904 research outputs found

    Towards a silent speech interface for Portuguese: Surface electromyography and the nasality challenge

    Get PDF
    A Silent Speech Interface (SSI) aims at performing Automatic Speech Recognition (ASR) in the absence of an intelligible acoustic signal. It can be used as a human-computer interaction modality in high-background-noise environments, such as living rooms, or in aiding speech-impaired individuals, increasing in prevalence with ageing. If this interaction modality is made available for users own native language, with adequate performance, and since it does not rely on acoustic information, it will be less susceptible to problems related to environmental noise, privacy, information disclosure and exclusion of speech impaired persons. To contribute to the existence of this promising modality for Portuguese, for which no SSI implementation is known, we are exploring and evaluating the potential of state-of-the-art approaches. One of the major challenges we face in SSI for European Portuguese is recognition of nasality, a core characteristic of this language Phonetics and Phonology. In this paper a silent speech recognition experiment based on Surface Electromyography is presented. Results confirmed recognition problems between minimal pairs of words that only differ on nasality of one of the phones, causing 50% of the total error and evidencing accuracy performance degradation, which correlates well with the exiting knowledge.info:eu-repo/semantics/acceptedVersio

    Advancing Electromyographic Continuous Speech Recognition: Signal Preprocessing and Modeling

    Get PDF
    Speech is the natural medium of human communication, but audible speech can be overheard by bystanders and excludes speech-disabled people. This work presents a speech recognizer based on surface electromyography, where electric potentials of the facial muscles are captured by surface electrodes, allowing speech to be processed nonacoustically. A system which was state-of-the-art at the beginning of this book is substantially improved in terms of accuracy, flexibility, and robustness

    Advancing Electromyographic Continuous Speech Recognition: Signal Preprocessing and Modeling

    Get PDF
    Speech is the natural medium of human communication, but audible speech can be overheard by bystanders and excludes speech-disabled people. This work presents a speech recognizer based on surface electromyography, where electric potentials of the facial muscles are captured by surface electrodes, allowing speech to be processed nonacoustically. A system which was state-of-the-art at the beginning of this book is substantially improved in terms of accuracy, flexibility, and robustness

    A silent speech system based on permanent magnet articulography and direct synthesis

    Get PDF
    In this paper we present a silent speech interface (SSI) system aimed at restoring speech communication for individuals who have lost their voice due to laryngectomy or diseases affecting the vocal folds. In the proposed system, articulatory data captured from the lips and tongue using permanent magnet articulography (PMA) are converted into audible speech using a speaker-dependent transformation learned from simultaneous recordings of PMA and audio signals acquired before laryngectomy. The transformation is represented using a mixture of factor analysers, which is a generative model that allows us to efficiently model non-linear behaviour and perform dimensionality reduction at the same time. The learned transformation is then deployed during normal usage of the SSI to restore the acoustic speech signal associated with the captured PMA data. The proposed system is evaluated using objective quality measures and listening tests on two databases containing PMA and audio recordings for normal speakers. Results show that it is possible to reconstruct speech from articulator movements captured by an unobtrusive technique without an intermediate recognition step. The SSI is capable of producing speech of sufficient intelligibility and naturalness that the speaker is clearly identifiable, but problems remain in scaling up the process to function consistently for phonetically rich vocabularies

    End-to-End Learning of Speech 2D Feature-Trajectory for Prosthetic Hands

    Full text link
    Speech is one of the most common forms of communication in humans. Speech commands are essential parts of multimodal controlling of prosthetic hands. In the past decades, researchers used automatic speech recognition systems for controlling prosthetic hands by using speech commands. Automatic speech recognition systems learn how to map human speech to text. Then, they used natural language processing or a look-up table to map the estimated text to a trajectory. However, the performance of conventional speech-controlled prosthetic hands is still unsatisfactory. Recent advancements in general-purpose graphics processing units (GPGPUs) enable intelligent devices to run deep neural networks in real-time. Thus, architectures of intelligent systems have rapidly transformed from the paradigm of composite subsystems optimization to the paradigm of end-to-end optimization. In this paper, we propose an end-to-end convolutional neural network (CNN) that maps speech 2D features directly to trajectories for prosthetic hands. The proposed convolutional neural network is lightweight, and thus it runs in real-time in an embedded GPGPU. The proposed method can use any type of speech 2D feature that has local correlations in each dimension such as spectrogram, MFCC, or PNCC. We omit the speech to text step in controlling the prosthetic hand in this paper. The network is written in Python with Keras library that has a TensorFlow backend. We optimized the CNN for NVIDIA Jetson TX2 developer kit. Our experiment on this CNN demonstrates a root-mean-square error of 0.119 and 20ms running time to produce trajectory outputs corresponding to the voice input data. To achieve a lower error in real-time, we can optimize a similar CNN for a more powerful embedded GPGPU such as NVIDIA AGX Xavier

    Silent Speech Interfaces for Speech Restoration: A Review

    Get PDF
    This work was supported in part by the Agencia Estatal de Investigacion (AEI) under Grant PID2019-108040RB-C22/AEI/10.13039/501100011033. The work of Jose A. Gonzalez-Lopez was supported in part by the Spanish Ministry of Science, Innovation and Universities under Juan de la Cierva-Incorporation Fellowship (IJCI-2017-32926).This review summarises the status of silent speech interface (SSI) research. SSIs rely on non-acoustic biosignals generated by the human body during speech production to enable communication whenever normal verbal communication is not possible or not desirable. In this review, we focus on the first case and present latest SSI research aimed at providing new alternative and augmentative communication methods for persons with severe speech disorders. SSIs can employ a variety of biosignals to enable silent communication, such as electrophysiological recordings of neural activity, electromyographic (EMG) recordings of vocal tract movements or the direct tracking of articulator movements using imaging techniques. Depending on the disorder, some sensing techniques may be better suited than others to capture speech-related information. For instance, EMG and imaging techniques are well suited for laryngectomised patients, whose vocal tract remains almost intact but are unable to speak after the removal of the vocal folds, but fail for severely paralysed individuals. From the biosignals, SSIs decode the intended message, using automatic speech recognition or speech synthesis algorithms. Despite considerable advances in recent years, most present-day SSIs have only been validated in laboratory settings for healthy users. Thus, as discussed in this paper, a number of challenges remain to be addressed in future research before SSIs can be promoted to real-world applications. If these issues can be addressed successfully, future SSIs will improve the lives of persons with severe speech impairments by restoring their communication capabilities.Agencia Estatal de Investigacion (AEI) PID2019-108040RB-C22/AEI/10.13039/501100011033Spanish Ministry of Science, Innovation and Universities under Juan de la Cierva-Incorporation Fellowship IJCI-2017-3292

    Adaptive threshold optimisation for colour-based lip segmentation in automatic lip-reading systems

    Get PDF
    A thesis submitted to the Faculty of Engineering and the Built Environment, University of the Witwatersrand, Johannesburg, in ful lment of the requirements for the degree of Doctor of Philosophy. Johannesburg, September 2016Having survived the ordeal of a laryngectomy, the patient must come to terms with the resulting loss of speech. With recent advances in portable computing power, automatic lip-reading (ALR) may become a viable approach to voice restoration. This thesis addresses the image processing aspect of ALR, and focuses three contributions to colour-based lip segmentation. The rst contribution concerns the colour transform to enhance the contrast between the lips and skin. This thesis presents the most comprehensive study to date by measuring the overlap between lip and skin histograms for 33 di erent colour transforms. The hue component of HSV obtains the lowest overlap of 6:15%, and results show that selecting the correct transform can increase the segmentation accuracy by up to three times. The second contribution is the development of a new lip segmentation algorithm that utilises the best colour transforms from the comparative study. The algorithm is tested on 895 images and achieves percentage overlap (OL) of 92:23% and segmentation error (SE) of 7:39 %. The third contribution focuses on the impact of the histogram threshold on the segmentation accuracy, and introduces a novel technique called Adaptive Threshold Optimisation (ATO) to select a better threshold value. The rst stage of ATO incorporates -SVR to train the lip shape model. ATO then uses feedback of shape information to validate and optimise the threshold. After applying ATO, the SE decreases from 7:65% to 6:50%, corresponding to an absolute improvement of 1:15 pp or relative improvement of 15:1%. While this thesis concerns lip segmentation in particular, ATO is a threshold selection technique that can be used in various segmentation applications.MT201

    Neuromechanical Modelling of Articulatory Movements from Surface Electromyography and Speech Formants

    Get PDF
    Speech articulation is produced by the movements of muscles in the larynx, pharynx, mouth and face. Therefore speech shows acoustic features as formants which are directly related with neuromotor actions of these muscles. The first two formants are strongly related with jaw and tongue muscular activity. Speech can be used as a simple and ubiquitous signal, easy to record and process, either locally or on e-Health platforms. This fact may open a wide set of applications in the study of functional grading and monitoring neurodegenerative diseases. A relevant question, in this sense, is how far speech correlates and neuromotor actions are related. This preliminary study is intended to find answers to this question by using surface electromyographic recordings on the masseter and the acoustic kinematics related with the first formant. It is shown in the study that relevant correlations can be found among the surface electromyographic activity (dynamic muscle behavior) and the positions and first derivatives of the first formant (kinematic variables related to vertical velocity and acceleration of the joint jaw and tongue biomechanical system). As an application example, it is shown that the probability density function associated to these kinematic variables is more sensitive than classical features as Vowel Space Area (VSA) or Formant Centralization Ratio (FCR) in characterizing neuromotor degeneration in Parkinson's Disease.This work is being funded by Grants TEC2016-77791-C4-4-R from the Ministry of Economic Affairs and Competitiveness of Spain, Teka-Park 55 02 CENIE-0348_CIE_6_E POCTEP (InterReg Programme) and 16-30805A, SIX Research Center (CZ.1.05/2.1.00/03.0072), and LO1401 from the Czech Republic Government
    corecore