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Abstract

We present our recent results on speech recognition by surface
electromyography (EMG), which captures the electric poten-
tials that are generated by the human articulatory muscles. This
technique can be used to enable Silent Speech Interfaces, since
EMG signals are generated even when people only articulate
speech without producing any sound. Preliminary experiments
have shown that the EMG signals created by audible and silent
speech are quite distinct. In this paper we first compare various
methods of initializing a silent speech EMG recognizer, show-
ing that the performance of the recognizer substantially varies
across different speakers. Based on this, we analyze EMG sig-
nals from audible and silent speech, present first results on how
discrepancies between these speaking modes affect EMG rec-
ognizers, and suggest areas for future work.
Index Terms: speech recognition, surface electromyography,
silent speech, articulation

1. Introduction
Automatic Speech Recognition (ASR) has now matured to a
point where it is successfully deployed in a wide variety of ev-
eryday life applications, including telephone-based services and
speech-driven applications on all sorts of mobile personal digi-
tal devices.

Despite this success, speech-driven technologies still face
two major challenges: first, recognition performance degrades
significantly in the presence of noise. Second, confidential and
private communication in public places is difficult due to the
clearly audible speech.

Both of these challenges may be approached by Silent
Speech Interfaces (SSI). A Silent Speech Interface is an elec-
tronic system enabling speech communication to take place
without the necessity of emitting an audible acoustic signal. In
the past years, several techniques were proposed to recognize
speech without producing clearly audible speech, among them
the recognition of whispered speech with a throat microphone
[1] or non-audible murmur with a special stethoscopic micro-
phone [2]. Other approaches include using optical or ultrasound
images of the articulatory apparatus, i.e. [3], or subvocal speech
recognition [4].

In this paper, we present our most recent investigations
in electromyographic (EMG) speech recognition, where the
activation potentials of the articulatory muscles are directly
recorded from the subject’s face via surface electrodes. This
approach has two major advantages: firstly, it is able to rec-
ognize completely silent speech, where not even a whispering
sound is uttered. Secondly, compared in particular to the opti-
cal or ultrasound approach, the required technology is relatively
lightweight and comes at a manageable price.

Research in the area of EMG-based speech recognition has
only a short history. In 2002, [5] showed that myoelectric
signals can be used to discriminate a small number of words.
The task of recognizing continuous speech via EMG was ap-
proached in 2006, when [6] showed that speaker dependent
recognition of continuous speech via EMG is possible. Recent
results include advances in acoustic modeling using a cluster-
ing scheme on phonetic features, which represent properties of
a given phoneme, such as the place or the manner of articula-
tion. In [7], we report that a recognizer based on such bundled
phonetic features performs more than 30% better than a recog-
nizer based on phoneme models only.

2. Purpose of This Study
With continuous-speech EMG recognition in place, tackling
variations in the EMG signal is the next major goal. One kind
of discrepancy arises with differences in the articulatory appara-
tus and varying tissue properties of multiple speakers and may
be addressed by adaptation methods [8]. In this paper we ad-
dress another source of variation in the EMG signal, namely the
one caused by different speaking styles. We distinguish audi-
ble EMG, i.e. EMG signals recorded on normally pronounced
speech, and silent EMG, i.e. signals from voicelessly mouthed
speech. Since the capability of recognizing silent speech is a
particular strength of EMG-based speech recognition, investi-
gating how speech modes affect articulation and, eventually, the
measured EMG signal, is of high interest to the silent speech re-
search community.

In [9] we performed cross-modal experiments for the first
time, i.e. we trained models on silent EMG and tested on audi-
ble EMG and vice versa. The results suggested that the EMG
signals are impacted by the speaking modality. Furthermore,
the cross-modal application gave better results for those speak-
ers who had experience in speaking silently. We assume that the
differences in audible versus silent EMG signals may stem from
a larger variability in articulation which might be due to a lack
of acoustic feedback when speaking silently. Therefore, we in-
vestigate in this paper on a larger number of subjects to what
extent silent and audible EMG signals differ and how these dif-
ferences impact the speech recognition performance. An exam-
ple of audible and silent EMG signals is shown in figure 1.

The process of human speech production is very complex
and subject to ongoing exploration, however it is widely ac-
cepted that acoustic feedback plays a major role in uttering in-
telligible speech. In [10], the authors argue that the articulation
process is defined by auditory targets, i.e. by phonemes which
the speaker desires to utter, and present experimental results
from American English which support this claim. The overview
article [11] even goes one step further in saying that the process
of speaking aims at achieving “sufficient perceptual contrast [...]



Figure 1: One-channel EMG signals for two sentences, audible:
upper row, silent: lower row.

with minimal effort”.
This means that when acoustic feedback fails, a major reg-

ulator for the articulation process is lacking. There exist stud-
ies which quantify the variability of articulation between dif-
ferent speaking modes. For example, in [12] the authors com-
pare the duration and intensity of whispered and normally pro-
nounced consonants, showing that whispered consonants have
a prolonged duration compared to normally spoken consonants
and asserting that these results are consistent across speakers.
Further works deal with the effect of a disrupted acoustic feed-
back on the speech production process, see i.e. [13] and the ref-
erences therein.

For the purpose of silent speech recognition, this means that
one has to find suitable methods of dealing with these articula-
tion differences. On the other hand, if a speaker is experienced
in speaking silently, it may remedy part of the problem. In this
paper we use a large corpus of audible and silent EMG record-
ings from many speakers (see section 3.1). We investigate sev-
eral methods of training an initial EMG recognizer for silent
speech and show that the recognition rates vary over a great
range depending on the speaker. Then we compare the EMG
signals of corresponding audible and silent utterances and show
how variations in the signal properties relate to the recognizer
accuracy when applied to silent speech.

The remainder of this paper is organized as follows: In sec-
tion 3, we present our data corpus and method of data acquisi-
tion, and in section 4 we give an overview of the experiments
we conducted on silent EMG recognition. The results section
is split in two parts: In section 4.1 we present our results on
different training approaches for silent EMG, while in section
4.2 we show the relation between EMG signal properties and
recognition rate. Section 5 concludes the paper.

3. Data Corpus and Experimental Setup
3.1. The EMG-PIT Data Corpus

During the years 2007 - 2008 we collected a large database of
EMG signals from 78 speakers. This collection was done in a
joint effort with colleagues from the Department of Communi-
cation Science and Disorders at University of Pittsburgh [14].
The resulting data corpus bears the name EMG-PIT; to the best
of our knowledge it is the largest corpus of EMG recordings of
speech so far.

The collection was done in two phases, a pilot study with
14 speakers, each recording two sessions, and a main study with
64 speakers each recording one session. Each session consisted
of two parts, one audible speech part and one silent speech part.
In each part we recorded one BASE set of 10 sentences which
were identical across all speakers, and one SPEC set of 40 sen-
tences which were recorded by this speaker only. These sen-
tence sets were the same for the audible and the silent speech
part, so that the database covers both speaking modes with par-
allel utterances. The total of 50 BASE and SPEC utterances in

each part were recorded in random order.
For EMG recording we used a computer-controlled 8-

channel EMG data acquisition system (Varioport, Becker-
Meditec, Germany). All EMG signals were sampled at 600 Hz.
We adopted the electrode positioning from [9] which yielded
optimal results. The audible utterances were simultaneously
recorded with a conventional air-transmission microphone.

This article reports results on the pilot study data only. As
in previous studies, we used the BASE sentences for testing and
the SPEC sentences as training sets.

In order to study articulation differences between trained
and untrained speakers, we augmented the EMG-PIT data by
one further session of one speaker who had recorded several au-
dible and silent speech EMG sessions before. In the following
experiments, this speaker bears the speaker number 15. For this
session we used the same recording setup as in the EMG-PIT
corpus, however the session consisted of 500 sentences, half
of which were pronounced audibly and the other half silently.
Each part of 250 sentences was split into 60 test sentences and
190 training sentences.

Thus the corpus of utterances which was used for this study
has the following properties:

Speakers 14 speakers 1 speaker
Sessions 2 sessions per

speaker
1 session

Average Length per session
(total) 467 seconds 3762 seconds

(audible) 231 seconds 1770 seconds
(silent) 236 seconds 1992 seconds
Domain Broadcast News

3.2. The EMG Recognizer

The initial EMG recognizer was taken from [6]. It used an
HMM-based acoustic modeling, which was based on fully
continuous Gaussian Mixture Models. All experiments used
bundled phonetic features (BDPFs) for the final training and
decoding. Phonetic features (PFs) represent properties of a
given phoneme, such as the place of articulation or the man-
ner of articulation. The architecture we employ for the PF-
based EMG decoding system is a multi-stream architecture [15],
which means that the models draw their acoustic probabilities
not from one single source, but from a weighted sum of vari-
ous sources which correspond to acoustic models representing
substates of PFs, like “middle of a vowel” or “end of a non-
fricative”. The conventional EMG phoneme-based recognizer
contributes as well.

Phonetic feature bundling [7] is the process of pooling de-
pendent features together, so that eventually we will end up
with a set of PF acoustic models which represent bundles of
PFs, like “voiced fricative” or “rounded front vowel”. The al-
gorithm which performs this pooling is a standard decision-tree
based clustering approach [16], as it is successfully used in large
vocabulary acoustic speech recognition to determine phoneme
context clusters. On our corpus, the best average word error rate
of this recognizer on audible utterances is 30.19%.

3.3. Feature Extraction

We use a feature extraction method based on time-domain fea-
tures [6]. We use the following definitions [6]: For any feature
f , f̄ is its frame-based time-domain mean, Pf is its frame-based
power, and zf is its frame-based zero-crossing rate. S(f, n) is
the stacking of adjacent frames of feature f in the size of 2n+1
(−n to n) frames.



For an EMG signal with normalized mean x[n], the nine-
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The rectified high-frequency signal is r[n] = |x[n] − w[n]|.
In baseline experiments with audible EMG, the best word error
rate is obtained with the following feature, which we use in this
study as well:

TD15 = S(f2, 15), where f2 = [w̄, Pw, Pr, zr, r̄].

3.4. Testing

For decoding, we use the trained acoustic model together with
a trigram BN language model. We restricted the decoding vo-
cabulary to the words appearing in the test set. This resulted in
a test set of 10 sentences per speaker with a vocabulary of 108
words.

4. Experiments
4.1. Initializing a Silent Speech EMG Recognizer

The first batch of experiments deals with initializing a recog-
nizer for silent speech EMG. This is a challenging task since in
order to initialize acoustic models representing sub-word units
(phonemes or phonetic features), one needs a time-alignment
of the training material, i.e. information about the phoneme
boundaries in the training utterances. Previous works on au-
dible EMG data used a conventional speech recognizer on the
parallely recorded audio stream in order to create such a time-
alignment and then forced-aligned the training sentences based
on this information, see [6] for a detailed explanation. However
for silent EMG, this method is unfeasible, and information on
the phoneme boundaries is not readily available.

We investigate the following methods for creating a silent
speech EMG recognizer. All of these methods rely on the fact
that we have parallely recorded audible and silent utterances.

• Cross-Modal Testing: We train the recognizer on audible
EMG and test it on silent EMG, so there is no training
or adaptation to silent EMG. However, this method is
clearly suboptimal if EMG signals for silent mode differ
from those in audible mode.

• Cross-Modal Labeling: We use trained models from au-
dible EMG to create a time-alignment for the silent EMG
data. Then we forced-align the silent EMG data based on
this information and do a full training run. This means
that we create specific acoustic models for silent EMG.

• Mapped Labels: A direct way to obtain a time-alignment
for silent EMG recordings is considering the correspond-
ing audible utterance and mapping the phoneme bound-
aries on the corresponding silent utterance. This involves
compensating for different utterance lengths as well as
determining the exact speech onset and offset.
In order to obtain exact boundaries of the utterances,
we use an HMM-based silence detector which only
trains two acoustic models, namely “silence” and “non-
silence”. Testing this recognizer on audible EMG data,
using the audio time-alignment as ground truth, shows
that the average absolute error of this silence detector is
14.69 milliseconds, which is less than 9 samples of the
raw EMG signal.

With this information, we paired up the audible and the
silent utterance from the same speaker with the same
content. Then we mapped the time-alignment from the
audible utterance to the silent utterance, compensating
for differing lengths by linearly growing or shrinking the
phoneme lengths.

• Speech synthesis: A completely different way of han-
dling EMG signals is presented in [17], where it is shown
that a GMM-based transformation from the EMG sig-
nal to an audio signal can be trained. We therefore used
the transformed audio data from these experiments to
train and test a conventional speech recognizer based on
MFCCs, using BDPF acoustic modeling as for the EMG
recognizer.

The resulting word error rates are charted in figure 2 and
show that Cross-Modal Labeling generally gives the best results
so far. While for the majority of speakers the word error rates
(WER) exceed 80%, we find that in particular for speakers 6
and 11, the word error rates are in a reasonable range, and that
for speaker 15, who is the one speaker who had recorded several
silent speech sessions before, the best WER achieved on silent
EMG is 30.10%, which is about the same as for the audible
utterances of this speaker.
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Figure 2: Word Error Rates per Speaker and Session for Differ-
ent Recognizer Initialization Methods

From having such a large variance in error rates, one can
conclude that the properties of audible and silent articulation
greatly vary across speakers. In particular, the good result for
speaker 15 supports the assertion in [9] that training to articu-
late silent speech leads to better results. In the following sec-
tion, we investigate the differences between audible and silent
EMG recordings and give some suggestions as to what makes
this difference.

4.2. Analysis of Silent vs Audible EMG Signals

As a first step, we paired corresponding audible and silent ut-
terances and compared their respective durations. The results
are charted on the left-hand side of figure 3 and show a high
correlation between the durations of corresponding audible and
silent utterances. The correlation coefficient is 0.77.

Next, we analyzed the average time-domain magnitude of
EMG channel 1, again for corresponding utterances. This chan-
nel is particularly interesting since it mainly reflects the opening
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Figure 3: Comparison between durations (left) and time-
domain means (right) of corresponding audible and silent ut-
terances, with regression lines. The dots are labeled with re-
spect to speaker-wise WERs. circle: WER < 60%, diamond:
60% < WER < 80%, star: 80% < WER < 90%, cross:
WER > 90%.

and closing of the mouth, giving an estimate of the power the
speaker puts into articulation. The result is charted on the right-
hand side of figure 3 and shows a more interesting picture: One
sees that on average, the magnitude of silent utterances is sig-
nificantly lower than that of corresponding audible utterances.
The correlation coefficient is 0.36. Interestingly, one gets a very
similar graph when one charts the average magnitude of corre-
sponding utterances from session 2 vs session 1 of one speaker,
which may be explained be the fact that after about two hours
of recording, the speakers got tired or lost concentration.

Based on this observation, in figure 4 we chart the absolute
difference of the average magnitudes of audible and silent ut-
terances versus the utterance-based Word Error Rate. One sees
that while for utterances with high Word Error Rate, the differ-
ences are almost uniformly distributed in a rather wide range,
for most “good” utterances with low WER the distance of the
average magnitudes is quite low.
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Figure 4: Utterance-based Absolute Deviation of EMG Channel
1 versus Word Error Rate

5. Conclusions
In this paper we presented first results on training and testing
continuous-speech EMG-based recognizers for silent speech,
comparing four different methods for initializing such a recog-
nizer. Our findings show that initializing such a recognizer is
possible, however variance in articulation between audible and
silent EMG is still a major problem to be overcome.

Observing that the WER of a silent speech EMG recognizer
varies substantially across different speakers, with the best re-
sults for the most experienced speaker, we analyzed the utter-
ances in our corpus, pointing out that comparing corresponding
utterances, audible EMG generally has a higher signal magni-
tude than silent EMG. This information can on the one hand be
used to further investigate how to map from audible EMG sig-

nals to silent EMG signals; on the other hand it could also be
used to provide feedback on a subject’s articulation for diagnos-
tic purposes.
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