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a b s t r a c t

The implementation of collaborative applications in highly volatile environments, such as the ones
composed of mobile devices, requires low coordination mechanisms. The replication without coor-
dination semantics of Conflict-Free Replicated Data Types (CRDTs) makes them a natural solution
for these execution contexts. However, the current CRDT models require each replica to know all
other replicas beforehand or to discover them on-the-fly. Such solutions are not compatible with the
dynamic ingress and egress of nodes in volatile environments. To cope with this limitation, we propose
the Publish/Subscribe Conflict-Free Replicated Data Type (PS-CRDT) model that combines CRDTs with
the publish/subscribe interaction model, and, with that, enable the spatial and temporal decoupling
of update propagation. We implemented PS-CRDTs in Thyme, a reactive storage system for mobile
edge computing. Our experimental results show that PS-CRDTs require less communication than other
CRDT-based solutions in volatile environments.

© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Smartphones (and smart devices, in general), currently play
n important role in peoples’ everyday life, being used for every-
hing, from leisure to work-related activities. To meet the users’
xpectations concerning availability and latency, while coping
ith the ever-increasing number of users and data, mobile-
ailored applications and services, such as online gaming, social
etworks or collaborative editing, are increasingly adopting the
dge computing paradigm.
Efficient mobile data management ultimately requires replica-

ion techniques [1]. In this context, when faced with the restric-
ions stated in the CAP theorem [2] and the poor or intermittent
onnectivity of mobile environments (which often cause tempo-
ary disconnections), the choice between compromising availabil-
ty or relaxing consistency usually falls on the latter. However,
elaxed consistency raises the challenge of how to handle and
esolve data inconsistencies and conflicts.

Conflict-Free Replicated Data Types (CRDTs) [3,4] are repli-
ated objects that can be concurrently modified without expen-
ive synchronization, while guaranteeing the eventual conver-
ence of all replicas. They, hence, present themselves as a natural
olution to achieve relaxed consistency with low coordination
n distributed environments. In fact, CRDTs have shown to be
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E-mail address: herve.paulino@fct.unl.pt (H. Paulino).
ttps://doi.org/10.1016/j.future.2022.12.013
167-739X/© 2022 The Author(s). Published by Elsevier B.V. This is an open access a
c-nd/4.0/).
suitable for storage systems, such as Riak1 and AntidoteDB,2
ollaborative applications [5–7] and peer-to-peer services [8].
Fig. 1 showcases an edge computing scenario, on which multi-

le (potentially mobile) devices create and share mutable data, in
he form of CRDT objects. This data is stored in a cloud infrastruc-
ure that runs a CRDT-based database and is made available to the
evices via a set of edge servers that cache some of the database’s
ontents. In order to allow for disconnected operation [9], CRDT
eplicas may be installed on the devices themselves, synchroniz-
ng with the remainder replicas periodically, whenever a network
onnection is available. Accordingly, in this scenario, a CRDT
bject may have replicas in the cloud database, edge servers and
obile devices. To improve efficiency, replica synchronization
an be carried out hierarchically, i.e., co-located mobile devices
nd the local edge server can synchronize the ongoing modi-
ications over the shared objects among themselves. The local
dge server may then compute syntheses of these modifications
nd propagate them to the centralized database and all inter-
sted peer edge servers, enabling system-wide synchronization.
he synchronization at the co-located mobile device level can
lso be applied to scenarios without a centralized database, and
ven without an edge server, being the data local to the devices
haring it. Example application fields of such solution are local
ultiplayer games, such as a chess or a card game, on which
sers play without centralized servers, or IoT scenarios, where
sers interact with IoT devices only based on locally available
nformation.

1 http://basho.com/products/riak-kv
2 https://www.antidotedb.eu
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Fig. 1. Example of the use of local replica synchronization. The circles represent
replicas. Red and green are stored in the cloud database, being the former
replicated in more than one region and the latter replicated in a single one.
The blue item is local to the devices of region B, being cached at the edge.

Current CRDT models cannot be efficiently used in the afore-
mentioned scenarios because they require replicas to have knowl-
edge of the peers they must synchronize with, before emitting an
update. In static contexts, this information is known beforehand
but, when such is not the case, active updating, flooding or
some other out-of-band mechanism must be used [10]. In highly
volatile mobile environments, as the ones comprising mobile
devices, the inclusion of this a priori knowledge requirement
mposes unacceptable communication costs. The alternative is to
entralize the synchronization in some node, like the edge server
r another node elected for the job. Each node becomes then
ware of only two replicas: its own and the server’s, inducing
solution that requires a central server, with all the known

imitations concerning fault tolerance, load balance, performance,
nd so forth.
To address this limitation, we propose the Publish/Subscribe

onflict-Free Replicated Data Type (PS-CRDT) model. PS-CRDTs
ombine CRDTs with the publish/subscribe (P/S) interaction
aradigm, leveraging on the latter to bring the spatial and tem-
oral decoupling of CRDTs update propagation. Basically, we
se the P/S system as the medium for propagating and sharing
pdates, and define the update propagation pattern for shared
RDT objects. With this, CRDT update dissemination is completely
ecoupled from update reception, enabling the use of CRDTs
n highly volatile scenarios where there is no knowledge of all
eplicas. We also propose PS-CRDT-tailored versions of the main
RDT synchronization models (state-, operation- and delta-based),
ocusing on the adaptations needed to meet the requirements of
ach model.
To assess the practicality of our proposal, we implemented

he proposed PS-CRDT synchronization models in the context of
hyme [11,12], a reactive storage system for mobile edge com-
uting, and developed several CRDTs (e.g., counters, sets and
aps). The addition of CRDTs to Thyme provides a mean to use

he P/S pattern to share and update mutable data in mobile
dge environments. We used our implementation to conduct a
omprehensive set of simulations, whose results show that PS-
RDTs require less bandwidth than other CRDT-based solutions
o synchronize replicas in volatile environments.

In summary, our main contributions are:

1. the proposal of PS-CRDTs, a novel CRDT model that com-

bines CRDTs with the P/S interaction paradigm, and the s
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specification of three PS-CRDT-tailored synchronization
models (Section 3);

2. the implementation of PS-CRDTs and the proposed three
synchronization models atop Thyme (Section 4); and

3. a comprehensive experimental evaluation, through simu-
lation, that compares our Thyme PS-CRDT against other
solutions, such as ∆-CRDTs and CRDT-based centralized
solutions (Section 5).

. Background and related work

In this section we provide background on CRDTs, including
he latest developments on the field, and also look at existent
olutions for weak consistency in mobile environments.

.1. CRDTs

CRDTs are a family of replicated data structures designed for
ighly available systems. They enable replicas to be updated in-
ependently and concurrently without coordination. CRDTs come
n two (main) flavors, both providing strong eventual consis-
ency [4]: state-based and operation-based.

State-based CRDTs synchronize replicas by periodically ex-
hanging their local state, along with the necessary metadata
nformation. When received, a state is merged with the local one
y a commutative, associative and idempotent function, defined
n the data type itself. These are generally the simplest type of
RDT to support, since they only require some kind of gossip
rotocol from the communication substrate. Their main drawback
s the considerable communication overhead imposed by the
ropagation of the entire state (resulting from every know up-
ate, both local or remote) to every other replica. The work in [13]
ddresses the efficient dissemination of state-based CRDTs in
arge open networks. The work shares affinities with ours, in the
ense that it also addresses dynamic environments. It is, however,
irected to large global networks, while ours focuses on co-
ocated nodes, and only addresses state-based synchronization,
hile we also support other synchronization models.
Operation-based (Op-based) CRDTs synchronize replicas by prop

gating state update operations, rather than the state itself. The
rocess follows a two-step procedure: function prepare executes
t the source to generate the operation (op) to be disseminated,
nd a commutative effect function executes at the destination
o apply op over the local state. Op-based CRDTs are generally
ore efficient in terms of communication (i.e., bandwidth) but

equire stronger guarantees from the communication substrate:
perations must be delivered with exactly-once semantics and
bey the causal order.
Op-based CRDTs are usually simpler to implement than state-

ased. The designs are, however, compatible in the sense that
hey can be implemented atop each other. Pure op-based CRDTs
14] are a variant of op-based that limits state introspection in the
repare stage, with the goal of simplifying datatype implementa-
ion. The approach clearly separates op-based from state-based
olutions, thus breaking the aforementioned compatibility.
Lastly, Delta-based CRDTs [10,15] combine aspects from both

he state- and op-based designs. They are optimized state-based
olutions on which only the changes made since the last synchro-
ization moment (the delta) are propagated to the other replicas.
he entire state is only communicated when there is a large
nough amount of changes to justify it. Of the two, the ∆−based
olution [10] is the one that better fits the type of environments
e are targeting.
The work in [16] addresses the optimization of state transfers

n delta-based CRDTs by: 1. avoiding the back propagation (BP) of
ata to the source node and 2. removing redundant state (RR) in
elta propagation, i.e., not sending the same information to the

ame node more than once.
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.2. Weak consistency in mobile environments

Throughout the years, weak consistency in mobile environ-
ents has mostly been addressed with the purpose of enabling
isconnected execution. Systems such as Bayou [17], Rover [18],
ceCube [19] and Telex [20], among others, leverage replication
mostly in the scope of caching) to allow clients to use re-
ote services even when disconnected from the servers. Upon

econnection, the local and remote states are reconciled, being
ifferent strategies proposed for the purpose. SwiftCloud [21]
ollows the same philosophy, but is closer to our work by being
CRDT-based geo-replicated cloud storage system. To allow for
isconnected execution, clients may cache CRDTs. Transactions
that never fail) are first executed and committed on the client
ide, and later propagated to the data centers. There is no inter-
lient interaction, clients always communicate with the closest
ata center.
PathStore [22] is a hierarchical storage system tailored for

dge environments that provides eventual consistency guaran-
ees. Replica updates are applied at each node of the hierarchy
nd propagated upward. There is, however, no local synchro-
ization among the devices below the edge servers. All synchro-
ization is performed by the local edge server. The work was
xtended in [23] to support session guarantees.
The topic of maintaining consistency between replicas in edge-

loud environments is addressed in other works, such as [24] that
nsures strong consistency by leveraging on the Fast-Paxos algo-
ithm. Other recent works have focused on end-to-end data con-
istency for mobile applications. Of these, we highlight Simba [25]
hat provides a high-level data abstraction with tunable consis-
ency semantics. There are also works, such as Legion [8], that aim
o reduce latency by promoting local replication and interaction
s an alternative to continuous communication to centralized
ervices. These works do not, however, address the volatility of
etworks of mobile devices.

. The PS-CRDT Model

The PS-CRDT model brings the spatial and temporal decou-
ling of publish/subscribe interaction to CRDTs, enabling up-
ate dissemination to occur without the source knowing who,
nd where, the recipients are. We leverage the publish/subscribe
odel to notify all interested replicas that an update is available.
pon reception of such notification, it is up to the subscribing
eplicas to interact with the source to transfer the actual update.

We are considering an asynchronous system model composed
f (potentially mobile) devices, that we refer to as nodes. Nodes
ave globally unique identifiers, no mobility restrictions, and may
nter and/or leave the system at any time, i.e., their absence
ay be permanent or temporary. A node’s exit may be caused
y a crash, for instance, due to battery depletion. When in the
resence of such failures, we assume the classical crash-stop
odel.
CRDT objects are replicated among multiple nodes, being the

omposition of this node set variable over time. Objects are
lso globally unequivocally identifiable, and the identifier of a
articular object obj, that we refer to as idobj, must be known be-

forehand by all the nodes that wish to disseminate and/or receive
updates to that object’s state. Lastly, no imposition is made on
the mechanism for the retrieval of object identifier information,
leaving it to concrete implementations (we shall provide one in
Section 4).

Concerning the P/S system in use, it must support topic-
based subscriptions and also the persistence of both publications
and subscriptions. Moreover, the P/S broker must be directly or
indirectly accessible to every node, be it via a network infras-

tructure and/or device-to-device communication. No constraints

757
are imposed on the broker’s implementation, which may be cen-
tralized or distributed, and be internal (supported by the nodes
themselves) or an external service.

Information that updates have been issued on a object obj is
disseminated through publish operations on the P/S topic bound
to idobj, and received via notifications triggered whenever there
is a match between publications and subscriptions on that same
topic. Over time, nodes may overlap the roles of publisher and
subscriber, publishing and subscribing to updates. To guarantee
the uniqueness of the PS-CRDT topics, the function that maps
object identifiers into P/S topics must naturally be injective. The
model defines, thus, three main operations:

publish (updt, topic_of_idobj) – disseminates the existence (the
metadata) of a new update updt on object with identifier
idobj.

subscribe (topic_of_idobj) – subscribes to updates addressed to
object with identifier idobj.

handleUpdate (updt, topic_of_idobj, handler) – defines the handler
to execute on the reception of an update to object with
identifier idobj.

Fig. 2 presents a scenario where six nodes subscribe to the
updates on a given object (Fig. 2(a)), being that, short after, two of
these nodes disconnect momentarily from the network (Fig. 2(b)).
As is illustrated in Fig. 2(c), the broker is responsible for storing
the metadata of published updates (updtm), which includes the
list of nodes (sources) that have the update, and relaying these to
the subscribers currently reachable. Upon the metadata’s recep-
tion, each notified node may download the update itself (whose
contents will depend on the CRDT type and state) from one of the
aforementioned sources (Fig. 2(d)). Once downloaded, the update
is passed as argument to an invocation of operation handleUpdate
so that it may be applied over the CRDT’s state.

The persistence of the publications (the updates’ metadata)
provides the means for the nodes that lost updates to, proactively,
recover this information and ensure the convergence of the repli-
cas they hold. Fig. 2(e) illustrates the use of this mechanism by
nodes 5 and 6, that have reconnected to the network. They may
now obtain the list of missing updates from the broker and use
it to reconcile the local state of their objects with the remainder
replicas by downloading all missing updates (Fig. 2(f)).

The solutions needed to support the persistence of publica-
tions, the delivery of updates and the recovery of lost updates
must be tailored to the synchronization model in use. The rest
of this section discusses solutions for the state-, operation- and
delta-based models.

3.1. State-based synchronization

Support for state-based synchronization in the PS-CRDTs model
is fairly straightforward, but not very efficient in low through-
put unreliable environments, such as mobile networks. Update
dissemination must carry the entire state of the object, along
with version information, so that states may be totally ordered. A
simple solution to handle this data on the broker side is to queue
all updates’ metadata and, for each, broadcast a notification to the
topic’s subscribers. The logic for coping with versioned states is
then delegated on the receiver nodes.

Since there is no guarantee that the order of the broker’s
queue is equivalent to the one induced by the state version
information, a metadata object may not be deleted as soon as
the respective notification is broadcast. Naturally, this limitation
can be easily overcome by placing the version state information

in the metadata (rather than on the update itself) and defining
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his version state information as the queue’s ordering criterion.
n fact, with this criterion, the queue is no longer required: only
he most up-to-date state (the one with the latest version) needs
o be stored. Many P/S services allow for the definition of a
rdering criterion, e.g., Google Cloud PubSub.3 The elimination of
he queue may require a tailor-made implementation. Also, note
hat the receiver’s update handler must still cope with versioned
tates because there is no order guarantee in the delivery of
otifications.
Even with this broker optimization, state-based synchroniza-

ion still places a heavy communication burden for several CRDT
ypes, as the entire state is sent on each update download. More-
ver, in dynamic systems, where the number of nodes holding
eplicas likely vary over time, storing the version information
equires dynamic structures that will have to feature one entry
er node that ever contributed to the object’s current state.
iven that this version information has to be sent in every state

3 https://cloud.google.com/pubsub/docs/ordering
 o
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update publication, state-based synchronization is not a good so-
lution for volatile systems nor for environments with non-reliable
communication.

To tackle this issue, we devised the Local-state-based alter-
native synchronization model, that we refer to as Lstate-based
synchronization. This synchronization model builds only on the
publication of the contributions made by each individual node.
Accordingly, the payload of a Lstate CRDT is reduced to the
portion of the object’s state that results from the modifications
made at the source. The modifications received from other nodes
are now stored in a second data structure that we refer to as
global state. As in the state-based design, the merge operation
eceives two arguments. However, these are now the replica’s
lobal state and a state (that includes the payload) received from
nother node. The result is a new global state.

Algorithms 1 and 2 provide, respectively, simple state-based
nd Lstate-based implementations of a counter CRDT proposed
n [3,4]. In Algorithm 1, to support an unknown number of repli-
as, the type of the payload was modified from the original array
f integers to a map from replica identifiers to integer values.

https://cloud.google.com/pubsub/docs/ordering
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Algorithm 1 State-based Counter.

1: payload map⟨id, int⟩ valP ▷ Map of replica ids to their
contributions

2: query value () : int
3: return

∑
r∈dom(valP) valP(r)

4: update inc (int n)
5: r ← repId() ▷ repId: get the local replica id
6: valP(r)← valP(r) + n ▷ valP(r) = 0, if r ̸∈ dom(valP)
7: merge (X, Y ) : payload Z
8: for r ∈ X.valP.keys ∪ Y .valP.keys
9: Z.valP(r)← max(X.valP(r),Y .valP(r))

Algorithm 2 Lstate-based Counter.

1: globalState map⟨id, int⟩ valP ▷ Map of replica ids to their
contributions

2: payload int count ▷ Initial value: 0

3: query value () : int
4: return

∑
r∈dom(valP) valP(r) + count

5: update inc (int n)
6: count ← count + n
7: merge (X, Y ) : globalState Z
8: r← Y .repId() ▷ repId: get the replica id
9: Z.valP ← X.valP \ {r}

10: Z.valP(r) = max(X.valP(r),Y .count) ▷ valP(r) = 0,
▷ if r ̸∈ dom(valP)

Hence, the state of the counter, which is also the payload to be
sent in every update dissemination, is given by the valP map that
stores the sum of all contributions per replica. The value of the
counter is then obtained by summing the elements of valP (lines 2
and 3). Incrementing the counter, adds the increment to the entry
of the local replica in valP (lines 4 to 6). Lastly, to merge the local
state with one received from a remote replica entails merging the
received payload (a valP map) with the local map (lines 7 to 9).
The result is a new map that projects every key r found in either
on the input maps (X.valP and Y.valP) to max(X.valP(r), Y.valP(r)),
assuming valP(r) = 0, if r ̸∈ dom(valP).

In the Lstate implementation (Algorithm 2), the counter’s state
is decomposed into the payload (to be sent in every update
dissemination) and the globalState. The payload becomes a simple
integer (count) that stores the increments performed by the local
replica, being the valP map now declared as globalState and
storing only the sum of the increments received by each of the
remainder replicas. To obtain the counter’s value is to add the
sum all elements of valP to count. To increment the counter is
simply to add the increment to count. The merging conciliates a
received payload with the replicas global state, producing a new
global state. In the particular case of the counter, it only impacts
on the entry regarding the source replica r .

3.1.1. Convergence
In Lstate, the eventual convergence of a replica is only guar-

anteed if its state contains the final4 update from every other
contributor. This requirement demands an at-least-once delivery
guarantee of all notifications of these final updates. Otherwise, if
a node does not receive one of such notifications, it will forever
miss a contribution needed to compute the object’s latest state.
The remainder publications do not require delivery guarantees, as

4 The last update that will ever be published by a node on the object.
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they will ultimately be subsumed by the latest update metadata
publication from the same node. The order of the notifications
of update metadata from the same source must however be
guaranteed, so that the receiving nodes may always apply the
update bound from the latest publication. In sum, updates, other
than a node’s final one, may be loss but not processed out of
order.

A node that lost notifications, either by entering the system
later than others or by being absent for a period of time, must
be able to retrieve the publications that have at-least-once de-
livery guarantees. Only the updates received by the broker are
considered. A node that is not able to inform the broker of its
updates will forever diverge from the remainder replicas, as its
contributions will be unknown to the system. The situation must
be reported on every failed publication attempt, so that measures
can be taken.

3.1.2. Complementary issues
Following our discussion on convergence, successful publish

operations must be acknowledged by the broker, while unsuc-
cessful ones must be detected and reported at client-side. With
this information at hand, a node will only publish an update’s
metadata after it has acknowledged the success of the previous.
On the broker’s side, the efficient support of Lstate-based syn-
chronization requires a custom-made storage. An option is to use
a multi-value register with an entry per node that ever published
an update. This entry will store only the node’s most recent pub-
lication. No version information is required since nodes publish
their updates’ metadata in order, and only after the previous have
been acknowledged.

3.2. Operation-based synchronization

Operation-based synchronization can also be implemented in
the PS-CRDT model. An update will now carry the metadata of
the operation(s) to be applied at every replica, while the update’s
metadata will only contain the publisher’s identifier, the identifier
of the last update received from a peer (to establish a chain of
causality), the list of nodes containing the update (initially only
the publisher) and other implementation specific information.
The causal ordering requirements of op-based synchronization
can be easily guaranteed in the presence of a centralizing entity
(the broker). The latter simply has to sort the updates’ metadata
by their order of arrival. The assurance of the causality chain is
delegated on the replicas.

Note that this sorting does not implement a total ordering
on the updates. The application of a local update does not re-
quire coordination with the broker, and hence there are strong
consistency guarantees. Consider an example with replicas A,
B and C of some object, all having received no updates yet,
represented by last update received = 0. If all of the replicas apply
an update concurrently, they will publish the following metadata:
(node, 0, {node}), with node equal to A, B or C , depending on the
source. Consider, now, that the broker ordered the updates as
follows:

[1 ↦→ (A, 0, {A}), 2 ↦→ (B, 0, {B}), 3 ↦→ (C, 0, {C})]

that we abbreviate to [1A0, 2B0, 3C0]. Replica A will likely apply
the operations in that same order,5 but replica B will apply them
in order [B0, 1A0, 3C0], because B0 was applied at source first
and published later (local updates do not have sequence number,
because the replicas have no knowledge of the number assigned
to their updates). Furthermore, suppose that replica C receives

5 As long as causality is preserved, notifications can be received out of order.
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Algorithm 3 Retrieving missing updates.

1: function getMissingUpdates(
lastUpdateApplied, ▷ The number of the last update applied
lastUpdateReceived, ▷ The number of the last update received
broker, ▷ Reference to contact the P/S broker
object, ▷ Local replica of the CRDT object
updateTopic, ▷ The update topic for the CRDT object
replicas, ▷ Set of locally known replicas of the object
time) ▷ The time given for the operation to conclude

2: status← MISSING
3: updates← ∅
4: while status ̸= ALL ∧ hasNotExpired(time) do
5: (status, updates)← broker.getUpdates(updateTopic, lastUpdateApplied, lastUpdateReceived)
6: if status ̸= ALL then
7: (lastUpdateApplied, object)← replicas.getRandom().getNewObjectVersion(updateTopic, lastUpdateApplied)
8: if lastUpdateApplied ≥ lastUpdateReceived then
9: status← ALL
0: lastUpdateReceived← lastUpdateApplied
1: applyUpdates(object, updates)
2: return status
update 1A0 and applies a local update before receiving 2B0. This
ocal update depends on the already received update with identi-
ier 1 and, thus, will have metadata (C, 1, {C}). Assuming no other
pdates, replica C will apply these in order [C0, 1A0, C1, 2B0],

while the remainder will only apply 4C1 after the other 3.
Besides the broker’s ordering, notifications must be delivered

according to the exactly-once semantics, so that no notification
is lost nor is processed more than once. In order to guarantee
such semantics to late entering and temporary absent nodes, lost
updates must be retrievable long after the notifications have been
broadcast. To that end, the broker must keep a log of the updates
it receives. Whenever a node asks for an update that has been
evicted from the broker’s storage, due to memory management
policies, this node must be able to obtain a copy of a more recent
version of the CRDT object from a peer, and converge to the latest
state from there.

Algorithm 3 presents the function executed when a node
detects that a notification is missing, due for instance to a tem-
porary network disconnection. Variable lastUpdateApplied holds
the identifier of the last update received and applied. It is used in
line 4 to query the broker for the missing updates. The getUpdates
operation receives an additional argument, lastUpdateReceived,
that conveys the last update received6. If the broker is able to
satisfy the query, i.e., the metadata of all the demanded up-
dates may be found in its storage, these are sent back to the
queering node, along with a flag indicating the success of the
operation (ALL). Otherwise, no updates are returned and the flag
is set to MISSING. In this latter case, the node must contact a
random peer, from the set of locally known replicas of the object,
and obtain a more recent version of the object (line 6). The actual
realization of this mechanism is an implementation detail (we
will discuss an approach in Section 4), but the resulting data must
always include the object and the identifier of the last update
applied on it. At reception, if this update information, assigned
to lastUpdateApplied, is still lower than the last received update, it
means that some updates are still missing and the broker must be
contacted once again. The function executes until a given timeout
expires, and returns the status that has been reached: ALL or
MISSING.

6 The last update received may differ from the last one applied because some
ay be lost in-between. To force the query when these values are the same a
ildcard may be used to denote the retrieval of all updates.
760
3.2.1. Convergence
Contrary to state-based synchronization, receiving the last

update of each contributor is not enough for an op-based PS-
CRDT to converge. Each replica must also receive all updates by
an order that preserves causality. Given the ordering established
by the metadata, when a replica receives an update notification,
it has the information needed to maintain the chain of causality.
Hence, it just needs to ensure that the new update is only applied
(on the CRDT’s state) after the ones on which it depends on have
been applied.

Whenever a notification is lost, the broker must be contacted
following Algorithm 3. When the metadata of the demanded
updates is still stored in the broker’s log, it is successfully received
and the causally necessary updates are successfully downloaded,
convergence is once again guaranteed. Otherwise, convergence is
only guaranteed if there is a replica accessible with all the updates
that have been discarded by the broker. It may also happen
that, after receiving a notification, the update is nowhere to be
found. None of the sources are within reach. Again, convergence
is only guaranteed if there is a replica accessible with that update
applied. Algorithm 3 executes once more.

3.2.2. Complementary issues
Operation-based synchronization in PS-CRDT also requires a

custom storage that stores publications according to some total
order. This order must be encoded on the notifications, for it to
be preserved all the way to the receivers.

3.3. Lδ-based synchronization

Delta-based synchronization can also be implemented in the
PS-CRDT model. We can trivially support it on top of op-based
and offer a new synchronization model, on which each node
publishes deltas between its own contributions to the object’s
state. For instance, if, since the last update, a node has added
two elements to a set and removed another, the update to be
propagated must only include these two new elements and the
element to be removed. This delta model is, in fact, semanti-
cally equivalent to an Lstate-based approach on which only the
delta between consecutive state updates are published. Thus, we
baptized it as Lδ-based synchronization.

To implement Lδ-based on top of op-based we simply need
to map each type of state modification to an operation. For
instance, add and remove a set of elements for sets, increment and
decrement n values for counters.
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. An implementation in Thyme

We implemented the three proposed PS-CRDT synchroniza-
ion models atop of Thyme [11,12], a reactive storage system that
enables co-located mobile devices to store and disseminate data
among them, without having to resort to external services. The
P/S system is thus decentralized and supported by the devices
themselves, being inter-device communication achievable either
by using a Wi-Fi infrastructure or by ad-hoc networking proto-
cols. We used this implementation to develop a framework for
turn-based local multiplayer games [26] and a distributed snake
game.

In this section we begin by giving a brief introduction to Thyme
nd then proceed to explain how PS-CRDTs have been added to
he system.

.1. A pinch of Thyme

Thyme combines a storage interface with a topic-based P/S
bstraction. It follows a data-centric storage approach that uses
key–value substrate built on top of a cluster-based distributed
ash table (DHT). Clusters act as virtual P/S brokers, being respon-
ible for matching subscriptions against published content. For
hat purpose, they store both subscriptions and publication meta-
ata. The actual published data is kept on the source node, and
n replicas that arise over time, either by explicitly downloading
he content or via proactive replication mechanisms (when con-
igured). Communication to a cluster is directed to a randomly
hosen member that becomes responsible for performing the
ction on the cluster’s behalf. This may include cluster-wide com-
unication, e.g., when receiving a subscription or a publication, to

update the cluster’s global state. A concise description of Thyme’s
ain operations follows:

ublish (item, tags, description) – publish a data item, with asso-
ciated metadata containing, among others, a small descrip-
tion (e.g., a photo thumbnail) and a set of tags related with
the content. The metadata is indexed by all the tags, i.e.,
stored in all the clusters resultant from hashing each tag
replicate the metadata.

Upon reception, a publish operation is matched against the
existing subscriptions. If matches are found, the interested
subscribers are notified with a message containing a set of
locations from where the data may be downloaded from.

ubscribe (tags, filters) – a subscription comprises the query
defining which tags are relevant, and a set of filters to
be applied over the set of publications that match against
the query. Hashing each of the query’s literals determines
the clusters where to send that part of the query. Fig. 3
illustrates a publish and a subscribe operation.

Subscriptions in Thyme may target data that has been pre-
viously published. Time-aware filters may be used to de-
fined the time period to consider. Accordingly, upon recep-
tion, a subscription operation is also matched against the
publications and may trigger the emission of notifications.

download (metadata) – When a user receives a notification, by
inspecting the item’s description (such as a photo thumb-
nail), he/she may decide to download the item or not. If
the decision is to download, Thyme uses the list of received
locations to find a source node from where to download
the data.
761
All operations in Thyme are asynchronous and so require the
definition of an handler to be executed when the operation con-
cludes, either success or unsuccessfully.

Thyme supports multiple tag namespaces across applications
or even within a single application, e.g., to support multiple
shared to-do lists, and assumes that nodes’ clocks are synchro-
nized (with a negligible skew). Due to the unreliable nature
of wireless communication mediums, the system notifies sub-
scribers of all relevant published data as completely and faithfully
as possible, i.e., missing some notifications is permitted because
applications are not expected to be mission-critical.

4.2. PS-CRDTs in Thyme

For application developers, Thyme CRDTs expose the usual
interface for the development of state- and op-based solutions:
function merge for the former, and prepare and effect for the
latter [4]. Updates may be locally buffered and made public in
batches to optimize node↔ broker interaction in environments
where communication is expensive. To that end, the API is com-
plemented with function save that allows programmers to control
when a (batch of) local modifications is ready to be published.

A requirement for sharing updates under the PS-CRDT model
is to have the CRDT object’s global identifier accessible to all
nodes, i.e., establish publisher–subscriber relationships between
the nodes that wish to publish and/or receive updates. We lever-
age Thyme to share this identifier. More precisely, we use Thyme
to share the actual CRDT objects via publications and subscrip-
tions on tags (as the cake object is shared in Fig. 3). After down-
loading an object, a node becomes the host of a replica of that
same object. Thyme’s globally unique object identifier is then
internally used as the object’s update topic. Fig. 4 illustrates the
publishing, reception and download of updates.

The API does not expose the update topic. Thus, in order to
subscribe to updates on an object, the programmer must use
method subscribeUpdate(objectId, handler), where objectId is the
identifier of the PS-CRDT object and handler is the behavior to
xecute when a new update is received and applied on the local
eplica, i.e., when operation handleUpdate (described in Section 3)
nternally concludes its execution. Update publication (operation
ublish in Section 3) is automatically triggered by the system,
y periodically checking if a new batch of local modifications is
eady to be published.

.2.1. Handling lost updates
Convergence in Lstate-based synchronization requires at-least-

nce delivery guarantee for the notification of the last update
ver published by a node. The requirements are stricter in the
p-based counterpart, with notifications having to be delivered
xactly-once and in causal order. Given that, in Thyme, there is

no generic way of knowing if a given publication will be the last
ever made by a node, we implemented a mechanism to enable
nodes to detect if any notification was lost.

To support such mechanism and, at the same time, provide for
the causal order delivery, we use a sequencing scheme similar to
the one found in blockchain [27,28]. Here, each update notifica-
tion message contains an hash of the previous one. On reception,
a node compares the hash included in the notification message
against the last one received (concerning a given sequence). If
the hashes do not match, they become the parameters of the
getUpdates request to the broker in line 4 of Algorithm 3. To
cope with late entries, disconnections, or simply the loss of the
last notifications for a considerable amount of time, the interval
between two getUpdates requests may not exceed a configurable
time limit. When this limit expires, a new request is sent to the
broker, asking for all updates from the last one received.
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Fig. 3. Sharing a data item in Thyme. The network features 18 nodes grouped into 4 clusters. The hashing of the tags used in both publications and subscriptions
determines the clusters responsible for managing both the metadata of the published objects and the subscriptions’ data. Once a publication and a subscription
match, a notification is sent to the subscribing node (figure above) and a download operation may be issued (figure below). The red nodes illustrate the replicas of
the published cake object.
Fig. 4. Publishing & downloading updates with Thyme. All nodes may subscribe updates to the PS-CRDTs they hold. When one of them issues an update, the other(s)
re notified, download the update and apply it to their local replica.
In Lstate, concurrent updates do not need to be ordered. Ergo,
he sequencing is applied to each pair ⟨source node, tag⟩. In
p-based, concurrent update ordering is also not needed, but pub-
ications must be ordered. This raises a challenge to the cluster-
ased structure of Thyme, as each cluster acts as a virtual broker
or a set of topics/tags. Communication with a cluster is directed
andomly to one of the nodes currently composing it. Accordingly,
wo concurrent publications to the same tag can be directed
o two different nodes in a cluster. This renders cluster-wide
762
sequencing impossible without cluster-wide coordination. Our
current solution elects a cluster-leader per CRDT object, respon-
sible for sequencing and emitting the object’s notifications. To
meet the exactly-once requirements, if a notification message is
received more than once, it is simply discarded. Hash information
is also included in the reply to a getNewObjectVersion request.
Besides the object’s state, such requests include the hash of
the last update applied, so that Algorithm 3 can be iteratively
executed.
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.2.2. The broker
The broker configuration depends on the synchronization

odel in place. That is, a multi-value register for Lstate-based
nd list for op-based. This configuration information is encoded
n the idobj’s tag by prefixing it to the object identifier, such as:
sync_model :: idobj. Upon reception of the first message (publi-
ation or subscription) on a tag with such structure, the broker
xtracts the sync_model component, and uses it to configure the
ype of storage needed to manage the publications on the referred
ag.

. Evaluation

In this section we present a set of experiments that evalu-
te implementation, with the aim of answering the following
uestions:

1. How does it scale with the increase of the number of
nodes?

2. How sensitive are PS-CRDTs to churn? and
3. How do PS-CRDTs compare against ∆-based CRDTs and

CRDT-based centralized solutions in volatile environments?

.1. Experimental setup

In order to assess the behavior of our approach without hard-
are limitations, we resorted to the emulation of the mobile
odes. To that end, we made use of the trace-based emulation
ramework implemented for Thyme. This framework allows for
hyme’s non-graphical Android code to execute unaltered. User
nteraction is encoded in the input trace, with commands Publish,
ubscribe and Save, among others. The inter-node communica-
ion layer was reworked to support the logical dissemination of
essages between the emulated nodes. Moreover, the simulation
llows for the definition of the network’s speed and message
ueuing delay, and, to simulate churn, the trace may include
ommands for the ingress and egress of nodes.
Each node begins its execution by subscribing to a set of

RDT objects, which are subsequently published by a set of se-
ected nodes that also automatically subscribe to the objects’
pdates (with the subscribeUpdate operation). The remainder,
nce notified of the objects’ publications, download the object
nd subscribe to the updates as well.

.2. Scalability

To analyze the scalability of our implementation of the pro-
osed PS-CRDT synchronization models we resort to two met-
ics: the communication load imposed on the network and the

emory consumption on the broker.

763
5.2.1. Network communication
Regarding the communication load, we conducted experi-

ments with 25, 50, 75 and 100 nodes, in a scenario without churn
and where all nodes join at the beginning of the simulation. Each
node applies the same number of updates to a single shared
PS-CRDT object. Fig. 5 depicts the network traffic per node for
Grows-only (G) and Positive–Negative (PN) counters and, Grows-
only (G) and Observed-Remove (OR) sets. Almost all depicted
solutions scale linearly with the increase of the number of nodes
and update operations. The exception are Lstate sets which tend
to grow superlinearly when reaching the 100 nodes.

Concerning bandwidth, the Lstate and Lδ versions are more
efficient. This is due to the fact that the state published in an
update only carries the number of increments (and decrements)
performed, i.e., it is small when compared with the propagation of
lists of operations. With 100 nodes, this reflects in a 19% and 29%
reductions for the GCounter and the PNCounter, respectively.
The tables turn when analyzing sets, with the Lstate version
generating more traffic than the op and Lδ counterparts. The
state to propagate grows with the size of the set. Ergo, as more
nodes participate, more elements are added to the set, and the
communication load increases. Lδ perform even better than op-
based, since they also only send the elements that have been
added or removed from the set, since the last broadcast delta,
with the added optimization of not sending operations that cancel
each other out, such as the addition and subsequent removal of
an element.

In conclusion, PS-CRDTs follow the norm that state-based
CRDT solutions perform better for data types with small states,
while op-based solutions perform better for the remainder. The
use of the Lstate model tips the balance a little more to the side
of state-based approaches by requiring fewer bytes to encode the
object’s state. This is even more evident in the Lδ approach that
reduces the state (to propagate) to the one that is still unknown
to the system.

5.2.2. Memory requirements
The broker only stores the metadata of the updates and the

subscriptions made by the nodes. Therefore, for op-based PS-
CRDTs the broker’s memory consumption is bounded by the size
of the operation log. For a log of o operations and a maximum of
n nodes subscribing to updates on the object, the upper bound
can be written as

memop(o, n) = l0 + o× sizeof pub(n)+ s0 + n× sizeof sub

here l0 denotes the amount of memory needed to create the
mpty log, sizeof pub(n) denotes the memory needed to store a
ublication replicated by (at most) n nodes, s0 denotes the mem-
ry needed to create the empty subscription storage and sizeof sub
enotes the memory needed to store a subscription.



A. Barreto, H. Paulino, J.A. Silva et al. Future Generation Computer Systems 141 (2023) 755–767

p
n

m

w
v
s
S
n
i

Fig. 6. Memory required by the broker. Ratio between op and Lstate (log2n scale).
N

j
u
t
T
r
n
a

e
p
t
g
u
H
w

5

s
a
c
T
p
r
a
m

Fig. 7. Communication increase in the presence of churn (100 nodes).

Concerning Lstate, the broker needs to store the last state
ublished by every known replica. The required storage capacity
eeded is thus given by:

emLstate(n) = p0 + n× sizeof pub(n)+ s0 + n× sizeof sub

here p0 denotes the space needed to allocate an empty multi-
alue register. In Thyme, when it comes to updates, we have that
izeof pub(n) ≈ 96 + 4 × n bytes and that sizeof sub ≈ 32 bytes.
o, the memory required is low, peaking at ≈ 53 Kbytes for 100
odes for both models. However, to provide a better understand-
ng of their relative memory requirements, Fig. 6 depicts the ratio
memop(o,n)
memLstate(n)

varying both o and n ∈ [1, 100].
For a small number of nodes, we assume that the log of

operations in op-based PS-CRDTs (and Lδ consequently) is likely
to surpass the number of nodes. In such scenario, Lstate solutions
are more memory efficient. In scenarios with higher number of
nodes, it all comes down to the update rate. A high update rate
benefits from a log with more capacity, which means a trade-off
between the memory needed by the log and the network traffic
required to transfer the whole object when the metadata on a
requested update is no longer available. Low update rates will
likely keep the log small and thus be more efficient that the Lstate
alternative.

5.3. Sensitivity to churn

To study the impact of node churn, we set up a scenario
with 100 nodes and varied the percentage of nodes that tem-
porary leave the network. The disconnection period is randomly
defined and causes a node to loose from 5 to 20 updates. To
recover this lost information, and allow for the convergence of
the replicas, Lstate-based implementations only need to query
the broker for lost updates (getUpdates), whist op- and Lδ-based
versions must execute Algorithm 3, which includes prompting
764
Table 1
Update download: op GSet.
Churn # Ops Updates getUpdates getNewObjVersion

0% 689 689 (100%) 0 (0%) 0 (0%)
25% 742 665 (90%) 48 (6%) 30 (4%)
50% 823 646 (78%) 93 (11%) 84 (10%)
75% 916 644 (70%) 157 (17%) 115 (13%)

Table 2
Update download: Lstate GSet.
Churn # Ops Updates getUpdates getNewObjVersion

0% 685 685 (100%) 0 (0%) 0 (0%)
25% 740 677 (91%) 63 (9%) 0 (0%)
50% 817 711 (87%) 106 (13%) 0 (0%)
75% 909 730 (80%) 179 (20%) 0 (0%)

other nodes for a more recent version of the object’s state (get-
ewObjectVersion).
Tables 1 and 2 break down the type and number of operations

required to keep the shared CRDT object’s state up to date for op-
and Lstate-based GSets, respectively. In the churn-free scenarios,
all updates were delivered and, thus, no getUpdate nor getNewOb-
ectVersion operations were needed. Naturally, the number of lost
pdates increases with the churn rate. In the op-based version,
he broker’s storage was configured to store up to 10 operations.
hus, convergence from a state older that the last 10 operations
equires the download of a new version of the object. This does
ot happen in the Lstate-based GSet because the broker’s storage
lways has the last update published by each node.
Fig. 7 depicts the gradual increase in network traffic, for sev-

ral CRDTs (including the Add-Wins (AW) Map), when in the
resence of churn. A churn rate of 25% implies ≈4% increase in
raffic for all studied CRDTs. From then onward, CRDTs with fast-
rowing states are more sensitive to churn, since the size of the
pdates, and specially, of the full versions to transfer is bigger.
owever, note that, even for a 75% churn rate, the traffic increase
as only from ≈13% to ≈23%.

.4. Comparison against ∆-CRDTs

Prior to our work, the ∆-CRDT model [10] was the best
uited one for volatile environments. We hence choose it as
baseline for the evaluation of PS-CRDT. To be able to fairly

ompare both models, we had to implement ∆-CRDTs atop of
hyme. ∆-CRDTs compute the minimal delta that needs to be
ropagated to another node since their previous communication
ound. This delta is computed from locally stored information
bout the causal context between those nodes (commonly imple-
ented with vector clocks). We replicate this behavior by sending
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Fig. 8. Communication ratio of PS-CRDTs wrt. ∆-CRDTs, varying the number of
odes.

Fig. 9. Communication ratio of PS-CRDTs wrt. ∆-CRDTs, varying the churn rate.

getDelta request containing the version vector of the requesting
ode. On reception, the target node computes the minimal delta
y comparing the received vector with its own, checking for
issing updates. The delta is subsequently shipped back to the

equester. In order to enable direct node-to-node communication
N2N), particularly the sending of messages to random nodes
equired by ∆-CRDTs, we use a special Thyme tag on which all
odes publish their network address.

.4.1. Static scenarios
To compare the PS-CRDT and ∆-CRDT models in both ends

f the state size growth in time spectrum, we developed two ∆-
RDTs: GCounter and Add-Wins Map (AWMap). Fig. 8 depicts the
etwork traffic for both the PS-CRDT and the ∆-CRDT models.
or GCounter, Lstate generates ≈20% less network traffic than ∆.
his is justified by the fact that, in ∆, delta messages carry all
he missing modifications, while the payload of update messages
n Lstate is a single integer. This behavior can be extrapolated
o mostly all Lstate CRDTs with small payloads. The difference
ims as the payload increases, due to the dilution of the delta
essages’ total in the overall amount of data to communicate.
e may observe this fact in the chart for AWMap, where ∆

utperforms Lstate. Moreover, we have the op-based solution
erforming marginally better than ∆, due to the similar size (in
his case) of the delta and operation payloads. The overall better
olution is Lδ that is able to perform close to Lstate, in scenarios
n which state-based solutions are better, and close (even better)
han op-based, in scenarios on which op-based solutions are more
fficient.
These results show that, even in static scenarios, PS-CRDTs are

ompetitive against the ∆ approach. Lstate and Lδ reveal to be
etter than ∆ for state-based CRDTs with small payloads, while
p-based and Lδ show to be on par with ∆ for state-based CRDTs
ith big payloads.

.4.2. Sensitivity to churn
Fig. 9 presents the comparison results in the presence of churn,

ith the same conditions of Section 5.3. For GCounter, the ∆
765
lternative scales worse than Lstate because of the overhead
rought by failed communication attempts. N2N is more sensitive
o churn, since the local knowledge of the network may be
utdated. The overhead of ∆ peaks at 27%. Once again, this is
ess noticeable in the AWMap case, where the overhead of failed
ommunication is also diluted in the overall communication. Yet,
he alternatives with better results (op and Lδ) also make use of
N2N to obtain the newer versions of the objects. If we remove this
communication, i.e., if we assume that the broker’s log is large
enough to hold all the updates needed by the nodes reentering
the network (line Lδ broker in the chart), than the Lδ-based
approach behaves even better than the ∆-based. Naturally, late
arriving nodes will have always to execute Algorithm 3 to obtain
a replica that is able to converge with the remainder.

The benefits of PS-CRDTs increase when in the presence of
churn, once again with Lδ leading the gains. The best results
appear when the broker has a log large enough to accommodate
all updates requested by the replicas. Once again we fall in the
memory-network consumption trade-off of Section 5.2.2.

5.5. Comparison against centralized CRDT solutions

Lastly, we analyze the overhead of having a CRDT-based cen-
tralized solution versus PS-CRDTs. The centralized solution re-
quires the server to synchronize with each replica individually,
much like what is done in solutions that delegate all synchroniza-
tion on the edge. Accordingly, the server(s) receive all updates
and relay them to the remainder replicas (with possible update
fusion). Conversely, in Thyme-PS-CRDT, the broker node(s) only
receive publications carrying the updates’ metadata and trigger
notifications comprising both the metadata and the location(s) of
the data.

Fig. 10 presents the communication performed by the servers
(the possible bottlenecks of both approaches) to handle an up-
date, when varying the size of the update (32 bytes to 10 K)
and the number of replicas (1 to 100). The values presented are
the ratio between the centralized and the Lδ solutions. We may
observe that, as soon as the size of the updates surpasses the size
of a publication, and subsequent notifications, the overhead of the
centralized solution is very high (peeking at ≈318). The overhead
is more prominent when the number of replicas is small; what we
expect to be the more common scenario. This happens because
the size of a notification is directly proportional to the number of
locations from where the data may be downloaded from. In this
experiment, the number of update locations was (in average) half
the number of replicas.

6. Conclusions

CRDTs are an increasingly popular approach to avoid expen-
sive synchronization in distributed replicated systems. Their ap-
plicability is however limited when targeting volatile systems.
In this paper, we proposed PS-CRDTs, a new approach to the
dissemination of updates between replicas that enable the source
to propagate its modifications to a CRDT’s state without knowing
who is at the other end. Having bandwidth limitations in mind,
we developed the Lstate and the Lδ-based solutions. The latter has
proved to be one that best performs across the board. However,
when in the context of data structures that do not grow in size
with the number of replicas or operations, Lstate provides an

equally efficient solution.
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