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Abstract

Concurrent programming is a difficult and error-prone task because the programmer
must reason about multiple threads of execution and their possible interleavings. A con-
current program must synchronize the concurrent accesses to shared memory regions,
but this is not enough to prevent all anomalies that can arise in a concurrent setting. The
programmer can misidentify the scope of the regions of code that need to be atomic, re-
sulting in atomicity violations and failing to ensure the correct behavior of the program.
Executing a sequence of atomic operations may lead to incorrect results when these op-
erations are co-related. In this case, the programmer may be required to enforce the
sequential execution of those operations as a whole to avoid atomicity violations. This
situation is specially common when the developer makes use of services from third-party
packages or modules.

This thesis proposes a methodology, based on the design by contract methodology,
to specify which sequences of operations must be executed atomically. We developed an
analysis that statically verifies that a client of a module is respecting its contract, allowing
the programmer to identify the source of possible atomicity violations.

Keywords: Atomicity Violation, Concurrency, Thread Safety, Design by Contract, Pro-
gram Analysis
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Resumo

A programação concorrente é um tarefa difícil e propensa a erros visto que o progra-
mador tem de ter em conta os vários threads de execução e as suas possíveis intercalações.
O programa tem de sincronizar os acessos concorrentes a regiões de memória partilhada,
mas isto não é suficiente para evitar todas as anomalias que podem ocorrer num cená-
rio concorrente. O programador pode identificar incorretamente o âmbito das regiões
de código que precisam de ser atómicas, resultando em violações de atomicidade que
levam a um comportamento incorreto do programa. Correr uma sequencia de operações
atómicas pode produzir resultados incorretos quando existe uma correlação entre essas
operações. O programador pode ter que fazer a execução sequencial dessas operações
atómicas como um todo para evitar violações de atomicidade. Esta situação é especial-
mente comum quando o programador usa operações de pacotes ou módulos de terceiros.

Esta tese propõe uma metodologia baseada na programação por contrato para espe-
cificar sequências de chamadas que devem ser executadas de forma atómica. Apresenta-
mos uma analise que verifica estaticamente que um cliente de um módulo está a respeitar
o seu contrato, permitindo ao programador identificar a causa de potenciais violações de
atomicidade.

Palavras-chave: Violações de Atomicidade, Concorrência, Thread Safety, Programação
por Contrato, Analise de Programas
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1
Introduction

1.1 Context & Motivation

The clock frequency of processors stalled in 2005. Increasing the clock speed of a pro-
cessor was sustained by advancements in microprocessor manufacturing, in particular
reducing power consumption and improving the efficiency of the processor, which is a
consequence of making smaller transistors. Subsequently the trade-off between power
consumption and clock frequency became more and more expensive. This lead to design
of multicore processors, which became a viable way to continue to improve the comput-
ing power of processors.

In order for a program to take advantage of multiprocessors it must be written in
a concurrent paradigm. To do so the programmer must identify which computational
steps are worth executing in separate threads of execution of that program. This allows
the operating system’s scheduler to assign threads of execution to different cores of the
processor, thus achieving true parallelism, and reducing the real execution time of the
program.

Concurrent programming introduces new challenges that do not arise in sequential
programs and that can compromise the correctness of the program. One of these prob-
lems are data races, where multiple threads of execution of a process access the same
memory location concurrently, which may cause an invalid state to be read or modified.
To prevent data races the programmer must identify code regions where these concurrent
accesses can occur and use a concurrency control mechanism to ensure mutual exclusion
of threads in that region. There are several types of synchronization mechanisms which
offer different trade-offs regarding performance, ensured properties and ease of use.

1



1. INTRODUCTION 1.2. Problem

Listing 1 Program containing an atomicity violation (left), and a solution for that anomaly
(right).

1 void schedule_event(DateTime dt,
2 Event e)
3 {
4 if (calendar.isFree(dt))
5 calendar.schedule(dt,e);
6 }

1 void schedule_event(DateTime dt,
2 Event e)
3 {
4 atomic
5 {
6 if (calendar.isFree(dt))
7 calendar.schedule(dt,e);
8 }
9 }

A concurrent program free of data races can still contain concurrent-related anoma-
lies. For example, an operation may be intended to be atomic, but is implemented in
two separate atomic regions. While executing that operation another thread may read an
intermediate value between the execution of the two atomic phases, possibly obtaining
an inconsistent result. Programs that use a modular design, such as in an object-oriented
paradigm, are particularly prone to these errors, since the program will compose opera-
tions offered by a module1. Even if these operations are atomic, the programmer must be
careful to compose them in the right way, and their composition may require additional
synchronization.

1.2 Problem

One of the most common concurrency related anomalies are caused by atomicity vi-
olations [LPSZ08]. Atomicity violations are anomalies where the atomic regions were
wrongly or incompletely identified by the programmer, and the program requires ad-
ditional synchronization to ensure its correctness. This may be caused by the complete
lack of synchronization in critical regions or if the scope of some synchronized regions
is insufficiently small and must be broader to ensure that the program has the intended
semantics.

Consider the example in Listing 1 (left), where we use a calendar module, modeled as
an object of the class DateTime, that have methods to check if a time slot is free (isFree())
and to schedule an event in a time slot (schedule()). Here the programmer defined an
auxiliary method to schedule events without they ever overlap. The method checks if
the requested time slot if free on the calendar, and if so, the event is scheduled. Even if
all methods in the calendar class are atomic, the method schedule_event() can give an
incorrect result, by double booking the same slot with two different events. This anomaly
can happen if two threads run this method concurrently. Figure 1.1 represents a thread
scheduling where two events (ea and eb) were scheduled by concurrent threads at the
same time slot, contradicting the expected behavior of this method.

1By “module” we mean any package of software that can only be access through a well defined interface.

2



1. INTRODUCTION 1.3. Proposed Approach

Thread t
isFree(dt) schedule(dt,ea)

Thread t′
isFree(dt) schedule(dt,eb)

Figure 1.1: Example of concurrent thread scheduling leading to an atomicity violation.

The atomicity violation shown here is common when composing operations of a mod-
ule, even if its methods are properly synchronized. Moreover, the programmer using the
module may not be aware of its implementation and internal state, making it harder to
judge what sequence of operations may cause atomicity violations.

1.3 Proposed Approach

To address this problem we propose a solution based on the design by contract method-
ology. With our solution the developer of the module defines a contract that will clearly
specify what might constitute an atomicity violation when using the module. This speci-
fication stipulates which sequences of methods must be called in the same atomic scope
to ensure that no atomicity violation will happen, preserving the correct behavior that is
expected from the module.

The specification will act as a contract that the client code must respect for the module
to have the expected behavior. The module’s code can be annotated with this specifica-
tion, providing documentation on how to safely use the module.

We propose a static analysis to verify that the client complies with the module’s con-
tract. This will ensure that the program is correct with respect to the module usage, or
report the source of the violation if the contract is not met.

Consider again the example of the calendar module shown in Listing 1 (left). The con-
tract of that module should say that calls to isFree() followed by schedule() should be
atomic as a whole. Listing 1 (right) shows the correct implementation of schedule_event()
respecting this rule.

1.4 Contributions

The contributions of this dissertation can be summarized as:

• Definition of a specification to represent the contract of a module’s API. This speci-
fication clearly states what methods must be called in an atomic manner to preserve
correctness.

• Design of an analysis to statically verify if the atomicity contract of a module is

3



1. INTRODUCTION 1.5. Publications

respected, given the client code. Violations of the contract can easily be fixed with
the information gathered by the analysis.

• Introduction of a novel approach to interprocedural control-flow static analysis,
based on context-free grammars. The context-free grammar captures the control
flow structure of a program and parsing algorithms can then be used to verify
control-flow-related properties.

• Implementation of a working prototype that apply the proposed analysis. Our pro-
totype analyses compiled Java programs and demonstrates the feasibility of our
analysis in real-world programming languages.

• Evaluation of the accuracy and efficiency of the proposed analysis.

1.5 Publications

An article describing the proposed solution was published and presented in INForum
2013 [SFL13]. A more in-depth paper is in preparation for future publication.

A publicly available repository with the implemented prototype can be found on
https://github.com/trxsys/gluon. This repository also includes the evaluation
tests used in Chapter 5, and explained in Appendix A, as well as instructions on how to
use the tool and to run the evaluation tests.

1.6 Outline

Chapter 1 introduced the subject addressed by this dissertation. It discusses the problem,
its motivation, and the idea of our solution based on the design by contract programming
methodology.

In Chapter 2 we present the related work of this thesis. We will cover the condi-
tions for concurrent programs correctness and the common types of concurrency-related
anomalies. We will also discuss proposed analysis techniques to detect these anomalies.
This chapter will also address the design by contract methodology, and its application
in subjects related with ours. This chapter will end with a view of the fundamentals of
program analysis that will be useful to understand the analysis we propose.

Chapter 3 defines the methodology of our analysis. We will present the definition of a
contract specification and the algorithm to verify the contract. This will be presented in an
programming language-agnostic way, making the definition of the analysis more general.
We also propose two extensions of the analysis to further improve the expressivity of a
contract.

Chapter 4 discusses the implementation of our prototype, that was designed for the
Java programming language. This chapter will deal with the prerequisites of the analy-
sis described in Chapter 3 as well as other implementation decisions that were left open

4
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1. INTRODUCTION 1.6. Outline

in that chapter, since they are specific to the programming language being analyzed.
Chapter 5 evaluates our prototype, both validating the correctness of our analysis, and
discussing performance results. The tests used in this evaluation are presented in Ap-
pendix A.

Finally, Chapter 6 discusses the final remarks of this dissertation and proposes future
directions to further improve this work.

5
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2
Related Work

In this chapter we describe previous work related or useful to this thesis. This will contex-
tualize how our contributions compare to the current state of the art of atomicity violation
detection.

2.1 Concurrent Programs Correctness

Atomicity is a fundamental correctness property of concurrent systems. Intuitively a
trace of a concurrent execution is said to be atomic if there is no interference between
concurrent threads that lead to undesirable results. The notion of undesirable behavior
varies from program to program, and the correctness criteria of a program may be tol-
erant to weaker guarantees than others. To address different applications requirements
several atomicity semantics were defined, which draw different trade-offs between the
guarantees offered and performance. Sometimes a developer may choose a weaker atom-
icity semantics for performance reasons, sacrificing correctness to some extent.

In this section we present the most important atomicity semantics.

Linearizability Linearizability [HW90] states that an atomic operation should appear
to happen in some point in time between the start and end of the operation execution.
This provides a mapping from every atomic operation in a given trace to a point of ap-
parent execution in the global time line of the trace execution, called linearization point,
maintaining causality between non-concurrent operations. Figure 2.1 shows an example
of a linearization of concurrent atomic operations. This is a strong guarantee which is
very desirable but may be expensive to enforce.

7



2. RELATED WORK 2.1. Concurrent Programs Correctness

Thread t
o1 o2 o3

Thread t′
o′1 o′2 o′3

Figure 2.1: Example of linearizability of concurrent operations.

Thread t
o1 o2 o3

Thread t′
o′1 o′2 o′3

Figure 2.2: Example of serialization of concurrent operations.

Serializability The serializability semantics for atomic operations ensures that the state
of the program after the concurrent execution of the atomic operations is the same as some
sequential execution of those operations. This definition is more abstract than lineariz-
ability since the state of the program is taken into account and therefore the semantics of
the atomic operations are relevant. It is easy to see that every trace that is linearizable is
also serializable.

It follows from the definition that the atomic operations can run in an arbitrary order,
as exemplified in Figure 2.2.

Strict Serializability In normal serializability we can freely choose a sequential sce-
nario that is equivalent to our trace. Strict Serializability is strictly stronger than serial-
izability, enforcing the additional condition that if an atomic operation A that finishes
before the beginning of the execution of operation B in the concurrent trace, then A must
occur before operation B in the equivalent sequential execution. Figure 2.3 gives an ex-
ample of a strict serialization of concurrent atomic operations. Dashed lines denote in-
valid serialization points.

This atomicity model falls between serializability and linearizability in the correctness
criteria hierarchy.

Snapshot Isolation Snapshot Isolation is the weakest atomicity semantic presented here.
Conceptually, the atomic operations take a snapshot of the program state at their begin-
ning and operate on this snapshot. When the atomic operation finishes, the changes made
in the snapshot are written back to the program state. Additionally, snapshot isolation
states that no two concurrent atomic operations write on overlapping state regions, i.e.,

8



2. RELATED WORK 2.1. Concurrent Programs Correctness

Thread t
o1 o2 o3

Thread t′
o′1 o′2 o′3

Figure 2.3: Example of strict serialization of concurrent operations.

in the same memory cells. This allows write skew anomalies to happen [BBGMOO95]. A
write skew anomaly may occur when two transactions read overlapping memory regions
that are then disjointly updated.

Even though this is a weak atomicity model, that allow well-known anomalies to
happen, it is the most used model for database transactions since these anomalies are not
common, and validating the transactions is made relatively cheap.

2.1.1 Race Conditions

Race conditions are anomalies that are caused by nondeterminism in a system, and lead
to undesirable results. These anomalies were first identified in electronics, where the
propagation time of a signal plus the reaction time of a logic gate introduce delays. There-
fore, electric signals that theoretically arrive simultaneously drift by a small amount of
time causing invalid outputs or an invalid state to be stored. One solution is to synchro-
nize the events of a electronic circuit with a clock that gives periodic ticks. These ticks are
points of synchronization where the whole state of the circuit is stable because enough
time was given from the last tick to allow electric signals to fully propagate.

A similar definition applies to computer systems where different threads of execution
run concurrently. The time of the execution of instructions of the multiple threads are not
only arbitrary, but nondeterministic. This may lead to abnormalities if the threads share
internal state. A solution to this is to impose synchronization between threads, reduc-
ing the universe of the execution traces that are allowed to run. Many synchronization
mechanisms were introduced, some more low-level, such as locks/mutexes, barriers and
semaphores; and others more high-level such as monitors and transactional memory.

Many races conditions are caused by data races and atomicity violations [LPSZ08]
which will be discussed next.

Data Races A data race happens when two threads concurrently access the same mem-
ory region and at least one access is a write [NM92]. This may lead to invalid results, e.g.
reading values while they are being updated. Data races can be avoided by enforcing
mutual exclusion in some code regions, that is, using a synchronization mechanism to en-
sure that at most one thread is executing code inside that region. These code regions that
require mutual exclusion are called critical regions.

9



2. RELATED WORK 2.1. Concurrent Programs Correctness

Listing 2 An example of a program containing a benign data race.

1 unsigned int new_views;
2 unsigned int total_views;
3

4 ...
5

6 void new_hit()
7 {
8 new_hits++;
9 atomic { total_hits++; }

10

11 if (new_hits > 1000)
12 {
13 atomic { log_hits(total_hits); }
14 new_hits=0;
15 }
16 }

It is worth noticing that a data race may not be a race condition. By definition a race
condition implies some violation of the program correctness. While in general a data
race leads to an incorrect behavior, this may not always be the case. This is exemplified
in Listing 2, where a web server maintains the number of hits on a certain HTTP resource.
When 1000 new hits occur it logs the total of hits to keep a traffic history. The accesses to
the shared variable new_hits are not protected and a data race can happen; however no
real harm can happen, even if this variable became corrupted, it only causes the log to be
immediately written or postponed. This data races are called benign since they occurrence
does not compromise the intended correctness of the program.

Atomicity Violation Atomicity violations are race conditions where the lack of atomic-
ity of the operations cause incorrect behavior of the program. This may be due to total
lack of synchronization or to an incorrect scope of the synchronized blocks of code. The
notion of atomicity violation is directly tied to the expected semantics of the program.
Therefore an atomic violation is, by definition, a flaw in the program that causes incor-
rect results or behavior.

A program can contain atomicity violations while being free of data races. This can
happen when a program executes two operations in two atomic phases, and the intended
behavior is only assured if these two operations execute as a single atomic operation.

2.1.2 Detecting Atomicity Violations

Atomicity violations are among the most common cause of errors in concurrent pro-
grams [LPSZ08], and much research was done to try to identify this type of anomaly.

In this section we present some of the more relevant work in this area.

High-Level Data Races Artho et al defined the notion of view consistency in [AHB03].
View consistency violations are defined as high-level data races and represent sequences

10



2. RELATED WORK 2.1. Concurrent Programs Correctness

Listing 3 An example of a program containing a stale value error.

1 void withdraw(int v)
2 {
3 int current;
4

5 atomic { current=account.getBalance(); }
6 atomic { account.setBalance(current-v); }
7 }

of atomic operations in the code that should be atomic as a whole. A view of an atomic
operation is the set of variables that are accessed in that atomic operation. The set of views
of a thread t is denoted as V (t), and a thread τ is said to be compatible with a view v

if, and only if, {v ∩ v′ | v′ ∈ V (τ)} forms a chain, i.e., is totally ordered under ⊆. The
program is view consistent if every view from every thread is compatible with every
other thread. The idea behind the definition of compatibility is that the view v implies
a correlation between the variables it contains, and other threads should access these
variables in a disciplined manner.

The notion of high-level data races (HLDR) does not capture every anomaly regarding
the execution of atomic operations, and a HLDR does not imply a real atomicity violation.
However this concept is precise enough to capture many real world anomalies.

This definition was subsequently extended by Praun and Gross [VPG04] to introduce
methods view consistency. A method view is the union of the views inside a method of a
class. The definition of method views consistency is analogous to the definition of view
consistency. Furthermore this work distinguishes read and write accesses in the method
views.

A further refinement of high-level data race was introduced by Dias et al in [DPL12].
This approach also takes into account the type of accesses in the views. They also re-
fine the chain property for read accesses to reduce false positives: if there is no future
dependency between the read variables of the two views the anomaly is not considered.

Stale Value Errors Stale value errors [BL04] are another type of anomalies that are also
related to multiple atomic operations that should be treated as a single atomic operation.
These anomalies are characterized by reading a value in an atomic operation and reusing
that value on subsequent atomic operations. This may represents an atomicity violation
because the value may be outdated, since it could have been updated by a concurrent
thread. The freshness of the values may or may not be a problem depending on the
application.

Listing 3 show an example of a program with a stale value error. Here the withdraw()

contains two atomic regions, and the value current, that is obtained in the first atomic
block, is used in the second atomic block. The second block updates the balance with
a possibly outdated balance, thus overriding a concurrent modification of the account
balance. This type of anomaly is common in concurrent programs, specially when the
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atomic blocks are hidden behind a function or method call.

Many analysis address, directly or indirectly, stale value errors [AHB04; BL04; DPL12;
LSTD11; FQ03; FF04; FFY08; VPG04; WS03]. We will briefly describe some of the analysis
that directly target stale value errors. In [BL04] Burrows et al describe a dynamic analysis
to detect stale value errors by instrumenting the program’s code to keeps track of stale
variables. The program checks at run-time that every variable read is not stale, and aborts
the execution otherwise. In [AHB04] Artho et al proposes a static analysis to detect stale
values. This analysis statically infers the flow of data escaping synchronization regions
and reports usages of those values in other synchronization blocks.

Access Patterns In [VTD06] Vaziri et al define eleven access patterns that potentially
represent an atomicity violation. These access patterns are sequences of read and write
accesses denoted byRt(L) andWt(L) and represent, respectively, read and write accesses
to memory locations L performed by thread t. The sequence order represents the execu-
tion order of the atomic operations. An example of an access pattern defined in Vaziri’s
paper is Rt(x) Wt′(x) Wt(x), that represents a stale value error, since thread t is updat-
ing variable x based on an old value. The patterns make explicit use of the atomic set of
variables, i.e., sets of variables that are correlated and must be accessed atomically. These
correlated variables are assumed to be known. These eleven patterns are proved to be
complete with respect to serializability.

A related approach by Teixeira et al [LSTD11] identifies three access patterns that
capture a large number of anomalies. These anomalies are refereed to RwR, where two
related reads are interleaved by a write in those variables;WrW where two related writes
are interleaved by a read in those variables; and RwW that represents a stale value error.

Invariant Based Another approach to detect atomicity violations is by directly knowing
the intended semantics of the program. This was the approach followed by Demeyer and
Vanhoof in [DV12]. The authors defined a pure functional concurrent programming lan-
guage that is a subset of Haskell, and includes the IO Monad, hence modeling sequential
execution and providing shared variables that can be accessed inside atomic transactions.
A specification of the invariants of the program’s functions are provided by the program-
mer in logic. A shared variable is said to be consistent if all invariants related to it hold
before and after every atomic transaction. The static analysis acquires the facts about the
program and feeds them to a theorem prover to test if every shared variable is consistent.

This approach is very accurate provided that the programmer can express the no-
tion of program correctness by using invariants on the global state, but is also expensive
because a theorem prover is required to verify that the invariants hold.

Other Approaches Flanagan et al also proposed several methods for detecting atom-
icity violations [FF04; FFY08; FF10]. In [FF04] Flanagan presents a dynamic analysis for
serializability violations. The central notion of this work are Lipton’s reductions [Lip75].
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If a reduction exists from one trace to another then the execution of both traces yields the
same state (although different states may be obtained intermediately). Reductions can
be found by commuting right- and left-mover operations. Their analysis specifies which
operations are movers and uses a result from Lipton’s Theory of Reductions, that speci-
fied the conditions for a reduction to exists. If these conditions hold he shows that there
is a reduction from the atomic operations in the dynamically obtained concurrent trace,
to a serialization trace. If these conditions are not met, then an anomaly is reported. This
can, however, lead to false positives.

Another publication from Flanagan et al provides a sound and complete dynamic anal-
ysis for verifying serialization [FFY08]. This work uses a well-known result from database
theory that states that a trace is serializable if and only if no cycle exists in the happens-
before graph of the atomic operations [BHG87]. The dynamic analysis defined maintains
this happens-before graph and report anomalies if a cycle is found.

A different approach is presented by Shacham et al in [SBASVY11]. In this work the
atomic operations are extracted from the program to be analyzed to create an adversary
that will run them concurrently to the original program. If two different runs yield dif-
ferent results then an anomaly is reported. Some heuristics are used to explore the search
space of possible interleavings from the adversary, avoiding a prohibitively expensive
exhaustive search.

In [WZJ11] Weeratunge et al introduce an analysis to detect and fix Heisenbugs. Heisen-
bugs are race conditions that, due to non-determinism, are hard to reproduce. Their
technique collects traces from the application and analyze consecutive pairs of accesses
to shared memory. If some trace has a pair of accesses interleaved with some concurrent
access to the variables involved, then that pair of accesses is considered erroneous and
are locks are placed to protect them. A generic concurrency bug fixing strategy is pre-
sented in [JZDLL12]. The detection of anomalies is given as a front-end to the fixer which
then heuristically employ a fixing strategy.

In [LDZ13] Liu et al develop a method to identify incorrect atomic compositions when
using a software module. Although this work and ours share the same goals, the ap-
proaches are very distinct. Their approach does not use design by contract, and instead
they automatically infer what constitutes a module and where an atomic composition
may be wrongly implemented. Two types of possible wrong compositions are identi-
fied: one value returned by a call to the module is used by the client in a subsequent
call to that modules; and two methods of the module are always invoked together by
the client program. This information is obtained statically. To verify that a composi-
tion identified as wrong truly leads to undesirable results, their tool dynamically checks
those atomic compositions. This is achieved by executing different scheduling of the
atomic operations and comparing the results with an observed normal execution. While
this approach is interesting it has its disadvantages. Namely, the criteria used to identify
wrong atomic compositions covers a limited number of scenarios that represent atomic
violations, leading to false negatives; a correct trace of the program must be obtained in
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the simulated execution of different scheduling; and the number of different scheduling
of the atomic operations are exponential and may be unfeasible with a large number of
atomic operations, even with pruning.

2.2 Design By Contract

Design by contract (DbC) is a software design technique to promote code reuse and soft-
ware reliability, introduced by Meyer [Mey92]. The central notion of design by contract
is that an object’s method should be treated as a service. In real world a service provider
requires certain conditions in order for a service to be applicable. For example, a deliv-
ery company requires the client to correctly provide the destination address, respect the
maximum weight of packages, and, of course, pay. If these conditions are met by the
client then the delivery company ensures the delivery of the package. Meyer suggests
that these principles should also apply to object-oriented programming: a contract exists
between the client of an object and that object. This contract specifies the preconditions
the client code must meet in order for a method to be called and the postconditions that
the method ensures after its execution. If the client calls the method without meeting the
preconditions, no guarantee is offered about the correctness of the method’s result.

Design by contract is an alternative to defensive programming, where the programmer
assumes that a method may be called in any situation, with arbitrary arguments, and
has to address all misuses that can happen. Listing 4 shows the function sum(n), which
computes the sum of the first n positive natural numbers, in both defensive programming
(left) and design by contract methodology (right). The DbC implementation provides
simpler code and documents the admissible usage scenarios and function semantics in
the contract. In an object the pre- and postconditions can also refer to the internal object’s
state.

Listing 4 Function programmed in defensive programming (left) and design by contract
(right).

1 int sum(int n)
2 {
3 if (n < 0)
4 // handle exception
5

6 return n*(n+1)/2;
7 }

1 @requires n ≥ 0
2 @ensures returns

∑n
i=0 i

3 int sum(int n)
4 {
5 return n*(n+1)/2;
6 }

The main advantage of design by contract is the increase in the reliability and read-
ability of the code. This methodology clearly describes the conditions and semantics for
methods to be called. This provides documentation for developers, a way of identify-
ing bugs, clearly assigns blame if some condition is not met, and allows code correctness
verification.

Verifying contracts can be done dynamically by testing the pre- and postconditions
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assertions in run-time. This is the approach adopted by the Eiffel programming lan-
guage [Mey87] where pre- and postconditions are syntactically part of the function def-
inition. Other approaches use Hoare Logic [Hoa69] and theorem provers to statically
verify that the code respects the contracts [FLLNSS02; BLS05].

The concept of design by contract methodology can be used to specify other types of
contracts besides logic propositions over the program state. For instance, contracts can
be used to describe access policies were certain methods are only allowed to be called by
authenticated objects.

Concurrent Design by Contract Concurrency imposes a challenge to design by con-
tract methodology, since a client cannot always ensure that the preconditions are met
before a method call: a concurrent execution might change the global state and make
that assertion false. In [Mey97] Meyer presents a solution to this problem based on mon-
itors. A second type of preconditions are introduced with a different semantics: when a
method is called and the precondition does not hold, the caller blocks until the precondi-
tion is satisfied. (We always assume mutual exclusion inside the object’s methods.) The
postconditions are only guaranteed to hold immediately after the method execution.

Meyer’s solution may lead to deadlocks if the wait conditions are never met, thus
failing to identify a bug. Nienaltowski et al propose a new contract semantics that applies
both to sequential and concurrent programming [NMO09]: if the precondition depends
only on the client, i.e., cannot be invalidated concurrently, then it must hold when the
call is performed; otherwise the call is suspended until the precondition holds.

Contracts for Object Protocol Verification Some classes require that the sequence of
method calls must obey some restrictions. The set of legal sequences of calls to methods
is called the class protocol. As an example consider an object that represents a file: the first
method to be called must be open(), then we can read or write to the file and we finish
by closing the file. A natural way of specifying this is by using an finite state automaton
where each state allows a set of methods to be called, as exemplified in Figure 2.4. Equiv-
alently this may be represented by the regular expression (open(read|write)∗close)∗.

Beckman et al use typestate, a type system approach, to statically verify protocol com-
pliance [BBA08]. The programmers define the object abstract states that correspond to the
nodes in the finite state automaton. Each method requires the object to be in a defined
abstract state and to make a transition to another state. In order for an object to be used
it must first be unpacked to a specified abstract state, where only a subset of methods that
corresponds with that state are available. The type system statically detect if an unpack
operation leads to an invalid abstract states.

A dynamic analysis for method protocol verification was proposed by Cheon et al
in [CP07] that uses regular expression-like annotations to specify the protocol. This nota-
tion extends JML (Java Modeling Language). Two different semantics for protocol com-
pliance were suggested: in the weaker semantics a program respects the specification if
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closed opened

open()

close()

read()/write()

Figure 2.4: Example of a protocol specification represented by an automaton.

its calls are a supersequence of the specification, whether the strong semantics requires
an exact matching. The tool they implemented offers dynamic checking of the weaker
semantics by instrumenting the method calls with assertions that check and maintain an
finite state automaton associated with the called object.

Hurlin builds upon the previous work of Cheon, extending it to specify concurrent
protocols [Hur09]. This extends the expressiveness of the protocol specification language
by adding a conditional construct where the method that can be called depending on a
boolean expression over the objects state; and a construct to specify that two methods
can run concurrently. Analyzing the protocol compliance is done by adding JML-like
assertions to the original program. The analysis can be performed statically by using a
theorem prover to check the satisfiability of the assertions.

2.3 Program Analysis

Program analysis consists of detecting properties about a piece of software. The informa-
tion obtained about a program is usually used to automatically detect and report possible
flaws about that program, to obtain debug information that can help the programmer un-
derstand the run-time behavior of the program, and to optimize the code of the program
to achieve better run time or memory consumption.

This section will discuss the principal types and methodologies for program analysis,
as well as the most common supporting data structures used to define an analysis.

2.3.1 Static and Dynamic Analysis

The two main approaches to program analysis are static and dynamic analysis. They
differ in the way they gather information about the program and offer very distinct trade-
offs, both in efficiency and precision.

Dynamic analysis analyzes the program by monitoring its actions during the pro-
gram’s execution. This is usually done by instrumenting the code of the program to
register the types of events that are relevant to the analysis. The registered information
can then be processed during the program’s execution or post-mortem. An alternative to
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instrumenting the program’s code is to run the program in a virtual machine that will
keep track of the execution behavior of the program. Valgrind [NS03] is an example of
a dynamic analysis tool that can be used to detect memory corruption and memory leak
problems.

On the other hand, static analysis tries to infer the run-time behavior of the program
by only analyzing its code. A static analysis takes as its input the source code or the
compiled code of the program under analysis, and creates a model to represent the pro-
gram. The representation will then be processed by the analysis algorithm to extract the
relevant information about the program. These program representations will be further
discussed in Section 2.3.2. The type system of a statically typed language is an example
of a static analysis.

When the goal of the analysis is to detect possible flaws in the program, the static
analysis approach tends to be preferred. This is because it is possible for the static analysis
to detect all the flaws of the program1, but this often leads to an over-approximation of
the real anomalies of the program, reporting all the real flaws of the program and also
false positives, i.e., occurrences that the analysis mark as a flaw, but are in fact innocent.
Static analysis can be expensive to perform, depending on the complexity of the analysis.

Dynamic analysis can be advantageous if a static version of the analysis is too expen-
sive in terms of time or space, or if a static version reports many false positives. Since
dynamic analysis only analyzes specific runs of a program, it only explores a limited
set of the program’s states, which translate in a high number of false negatives, i.e., real
flaws that are not reported. The trade-off is that the analysis has access to every run-
time information that can lead to a high precision detection, which translates in a low or
non-existent number of false positives2.

Hybrid solutions exists, that perform static and dynamic analysis to programs. This
types of analysis usually try to infer as much information as possible statically and com-
plement this with a dynamic analysis to try to achieve the best of both worlds.

2.3.2 Program Representation

Static analysis verification tools usually offer different types of representation of the pro-
gram under analysis, with different levels of abstraction. These representations of pro-
grams are used to extract the required information from simpler models of the program
and avoid dealing with unnecessary information.

This section will cover some of the most commonly used representations of programs
used in static analysis.

1An analysis that is guaranteed to detect all the flaws of a program is said to be sound.
2An analysis that is guaranteed never to yield false positives is said to be complete. Rice’s theorem implies

that no non-trivial static analysis, for Turing complete programming languages, can be both sound and
complete.
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1 while (n >= 0)
2 {
3 s+=n*n;
4 n--;
5 }

while

>= sequence

n 0 += --

s n*

n n

Figure 2.5: Example of an abstract syntax tree.

Abstract Syntax Tree The abstract syntax tree (AST) of a program represents the syntac-
tic structure of that program’s source code. This tree is generated by the source language
parser, and gives a complete representation of the program. The nodes of the AST repre-
sent syntactic constructions of the language, such as if, while, assignment, integer, etc. . .

This kind of structure is created directly from the source code, explicitly encoding the
grammatical structure of the source programming language, getting rid of unnecessary
syntactic details (hence abstract syntax tree). Since it so closely represents the source code
it is usually used to generate other data structures that are more suitable for program
analysis.

Figure 2.5 exemplifies a abstract syntax tree (right) of a simple block of code (left). As
shown the abstract syntax tree simply encodes the grammatical structure of the program.

Intermediate Representation An intermediate instruction representation is a language
that represents the semantics of the program with simple instructions. This is benefi-
cial for program optimization and analysis, because it breaks down a complex high-level
language to a reduced set of instructions, which can more easily be processed by a static
analysis algorithm. Another advantage is that an intermediate representation can be gen-
erated by different front-ends that process different high-level languages, making the
analysis more generic.

A common type of intermediate languages is the three address code, where each instruc-
tion has, at most, three operands. This instructions can accept operands with constant
values and memory addresses. These memory addresses do not necessarily correlate
with concrete memory addresses, and can seen as registers in a virtual processor, that are
latter translated in concrete register or memory addresses by the back-end of the compiler
that generates the target machine’s code. Another variation of intermediate representa-
tion is the static single assignment form (SSA) [RWZ88] where every variable is assigned
only once (from a static point of view). This property can be advantageous for some types
of analysis and code transformation. Listing 5 shows a three address code representation
(right) of a for loop (left).
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Listing 5 Example of three address code.

1 for (i=0; i < 10; i++)
2 s=s+i*i;

1 i = 0
2 L: b = i >= 10
3 if b goto E
4 t = i*i
5 s = s+t
6 i = i+1
7 goto L
8 E:

1 while (n != 1)
2 {
3 if (n%2 == 0)
4 n=n/2;
5 else
6 n=3*n+1;
7 c++;
8 }

entry

n != 1

n%2 == 0

n=n/2 n=3*n+1

c++

exit

Figure 2.6: Example of a control flow graph.

Control Flow Graph A control flow graph [All70] of a method or function captures
the control flow paths the method can take. In this graph the vertices represent single
instructions of the program. An edge u→ v represents that instruction u can be immedi-
atly followed by the execution of instruction v. Therefore the successors of an instruction
i in the control flow graph represent the different alternatives the program may take in
run-time after executing i (unless the execution of i breaks the regular control flow, for
instance, by raising an exception or terminating the program).

Figure 2.6 exemplifies a control flow graph (right) of a simple block of code (left). As
can be seen, the control flow graph encompasses all the control flow logic of the program.

Call Graph A call graph [Ryd79] represents the call relations between methods or func-
tions of a program. This is represented in a directed graph where the vertices are meth-
ods/functions, and an edge u → v exists if, and only if, the method u can directly calls
method v. The graph contains no information about the order by which the methods are
called nor the number of times the method is invoked.

This representation is fairly abstract, providing only a high-level view of the relations
between methods, and is typically used to obtain information for more complex analysis.
This graph can be used to easily detect dead code, i.e., code that is guaranteed not to be
executed, since unused methods will form components that are not reachable from the
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1 boolean even(int n)
2 {
3 if (n == 0) return true;
4 else return odd(n-1);
5 }
6

7 boolean odd(int n)
8 {
9 if (n == 0) return false;
10 else return even(n-1);
11 }
12

13 void g(int n) { return n*n; }
14

15 void f(int n)
16 {
17 if (odd(n)) return n+1;
18 else return g(n);
19 }

odd even

f g

Figure 2.7: Example of a call graph.

main method. It is also easy to detect direct and indirect recursion since they form loops
in the graph. Figure 2.7 shows an example of a call graph (right) and the corresponding
methods (left).

2.3.3 Types of Static Code Analysis

Many static analysis are follow well-studied general methodologies for analysis design.
The most common of these frameworks for analysis will be presented in this section.

Data Flow Analysis Data flow analysis [Coc70; All70; KU77] works directly on the con-
trol flow graph of a method. Each node of the control flow graph will have a value asso-
ciated. The concrete analysis defines which types of values are associated with the nodes
of the control flow graph, and how to propagate these values to the neighbor nodes. Each
type of node can have specific rules on how to manipulate the values received from the
adjacent nodes (forming a set of constraints relating the values of the nodes). A fixed-
point algorithm is then used to propagate all information across the control flow graph
until the values stabilize. (To ensure that a fixed-point is always reached the values as-
sociated with the nodes of the control flow graph must form a finite-height lattice over
the constraints defined.) The final result of the analysis is the values associated with the
nodes after the fixed-point is reached. If the analysis is defined in a conservative manner
the results will always be sound.

Constraint Based Analysis Analysis based on Constraints [Aik94] are composed by
two phases. First the analysis inspects the target code to generate a set of constraints
that define the nature of the desired information about the program. For instance, these
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constrains can be equation that express relations between variables. After the generation
of set of constrains they must be resolved to obtain the desired end result of the analysis.

Abstract Interpretation Abstract interpretation [CC77] is a technique used to acquire
information about the semantics of a program. The analysis defines an abstract semantics
of the target programming language. This abstract semantics over-approximates the con-
crete semantics of the program, in order to avoid false positives, i.e., it considers all pos-
sible concrete execution of the program. The abstract semantic is defined in such a way
that it always terminates, and computes the information required about the program.

As an example, say we want to know all the variables that are modified in a block of
code. The abstract semantics for that analysis will record the variables written in every
assignment, and simply propagate that set of written variables along the program. It will
explore all alternatives of the conditional statements and will “iterate” every loop exactly
once. The end result would be a superset of the variables accessed in every possible
concrete execution of that block of code.

Type and Effect Systems Type systems [Car96] are the type of static analysis a pro-
grammer most often deals with. It assigns types (which can be seen as set of values) to
syntactic expressions based on well-defined inference rules. If no rule applies to a pro-
gram’s expression the program is not well-typed and is rejected by the type system. The
most common use of a type system is to avoid run-time errors by making sure that the
values of expressions are acceptable in the context being used.

More sophisticated type systems may annotate the types of expressions with more
information as to detect more complex errors.

Effect systems extends type systems with annotations about the effects that expression
make produce. Examples of effects that can be described by effect systems are changing
global variables, performing input/output, allocating memory, etc. . . An example of an
effect system is the Java checked exceptions, which make sure that a method handles the
exceptions that may be raised by the methods it calls.
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3
Methodology

This chapter presents the static analysis for the verification of the module’s contract. This
analysis is the main contribution of this dissertation. We will define what constitutes a
contract of the module and its semantics. The analysis has two fundamental phases: the
extraction of the behavior of the program, and the verification of the module’s contract
based on the extracted behavior.

We also propose two extensions to the analysis that augment the expressivity of the
contract, allowing a developer to specify in more detail what may lead to a atomicity
violation.

3.1 Analysis Overview

The analysis we propose verifies statically if a client program complies with the contract
of a given module. This is achieved by verifying that the threads launched by the pro-
gram always execute atomically the sequence of calls defined by the contract.

This analysis has the following phases:

i) Determine the entry methods of the threads the program may launch.

ii) Determine which of the program’s methods are atomically executed. A method is
atomically executed if it is atomic1 or if the method is always called by atomically
executed methods.

1An atomic method is a method that explicitly applies a concurrency control mechanism to enforce atom-
icity.
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iii) Extract the behavior of each of the program’s threads with respect to the usage of the
module under analysis.

iv) For each thread, check that its usage of the module respects the contract as defined
in Section 3.2.

For the analysis to be applicable we require the following conditions: a) it must be
possible to identify when the module is used in the target programming language; b) the
accesses to the module are always done through a well defined API; c) it must be possible
to identify the regions of code that run atomically; d) it must be possible to identify the
starting point of the threads the program may launch.

In Section 3.2 we define the contract of the module. Section 3.3 we introduce the
algorithm that extracts the program’s behavior with respect to the module’s usage. Sec-
tion 3.4 defines the methodology that verifies whether the extracted behavior complies
to the contract.

3.2 Contract Specification

The contract of a module specifies which sequences of calls of its methods must be exe-
cuted atomically, as to avoid atomicity violations in the module’s client program. In the
spirit of the design by contract methodology, we assume that the definition of the contract,
including the identification of which sequences of calls should be executed atomically, is
a responsibility of the module’s developer.

Definition 1 (Contract). The contract of a module with public methods m1, · · ·,mn is of
the form,

1. e1

2. e2

...

k. ek

where each clause i = 1, · · ·, k is described by ei, a star-free regular expression over the
alphabet {m1, · · ·,mn}. Star-free regular expressions are regular expressions without the
Kleene star, using only the alternative (|) and the concatenation (implicit) operators.

Each sequence defined in ei must be executed atomically by the program using the
module, otherwise there is a violation of the contract. The contract specifies a finite num-
ber of sequences of calls, since it is the union of star-free languages. Therefore, it is pos-
sible to have the same expressivity by explicitly enumerating all sequences of calls, i.e.,
without the use of the alternative operator. We chose to offer the alternative operator so
that the programmer can group similar scenarios under the same clause.

Since the verification analysis assumes that the contract defines a finite number of call
sequences, this excludes the Kleene star operator. However, in Section 3.5.1, we describe
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a method to simulate this operator, maintaining a finite number of call sequences, at the
expense of precision loss.

Example Consider the class java.util.ArrayList that represents arrays, offered by the
Java standard library. For simplicity we will only consider a few methods: add(obj),
get(idx), set(idx, obj), contains(obj), indexOf(obj), remove(idx), and size().

The following contract defines some of the clauses for this class.

1. contains indexOf

2. indexOf (remove | set | get)

3. size (remove | set | get)

4. add indexOf.

Clause 1 of ArrayList’s contract denotes that the execution of contains() followed
by indexOf() should be atomic, otherwise the client program may confirm the existence
of an object in the array, but fail to obtain its index due to a concurrent modification.
Clause 2 represents a similar scenario where, the position of the obtained object is modi-
fied. In clause 3 we deal with the common situation where the program verifies if a given
index is valid before accessing the array. To make sure that the size obtained by size() is
valid when accessing the array we should execute these calls atomically. Clause 4 repre-
sents scenarios where an object is added to the array and then the program tries to obtain
information about that object by querying the array.

Another relevant clause is contains indexOf (remove | set | get), but the contract’s
semantic already enforces the atomicity of this clause as a consequence of the composition
of clauses 1 and 2, as they overlap in the indexOf() method.

3.3 Extracting the Behavior of a Program

The behavior of the program with respect to the module usage can be modeled as the
individual behavior of all the threads the program may launch. The usage of a module
by a thread t of a program can be described by a languageL over the alphabetm1, · · ·, mn,
the public methods of the module. A word m1 · · · mn ∈ L if some execution of t may run
the sequence of calls m1, · · ·,mn to the module.

To extract the usage of a module by a client program, our analysis generates a context-
free grammar that represents the language L of a thread t of the client program, which
is represented by its control flow graph (CFG). The CFG of the thread t represents every
possible path that the control flow may take during its execution. In other words, the
analysis generates a grammar Gt such that, if there is an execution path of t that runs the
sequence of calls m1, · · ·,mn, then m1 · · · mn ∈ L(Gt). (The language represented by a
grammar G is denoted by L(G).)
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Definition 2 (Thread Behavior Grammar). The grammar Gt = (N,Σ, P, S), is built from
the CFG of the client’s program thread t.

We define,

• N , the set of non-terminals, as the set of nodes of the CFG. Additionally we add
non-terminals that represent each method of the client’s program (represented in
calligraphic font);

• Σ, the set of terminals, as the set of identifiers of the public methods of the module
under analysis (represented in bold);

• P , the set of productions, as described bellow, by rules 3.1–3.5;

• S, the grammar initial symbol, as the non-terminal that represents the entry method
of the thread t.

For each method f() that thread t may run we add to P the productions that respect
the rules 3.1–3.5. Method f() is represented by F . A CFG node is denoted by α : JvK,
where α is the non-terminal that represents the node and v its type. We distinguish the
following types of nodes: entry, the entry node of method F ; mod.h(), a call to method h()

of the module mod under analysis; g(), a call to another method g() of the client program;
and return, the return point of methodF . The succ : N → P(N) function is used to obtain
the successors of a given CFG node.

if α : JentryK, {F → α} ∪ {α→ β | β ∈ succ(α)} ⊂ P (3.1)

if α : Jmod.h()K, {α→ hβ | β ∈ succ(α)} ⊂ P (3.2)

if α : Jg()K, {α→ G β | β ∈ succ(α)} ⊂ P where G represents g() (3.3)

if α : JreturnK, {α→ ε} ⊂ P (3.4)

if α : JotherwiseK, {α→ β | β ∈ succ(α)} ⊂ P (3.5)

No more productions belong to P .

The rules 3.1–3.5 capture the structure of the CFG in the form of a context-free gram-
mar. Intuitively this grammar represents the flow control of the thread t of the program,
ignoring everything that is not related with the module’s usage. The grammar is built in
such a way that if f g ∈ L(Gt) then the thread t may invoke method mod.f(), followed
by mod.g().

Rules 3.1–3.5 preserve the structure of the control flow graph, so that every path in
the graph corresponds to a derivation in the grammar. Rule 3.1 adds a production that re-
lates the non-terminal F , that represents method f(), to the entry node of the CFG of f().
This will allow other productions that reference method f() to use the non-terminal F .
In Rule 3.2 we treat calls to the module under analysis by recording them in the grammar.
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3. METHODOLOGY 3.3. Extracting the Behavior of a Program

1 void f()
2 {
3 m.a();
4 if (cond)
5 g();
6 m.b();
7 }
8

9 void g()
10 {
11 m.c();
12 if (cond)
13 {
14 g();
15 m.d();
16 f();
17 }
18 }

f() g()

entry

m.a()

cond

g()

m.b()

return

A

B

C

D

E

F

entry

m.c()

cond

g()

m.d()

f()

return

G

H

I

J

K

L

M

Figure 3.1: Program with recursive calls using the module m (left) and respective CFG
(right).

If a CFG node A calls mod.h() and has a successor B then the production A → hB will
be in the grammar, and can be read as “non-terminal A generates all words of B prefixed
with h”. Rule 3.3 handles calls to another method g() of the client program (method g()

will have its non-terminal G added by Rule 3.1). The return point of a method simply
adds an ε production to the grammar (Rule 3.4). All others types of CFG nodes are han-
dled uniformly, preserving the CFG structure by making them reducible to the successor
non-terminals (Rule 3.5). It is important to notice that only the client program code is
analyzed.

The Gt grammar may be ambiguous, i.e., offer several different derivations to the
same word. Each ambiguity in the parsing of a sequence of calls m1 · · · mn ∈ L(Gt)

represents different contexts where these calls can be executed by thread t. It is, therefore,
necessary to allow such ambiguities so that the verification of the contract can cover all
the occurrences of the sequences of calls in the client program.

The language L(Gt) contains every sequence of calls the program may execute, i.e.,
it produces no false negatives. However L(Gt) may contain sequences of calls that the
program does not execute (for instance calls performed inside a block of code that is
never executed), which may lead to false positives.

Examples Figure 3.1 (left) shows a program that consists of two methods that call each
other mutually. We assume that method f() is the entry point of the thread. The module
under analysis is represented by object m. The control flow graphs of these methods
are shown in Figure 3.1 (right). According to Definition 2, we construct the grammar
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G1 = (N1,Σ1, P1, S1), where

N1 = {F ,G, A,B,C,D,E, F,G,H, I, J,K,L,M},

Σ1 = {a,b, c,d},

S1 = F ,

and P1 has the following productions:

F → A G → G

A→ B H → c I

B → aC I → J |M

C → D | E J → GK

D → G E K → dL

E → bF L→ FM

F → ε M → ε

In this example we can see how the grammar mimics the control flow graph struc-
ture. For each edge u → v of the CFG the grammar includes a production of the form
u→ · · · v, which captures the control flow of the program as a grammar.

Context-free grammars can easily represent loops and recursion of the code. This
example show how a recursive call is encoded in the grammar: since methods are repre-
sented by non-terminals (which we show in a calligraphic font) we can use them in the
body of any production. The example above shows this, for instance, in the production
J → GK that represents a direct recursive call to g().

A second example, shown in Figure 3.2, exemplifies how the Definition 2 handles a
flow control with loops. In this example we have a single function f(), which is assumed
to be the entry point of the thread. For this example we have G2 = (N2,Σ2, P2, S2), with

N2 = {F , A,B,C,D,E, F,G,H},

Σ2 = {a,b, c,d},

S2 = F .

The set of productions P2 is,

F → A E → cF

A→ B F → B

B → aC | aG G→ dH

C → D | E H → ε

D → bF.
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1 void f()
2 {
3 while (m.a())
4 {
5 if (cond)
6 m.b();
7 else
8 m.c();
9

10 count++;
11 }
12

13 m.d();
14 }

entry

m.a()

cond

m.b() m.c()

count++

m.d()

return

A

B

C

D E

F

G

H

Figure 3.2: Program using the module m (left) and respective CFG (right).

To better understand how the grammar deals with loops we will show a derivation of
the word a b a c a d. The only way for the program to perform these calls to module m is
to iterate the loop exactly twice, entering the “then” branch of the if in the first iteration
and the “else” branch in the second.

The derivation of a b a c a d is unambiguously done as follows:

F ⇒ A⇒ B ⇒ a C ⇒ a D ⇒ a b F ⇒ a b B ⇒ a b a C ⇒ a b a E

⇒ a b a c F ⇒ a b a c B ⇒ a b a c a G⇒ a b a c a d H ⇒ a b a c a d.

3.4 Contract Verification

The verification of a contract must ensure that all sequences of calls specified by the con-
tract are executed atomically by all threads the client program may launch. Since there
is a finite number of call sequences defined by the contract we can verify each of these
sequences to check if the contract is respected.

Algorithm 1 presents the pseudo-code of the algorithm that verifies a contract against
a client’s program. For each thread t of a program P , it is necessary to determine if (and
where) any of the sequences of calls defined by the contract w = m1, · · ·,mn occur in P

(line 4). To do so, each of these sequences are parsed by the grammar G′t (line 5), the
grammar includes all words and sub-words of Gt. Sub-words must be included since we
want to take into account partial traces of the execution of thread t.

Notice that G′t may be ambiguous. Each different parsing tree represents different lo-
cations where the sequence of calls m1, · · ·,mn may occur in thread t. Function parse()

returns the set of these parsing trees. Each parsing tree contains information about the
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Algorithm 1 Contract verification algorithm.

Require: P , client’s program;
C, module contract (set of allowed sequences).

1: for t ∈ threads(P ) do
2: Gt ← build_grammar(t)
3: G′t ← subword_grammar(Gt)
4: for w ∈ C do
5: T ← parse(G′t, w)
6: for τ ∈ T do
7: N ← lowest_common_ancestor(τ, w)
8: if ¬run_atomically(N) then
9: return ERROR

10: return OK

location of each method call of m1, · · ·,mn in program P (since non-terminals represent
CFG nodes). Additionally, by going upwards in the parsing tree, we can find the node
that represents the method under which all calls to m1, · · ·,mn are performed. This node
is the lowest common ancestor of terminals m1, · · ·,mn in the parsing tree (line 7). There-
fore we have to check that the obtained lowest common ancestor is always executed
atomically (line 8) to make sure that the whole sequence of calls is executed under the
same atomic context. Since it is the lowest common ancestor we are sure to require min-
imal synchronization from the program. A parsing tree contains information about the
location in the program where a contract violation may occur, therefore we can offer de-
tailed instructions to the programmer on where this violation occurs and how to fix it.

GrammarGt can use all the expressiveness offered by context-free languages. For this
reason it is not sufficient to use the LR(·) parsing algorithm [Knu65], since it does not
handle ambiguous grammars. To deal with the full class of context-free languages a GLR
parser (Generalized LR parser) must be used. GLR parsers explores all the ambiguities
that can generate different derivation trees for a word. We distinguish three parsing
algorithms that offer good worst-case time complexity and are therefore suitable to be
used: Tomita [Tom87], CYK [You67], and Earley [Ear70].

Another important point is that the number of parsing trees may be infinite. This is
due to loops in the grammar, i.e., derivations from a non-terminal to itself (A ⇒ · · · ⇒
A). An infinite number of parsing trees may occur in a loop in the grammar that is not
productive to parse the grammar, and the parsing algorithm can choose to iterate that
loop an arbitrary number of times, creating one parsing branch for each possibility. This
often occur in Gt (every loop in the control flow graph will yield a corresponding loop
in the grammar). For this reason the parse() function must detect and prune parsing
branches that will lead to redundant loops, ensuring that a finite number of finite-height
parsing trees is returned. To achieve this the parsing algorithm must detect a loop in the
list of reduction it has applied in the current parsing branch, and abort it if the loop did
not contribute to parse a new terminal.
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1 void atomic run()
2 {
3 f();
4 m.c();
5 }
6

7 void f()
8 {
9 m.a();

10 g();
11 }
12

13 void g()
14 {
15 while (cond)
16 m.b();
17 }

R → F c

F → a G
G → A

A→ B | ε
B → b A

a b b c

B

A

A

ε

G

A

B

F

R

Figure 3.3: Program (left), simplified grammar (center) and parsing tree of a b b c (right).

Examples Figure 3.3 shows a program (left), that uses the module m. The method run()

is the entry point of the thread t and is atomic. In the center of the figure we show a
simplified version of the Gt grammar. (The G′t grammar is not shown for the sake of
brevity.) The methods run(), f(), and g() are represented in the grammar by the non-
terminals R, F , and G respectively. If we apply Algorithm 1 to this program with the
contract C = {a b b c} the resulting parsing tree, denoted by τ (line 6 of Algorithm 1),
is represented in Figure 3.3 (right). To verify that all calls represented in this tree are
executed atomically, the algorithm determines the lowest common ancestor of a b b c in
the parsing tree (line 7), in this exampleR. SinceR is always executed atomically (atomic
keyword), it is ensured that the contract of the module is respected by the client program.

Figure 3.4 exemplifies a situation where the generated grammar is ambiguous. In
this case the contract is C = {a b}. The figure shows the two distinct ways to parse
the word a b (right). Both these trees will be obtained by our verification algorithm
(line 5 of Algorithm 1). The first tree (top) has F as the lowest common ancestor of a b.
Since F corresponds to the method f(), which is executed atomically, this tree respects
the contract. On the other hand, the second tree (bottom) has R as the lowest common
ancestor of a b, corresponding to the execution of the else branch of method run(). This
non-terminal (R) does not correspond to an atomically executed method, therefore the
contract is not met and a contract violation is detected.

Sub-word Grammar To create a grammar with every sub-word ofGwe can employ the
following conversion. Let G = (N,Σ, P, S) be a context-free grammar. Assume, without
loss of generality, that G is in Chomsky normal form2 and does not generate the empty
language. This means that every production of the grammar is of the form A → BC

or A → α, where A,B,C are non-terminals and α is a terminal. We want to define a

2Every context-free grammar can be written in Chomsky normal form.
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1 void run()
2 {
3 if (...)
4 f();
5 else
6 {
7 m.a();
8 g();
9 }

10 }
11

12 void atomic f()
13 {
14 m.a();
15 g();
16 }
17

18 void atomic g()
19 {
20 m.b();
21 }

R → a G | F
F → a G
G → b

a b

G

R

F

a b

G

R

Figure 3.4: Program (left), simplified grammar (center) and parsing trees of a b (right).

grammar G′ = (N ′,Σ, P ′, S′) such that G′ generates all sub-word of G and no more:

L(G′) = {w | ∃ω, ω′ ωwω′ ∈ L(G)}.

We define G′ = (N ′,Σ, P ′, S′) as,

A ∈ N ⇔ A,A<, A>, A<> ∈ N ′

S′ = S<>

A→ BC ∈ P ⇔ A→ BC ∈ P ′

∧A< → B< |BC< ∈ P ′

∧A> → C> |B>C ∈ P ′

∧A<> → B>C< |B<> |C<> ∈ P ′

A→ α ∈ P ⇔ A→ α ∈ P ′

∧A< → ε |α ∈ P ′

∧A> → ε |α ∈ P ′

∧A<> → ε |α ∈ P ′.

For each non-terminal we add three new non-terminals: A<,A>, andA<>. Intuitively
these non-terminals represents, respectively, all prefixes, suffixes and sub-words ofA. For
example the productionA→ BC inG generates the productionsA<> → B>C< |B<> |C<>

in G′, which can be read as “the sub-words of A are the suffixes of B concatenated with
the prefixes of C; the sub-words of B; and the sub-words of C”.
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Listing 6 Example of programs that violate the atomicity of a (b c)∗ d.

1 atomic
2 {
3 m.a();
4 m.b();
5 m.c();
6 }
7 atomic
8 {
9 m.d();
10 }

1 atomic
2 {
3 m.a();
4 }
5 atomic
6 {
7 m.b();
8 m.c();
9 m.d();
10 }

As can be seen the number of productions grows only by a constant factor. This does
not hold for context-free grammars that have productions with bodies of arbitrary length,
but in the Chomsky normal form the bodies of the production are never greater than two.
This is also the case of the grammar generated from the control flow graph in Definition 2.

3.5 Extending the Analysis

This section will show how to extended the presented analysis in order to increase the
expressivity and precision of the contract. We will augment the contract with the Kleene
star, allowing full-fledged regular expression. We will also show how to specify parame-
ter correlation across method call, which greatly extend the expressivity of the contract.

3.5.1 Contracts with the Kleene Star

It would be useful to extend the contract as defined in Definition 1, to allow the Kleene
star, making the clauses of the contract full-fledged regular expression. However, Algo-
rithm 1 require that the number of words defined in a contract is finite, which clearly
forbids the usage of the Kleene operator. In fact it can be shown that this is not com-
putable, since it is equivalent of knowing if a regular language is a subset of a context-
free language, which is undecidable (reduction from the context-free grammar universality
problem).

However, it is possible to add the Kleene star if we sacrifice precision. It is undesirable
to miss anomalies, so we will try to approximate a regular expression e with a set of star-
free regular expressions u = {u1, · · · , un} in such a way that every word of L(e) is sure
to have a sub-word in L(u). Furthermore Algorithm 1 must guarantee that the atomicity
of the whole e is ensured by the parts u1, · · · , un.

For the sake of simplicity lets consider only the case where e = e1 e∗2 e3, where
e1, e2, e3 are star-free regular expressions. Even though this is only a special case of arbi-
trary regular expressions it captures the idea behind this method. Given e = e1 e

∗
2 e3 we

generate the contract C = {e1 e3, e1 e2, e2 e2, e2 e3}.
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Listing 7 Examples of atomic violation with data dependencies.

1 void replace(int o, int n)
2 {
3 if (array.contains(o))
4 {
5 int idx=array.indexOf(o);
6 array.set(idx,n);
7 }
8 }

Example Consider e = a (b c)∗ d. Then we will generate the contract

1. a d

2. a b c

3. b c d

4. b c b c

Note that any word of L(e) will have to be atomic by Algorithm 1: if the (b c)∗ does
not consume any symbols then it is matched by clause 1; if (b c)∗ consumes b c only once
then it is matched by clauses 2 and 3; if (b c)∗ consumes b c more than once it will be
matched by clauses 2, 3 and 4.

Since there is an overlap in sequences defined in the clauses we force a program to
perform every sequence of calls of L(e) in the same atomic scope. Listing 6 exemplifies
this. Both programs do not execute a b c d ∈ L(e) atomically. The first one (left) will
respect clause 2 but will violate clause 3; conversely the second listing (right) will satisfy
clause 3 but will not respect clause 2. Since the clauses overlap the only way for the
program to respect them is to execute the whole sequence of calls in the same atomic
context.

3.5.2 Contracts with Parameters

Frequently contract clauses can be refined by considering the flow of data across calls to
the module. For instance Listing 7 shows a procedure that replaces an item in an array by
another. This listing contains two atomicity violations: the element might not exist when
indexOf() is called; and the index obtained might be outdated when set() is executed.
Naturally, we can define a clause that forces the atomicity of this sequence of calls as
contains indexOf set, but this can be substantially refined by explicitly require that a
correlation exists between the indexOf() and set() calls. To do so we extend the contract
specification to capture the arguments and return values of the calls, which allows the
user to establish the relation of values across calls.

The contract can therefore be extended to accommodate this relations, in this case the
clause might be

contains(X) Y=indexOf(X) set(Y,_).
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This clause contains variables (X, Y) that must satisfy unification for the clause to be
applicable. The underscore symbol (_) represents a variable that will not be used (and
therefore requires no binding). Algorithm 1 can easily be modified to filter out the parsing
trees that correspond to calls that do not satisfy the unification required by the clause in
question (this can be done in the beginning of the loop of line 6).

The unification relation should not require an exact match between the terms of the
program. For example, the calls

array.contains(o); idx=array.indexOf(o+1); array.set(idx,n);

also implie a data dependency between the first two calls. We should say that A
unifies with B if, and only if, the value of A depends on the value of B, which can oc-
cur due to value manipulation (data dependency) or control-flow dependency (control
dependency). This can be obtained by an information flow analysis, such as presented
in [BC85], which can statically infer the variables that influenced the value that a variable
hold on a specific part of the program.

This extension of the analysis can be a great advantage for some types of modules. As
an example we rewrite the contract for the Java standard library class, java.util.ArrayList,
presented in Section 3.2:

1. contains(X) indexOf(X)

2. X=indexOf(_) (remove(X) | set(X,_) | get(X))

3. X=size() (remove(X) | set(X,_) | get(X))

4. add(X) indexOf(X).

This contract captures in detail the relations between calls that may be problematic,
and excludes from the contract sequences of calls that does not constitute atomicity vio-
lations.
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4
Prototype

A prototype was implemented to evaluate our static analysis, described in Chapter 3.
This tool verifies Java programs using Soot [VRCGHLS99], a Java static analysis frame-
work. This framework directly analyses Java bytecode, thus allowing compiled programs
to be verified, without requiring access to its source code, which often is not available,
specially for third-party libraries. The prototype goes by the name of “gluon” and is
publicly available in https://github.com/trxsys/gluon1.

We now give an overview of the several phases gluon performs to verify a program.
Gluon starts by searching the class that represents the module under analysis, and ex-
tracts its contract. The contract of the module is defined as an annotation of the class
representing the module under analysis. The next phase identifies all the possible entry
methods of threads that the program may launch. This will be described in Section 4.1.
The analysis proceeds by determining which methods are atomically executed in the pro-
gram, which will be addressed in Section 4.2. After this step is completed the contract
can then be verified. For each thread, the grammar that represents its behavior (Defini-
tion 2, page 26) is constructed. The words, i.e., sequences of methods call, of the contract
are parsed by the grammar, obtaining occurrences of that call sequence in the program.
Section 4.3 will discuss the parsing phase of the analysis.

This chapter will describe our prototype and the choices that are implementation-
specific and were left open in the analysis defined in Chapter 3.

1The README file contains instructions on how to use our tool.
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4. PROTOTYPE 4.1. Thread Detection

4.1 Thread Detection

It is simple to identify all possible thread entry points in a Java program. In Java, threads
can only start running in the main() method, and the run() method of classes that im-
plement, directly or indirectly, the java.lang.Runnable interface [DPL12]. In most cases
threads are implemented by extending the java.lang.Thread class and implementing the
run() method. The java.lang.Thread class itself extends the java.lang.Runnable inter-
face.

Gluon scans every class of the target program and collects all the information about
the methods matching the description above, identifying all the entry points of the threads
launched by the program.

4.2 Atomically Executed Methods

In our implementation a method can be marked atomic with a Java @Atomic method an-
notation. This annotation is in fact used to enforce the atomic execution of methods in
the Deuce Software Transactional Memory Library [KSF10].

As defined in Section 3.1, we say that a method is atomically executed if it is atomic or
if the method is always called by atomically executed methods. This way methods that
do not employ any synchronization mechanism but are always called by methods that
ensure atomic execution are considered atomically executed as well (by directly applying
a synchronization mechanism or by transitive application of this definition).

To gather this information our tool traverses the call graph for each thread, keeping
track of the context of the methods (executed in an atomic scope or not), and marking the
methods as atomically executed if so.

For example, consider the program shown in Listing 4.1 (left) and the corresponding
call graph (right). The double circle nodes corresponds to atomic methods (foo()) and
rectangular nodes denote atomically executed methods (foo(), f(), and h()). Since the
f() and h() methods are not called by an non-atomically executed method they inherit
the atomic executed status from foo(). If a method is also called in at least one non-
atomic context, e.g. g(), it will not be marked as atomically executed.

4.3 Parser

Our GLR parser is based on Tomita’s parser [Tom87]. Tomita presents a non-deterministic
version of the LR(0) parsing algorithm with some optimizations in the representation of
the parsing stack that improve the temporal and spacial complexity of the parsing phase.

Our implementation works mostly in the same way as Tomita’s parser, and imple-
ments one of its proposed optimization: parsing stack sharing. This allows parsing stacks
to be shared between different parsing branches that share an initial common history,
which greatly improves memory usage. A full Tomita’s parser would also implement
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1 void g() { }
2 void h() { g(); }
3 void f() { h(); }
4 void bar() { g(); }
5

6 void atomic foo()
7 {
8 f();
9 bar();
10 }
11

12 void run()
13 {
14 foo();
15 bar();
16 }

run foo

bar f

g h

Figure 4.1: Example of atomically executed methods.

a b c

a bC

aC

aB

aB

A

A

C → c

C → b c

B → bC

B → C

A→ aB

A→ aB

a b c

A

B

C

a b c

A

B

C

Figure 4.2: Example of parsing a word with two derivations.

parsing stack merging, i.e., when two parsing stacks of different branches reach a similar
state they are merged, reducing the number of branches to explore while preserving the
divergence in the history of the reductions applied.

To better understand how the parser work lets consider the following grammar.

A→ aB

B → bC | C

C → c | b c

This grammar is ambiguous, since the there are two ways to parse the word a b c.
Figure 4.2 exemplifies how our parser handle ambiguities. This figure shows the parsing
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of the word a b c in the grammar above. Initially we start with a b c, and each transition
applies a reduction to the word. (We omit shift actions for simplicity.) Accept nodes are
represented by a double rectangle. The first action of the parser is ambiguous, since two
reductions are applicable (C → c and C → b c). This creates two branches to explore
both alternative derivations. The figure shows both these derivations and the resulting
parsing trees for each branch.

4.4 Optimizations

To achieve a good time performance we implemented a few optimizations. The perfor-
mance of this prototype will be presented in Chapter 5, Section 5.2.

The time performance optimizations discussed here had a great impact on the anal-
ysis efficiency, and some of them are crucial to achieve an acceptable run time. Each
of these optimizations reduced the analysis run time, in some cases, by a few orders of
magnitude, without sacrificing precision.

Grammar Simplification The size of the grammar can get large, even with few calls
to the module. This impacts the performance of the parser, specially because the sub-
word grammar introduces many ambiguities in the grammar. The grammar can easily
be reduced by applying simple rewrite rules.

When constructing the grammar, most control flow graph nodes will have a single
successor. Rule 3.5 of Definition 2 (page 26) will always be applied to nodes of this type,
since they represent an instruction that does not call any function. This creates an unnec-
essarily large number of productions, with many redundant ambiguities in the grammar
due to the way the sub-words are added in G′t, described in Section 3.4.

To avoid exploring redundant parsing branches, we rewrite the grammar to trans-
form productions of the form A → B,B → C to A → C. This optimization reduced the
analysis time by one order of magnitude, considering the majority of the tests we per-
formed. Even such a simple optimization can have a big impact in the performance of
the parser. One of the tests performed (Elevator test) could not be analyzed in a accept-
able time prior to this optimization. The cost of this grammar reduction is negligible: it
was performed in less than 8 ms for all tests that will be presented in Chapter 5.

Partial Parsing Parsing an ambiguous grammar can lead to the exploration of redun-
dant parsing trees. This optimization prunes parsing trees, whenever we detect that we
are exploring a redundant derivation of a word.

Since the GLR parser builds the derivation tree bottom-up we can be sure to find
the lowest common ancestor of the terminals as early as possible. The lowest common
ancestors will be the first non-terminal in the tree that covers all the terminals of the parse
tree. The lowest common ancestor can be efficiently determined during the parsing phase
if we propagate bottom-up the number of terminals that each node of the tree covers.
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a b
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Figure 4.3: A parsing tree with no redundant loops (left) and with redundant loops
(right).

Whenever a lowest common ancestor is identified, we check if we already successfully
parsed a tree with that lowest common ancestor, and if so, we prune the current parsing
branch.

The correctness of this optimization lies in the fact that a lowest common ancestor
should only be reported once per contract word, since it represents the same occurrence
of that word in the code. This optimization was able to reduce the run time of the analysis
by two orders of magnitude for some of the tests.

Loop Detection As described in Section 3.4, we must handle loops during the parsing.
This is not an optimization, it is required to guarantee the termination of the parsing
algorithm (loops in the grammar can create parsing trees of infinite height).

To achieve a good performance we should prune parsing branches that generate un-
productive loops as soon as possible. Our implementation guarantees that the same non-
terminal never appears twice in a parsing tree without contributing to the recognition of
a new terminal. To do so we keep track of the number of terminals covered by each of the
nodes of the parsing tree. When a reduction creates a non-terminal that is already present
in the tree, we verify that the new non-terminal contributed to parse a new terminal. If
no new non-terminal was added to the tree this represents an unproductive loop and the
current parsing branch is abandoned.

Figure 4.3 exemplifies two parsing trees. The first tree (left) contains a repetition of the
non-terminalA, but is not redundant since it contributed to a new terminal (b). However
the second tree (right) adds a redundant reduction (A → Aε) and therefore this parsing
branch will be pruned. If this parsing branch was not abandoned it would create an
arbitrary height trees by successively application of the reduction A→ Aε.

In-depth Branch Exploration Tomita’s parsing algorithm explores the parsing branches
in-breadth. This means that the parser must maintain in memory many parsing branches
which are explored in pseudo-parallelism. By exploring the parsing branches in-breadth
Tomita’s parser guarantees that every finite derivation will eventually be parsed, even if
the grammar contains can generate infinite derivations.

We do not need to worry about infinite derivations since our parser detects and prune
parsing trees with unproductive loops. This enables us to explores the parsing branches
in-depth, improving the memory efficiency of our parser: only one parsing branch is
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Listing 8 Example of a program prepared to be analyzed by gluon.

1 @Contract(clauses="a b c;"
2 +"c c;")
3 class Module
4 {
5 public Module() { }
6 public void a() { }
7 public void b() { }
8 public void c() { }
9 }

10

11 public class Main
12 {
13 private static Module m;
14

15 private static void f() { m.c(); }
16

17 @Atomic
18 private static void g() { m.a(); m.b(); f(); }
19

20 public static void main(String[] args)
21 {
22 m=new Module();
23

24 for (int i=0; i < 10; i++)
25 if (i%2 == 0)
26 m.a();
27 else
28 m.b();
29

30 f();
31 g();
32 }
33 }

maintained in memory, and only after a branch is completely explored (either accepted,
rejected, or pruned) does the parser continues to explore another branch.

The worst case memory complexity is the same for both in-depth and in-breadth, but
in practice the memory usage is greatly improved by exploring the branches in-depth.

4.5 Using Gluon

To use gluon the class that represents the module to be analyzed must be annotated with
its contract. The name of module must be passed to gluon as an argument, since the tool
verifies only one module per run.

Listing 8 exemplifies a program prepared to be analyzed by gluon. The class Module

contains three dummy methods, a(), b(), and c(), and the @Contract annotation defines
the contract C = {a b c, c c}.

The analysis output given by gluon is:
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Checking thread Main.main():

Verifying word a b c:

Method: Main.g()

Calls Location: Main.java:18 Main.java:18 Main.java:15

Atomic: YES

Method: Main.main()

Calls Location: Main.java:26 Main.java:28 Main.java:15

Atomic: NO

Verifying word c c:

No occurrences

We can see that gluon detected one entry method of a thread, the starting point of the
program Main.main(). The words of the contract were then verified to be atomic in that
thread.

The sequence a b c can be executed in two locations, one beginning in method g(),
and another in method main(), by iterating the for loop at least twice. The occurrence of
the sequence of calls executed in g() is identified as atomically executed, and do not con-
stitute a violation of the contract. The second occurrence, called from main() is detected
as not atomically executed, which is a violation of the contract. Gluon also outputs the ex-
act lines where the calls are performed, making it easy for the programmer to understand
and fix the violation of the contract.

The second sequence of calls, c c, is never executed, since the method c() is only
called once by the program. Gluon correctly detects that no occurrences of that word
occurs in the program.
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5
Evaluation

In this chapter we will evaluate our implementation of the analysis, using the prototype
described in Chapter 4. Our evaluation will cover both the correctness and the efficiency
of our tool. The results that will be shown not only evaluate the analysis, but also the
implementation specific decisions and optimizations of the prototype.

To evaluate the proposed analysis we use a set of 15 tests adapted from the litera-
ture [VPG04; AHB03; AHB04; VPG04; LSTD11; Ibm; Pes11; BBA08]. These tests are small
Java programs that simulate real scenarios where an atomicity violation exist and lead to
undesirable behaviors of the programs. We modified the programs to employ a modular
design so that the code that cause the atomicity violation were encapsulated in a class.
Contracts for those classes were wrote in order to enforce the correct scope of calls from
the rest of the program. In some tests the contract contains extra clauses, that did not
lead to atomicity violations, but that should nonetheless belong to the contract since they
represent potential anomalies.

Appendix A describes each of the tests used in this chapter in detail. All the tests are
avaliable in the prototype repository in https://github.com/trxsys/gluon1.

Example To exemplify the types of tests executed, consider Listing 9. This listing shows
the original Account test, further covered in Appendix A, Section A.1. We adapted the
test so that the update() method became part of the client program. This method con-
tains a stale value error, since the current balance is obtained and modified in two sepa-
rate atomic steps. The balance obtained can be concurrently modified by another thread
which causing an atomicity violation.

1The README file contains instructions on how to run the tests presented in this section.
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Listing 9 Original Account test.

1 class Account
2 {
3 private int balance;
4

5 ...
6

7 public synchronized int getBalance()
8 {
9 return balance;

10 }
11

12 private synchronized void setBalance(int value)
13 {
14 balance=value;
15 }
16

17 void update(int a)
18 {
19 int tmp=getBalance();
20 tmp=tmp+a;
21 setBalance(tmp);
22 }
23 }

We wrote the contract C = {getBalance setBalance}, that specifies that a call to
getBalance followed by a call to setBalance should always be executed atomically by
the client program of the class Account.

The result of our tool was the following:

Checking thread Main.main():

Verifying word getBalance setBalance:

No occurrences

Checking thread Update.run():

Verifying word getBalance setBalance:

Method: Update.update()

Atomic: NO

Gluon correctly identified the two thread entry points of the program, Main.main()
and Update.run(). The first thread (Main.main()) does not contain the call sequence
getBalance setBalance. Our tool detects an instance of that sequence of calls in the sec-
ond thread (Update.run()), in the method update() of class Update, and warns the user
that that sequence is not executed atomically. To fix this atomicity violation the program
should make the reported method (update()) atomic, thus respecting the contract.
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Table 5.1: Validation results.

Test Threads Contract Violations Violations False
Words Detected (%) Positives

UnderReporting [VPG04] 2 1 1 100% 0
NASA [AHB03] 2 1 1 100% 0
Local [AHB03] 2 2 1 100% 0
StringBuffer [FF04] 1 1 1 100% 0
Jigsaw [VPG04] 2 1 1 100% 0
Coord04 [AHB04] 2 2 1 100% 0
Knight [LSTD11] 2 1 1 100% 0
Coord03 [AHB03] 5 4 1 100% 0
Account [VPG04] 2 4 2 100% 0
Allocate Vector [Ibm] 2 1 1 100% 0
VectorFail [Pes11] 2 2 1 100% 0
Store [Pes11] 3 1 1 100% 0
Connection [BBA08] 2 2 2 100% 0
Arithmetic DB [LSTD11] 2 2 2 100% 0
Elevator [VPG04] 2 2 2 100% 0

5.1 Validation

This section will present the validation results, that evaluate the analysis correctness and
precision. The validation results will show that our analysis can indeed identify the vio-
lations of the contract.

Table 5.1 summarizes the results of the validation tests. The columns represent the
number of threads’ starting methods (Threads); the number of words in the contract, i.e.,
|C| as defined in Algorithm 1 (Contract Words); the number of contract violations known
to be present in the client program (Violations); the percentage of violations present in
the client program that were detected (Violations Detected (%)); and the number of false
positives reported (False Positives).

Our tool was able to detect all violation of the contract performed by the client program,
so no false negatives occurred, which supports the soundness of the analysis. This is the
expected result since the analysis was designed to be conservative, i.e., take into account
all possible executions of the program under analysis.

Some tests include additional contract clauses with call sequences that are not con-
tained in the test programs. This shows that, in general, the analysis does not report
spurious violations, i.e., false positives. However, it is possible to create situations where
false positives occur. For instance, the analysis assumes that a loop may iterate an arbi-
trary number of times, which makes it consider execution traces that may not be possible.

It was also created a version of each tests where the atomicity violation was fixed,
by enclosing the calls in a new atomic region. This corrected version of the tests was
also verified and the prototype correctly detected that all contract’s call sequences in the
client program were now atomically executed, and the program no longer violates the
contract. Correcting a program is trivial since the prototype pinpoints the methods that
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Table 5.2: Performance results.

Test Client Client CFG Grammar Parsing Analysis Run
SLOC Nodes Productions Branches Time (ms)

UnderReporting 20 23 56 5 17
NASA 89 67 101 6 21
Local 24 18 46 7 17
StringBuffer 27 24 47 8 19
Jigsaw 100 45 104 9 25
Coord04 35 33 80 12 20
Knight 135 209 343 16 59
Coord03 151 112 187 23 27
Account 42 36 62 34 20
Allocate Vector 183 197 391 64 73
VectorFail 70 51 127 78 31
Store 621 559 892 197 136
Connection 74 69 194 298 51
Arithmetic DB 243 343 732 1048 161
Elevator 268 456 1030 188177 699

must be made atomic, and ensures that the synchronization required has the smallest
possible scope (since it is the method that corresponds to the lowest common ancestor of
the terminals in the parse tree).

5.2 Performance

This section discusses the performance that our tool achieved when the test benchmarks
were analyzed. The efficiency of a static analysis tool is an important subject since their
performance are often a limiting factor in real-world applications. This section will dis-
cuss the time and space efficiency of the analysis, which will show that our tool offers a
good performance.

The performance evaluation is presented in Table 5.2. The columns represent the
number of lines of the client program (Client SLOC); the number of nodes of the control
flow graph of the client program (Client CFG Nodes); the number of grammar produc-
tions in G′t for all threads t (Grammar Productions); the number of branches the parser
explored, including failed and pruned branches (Parsing Branches); and the analysis run
time (Analysis Run Time). The run time of the analysis includes detecting the threads,
identifying of the atomic methods, creating the grammar, creating the parsing table, and
the parsing time. This time excludes the Soot framework initialization time, that creates
the data structures used to represent the program that are then used by the analysis (see
Section 2.3.2). This initialization time was always 35± 5 s in the tests presented.

The run time of our analysis always took less than one second for all the tests. The
results show that our tool can run efficiently. The Elevator program is the slowest test,
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since the parser explores a reasonably large number of branches, but even so, the test
took little more that half a second to run. This high number of parse trees is due to the
complexity of the control flow of the program, which offer a high amount of distinct
control flow paths. In general the parsing phase will dominate the time complexity of the
analysis, so the analysis run time will be roughly proportional to the number of parsing
branches explored.

The analysis of large programs with a complex control flow might be problematic. To
analyze these programs where the number of control flow paths makes the analysis pro-
hibitively expensive we can limit the scope of the analysis to each class of the program.
This way we will have smaller grammars to be parsed, but we will fail to detect contract
violations that happens across different classes. This can easily be implemented by ignor-
ing method calls to external classes in the grammar generation (Rule 3.3 of Definition 2).
In this case a grammar must be generated for each possible entry point of the class, i.e.,
each public method that is called from outside the class (this can be easily obtained by
traversing the call graphs of the threads of the program).

Memory usage is not a problem for our analysis. The asymptotic space complexity is
determined by the size of the parsing table and the largest parsing tree. The memory us-
age will not be affected by the number of parsing trees because our GLR parser explores
the parsing branches in-depth instead of in-breadth. (In-depth exploration is possible
because we never have infinite height parsing trees due to our detection of unproductive
loops.)
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6
Conclusion

6.1 Concluding Remarks

Concurrent programming brings various challenges to modern programming languages,
that usually offer some kind of abstraction for modular design. Atomicity violations are
one of the most common causes of errors in concurrent programs and can be easy to
overlook when composing call to services of a modular component.

In this dissertation we present the problem of atomicity violations when using a mod-
ule, even when their methods are correctly synchronized by some concurrency control
mechanism. We propose a solution based on the design by contract methodology. In our
approach the developer of the module defines a contract that specifies which sequences
of calls to that module should be executed in an atomic manner, therefore avoiding po-
tential atomicity violations.

We introduced an interprocedural static analysis to verify these contracts. The pro-
posed analysis extracts the behavior of the client’s program with respect to the module
usage, and verifies whether the contract is respected. The extraction of the program’s be-
havior is flexible and can easily be adapted to other analysis that are based on the control
flow that the program might take.

We also propose two extensions that can greatly improve the expressiveness of the
contract, and how the verification algorithm can be adapted to verify these augmented
contracts.

A functional prototype was implemented and is publicly available. We evaluated our
approach with a set of known tests and the results suggest that our analysis is sound and
precise. Furthermore, the analysis show good performance results, making it suitable for
the verification of real-world applications.
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6.2 Future Work

The presented work suggests a few future projects that might significantly improve our
contributions:

• Evaluate different parsing algorithms in the verification phase. In particular study
the CYK and Earley algorithms, and the trade-offs between them and Tomita’s pars-
ing algorithm.

• The grammar obtained by Definition 2 can still be further simplified. It would be
interesting to evaluate the performance improvements that may arise from further
simplification, both in the parsing table creation and in the parsing procedure.

• As it stands the verification algorithm explicitly creates the sub-word grammar
from the original grammar. Modifying the parsing algorithm to accept sub-words,
from the original grammar, may be a interesting optimization, with significant per-
formance improvements, specially because redundant ambiguities are introduced
in the sub-word grammar by this step.

• Try to automatically infer an initial version of the contract from the module’s code.
This is especially interesting if we consider the expressiveness of contracts with
parameters as described in Section 3.5.2.

• The analysis can be improved with points-to analysis. This allows the analysis to
take into account different instances of a class as distinct modules, which is helpful
in an object-oriented programming language like Java.

• Another possible direction that may be worth exploring is using the analysis to au-
tomatically enforce the atomicity of the sequences of calls specified by the contract,
requiring no explicit synchronization in the source code.

• Implement and evaluate the extensions to the analysis proposed in Section 3.5. In
particular adding parameters to the contract greatly enhance the description of po-
tential atomicity violations.

• Further evaluation with real-world applications.
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A
Appendix

This Appendix describes each of the tests use to validate our approach, whose results
were presented in Chapter 5.

All the tests are avaliable in the prototype repository, in https://github.com/

trxsys/gluon.

A.1 Account

This test consists on a simple program that simulates concurrent deposits on a bank ac-
count. This test was adapted from [VPG04]. Listing 10 illustrates the Account class (right)
and the client of that class (left). Both methods offered by the class Account are atomic.
The client code increments the account balance by performing two calls, one to obtain the
current balance and the other to update it.

Atomicity Violation There is a stale value error in the update() method. This method
obtains the current balance of the account and then updates it, adding v. This can lead to
an atomicity violation if concurrent threads are performing the same operation, since the
balance obtain in line 2 may be outdated when the balance is updated in line 4.

Contract The contract defined for the class Account is

1. getBalance setBalance

2. setBalance getBalance

The first clause captures the atomicity violation present in update(). The second
clause can also potentially represent a atomicity violation. In this case no sequence of
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Listing 10 Account test.

1 void update(int v)
2 {
3 int tmp=account.getBalance();
4 tmp=tmp+v;
5 account.setBalance(tmp);
6 }

1 @Contract(clauses=
2 "getBalance setBalance;"
3 +"setBalance getBalance;")
4 class Account
5 {
6 int balance;
7

8 @Atomic
9 int getBalance()
10 {
11 return balance;
12 }
13

14 @Atomic
15 void setBalance(int value)
16 {
17 balance = value;
18 }
19 }

Listing 11 Allocate Vector test.

1 void alloc_block(int i)
2 {
3 int blk=vector.getFreeBlock();
4 if (blk != -1)
5 vector.markAsAlloced(blk);
6 }

1 @Contract(clauses=
2 "getFreeBlock markAsAlloced;")
3 class AllocationVector
4 {
5 ...
6

7 // search and return an index of
8 // a free block
9 @Atomic
10 int getFreeBlock() { ... }
11

12 // mark block i as alloced
13 @Atomic
14 void markAsAlloced(int i)
15 { ... }
16 }

calls that match the second clause is made by the program.

A.2 Allocate Vector

This test contains a vector that is shared across threads. Threads use the vector as a
memory pool to allocate blocks of memory. This test was adapted from [Ibm]. Listing 11
shows the AllocationVector class (right) and the client of that class (left). Both methods
offered by the class AllocationVector are atomic. The client code obtains an index of a
free block and, unless none exists, mark the block as used.

Atomicity Violation There is a stale value error in the alloc_block() method. This
method obtains a free block and marks it as used in two atomic operations. This can lead
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Listing 12 Arithmetic Database test.

1 @Atomic
2 int get_key_by_result(int result)
3 {
4 for (Pair<Int,Int> t: res_table)
5 if (t.v == result)
6 return t.k;
7 return -1;
8 }
9

10 void insert_expression(Expression exp)
11 {
12 int expv=exp.eval();
13 int fkey=get_key_by_result(expv);
14

15 if (fkey < 0)
16 {
17 fkey=res_table.get_max_key();
18 fkey=(fkey == null) ? 0 : fkey+1;
19 res_table.insert(fkey,expv);
20 }
21 exp_table.insert(exp,foreign_key);
22 }

1 @Contract(clauses
2 ="get_max_key insert;"
3 +"iterator insert;")
4 class Table<K,V>
5 {
6 ...
7

8 @Atomic
9 K get_max_key() { ... }
10

11 @Atomic
12 void insert(K k, V v)
13 { ... }
14

15 @Atomic
16 Iterator<Pair<Int,Int>>
17 iterator()
18 { ... }
19 }

to an atomicity violation: a block being allocated by multiple threads, since the block may
not be free when it is marked as used.

Contract The contract defined for the class AllocateVector is

1. getFreeBlock markAsAlloced

A.3 Arithmetic Database

This test simulates a simple database with two tables. The database maintains a set of
arithmetic expressions and the corresponding values in two table. The expression table,
exp_table, associates expressions with an external key that references the result table,
res_table. The result table keeps the values of those expressions. This test was adapted
from [LSTD11]. Listing 12 shows the Table class (right) and the client of that class (left).
All methods offered by the class Table are atomic. The program adds new expressions
to the database. If there is already the value of the expression in the result table it only
creates a new entry in the expression table, referencing that value. Otherwise it also
creates a new entry in the result table with the value of the expression.

Atomicity Violation There are two atomicity violations in the client program:

1. Before adding the expression the client verifies if its value already exists in the re-
sult table, if it does not exist it creates a new entry in that table in another atomic
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operation. Meanwhile a concurrent thread could also insert that value in the result
table leading to a double insertion of the same value.

2. The foreign key is obtained by adding one to the key of highest value in the result
table. A concurrent thread might obtain the same foreign key and overwrite this
insertion.

Contract The contract defined for the class Table is

1. iterator get_max_key

2. get_max_key insert

A.4 Connection

In this test multiple threads use a connection represented by the class Connection. This
class also keeps a counter of the number of messages sent through the current socket.
This test was adapted from [BBA08]. Listing 13 shows the Connection class (right) and
the client of that class (left). All methods offered by the class Connection are atomic.

Atomicity Violation There are two atomicity violations in the client program:

1. The disconnect() method closes the connection and resets the message counter in
two atomic phases. A concurrent thread may see an inconsistent state where the
socket is closed but the counter is non-zero.

2. The trySendMessage() method checks if the socket is open before sending a mes-
sage. Meanwhile a concurrent thread may close the connection before the message
is sent.

Contract The contract defined for the class Connection is

1. isConnected send

2. resetSocket resetCounter

A.5 Coordinates’03

In this test multiple threads access a pair of integers concurrently. This test was adapted
from [AHB03]. Listing 14 shows the Var class (right) and the client of that class (left). All
methods offered by the class Var are atomic.

Atomicity Violation The client program obtain the x and y variables in two atomic
operations. A concurrent thread may modify the variables causing an inconsistent values
to be read.
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Listing 13 Connection test.

1 void disconnect()
2 {
3 connection.resetSocket();
4 connection.resetCounter();
5 }
6

7 boolean trySendMsg(String msg)
8 {
9 if (connection.isConnected())
10 {
11 connection.send(msg);
12 return true;
13 }
14

15 return false;
16 }

1 @Contract(clauses
2 ="isConnected send;"
3 +"resetSocket resetCounter;")
4 class Connection
5 {
6 int counter;
7 Socket socket;
8

9 ...
10

11 @Atomic
12 void resetCounter()
13 {
14 counter=0;
15 }
16

17 @Atomic
18 void resetSocket()
19 {
20 socket.close();
21 }
22

23 @Atomic
24 boolean isConnected()
25 {
26 return !socket.isClosed();
27 }
28

29 @Atomic
30 void send(String msg)
31 {
32 socket.send(msg);
33 counter++;
34 }
35 }

Contract The contract defined for the class Vars is

1. getX getY

2. getY getX

3. getX getY

4. getY getX

A.6 Coordinates’04

In this test multiple threads access a pair of integers concurrently. This test was adapted
from [AHB04]. Listing 15 shows the Coord class (right) and the client of that class (left).
All methods offered by the class Coord are atomic.
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Listing 14 Coordinates’03 test.

1 void run()
2 {
3 int x=v.getX();
4 int y=v.getY();
5 use(x,y);
6 }

1 @Contract(clauses="getX getY;"
2 +"getY getX;"
3 +"setX setY;"
4 +"setY setX;")
5 class Vars
6 {
7 int x = 0;
8 int y = 0;
9

10 ...
11

12 @Atomic
13 int getX() { return x; }
14

15 @Atomic
16 void setX(int x) { this.x=x; }
17

18 @Atomic
19 int getY() { return y; }
20

21 @Atomic
22 void setY(int y) { this.y=y; }
23 }

Atomicity Violation The client program resets x and y variables in two atomic opera-
tions. A concurrent thread may read the variables in the middle of the reset, reading an
inconsistent state.

Contract The contract defined for the class Coord is

1. resetX resetY

2. resetY resetX

A.7 Elevator

In this test multiple threads control a set of elevators concurrently. This test was adapted
from [VPG04]. Listing 16 shows the Controls class (right) and the client of that class (left).
All methods offered by the class Controls are atomic. The threads periodically verify if
the elevator needs to go up or down with the methods checkUp()/checkDown() and move
the elevator up or down accordingly with claimUp()/claimDown().

Atomicity Violation The client program may verify that the elevator need to go up, but
a concurrent thread may order the elevator to go up. This will order the elevator to go
up twice.

Contract The contract defined for the class Controls is
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Listing 15 Coordinates’04 test.

1 void reset()
2 {
3 coord.resetX();
4 coord.resetY();
5 }

1 @Contract(clauses="resetX resetY;"
2 +"resetY resetX;")
3 class Coord
4 {
5 int x=0;
6 int y=0;
7

8 ...
9

10 @Atomic
11 void swap()
12 {
13 int oldX=x;
14 x=y;
15 y=oldX;
16 }
17

18 @Atomic
19 void resetX()
20 {
21 x=0;
22 }
23

24 @Atomic
25 void resetY()
26 {
27 y=0;
28 }
29 }

1. checkUp claimUp

2. checkDown claimDown

A.8 Jigsaw

In this test concurrent threads concurrently access a pool of resources. This test was
adapted from [VPG04]. Listing 17 shows the ResourceStoreManager class (right) and the
client of that class (left). All methods offered by the class ResourceStoreManager are
atomic. The method loadResourceStore() returns a resource store given a resource store
manager an a resource.

Atomicity Violation The method loadResourceStore() verifies that the resource store
manager is not closed before executing a lookup. A concurrent thread can close the re-
source store manager thus and an invalid resource store is added to a closed store man-
ager and is returned.

Contract The contract defined for the class ResourceStoreManager is
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Listing 16 Elevator test.

1 boolean up(Controls c,
2 String lift,
3 int floor)
4 {
5 if (c.checkUp(floor))
6 {
7 c.claimUp(floor);
8 return true;
9 }

10

11 return false;
12 }

1 @Contract(clauses="checkUp claimUp;"
2 +"checkDown claimDown;")
3 class Controls
4 {
5 Floor[] floors;
6

7 ...
8

9 @Atomic
10 void claimUp(int floor)
11 {
12 ...
13 }
14

15 @Atomic
16 boolean checkUp(int floor)
17 {
18 ...
19 }
20 }

1. checkClosed lookupEntry

A.9 Knight

In this test concurrent threads concurrently try to find a best solution to shortest path
in a chess board, restricted to the legal moves a knight can do. This test was adapted
from [LSTD11]. Listing 18 shows the KnightMoves class (right) and the client of that class
(left). All methods offered by the class KnightMoves are atomic. The threads concurrently
perform a depth first search in the board and the class KnightMoves keeps the minimum
number of moves used to reach a place in the chess board.

Atomicity Violation The method check__solution() verifies that it has found a better
solution than the current one. If this is the case the new solution is updated but since the
operations are executed in two atomic operations the solution verified may be outdated
and the current solution is overwritten.

Contract The contract defined for the class KnightMoves is

1. get_solution get_solution

A.10 Local

This is a very simple test where the module represents an integer. Multiple threads in-
crement that integer concurrently. This test was adapted from [AHB03]. Listing 19 shows
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Listing 17 Jigsaw test.

1 ResourceStore
2 loadResourceStore(
3 ResourceStoreManager r,
4 Object k)
5 {
6 Entry e;
7

8 if (r.checkClosed())
9 return null;
10

11 e=r.lookupEntry(k);
12 return e.getStore();
13 }

1 @Contract(clauses
2 ="checkClosed lookupEntry;")
3 class ResourceStoreManager
4 {
5 boolean closed=false;
6 Map entries=new HashMap();
7

8 ...
9

10 @Atomic
11 boolean checkClosed()
12 {
13 return closed;
14 }
15

16 @Atomic
17 Entry lookupEntry(Object key)
18 {
19 Entry e=entries.get(key);
20 if (e == null)
21 {
22 e=new Entry(key);
23 entries.put(key, e);
24 entries=null;
25 }
26 return e;
27 }
28

29 @Atomic
30 void shutdown()
31 {
32 entries.clear();
33 closed=true;
34 }
35 }

the Cell class (right) and the client of that class (left). All methods offered by the class
Cell are atomic.

Atomicity Violation The method inc() obtains the value of the cell, increments it and
stores the new value. This value can be outdated when it is stored thus annulling a
concurrent modification.

Contract The contract defined for the class Cell is

1. getValue setValue

2. setValue getValue
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Listing 18 Knight test.

1 void check_solution(
2 KnightMoves km,
3 Point p,
4 int moves)
5 {
6 if (km.get_solution(p) > moves)
7 km.set_solution(p,moves);
8 }

1 @Contract(clauses
2 ="get_solution set_solution;")
3 public class KnightMoves
4 {
5 // solution[x][y] is the current
6 // best way to reach (x,y)
7 private int solution[][];
8

9 ...
10

11 @Atomic
12 int get_solution(Point p)
13 {
14 return solution[p.x][p.y];
15 }
16

17 @Atomic
18 void set_solution(Point p, int m)
19 {
20 solution[p.x][p.y]=m;
21 }
22 }

A.11 NASA

In this test multiple threads concurrently execute tasks. Each tasks requires some proper-
ties to be acquired and must hold during its execution. To acquire a property the task sets
its value and marks it as achieved. Concurrent events may change or remove properties.
This test was adapted from [AHB03]. Listing 20 shows the TaskManager class (right) and
the client of that class (left). All methods offered by the class TaskManager are atomic.

Atomicity Violation The method run_task() sets the value of a property and acquire
that property, marking it as achieved. Another event may trigger a concurrent task that
removes that property, but the current task will still mark the property as achieved.

Contract The contract defined for the class TaskManager is

1. setValue setArchieved

A.12 Store

This test simulates a store were threads dispatch orders from a queue. Concurrent threads
check the queue for new orders, dispatch them, and add the sale to a log. This test was
adapted from [Pes11]. Listing 21 shows the Store class (right) and the client of that class
(left). All methods offered by the class Store are atomic.
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Listing 19 Local test.

1 void inc()
2 {
3 int tmp;
4 tmp=x.getValue();
5 tmp++;
6 x.setValue(tmp);
7 }

1 @Contract(clauses
2 ="getValue setValue;"
3 +"setValue getValue;")
4 class Cell
5 {
6 int n=0;
7

8 @Atomic
9 int getValue()

10 {
11 return n;
12 }
13

14 @Atomic
15 void setValue(int x)
16 {
17 n=x;
18 }
19 }

Atomicity Violation Threads check the order queue for pending orders. If so, that order
is treated and added to the log of sales. A concurrent thread may treat that order leaving
no remaining orders pending. In this case a null will be returned by treatOrder() and
added to the sales log.

Contract The contract defined for the class Store is

1. hasOrders treatOrder

A.13 String Buffer

This test is based on java.lang.StringBuffer. This test was adapted from [FF04]. List-
ing 22 shows the StringBuffer class (right) and the client of that class (left). All methods
offered by the class StringBuffer are atomic.

Atomicity Violation The method append() copies the other buffer to an auxiliary char

array. This copies exactly len characters from the buffer, but this value may be outdated
if a concurrent thread modifies other.

Contract The contract defined for the class StringBuffer is

1. length getChars
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Listing 20 NASA test.

1 void run_task()
2 {
3 tm.setValue(v,n);
4 tm.setAchieved(v,n);
5

6 ...
7 }

1 @Contract(clauses="setValue setAchieved;")
2 class TaskManager
3 {
4 Cell[] table;
5

6 ...
7

8 @Atomic
9 void setValue(Object v, int n)
10 {
11 table[n].value=v;
12 }
13

14 @Atomic
15 void setAchieved(Object v, int n)
16 {
17 table[n].achieved=true;
18 }
19 }

Listing 21 Store test.

1 while (true)
2 {
3 waitForClients();
4

5 if (store.hasOrders())
6 {
7 Order o=store.treatOrder();
8 addLog(o);
9 }

10 }

1 @Contract(clauses
2 ="hasOrders treatOrder;")
3 class Store
4 {
5 @Atomic
6 boolean hasOrders()
7 {
8 ...
9 }
10

11 @Atomic
12 Order treatOrder()
13 {
14 ...
15 }
16 }

A.14 Under-Reporting

This is a very simple test where the module represents a counter. Multiple threads incre-
ment that counter concurrently. This test was adapted from [FF04]. Listing 23 shows the
Counter class (right) and the client of that class (left). All methods offered by the class
Counter are atomic.

Atomicity Violation The method double() obtains the current value of the counter and
adds it to itself in two atomic operations. The value read from the counter may be out-
dated if a concurrent thread modifies it, breaking the semantics of the method.

Contract The contract defined for the class Counter is
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Listing 22 String Buffer test.

1 void append(StringBuffer t,
2 StringBuffer other)
3 {
4 int len=other.length();
5 char[] value=new char[len];
6

7 other.getChars(0,len,value,0);
8

9 ...
10 }

1 @Contract(clauses="length getChars;")
2 class StringBuffer
3 {
4 ...
5

6 @Atomic
7 int length()
8 {
9 ...

10 }
11

12 @Atomic
13 void getChars(int srcBegin,
14 int srcEnd,
15 char[] dst,
16 int dstBegin)
17 {
18 ...
19 }
20 }

Listing 23 Under-Reporting test.

1 void double()
2 {
3 int i=c.inc(0);
4 c.inc(i);
5 }

1 @Contract(clauses="inc inc;")
2 class Counter
3 {
4 int i;
5

6 ...
7

8 @Atomic
9 int inc(int a)

10 {
11 i+=a;
12 return i;
13 }
14 }

1. inc inc

A.15 Vector Fail

In this test the module maintains a pair of integers. Concurrent threads update the pair
such that one of the elements is twice of the other. This test was adapted from [FF04].
Listing 24 shows the Vector class (right) and the client of that class (left). All methods
offered by the class Vector are atomic.

Atomicity Violation The method setVector() sets the pair to (v, 2v), updating each
component in an atomic operation. A concurrent thread may modify the pair in the
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Listing 24 Under-Reporting test.

1 void setVector(Vector vector, int v)
2 {
3 vector.setElements(v, 2*v);
4

5 int max=vector.getMax();
6 int min=vector.getMin();
7

8 assert max == 2*min;
9 }

1 @Contract(clauses = "getMax getMin;"
2 +"getMin getMax;")
3 class Vector
4 {
5 int first;
6 int second;
7

8 ...
9

10 @Atomic
11 int getMax()
12 {
13 ...
14 }
15

16 @Atomic
17 int getMin()
18 {
19 ...
20 }
21 }

middle of the update, breaking the invariant.

Contract The contract defined for the class Vector is

1. getMax getMin

2. getMin getMax
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