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ABSTRACT
This paper explores the practicality of conducting program 
analysis for multithreaded software using constraint solv
ing. By precisely defining the underlying memory consis
tency rules in addition to the intra-thread program seman
tics, our approach offers a unique advantage for program ver
ification — it provides an accurate and exhaustive coverage 
of all thread interleavings for any given memory model. We 
demonstrate how this can be achieved by formalizing sequen
tial consistency for a source language that supports control 
branches and a monitor-style mutual exclusion mechanism. 
We then discuss how to formulate programmer expectations 
as constraints and propose three concrete applications of this 
approach: execution validation, race detection, and atom
icity analysis. Finally, we describe the implementation of 
a formal analysis tool using constraint logic programming, 
with promising initial results for reasoning about small but 
non-trivial concurrent programs.
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mantics of Programming Languages; D.2.4 [Software En
gineering]: Software/Program Verification

General Terms
Languages, Verification, Reliability

Keywords
Multithreaded programming, constraint solving, data races, 
race conditions, atomicity, memory consistency models, static 
checking

*This work was supported in part by Research Grant 
No. CCR-0081406 (ITR Program) of NSF and SRC Task 
1031.001.

1. INTRODUCTION
Unlike a sequential program, which simply requires that 

each read observes the latest write on the same variable ac
cording to program order, a multithreaded program has to 
rely on the thread semantics (also known as the memory 
model) to define its legal outcome in a shared memory en
vironment. The most commonly known memory model is 
sequential consistency (SC) [1]. As a natural extension to 
the sequential model, sequential consistency requires that (i) 
operations of all threads can exhibit a total order, (ii) op
erations of each individual thread appear in this total order 
following program order, and (iii) a read observes the lat
est write on the same variable according to this total order. 
Many weaker shared memory systems (see [2] for a survey) 
have also been developed to enhance performance.

Java is the first widely deployed programming language 
that provides built-in threading support at the language 
level. Unfortunately, developing a rigorous and intuitive 
Java Memory Model (JMM) has turned out to be very diffi
cult. The existing JMM is flawed [3] due to the lack of rigor. 
It is currently under an official revision process and a new 
JMM draft [4] is proposed for community review.

Although multithreading provides a powerful program
ming paradigm for developing well structured and high per
formance software, it is also notoriously hard to get right. 
Programmers are torn on the horns of a dilemma regarding 
the use of synchronization: too much may impact perfor
mance and risk deadlock, too little may lead to race con
ditions and application inconsistency. Therefore, a formal 
analysis about thread behaviors is often needed to make a 
program more reliable. However, this can become a daunt
ing task with a traditional pencil-and-paper approach.

For example, one common analysis is race detection. Con
sider program 1 in Figure 1 (taken from [4]), where each 
thread issues a read and a conditional write. Does this pro
gram contain data races? At the first glance, it may appear 
that the answer is “yes” since it seems to fit the conventional 
intuition about a race condition — two operations from dif-

Thread 1 Thread 2
r1 = x; 
if(r1 > 0)

y = 1;

r2 = y; 
if(r2 >= 0) 

x = 1;
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r2 = y; 
if(r2 > 0) 

x = 1;

(a) Program 1 (b) Program 2

Figure 1: Initially, x =  y =  0. Are these programs 
race-free?
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software, because a property that is satisfied under one 
memory model can be easily broken under another.

• Program properties such as race conditions and atom
icity need to be formalized because informal intuitions 
often lead to inaccurate results.

Thread 1 (Deposit) Thread 2 (Withdraw)
Lock 11; Lock 11;
r1 = balance; r3 = balance;
Unlock 11; Unlock 11;

r2 = r1 + 1; 1;—3rr

Lock 11; Lock 11;
balance = r2; balance = r4;
Unlock 11; Unlock 11;

Figure 2: The transactions are not atomic even 
though the program is race-free.

ferent threads (e.g., r1 = x in thread 1 and x = 1 in thread 
2) attempt to access the same variable without explicit syn
chronization, and at least one of them is a write. However, a 
more careful analysis reveals that the control flow of the pro
gram, which must be consistent with the read values allowed 
by the memory model, needs to be considered to determine 
whether certain operations will ever happen. Therefore, be
fore answering the question, one must clarify what memory 
model is assumed. With sequentially consistent executions, 
for instance, the branch conditions in program 1 will never 
be satisfied. Consequently, the writes can never be executed 
and the code is race-free. Now consider program 2 in Fig
ure 1, where the only difference is that the branch condition 
in Thread 2 is changed to r2 >= 0. Albeit subtle, this 
change would result in data races.

Another useful analysis is execution validation, which is 
for verifying whether a certain outcome is permitted. This 
can help a programmer understand the memory ordering 
rules and aid them in code selection. Similar to a race anal
ysis, data/control flow must be tracked for execution val
idation. For multithreaded programs, data/control flow is 
interwoven with shared memory consistency requirements. 
This makes it extremely hard and error-prone to hand-prove 
thread behaviors, even for small programs.

The atomicity requirement is also frequently needed to en
sure that a set of operations appears to be executed atomi
cally. As pointed out in previous publications (e.g., [5] [4]), 
the absence of race conditions does not guarantee the ab
sence of atomicity violations. For example, consider the 
program in Figure 2 (adapted from [5]). Thread 1 and 2 
respectively implement the deposit and withdraw transac
tions for a bank account. This program is race-free because 
all accesses to the global variable balance are protected by 
the same lock. If these two threads are issued concurrently 
when balance is initially 1, balance should remain the same 
after the program completes if implemented properly. But 
due to the use of local variables, one thread can interleave 
with another while in a “transient” state. Consequently, 
the final balance can be 0, 1, or 2 depending on the schedul
ing, which is clearly not what has been intended. Hence, it 
would be highly desirable to have a systematic approach to 
specifying and verifying such programmer expectations.

From these examples, several interesting conclusions can 
be drawn.

• The precise thread semantics, in addition to the intra
thread program semantics, must be taken into account 
to enable a rigorous semantics analysis of multithreaded

• An automatic verification tool with exhaustive cover
age is extremely valuable for general software devel
opment purposes because thread behaviors are often 
confusing.

Based on these observations, we propose a systematic ap
proach for reasoning about multithreaded software. Our key 
insight is that by capturing thread semantics and correctness 
properties as constraints, we can reduce a verification prob
lem to a constraint satisfaction problem or an equivalent 
boolean satisfiability problem, thus allowing us to employ 
an efficient constraint/SAT solver to automate the analysis. 
Using a verification tool harnessed with these techniques, we 
can configure the underlying memory model, select a pro
gram property of interest, take a test program as input, and 
verify the result automatically under all executions. Exist
ing analysis tools tend to concentrate on efficiency and scal
ability. While these are highly worthy goals, there is also a 
clear need for supporting exhaustive analysis. To the best 
of our knowledge, there has not been a generic constraint- 
based tool that enforces precise shared memory consistency 
requirements.

This paper offers the following contributions. (i) We de
velop a formal executable specification of sequential consis
tency for a non-trivial source language that supports the 
use of local variables, computations, control branches1, and 
a monitor-like mechanism for mutual exclusion. One key re
sult of this paper is to show that it is feasible and beneficial 
to precisely capture both program semantics (including local 
data dependence and local control dependence) and memory 
model semantics in the same setting. As far as we know, no 
one has provided such a formal executable specification. (ii) 
We propose a method to formulate program properties as 
constraints and automatically verify them using constraint 
solving. In particular, we formalize the conditions of three 
critical safety properties: execution legality, race conditions, 
and atomicity requirements. (iii) We build a tool using con
straint logic programming (CLP) and report the experiences 
gained during the implementation.

The rest of the paper proceeds as follows. In Section 2, 
we provide an overview of our approach. Section 3 describes 
the source language used as the basis of our presentation. In 
Section 4, we apply our approach for execution validation. 
Race conditions and atomicity requirements are formalized 
in Section 5 and 6, respectively. We discuss the implemen
tation of our prototype tool in Section 7. Related work is 
reviewed in Section 8. We conclude and explore future work 
in Section 9. The detailed formal specification is presented 
in the Appendix.

2. OVERVIEW
The approach is based on our previously developed spec

ification framework called Nemos (Non-operational yet Ex
ecutable Memory Ordering Specifications) [6] [7]. Nemos

1 Currently our formal executable specification does not di
rectly support loops.



Figure 3: The processing flow of our approach.

defines a memory model in a declarative style using a col
lection of ordering rules. The processing flow of our verifica
tion methodology is shown in Figure 3, which comprises the 
following steps: (i) capturing the semantics of the source 
language, including the thread semantics, as constraints,
(ii) formalizing program properties as additional constraints,
(iii) applying these constraints to a given test program and 
reducing the verification problem to a constraint satisfac
tion problem, and (iv) employing a suitable tool to solve 
the constraint problem automatically.

2.1 Specifying the Constraints
We use predicate logic to specify the ordering constraints 

imposed on an ordering relation order. To make our speci
fications compositional and executable, our notation differs 
from previous formalisms in two ways. First, we employ a 
modest extension of predicate logic to higher order logic, i.e. 
order can be used as a parameter in a constraint definition, 
so that new refinements to the ordering requirement can be 
conveniently added. This allows us to construct a complex 
model using simpler components. Second, our specifications 
are fully explicit about all ordering properties, including pre
viously implicit requirements such as totality, transitivity, 
and circuit-freedom. Without explicating such “hidden” re
quirements, a specification is not complete for execution.

2.2 Solving the Constraints
After the language semantics and program properties are 

specified as constraints, they can be applied to a finite exe
cution trace. This process converts the system requirements 
from higher order logic to propositional logic.

The Algorithm: Given a test program P , we first derive 
its execution ops from the program text in a preprocess
ing phase. The initial execution is fully symbolic, that is, 
ops may contain free variables, e.g., for data values and or
dering relations. Suppose ops has n operations, there are 
n2 ordering pairs among these operations. We construct a 
n x n adjacency matrix M, where the element Mij indicates 
whether operations i and j  should be ordered. We then go 
through each requirement in the specification and impose 
the corresponding propositional constraints with respect to 
the elements of M. The goal is to find a binding of the 
free variables in ops such that it satisfies the conjunction of 
all requirements or to conclude that no such binding exists. 
This is automated using a constraint solver.

3. THE SOURCE LANGUAGE
This section develops the formal semantics of sequential 

consistency for a source language that supports many com

mon programming language constructs. The choice of using 
sequential consistency as the basis of our formal develop
ment is motivated by two factors. (i) SC is often the implic
itly assumed model during software development, i.e., many 
algorithms and compilation techniques are developed under 
the assumption of SC. (ii) Many weak memory models, in
cluding the new JMM draft, define pivotal properties such 
as race-freedom using SC executions. Providing such an 
executable definition of race conditions will provide a solid 
foundation based on which a full-featured Java race-detector 
can be built.

Although this paper formalizes only SC, our framework is 
generic and allows an arbitrary memory model to be “plugged- 
into” the system for a formal comparison analysis. In our 
previous work, we have already applied Nemos to build a 
large variety of memory model specifications, including the 
Intel Itanium Memory Model [7] and a collection of classical 
memory models [6], such as sequential consistency, coher
ence, PRAM, causal consistency, and processor consistency.

Our previous specification of sequential consistency in [6] 
only deals with normal read and write operations. While 
this is sufficient for most processor level memory systems, 
it is not enough for describing language level thread activi
ties. In order to handle more realistic programs, this paper 
extends the previous model by supporting a language that 
allows the use of local variables, computation operations, 
control branches, and synchronization operations.

3.1 Terminology
Variables: Variables are categorized as global variables, 
local variables, control variables, and synchronization vari
ables. Global and synchronization variables are visible to all 
threads. Local and control variables are thread local. Con
trol variables do not exist in the original source program — 
they are introduced by our system as auxiliary variables for 
control operations. Synchronization variables correspond to 
the locks employed for mutual exclusion. In this paper, we 
follow a convention that uses x, y for global variables, r1, 
r2 for local variables, c1, c2 for control variables, 11, 12 for 
synchronization variables, and 0, 1 for primitive data values.

Instruction: An instruction corresponds to a program state
ment from the program text. The source language has a 
syntax similar to Java, with Lock and Unlock inserted cor
responding to the Java keyword synchronized. It supports 
the following instruction types:

Read: e.g., r1 = x
Write: e.g., x = 1, or x = r1
Computation: e.g., r1 = r2 + 1
Control: e.g. if (r1 > 0)
Lock: e.g. Lock l1
Unlock: e.g. Unlock l1

Execution: An execution consists of a set of symbolic exe
cution instances generated by program instructions, each of 
which is called an operation. We assume that the expression 
involved in a computation or control operation only uses lo
cal variables. That is, if the original instruction performs a 
computation on global variables, it will be divided into read 
operations followed by computation operations.

Operation Tuple: An operation i is represented by a tuple. 
For brevity, we use a common data structure to represent



all operations, even though some of the fields are only used 
by certain operations. The tuple representation is as follows:

(t,pc, op, var, data, local, localData, cmpExpr, ctrExpr, locfc, 
match/D,id), where

t i = t : 
pc i = pc: 
op i = op : 
var i = var : 
data i = data : 
local i = local : 
localData i = localData : 
cmpExpr i = cmpExpr : 
ctrExpr i = ctrExpr : 
lock i = locfc : 
matchID i = match/D : 
id i = id :

thread ID 
program counter 
operation type 
global variable 
data value 
local variable
data value for local variable 
computation expression 
path predicate 
lock
ID of the matching lock 
global ID of the operation

For every global variable x, there is a default write opera
tion for x, with the default value of x and a special thread ID 
tinit. We assume Lock and Unlock operations are properly 
nested. Each trailing Unlock stores the id of the matching 
Lock in its match/D field.

3.2 Semantics

3.2.1 Control Flow
It is a major challenge to specify control flow in the con

text of nondeterministic thread interleavings. We solve this 
problem by (i) transforming control related operations to 
auxiliary reads and writes using control variables and (ii) 
imposing a set of consistency requirements on the “reads” 
and “writes” of control variables similar to that of normal 
reads and writes. The detailed steps are as follows:

• For each branch instruction i, say if  (p), add a unique 
auxiliary control variable c, and transform instruction
i to an operation i' with the format of c = p. Operation 
i' is said to be a control operation (op i' = Control), 
and can be regarded as an assignment to the control 
variable c.

• Every operation i has a ctrExpr field that stores its 
path predicate, which is a boolean expression on a set of 
control variables dictating the condition for i to be exe
cuted. An operation i can be regarded as a usage of the 
involved control variables in the path predicate. With
out loops, the path predicate for every operation can 
be determined during the preprocessing phase. This 
can be achieved based on a thread local analysis since 
control variables are thread local.

• An operation i is feasible if its ctrExpr field evaluates 
to True. We define a predicate fb to check the feasi
bility of an operation.

• In the memory ordering rules, feasibility of the in
volved operations is checked to make sure the consis
tency of control flow is satisfied.

By converting control blocks to assignments and usages of 
control variables, we can specify consistency rules for control 
flow in a fashion similar to data flow.

3.2.2 Loops
Loops are not directly supported in this specification. For 

the purpose of defining a memory model alone, nonethe
less, our mechanism for handling control operations is suffi
cient for loops. This is because the task of a memory model 
specification can be regarded as answering the question of 
whether a given execution is allowed by the memory model. 
For any concrete terminated execution, loops have already 
been resolved to a finite number of iterations.

However, to enable a fully automatic and exhaustive pro
gram analysis involving loops, another level of constraints 
need to be developed so that the path predicate of an oper
ation can conditionally grow. Another technique, as used by 
tools such as Extended Static Checker for Java (ESC/Java)
[8], is to rely on the user to supply loop invariants — loops 
without invariants are handled in a manner that is unsound 
but still useful. This approach can be adopted by our system 
as well. As a future work, we plan to investigate effective 
approaches for handling loops.

3.2.3 Formal Specification
The semantics of the source language is defined as a col

lection of constraints. The detailed specification is presented 
in Appendix A. This section explains each of the rules.

As shown below, predicate legalSC is the overall con
straint that defines the requirement of sequential consistency 
on an execution ops in which the operations follow an or
dering relation order.

legalSC ops order =
requireProgramOrder ops order A 
requireReadValue ops order A 
requireComputation ops order A 
requireMutualExclusion ops order A 
requireWeakTotalOrder ops order A 
requireTransitiveOrder ops order A 
requireAsymmetricOrder ops order

Program Order Rule (Appendix A.1):
Constraint requireProgramOrder specifies that operations 
should respect program order, which is formalized by predi
cate orderedByProgram. In addition, the default writes are 
ordered before other operations.

Read Value Rules (Appendix A.2):
Constraint requireReadValue enforces the consistency of 
data flow across reads and writes. Informally, it requires 
that for each read fc: (i) there must exist a suitable write i 
providing the data and (ii) there does not exist an overwrit
ing write j  between i and fc. The assignments and usages of 
local variables (local data dependence) and control variables 
(local control dependence) follow the similar guideline to en
sure consistent data transfer. Therefore, requireReadValue 
is decomposed into three subrules for global reads, local 
reads, and control reads, respectively. Because we apply 
unique control variables, controlReadValue does not need 
to check the second case listed above.

Computation Rule (Appendix A.3):
Constraint requireComputation enforces the program se
mantics. It is not directly related to the memory ordering, 
but is needed for analyzing realistic code. It requires that for 
every operation involving computations (i.e., when the op



eration type is Computation or Control), the resultant data 
must be obtained by properly evaluating the expression in 
the operation. For brevity, the Appendix omits some de
tails of the standard program semantics that is usually well 
understood. For example, we use a predicate eval to indi
cate that standard process should be followed to evaluation 
an expression. Similarly, getLocals and getCtrs are used 
to parse the cmpExpr and ctrExpr fields to obtain a set 
of (variable, data) entries involved in the expressions (these 
entries represent the local/control variables that the oper
ation depends on and their associated data values), which 
can be subsequently processed by getVar and getData.

Mutual Exclusion Rule (Appendix A.4):
Constraint requireMutualExclusion enforces mutual exclu
sion for the block of operations enclosed by matched Lock 
and Unlock operations.

General Ordering Rules (Appendix A.5):
These constraints require order to be transitive, total, and 
circuit-free (asymmetric).

4. EXECUTION VALIDATION
A direct application of this formal specification is for ex

ecution validation. Studying thread behaviors with small 
code fragments (generally known as litmus tests) is very 
helpful for understanding the implications of a threading 
model. In fact, many memory model proposals rely on a col
lection of litmus tests to illustrate critical properties. In [9]
[10], we have also demonstrated the effectiveness of abstract
ing a common programming pattern (such as the Double
Checked Locking algorithm or Peterson’s algorithm) as a 
litmus test, thus facilitating a formal analysis.

While defining the legality of a thread behavior is the com
mon goal for all memory model specifications, the ability to 
automate such analysis has been lacking in previous declara
tive specification methods. Our system supports such anal
ysis by allowing a user to add annotations about the read 
values, and verifying those assertions automatically via con
straint solving.

Constraint validateExecution verifies whether a given 
execution ops is legal under the formal model.

validateExecution ops = (3 order. legalSC ops order)

5. RACE DETECTION
Race conditions are usually inadvertently introduced and 

may lead to unexpected behaviors that are hard to debug. 
Therefore, catching these potential defects is highly useful 
for developing reliable software. Furthermore, many re
laxed memory systems guarantee that race-free programs 
behave in the same way as sequentially consistent programs, 
which allows programmers to resort to their intuitions about 
SC during software development. This also makes race- 
detection even more important in practice.

Our definition of a data race is according to [11], which has 
also been adopted by the new JMM draft [4]. In these pro
posals, a happens-before order (based on Lamport’s happened- 
before order [12] for message passing systems) is used for for
malizing concurrent memory accesses. Further, data-race- 
free programs (also referred to as correctly synchronized pro
grams)is clarified as being free of conflicting and concurrent

accesses under all sequentially consistent executions. The 
reason for using SC executions to define data races this to 
make it easier for a programmer to determine whether a 
program is correctly synchronized.

We define constraint detectDataRace to catch any poten
tial data races. It does this by trying to find a total order 
scOrder and a happens-before order hbOrder such that there 
exists a pair of conflicting operations which are not ordered 
by hbOrder. This formalizes the notion of data races under 
sequentially consistent executions.

detectDataRace ops = 3 scOrder, hbOrder. 
legalSC ops scOrder A 
requireHbOrder ops hbOrder scOrder A 
mapConstraints ops hbOrder scOrder A 
existDataRace ops hbOrder

Happens-before order is defined in requireHbOrder. Intu
itively, it states that two operations are ordered by happens- 
before order if (i) they are program ordered, (ii) they are or
dered by synchronization operations, or (iii) they are tran
sitively ordered by a third operation.

requireHbOrder ops hbOrder scOrder = 
requireProgramOrder ops hbOrder A 
requireSyncOrder ops hbOrder scOrder A 
requireTransitiveOrder ops hbOrder

Since sequential consistency requires a total order among 
all operations, the happens-before edges induced by syn
chronization operations must follow this total order. This is 
captured by requireSyncOrder. Similarly, mapConstraints 
is used to make sure scOrder is consistent with hbOrder.

requireSyncOrder ops hbOrder scOrder = V i j G ops. 
(fb i A fb j A isSync i A isSync j A scOrder i j ) 
^  hbOrder i j

mapConstraints ops hbOrder scOrder = V i j G ops.
(fb i A fb j A hbOrder i j) ^  scOrder i j

With a precise definition of happens-before order, we can 
formalize a race condition in constraint existDataRace. A 
race is caused by two feasible operation that are (i) conflict
ing, i.e., they access the same variable from different threads 
(t i = t j), and at least one of them is a write, and (ii) con
current, i.e., they are not ordered by happens-before order.

existDataRace ops hbOrder =3  i,j G ops. 
fb i A fb j A t i = t j A var i = var j A
(op i = Write A op j = Write V 
op i = Write A op j = Read V 
op i = Read A op j = Write) A 
—(hbOrder i j) A —(hbOrder j i)

To support race analysis for the new JMM proposal, this 
race definition needs to be extended, e.g., by adding seman
tics for volatile variable operations — which should be a 
relatively straightforward process.

6. ATOMICITY VERIFICATION
Atomicity ensures certain atomic transactions. If atomic

ity can be verified, a compiler may ignore the fine-grained in



terleavings and apply standard sequential compilation tech
niques when treating an atomic block. However, race-freedom 
is neither necessary nor sufficient to ensure atomicity. As 
shown by the example in Figure 2, a monitor-style mutual 
exclusion mechanism, if used improperly, cannot guarantee 
atomicity even if the code is race-free. Therefore, a different 
mechanism is needed to specify and verify atomicity.

For this purpose, we allow a programmer to annotate an 
atomic block by enclosing it with keywords AtomicEnter 
and AtomicExit. To simplify some implementation details, 
we assume that the annotations are properly inserted. For 
the operation tuple, we add three more fields: abEnter, 
abExit, and matchAbID.

abEnter i = abEnter : if i is the start of
an atomic block;

abExit i = abExit : if i is the end of an
atomic block;

matchAbID i = matchAbID : ID of the matching start
of the atomic block.

During the preprocessing phase, we setup the operation i 
that immediately follows an AtomicEnter with abEnter i = 
True. Similarly, we setup the operation j that immediately 
precedes the matching AtomicExit with abExit j = True. 
We also record the id of i into the matchAbID field of j 
(matchAbID j = id i). Given an execution ops trans
formed from an annotated program, we can use constraint 
verifyAtomicity to catch atomicity violations.

verifyAtomicity ops = 3 order. 
legalSC ops order A 
existAtomicityViolation ops order

existAtomicityViolation ops order =
3 i, j, k G ops.
( fb i A fb j A fb k A
abEnter i A abExit j A
id i = matchAtID j A id i = id j A
isViolation k A
—(order k i) A —(order j k))

isViolation k = (t k = t i)

The definition of existAtomicityViolation is generic, in 
that isViolation can be fine-tuned to capture other desired 
semantics. For illustration purposes, we only provide a very 
strong requirement here. It states that no operation from 
another thread can be interleaved between the atomic block. 
In practice, it is benign to interleave certain operations as 
long as the effect cannot be observed. For example, it might 
be desirable to define a “variable window” (a set of variables 
manipulated within an atomic block) and only detect an 
atomicity violation when the intruding operation “overlaps” 
the variable window.

7. IMPLEMENTATION
Constraint-based analyses can be quickly prototyped us

ing a constraint logic programming language such as FD- 
Prolog2. We have built a tool named DefectFinder to test

2FD-Prolog refers to Prolog with a finite domain (FD) con
straint solver. For example, SICStus Prolog and GNU Pro
log have this feature.

the proposed techniques. Our prototype is written in SIC- 
Stus Prolog [13]. This section discusses the implementation 
of this tool and the experiences gained.

7.1 Constraint Solver
Two mechanisms from FD-Prolog can be applied for solv

ing the constraints in our specification. One applies back
tracking search for all constraints expressed by logical vari
ables, and the other uses non-backtracking constraint solv
ing techniques such as arc consistency [14] for finite domain 
variables, which is potentially more efficient and certainly 
more complete (especially under the presence of negation) 
than with logical variables. This works by adding con
straints in a monotonically increasing manner to a constraint 
store, with the built-in constraint propagation rules of FD- 
Prolog helping refine the variable ranges when constraints 
are asserted to the constraint store.

In a sense, the built-in constraint solver from Prolog pro
vides an effective means for bounded software model check
ing by explicitly exploring all program executions, but sym
bolically reasoning about the constraints imposed to free 
variables.

7.2 Constraint Generation
Translating the constraints specified in the Appendix to 

Prolog rules is straightforward. One caveat, however, is 
that most Prolog systems do not directly support quanti
fiers. While existential quantification can be realized via 
Prolog's backtracking mechanism, we need to implement 
universal quantification by enumerating the related finite 
domain. For instance, constraint requireWeakTotalOrder 
is originally specified as follows:

requireWeakTotalOrder ops order = V i,j G ops.
(fb i A fb j A id i = id j) ^  (order i j V order j i)

In the Prolog code, predicate forEachElem is recursively 
defined to call the corresponding elemProg for every element 
in the adjacency matrix Order (variable names start with a 
capital letter in Prolog).

requireWeakTotalOrder(Ops,Order,FbList):-
forEachElem(Ops,Order,FbList,doWeakTotalOrder).

elemProg(doWeakTotalOrder,Ops,Order,FbList,I,J):-
const(feasible,Feasible),
length(Ops,N),
matrix_elem(Order,N,I,J,Oij),
matrix_elem(Order,N,J,I,Oji),
nth(I,FbList,Fi),
nth(J,FbList,Fj),
(Fi #= Feasible #/\ Fj #= Feasible #/\ I #\= J) 

#=> (Oij #\/ Oji).

Barring some implementation details, one technique shown 
by the above example is worth noting. That is, the adja
cency matrix Order and the feasibility list FbList are passed 
in as finite domain variables. The domain of the elements in 
these lists (which is boolean in this case) is previously setup 
in the top level predicate. Providing such domain informa
tion significantly reduces the solving time, hence is critical 
for the performance of the tool.

The searching order among the constraints may also im
pact performance. In general, it is advantageous to let the



Tinit Thread 1 Thread 2

(1)wr(x,0); (3)rd(x,r1,1); (6)rd(y,r2,0);
(2)wr(y,0); (4)ctr(c1,[r1>0]); (7)ctr(c2,[r2>=0]);

(5)wr(y,1,[c1]); (8)wr(x,1,[c2]);

Figure 4: The execution derived from program 2 in 
Figure 1 with r1 = 1 and r2 = 0.

1 2 3 4 5 6 7 8
1 0 X 1 1 1 1 1 1
2 X 0 1 1 1 1 1 1
3 0 0 0 1 1 0 0 0

4 0 0 0 0 1 0 0 0
5 0 0 0 0 0 0 0 0
6 0 0 1 1 1 0 1 1
7 0 0 1 1 1 0 0 1
8 0 0 1 1 1 0 0 0

Figure 5: The adjacency matrix for the execution 
shown in Figure 4 under sequential consistency.

solver satisfy the most restrictive goal first. For example, 
read value rules should precede the general ordering rules.

7.3 Concurrency Analysis
DefectFinder is developed in a modular fashion and is 

highly configurable. It supports all three applications de
scribed in this paper. It also enables interactive and incre
mental analyses, meaning it allows users to selectively enable 
or disable certain constraints to help them understand the 
underlying model piece by piece.

To illustrate how the tool works, recall program 2 in Fig
ure 1. Consider the problem of checking whether r1 = 1 
and r2 = 0 is allowed by sequential consistency. Figure 4 
displays the corresponding execution derived from the pro
gram text (it only shows the operation fields relevant to this 
example). When constraint validateExecution is imposed, 
DefectFinder immediately concludes that the execution is le
gal, with an output displaying the adjacency matrix shown 
in Figure 5. A matrix element Mij can have a value of 0, 1, 
or X , where 0 indicates i is not ordered before j, 1 indicates i 
must precede j, and X means the ordering relation between
1 and j  has not been instantiated based on the accumulated 
constraints. In general, there usually exists many X en
tries where alternative interleavings are allowed. If desired, 
a Prolog predicate labeling can be called to instantiate all 
variables. Our tool also outputs a possible interleaving 1 2
6 7 8 3 4 5 which is automatically derived from this matrix.

If the execution with r1 = 0 and r2 = 1 is checked, the 
tool would quickly determine that it is illegal. The user can 
also ask “what if” queries by selectively commenting out 
some ordering rules to identify the root cause of a certain 
program behavior.

Applying DefectFinder for a different application simply 
involves selecting the corresponding goal. For example, if 
the programs in Figure 1 are checked for race conditions, the 
tool would report that program 1 is race-free and program
2 is not, in which case the conflicting operations and an 
interleaving that leads to the race conditions are displayed.

Similarly, when the program in Figure 2 is verified for race 
conditions, our utility would report that it is race-free. How

ever, an atomicity violation would be detected if the trans
action is annotated by an atomic block. Having detected 
this defect, the user can subsequently modify the code and 
do the test again. For instance, if a transaction is protected 
by a single Lock/Unlock pair and both transactions use the 
same lock, the bug would be removed.

7.4 Performance
Precise semantic analysis such as race detection is NP- 

hard in general [15]. Nonetheless, constraint-based methods 
have become very successful in practice, thanks to the effi
cient solving techniques developed in recent years.

Our tool has been applied to analyze a large collection of 
litmus tests — each of them is designed to reveal a certain 
memory model property or to simulate a common program
ming pattern. Running on a Pentium 366 MHz PC with 
128 MB of RAM using Windows 2000, most of the tests 
complete within a few seconds.

There is still a lot of room for improvement in perfor
mance, which offers an interesting direction for our future 
work. For instance, we can add a “constraint configuration” 
component that automatically filters out or reoders certain 
rules according to the input program, e.g., rules regarding 
control flow can be excluded if the program does not in
volve branch statements. Other solving techniques may also 
help make our approach more effective. We have shown in
[7] that a slight variant of the Prolog code can let us ben
efit from a propositional SAT solver. We are also working 
on the integration of a quantified boolean formulae (QBF) 
solver that can directly accept quantifiers.

8. RELATED WORK
Constraint solving was historically applied in AI planning 

problems. In recent years, it has started to show a lot of 
potential for program analysis as well. For example, con
straints are used in [16] to analyze programs written in a 
factory control language called Relay Ladder Logic. A con
straint system is developed in [17] for inferring static types 
for Java bytecode. The work in [18] performs points-to anal
ysis for Java by employing annotated inclusion constraints. 
CLP is proposed for performing bounded software model 
checking in [19]. Our experience indicates that a constraint- 
based approach is also viable for reasoning about correctness 
properties in multithreaded programs.

Extensive research has been done in model checking Java 
programs, e.g., [20, 21, 22, 23, 24]. These tools, however, do 
not address memory model issues. Therefore, they cannot 
analyze fine-grained thread interleavings. We can imagine 
our method being incorporated into these tools to make their 
analyses more accurate.

There is a large body of work on race analysis. These 
techniques can be classified as static or dynamic. The lat
ter can be further categorized as on-the-fly or post-mortem, 
depending on how the execution information is collected. 
Each strategy typically involves a tradeoff among efficiency, 
accuracy, and coverage.

Netzer and Miller [25] [26] have categorized data races 
and proposed an algorithm using the post-mortem method. 
Adve and Hill [27] have proposed the data-race-free model 
and unified four weakly ordered memory systems according 
to a common property — on these systems, programs would 
appear sequentially consistent in the absence of data races. 
They further propose a formal definition of data races under



weak memory models [11]. Lamport's happened-before re
lation has been applied in dynamic analysis tools, e.g., [28]
[15] [29]. Several on-the-fly methods have been proposed 
that collect information based on the underlying cache co
herence protocol, e.g., [30] [31] [32]. The drawback of these 
dynamic techniques is that they can easily miss a data race, 
depending on how threads are scheduled.

Our approach is based on the definition given in [11]. It 
also employs the happened-before relation, which enables 
our system to handle many different synchronization styles. 
Unlike the dynamic approaches, we propose a static method 
that examines a symbolic execution and achieves an exhaus
tive coverage.

Several race detectors have been designed specifically for 
the lock-based synchronization model, e.g. [33] [34] [35]. 
Tools such as ESC/Java [8] and Warlock [36] rely on user- 
supplied annotations to statically detect potential data races. 
Type-based approaches have also been proposed for object- 
oriented programs, e.g., [37] [38] [39].

While effective in practice, these tools do not address the 
issue that we focus on, which is how to rigorously reason 
about multithreaded programs running in a complex shared 
memory environment. Our framework makes these analy
ses possible and can be particulary useful in helping people 
understand the underlying concurrency model and conduct 
verification for common programming patterns. The capa
bility of studying program correctness under relaxed mem
ory models is also essential in verifying critical programs 
such as JVMs and garbage collectors that run on weak mem
ory systems.

Flanagan and Qadeer have developed a type system to 
enforce atomicity with an annotation keyword atomic [5]. 
It assumes that a race analysis is performed in advance. 
Therefore, the effectiveness of their approach depends on 
the accuracy of the race detector. Their work is based on 
Lipton’s theory of right and left movers [40]. It will be 
interesting to investigate if the requirements of movers can 
be captured as constraints for type inference.

9. CONCLUSION
We have presented a novel approach that handles both 

program semantics and memory model semantics in a declar
ative constraint-based framework. With three concrete ap
plications — execution validation, race detection, and atom
icity verification — we have demonstrated the feasibility 
and effectiveness of applying such a “memory-model-aware” 
analysis tool for verifying multithreaded programs that, al
beit small, can be extremely difficult to analyze by hand.

To summarize, our system offers the following benefits:

• It is rigorous. Based on formal definitions of program 
properties and memory model rules, our system en
ables a precise semantic analysis. Specifications devel
oped in such a rigorous manner can also be sent to 
a theorem proving utility, such as the HOL theorem 
prover [41], for proving generic properties.

• It is automatic. Our approach allows one to take ad
vantage of the tremendous advances in constraint/SAT 
solving techniques. The executable thread semantics 
can also be treated as a “black box” whereby the users 
are not necessarily required to understand all the de
tails of the model to benefit from the tool.

• It is generic. Since our method is not limited to a 
specific synchronization mechanism, it can be applied 
to reason about various correctness properties for any 
threading model, all using the same framework.

In terms of scalability, there are two aspects involved. One 
is the complexity of the shared memory system that can be 
modelled. The other is the size of programs that can be an
alyzed. For the former aspect, our system scales well with 
its compositional specification style. As demonstrated in 
[7], it is capable of formalizing memory ordering rules for 
modern commercial processors. As for improving the latter 
aspect, divide-and-conquer style verification methods will 
be investigated. Techniques developed in other tools, such 
as predicate abstraction, branch refinement, and assume- 
guarantee, can be integrated into our system. We also plan 
to explore more efficient solving techniques. In particular, 
the structural information of the constraints may be applied 
for improving the solving algorithms. We hope this paper 
can help pave the way towards future studies in these excit
ing areas.
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A. SEQUENTIAL CONSISTENCY
legalSC ops order =

requireProgramOrder ops order A 
requireReadValue ops order A 
requireComputation ops order A 
requireMutualExclusion ops order A 
requireWeakTotalOrder ops order A 
requireTransitiveOrder ops order A 
requireAsymmetricOrder ops order

A.1 Program Order Rule
requireProgramOrder ops order = V i, j  G ops.

(fb i A fb j  A (orderedByProgram i j  V
t i = tinit a t j  = tinit)) ^  order i j

A.2 Read Value Rules
requireReadValue ops order = 

globalReadValue ops order A 
localReadValue ops order A 
controlReadValue ops order

globalReadValue ops order = V k G ops.
(fb k A isRead k) ^
(3 i G ops. fb i A op i = Write A var i = var k A 
data i = data k A —(order k i) A 
(—3 j G ops. fb j  A op j  = Write A var j  = var k A 
order i j  A order j  k))

localReadValue ops order = V k G ops. fb k ^
(V e G (getLocals k).
(3 i G ops. (fb i A isAssign i A local i = getVar e A 
data i = getData e A orderedByProgram i k) A 
(—3 j  G ops. (fb j  A isAssign j  A local j  = getVar e A 
orderedByProgram i j  A orderedByProgram j  k))))

controlReadValue ops order = V k G ops.
(V e G (getCtrs k).
(3 i G ops. op i = Control A var i = getVar e A 
data i = getData e A orderedByProgram i k))

A.3 Computation Rule
requireComputation ops order = V k G ops.

((fb k A op k = Computation) ^
(data k = eval (cmpExpr k))) A 
((fb k A op k = Control) ^
(data k = eval (ctrExpr k)))

A.4 Mutual Exclusion Rule
requireMutualExclusion ops order = V i, j  G ops.

(fb i A fb j  A matchLock i j ) ^
(—3 k G ops. fb k A isSync k A
lock k = lock i A t k = t i A order i k A order k j )

A.5 General Ordering Rules
requireWeakTotalOrder ops order = V i, j  G ops.

(fb i A fb j  A id i = id j) ^  (order i j  V order j  i)

requireTransitiveOrder ops order = V i, j, k G ops.
(fb i A fb j  A fb k A order i j  A order j  k) ^  order i k

APPENDIX A.6 Auxiliary Definitions
fb i = (eval (ctrExpr i) = True)

orderedByProgram i j  = (t i = t j  A pc i < pc j) 

isAssign i = (op i = Computation V op i = Read) 

isSync i = (op i = Lock V op i = Unlock)

matchLock i j  =
op i = Lock A op j  = Unlock A matchID j  = id i

Note: for brevity, the following predicates are not explicitly 
defined here since they are typically well understood.

eval exp: evaluate exp with standard program semantics;
getLocals k: parse k and get the set of local variables that k 

depends on, with their associated data values; 
parse the path predicate of k and get the set 
of control variables that k depends on, with 
their associated data values; 
get variable from a (variable, data) entry; 
get data from a (variable, data) entry.

getCtrs k:

getVar e: 
getData e:

B. EXECUTION VALIDATION
validateExecution ops =  3 order. legalSC ops order

C. RACE DETECTION
detectDataRace ops = 3 scOrder, hbOrder. 

legalSC ops scOrder A 

requireHbOrder ops hbOrder scOrder A 

mapConstraints ops hbOrder scOrder A 
existDataRace ops hbOrder

requireHbOrder ops hbOrder scOrder =  

requireProgramOrder ops hbOrder A 
requireSyncOrder ops hbOrder scOrder A 
requireTransitiveOrder ops hbOrder

requireSyncOrder ops hbOrder scOrder = V i j  £  ops. 

(fb i A fb j  A isSync i A isSync j  A scOrder i j) 
^  hbOrder i j

mapConstraints ops hbOrder scOrder = V i j  £  ops.

(fb i A fb j  A hbOrder i j )  => scOrder i j

existDataRace ops hbOrder = 3  i , j  £  ops. 

fb i A fb j  A t i =  t j  A var i =  var j  A 
(op i  =  W rite  A op j  =  W rite  V 

op i  =  W rite  A op j  =  Read V 

op i  =  Read A op j  =  W rite) A 

—(hbOrder i  j )  A —(hbOrder j  i)

D. ATOMICITY VERIFICATION
verifyAtomicity ops = 3 order. 

legalSC ops order A 
existAtomicityViolation ops order

existAtomicityViolation ops order = 3  i , j , k  £  

( fb i A fb j  A fb k A 
abEnter i A abExit j  A 
id i  =  matchAtID  j  A id i = id j A 
isViolation k A 
—(order k i) A —(order j  k))

ops.

requireAsymmetricOrder ops order = V i,j G ops. 
(fb i A fb j  A order i j) ^  —(order j  i) isV iolation k =  (t k =  t i)


