1,741 research outputs found

    Community-driven dispersal in an individual-based predator-prey model

    Get PDF
    We present a spatial, individual-based predator-prey model in which dispersal is dependent on the local community. We determine species suitability to the biotic conditions of their local environment through a time and space varying fitness measure. Dispersal of individuals to nearby communities occurs whenever their fitness falls below a predefined tolerance threshold. The spatiotemporal dynamics of the model is described in terms of this threshold. We compare this dynamics with the one obtained through density-independent dispersal and find marked differences. In the community-driven scenario, the spatial correlations in the population density do not vary in a linear fashion as we increase the tolerance threshold. Instead we find the system to cross different dynamical regimes as the threshold is raised. Spatial patterns evolve from disordered, to scale-free complex patterns, to finally becoming well-organized domains. This model therefore predicts that natural populations, the dispersal strategies of which are likely to be influenced by their local environment, might be subject to complex spatiotemporal dynamics.Comment: 43 pages, 7 figures, vocabulary modifications, discussion expanded, references added, Ecological Complexity accepte

    Survival benefits in mimicry: a quantitative framework

    Get PDF
    Mimicry is a resemblance between species that benefits at least one of the species. It is a ubiquitous evolutionary phenomenon particularly common among prey species, in which case the advantage involves better protection from predation. We formulate a mathematical description of mimicry among prey species, to investigate benefits and disadvantages of mimicry. The basic setup involves differential equations for quantities representing predator behavior, namely, the probabilities for attacking prey at the next encounter. Using this framework, we present new quantitative results, and also provide a unified description of a significant fraction of the quantitative mimicry literature. The new results include `temporary' mutualism between prey species, and an optimal density at which the survival benefit is greatest for the mimic. The formalism leads naturally to extensions in several directions, such as the evolution of mimicry, the interplay of mimicry with population dynamics, etc. We demonstrate this extensibility by presenting some explorations on spatiotemporal pattern dynamics.Comment: 9 pages, 7 figure

    Spatiotemporal pattern induced by self and cross-diffusion in a spatial Holling-Tanner model

    Get PDF
    In this paper, we have made an attempt to provide a unified framework to understand the complex spatiotemporal patterns induced by self and cross diffusion in a spatial Holling-Tanner model forphytoplankton-zooplankton-fish interaction. The effect of critical wave length which can drive the system to instability is investigated. We have examined the criterion between two cross-diffusivity (constant and timevarying)on the stability of the model system and for diffusive instability to occur. Based on these conditions and by performing a series of extensive simulations, we observed the irregular patterns, stationary strips, spots, and strips-spots mixture patterns. Numerical simulation results reveal that the regular strip-spot mixture patterns prevail over the whole domain on increasing the values of self- diffusion coefficients of phytoplankton and zooplankton and the dynamics of the system do not undergo any further changes

    Bifurcation analysis of a predator-prey system with self- and cross-diffusion and constant harvesting rate

    Get PDF
    In this paper, we focus on a ratio dependent predator-prey system with self- and cross-diffusion and constant harvesting rate. By making use of a brief stability and bifurcation analysis, we derive the symbolic conditions for Hopf, Turing and wave bifurcations of the system in a spatial domain. Additionally, we illustrate spatial pattern formations caused by these bifurcations via numerical examples. A series of numerical examples reveal that one can observe several typical spatiotemporal patterns such as spotted, spot-stripelike mixtures due to Turing bifurcation and an oscillatory wave pattern due to the wave bifurcation. Thus the obtained results disclose that the spatially extended system with self-and cross-diffusion and constant harvesting rate plays an important role in the spatiotemporal pattern formations in the two dimensional space

    Cross-diffusion driven instability in a predator-prey system with cross-diffusion

    Full text link
    In this work we investigate the process of pattern formation induced by nonlinear diffusion in a reaction-diffusion system with Lotka-Volterra predator-prey kinetics. We show that the cross-diffusion term is responsible of the destabilizing mechanism that leads to the emergence of spatial patterns. Near marginal stability we perform a weakly nonlinear analysis to predict the amplitude and the form of the pattern, deriving the Stuart-Landau amplitude equations. Moreover, in a large portion of the subcritical zone, numerical simulations show the emergence of oscillating patterns, which cannot be predicted by the weakly nonlinear analysis. Finally when the pattern invades the domain as a travelling wavefront, we derive the Ginzburg-Landau amplitude equation which is able to describe the shape and the speed of the wave.Comment: 15 pages, 5 figure

    Existence of spatial patterns in reaction–diffusion systems incorporating a prey refuge

    Get PDF
    In real-world ecosystem, studies on the mechanisms of spatiotemporal pattern formation in a system of interacting populations deserve special attention for its own importance in contemporary theoretical ecology. The present investigation deals with the spatial dynamical system of a two-dimensional continuous diffusive predator–prey model involving the influence of intra-species competition among predators with the incorporation of a constant proportion of prey refuge. The linear stability analysis has been carried out and the appropriate condition of Turing instability around the unique positive interior equilibrium point of the present model system has been determined. Furthermore, the existence of the various spatial patterns through diffusion-driven instability and the Turing space in the spatial domain have been explored thoroughly. The results of numerical simulations reveal the dynamics of population density variation in the formation of isolated groups, following spotted or stripe-like patterns or coexistence of both the patterns. The results of the present investigation also point out that the prey refuge does have significant influence on the pattern formation of the interacting populations of the model under consideration
    • …
    corecore