50 research outputs found

    A survey on subjecting electronic product code and non-ID objects to IP identification

    Full text link
    Over the last decade, both research on the Internet of Things (IoT) and real-world IoT applications have grown exponentially. The IoT provides us with smarter cities, intelligent homes, and generally more comfortable lives. However, the introduction of these devices has led to several new challenges that must be addressed. One of the critical challenges facing interacting with IoT devices is to address billions of devices (things) around the world, including computers, tablets, smartphones, wearable devices, sensors, and embedded computers, and so on. This article provides a survey on subjecting Electronic Product Code and non-ID objects to IP identification for IoT devices, including their advantages and disadvantages thereof. Different metrics are here proposed and used for evaluating these methods. In particular, the main methods are evaluated in terms of their: (i) computational overhead, (ii) scalability, (iii) adaptability, (iv) implementation cost, and (v) whether applicable to already ID-based objects and presented in tabular format. Finally, the article proves that this field of research will still be ongoing, but any new technique must favorably offer the mentioned five evaluative parameters.Comment: 112 references, 8 figures, 6 tables, Journal of Engineering Reports, Wiley, 2020 (Open Access

    CRDTs in highly volatile environments

    Get PDF
    Publisher Copyright: © 2022 The Author(s)The implementation of collaborative applications in highly volatile environments, such as the ones composed of mobile devices, requires low coordination mechanisms. The replication without coordination semantics of Conflict-Free Replicated Data Types (CRDTs) makes them a natural solution for these execution contexts. However, the current CRDT models require each replica to know all other replicas beforehand or to discover them on-the-fly. Such solutions are not compatible with the dynamic ingress and egress of nodes in volatile environments. To cope with this limitation, we propose the Publish/Subscribe Conflict-Free Replicated Data Type (PS-CRDT) model that combines CRDTs with the publish/subscribe interaction model, and, with that, enable the spatial and temporal decoupling of update propagation. We implemented PS-CRDTs in Thyme, a reactive storage system for mobile edge computing. Our experimental results show that PS-CRDTs require less communication than other CRDT-based solutions in volatile environments.publishersversionpublishe

    Benchmarking Eventually Consistent Distributed Storage Systems

    Get PDF
    Cloud storage services and NoSQL systems typically offer only "Eventual Consistency", a rather weak guarantee covering a broad range of potential data consistency behavior. The degree of actual (in-)consistency, however, is unknown. This work presents novel solutions for determining the degree of (in-)consistency via simulation and benchmarking, as well as the necessary means to resolve inconsistencies leveraging this information

    Connectivity preserving network transformers

    Get PDF
    The Population Protocol model is a distributed model that concerns systems of very weak computational entities that cannot control the way they interact. The model of Network Constructors is a variant of Population Protocols capable of (algorithmically) constructing abstract networks. Both models are characterized by a fundamental inability to terminate. In this work, we investigate the minimal strengthenings of the latter that could overcome this inability. Our main conclusion is that initial connectivity of the communication topology combined with the ability of the protocol to transform the communication topology plus a few other local and realistic assumptions are sufficient to guarantee not only termination but also the maximum computational power that one can hope for in this family of models. The technique is to transform any initial connected topology to a less symmetric and detectable topology without ever breaking its connectivity during the transformation. The target topology of all of our transformers is the spanning line and we call Terminating Line Transformation the corresponding problem. We first study the case in which there is a pre-elected unique leader and give a time-optimal protocol for Terminating Line Transformation. We then prove that dropping the leader without additional assumptions leads to a strong impossibility result. In an attempt to overcome this, we equip the nodes with the ability to tell, during their pairwise interactions, whether they have at least one neighbor in common. Interestingly, it turns out that this local and realistic mechanism is sufficient to make the problem solvable. In particular, we give a very efficient protocol that solves Terminating Line Transformation when all nodes are initially identical. The latter implies that the model computes with termination any symmetric predicate computable by a Turing Machine of space Θ(n2)\Theta(n^2)

    Towards Post-Quantum Blockchain: A Review on Blockchain Cryptography Resistant to Quantum Computing Attacks

    Get PDF
    [Abstract] Blockchain and other Distributed Ledger Technologies (DLTs) have evolved significantly in the last years and their use has been suggested for numerous applications due to their ability to provide transparency, redundancy and accountability. In the case of blockchain, such characteristics are provided through public-key cryptography and hash functions. However, the fast progress of quantum computing has opened the possibility of performing attacks based on Grover's and Shor's algorithms in the near future. Such algorithms threaten both public-key cryptography and hash functions, forcing to redesign blockchains to make use of cryptosystems that withstand quantum attacks, thus creating which are known as post-quantum, quantum-proof, quantum-safe or quantum-resistant cryptosystems. For such a purpose, this article first studies current state of the art on post-quantum cryptosystems and how they can be applied to blockchains and DLTs. Moreover, the most relevant post-quantum blockchain systems are studied, as well as their main challenges. Furthermore, extensive comparisons are provided on the characteristics and performance of the most promising post-quantum public-key encryption and digital signature schemes for blockchains. Thus, this article seeks to provide a broad view and useful guidelines on post-quantum blockchain security to future blockchain researchers and developers.10.13039/501100010801-Xunta de Galicia (Grant Number: ED431G2019/01) 10.13039/501100011033-Agencia Estatal de Investigación (Grant Number: TEC2016-75067-C4-1-R and RED2018-102668-T) 10.13039/501100008530-European Regional Development FundXunta de Galicia; ED431G2019/0
    corecore