
R i g o r o u s C o n c u r r e n c y A n a l y s i s o f M u l t i t h r e a d e d P r o g r a m s

*
Yue Yang, G anesh G opalakrishnan, and Gary Lindstrom

School of Computing, University of Utah

{yyang | ganesh | gary}@ cs.utah.edu

ABSTRACT
This paper explores the practicality of conducting program
analysis for multithreaded software using constraint solv
ing. By precisely defining the underlying memory consis
tency rules in addition to the intra-thread program seman
tics, our approach offers a unique advantage for program ver
ification — it provides an accurate and exhaustive coverage
of all thread interleavings for any given memory model. We
demonstrate how this can be achieved by formalizing sequen
tial consistency for a source language that supports control
branches and a monitor-style mutual exclusion mechanism.
We then discuss how to formulate programmer expectations
as constraints and propose three concrete applications of this
approach: execution validation, race detection, and atom
icity analysis. Finally, we describe the implementation of
a formal analysis tool using constraint logic programming,
with promising initial results for reasoning about small but
non-trivial concurrent programs.

Categories and Subject Descriptors
D.1.3 [Programming Techniques]: Concurrent Program
ming; F.3.2 [Logics and Meanings of Programs]: Se
mantics of Programming Languages; D.2.4 [Software En
gineering]: Software/Program Verification

General Terms
Languages, Verification, Reliability

Keywords
Multithreaded programming, constraint solving, data races,
race conditions, atomicity, memory consistency models, static
checking

*This work was supported in part by Research Grant
No. CCR-0081406 (ITR Program) of NSF and SRC Task
1031.001.

1. INTRODUCTION
Unlike a sequential program, which simply requires that

each read observes the latest write on the same variable ac
cording to program order, a multithreaded program has to
rely on the thread semantics (also known as the memory
model) to define its legal outcome in a shared memory en
vironment. The most commonly known memory model is
sequential consistency (SC) [1]. As a natural extension to
the sequential model, sequential consistency requires that (i)
operations of all threads can exhibit a total order, (ii) op
erations of each individual thread appear in this total order
following program order, and (iii) a read observes the lat
est write on the same variable according to this total order.
Many weaker shared memory systems (see [2] for a survey)
have also been developed to enhance performance.

Java is the first widely deployed programming language
that provides built-in threading support at the language
level. Unfortunately, developing a rigorous and intuitive
Java Memory Model (JMM) has turned out to be very diffi
cult. The existing JMM is flawed [3] due to the lack of rigor.
It is currently under an official revision process and a new
JMM draft [4] is proposed for community review.

Although multithreading provides a powerful program
ming paradigm for developing well structured and high per
formance software, it is also notoriously hard to get right.
Programmers are torn on the horns of a dilemma regarding
the use of synchronization: too much may impact perfor
mance and risk deadlock, too little may lead to race con
ditions and application inconsistency. Therefore, a formal
analysis about thread behaviors is often needed to make a
program more reliable. However, this can become a daunt
ing task with a traditional pencil-and-paper approach.

For example, one common analysis is race detection. Con
sider program 1 in Figure 1 (taken from [4]), where each
thread issues a read and a conditional write. Does this pro
gram contain data races? At the first glance, it may appear
that the answer is “yes” since it seems to fit the conventional
intuition about a race condition — two operations from dif-

Thread 1 Thread 2
r1 = x;
if(r1 > 0)

y = 1;

r2 = y;
if(r2 >= 0)

x = 1;

Thread 1 Thread 2

cT
,11

;
x

>
=

II
 ̂

»

r2 = y;
if(r2 > 0)

x = 1;

(a) Program 1 (b) Program 2

Figure 1: Initially, x = y = 0. Are these programs
race-free?

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by The University of Utah: J. Willard Marriott Digital Library

https://core.ac.uk/display/276277425?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

software, because a property that is satisfied under one
memory model can be easily broken under another.

• Program properties such as race conditions and atom
icity need to be formalized because informal intuitions
often lead to inaccurate results.

Thread 1 (Deposit) Thread 2 (Withdraw)
Lock 11; Lock 11;
r1 = balance; r3 = balance;
Unlock 11; Unlock 11;

r2 = r1 + 1; 1;—3rr

Lock 11; Lock 11;
balance = r2; balance = r4;
Unlock 11; Unlock 11;

Figure 2: The transactions are not atomic even
though the program is race-free.

ferent threads (e.g., r1 = x in thread 1 and x = 1 in thread
2) attempt to access the same variable without explicit syn
chronization, and at least one of them is a write. However, a
more careful analysis reveals that the control flow of the pro
gram, which must be consistent with the read values allowed
by the memory model, needs to be considered to determine
whether certain operations will ever happen. Therefore, be
fore answering the question, one must clarify what memory
model is assumed. With sequentially consistent executions,
for instance, the branch conditions in program 1 will never
be satisfied. Consequently, the writes can never be executed
and the code is race-free. Now consider program 2 in Fig
ure 1, where the only difference is that the branch condition
in Thread 2 is changed to r2 >= 0. Albeit subtle, this
change would result in data races.

Another useful analysis is execution validation, which is
for verifying whether a certain outcome is permitted. This
can help a programmer understand the memory ordering
rules and aid them in code selection. Similar to a race anal
ysis, data/control flow must be tracked for execution val
idation. For multithreaded programs, data/control flow is
interwoven with shared memory consistency requirements.
This makes it extremely hard and error-prone to hand-prove
thread behaviors, even for small programs.

The atomicity requirement is also frequently needed to en
sure that a set of operations appears to be executed atomi
cally. As pointed out in previous publications (e.g., [5] [4]),
the absence of race conditions does not guarantee the ab
sence of atomicity violations. For example, consider the
program in Figure 2 (adapted from [5]). Thread 1 and 2
respectively implement the deposit and withdraw transac
tions for a bank account. This program is race-free because
all accesses to the global variable balance are protected by
the same lock. If these two threads are issued concurrently
when balance is initially 1, balance should remain the same
after the program completes if implemented properly. But
due to the use of local variables, one thread can interleave
with another while in a “transient” state. Consequently,
the final balance can be 0, 1, or 2 depending on the schedul
ing, which is clearly not what has been intended. Hence, it
would be highly desirable to have a systematic approach to
specifying and verifying such programmer expectations.

From these examples, several interesting conclusions can
be drawn.

• The precise thread semantics, in addition to the intra
thread program semantics, must be taken into account
to enable a rigorous semantics analysis of multithreaded

• An automatic verification tool with exhaustive cover
age is extremely valuable for general software devel
opment purposes because thread behaviors are often
confusing.

Based on these observations, we propose a systematic ap
proach for reasoning about multithreaded software. Our key
insight is that by capturing thread semantics and correctness
properties as constraints, we can reduce a verification prob
lem to a constraint satisfaction problem or an equivalent
boolean satisfiability problem, thus allowing us to employ
an efficient constraint/SAT solver to automate the analysis.
Using a verification tool harnessed with these techniques, we
can configure the underlying memory model, select a pro
gram property of interest, take a test program as input, and
verify the result automatically under all executions. Exist
ing analysis tools tend to concentrate on efficiency and scal
ability. While these are highly worthy goals, there is also a
clear need for supporting exhaustive analysis. To the best
of our knowledge, there has not been a generic constraint-
based tool that enforces precise shared memory consistency
requirements.

This paper offers the following contributions. (i) We de
velop a formal executable specification of sequential consis
tency for a non-trivial source language that supports the
use of local variables, computations, control branches1, and
a monitor-like mechanism for mutual exclusion. One key re
sult of this paper is to show that it is feasible and beneficial
to precisely capture both program semantics (including local
data dependence and local control dependence) and memory
model semantics in the same setting. As far as we know, no
one has provided such a formal executable specification. (ii)
We propose a method to formulate program properties as
constraints and automatically verify them using constraint
solving. In particular, we formalize the conditions of three
critical safety properties: execution legality, race conditions,
and atomicity requirements. (iii) We build a tool using con
straint logic programming (CLP) and report the experiences
gained during the implementation.

The rest of the paper proceeds as follows. In Section 2,
we provide an overview of our approach. Section 3 describes
the source language used as the basis of our presentation. In
Section 4, we apply our approach for execution validation.
Race conditions and atomicity requirements are formalized
in Section 5 and 6, respectively. We discuss the implemen
tation of our prototype tool in Section 7. Related work is
reviewed in Section 8. We conclude and explore future work
in Section 9. The detailed formal specification is presented
in the Appendix.

2. OVERVIEW
The approach is based on our previously developed spec

ification framework called Nemos (Non-operational yet Ex
ecutable Memory Ordering Specifications) [6] [7]. Nemos

1 Currently our formal executable specification does not di
rectly support loops.

Figure 3: The processing flow of our approach.

defines a memory model in a declarative style using a col
lection of ordering rules. The processing flow of our verifica
tion methodology is shown in Figure 3, which comprises the
following steps: (i) capturing the semantics of the source
language, including the thread semantics, as constraints,
(ii) formalizing program properties as additional constraints,
(iii) applying these constraints to a given test program and
reducing the verification problem to a constraint satisfac
tion problem, and (iv) employing a suitable tool to solve
the constraint problem automatically.

2.1 Specifying the Constraints
We use predicate logic to specify the ordering constraints

imposed on an ordering relation order. To make our speci
fications compositional and executable, our notation differs
from previous formalisms in two ways. First, we employ a
modest extension of predicate logic to higher order logic, i.e.
order can be used as a parameter in a constraint definition,
so that new refinements to the ordering requirement can be
conveniently added. This allows us to construct a complex
model using simpler components. Second, our specifications
are fully explicit about all ordering properties, including pre
viously implicit requirements such as totality, transitivity,
and circuit-freedom. Without explicating such “hidden” re
quirements, a specification is not complete for execution.

2.2 Solving the Constraints
After the language semantics and program properties are

specified as constraints, they can be applied to a finite exe
cution trace. This process converts the system requirements
from higher order logic to propositional logic.

The Algorithm: Given a test program P , we first derive
its execution ops from the program text in a preprocess
ing phase. The initial execution is fully symbolic, that is,
ops may contain free variables, e.g., for data values and or
dering relations. Suppose ops has n operations, there are
n2 ordering pairs among these operations. We construct a
n x n adjacency matrix M, where the element Mij indicates
whether operations i and j should be ordered. We then go
through each requirement in the specification and impose
the corresponding propositional constraints with respect to
the elements of M. The goal is to find a binding of the
free variables in ops such that it satisfies the conjunction of
all requirements or to conclude that no such binding exists.
This is automated using a constraint solver.

3. THE SOURCE LANGUAGE
This section develops the formal semantics of sequential

consistency for a source language that supports many com

mon programming language constructs. The choice of using
sequential consistency as the basis of our formal develop
ment is motivated by two factors. (i) SC is often the implic
itly assumed model during software development, i.e., many
algorithms and compilation techniques are developed under
the assumption of SC. (ii) Many weak memory models, in
cluding the new JMM draft, define pivotal properties such
as race-freedom using SC executions. Providing such an
executable definition of race conditions will provide a solid
foundation based on which a full-featured Java race-detector
can be built.

Although this paper formalizes only SC, our framework is
generic and allows an arbitrary memory model to be “plugged-
into” the system for a formal comparison analysis. In our
previous work, we have already applied Nemos to build a
large variety of memory model specifications, including the
Intel Itanium Memory Model [7] and a collection of classical
memory models [6], such as sequential consistency, coher
ence, PRAM, causal consistency, and processor consistency.

Our previous specification of sequential consistency in [6]
only deals with normal read and write operations. While
this is sufficient for most processor level memory systems,
it is not enough for describing language level thread activi
ties. In order to handle more realistic programs, this paper
extends the previous model by supporting a language that
allows the use of local variables, computation operations,
control branches, and synchronization operations.

3.1 Terminology
Variables: Variables are categorized as global variables,
local variables, control variables, and synchronization vari
ables. Global and synchronization variables are visible to all
threads. Local and control variables are thread local. Con
trol variables do not exist in the original source program —
they are introduced by our system as auxiliary variables for
control operations. Synchronization variables correspond to
the locks employed for mutual exclusion. In this paper, we
follow a convention that uses x, y for global variables, r1,
r2 for local variables, c1, c2 for control variables, 11, 12 for
synchronization variables, and 0, 1 for primitive data values.

Instruction: An instruction corresponds to a program state
ment from the program text. The source language has a
syntax similar to Java, with Lock and Unlock inserted cor
responding to the Java keyword synchronized. It supports
the following instruction types:

Read: e.g., r1 = x
Write: e.g., x = 1, or x = r1
Computation: e.g., r1 = r2 + 1
Control: e.g. if (r1 > 0)
Lock: e.g. Lock l1
Unlock: e.g. Unlock l1

Execution: An execution consists of a set of symbolic exe
cution instances generated by program instructions, each of
which is called an operation. We assume that the expression
involved in a computation or control operation only uses lo
cal variables. That is, if the original instruction performs a
computation on global variables, it will be divided into read
operations followed by computation operations.

Operation Tuple: An operation i is represented by a tuple.
For brevity, we use a common data structure to represent

all operations, even though some of the fields are only used
by certain operations. The tuple representation is as follows:

(t,pc, op, var, data, local, localData, cmpExpr, ctrExpr, locfc,
match/D,id), where

t i = t :
pc i = pc:
op i = op :
var i = var :
data i = data :
local i = local :
localData i = localData :
cmpExpr i = cmpExpr :
ctrExpr i = ctrExpr :
lock i = locfc :
matchID i = match/D :
id i = id :

thread ID
program counter
operation type
global variable
data value
local variable
data value for local variable
computation expression
path predicate
lock
ID of the matching lock
global ID of the operation

For every global variable x, there is a default write opera
tion for x, with the default value of x and a special thread ID
tinit. We assume Lock and Unlock operations are properly
nested. Each trailing Unlock stores the id of the matching
Lock in its match/D field.

3.2 Semantics

3.2.1 Control Flow
It is a major challenge to specify control flow in the con

text of nondeterministic thread interleavings. We solve this
problem by (i) transforming control related operations to
auxiliary reads and writes using control variables and (ii)
imposing a set of consistency requirements on the “reads”
and “writes” of control variables similar to that of normal
reads and writes. The detailed steps are as follows:

• For each branch instruction i, say if (p), add a unique
auxiliary control variable c, and transform instruction
i to an operation i' with the format of c = p. Operation
i' is said to be a control operation (op i' = Control),
and can be regarded as an assignment to the control
variable c.

• Every operation i has a ctrExpr field that stores its
path predicate, which is a boolean expression on a set of
control variables dictating the condition for i to be exe
cuted. An operation i can be regarded as a usage of the
involved control variables in the path predicate. With
out loops, the path predicate for every operation can
be determined during the preprocessing phase. This
can be achieved based on a thread local analysis since
control variables are thread local.

• An operation i is feasible if its ctrExpr field evaluates
to True. We define a predicate fb to check the feasi
bility of an operation.

• In the memory ordering rules, feasibility of the in
volved operations is checked to make sure the consis
tency of control flow is satisfied.

By converting control blocks to assignments and usages of
control variables, we can specify consistency rules for control
flow in a fashion similar to data flow.

3.2.2 Loops
Loops are not directly supported in this specification. For

the purpose of defining a memory model alone, nonethe
less, our mechanism for handling control operations is suffi
cient for loops. This is because the task of a memory model
specification can be regarded as answering the question of
whether a given execution is allowed by the memory model.
For any concrete terminated execution, loops have already
been resolved to a finite number of iterations.

However, to enable a fully automatic and exhaustive pro
gram analysis involving loops, another level of constraints
need to be developed so that the path predicate of an oper
ation can conditionally grow. Another technique, as used by
tools such as Extended Static Checker for Java (ESC/Java)
[8], is to rely on the user to supply loop invariants — loops
without invariants are handled in a manner that is unsound
but still useful. This approach can be adopted by our system
as well. As a future work, we plan to investigate effective
approaches for handling loops.

3.2.3 Formal Specification
The semantics of the source language is defined as a col

lection of constraints. The detailed specification is presented
in Appendix A. This section explains each of the rules.

As shown below, predicate legalSC is the overall con
straint that defines the requirement of sequential consistency
on an execution ops in which the operations follow an or
dering relation order.

legalSC ops order =
requireProgramOrder ops order A
requireReadValue ops order A
requireComputation ops order A
requireMutualExclusion ops order A
requireWeakTotalOrder ops order A
requireTransitiveOrder ops order A
requireAsymmetricOrder ops order

Program Order Rule (Appendix A.1):
Constraint requireProgramOrder specifies that operations
should respect program order, which is formalized by predi
cate orderedByProgram. In addition, the default writes are
ordered before other operations.

Read Value Rules (Appendix A.2):
Constraint requireReadValue enforces the consistency of
data flow across reads and writes. Informally, it requires
that for each read fc: (i) there must exist a suitable write i
providing the data and (ii) there does not exist an overwrit
ing write j between i and fc. The assignments and usages of
local variables (local data dependence) and control variables
(local control dependence) follow the similar guideline to en
sure consistent data transfer. Therefore, requireReadValue
is decomposed into three subrules for global reads, local
reads, and control reads, respectively. Because we apply
unique control variables, controlReadValue does not need
to check the second case listed above.

Computation Rule (Appendix A.3):
Constraint requireComputation enforces the program se
mantics. It is not directly related to the memory ordering,
but is needed for analyzing realistic code. It requires that for
every operation involving computations (i.e., when the op

eration type is Computation or Control), the resultant data
must be obtained by properly evaluating the expression in
the operation. For brevity, the Appendix omits some de
tails of the standard program semantics that is usually well
understood. For example, we use a predicate eval to indi
cate that standard process should be followed to evaluation
an expression. Similarly, getLocals and getCtrs are used
to parse the cmpExpr and ctrExpr fields to obtain a set
of (variable, data) entries involved in the expressions (these
entries represent the local/control variables that the oper
ation depends on and their associated data values), which
can be subsequently processed by getVar and getData.

Mutual Exclusion Rule (Appendix A.4):
Constraint requireMutualExclusion enforces mutual exclu
sion for the block of operations enclosed by matched Lock
and Unlock operations.

General Ordering Rules (Appendix A.5):
These constraints require order to be transitive, total, and
circuit-free (asymmetric).

4. EXECUTION VALIDATION
A direct application of this formal specification is for ex

ecution validation. Studying thread behaviors with small
code fragments (generally known as litmus tests) is very
helpful for understanding the implications of a threading
model. In fact, many memory model proposals rely on a col
lection of litmus tests to illustrate critical properties. In [9]
[10], we have also demonstrated the effectiveness of abstract
ing a common programming pattern (such as the Double
Checked Locking algorithm or Peterson’s algorithm) as a
litmus test, thus facilitating a formal analysis.

While defining the legality of a thread behavior is the com
mon goal for all memory model specifications, the ability to
automate such analysis has been lacking in previous declara
tive specification methods. Our system supports such anal
ysis by allowing a user to add annotations about the read
values, and verifying those assertions automatically via con
straint solving.

Constraint validateExecution verifies whether a given
execution ops is legal under the formal model.

validateExecution ops = (3 order. legalSC ops order)

5. RACE DETECTION
Race conditions are usually inadvertently introduced and

may lead to unexpected behaviors that are hard to debug.
Therefore, catching these potential defects is highly useful
for developing reliable software. Furthermore, many re
laxed memory systems guarantee that race-free programs
behave in the same way as sequentially consistent programs,
which allows programmers to resort to their intuitions about
SC during software development. This also makes race-
detection even more important in practice.

Our definition of a data race is according to [11], which has
also been adopted by the new JMM draft [4]. In these pro
posals, a happens-before order (based on Lamport’s happened-
before order [12] for message passing systems) is used for for
malizing concurrent memory accesses. Further, data-race-
free programs (also referred to as correctly synchronized pro
grams)is clarified as being free of conflicting and concurrent

accesses under all sequentially consistent executions. The
reason for using SC executions to define data races this to
make it easier for a programmer to determine whether a
program is correctly synchronized.

We define constraint detectDataRace to catch any poten
tial data races. It does this by trying to find a total order
scOrder and a happens-before order hbOrder such that there
exists a pair of conflicting operations which are not ordered
by hbOrder. This formalizes the notion of data races under
sequentially consistent executions.

detectDataRace ops = 3 scOrder, hbOrder.
legalSC ops scOrder A
requireHbOrder ops hbOrder scOrder A
mapConstraints ops hbOrder scOrder A
existDataRace ops hbOrder

Happens-before order is defined in requireHbOrder. Intu
itively, it states that two operations are ordered by happens-
before order if (i) they are program ordered, (ii) they are or
dered by synchronization operations, or (iii) they are tran
sitively ordered by a third operation.

requireHbOrder ops hbOrder scOrder =
requireProgramOrder ops hbOrder A
requireSyncOrder ops hbOrder scOrder A
requireTransitiveOrder ops hbOrder

Since sequential consistency requires a total order among
all operations, the happens-before edges induced by syn
chronization operations must follow this total order. This is
captured by requireSyncOrder. Similarly, mapConstraints
is used to make sure scOrder is consistent with hbOrder.

requireSyncOrder ops hbOrder scOrder = V i j G ops.
(fb i A fb j A isSync i A isSync j A scOrder i j)
^ hbOrder i j

mapConstraints ops hbOrder scOrder = V i j G ops.
(fb i A fb j A hbOrder i j) ^ scOrder i j

With a precise definition of happens-before order, we can
formalize a race condition in constraint existDataRace. A
race is caused by two feasible operation that are (i) conflict
ing, i.e., they access the same variable from different threads
(t i = t j), and at least one of them is a write, and (ii) con
current, i.e., they are not ordered by happens-before order.

existDataRace ops hbOrder =3 i,j G ops.
fb i A fb j A t i = t j A var i = var j A
(op i = Write A op j = Write V
op i = Write A op j = Read V
op i = Read A op j = Write) A
—(hbOrder i j) A —(hbOrder j i)

To support race analysis for the new JMM proposal, this
race definition needs to be extended, e.g., by adding seman
tics for volatile variable operations — which should be a
relatively straightforward process.

6. ATOMICITY VERIFICATION
Atomicity ensures certain atomic transactions. If atomic

ity can be verified, a compiler may ignore the fine-grained in

terleavings and apply standard sequential compilation tech
niques when treating an atomic block. However, race-freedom
is neither necessary nor sufficient to ensure atomicity. As
shown by the example in Figure 2, a monitor-style mutual
exclusion mechanism, if used improperly, cannot guarantee
atomicity even if the code is race-free. Therefore, a different
mechanism is needed to specify and verify atomicity.

For this purpose, we allow a programmer to annotate an
atomic block by enclosing it with keywords AtomicEnter
and AtomicExit. To simplify some implementation details,
we assume that the annotations are properly inserted. For
the operation tuple, we add three more fields: abEnter,
abExit, and matchAbID.

abEnter i = abEnter : if i is the start of
an atomic block;

abExit i = abExit : if i is the end of an
atomic block;

matchAbID i = matchAbID : ID of the matching start
of the atomic block.

During the preprocessing phase, we setup the operation i
that immediately follows an AtomicEnter with abEnter i =
True. Similarly, we setup the operation j that immediately
precedes the matching AtomicExit with abExit j = True.
We also record the id of i into the matchAbID field of j
(matchAbID j = id i). Given an execution ops trans
formed from an annotated program, we can use constraint
verifyAtomicity to catch atomicity violations.

verifyAtomicity ops = 3 order.
legalSC ops order A
existAtomicityViolation ops order

existAtomicityViolation ops order =
3 i, j, k G ops.
(fb i A fb j A fb k A
abEnter i A abExit j A
id i = matchAtID j A id i = id j A
isViolation k A
—(order k i) A —(order j k))

isViolation k = (t k = t i)

The definition of existAtomicityViolation is generic, in
that isViolation can be fine-tuned to capture other desired
semantics. For illustration purposes, we only provide a very
strong requirement here. It states that no operation from
another thread can be interleaved between the atomic block.
In practice, it is benign to interleave certain operations as
long as the effect cannot be observed. For example, it might
be desirable to define a “variable window” (a set of variables
manipulated within an atomic block) and only detect an
atomicity violation when the intruding operation “overlaps”
the variable window.

7. IMPLEMENTATION
Constraint-based analyses can be quickly prototyped us

ing a constraint logic programming language such as FD-
Prolog2. We have built a tool named DefectFinder to test

2FD-Prolog refers to Prolog with a finite domain (FD) con
straint solver. For example, SICStus Prolog and GNU Pro
log have this feature.

the proposed techniques. Our prototype is written in SIC-
Stus Prolog [13]. This section discusses the implementation
of this tool and the experiences gained.

7.1 Constraint Solver
Two mechanisms from FD-Prolog can be applied for solv

ing the constraints in our specification. One applies back
tracking search for all constraints expressed by logical vari
ables, and the other uses non-backtracking constraint solv
ing techniques such as arc consistency [14] for finite domain
variables, which is potentially more efficient and certainly
more complete (especially under the presence of negation)
than with logical variables. This works by adding con
straints in a monotonically increasing manner to a constraint
store, with the built-in constraint propagation rules of FD-
Prolog helping refine the variable ranges when constraints
are asserted to the constraint store.

In a sense, the built-in constraint solver from Prolog pro
vides an effective means for bounded software model check
ing by explicitly exploring all program executions, but sym
bolically reasoning about the constraints imposed to free
variables.

7.2 Constraint Generation
Translating the constraints specified in the Appendix to

Prolog rules is straightforward. One caveat, however, is
that most Prolog systems do not directly support quanti
fiers. While existential quantification can be realized via
Prolog's backtracking mechanism, we need to implement
universal quantification by enumerating the related finite
domain. For instance, constraint requireWeakTotalOrder
is originally specified as follows:

requireWeakTotalOrder ops order = V i,j G ops.
(fb i A fb j A id i = id j) ^ (order i j V order j i)

In the Prolog code, predicate forEachElem is recursively
defined to call the corresponding elemProg for every element
in the adjacency matrix Order (variable names start with a
capital letter in Prolog).

requireWeakTotalOrder(Ops,Order,FbList):-
forEachElem(Ops,Order,FbList,doWeakTotalOrder).

elemProg(doWeakTotalOrder,Ops,Order,FbList,I,J):-
const(feasible,Feasible),
length(Ops,N),
matrix_elem(Order,N,I,J,Oij),
matrix_elem(Order,N,J,I,Oji),
nth(I,FbList,Fi),
nth(J,FbList,Fj),
(Fi #= Feasible #/\ Fj #= Feasible #/\ I #\= J)

#=> (Oij #\/ Oji).

Barring some implementation details, one technique shown
by the above example is worth noting. That is, the adja
cency matrix Order and the feasibility list FbList are passed
in as finite domain variables. The domain of the elements in
these lists (which is boolean in this case) is previously setup
in the top level predicate. Providing such domain informa
tion significantly reduces the solving time, hence is critical
for the performance of the tool.

The searching order among the constraints may also im
pact performance. In general, it is advantageous to let the

Tinit Thread 1 Thread 2

(1)wr(x,0); (3)rd(x,r1,1); (6)rd(y,r2,0);
(2)wr(y,0); (4)ctr(c1,[r1>0]); (7)ctr(c2,[r2>=0]);

(5)wr(y,1,[c1]); (8)wr(x,1,[c2]);

Figure 4: The execution derived from program 2 in
Figure 1 with r1 = 1 and r2 = 0.

1 2 3 4 5 6 7 8
1 0 X 1 1 1 1 1 1
2 X 0 1 1 1 1 1 1
3 0 0 0 1 1 0 0 0

4 0 0 0 0 1 0 0 0
5 0 0 0 0 0 0 0 0
6 0 0 1 1 1 0 1 1
7 0 0 1 1 1 0 0 1
8 0 0 1 1 1 0 0 0

Figure 5: The adjacency matrix for the execution
shown in Figure 4 under sequential consistency.

solver satisfy the most restrictive goal first. For example,
read value rules should precede the general ordering rules.

7.3 Concurrency Analysis
DefectFinder is developed in a modular fashion and is

highly configurable. It supports all three applications de
scribed in this paper. It also enables interactive and incre
mental analyses, meaning it allows users to selectively enable
or disable certain constraints to help them understand the
underlying model piece by piece.

To illustrate how the tool works, recall program 2 in Fig
ure 1. Consider the problem of checking whether r1 = 1
and r2 = 0 is allowed by sequential consistency. Figure 4
displays the corresponding execution derived from the pro
gram text (it only shows the operation fields relevant to this
example). When constraint validateExecution is imposed,
DefectFinder immediately concludes that the execution is le
gal, with an output displaying the adjacency matrix shown
in Figure 5. A matrix element Mij can have a value of 0, 1,
or X , where 0 indicates i is not ordered before j, 1 indicates i
must precede j, and X means the ordering relation between
1 and j has not been instantiated based on the accumulated
constraints. In general, there usually exists many X en
tries where alternative interleavings are allowed. If desired,
a Prolog predicate labeling can be called to instantiate all
variables. Our tool also outputs a possible interleaving 1 2
6 7 8 3 4 5 which is automatically derived from this matrix.

If the execution with r1 = 0 and r2 = 1 is checked, the
tool would quickly determine that it is illegal. The user can
also ask “what if” queries by selectively commenting out
some ordering rules to identify the root cause of a certain
program behavior.

Applying DefectFinder for a different application simply
involves selecting the corresponding goal. For example, if
the programs in Figure 1 are checked for race conditions, the
tool would report that program 1 is race-free and program
2 is not, in which case the conflicting operations and an
interleaving that leads to the race conditions are displayed.

Similarly, when the program in Figure 2 is verified for race
conditions, our utility would report that it is race-free. How

ever, an atomicity violation would be detected if the trans
action is annotated by an atomic block. Having detected
this defect, the user can subsequently modify the code and
do the test again. For instance, if a transaction is protected
by a single Lock/Unlock pair and both transactions use the
same lock, the bug would be removed.

7.4 Performance
Precise semantic analysis such as race detection is NP-

hard in general [15]. Nonetheless, constraint-based methods
have become very successful in practice, thanks to the effi
cient solving techniques developed in recent years.

Our tool has been applied to analyze a large collection of
litmus tests — each of them is designed to reveal a certain
memory model property or to simulate a common program
ming pattern. Running on a Pentium 366 MHz PC with
128 MB of RAM using Windows 2000, most of the tests
complete within a few seconds.

There is still a lot of room for improvement in perfor
mance, which offers an interesting direction for our future
work. For instance, we can add a “constraint configuration”
component that automatically filters out or reoders certain
rules according to the input program, e.g., rules regarding
control flow can be excluded if the program does not in
volve branch statements. Other solving techniques may also
help make our approach more effective. We have shown in
[7] that a slight variant of the Prolog code can let us ben
efit from a propositional SAT solver. We are also working
on the integration of a quantified boolean formulae (QBF)
solver that can directly accept quantifiers.

8. RELATED WORK
Constraint solving was historically applied in AI planning

problems. In recent years, it has started to show a lot of
potential for program analysis as well. For example, con
straints are used in [16] to analyze programs written in a
factory control language called Relay Ladder Logic. A con
straint system is developed in [17] for inferring static types
for Java bytecode. The work in [18] performs points-to anal
ysis for Java by employing annotated inclusion constraints.
CLP is proposed for performing bounded software model
checking in [19]. Our experience indicates that a constraint-
based approach is also viable for reasoning about correctness
properties in multithreaded programs.

Extensive research has been done in model checking Java
programs, e.g., [20, 21, 22, 23, 24]. These tools, however, do
not address memory model issues. Therefore, they cannot
analyze fine-grained thread interleavings. We can imagine
our method being incorporated into these tools to make their
analyses more accurate.

There is a large body of work on race analysis. These
techniques can be classified as static or dynamic. The lat
ter can be further categorized as on-the-fly or post-mortem,
depending on how the execution information is collected.
Each strategy typically involves a tradeoff among efficiency,
accuracy, and coverage.

Netzer and Miller [25] [26] have categorized data races
and proposed an algorithm using the post-mortem method.
Adve and Hill [27] have proposed the data-race-free model
and unified four weakly ordered memory systems according
to a common property — on these systems, programs would
appear sequentially consistent in the absence of data races.
They further propose a formal definition of data races under

weak memory models [11]. Lamport's happened-before re
lation has been applied in dynamic analysis tools, e.g., [28]
[15] [29]. Several on-the-fly methods have been proposed
that collect information based on the underlying cache co
herence protocol, e.g., [30] [31] [32]. The drawback of these
dynamic techniques is that they can easily miss a data race,
depending on how threads are scheduled.

Our approach is based on the definition given in [11]. It
also employs the happened-before relation, which enables
our system to handle many different synchronization styles.
Unlike the dynamic approaches, we propose a static method
that examines a symbolic execution and achieves an exhaus
tive coverage.

Several race detectors have been designed specifically for
the lock-based synchronization model, e.g. [33] [34] [35].
Tools such as ESC/Java [8] and Warlock [36] rely on user-
supplied annotations to statically detect potential data races.
Type-based approaches have also been proposed for object-
oriented programs, e.g., [37] [38] [39].

While effective in practice, these tools do not address the
issue that we focus on, which is how to rigorously reason
about multithreaded programs running in a complex shared
memory environment. Our framework makes these analy
ses possible and can be particulary useful in helping people
understand the underlying concurrency model and conduct
verification for common programming patterns. The capa
bility of studying program correctness under relaxed mem
ory models is also essential in verifying critical programs
such as JVMs and garbage collectors that run on weak mem
ory systems.

Flanagan and Qadeer have developed a type system to
enforce atomicity with an annotation keyword atomic [5].
It assumes that a race analysis is performed in advance.
Therefore, the effectiveness of their approach depends on
the accuracy of the race detector. Their work is based on
Lipton’s theory of right and left movers [40]. It will be
interesting to investigate if the requirements of movers can
be captured as constraints for type inference.

9. CONCLUSION
We have presented a novel approach that handles both

program semantics and memory model semantics in a declar
ative constraint-based framework. With three concrete ap
plications — execution validation, race detection, and atom
icity verification — we have demonstrated the feasibility
and effectiveness of applying such a “memory-model-aware”
analysis tool for verifying multithreaded programs that, al
beit small, can be extremely difficult to analyze by hand.

To summarize, our system offers the following benefits:

• It is rigorous. Based on formal definitions of program
properties and memory model rules, our system en
ables a precise semantic analysis. Specifications devel
oped in such a rigorous manner can also be sent to
a theorem proving utility, such as the HOL theorem
prover [41], for proving generic properties.

• It is automatic. Our approach allows one to take ad
vantage of the tremendous advances in constraint/SAT
solving techniques. The executable thread semantics
can also be treated as a “black box” whereby the users
are not necessarily required to understand all the de
tails of the model to benefit from the tool.

• It is generic. Since our method is not limited to a
specific synchronization mechanism, it can be applied
to reason about various correctness properties for any
threading model, all using the same framework.

In terms of scalability, there are two aspects involved. One
is the complexity of the shared memory system that can be
modelled. The other is the size of programs that can be an
alyzed. For the former aspect, our system scales well with
its compositional specification style. As demonstrated in
[7], it is capable of formalizing memory ordering rules for
modern commercial processors. As for improving the latter
aspect, divide-and-conquer style verification methods will
be investigated. Techniques developed in other tools, such
as predicate abstraction, branch refinement, and assume-
guarantee, can be integrated into our system. We also plan
to explore more efficient solving techniques. In particular,
the structural information of the constraints may be applied
for improving the solving algorithms. We hope this paper
can help pave the way towards future studies in these excit
ing areas.

10. ACKNOWLEDGMENTS
We are grateful to all contributors to the Java memory

model discussion group who have brought up many inter
esting issues. We especially thank Bill Pugh, Sarita Adve,
and Victor Luchangco for their insightful comments on race
conditions.

11. REFERENCES

[1] Leslie Lamport. How to make a multiprocessor
computer that correctly executes multiprocess
programs. IEEE Transactions on Computers,
28(9):690-691, 1979.

[2] S. V. Adve and K. Gharachorloo. Shared memory
consistency models: A tutorial. IEEE Computer,
29(12):66-76, 1996.

[3] W. Pugh. The Java memory model is fatally flawed.
Concurrency: Practice and Experience, 12(1): 1—11,
2000.

[4] JSR133: Java memory model and thread specification.
http:// www .cs. umd.edu/~pugh/java /memoryModel.

[5] Cormac Flanagan and Shaz Qadeer. A type and effect
system for atomicity. In Proceedings of PLDI, 2003.

[6] Yue Yang, Ganesh Gopalakrishnan, Gary Lindstrom,
and Konrad Slind. Nemos: A framework for axiomatic
and executable specifications of memory consistency
models. Technical Report UUCS-03-019, University of
Utah, 2003.

[7] Yue Yang, Ganesh Gopalakrishnan, Gary Lindstrom,
and Konrad Slind. Analyzing the Intel Itanium
memory ordering rules using logic programming and
SAT. In Proceedings of the 12th Advanced Research
Working Conference on Correct Hardware Design and
Verification Methods (CHARME’03), LNCS 2860,
October 2003.

[8] C. Flanagan, K. Leino, M. Lillibridge, C. Nelson,
J. Saxe, and R. Stata. Extended static checking for
Java, 2002.

[9] Yue Yang, Ganesh Gopalakrishnan, and Gary
Lindstrom. Analyzing the CRF Java Memory Model.

In Proceedings of the 8th Asia-Pacific Software
Engineering Conference, 2001.

[10] Yue Yang, Ganesh Gopalakrishnan, and Gary [26]
Lindstrom. UMM: An operational memory model
specification framework with integrated model
checking capability. Concurrency and Computation:
Practice and Experience, to appear. [27]

[11] S. V. Adve, M. D. Hill, B. P. Miller, and R. H. B.
Netzer. Detecting data races on weak memory
systems. In Proceedings of the 18th International [28]
Symposium on Computer Architecture (ISCA), pages
234-243, 1991.

[12] L. Lamport. Time, clocks and ordering of events in
distributed systems. 21(7):558-565, July 1978. [29]

[13] SICStus Prolog. http://www.sics.se/sicstus.
[14] J. Jaffar and J-L. Lassez. Constraint logic

programming. In Principles Of Programming
Languages, Munich, Germany, January 1987. [30]

[15] Robert H. B. Netzer. Race condition detection for
debugging shared-memory parallel programs.
Technical Report CS-TR-1991-1039, 1991.

[16] Alexander Aiken, Manuel Fahndrich, and Zhendong
Su. Detecting races in relay ladder logic programs. [31]
Lecture Notes in Computer Science, 1384:184-200,
1998.

[17] Etienne Gagnon, Laurie J. Hendren, and Guillaume [32]
Marceau. Efficient inference of static types for java
bytecode. In Static Analysis Symposium, pages
199-219, 2000. [33]

[18] Atanas Rountev, Ana Milanova, and Barbara G.
Ryder. Points-to analysis for Java using annotated
constraints. In Proceedings of Object-Oriented
Programming Systems, Lanuages, and Applications,
pages 43-55, 2001. [34]

[19] Cormac Flanagan. Automatic software model checking
using CLP. In Proceedings of ESOP, pages 189-203,
2003. [35]

[20] Klaus Havelund and Thomas Pressburger. Model
checking JAVA programs using JAVA PathFinder.
International Journal on Software Tools for
Technology Transfer, 2(4):366-381, 2000. [36]

[21] W. Visser, K. Havelund, G. Brat, and S. Park. Java
PathFinder - second generation of a Java Model
Checker. In Post-CAV Workshop on Advances in [37]
Verification, Chicago, 2000.

[22] James C. Corbett. Evaluating deadlock detection
methods for concurrent software. IEEE Transactions [38]
on Software Engineering, 22(3):161-180, March 1996.

[23] James C. Corbett, Matthew B. Dwyer, John Hatcliff,
Shawn Laubach, Corina S. Pasareanu, Robby, and
Hongjun Zheng. Bandera: extracting finite-state [39]
models from Java source code. In International
Conference on Software Engineering, pages 439-448,
2000.

[24] D. Park, U. Stern, and D. Dill. Java model checking.
In Proceedings of the First International Workshop on [40]
Automated Program Analysis, Testing and
Verification, Limerick, Ireland, 2000.

[25] Robert H. B. Netzer and Barton P. Miller. Improving [41]
the accuracy of data race detection. Proceedings of the
ACM SIGPLAN Symposium on Principles and

Practice of Parallel Programming PPOPP,
26(7):133-144, 1991.
R. H. Netzer and B. P. Miller. What are race
conditions? Some issues and formalizations. ACM
Letters on Programming Languages and Systems,
1(1):74-88, 1992.
S. V. Adve and M. D. Hill. A unified formalization of
four shared-memory models. IEEE Trans. on Parallel
and Distributed Systems, 4(6):613-624, 1993.
A. Dinning and E. Schonberg. Detecting access
anomalies in programs with critical sections. In
Proceedings of the ACM/ONR Workshop on Parallel
and Distributed Debugging, pages 85-96, 1991.
D. Perkovic and P. Keleher. Online data-race
detection via coherency guarantees. In Proceedings of
the 2nd Symposium on Operating Systems Design and
Implementation (OSDI’96), pages 47-57, 1996.
S. L. Min and J.-D. Choi. An efficient cache-based
access anomaly detection scheme. In Proceedings of
the 4th International Conference on Architectural
Support for Programming Languages and Operating
System (ASPLOS), pages 235-244, 1991.
B. Richards and J. R. Larus. Protocol-based data-race
detection. In Proceedings of the SIGMETRICS
symposium on Parallel and distributed tools, 1998.
Edmond Schonberg. On-the-fly detection of access
anomalies. In Proceedings of PLDI, pages 285-297,
1989.
Stefan Savage, Michael Burrows, Greg Nelson, Patrick
Sobalvarro, and Thomas Anderson. Eraser: A
dynamic data race detector for multithreaded
programs. A CM Transactions on Computer Systems,
15(4):391-411, 1997.
C. von Praun and T. Gross. Object-race detection. In
Proceedings of Object-Oriented Programming Systems,
Lanuages, and Applications, pages 70-82, 2001.
J. Choi, K. Lee, A. Loginov, R. O’Callahan,
V. Sarkar, and M. Sridharan. Efficient and precise
datarace detection for multithreaded object-oriented
programs. In Proceedings of PLDI, 2002.
N. Sterling. Warlock - a static data race analysis tool.
USENIX Winter Technical Conference, pages 97-106,
1993.
Cormac Flanagan and Stephen N. Freund. Type-based
race detection for Java. Proceedings of PLDI, pages
219-232, 2000.
David F. Bacon, Robert E. Strom, and Ashis
Tarafdar. Guava: a dialect of Java without data races.
In Proceedings of Object-Oriented Programming
Systems, Lanuages, and Applications, 2000.
Chandrasekhar Boyapati and Martin Rinard. A
parameterized type system for race-free Java
programs. In Proceedings of Object-Oriented
Programming, Systems, Languages, and Applications,
2001.
R. Lipton. Reduction: a method of proving properties
of parallel programs. Communications of the A CM,
18(12):717-721, 1975.
T. F. Melham M. J. C. Gordon. Introduction to HOL:
A theorem proving environment for higher order logic.
Cambridge University Press, 1993.

http://www.sics.se/sicstus

A. SEQUENTIAL CONSISTENCY
legalSC ops order =

requireProgramOrder ops order A
requireReadValue ops order A
requireComputation ops order A
requireMutualExclusion ops order A
requireWeakTotalOrder ops order A
requireTransitiveOrder ops order A
requireAsymmetricOrder ops order

A.1 Program Order Rule
requireProgramOrder ops order = V i, j G ops.

(fb i A fb j A (orderedByProgram i j V
t i = tinit a t j = tinit)) ^ order i j

A.2 Read Value Rules
requireReadValue ops order =

globalReadValue ops order A
localReadValue ops order A
controlReadValue ops order

globalReadValue ops order = V k G ops.
(fb k A isRead k) ^
(3 i G ops. fb i A op i = Write A var i = var k A
data i = data k A —(order k i) A
(—3 j G ops. fb j A op j = Write A var j = var k A
order i j A order j k))

localReadValue ops order = V k G ops. fb k ^
(V e G (getLocals k).
(3 i G ops. (fb i A isAssign i A local i = getVar e A
data i = getData e A orderedByProgram i k) A
(—3 j G ops. (fb j A isAssign j A local j = getVar e A
orderedByProgram i j A orderedByProgram j k))))

controlReadValue ops order = V k G ops.
(V e G (getCtrs k).
(3 i G ops. op i = Control A var i = getVar e A
data i = getData e A orderedByProgram i k))

A.3 Computation Rule
requireComputation ops order = V k G ops.

((fb k A op k = Computation) ^
(data k = eval (cmpExpr k))) A
((fb k A op k = Control) ^
(data k = eval (ctrExpr k)))

A.4 Mutual Exclusion Rule
requireMutualExclusion ops order = V i, j G ops.

(fb i A fb j A matchLock i j) ^
(—3 k G ops. fb k A isSync k A
lock k = lock i A t k = t i A order i k A order k j)

A.5 General Ordering Rules
requireWeakTotalOrder ops order = V i, j G ops.

(fb i A fb j A id i = id j) ^ (order i j V order j i)

requireTransitiveOrder ops order = V i, j, k G ops.
(fb i A fb j A fb k A order i j A order j k) ^ order i k

APPENDIX A.6 Auxiliary Definitions
fb i = (eval (ctrExpr i) = True)

orderedByProgram i j = (t i = t j A pc i < pc j)

isAssign i = (op i = Computation V op i = Read)

isSync i = (op i = Lock V op i = Unlock)

matchLock i j =
op i = Lock A op j = Unlock A matchID j = id i

Note: for brevity, the following predicates are not explicitly
defined here since they are typically well understood.

eval exp: evaluate exp with standard program semantics;
getLocals k: parse k and get the set of local variables that k

depends on, with their associated data values;
parse the path predicate of k and get the set
of control variables that k depends on, with
their associated data values;
get variable from a (variable, data) entry;
get data from a (variable, data) entry.

getCtrs k:

getVar e:
getData e:

B. EXECUTION VALIDATION
validateExecution ops = 3 order. legalSC ops order

C. RACE DETECTION
detectDataRace ops = 3 scOrder, hbOrder.

legalSC ops scOrder A

requireHbOrder ops hbOrder scOrder A

mapConstraints ops hbOrder scOrder A
existDataRace ops hbOrder

requireHbOrder ops hbOrder scOrder =

requireProgramOrder ops hbOrder A
requireSyncOrder ops hbOrder scOrder A
requireTransitiveOrder ops hbOrder

requireSyncOrder ops hbOrder scOrder = V i j £ ops.

(fb i A fb j A isSync i A isSync j A scOrder i j)
^ hbOrder i j

mapConstraints ops hbOrder scOrder = V i j £ ops.

(fb i A fb j A hbOrder i j) => scOrder i j

existDataRace ops hbOrder = 3 i , j £ ops.

fb i A fb j A t i = t j A var i = var j A
(op i = W rite A op j = W rite V

op i = W rite A op j = Read V

op i = Read A op j = W rite) A

—(hbOrder i j) A —(hbOrder j i)

D. ATOMICITY VERIFICATION
verifyAtomicity ops = 3 order.

legalSC ops order A
existAtomicityViolation ops order

existAtomicityViolation ops order = 3 i , j , k £

(fb i A fb j A fb k A
abEnter i A abExit j A
id i = matchAtID j A id i = id j A
isViolation k A
—(order k i) A —(order j k))

ops.

requireAsymmetricOrder ops order = V i,j G ops.
(fb i A fb j A order i j) ^ —(order j i) isV iolation k = (t k = t i)

