No. 1 December 2012 43

Context-Based Synchronization of Concurrent Process

Using Aspect-Oriented Programming

Ogheneovo, E. E., Asagba, P.O. and Ejiofor, C. I.
Department of Computer Science,

University of Port Harcourt, Port Harcourt, Nigeria.
edward_ogheneovo@yahoo.com, pasagba@yahoo.com, ejioforifeanyi@yahoo.com

Abstract

Resource access synchronization within concurrent processes or threads is implemented

using various constructs such as semaphores, monitor locks, Mutex, etc. The algorithm

supporting most of these structures works by keeping at bay all other concurrent processes or

threads till the current process accessing the resource has successfully relinquished the

resource. This works very well as race conditions are controlled and shared data state

remains consistent. The problem with this approach is performance in terms of system

response. When each thread has to wait for the other to finish accessing the resource before

it can proceed, a long line waiting threads can easily build-up, which obviously translates to

relatively slow system response. In this paper, we propose contextual synchronization model

to avoid where applicable, the unnecessary build-up of threads waiting for access to the

resource. This model describes different contexts within which a resource access can be

executed. Each model is ascribed different priorities of which different policies were applied.

The most important feature of this model is that the context representing plain resource

access will not cause any race condition if all other threads are accessing from the same

context. The result of our experiment shows that context-based synchronization performs

better than Java given the same number of threads.

Keywords: Aspect-oriented programming, synchronization, resource, and concurrent
process.

__

Introduction
 In Java programs, synchronization is
commonly referred to as the coordination
of multiple threads in accessing shared
program states. As concurrency becomes a
common programming practice in the
multi-core era, the designers of concurrent
programs are faced with many choices of
synchronization mechanisms such as the
use of locks, atomic blocks (Ben-Ari et al.,
2006), and more recently, software
transactional memory (Miller, S. K. 2001;
Miller, M. S. 2006, Miller et al., 2003).
For their distinctive operational
differences, clear functional trade-offs
exist among these synchronization

mechanisms. This is problematic for
building general-purpose and reusable
Java systems. In conventional approaches,
synchronization mechanisms are
“hardwired” to the application logic
through the use of library APIs or
specialized language constructs. At the
same time, choosing the most appropriate
mechanism is increasingly about how
reusable systems are being integrated in
diversified comparison contents.
 Context-based synchronization does not
refer to any specific synchronization
architecture, but to a method of applying
synchronization. It distinguishes between

West African Journal of Industrial and Academic Research Vol.5 No. 1 December 2012 44

three (3) major reasons for performing
resources access synchronization:

• Data/resources retrieval
• Data/resource modification
• Priority based access
 synchronization.

 In this paper, we proposed a contextual
model for synchronizing concurrent
process using Aspect-oriented
programming (AOP) based on the kind of
access an action is specified to perform.
This is to ensure unnecessary build-up of
threads waiting for access to the resource
thereby avoiding a long link of waiting
threads which will result in a relatively
slow system response. The model
describes different contexts within which a
resources access can be executed. Each
model is ascribed different priorities of
which different policies are applied. The
most important feature is that the context
representing plain resource access will not
cause any race condition if all other
threads are accessing from the same
context.

Concurrent Process, Multi-Threading

Programming and AOP

Concurrent Process

 Concurrent computing is a form of
computing in which programs are designed
as collections of interacting computational
processes that may be executed in parallel
(Ben-Ari, 2006). Current programs can be
executed sequentially on a single processor
by interleaving the execution steps of each
computational process, or executed in
parallel by assigning each computational
process to one of a set of processors that
may be close or distributed across a
network. The main challenges in designing
concurrent programs are ensuring the
correct sequencing of the interactions or
communications between different
computational processes, and coordinated
among access to resources that are shared
among processes.

 A number of different methods can be
used to implement concurrent programs,
such as implementing each computational
process as an operating system process, or
implementing the computational processes
as a set of threads within a single operating
system process. In some concurrent
computing systems, communication
between the concurrent components is
hidden from the programmer (e.g., by
using futures), while in others it must be
handled explicitly. Explicit
communication can be divided into two
classes:

• Shared memory communication:
Concurrent components communicate by
altering the contents of shared memory
locations. This style of concurrent
programming usually requires the
application of some form of locking (e.g.,
mutexes, semaphores, or monitors) too
coordinate between threads.

• Message passing communication:

Concurrent components communicate by
exchanging messages. The exchange of
messages may be carried out
asynchronously, or may use a rendezvous
style in which the sender blocks until the
message is received. Asynchronous
message passing may be reliable or
unreliable. Message-passing concurrency
tends to be far easier to reason with than
shared-memory concurrency, and is
typically considered a more robust form of
concurrent programming. Shared memory
and message passing concurrency have
different performance characteristics,
typically, the per-process memory
overhead and task switching overhead is
lower in a message passing itself is greater
than for a procedure call. These
differences are often overwhelmed by
other performance factors [23].

Multi-Threading Programming

 In a network environment, it is a
common practice for resources to be

West African Journal of Industrial and Academic Research Vol.5 No. 1 December 2012 45

shared among multiple users. Modern
operating systems are usually designed to
process multiple jobs (programs) at the
same time. This is often referred to as
multi-tasking. Multi-tasking results in
effective and simultaneous utilization of
various system resources such as
processors, disks, and printers. Thus
multiple tasks can be executed
concurrently [2]. Java as an object-
oriented programming language supports
multithreading. Threads are dispatch able
unit of work. They are light-weight
processes within a process. A process is a
program in execution. It consists of a
number of independent units known as
threads. A process is the collection of one
or more threads and associated system
resources. However, while a process
depends on the architectural constructs of
an application, a thread is a coding
construct that does not affect the
architecture of an application. All threads
within a process share the same state and
same memory space, and can
communicate with each other directly,
since they share the same variables.
 Threads are an inherent part of software
products as a fundamental unit of CPU
utilization as a basic building block of
multithreaded systems [22]. The use of
threads has evolved over the years from
each program consisting of a single thread
as the path of execution of it. Threads are
objects in Java programming language.
They can be created using two different
mechanisms.

• Create a class that extends the standard

thread class
• Create a class that implements the
 Standard Runnable interface

 Thus a thread can be defined by
extending the java.lang.Thread class or by
implementing the java.lang.Runnable
interface. The Java programming language
uses a thread to do garbage collection in
the background thereby saving

programmers the trouble of managing
memory. Graphical user interface (GUI)
programs have a separate thread user
interface events from the host operating
environment.
 The notion of multithreading is the
expansion of the original application
thread to multiple threads running in
parallel handling multiple events and
performing multiple tasks concurrently
[9]; Akhter and Roberts, [1].
Multithreading brings a higher level of
responsiveness to the user as a thread can
run while other threads are on hold
awaiting instruction [12]. Multithreaded
programs extend the notion of multitasking
by taking it one level lower. Individual
programs will appear to do multiple tasks
at the same time. Each task is usually
called a thread. Programs that can run
more than one thread at once are called
multithreaded. Therefore, for
multithreading to be beneficial, the
runtime of each individual thread must be
long compared to the time it would take to
switch between them.

Kerns [10] highlight the benefits of
multithreading to include:

• High speed
• Small size
• More efficient in communication
• Recourse sharing

Aspect-Oriented Programming (AOP)

 Object-oriented analysis, design, and
programming (OOADP) is an old
paradigm in software development and it
has been proven successful in both small
and large projects. As a technology, it has
gone through its childhood and is moving
into a mature adult stage. Research by
educational establishments as well as
audits by companies have shown that
using object-oriented programming (OOP)
instead of functional-decomposition
techniques has dramatically enhanced the
state of software. The benefits of using

West African Journal of Industrial and Academic Research Vol.5 No. 1 December 2012 46

object-oriented technologies in all phases
of software development process vary.
These include:

• Reusability of components
• Modularity
• Less complex implementation
• Reduced cost of maintenance

 Each of these benefits will have varied
importance to developers. One of them,
modularity, is a universal advancement
over structured programming that leads to
cleaner and better understood software.
 As global digitization and the size of
applications expand at an exponential rate,
software engineering’s complexities are
also growing. One feature of this
complexity is the repetition of
functionality—such as security, memory
management, resource sharing, and error
and failure handling—through and
application. To address this issue, software
researchers, pioneered by Gregor
Kickzales [11] developed the aspect-
oriented paradigm at Xerox Palo Alto
Research Centre (PARC). Aspect-oriented
programming is concerned with the
identification of concerns, reminiscent of
modularization, that are found in various
parts of a programming and the effective
management and reuse of the associated
code [21]. Breaking programs into
modules is present in some form in most if
not all programming languages [17]
identified the benefits of modularization
which include: the reduction of
development time because of the divide
and conquer approach, and increasing
software flexibility and understanding
 Aspect-oriented programming supports
two fundamental goals:

• Allow for the separation of concerns as

appropriate for a host language
• Provide a mechanism for the

description of concerns that crosscut
other components

 AOP is not meant to replace OOP or
other object-based technologies. Instead, it
supports the separation of concerns,
typically using classes, and provides a way
to separation aspects from the components.
Aspect-oriented programming enables the
representation of a concern by an aspect
which is semantically tangled or scattered.
In this sense, AOP paradigm extends OOP
paradigm and AspectJ extends Java [18].
 Conventionally, when code is scattered
in different fragments throughout a
program, it is hard to see its structure and
hard to get a good view of the apparent
tangling of the code. It is hard to change
such code efficiently and hard to find all
the cases that have to be changed. In
commonly employed code, there are
elements that are secondary to the primary
functionality of the code. These elements
though non-primary are vital to the proper
execution of the code. Furthermore, they
may be so scattered throughout the system
that they contribute to the complexity of
the code. These elements are called
aspects. Examples of aspects include:
security, fault-tolerance and
synchronization. Aspect-oriented
programming tires to isolate aspects into
separate modules so that the isolate aspects
into separate modules so that the resultant
client-code is more purpose-specific, more
reusable, and less tangled. It accomplishes
this by a process of interception—
intercepting function calls and managing
their execution.

AOP Concepts

The main concepts of AOP are:

• Join: A join point is a particular
location in the flow of the program
instructions (e.g., beginning or end of a
method execution, field’s read or write
access). It is a well-defined point in the
base program (component language) that
can be identified by an aspect. Join points
may include calls to a method, a

West African Journal of Industrial and Academic Research Vol.5 No. 1 December 2012 47

conditional check, a loop’s beginning or an
assignment [7].

• Advice: These are methods that are
activated when precise join points are
reached, i.e., the mechanism of weaving
inserts in the initial code the advices calls
either in a static method (done at compile-
time) or in a dynamic method (done at
execution time). Advice can execute
before, or around the join point).

• Aspects: An aspect is a special
module which allows the association
between advices and join points by means
of point-cuts. Aspects tend not to be units
of the system’s functional decomposition,
but rather to be properties that affect the
performance or semantics of the
components in systemic ways ([11].
Examples of aspects include: memory
access patterns and synchronization of
concurrent objects.

• Point-cuts: They are used to define
a set of join points on which will have to
activate an advice. A point-cut allows easy
capturing of the execution context of join
points. For example, in a method call, this
context includes the target object, the
arguments of the method and the reference
of the returned object, as many
information of most useful for the
injection of mechanism of traces.

• Cross-cutting concerns: A
concern is a particular goal, concept, or
area of interest; it means that it is in
substance semantic concern. From the
structural point of view, a concern may
appear in the source code (Kiczales et al.,
1997; Forgáč and Kollár, 2007; and
Popovici et al., [18]. Cross-cutting
concerns are elements of software, which
cannot be expressed in any functional unit

of the programming language’s
abstraction. In object-oriented
programming parlance, cross-cutting
concerns are elements of an application
which cannot be cleanly captured in a
method or class and so has to be scattered
across many classes and methods. Such
concerns include: design patterns,
synchronization policies, exception
handling, error-checking or fault tolerance
concerns, resource sharing, security issues,
performance, etc.

• Weaving: Weaving is the process
of composing different functional modules
and aspects according to the specifications
given in the aspects. Weaving results in
the behaviour of those functional modules
impacted by aspects being modified
accordingly.

Methodology
Object-oriented based system model

 The object-oriented based system model
describes the conceptual framework of
contextual synchronization functionalities
which are viewed more or less as
resources. Each of these resources have
properties (exposed through get and set
methods), or methods whose operations
effect the state of the object in ways that
would be compromising if invoked
simultaneously from multiple threads. The
framework classifies a specific number of
contexts that define the different scenarios
that can occur when considering
asynchronous invocation or accessing of
resource properties. These contexts are
classified based on the overall effect they
have on the state of the resource object.
The analysis class diagram is as shown in
figure 1 below.

West African Journal of Industrial and Academic Research Vol.5 No. 1 December 2012 48

Fig. 1: Class diagram of the conceptual model

The analysis classes identified from the
conceptual model are as follows:

• Proxy factory
• AOP engine
• Synchronization advisor
• Resource interface
• Resource object

Proxy Factory

 The proxy factory class is responsible
for creating proxies out of a combination
of a resource interface, and the
implementation resource object. It would
be responsible for initializing the AOP
engine and synchronization advisor with
information about the proxy about to be
created.

AOP Engine

 The AOP engine is a class that
encapsulate operations and logic necessary
for advising target object methods,

exception, etc. Naturally, the engine
should be generic enough for objects to
register as advisors to a target object.
Synchronization Advisor
 This is an instance of an advice that the
AOP engine dynamically applies to
proxies. Since in the case of this paper,
advice is limited to the synchronization
advisor, advice flexibility/scalability will
be kept to a minimum. The
synchronization advisor implements the
rules described in the conceptualization

phase.

Resource Interface

 This interface exposes the methods that
are serviced by the synchronization have
to be repeated in the resource interface.

Resource Object

 This is any object that explicitly extends
the resource interface. A resource
generally represents any entity to which

ProxyFactory

- createGuardedResource()

AOPEngine

- createServicedProxy()

- addInvocationService()

- containsInvocationService()

- removeInvocationService()

SynchronizationAdvisor

- createServicedProxy()

- addInvocationService()

- containsInvocationService()

- removeInvocationService()

<<ResourceInterface>>

- Contextual method

Target Object

- Contextual method

Proxy Object

- Contextual method

West African Journal of Industrial and Academic Research Vol.5 No. 1 December 2012 49

synchronization is to be applied to. This is
if the interface extends other interfaces
whose functionality, exposed through its
methods, aer to be serviced by the
synchronization advisor, such methods

Architectural Design

 Structurally, the four separate modules
that define the system are:

• Proxy generation
• AOP engine
• Synchronization advisor
• Client resource

Proxy generation

 The proxy generation module is made of
a single class. This class employs the
facilities of the AOP Engine to create the
proxy class that encapsulates the target
resource as well as provide the contextual
– synchronization services. The single
method exposed statically by the class is:
create guarded resource. This method
accepts a single parameter, the resource
object, polymorphically as a serializable
interface (to support serialization). This
logic within this method attempts to
extract and store in an array, all interfaces,
implemented by the argument object that
is annotated with the “GuardedResource”
annotation. Once this is done, the AOP
ProxyFactory class is called upon to create
the actual proxy out of these annotated
interfaces. State-wise though, the
ResourceAccessController processes two
static properties (i) an instance of the
actual object whose methods will be
interpreted and serviced by the AOP
synchronization service advisor.

Fig. 2: Architectural design overview

AOP ProxyFactory and (ii) a hashable that
caches GuardedResouce annotated.
Interfaces to help speed up the process of
proxy generation.

AOP Engine

 In the AOP engine, AOP is not an
inherent part of the Java platform, but
rather is implemented as a supporting
technology. The flexibility and scalability
of the Java language, renders it a fertile
ground for extensions beyond even the
imaginations and goals that its creators set
for it. AOP is implemented in 1 of 2 ways
in Java:
• Interface proxy-ing: this involve
creating proxy classes that implement
interfaces that are targets of AOP advising.
This is made possible by the addition of
the proxy generation framework to the
Java default library.

• This framework allows that the
generated proxy object will implement, as
well as a class loader and an invocation
handler. The invocation handler is the
component that guarantees the concept of
AOP can be implemented. The invocation
handler is delegated method calls and is
tasked to interpret these as it best chooses.

• Bytecode Manipulation: several
third party frameworks have been
developed that take the implementation a
couple of steps farther: they directly
manipulate the instructions within the
byte-codes of classes that advice is to be
applied to. This removes the added
complexity of using proxy generation
framework, and implementing invocation
handlers, designing with interfaces when
unnecessary, etc., so the framework users
can concentrate on simply their solutions
exactly as they want. This paper uses the
proxy-ing implementation of AOP. This
choice is made because the concepts

West African Journal of Industrial and Academic Research Vol.5 No. 1 December 2012 50

employed in this framework are within the
bounds of the Java language, and thus
fully supported.
Synchronization advisor

 Synchronization advisor is actually a
chained method service. It intercepts the
method invocations, then inspects the
context designation annotation on the
methods and determines what
synchronization strategy to use. The
advisor utilizes counters, one per context.
These counters signify active threads
accessing the resources methods. This
way, it can know when to exit a higher
priority context and allow lower priority
contexts execute.

Client resource

 This module consists of interfaces
written by the framework user. The
interface must be annotated with a
GuardedResource annotation. Next,
contextual methods are annotated with
ResourceAccessor, ResourceMutator, or
Prioritized annotations. These annotations
correspond to the contexts they are name
after. In the case of Prioritized annotation,
an argument is accepted; this argument
specifies the specific priority level of the
method. An enumeration is used to specify

a priority from 0 through to 9, 9 being the
highest priority. The annotation class
exposes methods used to compare priority
magnitude. These methods are utilized by
the synchronization advisor to know when
to enter a higher priority context, or to
return to a lower priority one.

Experimental Results
 On the development station, we used
system with a Pentium Dual-core 2.10Ghz
Processor, 2GB Ram, 64-bit System
Architecture, and Windows 7 Operating
System. We also deployed Java Platform
version 1.6.0_20 using Java SE runtime
build 1.6.0_20-b02. When we ran the
program, we discovered that the execution
time for our model is lower than the
execution time for Java when we used the
same number of threads. As seen in the
figure, execution time for both Java and
our framework increase gradually up to
where the number of thread is five (5) and
thereafter the execution time of Java
increased at a faster rate when compared
with that of our model. This is an
indication that our framework performed
better when context-based synchronization
is used than when only Java is used.

.

Fig. 3: A graph showing execution time versus the number of threads

West African Journal of Industrial and Academic Research Vol.5 No. 1 December 2012 51

Evaluation and Discussion of Result

 A simulation was developed to test the
validity of the theory that
selective/contextual synchronization can
gain performance over traditional Java
greedy-synchronization style. The
simulation was developed in a straight
forward implementation of the framework
made up of 5 different classes. These
classes are:

• Resource: this is the interface
representing the resource to which
selective synchronization is to be applied.
It exposes only 2 methods, accessMethod
and mutationMethod, both representing the
accessor and mutation contexts
respectively.
• ResourceObjectSync: this is an
implementation of the Resource interface.
Its methods are both synchronized to
represent the classic scenario for Java’s
greedy-synchronization style.
• ResourceObject: a simple
implementation of the Resource interface.
Its methods are not synchronized.
• TestThread: a thread created to
execute the resources methods at random,
but over an accessor method being called
to that of mutator method. This ratio is
chosen because of one of the inherent
limitations of the framework with evenly
distributed method calls from both
contexts; the framework will perform
worse than the Java synchronization
mechanism due to the overhead of
managing the state of the framework
classes.
• Main: this is the entry into the
simulation. It also doubles as a manager of
the simulation. It exposes 3 static
properties:
o CALL_COUNT: this is a constant
integer value specifying how many calls
each of the threads created is allowed
before exiting.
o THREAD_COUNT: this is also a
constant integer value, but specifying how
many threads are to be created.

o T_COUNT: an automatically
modifiable integer value. It’s starts off is
equal to the THREAD_COUNT, but with
each thread that exits, the value is reduced.
When it hits zero (0), the main thread will
proceed to record the execution time and
exit.
 Figure 4 below shows the Prioritized-
Resource-Access method for synchronized
thread.

Public Object
prioritizedResourceAccess(InvocationChai
nLink nextLink, ProxyInvocationContext
context, Priority p)
throws AbortInvocationException,
MethodInvocationException
 {
 GuardStateRecord gsr = null;
 try
 {
 gsr =
this.stateRecords.get(Thread.currentThrea
d());
 if(gsr!=null)
 {

if(gsr.state==GuardState.unsyncAccess)
this.decrementUnsync();
 else
if(gsr.state==GuardState.prioritizedAccess
)
this.decrementPrioritized((Priority)gsr.par
am);

this.stateRecords.remove(Thread.currentT
hread());

 //the reason i remove it is simple, if i
dont, each
@ResourceModifier/@Prioritized method
called hence forth from this method
 //will also decrement the
unsyncAccess counter,which will
obviously lead to erroneous counter
values.
 }

 synchronized(this)

West African Journal of Industrial and Academic Research Vol.5 No. 1 December 2012 52

 {
 try
 {
 this.incrementPrioritized(p);
//Enter Prioritized mode.

while((this.getHighestPriority()!=null &&
this.getHighestPriority().isGreaterThan(p))
||

this.unsynchronizedAccessCount.get()>0)
this.wait();
 this.notifyAll();

 {

this.stateRecords.put(Thread.currentThrea
d(), new
GuardStateRecord(Thread.currentThread()
,GuardState.prioritizedAccess,p));
 Object r =
nextLink.link(context);

this.stateRecords.remove(Thread.currentT
hread());

 return r;
 }
 }
 catch(Exception e){ throw new
RuntimeException(e);}
 finally
 {
 this.decrementPrioritized(p);
//decrement the prioritizedAccessCount,
no matter the outcome...

 if(gsr!=null)
 {

if(gsr.state==GuardState.unsyncAccess)
this.incrementUnsync();
 else
if(gsr.state==GuardState.prioritizedAccess
)
this.incrementPrioritized((Priority)gsr.para
m);

this.stateRecords.put(Thread.currentThrea
d(), gsr);
 }
 }
 }
 }
 finally
 {
 }
 }

Fig. 4: Prioritized-Resource-Access
method for synchronized thread

 The class creates either a
ResourceObjectSync or a proxy version of
the Resource Object and feeds to each
thread it creates. Each of these threads are
then started and left to run. The threads on
the other hand use a random number to
generate values from 0-3 inclusive; 3 of
these values are mapped to the accessor-
method; the other 1 is mapped to the
mutator-method. Figure 4 shows the
ResourceObjectSync class for
implementing the resource.

public class ResourceObjectSync
implements Resource
{

 public synchronized void
accessorMethod()
 {
 float x = new
Random().nextFloat()+1;
 for(int cnt=0;cnt<10;cnt++) x/=(new
Random().nextFloat()+1);
 }

 public synchronized void
mutatorMethod()
 {
 float x = new
Random().nextFloat()+1;

West African Journal of Industrial and Academic Research Vol.5 No. 1 December 2012 53

 for(int cnt=0;cnt<10;cnt++) x/=(new
Random().nextFloat()+1);
 }
Fig. 5: Resource object Synchronization
class

 Table 1 below shows the tabulate form
of the result obtained after running the
simulation a number of times, keeping the
operation count constant but varying the
number of threads. A graph of
milliseconds against thread count is then
plotted.

Table1: Simulation Results
Threads Method

Calls

Java

Time

(ms)

Framework

Time (ms)

5 1000 136 200
10 1000 220 370
15 1000 280 500
20 1000 370 440
25 1000 420 600
150 1000 2162 1728
200 1000 2914 2203
250 1000 3500 2848
300 1000 4933 3512
350 1000 5661 3937

Fig. 6: A graph of thread count against

milliseconds

 It is obvious from figure 4 that the
framework’s performance starts lagging
behind Java’s synchronization mechanism.
This is because with fewer threads, there
are fewer races/contention for the
synchronized resource. Thus waiting in
line more is more efficient than selectively
synchronizing the resource because of the
overhead incurred by the selection process.
On the other hand, it can be seen that when
the threads increases greatly, the tables
turn, and the contextual synchronization
out-performs Java’s implementation. This
makes the contextual synchronization a
candidate for server systems where great
numbers of threads are spawned to service
requests concurrently.

Conclusion
 Concurrent computing is a form of
computing in which programs are designed
as collections of interacting computational
processes that may be executed in parallel.
Current programs can be executed
sequentially on a single processor by
interleaving the execution steps of each
computational process, or executed in
parallel by assigning each computational
process to one of a set of processors that
may be close or distributed across a
network. In this paper, we have proposed
contextual synchronization model as a
solution to the problems inherent in
sequential execution of programs or
computational process. This is done to
ensure a situation where each thread has to
wait for the other to finish accessing the
resource. The model proposed in this work
describes different contexts within which a
resource access can be executed.

West African Journal of Industrial and Academic Research Vol.5 No. 1 December 2012 54

References

[1] Akhter, S. and Roberts, j. (2006). Multi-Core Programming; Increasing Performance
 Through Software Multi-Threading, Intel Corporation.
[2] Arora, N. S., Blumofe, R. D., and Plaxton, G. C. (1998). Thread Scheduling for

Multiprogrammed Multiprocessors. In Proceedings of the 10th Annual ACM
Symposium on Parallel Algorithms and Architectures, pp. 119-129.

[3] Böllert, K. (1999). On Weaving Aspects. In Proceedings of Aspect-Oriented
 Programming Workshop at ECOOP’99, Lisbon, Portugal, June 1999.
[4] Cardelli, L. and Gordon, A. D. (1999). Mobile Ambients, SIGACT: ACm Special

Interest Group on Programming Languages, Communication of ACM, New
York, NY, USA, pp. 4 - 16.

[5] Flanagan, C. and Qadeer, S. (2003). A Type and Effect System for Atomicity. In
 PLDI, New York, NY, USA, ACM, pp. 338 – 349.
[6] Flanagan, C. and Freund, S. N. (2004). Atomizer: A Dynamic Atomicity Checker for
 Multithreaded Programs. In PODL, New York, NY, USA, ACM, pp. 256 267.
[7] Forgáč, M. and Kollár, J. (2007). Static and Dynamic Approaches to Weaving. In

Proceedings of 5th Slovakian-Hungarian Joint Symposium on Applied
Machine Intelligence and Informatics Poprad, Slovakia, January 25-26, 2007.

[8] Herlihy, M., Luchango, V. and Moir, M. (2006). A Flexible Framework for
Implementing Software Transaction Memory. In OOPSLA’06, New York,
NY,USA, 2006, ACM, pp. 253 – 262.

[9] Hilderink, G. H., Broenink, J. F. and Bakkers, A. W. P. (1998). A New Java Model
for Concurrent Programming of Real-Time Systems, Real-time Magazine, pp.
30-34.

[10] Kerns, T. (1998). The Advantages of Multithreading Applications, EE Evolution
 Engineering, pp. 76-78.
[11] Kickzales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C. V., Loingtier, J.-M.

, and Irwin, J. (1997). Aspect-Oriented Programming. In Proceedings of the
European Conference on Object-Oriented Programming, ECOOP’97, Finland,
Springer-Verlag LNCS 1241, June 1997.

[12] Merrin, K. (1993). Multithreading Support Grows Among Real-Time Operating
 Systems, Computer Design, pp. 77-78.
[13] Miller, M. S., Ka-Ping, Y. Shapiro, J. (2003). Capability Myths Demolished.
 Technical Report, pp. 28.
[14] Miller, S. K. (2001). Aspect-Oriented Programming Takes Aim at Software
 Complexity, Technology News.
[15] Miller, S. M. (2006). Robust Composition: Towards a Unified Approach to Access

 Control and Concurrency Control, pp. 45-50.
[16] Mordechai, B.-R. (2006). Principles of Concurrent and Distributed Programming (2nd
 ed., Addison-Wesley, pp. 2-8.
[17] Parnas, D. C. (1972). On the Criteria to be Used in Decomposing Systems into
 Modules, Communication of the ACM, Vol. 15, No. 5, pp. 1053-1058.
[18] Popovici, A., Gross, T. Alonso, G. (2002). Dynamic Weaving for Aspect-Oriented

Programming. In Proceedings of 1st International Conference on Aspect-
Oriented Software Development, Enschede, The Netherlands, 2002, pp. 141 –
147.

West African Journal of Industrial and Academic Research Vol.5 No. 1 December 2012 55

[19] Popovici, A., Gross, T. Alonso, G. (2002). Just in Time Aspects: Efficient Dynamic
Weaving for Java, In: 2nd International Conference on Aspect-Oriented
Software Development, Boston, USA, 2003, pp. 100-109.

[20] Shavit, N. and Touitou, D. (1995). Software Transactional Memory. In PODC, New
 York, NY, USA, ACM, pp. 204 – 213.

[21] Stamey, T., Saunders, B., and Blanchard, S. (2005). The Aspect-Oriented Web,
Communication of ACM, SIGDOC’05, September 21 – 23, 2005, Coventry,
United Kingdom.

[22] Thornley, J., Chandy, K. M. and Ishii, H. (1998). A System for Structured High-
Performance Multithreaded Programming in Windows NT. In Proceedings of
the 2nd Conference on USENIX Windows NT Symposium, Vol. 2.

[23] Zhang, C. (2009). FlexSync: An Aspect-Oriented Approach to Java Synchronization,
 IEEE Computer Society, Washington, DC, USA, pp. 375-385

