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Abstract

Having survived the ordeal of a laryngectomy, the patient must come to terms with

the resulting loss of speech. With recent advances in portable computing power,

automatic lip-reading (ALR) may become a viable approach to voice restoration. This

thesis addresses the image processing aspect of ALR, and focuses three contributions

to colour-based lip segmentation.

The first contribution concerns the colour transform to enhance the contrast

between the lips and skin. This thesis presents the most comprehensive study to

date by measuring the overlap between lip and skin histograms for 33 different

colour transforms. The hue component of HSV obtains the lowest overlap of 6.15 %,

and results show that selecting the correct transform can increase the segmentation

accuracy by up to three times.

The second contribution is the development of a new lip segmentation algorithm

that utilises the best colour transforms from the comparative study. The algorithm

is tested on 895 images and achieves percentage overlap (OL) of 92.23 % and seg-

mentation error (SE) of 7.39 %.

The third contribution focuses on the impact of the histogram threshold on the

segmentation accuracy, and introduces a novel technique called Adaptive Threshold

Optimisation (ATO) to select a better threshold value. The first stage of ATO

incorporates ε-SVR to train the lip shape model. ATO then uses feedback of shape

information to validate and optimise the threshold. After applying ATO, the SE

decreases from 7.65 % to 6.50 %, corresponding to an absolute improvement of 1.15 pp

or relative improvement of 15.1 %. While this thesis concerns lip segmentation in

particular, ATO is a threshold selection technique that can be used in various

segmentation applications.
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Chapter 1

Introduction

“Just because I cannot speak, doesn’t mean I have nothing to say!”

Communication is central to human life. In 350 B.C.E. Aristotle wrote: “Nature,

as we often say, makes nothing in vain, and man is the only animal whom she has

endowed with the gift of speech” [1]. Speech provides a common channel to express

our most basic physiological needs, our most complex thoughts, our most creative

ideas, and our most intimate emotions. Thus, when this faculty is taken away, the

consequences can be devastating to both the victim and the family members. The

victim feels cut-off from society, and often suffers from anxiety and depression [2, 3].

Loss of speech has been associated with an increased propensity towards alcoholism

and suicide [4, 5]. Family members experience high levels of stress in trying to cater

for the needs of the affected individual, and become frustrated when they cannot

understand what the person needs or wants [3].

A laryngectomy is the partial or complete surgical removal of the larynx (voice box),

which leaves the patient unable to speak. The upper part of the trachea is joined to

a tracheostoma (opening) in the front of the neck, to provide an alternate passage of

air to breathe (see Figure 1.1). A laryngectomy is usually performed to treat cancer

of the larynx; however, this procedure may also be performed in the case of severe

trauma (e.g. gunshot wound), or severe damage to the larynx caused by radiation

treatment [6]. According to the American Cancer Society, in the USA alone 13 560

new cases of laryngeal cancer were diagnosed and 3640 people died from laryngeal

cancer in 2015. Worldwide, approximately 136 000 cases of cancer of the larynx are

diagnosed each year [8]. The prognosis for laryngeal cancer is better than most upper

aerodigestive tract cancers, with a five year survival rate of 68 % [8]; however, many
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of these patients will face the prospect of a laryngectomy, and will no longer be able

to speak or produce any vocalisation.

(a) Before (b) After

Figure 1.1: Anatomy of the airway before and after a laryngectomy: (a) before – air

flow from the lungs passes between the vocal cords producing speech; (b) after – the

larynx (including the vocal cords) has been removed and air is expelled directly through

a stoma (opening) in the neck. Reused with permission from InHealth Technologies [9].

Restoration of some degree of voice is crucial to the laryngectomy patient’s morale,

self esteem and reintegration into society.

Three conventional methods are commonly used in clinical practice to restore verbal

communication following a laryngectomy procedure: the electrolarynx, tracheo-

oesophageal speech, and oesophageal speech. While these techniques have achieved

some success in restoring speech, various limitations and drawbacks are associated

with each technique including usability, voice quality, and intelligibility.

Digital solutions to voice restoration are attracting growing interest as the processing

power of portable devices increases while the size and cost decrease. Devices which

facilitate speech communication in the absence of an acoustic signal are known as

Silent Speech Interfaces (SSIs) [10]. SSIs use sensors to acquire data from the speech

production process, and recognition algorithms to process and interpret the data.

The digital speech representation can then be enunciated by a voice synthesiser or

displayed as text. Experimental SSIs reported in the literature are based on various

technologies including optical imaging, ultrasound, surface electromyography (sEMG),

and electroencephalography (EEG).

Since the revolution in mobile computing, including smartphones, tablets, and laptops,
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optical imaging has become integrated into many aspects of our daily lives. A digital

video camera is widely accessible, anywhere, anytime; with a simple tap of an app

or click of a mouse, an optical SSI complete with sensor, processing power and

audio/video output, can be set up and ready to go. For hands-free use, the camera

can be integrated into an audio-visual headset, as shown in Figure 1.2. The camera

captures images of the lips during speech and the earpiece provides auditory feedback

to the user. The audio-visual headset shown in Figure 1.2 is commercially available

as part of the AudiSee system manufactured by AudiSoft Technologies Inc. [11]. The

system was originally designed to aid hearing impaired students decipher the words

of the teacher, but the headset can be adapted for use in a hands-free SSI device.

Figure 1.2: The Audio-visual headset manufactured by Audisoft can be integrated

with a smartphone; the camera captures images of the mouth and the earpiece provides

auditory feedback to the user (adapted with permission from: AudiSoft Technologies

Inc. [11]).

In an optical SSI, the technique of retrieving speech contents from visual clues,

such as the movement of the lips, tongue, and teeth, is known as Automatic Lip-

Reading (ALR). The premise for using ALR to restore verbal communication for

laryngectomy patients is based on the lip-reading proficiency of hearing impaired

people. In a study by Bernstein et al. [12], hearing impaired adults correctly identified

up to 88 % of phonemes in independent sentences. When the context of the sentence

is available, proficient lip-readers can achieve near perfect comprehension.

In 2004, the England and Wales Court of Appeal established the admissibility of

lip-reading evidence in a landmark case, Luttrell [2004] EWCA Crim 1344. An expert

lip-reader produced a transcript of a video conversation which aided the prosecution

in obtaining a guilty verdict for Luttrell and eight others on a charge of conspiracy

to commit armed robbery and dispose of stolen goods [13].

An ALR system comprises two core components: lip segmentation and recognition.

Lip segmentation is the challenge of accurately discriminating between lip pixels and

non-lip pixels. Recognition involves identifying meaningful speech information from
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the movement of the lips. Lip segmentation is an image processing challenge, while

recognition is a machine learning challenge.

This thesis addresses the image processing challenge of accurate and robust lip

segmentation, and focuses on three image processing contributions to this end.

The first contribution concerns the colour transform to enhance the contrast between

the lips and skin. There is much debate among researchers as to the best colour

transform for this purpose, and as such, this thesis presents the most comprehensive

study to date covering 33 different colour transforms. This work has been published

in the journal of Signal, Image and Video Processing [14].

The second contribution is the development of a new colour-based lip segmentation

algorithm. This algorithm is referred to as the base algorithm, as it forms the platform

to test and analyse the third contribution.

The third contribution is the crux of this thesis, and concerns the development of a

novel threshold selection technique called Adaptive Threshold Optimisation (ATO).

ATO uses feedback of shape information to validate and optimise the threshold

value. This research has been published in the journal of Signal, Image and Video

Processing [15], and Proceedings of the 2015 Conference on Facial Analysis and

Animation (FAA2015) [16].

The structure of this thesis is as follows:

Chapter 2: This chapter begins with an overview of the relevant anatomy and

physiology of the larynx (voice box) and the mechanisms involved in the production

of speech. The main focus of this chapter is a review of voice restoration techniques

for laryngectomy patients, including three conventional techniques and seven silent

speech interface (SSI) technologies.

Chapter 3: This chapter provides an overview of automatic lip-reading (ALR)

including the challenges, approaches, and technologies. The techniques used in

existing ALR systems are summarised in four categories: face detection, mouth

region detection, feature extraction, and recognition.

Chapter 4: This chapter presents the argument for using ALR to restore verbal

communication for laryngectomy patients. Once this basis has been established,

the scope of the research is narrowed to focus on the unresolved image processing

challenge.
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Chapter 5: This chapter comprises the first image processing contribution towards

ALR and begins with a comprehensive survey of the colour transforms used in the lip

segmentation literature. Thirty three transforms are identified, which are compared

in terms of lip-skin segmentation as well as lip-oral cavity segmentation.

Chapter 6: This chapter comprises the second contribution and details the design

and implementation of a new threshold-based lip segmentation algorithm. Since

technologies to locate the face and mouth region are well established, the starting

point for the lip segmentation algorithm is the pre-cropped mouth region. The lip

segmentation algorithm is primarily a colour-based technique which exploits the best

colour transforms from Chapter 5 to enhance the contrast between the lips and the

skin.

Chapter 7: This chapter presents the results and analysis of the lip segmentation

algorithm described in Chapter 6. The algorithm is tested on 895 mouth region

images from the AR Face Database, using percentage overlap (OL) and segmentation

error (SE) to quantify performance. The discussion presents examples of both

successful and unsuccessful segmentation results, which leads to an understanding of

the strengths and the weaknesses of the algorithm.

Chapter 8: This chapter motivates for the forthcoming work on threshold selection

by describing the associated challenges from both qualitative and quantitative per-

spectives. The qualitative component illustrates the challenge of threshold selection

by analysing two examples where Otsu’s method fails to select a suitable threshold.

The quantitative component computes the improvement in segmentation accuracy

that can be obtained by adjusting the threshold value.

Chapter 9: This chapter comprises the third contribution, and details the design of

an adaptive algorithm for selecting the histogram threshold. The algorithm reduces

unnecessary overhead by first comparing the initial segmentation to a reference lip

shape model to decide if optimisation is required (the validation stage). In cases

where optimisation is required, the algorithm iteratively adjusts the threshold to

reduce the segmentation error (the optimisation stage). This novel technique for

threshold selection is referred to as Adaptive Threshold Optimisation (ATO).

Chapter 10: This chapter analyses the performance of the ATO algorithm by

conducting three tests. In the first test, the validation stage is evaluated as a

binary classifier which aims to identify poor segmentation. In the second test, the

optimisation stage is evaluated by comparing the lip segmentation accuracy of the

default threshold, versus the ATO threshold. In the final test, the performance of
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the overall algorithm is evaluated, which includes images that are optimised as well

as images that are not optimised.

Chapter 11: This chapter summarises the three image processing contributions

towards ALR, and suggests several avenues for future research.
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Chapter 2

Voice Restoration Techniques

2.1 Introduction

The larynx (or voice box) houses and controls the vocal cords, which are essential for

phonation. Surgical removal of the larynx during a laryngectomy leaves the patient

unable to speak or produce any vocalisation. The conventional methods of voice

restoration – electrolarynx, tracheo-oesophageal speech, and oesophageal speech –

attempt to use the remaining structures of the vocal tract to define a new speech

production process. While these methods are commonly used in clinical practice,

there are various limitations and drawbacks associated with each technique.

With recent advances in portable computing power, a digital solution to this problem

has become feasible. Silent speech interfaces (SSIs) use digital sensors and processing

to augment the existing speech production pathway, and have the potential to

improve on some of the limitations of conventional techniques [10]. However, SSIs

are still in the experimental phase, and face several challenges of their own. SSIs

suitable for laryngectomy patients are based on seven technologies: optical imaging,

ultrasound, electropalatography (EPG), electromagnetic articulography (EMA),

surface electromyography (sEMG), electroencephalography (EEG), and intracranial

electrode implants.

This chapter reviews the anatomy and physiology of speech production and discusses

both conventional and SSI voice restoration techniques.
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2.2 Mechanisms of Natural Speech Production

The production of speech is a complex motor task which involves the coordinated use

of approximately 100 muscles. The complex motor patterns produce speech sounds

at a rate of 15 per second [17]. The organs involved in the production of speech

can be divided into three main groups: lungs, larynx, and vocal tract. The vocal

tract is the air passage extending from the vocal cords to the lips and consists of the

pharynx, soft palate, hard palate, teeth, tongue and lips (see Figure 2.1).

Figure 2.1: Midsagittal view of head and neck showing the organs involved in speech

production (reused with permission from Krames StayWell [18]).

The production of speech is composed of five elements: respiration, phonation,

resonance, articulation, and prosody.

Respiration is an aerodynamic process in which pressure differences between the

thoracic cavity and the atmosphere are manipulated to alternately inflate and deflate

lungs (inhalation and exhalation). The lungs provide the source of energy for speech

production in the form of a steady stream of air expelled during exhalation [19].

The larynx is a continuation of the trachea with specialised muscles and cartilage

structures to manipulate the vocal folds (see Figure 2.2). The vocal folds (vocal cords)

stretch across the larynx and separate the pharynx from the trachea. The opening

between the vocal folds is known as the glottis (see Figure 2.2b). During normal

breathing the vocal folds remain wide open to allow easy passage of air through the

glottis [20]. Phonation occurs when the glottis is closed and air is expelled from the

lungs, creating a pressure drop across the larynx. The glottis expands to relieve the
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pressure gradient, and contracts due to elastic and aerodynamic forces [21]. The

frequency of oscillation of the vocal folds depends on the mass, length and tension of

the vocal folds [21]. The muscles of the larynx control the frequency of oscillation by

altering the tension of the vocal folds. Speech sounds incorporating phonation are

referred to as “voiced sounds” (e.g. /z/) while those produced without phonation

are referred to as “voiceless sounds” (e.g. /s/).

(a) (b)

Figure 2.2: (a) Anatomy of the larynx and surrounding structures; (b) Top view of

larynx with the vocal folds open. Images in public domain: Hoofring [22, 23].

The basic noise that emerges from the larynx is not speech, but a bleating sound which

is modified into speech as it passes through the resonating cavities [24]. Different

sounds are produced by adjusting the natural frequency of the resonating cavities

such that certain harmonics are suppressed while others are accentuated [24]. The

natural frequency is adjusted by changing the shape and volume of the resonating

cavities: larger cavities accentuate lower frequencies (e.g. /A:/), while smaller cavities

accentuate higher frequencies (e.g. /i:/) [24]. There are three resonating cavities: the

pharynx, mouth, and nose. The dimensions of the nose are fixed, but the dimensions

of the pharynx and mouth can be significantly altered by muscular action [24].

Resonance is therefore the process by which the nature of the sound is changed as it

passes through the vocal tract [25].
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During speech production, the shape of the vocal tract is varied extensively by move-

ment of the articulators, including the velum, tongue, jaw, and lips [19]. Articulation

refers to the movement and shaping of the vocal tract to form speech sounds, and

often involves bringing two speech organs together to form an obstruction. The point

of maximum obstruction is known as the place of articulation, and the way in which

the obstruction is formed and released is known as the manner of articulation [26].

The sound /p/ is generated by bringing the two lips tightly together to block the air,

causing a build-up of air pressure. The lips are then released suddenly, leading to a

burst of sound. The place of articulation of this sound is therefore called bilabial,

and the manner is called stop (also known as a plosive) [26].

Vowels are sounds produced with the oropharyngeal cavity system open [25]. Dif-

ferent vowel sounds are produced by changing the phonation and resonance factors.

Consonants are sounds that contain noise elements generated in the mouth, and

may or may not include phonation generated in the larynx [25]. The noise is created

either by stopping and releasing the air stream passing through the mouth (e.g. /p/,

/b/, /m/) or by forcing the airstream through a restricted space (e.g. /f/, /l/, /z/).

Prosody refers to the rhythm, stress and intonation of speech [26]. Prosody does not

act at the level of individual phonemes, but rather applies to sequences of words

(phrases) or sentences. Prosody may reflect various features of the speaker or the

utterance: the form (statement, question, or command), the presence of irony or

sarcasm, the emotional state of the speaker [26].

2.3 Conventional Voice Restoration Techniques

Following a laryngectomy, three conventional techniques are commonly used in clinical

practice to restore some degree of verbal communication, namely: the electrolarynx,

tracheo-oesophageal speech, and oesophageal speech. These techniques have achieved

varying degrees of success in voice restoration.

2.3.1 Electrolarynx

More than half of all laryngectomy patients use an electrolarynx to restore verbal

communication [27]. The electrolarynx uses an electromechanical vibrator to transmit

sound waves into the oral and pharyngeal cavities [28]. The sound waves are

modulated into words by the patient’s articulators [29]. Two different types of
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electrolarynx exist: the neck type and the intraoral type [8]. Figure 2.3 shows the

neck type of electrolarynx which is placed against the side of the neck, under the

chin or on the cheek [8]. The intraoral type is used when sufficient conduction cannot

be achieved through the skin, so a small tube is placed directly in the posterior oral

cavity. However, the electrolarynx voice is monotonic and difficult to understand

[29] resulting in low intelligibility and poor listener acceptance [28].

Figure 2.3: Sound waves generated by the electrolarynx are modulated into words by

the patient’s articulators (reused with permission from Atos Medical AB [30]).

2.3.2 Tracheo-oesophageal Speech

Tracheo-oesophageal speech is considered the gold-standard in voice restoration for

laryngectomy patients [31]. Tracheo-oesophageal speech requires surgical creation

of a fistula (passageway) between the trachea and the oesophagus [8, 29, 32]. A

one-way silicone valve is inserted into the fistula which allows air to pass from the

trachea into the oesophagus, but prevents food and liquid from entering the trachea

[8]. During speech the patient must cover the tracheostoma, forcing air through the

one-way valve and into the oesophagus (see Figure 2.4). The airflow through the

oesophagus causes the pharyngo-oesophageal segment to vibrate producing a sound

[8]. The sound is modulated into words by the patient’s articulators.

Tracheo-oesophageal speakers must constantly alternate between covering the stoma

to speak and uncovering the stoma to inhale, resulting in a slow speech rate [31]. The

silicone valves initially perform very well; however, in many patients the valve rapidly

becomes colonised by biofilm (aggregate of microorganisms on a surface) and fails after
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3 – 4 months [29, 33–36]. Various valve modifications have been proposed, for example:

Eerenstein et al. [37], Everaert et al. [38], and Hilgers et al. [39]; however, these

approaches do not appear to provide a long-term solution [29]. Tracheo-oesophageal

speech is the preferred method of voice restoration in USA, UK and certain countries

in Europe; however, Jacobson et al. [40] note that non-English/French speakers

experience difficulty in using this method [41]. Finally, Eadie et al. [42] observe that

listeners often struggle to identify gender from tracheo-oesophageal speech.

Figure 2.4: Tracheo-oesophageal speech is produced by blocking the tracheostoma

which diverts air from the trachea into the oesophagus, causing the pharyngo-

oesophageal segment to vibrate (adapted with permission from Atos Medical AB

[30].

2.3.3 Oesophageal Speech

Oesophageal speech is similar to the process of belching (burping) and involves

alternately swallowing and expelling air (see Figure 2.5). The oesophagus is used as a

reservoir to store air that has been swallowed [29]. Controlled release of the air from

the oesophageal reservoir (belching) results in vibration of the pharyngo-oesophageal

segment, which produces a sound [41]. The sound is modulated into words by the

patient’s articulators. Oesophageal speech is a significant voice restoration technique

in Asian countries [41]; however, it is difficult to learn and fluent speech is impossible

due to the short phonation duration [29, 41]. The voice generated by oesophageal

speech is perceived as harsh, gurgling, hoarse, low pitch and low volume [41].
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Figure 2.5: Oesophageal speech is similar to the process of belching: air is swallowed

into the oesophagus and expelled in a controlled manner producing a sound (reused

with permission from Atos Medical AB [30]).

2.4 Silent Speech Interfaces (SSIs)

Modern advances in electronic miniaturisation and portable computing power have

paved the way for a computer-based solution to voice restoration [29]. A Silent

Speech Interface (SSI) is a system enabling speech communication in the absence

of an intelligible acoustic signal [10]. SSIs acquire sensor data from elements of the

human speech production process including the larynx, articulators, neural pathways,

or the brain itself [10]. Recognition algorithms use the sensor data to produce a

digital representation of speech, which is then enunciated using a voice synthesiser or

displayed as text. SSIs have been developed primarily to aid the speech-handicapped;

however, other applications include providing privacy for telephone conversations

and improving speech recognition in noisy environments [10]. SSIs are still in the

experimental stage, and several challenges must be addressed before ‘meaningful use’

is achieved [10].
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2.4.1 SSI Technologies

While SSIs acquire sensor data from various elements of the speech production

process, laryngectomy patients are restricted to SSI technologies that do not depend

on vibration of the focal cords. Such systems are based on seven types of technology.

Optical Imaging

In an optical SSI, a standard video camera is used to retrieve speech content from

visual clues such as the movement of the lips, tongue and teeth. An optical SSI

relies heavily on image processing techniques to extract useful speech information

from the image stream, primarily the lip contours. Initiated by Petajan in 1984,

ALR research has focused on combining visual and auditory modalities to improve

speech recognition in noisy environments [44–49]. Chapter 3 presents a more detailed

overview of automatic lip-reading (ALR).

Ultrasound Imaging

An ultrasound transducer emits high frequency sound waves which are reflected back

at the boundaries between body structures. The returning echoes are detected by

the transducer, and converted to an image. Ultrasound imaging is used to view soft

tissues, muscles and internal organs. In an ultrasound-based SSI, speech information

is inferred from images of the tongue obtained by placing an ultrasound probe

beneath the chin [50]. In the Ouisper Project, an SSI was developed by combining

ultrasound imaging of the tongue and optical imaging of the lips [51]. Using a

combined ultrasound and optical system, Hueber et al. [52] correctly predicted 60 %

of phonemes in one hour of continuous speech, without any vocabulary restrictions.

While an accuracy of 60 % is insufficient to facilitate synthesis of intelligible speech,

limiting the vocabulary will clearly improve the recognition accuracy which may

enable ‘meaningful use’ of the device.

Electropalatography (EPG)

ElectroPalatoGraphy (EPG) is a technique used to monitor dynamic contact patterns

between the tongue and hard palate, particularly during articulation and speech. A

custom-made artificial palate containing an electrode array is moulded to fit against
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the speaker’s hard palate. Contact between the tongue and the electrodes causes

a change in electrode conductivity, which is used to reconstruct the 2D palato-

lingual contact pattern. While EPG is typically used by speech therapists to correct

pronunciation issues, Russell et al. [53] propose an artificial larynx based on EPG to

restore verbal communication for laryngectomy patients. Russell et al. [53] used a

neural network to identify 50 common English words, and achieved an accuracy of

94.14 % with a rejection rate of 17.74 %.

Electromagnetic Articulography (EMA)

ElectroMagnetic Articulography (EMA) uses coupling between magnetic implants

and sensors positioned around the head to monitor movements of points within the

vocal tract. Fagan et al. [29] attach permanent magnets to the articulators (lips,

teeth, tongue) and measure variations in the magnetic field using sensors mounted

on a pair of spectacles. The Dynamic Time-Warping algorithm is used to classify

the signals from the magnetic sensors and hence identify phonemes and words. The

system achieved an accuracy of 94 % in recognising 13 phonemes, and 97 % on a set

of 9 words.

Surface Electromyography (sEMG)

Muscle activity generates small electrical currents in the form of ion flows, which mani-

fest as voltage differences at the surface of the skin. Surface ElectroMyoGraphy (sEMG)

uses electrodes placed on the skin to measure these voltage differences, and thereby

infer the electrical activity of muscles during contraction and relaxation. In 1985,

Sugie & Tsunoda developed a speech prosthesis which used three sEMG electrodes to

monitor activity of the articulator muscles during speech [54]. The system performed

the recognition task in real-time and achieved an accuracy of 71 % on 5 Japanese

vowels. The capacity of EMG-based systems has since increased to 101 words with

an accuracy of 90 % [55]. Current research in sEMG speech recognition is focused on

the following challenges: recognition of continuous sentences as opposed to isolated

words [56]; recognition of phonemes to facilitate larger vocabularies [55]; and speaker

independent recognition [57].
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Electroencephalography (EEG)

Neurones communicate via electrical impulses which are generated by ion flows.

ElectroEncephaloGraphy (EEG) is the technique of measuring brain activity using

electrodes to record the voltage fluctuations along the scalp. Suppes et al. [58] were

the first to show that EEG and MEG (MagnetoEncephaloGraphy) can be used

to recognise isolated words. Their experiment involved presenting subjects with

isolated words in the form of auditory stimuli, and attempting to detect the words

from EEG and MEG recordings. Using EEG in Brain-Computer Interfaces (BCIs)

typically requires the user to learn how to explicitly manipulate their brain activity

[59]. Wester & Schultz [60] investigated a more intuitive system in which the user

imagines speaking a word, however no sound is produced (referred to as “unspoken

speech”). The system was tested on a vocabulary of up to 10 words, and obtained

word error rates of 4–5 times above the chance level.

Intracranial Electrode Implants

Invasive BCI devices (Brain-Computer Interface) use electrical signals captured by

intracranial electrode implants to predict intended speech information [61]. The

electrodes are inserted into the cortex of the brain in a surgical procedure whereby

a craniotomy is performed to expose the brain. Invasive BCI devices are based on

three technologies: ElectroCorticoGrams (ECoG), Local Field Potentials (LFPs),

and Single Unit Activity (SUA). While EEG and MEG capture the electric/magnetic

activity produced by tens of thousands to millions of neurones, LFP represents the

activity of tens of neurones and SUA represents activity of individual neurone units

[61]. Brumberg et al. [62] conducted a study of attempted speech production in

a patient suffering from locked-in syndrome using microelectrode recordings. The

system obtained an accuracy of up to 21 % in recognising 38 phonemes (chance level:

1/38 or 2.6 %). While phoneme recognition using intracranial electrode implants

have yielded promising results, the field is still very much in its infancy.

2.4.2 SSI Challenges

SSIs based on the above seven technologies are still in the experimental stage, and

face several common challenges [10].

• Sensor positioning and robustness – sensors must be carefully positioned at the



Chapter 2 — Voice Restoration Techniques 17

start and a slight shift in position may necessitate recalibration of the entire

system. For example, an ultrasound-based SSI is sensitive to orientation of

the tongue surface relative to the probe, thus any movement of the probe will

affect the entire system. Similarly, EMA, sEMG, and EEG are highly sensitive

to variations in sensor positioning.

• Speaker independence – performance of the system is dependent on specific

characteristics of the speaker, for example: optical imaging depends on the

speaker’s skin colour, sEMG depends on speaker anatomy, EMA depends on

characteristics of articulator movement.

• Vocabulary size – a trade off must be made between vocabulary size and

recognition accuracy: increasing the vocabulary size causes the recognition

accuracy to decrease. The challenge is to construct a limited vocabulary that is

rich enough to be genuinely useful to the patient, without prohibiting accurate

recognition. This can be achieved by tailoring the vocabulary to specific tasks

and scenarios in the patient’s everyday life.

• Cost – complex technologies or techniques may significantly increase the cost

of design and manufacture.

• Routine-use considerations – significant time is required to set-up and fit the

SSI device, often requiring assistance from another person; the device is bulky

and difficult to transport; and the device is inconvenient and uncomfortable

to wear and use. As an example, consider an EEG device: the time required

to set-up an EEG device includes application of conductive gel, placement

of electrodes, and calibration of the device. Furthermore, apart from the

discomfort caused by wearing the electrodes and wires, it is simply not feasible

to carry around an EEG device.

2.5 Conclusion

The natural speech production process comprises five elements: respiration, phon-

ation, resonance, articulation, and prosody. A laryngectomy disrupts the natural

production of speech by removing the larynx, which is the source of phonation.

The conventional methods of voice restoration – electrolarynx, tracheo-oesophageal

speech and oesophageal speech – have achieved some success in restoring speech

but suffer from various shortcomings. Researchers are currently working towards

a computer-based solution to this problem whereby digital sensors and processing

are used to decipher speech in the absence of an acoustic signal. These systems are
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termed ‘Silent Speech Interfaces (SSIs)’ and have the potential to improve on some

of the limitations of traditional techniques, while facing a different set of challenges:

sensor positioning and robustness, speaker independence, vocabulary size, cost, and

routine-use considerations.
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Chapter 3

Automatic Lip-Reading

3.1 Introduction

Automatic Lip-Reading (ALR) is the computer-based technique of retrieving speech

information from visual cues including the movement of the lips, teeth, and tongue

[63]. The premise of ALR is based on the abilities of expert human lip-readers, who

can achieve near perfect speech comprehension.

The concept of using a computer to lip-read has been in existence since the 1960s,

and was popularised by the 1968 film “A Space Odyssey”, where a “HAL 9000”

computer was able to lip-read the conversations of astronauts who were plotting its

destruction.

The first work on automatic lip-reading (ALR) appeared in 1984 when Petajan

investigated the use of ALR to enhance speech recognition by creating a bimodal

(audio-visual) speech recognition system [43]. In subsequent years, ALR research has

focused on combining visual and auditory modalities to improve speech recognition

in noisy environments [44–49].

The bimodal nature of speech is demonstrated by the McGurk effect: conflicting audio

and visual sound components are presented to the subject, resulting in a perceived

sound that may not correspond to either modality [64, 65]. For example, when a

person hears the sound /ba/, but sees the articulatory movements corresponding to

the sound /ga/, the person may not perceive either /ba/ or /ga/, but rather /da/.

Inclusion of visual speech information, primarily shape and movement of the lips,

has been shown to significantly improve the performance of purely acoustic-based
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speech recognition [43, 66–68]. This outcome can be understood by considering the

sounds /m/ and /n/ which are easily confused in the audio domain, but are easily

distinguished in the visual domain [65].

Applications of ALR include:

1. Speech recognition in noisy environments

2. Human-machine interfaces

3. Speaker authentication

4. Privacy for telephone conversations

5. Aid for people with a speech handicap

This chapter provides an overview of automatic lip-reading (ALR) including the

challenges, approaches, and technologies. Section 3.5 presents a summary of the

techniques used in existing ALR systems and details two complete ALR systems to

give an indication of the typical structure and accuracy that can be expected.

3.2 Challenges of Lip-Reading

There are several challenges inherent in the task of human lip-reading, some of which

are compounded when attempting to automate the lip-reading process, while others

are reduced or eliminated entirely. Likewise, the task of ALR (or machine lip-reading)

faces several unique challenges which are taken for granted in the context of normal

human speech.

3.2.1 Human Lip-Reading

Lip-reading performed by humans is associated with six challenges:

1. Low visibility of speech sounds – Most of the motor (muscular) movements

involved in the formation of sound occur within the mouth and cannot be

detected by the eye [69]. The lip movements play a relatively minor part in the

formation of sounds. It is estimated that approximately 60 % of speech sounds

are either obscure or invisible [69].

2. Homophenous sounds – Alexander Graham Bell coined the term “homophene”

to describe words that look alike, but do not sound alike (e.g. /bat/, /pat/,
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/mat/). Jeffers & Barley [69] extend this definition to include sounds that look

alike, (e.g. /b/, /p/, /m/). There is not a single constant sound in the English

language that has a characteristic lip or jaw movement of its own and hence

can be recognised on the basis of vision alone [69]. The lip-reader must guess

the sound corresponding to the observed lip movement.

3. Rapidity of normal speech – Ordinary speech averages approximately thirteen

speech sounds per second while the eye is capable of consciously seeing only

eight to ten movements per second [70]. Jeffers & Barley [69] assert that the

speed itself is not the primary challenge; rather, as the speed increases, the

distinctive movements which differentiate the speech sounds are lost.

4. Transition effect (co-articulation effect) – The formation and hence appearance

of sounds can be altered by sounds that precede or follow [69]. For example,

the lip-reader depends on forward protrusion of the lips to identify the sounds:

/sh/, /ch/, /j/ as in /shoe/, /chew/, /Jew/; however, this movement is often

missing or obscured when the consonant is followed by a high front vowel as in

/shape/, /chip/, /jeep/.

5. Variation in sound formation – Several articulation patterns produce the same

speech sounds [69]. For example, the sound /t/ can be made by placing the

tongue in various positions.

6. Environmental limitations – The lip-reader requires a clear line of sight to

the lips of the speaker. Lip-reading is not possible if the speaker’s back is

turned, whereas hearing is possible in this situation. In addition, lip-reading

requires sufficient illumination of the speaker’s lips, whereas hearing is possible

in complete darkness.

3.2.2 Automatic (Machine) Lip-Reading

Machine Advantages

Machine lip-reading is not subject to the limitations of the human eye which is

capable of seeing only eight to ten speech movements per second [70]. The speed

of an ALR system depends on the frame rate of the camera, the processing power,

and the efficiency of the algorithms. An efficient ALR system can easily process 40

frames per second (fps), which would facilitate recognition of normal speech at 13

speech sounds per second [71].

Furthermore, ALR systems are not subject to the human frailties of fatigue and
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limited attention span. In fact, an ALR system could theoretically operate on

multiple speakers simultaneously, for an unlimited period of time.

Low visibility of speech sounds and homophenes gives rise to the fundamental

challenge of human lip-reading: the interpreter is presented with incomplete speech

information in the visual domain. As a result, the interpreter must make an educated

guess of what has been said based on the grammar and context. For example, consider

the sentence “I pat the dog” – in the visual domain the words “pat”, “bat” and

“mat” are indistinguishable; however, the words “bat” and “mat” do not make sense

in the context of the sentence, therefore the interpreter will deduce the unknown

word to be “pat”.

In recent years, language prediction technology has advanced to the point that it has

become integrated into our everyday activities. Google Autocomplete helps one find

information quickly by offering search suggestions or predictions. The predictions

are based on a number of factors including: popularity in search activities of all web

users (frequency), content of web pages indexed by Google, geographical location of

the user, and historical search activities of the user. For a user in South Africa on

20 May 2016, entering the letters “nel” into the Google search box would prompt

the following predictions: “Nelson Mandela”, “Nelspruit”, “Nelly”, and “Nelson

Mandela Quotes”. Another example of language prediction technology is Next Word

Prediction Tools, which are currently used in smartphones to help users type messages

faster and more accurately. The tools use natural language algorithms to predict

words based on spelling, grammar and context, and incorporate machine learning

tools to adapt to the specific user.

Considering the recent advances in this technology, it seems reasonable to ‘predict’

that given the same visual information, ALR systems will be able to perform lip-

reading to the same extent, if not better than expert human lip-readers who can

achieve almost perfect speech perception.

Machine Disadvantages

The fundamental challenges of ALR or “machine lip-reading” are lip segmentation

and recognition. Lip segmentation is the task of accurately discriminating between

lip pixels and non-lip pixels, which is an image processing challenge. Recognition

involves identifying speech information from the movements of the lips, which is a

machine learning challenge.
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Lip segmentation

Lip segmentation is taken for granted in the human context – humans naturally

identify and track the face and lips of a speaker, without much thought or effort.

However, in the domain of ALR, tracking of the face and lips is not a trivial task

and is subject to various limitations and challenges.

The task of lip segmentation is challenging primarily due to significant variability in

speaker profile and background conditions [63]:

• Lip and skin colour (race)

• Lip shape, width, height

• Facial hair, make-up, glasses

• Amount of lip movement during speech

• Distance from the camera (scale)

• Orientation relative to the camera (pose)

• Illumination conditions: intensity, shadows, glare

• Background activity

In addition, the following limitations are specific to machine lip-reading:

• Fixed camera position – the camera position is usually rigid and cannot easily

be changed, therefore the speaker must remain within the frame. In contrast,

the human visual field can easily be adjusted by moving the eyes, head or whole

body.

• Depth perception – the camera is typically two dimensional, whereas the human

visual system includes depth perception.
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Recognition

The recognition component of an ALR system is subject to two main challenges:

vocabulary size and speaker independence [10].

Regardless of the recognition architecture, increasing the vocabulary size causes the

recognition accuracy to decrease. To address this issue, ALR systems are built to

recognise speech units as opposed to whole words. Using this approach, a relatively

small group of speech units can be used to build a large vocabulary. Nevertheless,

it may be necessary to limit the vocabulary size to facilitate meaningful use of the

ALR system. The ensuing challenge is to construct a dictionary of words that is of

limited size, but rich enough to be genuinely useful [10].

The performance of the recognition component is often dependent on specific charac-

teristics of the speaker. For example, an ALR system is likely to be more accurate

on people with more exaggerated speech movements. Speaker dependence must be

carefully considered in the design of the recognition component. One approach is to

train speaker-dependent recognition models, which can be continuously improved

using an online learning algorithm – the more the system is used, the better it

becomes. The downside is that the models become tailored to a specific speaker and

lose the ability to generalise speech trends.

3.3 Speech Units

The recognition module is designed to identify a particular type of speech element,

which may range from phonemes to entire sentences. Selection of an appropri-

ate speech element depends primarily on the size of the vocabulary. For a small

vocabulary, choosing isolated words as the target speech element has the advantage

of simplicity in implementation and high recognition accuracy [63]. However, the

isolated word approach cannot easily be extended to applications that require large

vocabularies, since the increased vocabulary size prohibits adequate recognition

accuracy [63]. Thus, in large vocabulary applications (such as voice restoration for

laryngectomy patients) the recogniser must be designed to identify the speech units

which compose the words. In the audio domain the fundamental unit of speech is the

phoneme while in the visual domain the fundamental unit of speech is the viseme.

The following definitions apply:
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Phoneme

A phoneme is the basic unit of acoustic speech that is employed to form

meaningful contrasts between utterances in the audio domain [65, 72]. If one

phoneme is replaced by another, the meaning of the utterance is changed [65].

Viseme

A viseme is the basic unit of visual speech that describes the particular facial

and oral movements that occur with the production of a particular phoneme [73].

A viseme may correspond to a single stationary pose or a dynamic movement;

however, most visemes can be approximated by stationary poses [67]. Visemes

are derived from groups of phonemes having the same appearance [68, 74].

A viseme-based recognition approach attempts to identify the individual visemes

in each word. This approach has the advantage that a small number of visemes

facilitates a relatively large vocabulary of words. The exact number of visemes to

be recognised depends on which phoneme-to-viseme map is used. For example, the

MPEG-4 phoneme-to-viseme map defines 14 viseme classes [75]. However, since

a viseme represents only a small piece of a word, it is generally more difficult to

differentiate individual visemes as opposed to individual words.

3.3.1 Phoneme-to-Viseme Map

A phoneme-to-viseme map is a many-to-one map of the one or more phonemes

corresponding to each viseme [74]. The map is many-to-one as phonemes cannot

be individually distinguished using only visual information, but phonemes can be

grouped based on visual information [74]. There are two approaches to developing a

phoneme-to-viseme map: the linguistic approach and the data-driven approach.

Linguistic Approach

The linguistic approach creates visemes based on linguistic knowledge and subjective

perception experiments [74, 76]. Speech reading movements form the linguistic

foundations used to create visemes. A speech reading movement is a recognisable

visual motor pattern, usually common to two or more speech sounds [69]. Speech

reading movements are characterised by movements of the lips, jaws, teeth, tongue,

and hyoid bone [69]. Table 3.1 shows a summary of the speech reading movements and

corresponding phonemes determined by Jeffers & Barley [69]. “Visibility rank” refers

to the ease with which the speech reading movement can be identified. “Frequency”
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refers to the frequency of occurrence of the speech reading movement in spoken

language. Table 3.1 can be used to create a phoneme-to-viseme map by simply

creating a viseme class for each speech movement. Several different phoneme-to-

viseme maps using the linguistic approach have been proposed, for example: Jeffers

& Barley [69] and Bozkurt et al. [77].

Table 3.1: Visibility rank and frequency of speech reading movements used in conver-

sational speech (adapted from Jeffers & Barley [69]).

Visibility

Rank

Description Phonemes Frequency

(%)

1 Lower lip to upper teeth f, v 3.15

2 Lips puckered (narrow opening) w, r, u:, U,

oU, 3r

15.49

3 Lips together p, b, m 5.88

4 Lips relaxed (moderate opening) to lips

puckered (narrow opening)

aU 0.70

5 Tongue between teeth T, D 2.90

6 Lips forward S, Z, tS, dZ 1.20

7 Lips rounded (moderate opening) O: 1.73

8 Lips back (narrow opening) j, i:, I, eI, 2,

@

20.51

9 Lips rounded (moderate) to lips back

(narrow)

OI 0.08

10 Teeth together s, z 4.36

11 Tongue up and down t, d, n, l 21.10

12 Lips relaxed (moderate opening) E, æ, A: 7.79

13 Lips relaxed (moderate) to lips back

(narrow)

aI 3.16

14 Tongue back k, g, N 4.84

Data-Driven Approach

The data-driven approach creates visemes by clustering the phonemes based on

features extracted from visual speech data [74]. The data-driven approach has

two main advantages over the linguistic approach: first, the performance of viseme

recognition systems may be enhanced by using similar statistical techniques to create
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the viseme classes and to perform recognition on the unknown visemes [74]; second,

the data-driven approach is performed on continuous speech whereas the linguistic

approach is focused on isolated phonemes, thus the data-driven approach can account

for co-articulation effects [74]. Some examples of phoneme-to-viseme maps generated

using a data-driven approach are: Hazen et al. [78], MPEG-4 [75], Mattheyses et al.

[79], and Goldschen [80].

In recent years, the phoneme-to-viseme map described in the MPEG-4 standard [75]

has become the most commonly used phoneme-to-viseme map [79]. The MPEG-4

mapping is shown in Table 3.2 and comprises fourteen different visemes augmented

with one viseme for silence.

Table 3.2: MPEG-4 standard phoneme-to-viseme map [75].

Viseme No. Phonemes Examples

0 – silent viseme

1 p, b, m put, bed, mill

2 f, v far, voice

3 T, D think, that

4 t, d tip, doll

5 k, g call, gas

6 tS, dZ, S chair, join, she

7 s, z sir, zeal

8 n, l lot, not

9 r red

10 A: car

11 e bed

12 I tip

13 Q top

14 U book

3.3.2 Trisemes

Recognition of individual visemes without taking into account neighbouring visemes

is prone to errors due to the effects of co-articulation: the appearance of a sound can

be altered by the sounds that precede or follow [69, 77]. The effects of co-articulation

can be addressed by creating context-dependent viseme models, which depend on

a sequence of visemes as opposed to isolated visemes. A common approach to
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constructing context-dependent models is to use trisemes. A triseme is a triplet of

visemes, with each triseme corresponding to a sequence of three visemes [69, 77].

Constructing a recogniser based on trisemes has the advantage of incorporating

co-articulation effects into the model; however, the drawback of this approach is a

significant increase in the number of classes that must be identified. The MPEG-4

standard defines 14 viseme classes corresponding to 143 = 2744 potential triseme

classes. In practice, the number of trisemes can be significantly reduced by excluding

the trisemes that do not occur in the vocabulary. Goldschen [80] takes this approach

one step further by grouping similar trisemes together to create “generalised trisemes”.

3.4 Overview of ALR System

Figure 3.1 shows the components of an ALR system: face detection, mouth region

detection, colour transformation, feature extraction, recognition, and grammar

model. This section briefly discusses the approaches, technologies and considerations

associated with each component.

Figure 3.1: Components of ALR system.

3.4.1 Face Detection

There are three main approaches to face detection for an ALR system, which may

be used in isolation or in combination. The first approach is based on skin hue,

which is surprisingly independent of race and is robust to variations in lightness [81].

However, additional morphological constraints are required to reject hands and other

skin-coloured objects.

The second approach is based on the characteristics of facial features, including

the eyes, nose, and mouth. Facial features can be distinguished by their high edge

content and low reflectance [81]. Fixed spatial relationships between facial features

can be used to exclude erroneous candidates. Nostrils are generally the most robust

facial feature as they are not occluded by facial hair or glasses.
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The third approach to face detection is based on motion. The speaker is generally

the only moving object in the frame, and the speaker’s mouth is the primary source

of movement. Additional morphological information is required to discriminate the

face if alternate sources of movement are present in the frame.

3.4.2 Mouth Region Detection

The mouth region is a rectangular region containing the lips and surrounding skin.

The size of the mouth region depends on the degree of mouth opening during a

particular speech sound. For example, the sounds /w/ and /r/ are formed with

the lips puckered, therefore the resulting mouth region is relatively small; however,

for the sound /A:/ the mouth is wide open resulting in a large mouth region. The

mouth region must be large enough to contain the entire mouth (lips, teeth and oral

cavity) during the formation of any speech sound, but small enough to exclude any

unnecessary information (e.g. nostrils) which will increase the difficulty of the lip

segmentation stage.

WenJuan et al. [82] propose an algorithm to locate the mouth region based on the

spatial relationships between the face, eyes and mouth. The algorithm uses the

outline of the face and the location of the eyes to extrapolate the mouth region. 300

face images are analysed, and the following spatial relationships are observed:

1. The mouth is contained within the vertical lines defined by the eyes.

2. The mouth is contained within the bottom half of the region between the eyes

and the chin.

3. The mouth is parallel to the horizontal line between the eyes and rotates

accordingly.

WenJuan et al. [82] report that the algorithm to locate the mouth region is robust

and unaffected by facial expressions, lip shapes or lighting conditions.

Cappelletta & Harte [83] propose a method to locate the mouth region based on

nostril detection and the Accumulated Difference Image (ADI). The Accumulated

Difference Image (ADI) is used to extract a moving object from a stationary scene

based on the differences in successive frames. Cappelletta & Harte [83] use the ADI

to locate the mouth, which is the primary source of motion in the frame. However,

the ADI also detects movements of the head which results in lower accuracy in

locating the mouth region. To address this issue, Cappelletta & Harte [83] use the
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motion and orientation of the nostrils to generate a motion-compensated ADI, which

compensates for movements of the head by observing movements of the nostrils. The

compensated ADI is less noisy than the non-compensated ADI. Cappelletta & Harte

[83] report a 100 % success rate in detecting the mouth region if the nostrils are

successfully detected. The success rate for nostril detection is 74 %.

In recent years, the Viola-Jones detector has emerged as a popular technique for

face detection and mouth region detection [82, 84–88]. The Viola-Jones detector

was first introduced by Viola & Jones in 2001 as “a machine learning approach for

visual object detection, capable of processing images extremely rapidly and achieving

high detection rates”. The Viola-Jones detector combines four key concepts: simple

rectangular features called “Haar features”, an Integral Image for rapid feature

detection, the AdaBoost machine-learning method, and a cascaded classifier to

combine many features efficiently [90]. The popularity of the Viola-Jones detector

can be attributed to its implementation in OpenCV (an open source computer

vision library), making it accessible to thousands of image processing researchers.

OpenCV was designed and developed by Intel, focusing on computational efficiency

and real-time application.

3.4.3 Colour Transformation

Selection of a suitable colour transform to enhance the lip-to-skin contrast is essen-

tial to the performance of the lip segmentation algorithm. An appropriate colour

transform will result in a clear distinction between the lip and skin pixels, and the

subsequent feature extraction will yield superior results. There is no consensus

among researchers as to the most appropriate colour transform for this purpose.

Chapter 5 presents a comprehensive comparison of the colour transforms used in lip

segmentation algorithms and evaluates 33 different transforms: 21 channels from

7 colour space models (RGB, HSV, YCbCr, YIQ, CIEXYZ, CIELUV, CIELAB);

and 12 additional colour transforms (8 of which are designed specifically for lip

segmentation).

3.4.4 Feature Extraction

Feature extraction techniques are used to generate a sequence of feature vectors

which characterises the movement of the lips. The techniques can be grouped into

two broad categories: image-based approaches and model-based approaches [71]. The
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image-based approach and the model-based approach may be used in combination

to form a hybrid approach [91]. The fundamental principles behind the image-based

approach and the model-based approach are discussed below.

Image-based Approach

The entire mouth region is presented to the recogniser after applying a colour

transform. Effectively, every pixel in the mouth region is a feature. This approach

ensures that no information is lost; however, the high dimensionality and high

redundancy of the feature vector presents a significant computational processing

challenge [71, 81]. Consequently, the pure image-based approach is considered

unsuitable for real-time lip-reading systems [71]. To reduce the computational

requirements, the dimension of feature vector can be reduced by applying a dimension

reduction technique (PCA, DCT, DWT, LDA, FLD, MLLT) or by segmenting the

lips and measuring various parameters (e.g. area, width and height) [92]. However,

the image-based approach does not incorporate any shape or smoothness constraints,

so the segmentation is often very rough and potentially unsuitable for lip-reading

[93]. A further disadvantage of the image-based approach is that the system relies on

the classifier to learn the non-trivial task of finding the generalisation for translation,

scaling, rotation, illumination, and inter/intra speaker variability [94]. Finally, the

system is highly sensitive to variations in illumination and orientation of the camera

which will alter all the pixel values [81].

Model-based Approach

The model-based approach describes the lip contours by means of a small set of para-

meters, which are usually invariant to translation, rotation, scale, and illumination

[71]. The model-based approach usually involves fitting a model to the image by

minimising a cost function [91]. The important visual features can be represented in

low dimensional space by constructing a feature vector comprising both low-level and

high-level features [94]. Low-level features are usually parameters taken directly from

the model (e.g. intensity values or landmark point coordinates); whereas, high-level

features represent an abstraction derived from the model parameters (e.g. histograms

or shape models based on landmark points). Challenges to the model-based approach

include variations in speaker appearance, speaker sound formation, illumination, and

poor colour contrast [71]. In addition, the model may inadvertently omit relevant
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speech information [94]. Finally, optimising a cost function can be computationally

expensive.

3.4.5 Recognition

An Artificial Intelligence (AI) recognition algorithm is used to classify unknown speech

movements based on a training dataset. The input to the recognition algorithm is a

temporal sequence of feature vectors obtained from the feature extraction component.

Hidden Markov Models (HMMs) are the most common recognition technique in

automatic speech recognition systems [95]; however, Neural Networks (NNs) have

also received much attention [81].

The popularity of HMMs is primarily attributed to their inherent rate invariance and

efficient algorithms for training and recognition [81]. The rate invariance property

allows the system to effectively model variations in the rate of speech, which may

occur with different speakers [81]. The efficient training and recognition algorithms

are crucial for real time applications [96]. However, HMM-based recognisers have

the following drawbacks: difficulties in modeling co-articulation effects, difficulties in

determining appropriate state complexity, and inherent assumptions that may not

be valid (e.g. features are uncorrelated) [81].

NNs have the advantage that they make few assumptions about the underlying data;

however, training is slow and rate invariance is challenging to achieve [81, 96].

HMMs and NNs are considered “black box techniques” as they are difficult to

understand and modify. Baldwin et al. [97] propose a recogniser based on fuzzy set

theory which is a significantly more intuitive way of modeling speech data and is

referred to as a “glass box technique”. Baldwin et al. [97] achieved an accuracy of

92.71 % on a four word vocabulary (Tulips1 dataset); however, the use of fuzzy set

theory for ALR has not been evaluated on larger vocabularies.

3.4.6 Grammar Model

Language is an auditory phenomenon and is severely limited as a vehicle for visual

communication [69]. The fundamental challenge of lip-reading is constructing mean-

ingful words and sentences given the incomplete speech information in the visual

domain. Lip-reading is not a simple combination of elements or parts, but requires

guessing and mental filling-in as well. A crucial requirement of successful lip-reading



Chapter 3 — Automatic Lip-Reading 33

is synthetic ability, defined by Jeffers & Barley [69] as: “the ability to make as-

sociations and to arrive at perceptual and conceptual closures when a good part

of the sensory information is either missing or not perceived”. Perceptual closures

refers to the identification of words and phrases. Conceptual closures refers to the

organisation of words and phrases into a tentative idea. Inherent in the lip-reading

task is extrapolating the correct meaning from limited information, and thus a

grammar model is a crucial component of an ALR system.

The recognition accuracy of an ALR system can be significantly improved by in-

corporating a grammar model to capture some of the rules of the spoken language

[80]. The most simple grammar model is word-pair grammar which uses training

sentences to derive a list of word-pairs that can appear in a sentence. Based on the

permissible word-pairs, a candidate word is either accepted or rejected. An n-gram

language model is a slightly more advanced language model, which is commonly used

in speech recognition. An n-gram is a sequence of n symbols (e.g. words, syntactic

categories, etc.) and an n-gram language model predicts the probability of each

symbol in the sequence given its n− 1 predecessors [98]. An n-gram language model

is built by analysing the symbol frequencies in a given training text [98]. Goldschen

[80] suggests using bigram grammar while Huang et al. [95] use trigram grammar.

3.5 Review of Existing ALR Systems

Stork & Hennecke [81] review 24 ALR systems and provide an overview of the

image processing, feature extraction, sensory integration, and pattern recognition

techniques. Table 3.3 provides a summary of these techniques [81].

Two well-known ALR systems are reviewed below to give an indication of the typical

structure and accuracy that can be expected: Wang et al. [71] describe a system to

recognise isolated words, while Goldschen [80] describes a system to recognise entire

sentences.

Wang et al. [71] transform the RGB lip image to the CIELAB colour space and

CIELUV colour space to enhance the perceptual colour difference. A fuzzy c-means

clustering algorithm is employed to segment the lip image. The outer lip contour

is modeled using a 14-point Active Shape Model (ASM). The ASM incorporates

an alignment stage whereby the lip image is aligned to an original reference size

and rotational angle. The alignment stage helps negate the effects of variation in

camera setting and speaker head position. Wang et al. [71] normalise the lip image
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Table 3.3: Summary of techniques used in the ALR systems reviewed by Stork &

Hennecke [81].

Component Techniques

Face

detection

• Colour – similarity to a template skin colour

• Motion – face located by areas of significant motion

Mouth region

detection

• Colour – similarity to a template skin colour

• Edge – colour or luminance edges around the lips

• Value – lightness differences between the lips and skin

• Lipstick – marked the lips with chroma key

• Eyes and nostrils – ratios based on initial location of eyes

and nostrils

Feature

extraction

• Threshold – colour or luminance threshold

• Dots – reflective dots applied around the face

• Motion – visual motion, optical flow

• Vector Quantisation (VQ)

• Surface – fitting contours in high-dimensional pixel space

• Principal component analysis (PCA)

• Linear discriminant analysis (LDA)

• Deformable templates

• Active Shape Models (ASM)

• Active Contour Models (ACM)

Recognition • Linear Time Warping (LTW)

• Dynamic Time Warping (DTW)

• Neural Network (NN) – multilayer perceptron

• Time-Delay Neural Network (TDNN)

• Hidden Markov Models (HMM)

• Boltzmann Zippers (BZ)
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with respect to the first image in a lip image sequence, which enables dynamic

monitoring of the scale (s) and rotational angle (θ). Wang et al. [71] construct a

feature vector comprising the outer lip contour parameters, teeth area (Tarea) and

mouth opening (Mopen). HMMs with a continuous probability distribution are used

for classification of whole word models. A database of 10 isolated English digits (0 to

9) is used to evaluate both speaker dependant and speaker-independent recognition.

The performance of the system is tested at isolated word-level. The speaker-dependent

experiment yielded an accuracy of 93.3 % while the speaker-independent experiment

yielded an accuracy of 84 %.

Goldschen [80] uses optical information from the oral cavity shadow of the speaker to

perform continuous lip-reading. The feature vector is comprised of thirteen features,

the majority of which are dynamic features. The recogniser is based on HMMs using

visemes, trisemes, and generalised trisemes. The system is designed to recognise

entire sentences, and does not attempt to resolve the individual words within the

sentence. The system achieved a recognition rate of 25.3 % on sentences having a

perplexity of 150, without the use of a grammar model (syntactic, semantic, acoustic

or contextual).

3.6 Conclusion

Automatic lip-reading (ALR) is the technique of retrieving speech information from

visual cues including the movement of the lips, tongue, and teeth. After almost three

decades, ALR remains an active area of research with the primary goal of combining

visual and auditory modalities to improve speech recognition in noisy environments.

The main challenges of ALR are lip segmentation and recognition. Lip segmentation

is challenging due to variability in speaker profile, speaker orientation, lighting and

background activity. The recognition component is faced with the challenges of

vocabulary size and speaker independence. In large vocabulary applications, the

recogniser is designed to identify the visual speech units (“visemes”) which make up

words. A phoneme-to-viseme map is required to translate the visual information back

into the auditory domain, from where words and sentences can be reconstructed.

An ALR system is comprised of six major components: face detection, mouth

region detection, colour transformation, feature extraction, recognition, and grammar

model. The various approaches, technologies and considerations associated with each

component have been discussed in this chapter.
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Chapter 4

Motivation, Scope, and Objectives

4.1 Introduction

Chapter 2 describes the voice restoration options for laryngectomy patients, cov-

ering both conventional techniques and experimental computer-based approaches.

Chapter 3 presents the background to automatic lip-reading (ALR), including the

challenges, techniques, and technologies. This chapter consolidates the argument

for using ALR to restore verbal communication for laryngectomy patients. Once

this basis has been established, the scope of the research is narrowed to focus on the

unresolved image processing challenge. The dataset used to conduct the research is

also described in this chapter.

4.2 Motivation – The Case for ALR

Patients suffering from laryngeal cancer may undergo a laryngectomy to remove

the cancer, leaving them unable to speak or produce vocalisation. These patients

generally have three options to consider for voice restoration: the electrolarynx,

tracheo-oesophageal speech, and oesophageal speech. While these techniques have

achieved some success in restoring speech, there are various limitations and drawbacks

associated with each technique. The electrolarynx must be held by hand and is

difficult to understand [29]; tracheo-oesophageal speech requires surgical intervention

and the prosthetic valves fail after 3 – 4 months [29, 33, 34]; oesophageal speech is

difficult to learn, and suffers from short duration and poor voice quality [29, 41].

With recent advances in portable computing power, a technological solution to this
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problem has become feasible. Silent speech interfaces (SSIs) use digital sensors

and processing to decipher speech in the absence of an audio signal. Conventional

methods of voice restoration use the remaining structures of the vocal tract to define

a new speech production process; consequently, these techniques are not spontaneous

or intuitive, and produce a foreign-sounding voice. By contrast, SSIs augment the

existing speech production process with sensors and processing, and thus have the

potential to be easier to learn and produce a more natural-sounding voice [10]. The

voice synthesiser can be designed to mimic the patient’s pre-laryngectomy voice,

improving the intelligibility and patient satisfaction [53].

Laryngectomy patients are restricted to SSI systems that do not require glottal activity.

Seven suitable technologies have been used to build experimental SSIs in the literature:

optical imaging, ultrasound, electropalatography (EPG), electromagnetic articulo-

graphy (EMA), surface electromyography (sEMG), electroencephalography (EEG),

and intracranial electrode implants.

SSIs based on optical imaging offer several distinct advantages over the alternatives:

• Hardware availability – The hardware requirements of an optical SSI including

camera, processing power, and audio/video output are readily available in any

standard smartphone, tablet or laptop.

• Cost – The seven SSI technologies require similar processing power and output

capabilities, thus the major cost differentiator is the sensor technology and

supporting electronics. An optical SSI is by far the most affordable technology

using a standard digital video camera.

• Comfort – An optical SSI is the only technology that does need to be physically

attached to the speaker – the smartphone, tablet or laptop can simply be placed

on a table in front of the speaker. Thus, an optical SSI is likely to be the most

comfortable and unobtrusive SSI technology for regular and long-term use.

• Set up – An optical SSI is simple to set up and fit, and the patient does not

require assistance from another person.

• Portable – An optical SSI is compact and can easily be carried in a pocket or

handbag.

• Health risk – An optical SSI is non-invasive and does not pose any danger to

the patient.

Importantly for optical SSIs, facial expressions do not change after a laryngectomy

[84]; therefore, the system can be designed using traditional linguistic theory, and
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can be tested on regular speaking individuals.

In an optical SSI, ALR is the technique of retrieving speech content from visual clues,

such as the movement of the lips, teeth and tongue. The premise of ALR is based on

the proficiency of human lip-reading experts who can achieve near perfect speech

comprehension.

4.3 Scope

ALR research is centred around the two core components: lip segmentation and

recognition. The challenge of lip segmentation resides in the domain of image

processing and involves accurately discriminating between lip pixels and non-lip

pixels. The challenge of recognition resides in the domain of machine learning and

involves identifying meaningful speech information from the movements of the lips.

While both lip segmentation and recognition remain active areas of ALR research,

this thesis focuses on the image processing challenge of accurate and robust lip

segmentation. Development of the recognition algorithm falls outside the scope of

this work. In a complete ALR system, the output of the lip segmentation algorithm

is fed into the recognition algorithm.

Although numerous segmentation techniques have been developed over the past

decades, few of these techniques have been applied successfully to the task of lip

segmentation owing to the low chromatic and luminance contrast between the lips and

skin [99]. Lip segmentation presents a challenging image processing problem arising

from three levels of variability. First, the inherent challenge of lip segmentation is

variability in the speaker profile including skin colour, lip colour, lip shape, facial

hair, and make-up. Second, the contents of the region of interest (ROI) is not

static and the visibility of the teeth, tongue, and oral cavity changes as the lips

move to form facial expressions and speech sounds. Finally, non-ideal environmental

conditions including lighting, speaker orientation, and background create a third

layer of complexity.

4.4 Objectives and Contributions

The first stage of lip segmentation involves applying a colour transform to enhance

the contrast between the lips and the surrounding skin; however, there is much debate
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among researchers as to the most suitable colour transform. The first objective of this

thesis is to determine the best colour transform for lip segmentation by evaluating

and comparing 33 different transforms.

The second objective is to develop a new lip segmentation algorithm that utilises

the best colour transforms from the comparative study. The resulting algorithm is

referred to as the base algorithm, as it forms the platform to analyse the impact of

the threshold value on the segmentation accuracy.

The final objective is to improve the segmentation accuracy by selecting a better

threshold value. While this thesis concerns lip segmentation in particular, the

objective is to develop a threshold selection technique that can be used in various

segmentation applications.

Thus, this thesis comprises three contributions to the field of image processing:

1. Comparison of 33 colour transforms used in lip segmentation algorithms

2. Development of a new colour-based lip segmentation algorithm

3. Development of a novel threshold selection technique called Adaptive Threshold

Optimisation (ATO)

4.5 Dataset

The dataset used in lip segmentation research should satisfy three criteria:

1. The dataset should cover the range of shapes formed by the lips during regular

speech, which includes: lips relaxed, lips pressed together, lips puckered, lips

rounded, lips forward, and lips back.

2. The dataset should contain sufficient inter-speaker variability.

3. Corresponding ground truth should be available.

The AR Face Database [100], constructed and curated by Prof. Aleix Martinez from

The Ohio State University, is the de facto standard in lip segmentation research

since the database satisfies all three necessary criteria. The AR Face Database is

publicly available and is free for research purposes (http://www2.ece.ohio-state.

edu/~aleix/ARdatabase.html).

http://www2.ece.ohio-state.edu/~aleix/ARdatabase.html
http://www2.ece.ohio-state.edu/~aleix/ARdatabase.html
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The database comprises full-face images from 112 subjects (58 male, 54 female), and

includes four different expressions: neutral, smile, anger, and scream. The four facial

expressions cover the maximum and minimum dimensions of the lips that can be

expected during regular speech:

• Scream – the mouth is wide open corresponding to maximum height and area

• Smile – the lips are stretched in the horizontal direction corresponding to

maximum width

• Anger – the lips are pressed tightly together corresponding to minimum height,

width and area

The AR Face Database includes significant variability in speaker profile, featuring

male and female speakers from diverse range of racial and ethnic groups, as well as

varying degrees of facial hair and make-up. Each subject participated in two separate

sessions fourteen days apart, which increased the variety of clothing, hairstyles and

make-up. The participants were asked to repeat the four facial expressions in each

session.

The dataset used in this research comprises 895 images from the AR Face Database.

The corresponding manual markings were produced by Ding & Martinez [101], who

obtained labels of the facial features from three independent human judges. Figure 4.1

shows the facial key points, including the outer lip contour which is labelled with 20

points. The within-judge variability was 3.8 pixels or 1.2 %.

Since the technologies to locate the face and mouth region are well established

[75, 102], many researchers in the field of lip segmentation begin with pre-cropped

images of the mouth region [96]. In line with this approach, the manual markings

from Ding & Martinez [101] are used to crop the full face images to a rectangular

mouth region including only the lips, oral cavity, and surrounding skin as shown in

Figure 4.2.

The 895 cropped mouth regions, along with corresponding manual markings of the

lip contours, form the dataset used in all subsequent testing and analysis.
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Figure 4.1: Marking of keypoints on the AR Face Database by Ding & Martinez

[101].
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(a) Neutral (b) Smile (c) Anger (d) Scream

(e) Neutral (f) Smile (g) Anger (h) Scream

(i) Neutral (j) Smile (k) Anger (l) Scream

(m) Neutral (n) Smile (o) Anger (p) Scream

Figure 4.2: The manual markings by Ding & Martinez [101] are used to crop the

mouth region from the full-face images of AR Face Database [100].
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4.6 Conclusion

This chapter presents the motivation and justification behind research into ALR

as a method of voice restoration for laryngectomy patients. This thesis is focused

on the image processing challenges of ALR, resulting in three contributions to the

field: first, the debate surrounding the best colour transform for lip segmentation is

resolved by evaluating and comparing 33 colour transforms used in lip segmentation

algorithms; second, a new colour-based lip segmentation algorithm is developed; third,

a novel threshold selection technique called adaptive threshold optimisation (ATO) is

presented. ATO can be used in various segmentation applications in which prior shape

information is available. The dataset used to test and validate the contributions of

this research comprises 895 pre-cropped mouth regions from the AR Face Database.
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Chapter 5

Comparison of Colour Transforms

5.1 Introduction

Lip segmentation is the task of accurately discriminating between lip pixels and

non-lip pixels. Lip segmentation is a fundamental system component in a wide range

of applications including: automatic lip-reading, virtual face animation, biometric

speaker identification, and emotion recognition [103]. The task of lip segmentation is

challenging due to variability in speaker profile (skin colour, lip colour, lip shape, facial

hair, make-up); speaker orientation (scale, pose); illumination (intensity, shadows,

glare); and speaker background [63, 104].

The preliminary phase of lip segmentation involves location of the face, and subsequent

location of the mouth region – a rectangular region containing the lips and surrounding

skin (see Figure 5.1). Once the mouth region has been located, the lip pixels are

segmented from the surrounding skin pixels. The technologies to locate the face and

mouth region are well established [75, 102]; however, there is no consensus as to the

most suitable technique to extract the lips from the mouth region [14]. Consequently,

many researchers in the field of lip segmentation begin with images containing the

pre-cropped mouth region [99].

There are two main approaches to segmentation of the lips from the mouth region: the

region-based approach and the model-based approach. The region-based approach

typically involves a colour transform to enhance the contrast between the lips and

surrounding skin, followed by thresholding and subsequent morphological operations

(e.g. dilation and erosion). The model-based approach again uses a colour transform

to obtain an intensity image, followed by minimising a cost function to fit a predefined



Chapter 5 — Comparison of Colour Transforms 45

Figure 5.1: Mouth region, lips and oral cavity (teeth, tongue, shadow).

model to the lip contours. The main techniques used to construct an appropriate lip

model are: deformable templates, active shape models, and active contour models

(snakes).

Figure 5.2 is a histogram showing the RGB components of the lips and skin respect-

ively. The histogram clearly illustrates the inefficiency of the RGB colour space in

lip segmentation – significant overlap between the lips and skin exists in all three

channels. Selection of a suitable colour transform to enhance the lip-to-skin contrast

is essential to the overall performance of a lip segmentation system. An appropriate

colour transform will result in a clear distinction between the lip and skin pixels, and

the subsequent region-based or model-based techniques will yield superior results.

However, an unsuitable colour transform will result in the loss of significant contrast

which will limit the accuracy of the subsequent segmentation techniques.

There is no consensus among researchers as to the most appropriate colour transform

to enhance lip-to-skin contrast. Some authors propose using a single chrominance

channel from various colour space models, for example: hue channel from HSV

[105, 106], or the a* channel from CIELAB [71, 82, 85, 107]; while others present

specialised colour transforms for lip segmentation based on various observations or

assumptions, for example: red exclusion [96] or pseudo-hue [108].

Zhang & Mersereau [109] attempt to address this issue by investigating three different

colour space models for lip segmentation (RGB, HSV and YCbCr). They evaluate

the histograms of full-face test images, and do not pre-crop the mouth region before

comparing the colour transforms. Consequently, the test images include the eyes,
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Figure 5.2: Histogram showing the R, G and B components of lips and skin.

nose, mouth, and neck, as well as clothing and background pixels. Again, algorithms

to crop the mouth region from full-face images are well established, hence the

approach adopted by Zhang & Mersereau [109] does not necessarily yield the most

appropriate colour transform for lip segmentation. Furthermore, Zhang & Mersereau

[109] draw their conclusions through qualitative observations on the histograms – no

objective quantitative metric or analytic technique is used. Zhang & Mersereau [109]

conclude that the hue component of HSV exhibits the least overlap between lip and

non-lip pixels, while remaining relatively constant across test subjects and lighting

conditions.

Caplier et al. [103] introduce an objective metric to determine the most appropriate

colour transform for lip segmentation. Caplier et al. [103] use intra-class variance

and inter-class variance to compare three colour space models (RGB, HSV, YCbCr)

and two transforms designed for lip segmentation (pseudo-hue [110] and LUX [104]).

Caplier et al. [103] build a database of skin and lip pixel samples to facilitate

comparison of the colour transforms; however, the database is not publicly available

and thus, it is not possible to verify the diversity of the database: skin colour, lip

colour, facial hair, glasses, expression, etc. Caplier et al. [103] note that the three

colour space models (RGB, HSV, YCbCr) are not particularly efficient, while the

specific colour transforms (pseudo-hue and LUX) achieve better results.
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The comparison of colour transforms presented in this chapter is the most compre-

hensive study to date and evaluates 33 different transforms: 21 channels from 7

colour space models (RGB, HSV, YCbCr, YIQ, CIEXYZ, CIELUV, CIELAB); and

12 additional transforms (8 of which are designed specifically for lip segmentation).

The contrast between the lips and the skin is used to obtain the outer-lip contour;

while the contrast between the lips and the oral cavity (teeth, tongue, shadow as

in Figure 5.1) is used to obtain the inner-lip contour. Therefore, it is necessary to

find a transform that adequately performs both tasks, alternatively two separate

colour transforms are needed, one for lip-skin segmentation and the other for lip-oral

cavity segmentation. It is worth noting that several automatic lip-reading systems

exclude the lips entirely, and are developed around segmentation of the oral cavity

exclusively [111].

The objective of this chapter is to determine the best transform for the following

scenarios:

1. Lip to skin segmentation

2. Lip to oral cavity segmentation

3. Combined lip-skin and lip-oral cavity segmentation

This work has been published in Signal, Image and Video Processing [14].

5.2 Survey of Colour Transforms

This section presents a comprehensive survey of the colour space models and special-

ised colour transforms used for lip segmentation in the literature. The survey includes

seven colour space models (RGB, HSV, YCbCr, YIQ, CIEXYZ, CIELUV, CIELAB),

as well as eight additional transforms designed specifically for lip segmentation.

Table 5.1 shows a summary of the 33 transforms to be evaluated.

5.2.1 Colour Space Models

RGB

The Red, Green and Blue (RGB) colour space model is an additive colour system

based on the trichromatic theory [112]. The tri-chromatic theory is derived from the

three types of colour-sensitive cones in the human visual system, and states that
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Table 5.1: Summary of 33 colour transforms to be evaluated.

No. Transform Description

1 RGB-R R channel from RGB colour space

2 RGB-G G channel from RGB colour space

3 RGB-B B channel from RGB colour space

4 HSV-H H channel from HSV colour space

5 HSV-S S channel from HSV colour space

6 HSV-V V channel from HSV colour space

7 YCbCr-Y Y channel from YCbCr colour space

8 YCbCr-Cb Cb channel from YCbCr colour space

9 YCbCr-Cr Cr channel from YCbCr colour space

10 YIQ-Y Y channel from YIQ colour space

11 YIQ-I I channel from YIQ colour space

12 YIQ-Q Q channel from YIQ colour space

13 XYZ-X X channel from XYZ colour space

14 XYZ-Y Y channel from XYZ colour space

15 XYZ-Z Z channel from XYZ colour space

16 LUV-L L channel from LUV colour space

17 LUV-U U channel from LUV colour space

18 LUV-V V channel from LUV colour space

19 LAB-L L channel from CIELAB colour space

20 LAB-A a* channel from CIELAB colour space

21 LAB-B b* channel from CIELAB colour space

22 DHT-C1 C1 channel from discrete Hartley transform

23 DHT-C2 C2 channel from discrete Hartley transform

24 DHT-C3 C3 channel from discrete Hartley transform

25 GL Grey level

26 RE red exclusion (Lewis et al., 2002)

27 PHE pseudo-hue transform (Eveno et al., 2001)

28 PHT pseudo-hue transform (Talea et al., 2011)

29 MI3 modified I3 Channel (Canzler et al., 2002)

30 HDF hue domain filter (Gong et al., 1995)

31 Cb-Cr Cb-Cr difference (Hsu et al., 2002 )

32 CC chromatic curve map (Eveno et al., 2001)

33 LUX-U logarithmic hue extension (Lievin et al., 2004)
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any visible colour can be formed by combining three independent colour channels

[112, 113]. RGB is easy to implement and is widely used throughout computer

graphics for capture, storage and display. However, the RGB colour space has

two major drawbacks: first, RGB does not separate luminance and chrominance

information; second, RGB is non-linear with visual perception – a 10 % change in

stimulus does not produce a 10 % change in perception. As shown in Figure 5.2,

using any single channel independently (R, G or B) does not adequately enhance

the lip-to-skin contrast; nevertheless, since image processing systems use RGB to

capture, store and display images, the RGB colour space forms the starting point of

subsequent colour transformations.

HSV, HSI, HSL

The Hue, Saturation and Value/Intensity/Lightness colour space is a non-linear

transformation from a Cartesian-coordinate representation (RGB) to a cylindrical-

coordinate representation. HSV is designed to represent colour in an intuitive

manner, thereby simplifying the task of quantifying a perceived colour using H, S

and V values. This is achieved by separating luminance (S,V ) and chrominance (H )

components; however, HSV is not perceptually linear [113]. Stork & Hennecke [81]

note that skin hue remains “surprisingly constant” across race, while lightness varies

significantly. Eveno et al. [114] state that skin hue and lip hue remain relatively

constant and well separated across a range of speakers, and thus, can be used

effectively to discriminate between lips and skin. Consequently, the hue (H ) channel

is used extensively throughout the lip segmentation literature [105, 106, 109, 115].

YCbCr

The YCbCr colour space is a linear transformation of the RGB colour space, and

is primarily used as a way of encoding RGB information. YCbCr decouples lumin-

ance (Y ) and chrominance (Cb, Cr) components and is designed to improve storage

and transmission efficiency by exploiting perceptually meaningful information [112].

For example, humans are more sensitive to luminance than chrominance; therefore,

the efficiency of a system can be improved by storing the luminance with high

resolution while compressing the chrominance components [85]. Hsu et al. [116] note

that lip pixels often exhibit an increased chrominance component Cr, which can be

exploited for lip segmentation.
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YIQ

The YIQ colour space is a linear transformation of the RGB colour space and is used

in the NTSC colour TV system [113]. YIQ is designed to exploit the colour response

characteristics of the human eye to maximise the use of a fixed transmission bandwidth.

The human eye is highly sensitive to changes in luminance (Y ); therefore, the Y

component is allocated a greater share of the transmission bandwidth. Furthermore,

the human eye is more sensitive to changes in the orange-blue (I ) range than the

purple-green (Q) range; therefore, the I component is allocated greater bandwidth

than the Q component. Thejaswi & Sengupta [117] observe that the lips are

generally brighter in the Q channel and the face is generally brighter in the I channel;

therefore, the I and Q components can be used to discriminate between lip and non-

lip pixels. Thejaswi & Sengupta [117] also note that YIQ decouples the luminance

and chrominance, providing an illumination-invariant approach.

XYZ

The XYZ (or CIEXYZ) colour space model was created in 1931 by the International

Commission on Illumination (CIE) and forms the foundation of all colorimetry

[113, 118]. The CIEXYZ colour space was derived from a series of experiments in

which participants were required to match the colour of a test light by adjusting the

contributions of three primary beams (red, blue, green) [118]. The commission used

these results to create a mathematical representation of the way humans perceive

colour. The CIEXYZ colour space defines all visible colours (“human gamut”) using

only positive values; consequently, the primaries X, Y, and Z (“tristimulus values”)

are not themselves visible. CIEXYZ is non-linear with visual perception and is

highly unintuitive (difficult to quantify a perceived colour using X, Y, and Z values).

CIEXYZ is not used directly in lip segmentation algorithms; however, several colour

space models derived from CIEXYZ are widely used in lip segmentation.

L*u*v*

The L*u*v* (or CIELUV) colour space was recommended in 1976 by the CIE as an

attempt to achieve perceptual linearity [113]. CIELUV is a non-linear colour space

designed to mimic the logarithmic response of the eye. Wang et al. [71] use CIELUV

to extract colour features for an Active Shape Model (ASM) of the lip contours, and

use the u* channel to detect the visibility of teeth.
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L*a*b*

The CIE simultaneously adopted the L*a*b* (or CIELAB) colour space along with

the CIELUV colour space in 1976. CIELAB represents a second attempt to achieve a

perceptually linear colour space by mimicking the nonlinear response of the eye [113].

The lightness component (L* ) closely matches the human perception of lightness;

a* and b* are colour-opponent dimensions (cannot be perceived together due to

antagonistic physiological responses). CIELAB has received increased attention in

recent years from lip segmentation researchers: Liang & Du [107] and WenJuan et al.

[82] use the a* component of CIELAB for lip segmentation, and report that the a*

component is highly robust to variability in skin and lip colour.

5.2.2 Specialised Colour Transforms

Several authors have proposed specialised colour transforms designed specifically to

enhance the lip-to-skin contrast. This section introduces the fundamental observations

and assumptions used in formulating the following specialised colour transforms: red

exclusion [96]; pseudo-hue [63, 114]; modified I3 [119]; hue domain filter [105, 120];

Cb-Cr difference [116]; chromatic curve map [114]; logarithmic hue extension [104];

and discrete Hartley transform [121].

Red Exclusion

The red exclusion (RE) technique is based on the assumption that since both the

lips and the surrounding skin are predominantly red, any contrast that may develop

requires the exclusion of the red colour component [63]. Equation (5.1) shows the

implementation of RE, incorporating only G and B colour components; β is a lip-

skin threshold value [96, 122]. RE has been shown to be a simple and effective lip

segmentation method [63, 96, 122]; however, WenJuan et al. [82] assert that RE only

performs well on the white population.

log

(
G

B

)
≤ β (5.1)

Pseudo-Hue

Eveno et al. [114] develop a pseudo-hue (PH) transform based on several observations

on the RGB colour composition of the lips and skin (see Figure 5.2) [108]:
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• R is prevalent in both lips and skin

• For skin pixels: G > B

• For lip pixels: G ≈ B

• The difference between R and G is greater for the lips than for the skin:

(RLips − GLips) > (RSkin − GSkin). Therefore, the skin appears more yellow

than the lips.

Based on these observations, Eveno et al. [108] design the pseudo-hue transform

shown in (5.2) to emphasise areas where large differences between R and G occur.

The pseudo-hue transform is bijective (exact pairing of elements between the two

sets, i.e. inverse function exists), while standard hue is not [108]. Talea & Yaghmaie

[63] propose a similar pseudo-hue transform shown in (5.3).

h =
R

G+R
(5.2)

h =
R3

R3 +G3 + 1
(5.3)

Modified I3

Canzler & Dziurzyk [119] design a new colour transform for lip segmentation by

modifying the I3 feature proposed by Ohta et al. [123]. They obtain the I3 feature by

weighting the R, G and B colour components in an attempt to find an effective colour

feature for region segmentation in a diverse group of images (e.g. building, seaside,

home). Canzler & Dziurzyk [119] select the I3 feature for the following reasons: no

singularities; good separation between brightness and colour information; simple and

fast conversion from RGB. Canzler & Dziurzyk [119] modify the I3 feature specifically

for lip segmentation by attenuating the B component, which is less prevalent in both

the lips and skin (5.4).

I =
1

4
(2G−R− 0.5B) (5.4)

Perhaps somewhat inadvertently, Canzler & Dziurzyk [119] weight the R, G, and

B components in accordance with the respective lip-skin discriminating power. In

Figure 5.2, the average of the skin R component is 161.44, while the lip R component

is 132.74. The difference between average skin R and the average lip R is 28.70.

Similarly, the difference in the G component is 34.94, and the difference in the B

component is 15.17. Canzler & Dziurzyk [119] construct their transform such that

the G component (which exhibits the greatest distinguishing power) is amplified,

while the B component (which exhibits the least distinguishing power) is attenuated.
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Hue Domain Filter

Gong & Sakauchi [120] propose combining a second order polynomial with convolution

to effectively filter out a given colour feature in the hue domain. Gong & Sakauchi

[120] report that this approach diminishes noise and improves the integrity of the

segmented region (decreases holes scattered throughout the object and fragments

scattered throughout the background). Coianiz et al. [105] use this approach to

construct a hue domain filter (HDF) for lip segmentation, shown in (5.5).

f(h) =

1− (h−h0)2
w2 if |h− h0| ≤ w

0 otherwise
(5.5)

h is the pixel hue; h0 is a predefined value representative of lip hue; w controls the

width of the filter (see Figure 5.3). Ideally, the values of h0 and w should be tuned

experimentally to achieve the best results; however, to facilitate fair comparison across

the various transforms, parameter tuning is precluded and the HDF is implemented

with the values suggested by Coianiz et al. [105].

R GB

h
0

2w

1

Figure 5.3: Hue domain filter with h0 = R.

Cb-Cr Difference

Hsu et al. [116] analyse the colour composition of lip and skin pixels in the YCbCr

colour space. Hsu et al. [116] note that the lip pixels are characterised by chrominance

component Cr (red) greater than chrominance component Cb (blue); furthermore,

the lip pixels have lower response in the Cr/Cb feature, but higher response in

the Cr2 feature. Based on these observations, Hsu et al. [116] propose the colour

transform shown in (5.6).

I =
Cr

Cb
− Cr2 (5.6)
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Chromatic Curve Map

Eveno et al. [114] use the Michaelis-Menten law to reduce the luminance dependence,

followed by enhancing the lip pixels using a chromatic curve map. The luminance

correction transform is derived from the Michaelis-Menten law which models the

adaptation of human vision. The correction law is shown in (5.7) and enhances

chromatic information such that colours are brought out of shadowy areas. a and

b are parameters which control the weight of the luminance correction law. The

chromatic curve map is created by defining a function which maps each pixel to

a specific parabola. The parameters of the mapping function are determined by

minimising a cost function to ensure that lip parabolas have a high curve and non-lip

parabolas have a low curve.

XCor =
X

X + (b− a)L+ a
(5.7)

Logarithmic Hue Extension

Lievin & Luthon [104] propose a new colour space model called the logarithmic hue

extension (LUX). LUX is a nonlinear colour space model inspired by physiological

considerations (cone distribution in the fovea and nonlinear signal transduction

pathways) and the Logarithmic Image Processing (LIP) model. Lievin & Luthon

[104] use a simplified implementation of the U channel to enhance the lip-skin

contrast, as shown in (5.8).

Û =

256× G
R if R > G

255 otherwise
(5.8)

Discrete Hartley Transform

The discrete Hartley transform (DHT) is closely related to the Discrete Fourier

Transform; however, the DHT transforms real inputs into real outputs [124]. The

three dimensional DHT is used in the field of image processing to perform frequency

domain manipulations. Guan [121] observes that the C3 component of the three

channel DHT (shown in equation 5.9) is increased in the lip region, and exploits this

observation to perform lip segmentation.
C1

C2

C3

 =


0.5773 0.5773 0.5773

0.5773 0.2113 −0.7886

0.5773 −0.7886 0.2113



R

G

B

 (5.9)
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5.3 Set-up

This section describes the experimental set-up to compare the colour transforms,

including the dataset, metrics, and methods employed.

5.3.1 Dataset

The dataset comprises 895 pre-cropped mouth regions from the AR Face Database

[100]. The outer-lip contour is interpolated from 20 points while the inner-lip contour

is interpolated from only 8 points; consequently, the outer-lip contour is more accurate

than the inner-lip contour. The inner and outer-lip contours are used to generate the

ground truth comprising three regions: lips, skin and oral cavity (see Figure 5.4).

(a) Manual markings (b) Ground truth

Figure 5.4: Manual markings from Ding & Martinez [101] used to interpolate the lip

contours and generate the ground truth.



Chapter 5 — Comparison of Colour Transforms 56

5.3.2 Metrics

Caplier et al. [103] use intra-class variance and inter-class variance to evaluate

various colour transforms for lip segmentation. Otsu [125] first introduced the

concepts of intra-class variance (5.10) and inter-class variance (5.11) to evaluate

the “goodness” of a single threshold in segmenting a bimodal image (an image with

two distinct peaks in the histogram). From a segmentation perspective, the ideal

bimodal histogram contains two compact (low intra-class variance) and distinct (high

inter-class variance) groups of pixels; therefore, Otsu [125] designed the discriminant

criterion shown in (5.13) as a measure of class separability: η tends to 0 for highly

similar classes, or 1 for highly differentiated classes. Otsu’s discriminant operates

most effectively on bimodal histograms, requiring a single threshold. Otsu used

the discriminant criterion to determine an optimum threshold to segment images

into nearly homogenous regions. Otsu’s discriminant function is frequently referred

to in the literature and has been widely used in a variety of applications [126] –

for example, the greythreshold function in MatlabTM is an implementation of

Otsu’s algorithm [127].

σ2Intra = w1σ
2
1 + w2σ

2
2 (5.10)

σ2Inter = w1w2(µ2 − µ1)2 (5.11)

σ2T = σ2Intra + σ2Inter (5.12)

η =
σ2
Inter

σ2
T

0 ≤ η ≤ 1 (5.13)

where
wi = probability of a pixel belonging to class i

σ2i = variance of class i

σ2T = variance of the total image

µi = mean of class i

Histogram intersection is another useful metric to quantify the distinguishing power

of a colour transform as the intersection directly quantifies the number of pixels which

overlap between the object and the background. Equation (5.14) is used to calculate

the number of intersecting pixels between two histograms (H1, H2), where N is the

number of bins. In the case of segmentation where H1 represents the object and H2

represents the background, SIntersection can be normalised by the total number of

pixels (object + background) to give the overlap probability between the object and

the background. The normalised intersection ranges from 0 for histograms that can

be entirely differentiated (0 % overlap) to 1 for identical histograms (100 % overlap).
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The intersection value indicates the upper limit on the segmentation accuracy (5.15)

that can be achieved by implementing a simple thresholding scheme (bimodal,

trimodal or multimodal). For example, consider the 5-bin histogram shown in

Figure 5.5 which is divided into object and background. The intersection between

the object and the background is 15 pixels (2 + 5 + 3 + 4 + 1) or 30 %, meaning

that the thresholding scheme cannot achieve a minimum overlap below 30 % or

maximum accuracy above 70 %. However, the intersection measure does not reflect

the required complexity of the subsequent thresholding scheme (bimodal, trimodal

or multimodal); rather, intersection simply measures the maximum segmentation

accuracy attainable with the ideal thresholding scheme. To address this drawback,

the histogram intersection metric is complemented with Otsu’s discriminant as the

secondary metric, used to measure the separability attainable using a single threshold.

SIntersection =

N∑
i=1

min(H1(i), H2(i)) (5.14)

SAMax = 1− SIntersection (5.15)

Figure 5.5: 5-bin histogram separated into object and background.

The choice of whether to focus on histogram intersection or Otsu’s discriminant

depends on the subsequent segmentation method. If the segmentation method involves

thresholding the histogram using one threshold, then Otsu’s discriminant will be

of primary interest. If the segmentation method involves multiple thresholds, or a

model-based approach, then histogram intersection will be of primary interest. The

segmentation algorithm in Chapter 6 is designed around thresholding the histogram

using one threshold, so Otsu’s discriminant is considered in selecting the colour

transform.
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5.3.3 Method

Figure 5.6 shows an overview of the experimental method to compare the colour

transforms, which consists of the following steps:

1. Use the manual markings to crop the mouth region from the full face images.

2. Apply a Gaussian low pass filter (LPF) to remove high frequency noise.

3. Interpolate the lip contours from the manual markings and segment the mouth

region into lips, skin and oral cavity.

4. Apply the 33 colour transforms.

5. Scale values to range 0 to 1.

6. Divide values into 256 discrete bins.

7. Calculate metrics: Histogram Intersection and Otsu’s Discriminant

Figure 5.6: Block diagram of method to evaluate colour transforms.

5.4 Results and Analysis

The contrast between the lips and the skin is used to obtain the outer-lip contour;

while the contrast between the lips and the oral cavity (teeth, tongue, shadow as

in Figure 5.1) is used to obtain the inner-lip contour. In Section 5.4.1 histogram

intersection and Otsu’s discriminant are used to find the best transform to perform

lip-skin segmentation; in Section 5.4.2 the metrics are used to determine the best

transform for lip-oral cavity segmentation.
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5.4.1 Lip-Skin Segmentation

Table 5.2 shows the results of histogram Intersection and Otsu’s discriminant for

lip-skin segmentation. The key to the transform names can be found in Table 5.1.

The highlighted transforms (grey) indicate the transforms that have been directly

used for lip segmentation in the literature.

The validity of the experimental procedure is immediately confirmed by noting the

performance of the highlighted transforms: 11 of the 12 best performing transforms

have been used for lip segmentation in the literature. Only the Cb-Cr difference

proposed by Hsu et al. [116] falls outside of the top 12 transforms. The histogram

intersection measures the overlap percentage between the lips and the skin – the

top ranked transforms obtain an overlap as low as 6.15 %, while the bottom ranked

transforms obtain an overlap as high as 18.61 %. This indicates that selection of an

appropriate colour transform for lip-skin segmentation can immediately improve the

accuracy of the system by up to three times. There is a high correlation between the

histogram intersection and Otsu’s discriminant in that transforms either perform

well according to both metrics, or perform poorly according to both metrics.

According to the histogram intersection similarity metric, the hue channel from

the HSV colour space (HSV-H) exhibits the greatest discriminating power, with

an overlap of only 6.15 % (segmentation accuracy of 93.85 %). The impressive

performance of HSV-H in lip-skin discrimination ratifies the extensive use of the

hue channel for lip segmentation in the literature [105, 106, 109, 115]. Furthermore,

HSV-H also performs well according to Otsu’s discriminant (ranked 3rd), which

indicates that not only does HSV-H have significant discriminating power, but also

that the segmentation can be achieved with a single threshold. Figure 5.7 shows a

histogram of HSV-H for the lips and skin respectively. It is clear that the lips and

skin are well differentiated into two compact and distinct groups of pixels. The lips

appear more red with a mean of 134.85, while skin is more yellow with a mean of

144.31. The variance of the lips and skin are 0.071 and 0.067 respectively. Figure 5.8

shows the HSV-H transform applied to the mouth region to enhance the contrast

between the lips and the skin. HSV-H significantly enhances the lip-skin contrast;

however, HSV-H is ineffective in discriminating between the lips and the oral cavity.

The hue domain filter (HDF) proposed by Coianiz et al. [105] is ranked 2nd with an

overlap of 6.15 %; while, the pseudo-hue transforms proposed by Talea & Yaghmaie

[63] (PHT) and Eveno et al. [114] (PHE) are ranked 4th and 5th respectively. It

is interesting to note that 4 of the top 5 transforms are associated with hue. This
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Table 5.2: Evaluation of colour transforms for lip-skin segmentation – highlighted

transforms (grey) have been directly used for lip segmentation in the literature.

Intersection Otsu

Transform Rank Value (%) Rank Value

HSV-H 1 6.15 3 0.4391

HDF 2 6.15 6 0.4029

MI3 3 7.37 2 0.4646

PHT 4 8.37 8 0.3700

PHE 5 8.37 4 0.4258

LUX-U 6 8.45 7 0.3896

YIQ-Q 7 8.84 1 0.4666

RE 8 9.88 5 0.4118

CC 9 12.15 9 0.3539

RGB-G 10 15.63 10 0.2085

LAB-A 11 16.50 19 0.1243

DHT-C3 12 16.78 20 0.1218

YCbCr-Cb 13 17.24 11 0.1959

GL 14 17.48 15 0.1465

YIQ-Y 15 17.48 16 0.1465

YCbCr-Y 16 17.48 17 0.1465

LAB-L 17 17.54 14 0.1468

XYZ-Y 18 17.54 18 0.1269

LUV-V 19 17.80 24 0.0939

XYZ-Z 20 17.80 25 0.0939

DHT-C1 21 17.97 21 0.1210

RGB-B 22 18.16 26 0.0896

XYZ-X 23 18.39 23 0.0987

LAB-B 24 18.40 12 0.1774

LUV-U 25 18.51 30 0.0659

LUV-L 26 18.55 13 0.1524

YCbCr-Cr 27 18.60 32 0.0050

HSV-S 28 18.61 33 0.0045

Cb-Cr 29 18.61 22 0.1037

DHT-C2 30 18.61 27 0.0873

HSV-V 31 18.61 28 0.0757

RGB-R 32 18.61 29 0.0757

YIQ-I 33 18.61 31 0.0079
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Figure 5.7: Histogram showing HSV-H component of lips and skin.

Figure 5.8: HSV-H transform used to enhance lip-skin contrast.
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result concurs with Eveno et al. [114] and Stork & Hennecke [81] in their assertion

that skin and lip hue remain relatively constant and well separated across a range of

speakers, and thus can be used effectively to discriminate between lips and skin.

The modified I3 channel (MI3) proposed by Canzler & Dziurzyk [119] performs

impressively according to both histogram intersection (3rd) and Otsu’s discriminant

(2nd); while the YIQ-Q transform was placed 1st according to Otsu’s discriminant,

but 7th according to histogram intersection.

The R, G, and B components of the RGB colour space are ranked 32, 10 and 22

respectively, with G providing the greatest discriminating power and R providing

the least discriminating power. These results concur with the premise of the red

exclusion (RE) technique which states that any contrast between the lips and the skin

requires the exclusion of the R channel. The RE transform is ranked 8th, above the R,

G and B channels. RGB-G performs impressively for a transform that has not been

used for lip segmentation in the literature, and attained a ranking of 10th according

to both histogram intersection and Otsu’s discriminant. RGB-G performs better

than LAB-A and DHT-C3, transforms which have been used for lip segmentation in

the literature. Despite this impressive ranking, the overlap of RGB-G (15.63 %) is

more than twice that of HSV-H (6.15 %).

The Cb-Cr difference proposed by Hsu et al. [116] is the only transform used for

segmentation in the literature that performs particularly badly, obtaining a ranking

of 29th with an overlap of 18.61 %. This result suggests that the observations and

assumptions upon which Hsu et al. [116] build their transform should be reconsidered.

5.4.2 Lip-Oral Cavity Segmentation

Table 5.3 shows the results of histogram Intersection and Otsu’s Discriminant for

lip-oral cavity segmentation. The key to the transform names can be found in

Table 5.1. The highlighted transforms (grey) indicate the transforms that have been

directly used for lip segmentation in the literature; however, there is no literature on

transforms for differentiating specifically between the lips and the oral cavity.

The intersection for lip-oral cavity segmentation ranges from 20.76 % to 32.44 %,

which is considerably greater than the intersection for lip-skin segmentation, 6.15 %

to 18.61 %. There are two main factors which contribute to this discrepancy. First,

the outer-lip contour is labelled with 20 points, while the inner-lip contour is labelled

with only 8 points. As a result, interpolation of the inner-lip contour (used for lip-oral
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Table 5.3: Evaluation of colour transforms for lip-oral cavity segmentation – high-

lighted transforms (grey) have been directly used for lip segmentation in the literature.

Intersection Otsu

Transform Rank Value (%) Rank Value

LAB-A 1 20.76 1 0.3711

HSV-S 2 20.95 3 0.3327

DHT-C3 3 21.33 2 0.3548

YCbCr-Cr 4 23.79 4 0.3119

LUX-U 5 23.86 5 0.2912

LUV-L 6 23.93 22 0.0177

PHT 7 24.06 6 0.2881

PHE 8 24.08 7 0.2876

LAB-B 9 25.25 14 0.0451

YCbCr-Cb 10 25.55 21 0.0186

YIQ-Q 11 26.05 8 0.2493

MI3 12 26.91 10 0.2188

YIQ-I 13 27.10 9 0.2412

Cb-Cr 14 27.22 13 0.0687

HSV-H 15 27.66 18 0.0295

DHT-C2 16 27.89 12 0.1046

CC 17 29.05 15 0.0356

LAB-L 18 29.65 29 0.0012

XYZ-Y 19 29.65 23 0.0152

XYZ-X 20 29.73 27 0.0025

YCbCr-Y 21 29.88 31 0.0001

GL 22 29.88 32 0.0001

YIQ-Y 23 29.88 33 0.0001

HSV-V 24 29.90 16 0.0306

RGB-R 25 29.90 17 0.0306

HDF 26 29.98 11 0.1202

RGB-G 27 30.17 25 0.0077

DHT-C1 28 30.24 30 0.0009

RE 29 31.03 28 0.0022

LUV-V 30 31.76 19 0.0232

XYZ-Z 31 31.76 20 0.0232

LUV-U 32 31.84 24 0.0081

RGB-B 33 32.44 26 0.0038



Chapter 5 — Comparison of Colour Transforms 64

cavity segmentation) is less accurate than the interpolation of the outer-lip contour

(used for lip-skin segmentation). Figure 5.9 illustrates the result of labelling the

inner-lip contour with only 8 points – the true inner-lip contour is shown in green

and the linear interpolation is shown in white. The discrepancies between the true

contour and the approximate contour result in incorrect labelling of the pixels shown

in red. Second, when the mouth is open, the tongue may be visible depending on

the illumination. Visibility of the tongue decreases the accuracy of lip-oral cavity

segmentation, as the tongue is generally of similar colour to the lips (see Figure 5.11).

Nevertheless, the relative performance of the transforms can be used to determine

the best transform for lip-oral cavity segmentation.

Figure 5.9: Interpolation of the inner-lip contour from 8 points. Inaccurate labelling

of lip and oral cavity pixels is shown in red.

It is interesting to note that the colour transforms used directly for lip segmentation in

the literature (highlighted in grey) do not perform particularly well in discriminating

between the lips and the oral cavity. Of the top 10 transforms for lip-oral cavity

segmentation, only 50 % have been used for lip segmentation in the literature, as

opposed to 90 % for lip-skin segmentation. 7 of the 12 transforms used for lip

segmentation in the literature fall outside of the top 10. Furthermore, not one of

the top 5 transforms for lip-skin segmentation appear in the top 5 transforms for

lip-oral cavity segmentation. These results indicate that it is incorrect to use the

same colour transform for lip-skin segmentation and lip-oral cavity segmentation.

The Saturation channel from the HSV colour space (HSV-S) achieved a rank of 2nd

according to the histogram intersection measure. This seems to agree with intuition –

the oral cavity contains the teeth (white) and the oral cavity shadow (black) which



Chapter 5 — Comparison of Colour Transforms 65

are characterised by a low saturation; while, the lips are primarily red which is

characterised by a high saturation.

The analysis reveals a somewhat surprising result in that the transform exhibiting

the greatest power in discriminating between the lips and the oral cavity is in fact

the a* channel from the CIELAB colour space (LAB-A). Low values of a* are green,

while high values of a* are magenta. Figure 5.10 shows a histogram of LAB-A for

the lips and oral cavity respectively. The lips appear more magenta with a mean of

153.77, while the oral cavity is more green with a mean of 111.79. The variance of

the lips and oral cavity are 2.48 and 3.33 respectively. The discrete and non-linear

nature of the CIELAB transform results in a significant number of pixels at a value

of 128, corresponding to lip and oral cavity pixels which are black, white or varying

shades of grey (depending on the value of L). Figure 5.11 shows the LAB-A transform

applied to the mouth region to enhance the contrast between the lips and the oral

cavity. LAB-A significantly improves the lip-oral cavity contrast; however, LAB-A

does not effectively discriminate between the lips and the skin. In fact, LAB-A

performs relatively poorly in lip-skin segmentation, obtaining a rank of 11th. This

again emphasises the notion that different transforms should be used for lip-skin

segmentation and lip-oral cavity segmentation.

If a single transform is to be chosen for both lip-skin segmentation and lip-oral cavity

segmentation, then two possible candidates exist, which perform reasonably well

in both cases: PHT which is ranked 4th in lip-skin and 7th in lip-oral cavity; and

LUX-U which is ranked 5th in lip-skin and 6th in lip-oral cavity.
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Figure 5.10: Histogram showing LAB-A component of lips and oral cavity.

Figure 5.11: LAB-A transform used to enhance lip-oral cavity contrast.



Chapter 5 — Comparison of Colour Transforms 67

5.5 Conclusion

The first stage in lip segmentation often involves applying a suitable colour transform

to enhance the contrast between the lips and the surrounding skin. Selecting an

appropriate transform can improve the segmentation accuracy by up to three times.

However, no consensus exists among researchers as to the best colour transform for

lip segmentation.

The comparison of colour transforms presented in this chapter is the most compre-

hensive study to date and evaluates 33 different transforms: 21 channels from 7

colour space models (RGB, HSV, YCbCr, YIQ, CIEXYZ, CIELUV, CIELAB); and

12 additional transforms (8 of which are designed specifically for lip segmentation).

The contrast between the lips and the skin is used to obtain the outer-lip contour;

while the contrast between the lips and the oral cavity is used to obtain the inner-lip

contour. As such, this chapter identifies the transforms appropriate for lip-skin

segmentation and for lip-oral cavity segmentation.

Histogram intersection quantifies the maximum segmentation accuracy attainable

prior to morphological processing; thus, histogram intersection is well suited to

compare and evaluate the colour transforms. However, histogram intersection does

not reflect the required complexity of the subsequent thresholding scheme. To

address this drawback, the histogram intersection metric is complimented with Otsu’s

discriminant as the secondary metric, used to measure the separability attainable

using a single threshold.

Results for lip-skin segmentation validate the experimental approach, as 11 of the top

12 transforms are directly used for lip segmentation in the literature. The hue-based

transforms (including pseudo-hue and hue domain filtering) occupy 4 of the top 5

positions. The hue channel from HSV emerges as the best transform to enhance

lip-skin contrast with a segmentation accuracy of 93.85 %. The lip-oral cavity results

reveal that the top 5 lip-oral cavity transforms are entirely different from the top

5 lip-skin transforms – this indicates conclusively that the same transform should

not be used for both lip-skin segmentation and lip-oral cavity segmentation. The

a* component of CIELAB, and Saturation component of HSV are ranked 1st and

2nd respectively for lip-oral cavity segmentation. Finally, if a single transform must

be chosen for both lip-skin segmentation and lip-oral cavity segmentation, then

pseudo-hue and the LUX transform are the best candidates.
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Chapter 6

Threshold-based Lip Segmentation

Algorithm

6.1 Introduction

This chapter details the design and implementation of a new lip segmentation

algorithm. Since technologies to locate the face and mouth region are well established,

the starting point for the lip segmentation algorithm is the pre-cropped mouth region

– a rectangular region containing the lips and surrounding skin. In recent years,

the Viola-Jones detector has emerged as a popular technique for face detection and

mouth region detection, which is capable of processing images extremely rapidly

while achieving high detection rates.

The lip segmentation algorithm is primarily a colour-based technique which utilises

the best colour transforms from Chapter 5 to enhance the contrast between the

lips and skin. The major components of the lip segmentation algorithm include:

preprocessing, colour transformation, thresholding, morphological processing, and

contour smoothing.

This algorithm is referred to as the base algorithm in future chapters, as it forms the

platform to develop and test adaptive threshold optimisation (ATO).
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6.2 Existing Techniques

Since the 1970s, numerous image segmentation techniques based on different theories

and methodologies have been proposed (see surveys [128–131]). However, few of

these techniques have been applied successfully to the task of lip segmentation owing

to the low chromatic and luminance contrast between the lips and skin [99]. As a

result, a range of segmentation methods specific to the task of lip segmentation have

been developed.

Lip segmentation techniques can be classified into two broad categories: colour-

based techniques or model-based techniques. Elements from both categories can

be combined to form a third category called ‘hybrid techniques’ [91]. This section

discusses these three approaches to lip segmentation.

6.2.1 Colour-based Approach

Colour-based techniques operate at pixel or neighbourhood level, and attempt to

differentiate between lip and skin pixels based on colour features. Lip segmentation

algorithms usually start by transforming the RGB image to an intensity (or ‘gray-

scale’) image by applying a suitable colour transform. Chapter 5 evaluates 33 colour

transforms for lip segmentation.

Wark et al. [132] and Chiou & Hwang [133] segment the lips by applying upper and

lower limits to threshold the R/G channel. In a similar manner, Coianiz et al. [105]

and Zhang & Mersereau [109] apply fixed thresholds to the H channel. While these

techniques are simple and efficient, the major limitation is the automatic computation

of robust thresholds [103]. Fixed thresholds cannot be generalised due to variability

in speaker appearance and lighting conditions, hence the threshold parameters must

be calibrated for the specific speaker and environment. Furthermore, even after the

initial calibration, appearance of the teeth, tongue, and oral cavity during movement

of the mouth can significantly alter the image histogram and affect the threshold

parameters.

The approach adopted by Xinjun & Hongqiao [134] is slightly more flexible whereby

they design colour filters comprising both RGB and YUV components. A typical

colour filter includes arithmetic, logical, and comparison operators, for example

(R2 + BY )Y > (Y 2 + RG)G. The filters effectively threshold the pixels based on

a colour ratio, as opposed to a fixed value. Xinjun & Hongqiao [134] cascade four
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different filters to increase robustness of lip pixel detection.

Another colour-based approach uses gradient filters (e.g. Sobel, Canny-Deriche or

the Prewitt operator) to extract the lip contour due to their efficacy in boundary

detection [93, 135–137]. However, the segmentation of gradient-based techniques is

susceptible to false boundary edges caused by shadows, skin pigmentation, and facial

hair.

In more recent approaches, clustering is used to perform colour-based segmentation.

Beaumesnil & Luthon [138] use k-means clustering on the U channel from LUX

to classify pixels as lips or face. Skodras & Fakotakis [139] build on this by using

k-means colour clustering with automatically adapted number of clusters. Hara

& Chellappa [140] determine the number of clusters using Bayesian information

criterion to balance the model complexity and likelihood. In a similar progression,

Rohani et al. [141] use fuzzy c-means (FCM) clustering with a preassigned number

of clusters; Cheung et al. [99] build on this by initialising with a superfluous number

of clusters, which are then reduced by merging clusters with coincident centroids.

In [142–144], statistical models are used to estimate the lip membership map. For

example, Bouvier et al. [143] estimate the distribution of skin pixel using Gaussian

mixture models, which is then used to compute the membership map of the lip

pixels. However, such methods tend to miscalculate the membership map due to the

similarity and overlap between lip and skin pixels in colour space [145].

Colour-based approaches are computationally inexpensive and allow rapid detection

of the target region [91, 136]; however, Wang et al. [146] discourage approaches that

rely solely on colour information citing the low contrast between lips and skin. In

addition, colour-based techniques are highly sensitive to variations in illumination

and orientation of the camera, which will alter all the pixel values [81]. Some authors

express concern that the resulting segmentation is often rough or noisy [93].

6.2.2 Model-based Approach

The model-based approach uses prior knowledge of the lip shape to construct a

lip model. The lip model is matched to the image by optimising a cost function.

Model-based techniques are usually invariant to translation, rotation, scale and

illumination; however, since the model is pre-defined, variation in speaker appearance

and speaker sound formation can be challenging [71]. In addition, minimising a cost

function can be computationally expensive which may affect real-time performance
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[91]. The three main techniques used to build a lip model are: deformable templates,

active shape models, and active contour models (snakes).

Deformable Templates

The deformable template approach to lip-tracking was first described by Yuille et al.

in 1989, and uses mathematically defined outlines to capture the shape and position

of an object [81]. The parametrised mathematical model is based on observations

and assumptions about shape and position of the object. The template is iteratively

matched to the shape of the mouth by minimising a cost function using an optimisation

algorithm (e.g. downhill simplex method, particle swarm, or a genetic algorithm)

[81]. The cost function is based on the sum of curve and surface integrals, as well as

heuristics and higher-level information [81]. The optimised model from the previous

frame is used as the initial model for the following frame [81]. Figure 6.1 shows an

outer-lip template used to locate the outer-contour of the mouth. The top contour is

defined by two parabolas which intersect above the centre of the mouth; the bottom

contour is defined by a single parabola; the top and bottom contours intersect at

the corners of the mouth. Other deformable template models have been constructed

using quadratic B-Splines [148] or two parabolas for the upper lip and one for the

lower lip [105].

Figure 6.1: Deformable template approach – the lip template is defined by two

parabolas forming the upper contour, and a single parabola forming the lower contour.

Active Shape Models

Active Shape Models (ASMs), also called Point Distribution Models (PDMs), are

flexible models which represent an object by a set of labelled points [94]. The points

are selected to describe the boundary or other significant parts of an object. ASMs

typically involve an alignment stage whereby the lip model is aligned to a reference

size (s) and rotational angle (θ), which helps reduce the effects of variation in camera

zoom and speaker head position. Wang et al. [71] normalise the lip image with

respect to the first image in a lip image sequence, which enables dynamic monitoring
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of the scale (s) and rotational angle (θ). A statistical analysis of a labelled training

dataset is performed to obtain the average shape and principal modes of variation

[94]. The training data is often labelled by hand and a consistent labelling scheme

must be applied to the training samples to ensure comparison of equivalent points on

different samples. ASMs do not make assumptions about the shape of the object, but

rather attempt to learn the legal shape deformation by examining training samples

[94]. A small set of parameters is used to describe local and global deformations,

which constrain the model to only deform to specific shapes. A cost function based

on pixel intensity is used to measure the fit between the model and the image. An

optimisation algorithm is then used to minimise the cost function and thus fit the

ASM to the object (e.g. downhill simplex method, particle swarm, or a genetic

algorithm), as shown in Figure 6.2.

Figure 6.2: Active shape model using points to label the outer-lip contour.

Active Contour Models (“Snakes”)

Active Contour Models (ACMs) (often referred to as “snakes”) have been widely used

for lip segmentation due to their ability to take smoothing and elasticity constraints

into account [149]. A snake is an energy-minimising spline guided by internal and

external energies [91, 149]. The purpose of the internal energy is to maintain the

shape of the snake as regular and smooth. The simplest approach to internal energy

is to assign high energy to elongated contours (elastic force) and to high curvature

contours (rigid force) [91]. The purpose of the external energy is to model the edge

of an object and is minimal when the snake is at the object boundary. The simplest

approach to external energy uses regularised gradients as the external energy [91].

Figure 6.3 shows a snake fitting to the lower lip contour. Snakes have achieved

reasonable results in lip segmentation; however, proper initialisation is crucial to

successful lip tracking as snakes often converge to the incorrect result when the initial

position is far from the lip edges [91, 93]. Another drawback of active contour models

is that it is difficult to tune the parameters of the model. Eveno et al. [93] propose a

“jumping snake” that addresses these limitations – jumping snakes can be initialised

far from the lip edge and parameter adjustment is simple and intuitive [91].
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Figure 6.3: Active contour model (snakes) fitting to lower lip contour.

6.2.3 Hybrid Approach

Functional lip segmentation algorithms often combine elements from colour-based

and model-based categories in so called ‘hybrid techniques’ [91]. Colour-based

techniques are fast and not constrained by a rigid model; however, the resulting

segmentation is often rough as no smoothness or shape constraint is applied. Model-

based techniques are robust and accurate, but are computationally complex and

limited by the flexibility of the underlying model.

In the hybrid approach, the computational complexity of model-based techniques is

reduced by using colour-based techniques to obtain a quick and rough estimation

of the candidate lip region. The sensitivity to illumination and rough segmentation

of colour-based techniques is reduced by the smoothness and shape constraints of

the model-based techniques. Finally, the cost function used by the model-based

techniques is improved by enhancing the contrast between lip and non-lip pixels

using a colour transformation.

Werda et al. [136] propose a hybrid technique for lip Point Of Interest (POI) localisa-

tion using colour information to locate the mouth in the first stage, and a geometric

model to extract the lip contour in the second stage. Werda et al. [136] first apply a

colour transform to reduce the effect of lighting, then analyse the horizontal and ver-

tical projections to detect the corners of the mouth, and finally apply a parametrised

geometric lip model.

Bouvier et al. [143] first apply a colour transform based on the red and green

component values to enhance the contrast between the lips and the skin. The lip area

is then estimated using expectation maximisation and a membership map. Finally, a

snake is initialised based on the lip area estimation and is fitted to the upper and

lower lip contours by multilevel gradient flow maximisation.

Mok et al. [150] propose a hybrid system to segment the lips by first transforming the

RGB image to the CIELAB colour space, then applying a fuzzy clustering method

incorporating a shape function to obtain a rough estimation. A 14-point active shape
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model (ASM) is iteratively matched to the lips by deforming according to valid

modes of deformation obtained from a training dataset using PCA.

Tian et al. [151] present a lip tracking method by combining colour, shape and motion.

The colour information of the lips and skin is modelled as a Gaussian mixture. A

multi-state deformable template model using parabolas is used to represent the

different mouth states: open, relatively closed, and tightly closed. The lip motion is

obtained by modified Lucas-Kanade tracking.

6.3 Lip Segmentation Algorithm

Figure 6.4 shows a high-level overview of the lip segmentation algorithm developed in

this thesis, including: preprocessing, colour transformation, morphological processing,

and contour smoothing. The formulation of these components is described in this

section.

Figure 6.4: High-level overview of lip segmentation algorithm.

6.3.1 Preprocessing

The preprocessing component comprises two steps: first, a 3 × 3 Gaussian low

pass filter (LPF) is applied to each channel R, G, and B to remove high frequency

noise; second, a luminance correction is applied to each channel R, G, and B to

compensate for varying illumination conditions. The luminance correction is derived

from the Michaelis-Menten law which models the adaptation of human vision [114].

The correction law is shown in (6.1) and enhances chromatic information such that

colours are brought out of shadowy areas. L is the luminance; a and b control the

weight of luminance in the correction law (a = 0.4, b = 0.8).

X =
X

X + (b− a)L+ a
(6.1)

where
X = {R,G,B} ∈ [0, 1]

L = Luminance ∈ [0, 1]
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6.3.2 Colour Transformation

Chapter 5 compares 33 colour transforms for lip segmentation using histogram

intersection (Equation 5.14) and Otsu’s discriminant (Equation 5.13). Histogram

intersection simply measures the overlap between object and background histograms,

but gives no indication of the complexity to perform the separation. Whereas, Otsu’s

discriminant measures the extent to which two histograms can be separated using a

single threshold.

Histogram intersection is considered when the subsequent segmentation method

involves multiple thresholds, or a model-based approach; Otsu’s discriminant is

considered when the segmentation method involves a single threshold.

The lip segmentation algorithm in this chapter is designed around a single histogram

threshold, so Otsu’s discriminant is considered in selecting the colour transform.

Table 6.1 shows the top five colour transforms for lip-skin segmentation ranked by

Otsu’s discriminant. The top two colour transforms (YIQ-Q and MI3) are used in

combination to improve contrast and reduce artefacts.

Table 6.1: Top 5 colour transforms for lip-skin segmentation according to Otsu’s

discriminant.

Rank Transform Description Otsu

1 YIQ-Q Q channel from YIQ 0.4666

2 MI3 Modified I3 channel (Canzler, 2002) 0.4646

3 HSV-H Hue channel from HSV 0.4391

4 PHE Pseudo-hue (Eveno, 2001) 0.4258

5 RE Red exclusion (Lewis, 2002) 0.4118
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YIQ-Q refers to the Q channel from the YIQ colour space. The YIQ colour space is

a linear transformation of the RGB colour space, shown in (6.2). YIQ is designed to

improve the transmission efficiency of the NTSC colour TV system by exploiting the

colour response characteristics of the human eye [113]. Y is the luminance component,

I is the orange-blue chrominance axis, and Q is the purple-green chrominance axis.

Since YIQ decouples luminance and chrominance, the YIQ-Q transform provides an

illumination-invariant approach (unless the illumination is so poor that the visibility

is affected). On the Q axis, the lips appear more purple and the skin appears more

green. 
Y

I

Q

 =


0.299 0.587 0.114

0.595716 −0.274453 −0.321263

0.211456 −0.522591 0.31135



R

G

B

 (6.2)

MI3 refers to the modified I3 transform proposed by Canzler & Dziurzyk [119]. Ohta

et al. [123] generate the I3 feature by weighting the R, G and B colour components

in an attempt to find an effective colour feature for region segmentation in a diverse

group of images (e.g. building, seaside, home). Canzler & Dziurzyk [119] select

the I3 feature for the following reasons: no singularities; good separation between

brightness and colour information; simple and fast conversion from RGB. The I3

feature is modified specifically for lip segmentation by attenuating the B component,

which is less prevalent in both the lips and skin.

The MI3 transform is shown in (6.3) and weights the R, G, and B components in

accordance with their respective lip-to-skin separation. Table 6.2 is derived from

the histogram in Figure 5.2, and shows the mean lip value, mean skin value and

the difference for the R, G and B components. The G component exhibits the

greatest separation (34.87), followed be the R component (28.64), while the B

component exhibits the least separation (15.13). Canzler & Dziurzyk [119] construct

the MI3 transform such that the G component is amplified, while the B component

is attenuated.

I =
1

4
(2G−R− 0.5B) (6.3)

Table 6.2: Separation of R, G and B for the lips and skin.

Lip Mean Skin Mean Difference

R 132.69 161.33 28.64

G 75.95 110.82 34.87

B 64.41 79.54 15.13
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Figure 6.5 shows the steps in combining the YIQ-Q and MI3 colour transforms

which includes scaling, inversion, pixel multiplication, and Gaussian filtering. Several

examples are shown in Figure 6.6.

Figure 6.5: Combining the YIQ-Q and MI3 colour transforms.

(a) Original (b) YIQ-Q (c) MI3 (d) Combined

Figure 6.6: Example images of the combined YIQ-MI3 colour transform.

6.3.3 Thresholding

The threshold is selected using Otsu’s method [125], which parallels selection of the

colour transform according to Otsu’s discriminant. Otsu’s method is a nonparametric

and unsupervised method of automatic threshold selection, which uses the discrimin-

ant measure in Equation (5.13) to maximise the separability of the resultant classes.

Figure 6.7 shows several examples of thresholding using Otsu’s method.
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(a) Original (b) Colour transform (c) Thresholding

Figure 6.7: Example images of thresholding using Otsu’s method.

6.3.4 Morphological processing

Mathematical morphology is a tool for extracting image components that are useful

in the representation and description of region shape, such as boundaries [152].

The operations of dilation and erosion are fundamental to morphological image

processing, and form the basis of many morphological algorithms. Dilation makes use

of a structuring element to expand or “thicken” objects in a binary image. Erosion

uses a structuring element to shrink or “thin” objects in a binary image. The concepts

of dilation and erosion are illustrated in Figure 6.8.

After thresholding, nine morphological operations are performed to consolidate the

lip region and to remove artefacts. Figure 6.9 shows the morphological processing

procedure, and several examples are show in Figures 6.18 to 6.21.
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(a) Dilation (b) Erosion (c) Dilation and erosion

Figure 6.8: (a) Dilation of the dark-blue square by a disk resulting in the light-blue

square with rounded corners. (b) Erosion of the dark-blue square by a disk resulting in

the light-blue square. (c) Original shape (blue), dilation (green) and erosion (yellow)

by a diamond structuring element. Images in public domain: Keshet [153, 154, 155].

Figure 6.9: Morphological processing to consolidate lip region and remove artefacts.
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1 Pruning spurs

Pruning is used to remove unwanted ‘parasitic’ components. The parasitic

components are branches of a line which are not key to the overall shape of

the line (see Figure 6.10).

Figure 6.10: Example of pruning spurs.

2 Filling holes

The hole filling operation is a special case of the flood-fill which starts at each

hole. A hole is a set of background pixels that cannot be reached by filling in

the background from the edge of the image (see Figure 6.11).

Figure 6.11: Example of hole fill.

3 Majority filter

The majority filter sets a pixel to 1 if the majority of pixels in the 3-by-3

neighbourhood are 1; otherwise, the pixel is set to 0 (see Figure 6.12). The

majority filter is a shape smoother which removes small objects, holes, gaps,

bays and peninsulas (both ‘1’-valued and ‘0’-valued features), but generally

does not change the size of objects or background [156].

Figure 6.12: Example of majority filter.

4 Opening

Morphological opening is erosion followed by dilation, using the same structuring

element. Morphological opening removes regions of an object that cannot

contain the structuring element, smooths the contour of the object, breaks thin

connections and removes thin protrusions [152]. The shape of the structuring
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element in Figure 6.13 is similar to that of a closed mouth, which improves

smoothing of the mouth region.

Figure 6.13: Structuring element for morphological opening.

5 Artefact exclusion

The preceding morphological operations (pruning spurs, filling holes, majority

filter, opening) operate at the level of individual pixels or very small clusters,

and serve to consolidate the regions in the image. However, these operations

do not remove larger artefacts which often result from inconsistencies in skin

colouration (local skin pigmentation, moles, freckles, facial hair, etc.) or

illumination (reflection and shadows). These artefacts have two common

characteristics: the regions are not connected to the main lip region, and the

regions are significantly smaller in size than the main lip region. Artefact

exclusion exploits these characteristics to remove the artefacts. The first step

is to measure the size of all isolated regions in the image, and to determine

the size of the largest connected component. Any region that is smaller than

10 % of the largest region is removed. Figure 6.14 shows the effect of artefact

exclusion: in the upper row, a mole below the mouth creates an artefact which

is excluded; in the lower row, a light covering of facial hair below the mouth

creates an artefact which is excluded.

(a) Original (b) CT (c) Threshold (d) Morph (e) Artefact excl.

Figure 6.14: Example images of morphological artefact removal. In the upper row, a

mole below the mouth creates an artefact which is removed; in the lower row, a light

covering of facial hair below the mouth creates an artefact which is removed.
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6 Clear border

Artefacts that are greater than 10 % of the largest region are not removed by

artefact exclusion. However, these artefacts are often disconnected from the lip

region and come into contact with the border of the rectangular ROI (Region

Of Interest). Therefore, these artefacts can be removed by clearing the border

of the image as shown in Figure 6.15.

(a) Original (b) Colour transform (c) Thresholding (d) Morphological

(e) Artefact exclusion (f) Clear border

Figure 6.15: Example images of morphological border clear.

7 Dilation

The structuring element shown in Figure 6.16 is used to expand or “thicken”

the lip region. The structuring element is designed to enhance the shape of the

lips by emphasising the horizontal width of the mouth and the curves of the

upper lip. Dilation is used to bridge or repair gaps.

Figure 6.16: Structuring element for dilation.

8 Convex hull

In order to obtain the contour of the lip region, the image must contain only

one cohesive region. If more than one region remains after artefact exclusion

and the clear border operation, then the remaining regions must be joined

before the contour can be extracted. The convex hull of a set of points in

two dimensions is the smallest convex region enclosing all points in the set.

Consider a set of nails knocked into a wooden board, where each nail represents

the coordinates of a specific point. The convex hull of the set would be formed

by placing an elastic band around the set of nails [157]. Figure 6.17 shows

the use of the convex hull in joining isolated regions before the lip contour is
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extracted. The colour transform and thresholding operations often segment

the teeth and skin in the same category; therefore, the convex hull can be very

useful in restoring the outer contour of the mouth by grouping together the

lips, teeth and oral cavity.

(a) Original (b) CT (c) Threshold (d) Morph (e) Convex hull

Figure 6.17: Example images of convex hull operation.

9 Filling holes

The preceding morphological operations attempt to consolidate the lip region

and remove artefacts. Hole filling is first performed in stage two of morphological

processing, however morphological opening and dilation may join existing

regions thereby creating new holes. The second hole filling operation is delayed

until the artefacts have been removed.

Figure 6.18 to Figure 6.21 show examples of the full morphological processing

procedure.
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(a) Original (b) Colour transform (c) Thresholding (d) Pruning spurs

(e) Filling holes (f) Majority filter (g) Opening (h) Artefact excl.

(i) Clear border (j) Dilation (k) Convex hull (l) Filling holes

Figure 6.18: Example 1 – all stages in morphological processing.

(a) Original (b) Colour transform (c) Thresholding (d) Pruning spurs

(e) Filling holes (f) Majority filter (g) Opening (h) Artefact excl.

(i) Clear border (j) Dilation (k) Convex hull (l) Filling holes

Figure 6.19: Example 2 – all stages in morphological processing.
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(a) Original (b) Colour transform (c) Thresholding (d) Pruning spurs

(e) Filling holes (f) Majority filter (g) Opening (h) Artefact excl.

(i) Clear border (j) Dilation (k) Convex hull (l) Filling holes

Figure 6.20: Example 3 – all stages in morphological processing.

(a) Original (b) Colour transform (c) Thresholding (d) Pruning spurs

(e) Filling holes (f) Majority filter (g) Opening (h) Artefact excl.

(i) Clear border (j) Dilation (k) Convex hull (l) Filling holes

Figure 6.21: Example 4 – all stages in morphological processing.
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6.3.5 Contour Smoothing

After the morphological processing, the lip contour is extracted from the outer bound-

ary of the lip region. However, the morphological processing does not incorporate

any shape or smoothness constraints, so the resulting segmentation is often rough.

Thus, the lip segmentation algorithm uses cubic splines to smooth the lip contour.

A spline function is a curve constructed from polynomial segments that are subject to

continuity and smoothness conditions at the joints [158]. Given a set of co-ordinates

(x1, y1), (x2, y2), ..., (xn, yn), the object of spline interpolation is to bridge the gap

between adjacent points (xi, yi), (xi+1, yi+1) using a smooth polynomial function that

is piecewise defined:

S(x) =



S1(x) if x1 ≤ x < x2

S2(x) if x2 ≤ x < x3
...

Sn−1(x) if xn−1 ≤ x < xn

(6.4)

In the case of cubic spline interpolation, Si(x) is a third degree polynomial defined

by

Si(x) = ai(x− xi)3 + bi(x− xi)2 + ci(x− xi) + di (6.5)

for i = 1, 2, ..., n− 1

To ensure that the resulting curve is continuous and smooth, three conditions are

imposed at the joints or “knots” between adjacent segments:

1. The adjacent functions Si−1 and Si for i = 2, ..., n− 1 should meet at the point

(xi, yi):

Si−1(xi) = Si(xi) = yi (6.6)

2. The first derivatives of adjacent functions should be equal:

S′i−1(xi) = S′i(xi) (6.7)

3. The second derivatives of adjacent functions should be equal:

S′′i−1(xi) = S′′i (xi) (6.8)
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The interpolating spline is useful in approximating a smooth function that passes

through each data point; however, if the data includes random fluctuations, then it

is necessary to allow the spline to depart from the data points to approximate the

underlying function. The smoothing spline S minimises the spline objective function:

L = λ
n∑
i=1

(yi − Si)2 + (1− λ)

∫ xn

x1

(
S′′(x)

)2
dx (6.9)

where
Si = S(xi)

λ = smoothing parameter, λ ∈ [0, 1]

The first term is simply the mean squared error of using the curve S(x) to predict y.

This quantity measures how closely S(x) adheres to the data points.

In the second term, S′′(x) is the second derivative of S with respect to x, which

measures the curvature of S at x. The sign of S′′(x) indicates whether the curvature

is concave (negative) or convex (positive). If S′′(x) is zero, then the curve is linear

at x. The quantity of interest is the total curvature of S(x), therefore the second

derivative is squared and integrated over the length of the curve.

The parameter λ reflects the relative importance given to the conflicting objectives

of remaining close to the data on the one hand, and of obtaining a smooth curve on

the other hand. At the one extreme, if λ = 0 and only smoothness matters, then

S(x) will become a straight line. At the other extreme, if λ = 1 and closeness to

the data is the only concern, then S(x) will be an interpolating spine which passes

exactly through the data points. Increasing λ will increase the adherence to the data

points, while decreasing λ will increase the smoothness of the curve.

The lip segmentation algorithm uses two cubic smoothing splines to smooth the top

lip contour and the bottom lip contour respectively. To ensure that the top and

bottom smoothing splines meet at the corners of the mouth, it is necessary to weight

the error measure to ensure that the curve passes through these points. The spline

objective function is modified by specifying the weight w of each error measure, as

shown in (6.10). The first and last points correspond to the corners of the mouth,

and thus are assigned a weight 100 times greater than the intervening points.

L = λ
n∑
i=1

wi (yi − Si)2 + (1− λ)

∫ xn

x1

(
S′′(x)

)2
dx (6.10)

where

w = [100, 1, 1, ..., 1, 100]
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Figure 6.22 shows smoothing of the top and bottom lip contours using cubic splines.

For the top lip contour λtop = 0.003, while for the bottom lip contour λbottom = 0.006.

Figure 6.22: Example images of contour smoothing using cubic splines. The top lip

contour is smoothed using a cubic spline with λtop = 0.003, and the bottom lip contour

is smoothed using a cubic spline with λbottom = 0.006. The splines for the top and

bottom lip contours meet at the corners of the mouth.

6.4 Conclusion

The lip segmentation algorithm begins by filtering the pre-cropped mouth region,

and applying luminance correction based on the Michaelis-Menten law. The two best

transforms from the comparison in Chapter 5 (YIQ-Q and MI3) are combined to

enhance the contrast between the lips and the skin. Otsu’s method is used to select

the threshold, followed by morphological processing to consolidate the lip region and

to remove artefacts. Finally, the lip segmentation algorithm uses cubic splines to

smooth the lip contour.
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Chapter 7

Testing and Analysis of

Threshold-based Segmentation

Algorithm

7.1 Introduction

This chapter presents the results and analysis of the lip segmentation algorithm

detailed in Chapter 6. The algorithm is tested on 895 mouth region images from

the AR Face Database, using percentage overlap (OL) and segmentation error (SE)

to quantify performance. The discussion presents examples of both successful and

unsuccessful segmentation results, which leads to an understanding of the strengths

and the weaknesses of the algorithm.

7.2 Dataset

The dataset comprises 895 pre-cropped mouth regions from the AR Face Data-

base [100]. The manual markings for the lips are interpolated using two cubic

smoothing splines (see Section 6.3.5 for details). The interpolated lip contour is used

to generate the binary ground truth as shown in Figure 7.1.
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Figure 7.1: The full-face images from the AR Face Database are pre-cropped to

the rectangular mouth region. The manual markings from Ding & Martinez [101] are

interpolated using cubic smoothing splines to generate the ground truth.
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7.3 Metrics

Wang et al. [159] defined two types of error to quantify the quality of lip segmentation:

Outer Lip Error (OLE) is the number of non-lip pixels classified as lip pixels; and

Inner Lip Error (ILE) is the number of lip-pixels classified as non-lip pixels. Liew

et al. [160] used these error measures to develop two metrics to quantify the overall

lip segmentation accuracy: Percentage Overlap (OL) and Segmentation Error (SE).

OL measures the percentage overlap between the segmented lip region (A) and

the ground truth (AG), as shown in (7.1). Total agreement between the ground

truth (AG) and the segmented region (A) has an overlap of 100 %. SE measures the

segmentation error, and is 0 % for total agreement, as shown in (7.2). Equation (7.3)

and (7.4) show OL and SE in terms of the binary classification metrics (TP, TN, FP,

FN). OL and SE have been widely adopted to quantify lip segmentation accuracy:

Saeed & Dugelay [91], Cheung et al. [99], Guan [121], Cheung et al. [145], Liew et al.

[160], Pan et al. [161], Cheung & Li [162], Chin et al. [163], Saeed [164], Guan [165].

OL =
2× (A ∩AG)

A+AG
× 100 % (7.1)

SE =
OLE + ILE

2× TL
× 100 % (7.2)

where
A = segmented lip region

AG = ground truth

OLE = outer lip error – the number of non-lip pixels classified as lip

pixels

ILE = inner lip error – the number of lip pixels classified as non-lip

pixels

TL = number of lip pixels in the ground truth

OL =
2× TP

TP + TP + FP + FN
× 100 % (7.3)

SE =
FP + FN

2× (TP + FN)
× 100 % (7.4)

where
TP = true positive – number of lip pixels classified as lip pixels

TN = true negative – number of skin pixels classified as skin pixels

FP = false positive – number of skin pixels classified as lip pixels

FN = false negative – number of lip pixels classified as skin pixels
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7.4 Results

The lip segmentation algorithm is tested on the dataset of 895 mouth region images,

and the performance is analysed in terms of percentage overlap (OL) and segmentation

error (SE).

Figure 7.2 shows a histogram of percentage overlap (OL) for all images in the dataset.

The values for OL range from a minimum of 50.46 % to a maximum of 98.05 %. The

percentage of images above 90 % OL is 78.2 %, and only 4.2 % of images fall below

80 % OL. The peak of the histogram is at 96-97 % with 132 images. The mean OL

for all 895 mouth region images is 92.23 %.
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Figure 7.2: Histogram showing percentage overlap (OL) between segmentation result

and ground truth.

Figure 7.3 shows a histogram of the segmentation error (SE) for all images in the

dataset. The values for SE range from a minimum of 1.93 % to a maximum of

69.26 %. The percentage of images below 10 % SE is 81.5 %, and the mean SE for all

895 images is 7.39 %.
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Figure 7.3: Histogram showing segmentation error (SE) between segmentation result

and ground truth.

7.4.1 Discussion

It is difficult to evaluate the success of the lip segmentation algorithm from the

histograms alone. For example, the mean OL is 92.23 % – is this high enough? Or,

the mean SE is 7.39 % – is this acceptable? In order to understand the results and

evaluate the algorithm, it is necessary to examine sample images to determine what

values of OL and SE correspond to acceptable segmentation.

Table 7.1 shows a summary of the OL histogram of Figure 7.2, in which OL has

been grouped into discrete bins. Similarly, Table 7.2 shows a summary of the SE

histogram of Figure 7.3.

Of the 895 images in the dataset, the segmentation algorithm obtained an OL of

95-100 % for 342 images. Figure 7.4 shows several examples of images in the 95-100 %

bin. In these images, the segmentation adheres almost exactly to the contour of the

lips. The examples in this bin include male and female, different skin tones, beards,

and even orthodontic braces. SE for this bin ranges from 1.93-5.13 % with an average

of 3.51 %.

The lip segmentation algorithm achieved an OL of 90-95 % for 360 images. Figure 7.5
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Table 7.1: OL in discrete bins.

OL Range Num % Mean OL (%)

<70 17 1.90 62.93

70-80 21 2.35 76.21

80-90 155 17.32 87.00

90-95 360 40.22 92.77

95-100 342 38.21 96.47

Total 895 100 92.23

Table 7.2: SE in discrete bins.

SE Range N % Mean SE (%)

0-5 352 39.33 3.56

5-10 377 42.12 7.24

10-20 137 15.31 12.77

20-30 21 2.35 24.44

>30 8 0.89 45.83

Total 895 100 7.39

shows several examples of images in the 90-95 % bin. The segmentation appears to

occasionally divert slightly from the contour of the lips, but still remains accurate

to the human eye. The examples again include variation in gender, skin tone, and

facial hair. SE for this bin ranges from 4.82-10.19 % with an average of 7.00 %.

Images with OL above 90 % seem acceptable for lip segmentation applications, which

amounts to 78 % of the 895 images.

Images in the 80-90 % OL bin (Figure 7.6) show more significant deviation from the

lip contour. The algorithm identifies about three quarters of the lip contour, but

deviates substantially in the remaining quarter.
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Figure 7.4: Example images of segmentation with OL above 95 %.

Figure 7.5: Example images of segmentation with OL from 90 % to 95 %.

Figure 7.6: Example images of segmentation with OL from 80 % to 90 %.

Figure 7.7: Example images of segmentation with OL from 70 % to 80 %.



Chapter 7 — Testing and Analysis of Threshold-based Segmentation Algorithm 96

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 7.8: Example images of poor lip segmentation: OL below 70 %.

Only 1.9 % of images have a OL below 70 %. The examples in this bin highlight

some of the shortcomings of the lip segmentation algorithm, which are analysed in

the notes below (see Figure 7.8).

Figure 7.8 (a): Facial hair does not necessarily present a problem, as shown in

Figure 7.4 where the algorithm obtains an accuracy in excess 96 % for some images

with thick facial hair. However, in (a) the moustache causes a problem because it

occludes the top lip contour. This presents a difficult challenge for lip segmentation

as the algorithm cannot segment the lips when they are not visible. One possible

solution is to augment the lip segmentation algorithm with a teeth detection algorithm.

Once the teeth have been identified, the algorithm should ensure that the teeth are

contained within the lips.

Figure 7.8 (b-c): At first glance, the issue with image (b) seems to be the dark,

thick beard. However, upon closer inspection, the algorithm successfully identifies

the upper lip contour, despite the beard. The problem is in fact very low contrast

between the lower lip and the skin just below. The problem is the same in image (c).

Accurate segmentation of the lips in these images is challenging to even a human,

and therefore this case is not of particular concern.

Figure 7.8 (d): In this image, the top lip is extremely thin, and thus the algorithm

only identifies the bottom lip. This case would benefit from a teeth detection

algorithm which ensures that the teeth are contained within the lips.
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Figure 7.8 (e-f): The presence of a light covering of facial hair results in three

peaks on the histogram: lips, skin and facial hair. As a result, Otsu’s method selects

a poor threshold which results in poor segmentation. This type of problem is an

ideal candidate for improvement with ATO (see Chapter 9).

Figure 7.8 (g): A slight amount of moisture on the skin surrounding the lips

coupled with the angle of the light source creates a reflection. As a result, the

histogram is comprised of three peaks (lips, skin and reflection), which results in a

poor threshold selection. This type of problem is another candidate for improvement

with ATO (see Chapter 9).

Figure 7.8 (h): The asymmetry of the expression exposes the teeth on one side of

the mouth, but not the other. The colour transform causes teeth to appear similar

to skin, which breaks the lip contour at the corner of the mouth. The subsequent

morphological and smoothing operations result in the segmentation as shown. This

image would benefit from first identifying and masking the teeth.

Figure 7.8 (i-l): These images are from the neutral or anger expressions. The

segmentation does not appear to be entirely inaccurate, and seems to be significantly

better than other images in the <70 % bin (a-h). In fact, the segmentation appears

to follow the lip contours with reasonable accuracy, and only appears to deviate by

a small number of pixels. To understand this result, it is necessary to consider the

OL and SE metrics shown in equations (7.1) and (7.2). The denominator in SE is

2× TL, where TL is the number of lip pixels in the ground truth. An image with

the mouth wide open will have a large TL value, and thus any slight deviation from

the lip contour will have little effect on SE. In contrast, an image with the mouth

closed will have a small TL value, and thus any slight deviation from the lip contour

will significantly increase SE. Similar logic applies to the OL metric. Thus, images

with a small mouth area will be sensitive to small deviations from the lip contour,

while images with a large mouth area will be insensitive to small deviations from the

lip contour. OL and SE measure the segmentation accuracy for a region, but do not

measure the adherence/deviation from a contour. However, when humans assess the

accuracy of a lip segmentation result, the natural focus is on how well the segmented

contour matches the ground truth contour. This suggests that although the OL

and SE are widely used in the literature to evaluate lip segmentation algorithms,

perhaps it would be better to use metrics that measure adherence/deviation from the

lip contour. In other words, it may be more appropriate to measure the difference

between the segmented contour and the ground truth contour, as opposed to the

difference between the segmented region and the ground truth region.
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7.4.2 Analysis of Expressions

Figure 7.9 and Figure 7.10 show the results for OL and SE for each expression. These

results are summarised in the form of mean OL and mean SE in Table 7.3. Scream

obtained the greatest OL of 95.06 %, followed by smile at 93.22 %. Neutral and

anger obtained the lowest OL of 91.09 % and 89.54 % respectively. It is interesting

to note that the percentage overlap seems to correlate with the degree of mouth

opening: in the scream expression, the mouth is wide open (95.06 %); in the smile

expression, the mouth is moderately open (93.22 %); in the neutral expression, the

mouth is closed (91.09 %); and, in the anger expression, the mouth is tightly closed

(89.54 %). There are two main factors which contribute to higher overlap and lower

segmentation error when the mouth is open.

Table 7.3: Results for OL and SE for each expression.

Expression Mean OL (%) Mean SE (%) No. Images

1 Scream 95.06 4.91 224

2 Smile 93.22 6.95 224

3 Neutral 91.09 8.24 223

4 Anger 89.54 9.44 224

Total 92.23 7.39 895

The first factor is the size of the mouth in each expression. When the mouth is wide

open, as in the scream expression, the area of the mouth occupies close to 50 % of the

rectangular mouth region; when the mouth is closed, the area of the mouth occupies

less than 20 % of the rectangular mouth region. Otsu’s method is used to threshold

the image, which performs best on bimodal histograms having two distinct peaks

(see Section 6.3.3). An image with 50 % object and 50 % background is more likely

to have two distinct peaks than an image with 20 % object and 80 % background;

therefore, Otsu’s method performs better on open mouth histograms.

The second factor contributing to better performance when the mouth is open is the

visibility of the lips in each expression. In the neutral expression, the mouth is closed

and the lips are lightly pressed together, which causes part of the lip surface to be

occluded by the other lip. Less surface area of lips is visible, and as a result, it is

more difficult to identify and segment the lips. The expression for anger is typically

formed by frowning with the eyebrows and clamping the lips tightly together, which

results in even less visible lip area and further decreases the segmentation accuracy.
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Figure 7.9: Histogram showing percentage overlap (OL) by expression.
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Figure 7.10: Histogram showing segmentation error (SE) by expression.
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However, when the mouth is moderately open as in the smile expression, or wide

open as in the scream expression, more of the lip surface is visible resulting in better

segmentation of the lips.

7.5 Conclusion

The lip segmentation algorithm was tested on 895 mouth region images from the

AR Face Database, using percentage overlap (OL) and segmentation error (SE) to

quantify performance. The mean OL was 92.23 % and the mean SE was 7.39 %.

Of the 895 images in the dataset, 78 % obtained an OL above 90 %, which seems

acceptable for lip segmentation applications. The images in this bin include variation

in gender, skin tone, and facial hair. Only 1.90 % of images obtained an OL below

70 %.

The following scenarios presented a challenge to the algorithm:

• facial hair obscuring the lips

• low contrast between the lips and skin

• thin lips

• light covering of facial hair causing poor threshold selection

• reflections caused by moisture on the skin

Several images from the neutral or anger expression appear to follow the lip contours

with reasonable accuracy, however perform poorly according to the OL metric. This

result is explained by considering the sensitivity of OL and SE to the size of the lip

area. Although widely used in lip segmentation literature, OL and SE metrics are

region-based metrics and may not be ideal for quantifying lip segmentation accuracy

where the focus is on adherence/deviation from a contour.
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Chapter 8

The Challenge of Threshold Selection

8.1 Introduction

Threshold-based segmentation methods provide a simple and efficient way to im-

plement lip segmentation. However, automatic computation of robust thresholds

presents a major challenge [103]. Fixed thresholds cannot be generalised due to

variability in speaker appearance and lighting conditions, hence the threshold para-

meters must be calibrated for the specific speaker and environment. Furthermore,

even after the initial calibration, appearance of the teeth, tongue, and oral cavity

during movement of the mouth can significantly alter the image histogram and affect

the threshold parameters.

The base algorithm described in Chapter 6 represents a typical threshold-based lip

segmentation algorithm, and incorporates preprocessing, colour transform, threshold-

ing, morphological processing, and contour smoothing. The default threshold in

the base algorithm is selected using Otsu’s method, which chooses the threshold to

minimise the intraclass variance of black and white pixels [125]. Otsu’s method is

effective when the histogram is comprised of two compact and distinct peaks, one for

lip pixels and one for skin pixels. However, Otsu’s method may not select an adequate

threshold in cases where the lip and skin components overlap considerably, or where

the histogram includes additional peaks caused by facial hair, skin colouration, and

illumination artefacts.

The base algorithm is analysed in Chapter 7, and results show that the algorithm

performs well on 78 % of images obtaining OL above 90 %. However, the segmentation

produced by the base algorithm on the remaining 22 % falls below the desired accuracy.
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The images in this 22 % generally comprise more challenging scenarios including

facial hair, low lip-skin contrast, shadows, and reflections.

This chapter illustrates the challenge of threshold selection by analysing two examples

where Otsu’s method fails to select a suitable threshold. Thereafter, this chapter

quantifies the improvement in segmentation accuracy that can be obtained by

adjusting the threshold value.

8.2 Qualitative Examples

To illustrate some of the challenges of threshold selection, two segmentation examples

are discussed below, using Otsu’s threshold as the starting point.

Example 1

Figure 8.1 presents the first segmentation example using Otsu’s method to select the

threshold, which leads to poor lip segmentation. The figure contains the following

subfigures: (a) original image; (b) intensity image after colour transform; (c) binary

image after applying Otsu’s threshold; (d) histogram of the intensity image; (e)

decomposed histogram. The decomposed histogram is created by first classifying

pixels as either mouth or skin according to the ground truth. Separate histograms

are then computed for mouth and skin pixels. Note the different scales on the left

and right y-axes.

The histogram in 8.1(d) contains two clear peaks at 0.1 and 0.35 respectively, with a

moderate roll-off from 0.4 to 0.8. Otsu’s method selects the threshold at 0.3, partway

up the second peak. Considering only the shape of histogram 8.1(d), intuitively it

seems preferable to select the threshold at the trough between the two peaks. In

other words, it appears that the threshold selected by Otsu is too high, and should

be decreased.

Subfigure 8.1(e) shows the histogram decomposed into mouth and skin components.

By analysing the decomposed histogram in 8.1(e) relative to the intensity image in

8.1(b), the mouth pixels can be broken down further into lips, tongue, and teeth.

It can be seen from the decomposed histogram in 8.1(e) that the ideal threshold

to segment the lips and skin would then be around 0.4. Subfigure 8.1(c) shows the

binary image after applying Otsu’s threshold. The high number of false positive lip
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(a) Original (b) Colour transform (c) Otsu threshold
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Figure 8.1: Example 1 – shortcomings of thresholding using Otsu’s method. Otsu’s

threshold is too low, which results in a high number of skin pixels classified erroneously

as lip pixels.

pixels indicates that the threshold is too lenient, and substantiates the assertion that

the threshold needs to be increased.

Considering only the shape of histogram 8.1(d), it initially seems logical to select the

threshold between the two peaks; however, after analysing the decomposed histogram

in 8.1(e) it becomes clear that the threshold should actually be increased. This

example highlights the issue that in certain cases it is very difficult to compute a

suitable threshold considering only the histogram.

Example 2

Figure 8.2 presents the second example using Otsu’s method to select the threshold,

which results in poor lip segmentation. The lips in 8.2(a) are surrounded by a dark,

thick beard, and only a small area of skin is visible in the ROI. The histogram in

8.2(d) comprises one broad peak from 0 to 0.2. Otsu’s method selects the threshold

at 0.2, separating the broad peak from the roll-off. Considering only the shape of
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the histogram in 8.2(d), it is difficult to comment on whether Otsu’s threshold will

produce a reasonable segmentation.

The decomposed histogram in 8.2(e) shows that Otsu’s threshold excludes a significant

number of lip pixels, and as a result, the entire bottom lip is classified as skin. The

binary image after Otsu’s threshold in 8.2(c) contains a high number of false negative

lip pixels. In this case Otsu’s threshold is too stringent, and should be decreased to

produce better lip segmentation.

(a) Original (b) Colour transform (c) Otsu threshold
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Figure 8.2: Example 2 – shortcomings of thresholding using Otsu’s method. Otsu’s

threshold is too high, which results in a high number of lip pixels classified erroneously

as skin pixels.

The two examples illustrate some of the challenges of threshold selection. In certain

cases it is very difficult to manually select an appropriate threshold, which implies

that it is even more difficult to find an automatic method for this task (e.g. Otsu’s

method). However, it is clear from the examples above that the problem is not

necessarily with the segmentation algorithm itself, and that simply adjusting the

threshold value may produce accurate segmentation.
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8.3 Quantifying the Improvement that can be Achieved

by Optimising the Threshold

In threshold-based lip segmentation, such as the base algorithm of Chapter 6, the

threshold value is usually the most sensitive parameter. In cases where the algorithm

produces poor segmentation results, a slight adjustment of the threshold value may

result in significantly better segmentation. This section quantifies the improvement

that can be achieved by adjusting the threshold. In other words, this section compares

the segmentation accuracy obtained when using Otsu’s threshold to segment an

image, versus the segmentation accuracy obtained using the optimal threshold. The

algorithm itself remains unchanged, and only the threshold value is altered.

Equations (8.1) and (8.2) define the absolute and relative improvement, applicable

to OL and SE defined in Section 7.3. In this section, Vreference is the value obtained

using Otsu’s threshold, and V is the value obtained using the optimal threshold. The

unit of measurement for absolute improvement between two percentages is percentage

point (pp), while the unit of measurement for relative improvement is percent (%).

absolute improvement = V − Vreference (8.1)

relative improvement =
V − Vreference
Vreference

(8.2)

8.3.1 Method to Determine the Optimal Threshold

In order to quantify the improvement that can be achieved by adjusting the threshold,

it is necessary to first determine the optimal threshold for an image. The optimal

threshold is the value that results in the best segmentation accuracy. In order to

obtain this value, a linear threshold search is performed for the base algorithm.

The threshold is incremented in steps of 0.01 from an initial value of 0 to a final

value of 1. Setting the threshold value to 0 results in the all pixels in the ROI

classified as lip pixels, while setting the threshold value to 1 results in the all the

pixels classified as skin pixels. Setting the threshold value between 0 and 1 results in

lip-skin segmentation with varying degrees of accuracy.

Figure 8.3 presents two examples of the linear search for the optimal threshold value.

In Example 1, Subfigure 8.3(a) shows the segmentation error (SE) as a function of

the threshold value. Below a threshold value of 0.11, all the pixels are classified as
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lip pixels, and as a result the SE remains constant at the maximum 133 %. From

0.11 to the minimum value at 0.52 the SE decreases, thereafter the SE increases

until 0.85 from where it remains constant. At the default threshold of 0.31, the SE

is 44.8 %. The minimum SE is 6.09 % at a threshold of 0.52, which is the optimal

threshold. The absolute improvement between the default threshold and the optimal

threshold is 38.7 pp, and the relative improvement is 86 %.

Subfigure 8.3(b) shows the percentage overlap (OL) as a function of threshold. The

pattern is inverse to that of the SE curve, with the optimal threshold occurring again

at 0.52. Subfigure 8.3(c) shows the segmentation produced by the base algorithm

using the default threshold, while 8.3(d) shows the segmentation at the optimal

threshold.

Example 2 is shown in (e – h). The SE and OL curves follow a similar trend to

Example 1, and the optimal threshold occurs at 0.25. The absolute improvement

in SE between the default threshold and the optimal threshold is 6.7 pp, and the

relative improvement is 69.1 %.

8.3.2 Quantifying the Accuracy Limit of the Base Algorithm

The accuracy limit of the base algorithm can be obtained by evaluating the segment-

ation accuracy at the optimal threshold. This represents the maximum accuracy

that can be achieved by manipulating the threshold, without changing the algorithm

itself.

To quantify the potential for improvement, it is necessary to compare the performance

of the base algorithm using the default threshold (Otsu) against the performance

using the optimal threshold. The overall results of this comparison on the 895 AR

Face images are presented in Table 8.1. The maximum accuracy limit of the base

algorithm is shown under the optimal threshold : SE 4.75 % and OL 95.2 %. SE at

the optimal threshold reflects a 2.64 pp absolute improvement and 35.8 % relative

improvement over the default threshold. In terms of OL, the optimal threshold

results in a 3.00 pp absolute improvement and 3.25 % relative improvement.

Figure 8.4 shows the cumulative distribution function (CDF) comparing the default

threshold and the optimal threshold. In 8.4(a), the cumulative number of images is

plotted against SE. A perfect segmentation algorithm would produce a curve that

runs along the y-axis at SE = 0%. The optimal curve shows the maximum accuracy

that can be achieved by manipulating the threshold; any further improvement would
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Example 1: Threshold Search
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Example 2: Threshold Search
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Figure 8.3: Linear threshold search to find the optimal values for Example 1 (a – d)

and Example 2 (e – h). The optimal threshold corresponds to the minimum SE value,

or the maximum OL value. Subfigures (c) and (g) show the segmentation produced by

the base algorithm using the default threshold, while (d) and (h) show the segmentation

at the optimal threshold.
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Table 8.1: Comparing the performance of the base algorithm using the default

threshold versus the optimal threshold. The segmentation error (SE) and percentage

overlap (OL) reflect the mean values across 895 AR Face images.

Default

threshold (%)

Optimal

threshold (%)

Improvement

absolute (pp)

Improvement

relative (%)

SE 7.39 4.75 2.64 35.8

OL 92.2 95.2 3.00 3.25

require changing the actual algorithm. Considering the optimal threshold, 67 % of

segmentations obtain SE below 5 %, and 96 % of segmentations obtain SE below

10 %. By comparison, with the default threshold only 39 % of images obtain SE

below 5 %, and 81 % of segmentations obtain SE below 10 %.

In terms of OL shown in Figure 8.4(b), a perfect segmentation algorithm would

produce a curve that runs parallel to the y-axis at OL = 100%. The default threshold

produces 22 % of segmentations with OL below 90 %, while the optimal threshold

produces just 4.4 % of segmentations below 90 %.
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Figure 8.4: Cumulative distribution function (CDF) comparing the default threshold

versus the optimal threshold.

Figure 8.5 shows a breakdown of the improvement between the default threshold and

the optimal threshold. The relative improvement in SE is shown in 8.5(b). Half of

the segmentations improve moderately by 0 – 20 %, while 37 % of the segmentations

improve substantially by 20 – 40 %. In cases where the Otsu’s method selected a

particularly poor threshold value, the segmentation improved by over 60 %, which

occurred in 10 % of images.
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In a small number of images, the optimal threshold actually produced slightly worse

segmentation than the default threshold. The reason for this is that the linear

threshold search is incremented in steps of 0.01, whereas Otsu’s method operates on

a continuous range. As an example, consider a case where Otsu’s method selects a

very good threshold, say 0.034, resulting in SE of 3.6 %. The linear threshold search

only searches the threshold values 0.03 and 0.04 which may result in slightly less

accurate segmentation.
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Figure 8.5: Histograms of improvement in segmentation accuracy between the default

threshold (Otsu) and the optimal threshold obtained from the linear threshold search.

8.4 Conclusion

In the field of image segmentation, poor segmentation accuracy indicates a shortcom-

ing of the algorithm. In the case of threshold-based segmentation, the problem may

reside in the general approach of the algorithm, or the problem may be specifically

in the method of threshold selection.
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The base algorithm described in Chapter 6 is investigated from both qualitative

and quantitative perspectives, to determine the potential impact of improving the

threshold selection method.

The quantitative analysis reports that the accuracy limit of the base algorithm with

the optimal threshold is SE 4.75 %, which represents a 35.8 % relative improvement

over the default threshold. It is clear from this analysis that the segmentation

produced by the base algorithm can be improved significantly by implementing a

better threshold selection technique.
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Chapter 9

Adaptive Threshold Optimisation

(ATO) Algorithm

9.1 Introduction

Threshold-based segmentation methods provide a simple and efficient way to im-

plement lip segmentation. However, automatic computation of robust thresholds

presents a major challenge. Chapter 8 describes the challenge of threshold selection,

and concludes that the base algorithm from Chapter 6 can be improved by up to

25 % relative SE.

This chapter describes an adaptive algorithm for selecting the histogram threshold,

based on feedback of shape information. The algorithm reduces unnecessary overhead

by first comparing the initial segmentation to a reference lip shape model to decide if

optimisation is required (‘validation stage’). In cases where optimisation is required,

the algorithm iteratively adjusts the threshold to reduce the segmentation error

(‘optimisation stage’). This novel technique for threshold selection is referred to as

Adaptive Threshold Optimisation (ATO).

The dataset to train and test ATO comprises 895 images from the AR Face Database

[100], which includes 112 different subjects. The 112 subjects are randomly divided

into two groups: 60 % in the training group, and 40 % in the test group. The training

dataset comprises 544 images from the subjects in the training group, and the test

dataset comprises 351 images from the subjects in the test group. The training

dataset is used to build the lip shape model (LSM) in this chapter, and the test

dataset is used to conduct the three tests in Chapter 10.
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The sections that follow detail the components of ATO including construction of the

lip shape model (LSM), the validation stage, and the optimisation stage.

9.2 Algorithm Overview

At a high-level, the algorithm consists of two components: the base algorithm

which represents a typical threshold-based segmentation algorithm; and the adaptive

threshold optimisation (ATO) algorithm. Figure 9.1 presents an overview of the

base algorithm and the ATO algorithm shown in the shaded blocks. ATO is not

a standalone segmentation algorithm; rather it is designed to augment an existing

threshold-based algorithm. ATO aims to improve the segmentation of the base

algorithm by optimising the threshold parameter.

Figure 9.1: Block diagram of the base algorithm with adaptive threshold optimisation

(ATO) shown in the shaded blocks.

The threshold-based segmentation algorithm described in Chapter 6 is used as the

base algorithm in this research. The base algorithm from Chapter 6 comprises the

following components: colour transform, thresholding, morphological processing,

and contour smoothing. The base algorithm uses Otsu’s method [125] to select the

default threshold value.

It is important to note that ATO does not depend on the specific make-up of the base

algorithm, or the method of computing the default threshold. The base algorithm

from Chapter 6 may be replaced by various different threshold-based algorithms, for

example: Coianiz et al. [105], Wark et al. [132], Chiou & Hwang [133] or Zhang &

Mersereau [109].
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The principle of ATO is to use feedback of shape information to drive selection of

the threshold (see Figure 9.1). ATO incorporates shape information by constructing

a lip shape model (LSM) from the training images.

In simple cases, the segmentation produced by the base algorithm using the default

threshold is adequate, and it is not necessary to optimise the threshold. Therefore,

to preserve the overall efficiency, ATO first determines whether or not the initial

segmentation is satisfactory in the validation stage. Only if the initial segmentation

is deemed unsatisfactory, then ATO proceeds to recompute the threshold in the

optimisation stage.

The validation stage uses the LSM to infer the segmentation error, then determines

whether to accept or reject the segmentation. If the segmentation is rejected, then

the optimisation stage iteratively adjusts the threshold value to minimise the inferred

error.

9.3 Lip Shape Model (LSM)

Figure 9.2 shows the procedure to construct a lip shape model (LSM) from the training

dataset. Samples of both good and bad segmentation from the base algorithm are

combined with the ground truth images to create the discriminant dataset. The

discriminant dataset is used to train a regression SVM model to estimate the

segmentation error. The parameters of the SVM model are optimised using a grid

search approach with cross validation.

Since the LSM is trained from samples produced by the base algorithm, the resulting

model effectively characterises the segmentation errors of the underlying algorithm.

If a different base algorithm is chosen, then it is necessary to train a new LSM.

The subsections that follow explain the process to construct the LSM in more detail.
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Figure 9.2: Process to construct the lip shape model (LSM) using ground truth images

and output from the base algorithm. Samples of both good and bad segmentation

from the base algorithm are combined with the ground truth images to create the

discriminant dataset. The discriminant dataset is used to train a regression SVM model

to estimate the segmentation error.

9.3.1 Discriminant Dataset

The 544 images from the training dataset are used to generate three subsets which

comprise the discriminant dataset:

1. Ground truth images (SE = 0%)

2. Samples of good segmentation from the base algorithm (SE < 5%)

3. Samples of bad segmentation from the base algorithm (SE > 12.5%)

The good and bad samples are generated by varying the threshold of the base

algorithm to produce output with a range of segmentation errors. For example,

applying four different thresholds to the same image (e.g. 0.1, 0.25, 0.8, 0.9), will

result in four different segmentations, with different segmentation errors (e.g. 21 %,

15 %, 5.5 %, 14 %). Using this approach, the discriminant dataset is expanded to

three times larger than the training dataset.

The output of the base algorithm is classified as ‘good’ if the segmentation error is

below 5 %, and ‘bad’ if the segmentation error is above 12.5 %. To create a clear

distinction between good and bad, output with segmentation error from 5 % to 12.5 %

is not included in the discriminant dataset. Table 9.1 shows a breakdown of the

discriminant dataset by segmentation error. Ground truth and good segmentation

together make up 27 % of the discriminant dataset, while bad segmentation accounts
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for the remaining 73 %.

Table 9.1: Breakdown of discriminant dataset by SE.

SE Number Subtotal

Ground Truth 0 447 447

Good 0-2.5 49

2.5-5 290 339

Bad 12.5-15 414

15-20 441

20-25 429

25-30 427

30-35 423 2134

2920 2920

Figure 9.3 shows examples from the discriminant dataset including ground truth,

good, and bad segmentation. The threshold (TH) used to generate the segmentation

is shown along with the corresponding segmentation error (SE). The left column of

bad examples shows segmentation produced with a lenient threshold, resulting in a

high number of false positive lip pixels. The right column of bad examples shows

segmentation produced with a strict threshold, resulting in a high number of false

negative lip pixels.
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Ground Truth Good Bad

(lenient threshold)

Bad

(strict threshold)

TH=0.3 SE=1.8 % TH=0.13 SE=22 % TH=0.61 SE=17 %

TH=0.3 SE=3.0 % TH=0.14 SE=86 % TH=0.43 SE=18 %

TH=0.35 SE=3.8 % TH=0.28 SE=22 % TH=0.49 SE=13 %

Figure 9.3: Segmentation examples from the discriminant dataset, which comprises

three subsets: ground truth, good, and bad. The good and bad samples are generated by

varying the threshold (TH) of the base algorithm to produce output with a range of

segmentation errors (SE).

9.3.2 Feature Extraction

The output of the base algorithm is a binary image containing the lip region and the

skin region. The feature vector for the lip shape model comprises fourteen geometric

features shown in Table 9.2. The metrics relating to size and distance are dependant

on the physical characteristics of the subject (e.g. size of mouth), the proximity to

the camera, and the zoom of the camera; therefore, it is necessary to normalise these

measures relative to the mouth region of interest (ROI). Table 9.2 shows the fourteen

features and the reference quantities used to normalise the features. For example,

the area of the lips is measured relative to the area of the ROI. The feature vector is

standardised (centred and scaled) by calculating the z-score shown in (9.1).

z =
x− µ
σ

(9.1)

where
x = raw score

µ = mean of the population

σ = standard deviation of the population
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Table 9.2: Feature vector for lip shape model.

No. Feature Reference

1 Area ROI area

2 Perimeter ROI perimeter

3 Centroid X ROI width

4 Centroid Y ROI height

5 Major axis length ROI diagonal

6 Minor axis length ROI diagonal

7 Eccentricity

8 Orientation

9 Bounding box X ROI width

10 Bounding box Y ROI height

11 Width ROI width

12 Height ROI height

13 Distance transform mean ROI diagonal

14 Distance transform std dev ROI diagonal

9.3.3 LDA Dimensionality Reduction

Linear discriminant analysis (LDA) is a statistical method to find a linear combination

of features that characterises or separates two or more classes. The objective of

LDA is to perform dimensionality reduction while preserving as much of the class

discriminatory information as possible.

In building the lip shape model, LDA is used to find the eigenvectors that separate

the three subsets in the discriminant dataset – ground truth, good, and bad. Since

there are three classes (N = 3), LDA returns two eigenvectors (N − 1 = 2).

Table 9.3 shows the two eigenvectors obtained from LDA. Eigenvector 1 accounts for

94.8 % of the discriminating power, while Eigenvector 2 only accounts for 5.2 % of

the discriminating power.

The features in Table 9.3 are ranked according to the absolute value of Eigenvector 1.

Top ranked features exhibit the greatest distinguishing power, while lower ranked

features are less effective in discriminating between good and bad segmentation. Two

features dominate the distinguishing power of Eigenvector 1: distance mean and

perimeter.
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Table 9.3: Linear discriminant analysis (LDA) eigenvectors and eigenvalues with the

features ranked by absolute value of Eigenvector 1.

No. Feature Eigenvector 1 Eigenvector 2

1 Distance Mean -4.498 -0.130

2 Perimeter -3.552 1.104

3 Location X -1.374 -3.823

4 Height -1.338 0.099

5 Width -1.308 -3.709

6 Distance Std 1.164 0.112

7 Minor Axis 1.135 -1.185

8 Major Axis 0.860 -0.293

9 Location Y 0.526 0.435

10 Area 0.451 0.164

11 Centroid Y -0.401 -0.179

12 Centroid X 0.381 0.767

13 Orientation 0.028 0.196

14 Eccentricity -0.025 0.085

Eigenvalue 1.88 0.103

Eigenvalue percent 94.8 % 5.2 %

Figure 9.4 shows examples of the perimeter and distance mean features. The distance

transform is shown in the intensity images, which measures the euclidean distance

between each pixel and the nearest nonzero pixel in a binary image. Pixels within

the segmentation boundary have zero distance (blue), while pixels further from the

boundary have increasing distance (red). As the perimeter of the region increases,

the corresponding distance mean tends to decrease. Bad segmentation with a lenient

threshold is characterised by high perimeter and low distance mean, while bad

segmentation with a strict threshold is the inverse, low perimeter and high distance

mean. Good segmentation tends to be somewhere in-between.

In Table 9.3, distance mean is ranked first, having a weight of −4.5 in Eigenvector 1.

The magnitude of distance mean is the largest of the fourteen features, which indicates

that this feature contains the greatest discriminating power. The negative weighting

of distance mean implies that images in the bad subset have a high value of distance

mean, while images in the good subset have a low value of distance mean.

Perimeter is ranked second, having a weight of −3.5 in Eigenvector 1. The negative

weighting of perimeter indicates that large perimeter corresponds to bad segmentation,
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Ground Truth Good Bad

(lenient threshold)

Bad

(strict threshold)

Perimeter

Distance Mean

0.526

0.066

0.630

0.044

0.421

0.103

Perimeter

Distance Mean

0.414

0.105

0.559

0.064

0.363

0.124

Perimeter

Distance Mean

0.498

0.074

0.722

0.061

0.455

0.096

Figure 9.4: Examples of the Perimeter and Distance Mean features, which dominate

the distinguishing power of Eigenvector 1. The distance transform is shown in the

intensity images, which measures the euclidean distance between each pixel and the

nearest nonzero pixel in a binary image. The Distance Mean and Perimeter for each

segmentation is shown below the image, and the corresponding threshold (TH) and

segmentation error (SE) can be found in Figure 9.3.

while small perimeter corresponds to good segmentation.

Figure 9.5 shows the training images projected in the two-dimensional plane com-

prising LDA Eigenvector 1 and LDA Eigenvector 2. In (a) the feature vectors are

coloured by subset, and in (b) the feature vectors are coloured by segmentation

error (SE). The discriminating power of Eigenvector 1 can be seen clearly as ground

truth and good segmentation tend to have high values of Eigenvector 1, while bad

segmentation tends to have low values of Eigenvector 1. Figure 9.5(b) shows the

trend in segmentation error (SE) – as Eigenvector 1 increases the segmentation error

decreases.
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Figure 9.5: Scatter plot of feature vectors from training dataset after LDA to reduce

dimensionality. In (a) the feature vectors are coloured by subset, and in (b) the feature

vectors are coloured by segmentation error (SE).

9.3.4 ε-Support Vector Regression (ε-SVR)

The LSM uses ε-Support Vector Regression (ε-SVR) to fit a model which approximates

the relation between the shape features and the corresponding segmentation error (SE).

Once the model has been trained, the shape features of an unknown region can then

be used to infer the segmentation error.

The fundamental principles of ε-SVR are reviewed in this section, and the reader is

referred to [166] for a comprehensive tutorial on support vector regression.

Basic Principles of ε-SVR

Consider a set of training points, (x1, y1), (x2,y2), ..., (xm, ym), where xi ∈ Rn is a

feature vector and yi ∈ R1 is the target output. In the case of the lip shape model,

xi is the reduced two-dimensional feature vector (n = 2), and yi is the corresponding

segmentation error.

In ε-SVR [167], the goal is to find a function f(x) that satisfies two objectives:

1. The deviation of f(x) from the actually obtained targets yi must be less than

ε for all training data

2. The function f(x) must be as flat as possible
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For the case of linear functions f(x) = 〈w,x〉+ b, the objectives can be written as a

convex optimisation problem where 〈·, ·〉 denotes the dot product:

minimise
w,b

1
2‖w‖

2

subject to

{
yi − 〈w,xi〉 − b ≤ ε
〈w,xi〉+ b− yi ≤ ε

(9.2)

where ε > 0 is a predefined constant which controls the noise tolerance. Minimising

the norm ‖w‖2 = 〈w,w〉 ensures the flatness of f(x).

Equation (9.2) assumes that the optimisation problem is feasible, in other words, that

such a function f actually exists that approximates all pairs (xi, yi) with precision

ε. In some cases, this assumption does not hold, and no function f exists that

satisfies the ε precision constraint. It may be beneficial to allow for some errors

whereby creating a ‘soft margin’ loss function [168], which was used in support vector

machines by Cortes & Vapnik [169]. The error is introduced by way of slack variables

ξi, ξ
∗
i to arrive at the standard form of support vector regression [167]:

minimise
w,b,ξ,ξ∗

1
2‖w‖

2 + C

m∑
i=1

(ξi + ξ∗i )

subject to


yi − 〈w,xi〉 − b ≤ ε+ ξi

〈w,xi〉+ b− yi ≤ ε+ ξ∗i

ξi, ξ
∗
i ≥ 0, for i = 1, 2, ...,m

(9.3)

The constraint C > 0 determines the trade-off between flatness of f and the tolerance

of deviations larger that ε. Larger values of C favour minimising the error, at the

expense of a more complex model. Smaller values of C favour a more flat model, at

the expense of larger error.

Figure 9.6 is a graphical representation of (9.3). Points within the shaded region

±ε do not contribute to the cost, while points outside the region are penalised in a

linear fashion.

In most cases the optimisation problem 9.3 can be solved more easily in its dual

formulation. Furthermore, the dual formulation facilitates extending the support

vector machine to non linear functions. The reader is referred to [166] for more

details on the dual problem and quadratic programs.
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Figure 9.6: Graphical representation of Eq (9.3) soft margin for support vector

regression [170], with ε-insensitive loss function [167].

Kernel Selection

The radial basis function (RBF) kernel, also known as the Gaussian kernel, is used

in the lip shape model. The RBF kernel nonlinearly maps samples into a higher

dimensional space, which enables the kernel to handle cases where the relation

between the features and the target is nonlinear. The RBF kernel is shown in (9.4).

K(xi,xj) = e−γ‖xi−xj‖2 (9.4)

where

γ = 1/2σ2

‖xi − xj‖2 is the squared Euclidean distance between the support vector xi and the

data point xj. The support vector xi is the centre of the RBF, and γ determines the

area of influence of the support vector over the feature space. For small values of γ,

the area of influence is large, which results in a smooth decision surface with fewer

support vectors. For large values of γ, the area of influence is small, which results in

a more complex model.

Applying ε-SVR to Training Data

The ε-SVR model is trained with the 2D reduced feature vectors xi and corresponding

segmentation error yi. The LIBSVM library is used to implement ε-SVR [162].

Figure 9.7 shows an example of the training data and the resulting ε-SVR model.
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The model is dependant of the selection of two parameters: C which controls the

trade-off between flatness and tolerance of deviations, and γ which controls the

influence of the support vectors. Selection of the parameters C and γ is discussed in

Section 9.3.5.
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(b) ε-SVR model

Figure 9.7: ε-SVR model trained from 2D reduced feature vectors xi and corresponding

segmentation error yi. Figure (a) shows a scatter plot of the training data, and Figure (b)

shows the ε-SVR model. The model is dependant on selection of two parameters: C

which controls the flatness of the model, and γ which controls the support vector

influence in the kernel.

9.3.5 SVM Parameter Selection

The ε-SVR model is dependant two parameters: C from (9.3) which controls the

trade-off between flatness and tolerance of deviations larger that ε; and the kernel

parameter γ from (9.4) which controls the influence of the support vectors. The goal

is to select (C, γ) such that the model can accurately predict the lip segmentation

error of an unknown region.

In order to prevent overfitting the model to the training data, k-fold cross-validation

is used whereby the training set is divided into k subsets of equal size. Sequentially,

the model is trained on k − 1 subsets, and tested on the remaining one subset. The

mean squared error (MSE) is calculated from model performance on the test subsets.

The value of k is set to 10.

The grid search technique is used to tune the values of C and γ. The motivation for

using the grid-search approach is two-fold. First, the grid search approach increases

the researcher’s confidence that the input space has been adequately covered [171].
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Second, the grid search approach does not require significantly more computational

power than more advance methods since there are only two parameters [171].

Since a complete grid search can be time consuming, the grid search starts with a

coarse grid which is then narrowed to find the best (C, γ). Furthermore, to cover a

larger input space, the values C and γ are tried in an exponentially growing sequence:

C = 2−15, 2−14, ..., 214, 215

γ = 2−15, 2−14, ..., 214, 215

Figure 9.8 shows the results of the grid search starting with the coarse grid, progressing

to the medium grid, and ending with the fine grid. For each pair (C, γ) the value of

log10(MSE) is plotted on an intensity scale where the maximum of log10(MSE) is

red, and the minimum of log10(MSE) is blue. The intensity bar is rescaled to the

range of values in the corresponding grid. The white asterisk * shows the minimum

MSE at each scale. In the fine grid search, the minimum log10(MSE) = 1.587 i.e.

MSE = 38.65. The minimum MSE occurs at:

log2(C) = 1 i.e. C = 2

log2(γ) = −2 i.e. γ = 0.25

9.3.6 Final Lip Shape Model

The final lip shape model (LSM) is trained using ε-SVR with the parameters C = 2

and γ = 0.25. The final LSM is shown in Figure 9.9. The model infers the lip

segmentation error (SE) of an unknown region from the reduced feature vector of

the region.
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Figure 9.8: Grid search for ε-SVR parameters C and γ starting with the coarse grid,

progressing to the medium grid, and ending with the fine grid. For each pair (C, γ) the

value of log10(MSE) is plotted on an intensity scale where the maximum log10(MSE)

is red, and the minimum log10(MSE) is blue. The intensity bar is rescaled to the range

of values in the corresponding grid. The white asterisk * shows the minimum MSE at

each scale.
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Figure 9.9: Final lip shape model (LSM) trained using ε-SVR. The model infers the

lip segmentation error (SE) of an unknown region from the shape features of the region.
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9.4 Validation Stage

The objective of the validation stage is to determine whether the output from the

base algorithm represents an acceptable lip segmentation. The validation stage uses

the shape model to infer the SE of the candidate lip region. If the inferred SE is

below the SE boundary, then the candidate region is accepted and becomes the final

segmentation. If the inferred SE is above the SE boundary, then the candidate region

is rejected, and ATO proceeds to the optimisation stage.

The value of the SE boundary is subject to the trade-off between segmentation

accuracy and processing time. If the candidate region fails validation then the

threshold is optimised to improve segmentation accuracy, however the optimisation

process is computationally expensive. Selecting a low SE boundary results in a high

number of images that are optimised, while selecting a high SE boundary results in

a low number of images that are optimised.

In order to select the SE boundary, it is useful to consider the number of images

from the training dataset that would require optimisation. After segmentation by

the base algorithm, the LSM is used to infer the SE from the candidate region. In

Figure 9.10 the x-axis represents the SE inferred from the LSM, and ranges from

−0.5 % to 31 %. The blue histogram (left y-axis) shows the probability distribution

of the inferred SE. The peak of the probability distribution is at 0–2.5 % SE which

accounts for 20 % of the images.

The orange line plot (right y-axis) in Figure 9.10 shows the cumulative distribution

function (CDF) starting from −31% and ending at −0.5%. The inferred SE is above

5 % for 64 % of images, and the inferred SE is above 10 % for 43 % of images. In

other words, if the SE boundary is selected at 5 % then 64 % of images would be

optimised, while if the SE boundary is selected at 10 % then 43 % of images would

be optimised. The SE boundary is set at 10 %, which is shown in Figure 9.11.
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Figure 9.10: Distribution of segmentation error (SE) inferred from the lip segmentation

model (LSM).
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Figure 9.11: LSM with validation boundary set at SE = 10 %.
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Figure 9.12 shows eight examples of the candidate lip region produced by the base

algorithm. The segmentation in these images is produced using the default threshold,

before any further optimisation of the threshold. Each candidate region is plotted on

the lip shape model (LSM), where the image numbers correspond to the labels on

the contour plot. The LSM is used to infer the SE of the candidate region, which is

shown below each image (SEinfr). The candidate regions (1) – (4) pass validation,

while the candidate regions (5) – (8) fail validation.



Chapter 9 — Adaptive Threshold Optimisation (ATO) Algorithm 130

(1) SEinfr = 3.4% (2) SEinfr = 3.2% (3) SEinfr = 6.2% (4) SEinfr = 3.5%

(5) SEinfr = 12% (6) SEinfr = 23% (7) SEinfr = 30% (8) SEinfr = 30%
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Figure 9.12: Examples of the validation stage. Images (1) – (8) show the examples of

candidate lip region produced by the base algorithm. Each candidate region is plotted

on the lip shape model (LSM), the image numbers correspond to the labels on the

contour plot. The LSM is used to infer the SE of the candidate region, which is shown

below each image (SEinfr). The candidate regions (1) – (4) pass validation, while the

candidate regions (5) – (8) fail validation.
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9.5 Optimisation Stage

The base algorithm uses the default threshold (Otsu) to produce the candidate lip

region. If the candidate region is rejected by the validation stage, then ATO proceeds

to the optimisation stage.

Figure 9.13 shows the objective function, which comprises thresholding, morphological

processing, smoothing, feature extraction, and inferring the SE from the LSM. The

input to the objective function is the threshold, and the output is the inferred SE

(SEinfr). The optimisation stage aims to minimise the inferred segmentation error

by changing the threshold.

The objective function is minimised using Direct Search, which polls a set of points,

called a mesh, around the current point [172, 173]. If the poll is successful, i.e. Direct

Search finds a point in the mesh that improves the objective function at the current

point, then the new point becomes the current point at the next step of the algorithm.

If the pole is unsuccessful, i.e. Direct Search does not find a point in the mesh that

improves the objective function at the current point, then the current point remains

unchanged and the mesh is refined. See [172, 173] for more details on the Direct

Search algorithm.

Figure 9.13: Block diagram of ATO optimisation stage, which aims to minimise the

inferred segmentation error (SEinfr) by changing the threshold.

Figure 9.14 shows an example of the ATO algorithm, which aims to minimise the

inferred SE (SEinfr) by changing the threshold value. In Figure 9.14(a), images

(1) – (10) show the candidate lip region at each poll. SEa is the actual segmentation

error at the beginning and end of the optimisation. Figure 9.14(b) shows the Inferred
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SE on the left y-axis (blue) and the Threshold on the right y-axis (orange) at each

poll. Successful polls are indicated by the green markers. In Figure 9.14(c), the

feature vector at each poll is plotted on the LSM.

The example image in Figure 9.14 presents a challenging case for the base algorithm

to segment. The mouth is open which exposes the black oral cavity, as well as the

white teeth. Furthermore, the image is from a male who has a light covering of black

facial hair surrounding the mouth. The base algorithm using the default threshold

produces the candidate lip segmentation shown in poll (1). The segmentation is

very poor, and covers a region much larger than the lip contour. The high number

of false positive lip pixels indicates that the threshold is too lenient, and needs to

be increased. In Figure 9.14(c), the feature vector for poll (1) is plotted on the

LSM, and corresponds to the labelled data point 1. The inferred SE at this point is

SEinfr = 26.1%, while the actual SE is SEa = 44.8%.

At poll (2), the threshold is increased from 0.31 to 0.56, which results in the

segmentation excluding part of the mouth region. At this poll the threshold is

too stringent, which results in a high number of false negative lip pixels. The

inferred SE improves slightly compared to poll (1), and decreases from 26.1 to 19.8 %,

corresponding to a successful poll.

At poll (3), the inferred SE increases from 19.8 % to 26.1 %, corresponding to an

unsuccessful poll.

At poll (4), the threshold is set at 0.435, and the inferred SE drops dramatically to

3.49 %, corresponding to a successful poll. The segmentation in poll (4) adheres well

to the lower lip contour, with only minor deviations from the upper lip contour.

From poll (5) onwards, Direct Search attempts to improve on the inferred SE of

poll (4) by refining the mesh. The process of refining the mesh can be seen from the

Threshold curve of Figure 9.14(b), which oscillates around the value of 0.435 from

poll (4). However, Direct Search is unsuccessful in finding a threshold value that

improves on the inferred SE of 3.49 % from poll (4), and therefore the threshold of

0.435 from poll (4) is selected as the final threshold value.

The actual SE improves from 44.8 % before ATO to 8.5 % after ATO, which is an

absolute improvement of 36.3 pp, or a relative improvement of 81 %.
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(1) SEa = 44.8% (2) (3) (4) SEa = 8.5% (5)
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(c) Feature vector at each poll plotted on LSM

Figure 9.14: Graphical explanation of the ATO optimisation stage, which aims to

minimise the Inferred SE by changing the threshold value. In (a), images (1) – (10)

show the candidate lip region produced by the base algorithm at each poll. SEa is

the actual segmentation error at the beginning and end of the optimisation. Subfig (b)

shows the Inferred SE (left y-axis) and Threshold (right y-axis) at each poll. In (c),

the feature vector at each poll is plotted on the LSM.
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9.6 Conclusion

Adaptive Threshold Optimisation (ATO) is a novel algorithm to select the histogram

threshold based on feedback of shape information. ATO incorporates three stages:

construction of a lip shape model (LSM), validation stage, and optimisation stage.

The LSM uses ε-support vector regression (ε-SVR) to model the relation between

the shape of a lip region, and the corresponding segmentation error. Once the model

has been trained, the shape features of an unknown region can then be used to infer

the segmentation error.

The validation stage determines whether the output from the base algorithm con-

stitutes an acceptable lip segmentation. The validation stage uses the shape model

to infer the segmentation error (SE) of the candidate lip region. If the inferred SE

is below the SE boundary, then the candidate region is accepted and becomes the

final segmentation. If the inferred SE is above the SE boundary, then the candidate

region is rejected, and ATO proceeds to the optimisation stage.

The optimisation stage aims to minimise the inferred segmentation error by iteratively

changing the threshold.
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Chapter 10

Testing and Analysis of ATO

10.1 Introduction

The ATO algorithm presented in Chapter 9 tackles the challenge of threshold selection

in threshold-based segmentation methods. The ATO algorithm operates in two stages:

the validation stage identifies poor segmentations produced using a default threshold,

and the optimisation stage adjusts the threshold to improve the segmentation.

This chapter analyses the performance of the ATO algorithm by conducting three

tests. In the first test, the validation stage is evaluated as a binary classifier which

aims to identify poor segmentation. In the second test, the optimisation stage is

evaluated by comparing the lip segmentation accuracy of the default threshold, versus

the ATO threshold. In the final test, the performance of the overall algorithm is

evaluated, which includes images that are optimised as well as images that are not

optimised.

The 112 subjects in the AR Face Database are assigned 60 % to the training dataset

and 40 % to the test dataset. The 544 images of the training dataset are used to

build the lip shape model (LSM) in Chapter 9, and the 351 images from the test

dataset are used to conduct the three tests in this chapter.

To note, the aggregated results from testing the base algorithm in Chapter 7 differ

slightly from the results presented in this chapter. The differences stem from the

images comprising the test dataset: in Chapter 7 the test dataset comprises all 895

images; whereas, in this chapter the test dataset comprises a subset of 351 images.
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10.2 Test 1: Evaluation of the Validation Stage

The candidate lip region is segmentation output produced by the base algorithm,

using the default threshold. The purpose of the validation stage is to determine

whether the candidate lip region represents an acceptable lip segmentation. The

validation stage uses the lip shape model (LSM) to infer the SE of the candidate lip

region. If the inferred SE is below the predefined SE boundary, then the candidate

region passes validation; however, if the inferred SE is above the SE boundary, then

the candidate region fails validation. The SE boundary is set at 10 %.

The validation stage is essentially a binary classifier which infers whether SE is

greater than 10 % (fail validation) or less than 10 % (pass validation) for a particular

segmentation. As such, the validation stage is tested by comparing the inferred

pass/fail label to the actual pass/fail label.

The confusion matrix for the validation stage is shown in Table 10.1. The validation

stage correctly identifies 17.4 % of images that fail validation, and require further

processing in the optimisation stage. The validation stage also correctly identifies

51.9 % of images that pass validation, in which case optimisation is not required.

Table 10.1: Confusion matrix for ATO validation stage where pass corresponds to

SE <= 10% and fail corresponds to SE > 10%.

Infer fail Infer pass

Actual fail 17.4% 2.3%

Actual pass 28.5% 51.9%
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Since the objective of the validation stage is to correctly identify poor segmentation,

the number 17.4 % represents true positive (TP) classification, and the number 51.9 %

represents true negative (TN) classification. The calculations of precision and recall

follow in (10.1) and (10.2) respectively. Precision is the fraction of retrieved instances

that are relevant, i.e. of the images that are selected for optimisation, how many

actually need optimisation. Recall, or sensitivity, is the fraction of relevant instances

that are retrieved, i.e. of the images that need optimisation, how many are actually

selected for optimisation.

precision =
TP

TP + FP
=

17.4

17.4 + 28.5
= 0.379 (10.1)

recall (sensitivity) =
TP

TP + FN
=

17.4

17.4 + 2.3
= 0.883 (10.2)

The precision of the validation stage is 37.9 %, which implies that of the images

selected for optimisation, only 37.9 % actually need optimisation. The low precision

value does not necessarily affect the accuracy of the ATO algorithm, since optimising

images unnecessarily may or may not further improve the segmentation accuracy.

However, the low precision value does translate to a computational cost, whereby

good segmentations still undergo the optimisation procedure.

The recall of the validation stage is 88.3 %, which implies that of the poor segmenta-

tions, 88.3 % are selected for optimisation. In contrast to the precision value, the

recall value directly impacts the accuracy of the ATO algorithm. The recall of 88.3 %

corresponds to the miss rate of (1− recall) = 11.7%. The miss rate refers to poor

segmentations that do not continue to the optimisation stage, and hence remain poor

segmentations.

Figure 10.1 presents the ROC curves of the validation stage, showing the accuracy

in identifying poor segmentations. Subfigure (a) shows the total ROC curve, with

the area under curve (AUC) of 0.86. At false positive rate (FPR) of 20 %, the true

positive rate (TPR) is 70 %. In other words, the validation stage correctly identifies

70 % of poor segmentations, at a cost of incorrectly identifying 20 % of the good

segmentations.

Subfigure (b) shows the ROC curve split by SE group. The AUC for moderate-

poor segmentation in the 10 – 15 % group is 0.83, while the AUC for very poor

segmentation in the 20 %+ group rounds up to 1.00. The validation stage is better

at identifying very poor segmentation, as compared to moderate-poor segmentations.
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Figure 10.1: ROC curves showing the accuracy of the validation stage in identifying

lip segmentation with SE greater than 10%. (a) shows the total ROC curve, and (b)

shows the ROC curve split into three SE groups: 10 – 15%, 15 – 20%, and 20%+. The

area under curve (AUC) is shown for each ROC curve.

Finally, Table 10.2 compares the mean SE and OL for images that pass and fail

validation. The mean SE for images that pass validation is 4.89 %, while the mean

SE for images that fail validation is 10.9 %, more than two times higher.

Table 10.2: Mean segmentation error (SE) and percentage overlap (OL) for segment-

ations that pass and fail validation.

Number SE OL

Pass 190 4.89 95.0

Fail 161 10.9 88.5

Total 351 7.65 92.0

10.3 Test 2: Evaluation of the Optimisation Stage

Of the 351 images in the test dataset, 161 images fail validation and continue to

the optimisation stage. The optimisation stage computes the ATO threshold, and

uses this threshold to segment the image. Test 2 evaluates the performance of the

optimisation stage on the 161 images that fail validation.

Figure 10.2 presents the cumulative distribution function (CDF) comparing the

default threshold versus the ATO threshold, and Table 10.3 lists specific CDF values.

Subfigure 10.2(a) shows the improvement in SE between the default threshold and the
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ATO threshold. The percentage of segmentations below 5 % SE improves from 11.3 %

to 27.4 %, corresponding to an increase of 2.4 times. The percentage of segmentations

below 10 % SE improves by 11.9 percentage points from 61.9 % to 73.8 %.

The CDF for OL in Subfigure (b) shows similar results. The percentage of seg-

mentations above 95 % OL improves by a factor of 2.7, from 8.93 % to 24.4 %. The

percentage of segmentations above 90 % improves by 19 percentage points from

56.0 % to 75.0 %.
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Figure 10.2: Cumulative distribution function (CDF) comparing the default threshold

versus the ATO threshold for images that are selected for optimisation (i.e. fail

validation). (a) shows the CDF for segmentation error (SE) and (b) shows the CDF for

percentage overlap (OL).

Table 10.3: Specific SE and OL values from the CDF for images that are selected for

optimisation.

(a) % of segmentations below SE value

% of segmentations

SE Default ATO

< 5 % 11.3 27.4

< 10 % 61.9 73.8

< 15 % 86.3 90.5

< 20 % 92.9 96.4

< 25 % 94.6 97.6

(b) % of segmentations above OL value

% of segmentations

OL Default ATO

75 % < 94.0 98.2

80 % < 91.1 95.8

85 % < 82.7 90.5

90 % < 56.0 75.0

95 % < 8.93 24.4

Table 10.4 shows the average improvement for the 161 images that are optimised.

The absolute improvement in SE is 2.52 pp, corresponding to a relative improvement

of 23.1 %. The absolute improvement in OL is 3.12 pp.
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Table 10.4: Improvement in segmentation error (SE) and percentage overlap (OL) for

images that are selected for optimisation (i.e. fail validation).

Default (%) ATO (%)
Improvement

absolute (pp)

Improvement

relative (%)

SE 10.9 8.39 2.52 23.1

OL 88.5 91.6 3.12 3.52

The histograms in Figure 10.3 present a breakdown of the absolute and relative

improvement: (a) and (b) show the improvement in SE, (c) and (d) show the im-

provement in OL. The histograms show that ATO does not improve the segmentation

accuracy for all images, and in some cases ATO reduces the accuracy. However,

considering the relative SE improvement in (b) for example, it is clear that the

positive improvement significantly outweighs the negative.



Chapter 10 — Testing and Analysis of ATO 141

Absolute Improvement in SE (pp)
<-20 -15 -10 -5 0 5 10 15 20<

P
ro

b
a
b
ili

ty

0

0.05

0.1

0.15

0.2

0.25

0.3

(a) Absolute improvement in SE

Relative Improvement in SE (%)
-100< -50 0 50 100

P
ro

b
a
b
ili

ty

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

(b) Relative improvement in SE

Absolute Improvement in OL (pp)
-25 -20 -15 -10 -5 0 5 10 15 20<

P
ro

b
a
b
ili

ty

0

0.05

0.1

0.15

0.2

0.25

(c) Absolute improvement in OL

Relative Improvement in OL (%)
-30 -20 -10 0 10 20 30<

P
ro

b
a
b
ili

ty

0

0.05

0.1

0.15

0.2

0.25

(d) Relative improvement in OL

Figure 10.3: Histograms showing the improvement in segmentation error (SE) and

percentage overlap (OL) for images that are selected for optimisation (i.e. fail valida-

tion).

10.4 Test 3: Evaluation of the Overall Algorithm

The overall algorithm is evaluated by considering the segmentation accuracy across all

351 test images, including images that are selected for optimisation by the validation

stage, as well as images that are not optimised.

Figure 10.4 presents the CDF for the overall algorithm, and Table 10.5 lists specific

CDF values. After ATO, 46.4 % of segmentations achieve SE below 5 %, and 86.0 %

of segmentations obtain SE below 10 %. Considering OL before and after ATO, the

percentage of segmentations above 95 % improves by 21.6 % relative from 37.0 % to

45.0 %.
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Figure 10.4: Cumulative distribution function (CDF) showing the overall performance

of the ATO algorithm, including images that pass and fail validation.

Table 10.5: Specific SE and OL values from the overall CDFs.

(a) % of segmentations below SE value

% of segmentations

SE Default ATO

< 5 % 39.3 46.4

< 10 % 80.3 86.0

< 15 % 93.2 95.4

< 20 % 96.6 98.3

< 25 % 97.4 99.1

(b) % of segmentations above OL value

% of segmentations

OL Default ATO

75 % < 97.2 99.1

80 % < 95.7 98

85 % < 91.2 95.2

90 % < 76.6 86.3

95 % < 37.0 45.0

Table 10.6 shows the mean improvement for the overall ATO algorithm on the 351 test

images. The overall SE after ATO decreases from 7.65 % to 6.50 %, corresponding to

an absolute improvement of 1.16 pp and relative improvement of 15.1 %. The mean

OL improved from 92.0 % to 93.4 %.

Figure 10.5 shows several examples of the lip segmentation results before and after

optimising the threshold with ATO. The threshold selected by ATO significantly

improves the segmentation in several scenarios in which the base algorithm with the

default threshold does not perform well, including: facial hair, low contrast between

the lips and skin, and inconsistent illumination.
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Table 10.6: Improvement in segmentation error (SE) and percentage overlap (OL) for

overall ATO algorithm, including images that pass and fail validation.

Default (%) ATO (%)
Improvement

absolute (pp)

Improvement

relative (%)

SE 7.65 6.50 1.16 15.1

OL 92.0 93.4 1.43 1.55

Before After Before After

Figure 10.5: Examples of the segmentation produced by the base algorithm before

and after optimising the threshold with ATO.

10.5 Scope for Further Improvement

The new ATO algorithm is a technique to adjust the histogram threshold to improve

the resulting segmentation accuracy. While the ATO results presented in this

chapter show significant improvement in the segmentation accuracy, the approach of

optimising the threshold still has scope for further improvement.

Figure 10.6 shows the CDF comparing the ATO algorithm, the default threshold, and

the optimal threshold. As a reminder, the optimal threshold described in Chapter 8 is

found by scanning across all threshold values, and selecting the best threshold value

for a particular image. Comparing the optimal threshold to the ATO threshold in (a)

and (b), it is clear that there is certainly scope for further improvement. Obviously,
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the challenge remains developing a robust technique to compute the correct threshold.
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Figure 10.6: Cumulative distribution function (CDF) comparing the ATO algorithm,

default threshold, and optimal threshold.

10.6 Comparison to Existing Methods

The most recent work in the field of lip segmentation was published by Cheung et al.

[99] in November 2015, six months prior to submission of this thesis. In this work,

Cheung et al. present a fuzzy clustering-based approach to lip segmentation, which

does not depend on prior knowledge of the number of segments. The novelty of

the approach arises from the technique to merge coincident cluster centroids, which

allows the algorithm to be robust against the preassigned number of clusters.

Cheung et al. [99] compare the performance of their method with four existing meth-

ods: Liew2003 [160], Leung2004 [174], Wang2007 [175], and classical fuzzy c-means

clustering (FCM). Liew2003 and Leung2004 propose fuzzy clustering taking into

account both colour and spatial information. Wang2007 improves on this approach

by adding automatic selection of the number of segments. An important differ-

ence to note is that aside from parameter selection, these techniques are essentially

unsupervised, whereas ATO is a supervised technique.

For a direct comparison between ATO and the methods analysed in Cheung et al.

[99], it is necessary to evaluate all algorithms according to the same experimental

method. Table 10.7 shows a comparison between the experimental method used in

the current research against that of Cheung et al. [99]. The source database and

the metrics are the same, but there are differences in the images selected, clipping,

and ground truth. It is not possible to reproduce the Cheung2015 test images in a
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consistent manner, since the article does not provide a list of selected images, and

the ground truth has not been made publicly available. Several attempts to contact

the authors to request the test images were unsuccessful, so it is necessary to resort

to a somewhat indirect comparison.

Table 10.7: Comparison of experimental methods between the Current Research and

Cheung2015.

Current Research Cheung2015

Database AR Face Database AR Face Database

Selection Randomly partition subjects

60 % for training, 40 % for test-

ing. Test dataset comprises

351 images from 44 subjects.

Randomly select 50 images

Clipping Size of image cropped accord-

ing to size of mouth

128× 128 pixels

Ground

truth

Manual markings from Ding

& Martinez [101] are interpol-

ated using cubic smoothing

splines

Manually segmented by au-

thors

Metrics OL and SE OL and SE

To assess the validity of the comparison, it is necessary to consider the potential

implications of the differences in experimental methods. First, regarding the selection

of the test images, even though the test images differ between Cheung2015 and the

current research, in both cases the selection is random, so no bias is introduced.

Second, the preparation of the ground truth in both experiments involves manual

markings by human judges. Ding & Martinez [101] report that the within-judge

variability for facial key points was 3.8 pixels or 1.2 %, so variability in the ground

truth is not expected to have a significant impact the comparison.

The final difference to consider is the size of the clipped images. Figure 10.7 shows the

width and height of images used for testing in the current research versus Cheung2015.

All 50 images in Cheung2015 are 128×128 in size (16 384 pixels). Observing the Area

Boundary, 20 % of images in the current research are larger than Cheung2015 images,

while 80 % are smaller. While it is difficult to quantify the implication of image

size on the segmentation accuracy, it is likely that the larger images in Cheung2015

would be more challenging to segment. However, the author argues that current

techniques, such as the Viola-Jones detector [89], adapt the region dimensions to
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the size of the mouth, and can easily detect regions smaller than 128× 128. Some

cursory experimentation with the Viola-Jones detector [89] validate this assertion.
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Figure 10.7: Width and height of images used for testing in the Current Research

versus Cheung2015 [99]. The test dataset in Cheung2015 comprises 50 images from

the AR Face Database, all clipped to 128× 128 (16 384 pixels). Images above the Area

Boundary are larger in number of pixels than the Cheung2015 images, while those

below the Area Boundary are smaller.

To summarise the discussion on the validity of the comparison: image selection and

the ground truth are not likely to bias the comparison, however the size of images

may have an effect. Nevertheless, the experimental methods appear to be sufficiently

compatible to draw informative conclusions.

Table 10.8 presents the comparison of ATO to the lip segmentation methods analysed

in Cheung et al. [99], acknowledging the limitations discussed above. With respect to

segmentation error (SE), ATO outperforms the nearest rival, Cheung2015, by 1.9 pp

absolute or 22.6 % relative. Aside from Cheung2015, the other techniques are not

competitive with SE ranging from 13.25 % to 42.82 %.

Cheung2015 and Wang2007 place a large emphasis on automatically determining the

number of segments; by contrast, ATO assumes that the image comprises only two

segments. The superior performance of ATO suggests that it is more important to

correctly select the threshold value, than the number of segments. If the boundary
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between the lips and skin is clearly differentiated by the threshold, then the subsequent

post-processing can consolidate the lip and skin segments.

Table 10.8: Comparison of ATO to lip segmentation methods analysed in Cheung et al.

[99]. The limitations of the comparison arising from differences in the experimental

methods are acknowledged in Table 10.7 and the accompanying discussion.

OL SE

FCM 65.25% 42.82%

Liew2003 [160] 83.50% 17.31%

Leung2004 [174] 89.92% 13.25%

Wang2007 [175] 87.35% 21.13%

Cheung2015 [99] 90.80% 8.40%

Ato2016 93.45% 6.50%

10.7 Conclusion

The ATO algorithm is tested by evaluating the validation stage and the optimisation

stage individually in Test 1 and Test 2 respectively. Thereafter, the overall ATO

algorithm is evaluated in Test 3.

Test 1 evaluates the validation stage as a binary classifier with the objective of

identifying poor segmentation. The precision of the validation stage is 37.9 %, while

the recall of the validation stage is 88.3 %. The low precision value does necessarily

affect the accuracy of the ATO algorithm, since optimising images unnecessarily

may or may not further improve the segmentation accuracy. The high recall value

is essential to the segmentation accuracy, as poor segmentations missed by the

validation stage will not proceed to the optimisation stage, and will remain poor.

Test 2 evaluates the optimisation stage by comparing the lip segmentation accuracy

of the default threshold versus the ATO threshold. The percentage of segmentations

above 95 % OL improves by a factor of 2.7 from 8.93 % to 24.4 %. The mean SE for

the optimised images improves by 2.52 pp absolute, or 23.1 % relative.

Test 3 evaluates the performance of the overall algorithm by considering the seg-

mentation accuracy across all test images, including images that are selected for

optimisation by the validation stage, as well as images that are not optimised. After

ATO, 46.4 % of segmentations achieve SE below 5 %, and 86.0 % of segmentations
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obtain SE below 10 %. The overall SE after ATO decreases from 7.65 % to 6.50 %,

corresponding to an absolute improvement of 1.16 pp absolute or relative improvement

of 15.1 %.

Comparing the optimal threshold from Chapter 8 to the ATO threshold shows

that the approach of optimising the threshold may still offer potential for further

improvement.

Finally, although the comparison is somewhat indirect, ATO seems to outperform

existing lip segmentation methods.
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Chapter 11

Conclusion

11.1 Overview

A laryngectomy is the partial or complete surgical removal of the larynx (voice

box), which leaves the patient unable to speak. Restoration of some degree of voice

is crucial to the laryngectomy patient’s morale, self esteem and reintegration into

society. The conventional methods to restore verbal communication (electrolarynx,

tracheo-oesophageal speech, and oesophageal speech) have achieved some success in

restoring speech; however, there are various limitations and drawbacks associated

with each technique.

Modern advances in electronic miniaturisation and portable computing have paved

the way for a computer-based solution. A silent speech interface (SSI) is a system

enabling speech communication in the absence of an intelligible acoustic signal. SSIs

improve on some of the limitations of conventional techniques, while giving rise to

a new set of challenges: sensor positioning and robustness, speaker independence,

vocabulary size, cost, and practicality for routine use.

The revolution in mobile computing has provided the platform for optical SSI devices –

a standard smartphone possesses all the hardware requirements including a camera,

processing power, and audio/video output. The technique of retrieving speech

content from visual clues, such as the movement of the lips, tongue and teeth, is

known as automatic lip-reading (ALR). The two main challenges of ALR are lip

segmentation and recognition. This thesis addresses the image processing challenge

of lip segmentation, and focuses on three specific contributions:
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1. Comparison of 33 colour transforms used in lip segmentation algorithms

2. Development of new threshold-based lip segmentation algorithm

3. Development of a novel threshold selection technique called Adaptive Threshold

Optimisation (ATO)

11.2 Summary of Contributions

11.2.1 Comparison of Colour Transforms

The first stage in lip segmentation typically involves applying a suitable colour

transform to enhance the contrast between the lips and the surrounding skin; however,

no consensus exists among researchers as to the best colour transform for this task.

Chapter 5 presents the most comprehensive study to date by evaluating and comparing

33 different colour transforms: 21 channels from 7 colour space models (RGB, HSV,

YCbCr, YIQ, CIEXYZ, CIELUV, CIELAB); and 12 additional transforms, 8 of

which are designed specifically for lip segmentation. The contrast between the lips

and the skin is used to obtain the outer-lip contour, while the contrast between the

lips and the oral cavity is used to obtain the inner-lip contour. As such, this thesis

identifies the transforms most appropriate for lip-skin segmentation and for lip-oral

cavity segmentation.

The 33 colour transforms are compared based on two metrics: histogram intersection

which indicates the maximum segmentation accuracy, and Otsu’s discriminant which

measures the separability attainable using a single threshold.

Results for lip-skin segmentation validate the experimental approach, as 11 of the

top 12 transforms have been used in lip segmentation algorithms in the literature.

The necessity of selecting the correct transform is demonstrated by an increase in

segmentation accuracy of up to three times. Hue-based transforms (including pseudo-

hue and hue domain filtering) perform the best for lip-skin segmentation, with the hue

component of HSV achieving the greatest accuracy of 93.85 %. The a* component

of CIELAB performs the best for lip-oral cavity segmentation, while pseudo-hue

and the LUX transform perform reasonably well for both lip-skin segmentation and

lip-oral cavity segmentation.

This work has been published in Signal, Image and Video Processing [14].
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11.2.2 Threshold-based Lip Segmentation Algorithm

Lip segmentation is a fundamental system component in a range of applications

including: automatic lip-reading (ALR), virtual face animation, biometric speaker

identification, and emotion recognition. Lip segmentation presents a challenging

image processing problem arising from the variability associated with the speaker

profile, movement of the lips, and environmental conditions.

The second contribution of this thesis is the development of a new threshold-based

lip segmentation algorithm in Chapter 6. The lip segmentation algorithm begins by

filtering the pre-cropped mouth region, and applying luminance correction based

on the Michaelis-Menten law. The two best colour transforms from the comparison

in Chapter 5 (YIQ-Q and MI3) are combined to enhance the contrast between the

lips and the skin. Otsu’s method is used to select the histogram threshold, which is

followed by nine morphological operations to consolidate the lip region and to remove

artefacts. Finally, the lip segmentation algorithm uses cubic splines to smooth the

lip contour.

In Chapter 7, the lip segmentation algorithm was tested on 895 mouth region

images from the AR Face Database, using percentage overlap (OL) and segmentation

error (SE) to quantify performance. The mean OL was 92.23 % and the mean SE

was 7.39 %. Of the 895 images in the dataset, 78 % obtained OL above 90 %, which

appears to be acceptable for lip segmentation applications. The images in this

category include variation in gender, age, skin colour, make-up, and facial hair. Only

1.90 % of images obtained OL below 70 %.

The following scenarios presented a challenge to the algorithm:

• facial hair obscuring the lips

• low contrast between the lips and skin

• thin lips

• light covering of facial hair causing poor threshold selection

• reflections caused by moisture on the skin

The ATO algorithm, which forms the third contribution, is designed to improve the

segmentation accuracy in these challenging scenarios.
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11.2.3 Adaptive Threshold Optimisation (ATO)

Threshold-based segmentation methods provide a simple and efficient way to im-

plement lip segmentation. However, automatic computation of robust thresholds

presents a significant challenge. The segmentation algorithm developed in the second

contribution represents a typical threshold-based lip segmentation algorithm, which

uses Otsu’s method to compute the threshold value. This algorithm is referred to

as the base algorithm, and forms the platform to develop and test a novel threshold

selection technique called ATO.

In Chapter 8, the significance of the threshold value in the base algorithm is inter-

rogated by performing a linear search to find the optimal threshold. The optimal

threshold is the value that results in the best segmentation accuracy. This value is

compared to the default threshold (Otsu) to quantify the improvement in segmenta-

tion accuracy that can be obtained by adjusting the threshold value. The analysis

reports that the accuracy limit of the base algorithm with the optimal threshold is

SE 4.75 %, which represents a 35.8 % relative improvement over the default threshold.

It is clear that the segmentation produced by the base algorithm can be improved

significantly by implementing a better threshold selection technique.

Chapter 9 presents Adaptive Threshold Optimisation (ATO), which is a novel tech-

nique to select the histogram threshold based on feedback of shape information. ATO

incorporates three stages: construction of a lip shape model (LSM), the validation

stage, and the optimisation stage. The LSM uses ε-support vector regression (ε-SVR)

to model the relation between the shape of a lip region, and the corresponding

segmentation error. Once the model has been trained, the shape features of an un-

known region can then be used to infer the segmentation error (SE). The validation

stage uses the inferred SE to determine whether the output from the base algorithm

constitutes an acceptable lip segmentation. If the segmentation is rejected, then ATO

proceeds to the optimisation stage, which minimises the inferred SE by iteratively

adjusting the threshold.

The ATO algorithm is tested in Chapter 10 by individually evaluating the validation

stage in Test 1, and the optimisation stage in Test 2. Thereafter, the overall ATO

algorithm is evaluated in Test 3.

Test 1 evaluates the validation stage as a binary classifier with the objective of

identifying poor segmentation. The precision of the validation stage is 37.9 %, while

the recall of the validation stage is 88.3 %. The low precision value does necessarily
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affect the accuracy of the ATO algorithm, since optimising images unnecessarily

may or may not further improve the segmentation accuracy. The high recall value

is essential to the segmentation accuracy, as poor segmentations missed by the

validation stage will not proceed to the optimisation stage, and will remain poor.

Test 2 evaluates the optimisation stage by comparing the lip segmentation accuracy

of the default threshold versus the ATO threshold. The percentage of segmentations

above 95 % OL improves by a factor of 2.7 from 8.93 % to 24.4 %. The mean SE for

the optimised images improves by 2.52 pp absolute, or 23.1 % relative.

Test 3 evaluates the performance of the overall algorithm by considering the seg-

mentation accuracy across all test images, including images that are selected for

optimisation, as well as images that are not optimised. After ATO, 46.4 % of seg-

mentations achieve SE below 5 %, and 86.0 % of segmentations obtain SE below

10 %. The overall SE after ATO decreases from 7.65 % to 6.50 %, corresponding to

an absolute improvement of 1.16 pp or relative improvement of 15.1 %.

To note, the results from testing the base algorithm in the second contribution

(Chapter 7) differ slightly from the results presented in the third contribution

(Chapter 10). The differences stem from the images comprising the test dataset: in

Chapter 7 the test dataset comprises all 895 images; whereas, in Chapter 10 the test

dataset comprises a subset of 351 images.

Comparing the optimal threshold from Chapter 8 to the ATO threshold shows

that the approach of optimising the threshold may still offer potential for further

improvement.

Finally, although the comparison is somewhat indirect, ATO seems to outperform

existing lip segmentation methods.

This work has been published in the journal of Signal, Image and Video Processing

[15], and Proceedings of the 2015 Conference on Facial Analysis and Animation

(FAA2015) [16].

11.3 Recommendations for Future Research

The major area for future research concerns adaptive threshold optimisation (ATO),

the novel threshold selection technique introduced in this thesis. ATO uses feedback

of shape information to select the threshold in the underlying segmentation algorithm.
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11.3.1 Generalise to Other Applications

In this thesis, ATO was used to augment the lip segmentation algorithm; however,

ATO is by no means restricted to lip segmentation. In fact, ATO may be used as a

general image processing technique to improve threshold selection when prior shape

information is available. ATO can be applied to different segmentation challenges by

simply building shape models appropriate for the new task. In future research, ATO

should be tested on different segmentation problems to determine if similar benefits

can be achieved.

11.3.2 Multi-Object Segmentation

ATO can be extended to multiple object segmentation by training multiclass shape

models. In this work, the ε-SVR model is trained with lip segmentation samples.

The model can be expanded by training with samples of another object, the eyes for

example. The threshold is still adjusted with the objective of minimising the inferred

SE, but in the multi-object case the segmentation result iteratively moves towards

either the eyes or the mouth.

11.3.3 From Static Segmentation to Dynamic Tracking

In this thesis, ATO was developed around segmentation in static images. However

ATO lends itself to easily be adapted to dynamic tracking applications by simply

using the threshold selected in the previous frame to initialise the threshold in the

current frame.

11.3.4 Further Improving the Accuracy

Regarding the general approach of adjusting the threshold to improve the segmenta-

tion accuracy, Chapter 10 compares ATO to the optimal threshold (from Chapter 8)

to show that there is scope for further improvement.

In supervised learning tasks, the performance of the system depends on three

components: the data quantity and quality, the features, and the learning technique.

With reference to ATO, the ε-SVR model is trained with 544 images from the dataset.

Increasing the size of training dataset will most likely lead to an improvement in
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the performance of ATO. Furthermore, in subject-specific applications such as voice

restoration for laryngectomy patients, the performance of ATO could be improved

by training subject-dependant models.

Considering the features used in the ATO algorithm, the current feature set comprises

region-based geometric features, such as area and height. The performance of ATO

may be improved by adding point distribution features [71, 94], or appearance features

which include both shape and colour [176, 177].

11.3.5 Improving the Evaluation Metrics

It is necessary to raise one final concern regarding the metrics used to quantify the

segmentation accuracy of the algorithm (see Section 7.3). In this thesis, percentage

overlap (OL) and segmentation error (SE) are used to quantify segmentation accuracy,

in line with the lip segmentation literature [91, 121, 160–165]. In several images from

the neutral and anger expressions, the segmented contour appears to follow the true

lip contour with reasonable accuracy, however the segmentation performs poorly

according to OL and SE (see Section 7.4.1). This result is explained by considering

the sensitivity of OL and SE to the size of the lip area. When the accuracy of a lip

segmentation result is assessed with the human eye, the focus is on how well the

segmented contour adheres to the ground truth contour. OL and SE are region-based

metrics, and despite wide adoption in the lip segmentation literature, it may be

preferable to construct a metric that measures the adherence/deviation from the lip

contour.
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[59] Neuper, C., Müller, G., Kübler, A., Birbaumer, N. & Pfurtscheller, G. (2003),

‘Clinical application of an eeg-based brain–computer interface: a case study in

a patient with severe motor impairment’, Clinical Neurophysiology, vol. 114,

no. 3, pp. 399–409.

[60] Wester, M. & Schultz, T. (2006), Unspoken speech-speech recognition based on

electroencephalography, Master’s thesis, Universität Karlsruhe (TH), Karlsruhe,

Germany.

[61] Brumberg, J.S., Nieto-Castanon, A., Kennedy, P.R. & Guenther, F.H. (2010),

‘Brain-computer interfaces for speech communication’, Speech Communication,

vol. 52, no. 4, pp. 367–379.

[62] Brumberg, J.S., Wright, E.J., Andreasen, D.S., Guenther, F.H. & Kennedy,

P.R. (2011), ‘Classification of intended phoneme production from chronic

intracortical microelectrode recordings in speech-motor cortex’, Frontiers in

Neuroscience, vol. 5.

[63] Talea, H. & Yaghmaie, K. (2011), ‘Automatic visual speech segmentation’,

in ‘2011 IEEE 3rd International Conference on Communication Software and

Networks (ICCSN 2011)’, IEEE, pp. 184–188.

[64] McGurk, H. & MacDonald, J. (1976), ‘Hearing lips and seeing voices’, .

[65] Lucey, P., Martin, T. & Sridharan, S. (2004), ‘Confusability of phonemes

grouped according to their viseme classes in noisy environments’, in ‘Tenth

Australian International Conference on Speech Science and Technology’, .

[66] Luettin, J., Thacker, N.A. & Beet, S.W. (1996), ‘Speechreading using shape

and intensity information’, in ‘Fourth International Conference on Spoken

Language (ICSLP 1996)’, IEEE, vol. 1, pp. 58–61 vol. 1.

[67] Chen, T. & Rao, R.R. (1998), ‘Audio-visual integration in multimodal commu-

nication’, Proceedings of the IEEE, vol. 86, no. 5, pp. 837–852.



References 162

[68] Potamianos, G., Neti, C., Gravier, G., Garg, A. & Senior, A.W. (2003), ‘Recent

advances in the automatic recognition of audiovisual speech’, Proceedings of

the IEEE, vol. 91, no. 9, pp. 1306–1326.

[69] Jeffers, J. & Barley, M. (1971), Speechreading (lipreading), Thomas Springfield.

[70] Nitchie, E.B. (1930), ‘Principles and practice of lip reading’, .

[71] Wang, S., Lau, W., Leung, S. & Yan, H. (2004), ‘A real-time automatic

lipreading system’, in ‘International Symposium on Circuits and Systems

(ISCAS 2004)’, IEEE, vol. 2, pp. II–101–104.

[72] International Phonetic Association (1999), Handbook of the International Phon-

etic Association: A guide to the use of the International Phonetic Alphabet,

Cambridge University Press.

[73] Alothmany, N., Boston, R., Li, C., Shaiman, S. & Durrant, J. (2010), ‘Clas-

sification of visemes using visual cues’, in ‘52nd International Symposium

ELMAR-2010’, pp. 345–349.

[74] Cappelletta, L. & Harte, N. (2011), ‘Viseme definitions comparison for visual-

only speech recognition’, in ‘19th European Signal Processing Conference

(EUSIPCO 2011)’, pp. 2109–2113.

[75] Pandzic, I., Escher, M. & Thalmann, N.M. (1998), ‘Facial deformations for

MPEG-4’, in ‘Computer Animation 1998 (CA 1998)’, IEEE, pp. 56–62.

[76] Hilder, S., Theobald, B.J. & Harvey, R. (2010), ‘In pursuit of visemes’, in ‘9th

International Conference on Auditory-Visual Speech Processing (AVSP 2010)’,

.

[77] Bozkurt, E., Erdem, C., Erzin, E., Erdem, T. & Ozkan, M. (2007), ‘Compar-

ison of phoneme and viseme based acoustic units for speech driven realistic

lip animation’, in ‘2007 IEEE 15th Signal Processing and Communications

Applications (SIU 2007)’, IEEE, pp. 1–4.

[78] Hazen, T.J., Saenko, K., La, C.H. & Glass, J.R. (2004), ‘A segment-based audio-

visual speech recognizer: Data collection, development, and initial experiments’,

in ‘6th International Conference on Multimodal Interfaces (ICMI 2004)’, ACM,

pp. 235–242.

[79] Mattheyses, W., Latacz, L. & Verhelst, W. (2011), ‘Automatic viseme clus-

tering for audiovisual speech synthesis’, in ‘Twelfth Annual Conference of the

International Speech Communication Association’, .



References 163

[80] Goldschen, A.J. (1993), ‘Continuous automatic speech recognition by lipread-

ing’, .

[81] Stork, D.G. & Hennecke, M.E. (1996), ‘Speechreading: An overview of image

processing, feature extraction, sensory integration and pattern recognition

techniques’, in ‘Second International Conference on Automatic Face and Gesture

Recognition’, IEEE, pp. XVI–XXVI.

[82] WenJuan, Y., YaLing, L. & MingHui, D. (2010), ‘A real-time lip localization

and tacking for lip reading’, in ‘2010 3rd International Conference on Advanced

Computer Theory and Engineering (ICACTE 2010)’, IEEE, vol. 6, pp. V6–363–

V6–366.

[83] Cappelletta, L. & Harte, N. (2010), ‘Nostril detection for robust mouth tracking’,

in ‘Signals and Systems Conference (ISSC 2010)’, IET, pp. 239–244.

[84] Pietruch, R. & Grzanka, A. (2010), ‘Combining acoustic and visual modalities

in vowel recognition system for laryngectomees’, in ‘2010 10th Symposium

on Neural Network Applications in Electrical Engineering (NEUREL 2010)’,

IEEE, pp. 175–179.

[85] Koo, H. & Song, H. (2010), ‘Facial feature extraction for face modeling program’,

International Journal of Circuits, Systems and Signal Processing, vol. 4, no. 4,

pp. 169–176.

[86] Shiell, D.J., Terry, L.H., Aleksic, P.S. & Katsaggelos, A.K. (2009), ‘Audio-visual

and visual-only speech and speaker recognition: Issues about theory, system

design’, in A.W.C. Liew & S. Wang (editors), ‘Visual Speech Recognition: Lip

Segmentation and Mapping’, pp. 1–38.

[87] Chollet, G., Landais, R., Bredin, H., Hueber, T., Mokbel, C., Perrot, P. &

Zouari, L. (2007), ‘Some experiments in audio-visual speech processing, in

non-linear speech processing’, Progress in Non-Linear Speech Processing.

[88] Wilson, P. & Fernandez, J. (2006), ‘Facial feature detection using Haar classifi-

ers’, Journal of Computing Sciences in Colleges, vol. 21, no. 4, pp. 127–133.

[89] Viola, P. & Jones, M. (2001), ‘Rapid object detection using a boosted cascade

of simple features’, in ‘2001 IEEE Computer Society Conference on Computer

Vision and Pattern Recognition (CVPR 2001)’, IEEE, vol. 1, pp. I–511.

[90] Hewitt, R. (2007), ‘Seeing with OpenCV part 2: Finding faces in images’,

SERVO Magazine.



References 164

[91] Saeed, U. & Dugelay, J.L. (2010), ‘Combining edge detection and region

segmentation for lip contour extraction’, Articulated Motion and Deformable

Objects, pp. 11–20.

[92] Aleksic, P.S. & Katsaggelos, A.K. (2009), ‘Lip feature extraction and feature

evaluation in the context of speech and speaker recognition’, in A.W.C. Liew &

S. Wang (editors), ‘Visual Speech Recognition: Lip Segmentation and Mapping’,

pp. 39–69.

[93] Eveno, N., Caplier, A. & Coulon, P. (2004), ‘Accurate and quasi-automatic lip

tracking’, IEEE Transactions on Circuits and Systems for Video Technology,

vol. 14, no. 5, pp. 706–715, iD: 1.

[94] Luettin, J. & Thacker, N.A. (1997), ‘Speechreading using probabilistic models’,

Computer Vision and Image Understanding, vol. 65, no. 2, pp. 163–178.

[95] Huang, X., Ariki, Y. & Jack, M. (1990), Hidden Markov Models for Speech

Recognition, Edinburgh, UK, Edinburgh University Press.

[96] Lewis, T.W. & Powers, D.M.W. (2002), ‘Audio-visual speech recognition

using red exclusion and neural networks’, in ‘Australian Computer Science

Communications’, Australian Computer Society, Inc., vol. 24, pp. 149–156.

[97] Baldwin, J.F., Martin, T.P. & Saeed, M. (1999), ‘Automatic computer lip-

reading using fuzzy set theory’, in ‘International Conference on Auditory-Visual

Speech Processing (AVSP 1999)’, .

[98] Young, S., Evermann, G., Gales, M., Hain, T., Kershaw, D., Liu, X., Moore, G.,

Odell, J., Ollason, D. & Povey, D. (2006), ‘The HTK book (for HTK version

3.4)’, .

[99] Cheung, Y., Li, M., Peng, Q. & Chen, C. (2015), ‘A cooperative learning-based

clustering approach to lip segmentation without knowing segment number.’,

IEEE Transactions on Neural Networks and Learning Systems.

[100] Martinez, A. (1998), ‘The AR face database’, CVC Technical Report, vol. 24.

[101] Ding, L. & Martinez, A. (2010), ‘Features versus context: An approach for

precise and detailed detection and delineation of faces and facial features’,

IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 32,

no. 11, pp. 2022–2038.

[102] Chellappa, R., Wilson, C.L. & Sirohey, S. (1995), ‘Human and machine re-

cognition of faces: A survey’, Proceedings of the IEEE, vol. 83, no. 5, pp.

705–741.



References 165

[103] Caplier, A., Stillittano, S., Bouvier, C. & Coulon, P. (2009), ‘Lip modelling and

segmentation’, in A.W.C. Liew & S. Wang (editors), ‘Visual Speech Recognition:

Lip Segmentation and Mapping’, pp. 70–127.

[104] Lievin, M. & Luthon, F. (2004), ‘Nonlinear color space and spatiotemporal mrf

for hierarchical segmentation of face features in video’, IEEE Transactions on

Image Processing, vol. 13, no. 1, pp. 63–71.

[105] Coianiz, T., Torresani, L. & Caprile, B. (1996), ‘2D deformable models for visual

speech analysis’, in G. Stork & M.E. Hennecke (editors), ‘NATO Advanced

Study Institute: Speechreading by Man and Machine’, Springer-Verlag, pp.

391–398.

[106] Vogt, M. (1996), ‘Fast matching of a dynamic lip model to color video sequences

under regular illumination conditions’, Nato ASI Subseries F: Computer and

Systems Sciences, vol. 150, pp. 399–408.

[107] Liang, Y.L. & Du, M.H. (2011), ‘Lip extraction method based on a component

of lab color space’, Computer Engineering, vol. 37, no. 3.

[108] Eveno, N., Caplier, A. & Coulon, P.Y. (2002), ‘Key points based segmentation

of lips’, in ‘2002 IEEE International Conference on Multimedia and Expo’,

IEEE, vol. 2, pp. 125–128 vol. 2.

[109] Zhang, X. & Mersereau, R. (2000), ‘Lip feature extraction towards an automatic

speechreading system’, in ‘2000 International Conference on Image Processing

(ICIP 2000)’, IEEE, vol. 3, pp. 226–229.

[110] Hurlbert, A.C. & Poggio, T.A. (1988), ‘Synthesizing a color algorithm from

examples’, Science, vol. 239, no. 4839, pp. 482–485.

[111] Goldschen, A.J., Garcia, O.N. & Petajan, E. (1994), ‘Continuous optical

automatic speech recognition by lipreading’, in ‘28th Asilomar Conference on

Signals, Systems and Computers’, IEEE, vol. 1, pp. 572–577 vol. 1.

[112] Dahlman, E., Parkvall, S., Beming, P., Bovik, A.C., Fette, B.A., Jack, K.,

Skold, J., Dowla, F., Chou, P.A. & DeCusatis, C. (2009), Communications

engineering desk reference, Academic Pr.

[113] Ford, A. & Roberts, A. (1998), ‘Colour space conversions’, Westminster Uni-

versity, London, pp. 1–31.

[114] Eveno, N., Caplier, A. & Coulon, P.Y. (2001), ‘New color transformation for

lips segmentation’, in ‘2001 IEEE Fourth Workshop on Multimedia Signal

Processing’, pp. 3–8, iD: 1.



References 166

[115] McClain, M., Brady, K., Brandstein, M. & Quatieri, T. (2004), ‘Automated

lip-reading for improved speech intelligibility’, in ‘2004 IEEE International

Conference on Acoustics, Speech, and Signal Processing’, IEEE, vol. 1, pp.

I–701.

[116] Hsu, R.L., Abdel-Mottaleb, M. & Jain, A.K. (2002), ‘Face detection in color

images’, IEEE Transactions on Pattern Analysis and Machine Intelligence,

vol. 24, no. 5, pp. 696–706.

[117] Thejaswi, N.S. & Sengupta, S. (2008), ‘Lip localization and viseme recognition

from video sequences’, in ‘14th National Conference on Communications (NCC

2008)’, .

[118] Hamilton, J. (1992), ‘Color space conversion’, Green Harbor Publications.

[119] Canzler, U. & Dziurzyk, T. (2002), ‘Extraction of non manual features for

videobased sign language recognition’, in ‘IAPR Workshop on Machine Vision

Applications (IAPR MVA 2002)’, pp. 318–321.

[120] Gong, Y. & Sakauchi, M. (1995), ‘Detection of regions matching specified

chromatic features’, Computer Vision and Image Understanding, vol. 61, no. 2,

pp. 263–269.

[121] Guan, Y.P. (2008), ‘Automatic extraction of lips based on multi-scale wavelet

edge detection’, IET Computer Vision, vol. 2, no. 1, pp. 23–33.

[122] Zhang, J., Tao, H., Wang, L., Zhan, Y. & Song, S. (2004), ‘A real-time approach

to the lip-motion extraction in video sequence’, in ‘2004 IEEE International

Conference on Systems, Man and Cybernetics’, IEEE, vol. 7, pp. 6423–6428

vol. 7.

[123] Ohta, Y., Kanade, T. & Sakai, T. (1980), ‘Color information for region seg-

mentation’, Computer Graphics and Image Processing, vol. 13, no. 3, pp.

222–241.

[124] Watson, A.B. & Poirson, A. (1986), ‘Separable two-dimensional discrete Hartley

transform’, Journal of the Optical Society of America A, vol. 3, no. 12, pp.

2001–2004.

[125] Otsu, N. (1975), ‘A threshold selection method from gray-level histograms’,

Automatica, vol. 11, no. 285-296, pp. 23–27.

[126] Demirkaya, O. & Asyali, M.H. (2004), ‘Determination of image bimodality

thresholds for different intensity distributions’, Signal Processing: Image Com-

munication, vol. 19, no. 6, pp. 507–516.



References 167

[127] The MathWorks Inc. (1998), ‘MATLAB user guide’, vol. 4.

[128] Fu, K.S. & Mui, J. (1981), ‘A survey on image segmentation’, Pattern recogni-

tion, vol. 13, no. 1, pp. 3–16.

[129] Haralick, R.M. & Shapiro, L.G. (1985), ‘Image segmentation techniques’,

Computer vision, graphics, and image processing, vol. 29, no. 1, pp. 100–132.

[130] Pal, N.R. & Pal, S.K. (1993), ‘A review on image segmentation techniques’,

Pattern recognition, vol. 26, no. 9, pp. 1277–1294.

[131] Zhang, Y.J. (1996), ‘A survey on evaluation methods for image segmentation’,

Pattern recognition, vol. 29, no. 8, pp. 1335–1346.

[132] Wark, T., Sridharan, S. & Chandran, V. (1998), ‘An approach to statistical

lip modelling for speaker identification via chromatic feature extraction’, in

‘Fourteenth International Conference on Pattern Recognition (ICPR 1998)’,

IEEE, vol. 1, pp. 123–125.

[133] Chiou, G.I. & Hwang, J.N. (1997), ‘Lipreading from color video’, IEEE Trans-

actions on Image Processing, vol. 6, no. 8, pp. 1192–1195.

[134] Xinjun, M. & Hongqiao, Z. (2015), ‘Lip segmentation algorithm based on

bi-color space’, in ‘34th Chinese Control Conference (CCC2015)’, IEEE, pp.

3776–3779.
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