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Survival benefits in mimicry: a quantitative framework

Alexey Mikaberidze and Masudul Haque
Max Planck Institute for the Physics of Complex Systems,

Noethnitzer Strasse 38, 01187 Dresden, Germany

Mimicry is a resemblance between species that benefits at least one of the species. It is a ubiquitous
evolutionary phenomenon particularly common among prey species, in which case the advantage
involves better protection from predation. We formulate a mathematical description of mimicry
among prey species, to investigate benefits and disadvantages of mimicry. The basic setup involves
differential equations for quantities representing predator behavior, namely, the probabilities for
attacking prey at the next encounter. Using this framework, we present new quantitative results,
and also provide a unified description of a significant fraction of the quantitative mimicry literature.
The new results include ‘temporary’ mutualism between prey species, and an optimal density at
which the survival benefit is greatest for the mimic. The formalism leads naturally to extensions
in several directions, such as the evolution of mimicry, the interplay of mimicry with population
dynamics, etc. We demonstrate this extensibility by presenting some explorations on spatiotemporal
pattern dynamics.

I. INTRODUCTION

Similarity between coexisting prey species is widely ob-
served in nature. A less defended prey species, e.g., a less
poisonous or more palatable species, may gain survival
advantage by resembling a better defended prey species.
Following the literature, we will refer to the lesser de-
fended species as ‘mimic’ and the better defended one as
‘model’. Mimicry, being a prime example of evolution
by natural selection, is a key topic in evolutionary the-
ory and has been analyzed as such since Darwin’s time;
some historical perspective is provided in Refs. [1, 2, 3, 4].
Mimicry is also the subject of a growing number of exper-
imental studies [5, 6, 7, 8, 9]. Despite its importance in
evolutionary theory, mimicry has not received extensive
treatment in the mathematical biology literature. In this
article, we formulate a continuum framework describing
the basic dynamics of mimicry and predation, which can
serve as the foundation for a more quantitative direction
of mimicry investigations.
The basic phenomenon of mimicry immediately raises

a number of intriguing questions. Can the presence of a
lesser-defended mimic species actually be advantageous
to the unpalatable model? More broadly, what are the
conditions for mimicry to be mutualistic rather than par-

asitic? Given fixed (un)palatabilities of each prey species
and a certain population density of the model, what pop-
ulation density would provide optimal protection for the
mimic species? These questions are already nontrivial in
the simplified situation with two prey and one predator
species, even in the absence of population dynamics, spa-
tial variations, etc. In its full glory, mimicry dynamics
presents a vast array of fascinating questions and phe-
nomena. Only a small fraction of this promising field has
been considered quantitatively.
Mathematical modeling of mimicry benefits appears

already in Müller’s original nineteenth-century work (cf.
Refs. [1, 4]). More recently, some quantitative questions
have been addressed mainly through computer simula-
tion [10, 11, 12, 13, 14, 15, 16, 17, 18]. Nevertheless, there

is a relative shortage of mathematically well-defined ques-
tions and fully quantitative treatments, which we aim to
address in this work.

We focus first on the simplest possible case, namely,
two prey species and a predator species, with unlimited
populations and constant densities n1 and n2 that are not
depleted by predation. The predator attacks prey (model
and mimic) at each encounter with probabilities P1 and
P2. Predator learning is encoded via the modifications of
P1 and P2 due to each attack event. The basic dynamics
is illustrated schematically in Figure 1. Since the simplest
version does not include population dynamics, the only
dynamical variables are the attack probabilities P1 and
P2. In computer simulations, each predator (in a preda-
tor ensemble) is associated with its own P1, P2 values.
These values are modified via certain rules each time that
predator attacks a prey. For our formulation, we also as-
sume a large enough number of predators such that only
average P1(t), P2(t) values are relevant. This allows us
to write down differential equations for these dynamical
variables. The resulting continuum description provides
a context in which questions can be posed and answered
with mathematical rigor. In addition to the questions we
examine here for the simplified scenario, the framework
also allows easy extension to more complex cases, such
as varying population densities, spatial inhomogeneities
and pattern formation, additional species, etc.

In several important cases, our differential equations
allow exact analytic expressions for the time dependent
functions P1(t), P2(t). These solutions reveal new effects,
such as (1) transient answers to the mutualistic/parasitic
question, which have strong implications for the interpre-
tation of mimicry experiments; (2) an optimum density of
palatable mimics at which mimicry most effectively pro-
vides survival benefits to the mimic. Our exact solutions
also place on a firm mathematical footing and provide
clearer understanding of some existing computer simu-
lation results, such as the role of predator memory. In
addition, we exploit the easy extensibility of our formula-
tion to incorporate simple spatial dynamics and explore

http://arxiv.org/abs/0809.0391v1
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FIG. 1: Predation and learning processes. The predator en-
counters prey at rates n1 and n2, and attacks them according
to the probabilities P1 and P2 that characterize its behavior.
Each attack event leads to learning, i.e., a modification of P1

and P2.

spatiotemporal density patterns — we report a “trans-
mission” effect of spatial patterns between prey densities.
Some further applications are presented in the appendix.

II. THE MATHEMATICAL FRAMEWORK

The probability for a predator to encounter a model
or mimic species is determined by their densities n1 and
n2. We choose units such that n1, n2 are the encounter
probabilities per unit time. Our dynamical variables are
Pi(t), the attack probabilities at each encounter. (The
index i runs over values 1 for the model and 2 for the
mimic.)
The degree of defense for the model and mimic is char-

acterized by “palatabilities” λ1 and λ2, which are the
asymptotic attack probabilities for an infinite-memory
predator trained by an infinite number of attack events.
A larger λi indicates a more palatable prey. As the
mimic species emulates a more defended model species,
we will use λ1 ≤ λ2. Since λi are probabilities, they
are restricted to lie between 0 and 1. We will use
P1(0) = P2(0) = P0 = 0.5 for the initial (näıve or “un-
trained”) attack probabilities.
Predator learning is modeled through the influence of

attack events on P1 and P2 (figure 1). After a predator
attacks a model, its P1 value moves toward its asymp-
totic value λ1, by an amount determined by the learning
coefficient α:

P1
model attacked
−−−−−−−−−−→ P1 + α[λ1 − P1], (1)

Since the predator cannot perfectly distinguish between
model and mimic, the model attack probability also
changes after a mimic attack event:

P1
mimic attacked
−−−−−−−−−−→ P1 + rα[λ2 − P1]. (2)

Here r is a resemblance coefficient representing the qual-
ity of mimicry; r = 0 means no resemblance and r = 1
means perfect resemblance. Since the average number of

models attacked per unit time is n1P1 (figure 1), the
model attack event of equation 1 contributes a term
n1P1 × α(λ1 − P1) to the rate of change of P1. With
a similar contribution from equation 2, we obtain

dP1

dt
= αn1P1[λ1−P1]+rαn2P2[λ2−P1]+γ[P0−P1] . (3)

In addition to the predator learning in equations (1,2),
we have also included a “forgetting” term, quantified by a
forgetting parameter γ. In the absence of learning events,
the attack probability decays to the näıve value P0 = 0.5.
Similarly, for the mimic attack probability:

dP2

dt
= αn2P2[λ2−P2]+rαn1P1[λ1−P2]+γ[P0−P2] . (4)

The analysis presented in this article is based on the
coupled nonlinear equations (3,4) and variations or ex-
tensions thereof. Unless otherwise specified, we will gen-
erally be using α = 1, n1 = n2 = 0.5.
The leading terms of (3,4) have the form of logistic

equations well-known in population dynamics. However,
our equations are for probabilities representing predator
decision-making (not for populations or densities) and
are based on quite different considerations.
In addition to the attack probabilities, another infor-

mative quantity in judging the benefits/losses of mimicry
is the prey mortality, i.e. the number of prey that have
been attacked by the time t:

Ni(t) =

∫ t

0

niPi(t
′)dt′ , [i = 1, 2] . (5)

This quantity is particularly relevant in making contact
with experimental data where mimicry advantages are
usually reported in terms of prey mortalities [5, 7]. To
quantify mimicry benefits, we will more often use the
“favorability” ratio

f
(r)
i

(t) = P
(r=0)
i

(t) / P
(r)
i

(t) , (6)

especially its asymptotic value fi(t → ∞). This ratio
compares attack rates in non-resembling (r = 0) and re-
sembling (r > 0) cases Mimicry is beneficial to model
(mimic) if f1 > 1 (f2 > 1).

III. CONTEXT: ASSUMPTIONS AND
RELEVANCE

A. Predator psychology

Obviously, the equations (3,4) make strong assump-
tions about the predation process. Learning and forget-
ting of avoidance are quantified through simple and rea-
sonable rules. However, other rules could be argued to
be equally reasonable (c.f., [4, 15, 19] for detailed discus-
sions). One alternative point of view [1, 2, 11] is that the
asymptotic attack probability for defended prey should
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FIG. 2: Results for infinite memory (γ = 0).
(a,b) Attack probabilities for palatable mimic, λ1 = 0.1,
λ2 = 0.7.
(a) Dashed, dotted: r = 0, 0.4. In each pair, lower (upper)
curve represents model (mimic). Solid curve is r = 1 proba-
bility, common for mimic and model.
(b) Dependence on resemblance. Dash-dot: αt = 1, solid:
asymptotic. Model and mimic curves merge at r = 1.
(c-e) Unpalatable mimic, λ1 = 0.1, λ2 = 0.4.
In (c,d), dashed pair are r = 0 curves (upper: mimic, lower:
model), and solid curves are common r = 1 quantities.
(c) Attack probabilities. The solid r = 1 curve crosses the
lower dashed (model) r = 0 curve at time TM up to which
mutualism persists. Mutualism corresponds to solid r = 1
curve being lower than both dashed r = 0 curves.
(d) Mortalities. Also displays the same transient phe-
nomenon via a crossing of r = 1 and model r = 0 curves.
(e) Dependence on resemblance. Dash-dot: αt = 5, solid:
asymptotic. The negative slope of the model (lower dash-dot)
curve at finite time indicates the transient mutualism.

be always zero, and that the degree of defense (palatabil-
ity) should be quantified only by differences in the learn-
ing rates α. Müller’s original analysis also implicitly uses
this picture of learning [1, 4]. Such a situation is conceiv-
able when the predator has ample alternative sources of
nourishment. Although our equations can be easily mod-
ified to incorporate such a picture of learning, we will here
restrict ourselves to the case of nonzero asymptotic attack
probabilities. This is supported by experiment [19], and
presumably reflects the common situation where preda-
tor species are not fully saturated through alternate prey.

Predator behavior is an active topic of research and is
not yet fully understood or characterized (c.f., Refs. [4,
18, 20, 21]). Given the present level of understanding,
it is reasonable to use the simplest way of quantifying
predator training. Accordingly, we have mostly left out
palatability-dependences of the learning rates, α(λ) = α,
and also used the simplest description of forgetting. In

the appendix, we include some variations of these simple
assumptions when we seek to make generic statements,
such as the (non)existence of mutualism with palatable
prey. Refs. [14, 16, 17] describe various learning and
forgetting rules used in the literature.

B. The palatability spectrum

One extreme of mimicry is the case where the mimic
lacks defenses, i.e., is palatable, so that mimicry is par-
asitic with no benefit to the model. This is known as
Batesian mimicry. At the other extreme, the two prey
species could be equally defended, so that mimic and
model are interchangeable labels. This is known as Muel-
lerian mimicry. More interesting cases involve unequally
defended prey, constituting a spectrum between the two
extremes [17].

C. Benefits versus losses

Parasitism versus mutualism is a major theme of the-
oretical ecology (e.g., [22]). In the mimicry context, the
benefit/loss issue has been discussed with computer sim-
ulations, but unfortunately has not received as thorough
a mathematical treatment as in other contexts. A formu-
lation like the one we present in this Article is a necessary
step in this direction.

D. Evolutionary implications

The issue of benefits versus losses in mimicry phe-
nomena is important from an evolutionary perspective;
there are vital implications for warning color diversity
and polymorphism phenomena [1, 2, 3, 4, 23, 24]. Our
setting is well suited for addressing the basic question
of whether mimicry is mutualistic or parasitic. A full
quantitative study of evolutionary implications requires
a more involved (perhaps multi-generation or many-
species) framework. In the Supplementary Information
we show how our formalism can be extended to address
some of these themes.

E. Differential equation formulation

Our formulation is a continuum one, in contrast to
the individual-predator simulations that have dominated
theoretical mimicry studies. Such a setup opens up many
new possibilities. It affords exact solubility for several
important cases, even in the presence of forgetting. The
formulation allows easy extension in several directions,
such as spatial inhomogeneity, as we report below. It al-
lows analytic tools, such as pattern formation theory, to
be applied directly to such extensions. In addition, dif-
ferential equations encourage us to study the complete
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predator training process, i.e., to focus on the dynam-
ical aspects of mimicry. This is in contrast to existing
literature which focuses on steady-state situations where
the predator is already fully trained, which corresponds
to the asymptotic behavior of our solutions.

IV. EXAMPLE APPLICATIONS

A. Infinite predator memory

We first report the dynamics of predator training with
unlimited memory, γ = 0. With no resemblance (r = 0),
equations (3,4) are not coupled and reduce to the logistic
equation:

dPi

dt
= αniPi [λi − Pi], (7)

which yields exact solutions for attack probabilities and
mortalities:

Pi(t) =
λiP0

P0 − (P0 − λi) exp(−αniλit)
, (8)

Ni(t) =
1

α
ln[P0(exp(αniλit)− 1) + λi]− lnλi/α . (9)

The Pi(t) here are logistic functions. The prey mortality
grows linearly at small times (Ni ∼ niP0t) and also at
asymptotically large times (Ni ∼ niλit), with mortality
rates determined respectively by näıve and asymptotic
attack probabilities (P0 and λi).
For perfect resemblance, r = 1, the solutions P1(t) and

P2(t) are synchronized. Equations (3,4) collapse to one
equation:

dP

dt
= α (n1 + n2)P [λ̄− P ] , (10)

where P = P1 = P2, and λ̄ = (n1λ1 + n2λ2)/(n1 + n2).
The P (t) and mortalities for r = 1 are given by the same
equations (8,9) as in the r = 0 case, with ni and λi

replaced by (n1 + n2) and λ̄ respectively.
Figure 2(a,c,d) displays typical time-dependences for

attack probabilities and mortalities. The Pi(t) start at
their näıve value P0 = 0.5 and tend to their asymptotic
values, equal to λ1 and λ2 for non-resembling prey and
to λ̄ for the case of perfect resemblance.
For imperfect mimicry, 0 < r < 1, the asymptotic so-

lutions can still be found analytically, as the fixed points
of the dynamical equations. It is also easy to obtain the
complete time dependence numerically. Attack proba-
bilities and mortalities vary monotonically between the
perfect and zero resemblance cases described above (fig-
ure 2b and 2e). A negative slope of a Pi versus r curve
indicates that mimicry is beneficial for that prey species.

B. Asymptotes and transients

The infinite-memory equations predict that the pres-
ence of mimics is always harmful for models at suffi-
ciently large times – the asymptotic model attack prob-
ability for r > 0 is always larger than that for r = 0,

i.e., P
(r>0)
1 (∞) > P

(r=0)
1 (∞). In other words, with this

simplest version of predator psychology, mimicry is al-
ways parasitic in the long run, unless the prey species
are equally defended (λ1 = λ2).
However, our exact solutions display a surprising tran-

sient behavior, namely, for unpalatable but less-defended
mimics (λ1 < λ2 < P0), there is a finite time (TM) up
to which mimicry can be favorable to the model, as dis-
played in figure 2c-e. In the transient regime t < TM,
the slope dP1/dr for the model is negative. This tran-
sient mutualistic effect has not appeared previously in
the literature, and has significant implications for the in-
terpretation of mimicry experiments.
The appendix describes the extent of the transient

regime in more detail.

C. The predators forget

The inclusion of forgetting in the predator learning
process has vital consequences for mutualism in mimicry.
Some aspects, e.g., comparison of various memory mech-
anisms, have been treated through computer simulations
[13, 14, 16, 17]. Our formalism gives exact equations that
quantify effects of finite predator memory, and reveals
new effects. In particular, we explore the question of mu-
tualism as a function of the rate of forgetting γ. We find
a critical value of the forgetting parameter above which
mimicry becomes asymptotically favorable to model.
We reinstate the memory parameter γ in equations

(3,4). With no resemblance (r = 0), the decoupled equa-
tions have exact solutions

Pi =
1

2αni

(

bi +Ai tanh

[

At

2
− atanh

[ bi − 2αniP0

Ai

]

]

)

,

(11)

where bi = αniλi − γ and Ai =
√

4γP0niα+ bi
2. The

asymptotic value is

Pi(t → ∞) = λi/2 +
Ai − γ

2αni

. (12)

Not surprisingly, γ shifts the asymptotic attack prob-
ability from λi toward the näıve value P0. As in the
γ = 0 case, the perfect resemblance (r = 1) solution
(P = P1 = P2) can be obtained from the r = 0 solutions
above, via ni → (n1 + n2) and λi → λ̄.
The finite-memory learning process is illustrated by

Pi(t) curves in figures 3a,c. Figures 3a,b show a case
with only transient mutualism. Figures 3c and 3d in-
volve parameters (larger γ, smaller λ2) where mimicry
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FIG. 3: Finite memory (γ 6= 0), λ1 = 0.1.
(a,b) No asymptotic mutualism, λ2 = 0.4, γ = 0.1. (c,d) Asymptotic mutualism, λ2 = 0.15, γ = 0.2.
In (a) and (c) dashed lines show r = 0 cases (lower - model, upper - mimic); solid lines show r = 1 probabilities common to
model and mimic. Note that (b,d) show asymptotic attack rates P (∞) only. The positive and negative signs of dP1/dr [slopes
of lower curves in (b) and (d)] represent parasitism and mutualism respectively.
(e) Asymptotic model favorability. Solid, dashed, dash-dot: λ2 = 0.15, 0.3, 0.4. Parameters corresponding to (a,b) and (c,d)
are marked with circle and square respectively.
(f) Solid curve, f1(γmin) = 1, separates mutualistic and and parasitic mimicry, dotted line indicates parameters optimum for
model where f1(γ) has a maximum.

is mutualistic at all times. Figure 3e shows the asymp-
totic model favorability f1 as a function of the forgetting
rate γ. There is a threshold γ = γmin above which the
mimicry is mutualistic (f1 > 1), and an optimum value
at which f1 > 1 is maximum (3e and 3f).

D. Optimum density

We now consider variable prey densities. We have
found that the benefit of resemblance to the mimic can
depend non-monotonically on the mimic density. In par-
ticular, for palatable mimics, λ2 > P0, there is an opti-

mum density, at which the asymptotic mimic favorability
has a maximum. Again, our formulation provides an ex-
plicit expression describing this phenomenon:

f
(r=1)
2 (∞) =

λ2/2 + (A2 − γ)/2αn2

λ̄/2 + (Ā− γ)/[2α(n1 + n2)]
. (13)

In figure 4a, we plot the favorability against the relative
mimic density δ = n2/n1, where n1+n2 = 1 is fixed. The
non-monotonic behavior is robust; the optimum density
δmax has very weak dependence on the resemblance r.
The dependences of δmax on λ2 and γ are shown in figure
4b,c.
A prior example of non-monotonic density dependence

[2, 10, 16] required unpalatable mimics (λ2 < P0) and
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FIG. 4: Non-monotonic dependence on mimic density.
(a) Mimic favorability f2 versus relative mimic density δ =
n2/n1 (equation 13). Here λ1 = 0.1, γ = 0.1, n1 + n2 = 1.
Dotted, dashed, dash-dot, solid: λ2 = 0.3, 0.6, 0.8, 1.0. A
maximum appears at large λ2.
Insets show the optimum mimic density as a function of
(b) model palatability λ2; (c) forgetting parameter γ.
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complicated forgetting rules. For example, the “vari-
able forgetting” of Ref. [16] in our language would imply
density-dependent γ. In contrast, we have found non-
monotonic features and optima with a simple and trans-
parent description of forgetting.
Understanding the density-dependence of mimicry

benefits is crucial for studying mimicry together with
population dynamics and evolution. A more detailed ac-
count of the density-dependence is provided in the ap-
pendix.

E. Spatiotemporal dynamics and patterns

One attraction of our formulation is the ease of ex-
tension to studying spatiotemporal dynamics. We have
tried the simplest cases of one-dimensional spatial depen-
dence, with the densities ni(x, t) having growth and/or
diffusion dynamics compensating the losses due to preda-
tion. This already supports a dramatic “pattern trans-
mission” phenomenon, an example of which is shown in
figure 5. Equations (3,4) for Pi(x, t) (with γ = 0) were
supplemented by prey density equations:

∂tn1(x, t) = −β1n1(x, t)P1(x, t) + β̃1 + D1∇
2n1(x, t) ,

(14)

∂tn2(x, t) = −β2n2(x, t)P2(x, t) + β̃2 + D2∇
2n2(x, t) .

(15)

A constant growth rate (β̃i) is not extremely realistic but
should be regarded as an effective description that pro-
vides a simple mechanism for constant nonzero asymp-
totic densities. The phenomenon we emphasize (transfer
of inhomogeneity from one prey density to the other) is
robust for a variety of growth and diffusion terms.
We find that a spatial variation (e.g., modulation) in

the initial mimic density induces a spatial variation in
model density, even when the two densities are not di-
rectly coupled. The predation (P1, P2 variables) mediate
a coupling between the two prey species. The induced
variation is “out of phase” for parasitic mimicry , i.e.,
a bump in mimic density causes a dip in model density,
and “in-phase” for mutualistic cases. Figure 5 shows a
parasitic example (λ1 = 0.1, λ2 = 0.8). The β̄i and Di

terms eventually smooth out all modulations. In figure
5, after the mimic modulation has died out the first time
(αt ≈ 5.3), the model density pattern in turn induces a
modulation in the mimic density. Because mimicry is fa-
vorable to the mimic species, the re-induced modulation
is now in-phase, opposite to the original mimic distri-
bution. Figure 5 uses Di = 0; diffusion accelerates the
smoothening process but the transmission effect is not
qualitatively affected.
For the parameters we explored, there was no spon-

taneous pattern formation. However, our setup, when
extended in spatial dimensions and additional dynamical
processes, is clearly capable of a rich set of phenomena,
waiting to be explored. In particular, equations (3,4)
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FIG. 5: Pattern transmission: an initial spatial modulation
of the mimic density is transfered to the model density, and
then transmitted back to the mimic density with opposite the
original phase.
The densities are of the form n(x, t) = n̄(t) + δn(t) cos(kx).
Main curves show modulation amplitudes δn. The sign of δn
indicates phase relative to the initial mimic modulation.
Six insets show model (upper) and mimic (lower) density pro-
files, at times (top row) t = 0, 2, 4 and (lower row, note dif-
ferent scale) t = 6, 10, 15.
(Parameters: r = 0.9, β1 = β2 = 1.0, β̄1 = 0.3, β̄2 = 0.15.)

already contain “reaction” terms of the form −P1P2; it
is therefore quite likely that spatial diffusion can induce
patterns in some geometries, via, e.g, the Turing reaction-
diffusion mechanism. Our framework provides the per-
fect setting for using the techniques of pattern formation
theory [25] to analyze such phenomena.

V. CONCLUSIONS

The topic of mimicry has received less mathemati-
cal attention than could be expected from its central
importance to issues in evolutionary theory such as
polymorphism and biodiversity. We have presented a
framework which, although simple, has the advantage
of being amenable to rigorous analysis and to exten-
sions in various directions. In this regard, we recall
the Lotka-Volterra equations in the mathematical study
of predator-prey number dynamics, which are by them-
selves too simple to describe any ecological reality, but
nevertheless provide the foundation for a vast area of
theoretical ecology, due to their mathematical simplicity
and rigor, and extensibility. We hope that our work will
similarly stimulate quantitative developments in mimicry
analysis.
Since the prime attraction of our formalism is its easy

extensibility, we end by discussing three promising direc-
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tions.
First, as illustrated through one example in figure 5,

the inclusion of spatial dynamics opens fascinating pat-
tern dynamics possibilities. Spatial distributions and mo-
saic structures in mimicry are active topics of ecologi-
cal research [27, 28, 29, 30, 31]; our formalism provides
the groundwork for a unified mathematical treatment of
some of the many intriguing phenomena.
Second, through the dynamics of our resemblance (r)

parameter, our setup allows a basic description of evo-
lutionary dynamics. (Some discussion is provided in the
appendix). Incorporating more intricate descriptions of
the evolution of resemblance remains an important open
direction for future study.
Finally, with relatively small manipulations of our ba-

sic equations, experiments on mimicry can be modeled
quantitatively. In this regard, the dramatic transient so-
lutions we have provided may well turn out to be vital.
For example, in a recent experiment [7], mutualistic be-
havior was found despite unequal prey defenses. Within
our simple learning and forgetting rules, this can already
have two different explanations: (a) the reported mutu-
alism could be due to the transient effect described in
figure 2c-e; (b) the observed mutualism could be a true
asymptotic effect like the one found in the finite-memory
cases, figure 3c-f. Since Ref. [7] records data after a fixed
mortality, it is not immediately obvious which period of
the training dynamics the data corresponds to. How-
ever, the basic analysis of this article already provides a
framework within which such questions can be addressed.
The interpretation of experimental data is thus one more
promising application of our work.

APPENDIX

In the appendix we describe

1. the time up to which transient mutualism exists;

2. dependence on mimic density;

3. further applications of our formalism.

1. Transient mutualism

With infinite-memory predators, we have shown that
although mimicry is not mutualistic (favorable to both
prey species) in the long run, there is a part of the train-
ing period where temporary mutualism holds. In figure 6,
we explore this phenomenon further by plotting the time
(TM) up to which transient mutualism persists, against
various parameters. The parameter TM is defined picto-
rially in figure 2 of the main text.
The plot against the resemblance parameter r shows

(figure 6a) that the phenomenon is very robust. The
transient time TM changes little when the resemblance is
varied from perfect to almost non-existent.

0 0.5 1

r
0

5
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15

TM

0 0.5

λ2

0

10

20

30

0 0.04 0.08
γ

0

10

20

30

40

(b)(a) (c)

FIG. 6: Time, TM, up to which transient mutualism persists.
(a) Plotted against resemblance paratmer r, with γ = 0 and
λ1 = 0.1. Solid: λ2 = 0.2; dashed: λ2 = 0.35.
(b) Plotted against mimic palatibility λ2, with r = 1 and
γ = 0. Dotted: λ1 = 0.1; dashed: λ1 = 0.2. The divergences
show that for infinite predator memory asymptotic mutualism
only occurs for λ2 = λ1.
(c) Plotted against memory parameter γ, with r = 1 and
λ1 = 0.1. Solid: λ2 = 0.2; dash-dotted: λ2 = 0.25. The
divergences show that mutualism becomes asymptotic above
a critical value of the forgetting rate γ.

In figure 6b, the mimic palatability is varied. The phe-
nomenon only occurs for P0 > λ2 > λ1. The curve di-
verges for λ2 → λ1, which indicates that asymptotic mu-
tualism is possible for equally defended prey (λ2 = λ1).
It is also instructive to plot TM against the memory

parameter γ (figure 6c). The transient time TM increases
with forgetting rate γ and diverges at a critical value,
denoted by γmin in figure 3 of the main article. The
divergence indicates that asymptotic mutualism appears
above γ = γmin.

2. Density-dependence

We describe the effect of mimic density on the survival
benefits. We vary the relative mimic density δ = n2/n1,
with fixed n1 + n2 = 1.
With an infinite-memory predator (γ = 0), the asymp-

totic attack probabilities are simply the palatabilities λ1

and λ2 for non-resembling prey (r = 0), independent
of the densities. The r = 1 asymptote λ̄ = (n1λ1 +
n2λ2)/(n1 + n2) depends on densities. The asymptotic
mimic favorability

f2 =
λ2

λ̄
=

λ2(1 + δ)

(λ1 + λ2δ)

monotonously decreases with δ from f2(δ → 0) = λ2/λ1

to f2(δ → ∞) = 1. The density dependence comes en-
tirely from the denominator.
A finite predator memory (γ 6= 0) makes the situ-

ation more complicated. Now the r = 0 asymptotes
also depend on density, because the asymptotic attack
probabilities are determined by the competition between
learning and forgetting. The learning pulls the attack
probabilities Pi towards the palatibilities λi, while the
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FIG. 7: Search for mutualism with palatable mimic.

Asymptotic model favorability f
(r=1)
1 as a function of mimic

palatability λ2, obtained with cubic forgetting term γc(P0 −

P1,2)
3, where γc = 5× 10−4. The sequence of f1-vs-λ2 curves

(filled circles) each correspond to a different value of λ1,
ranging from 0.1 for the leftmost curve to 0.5 for the right-
most. The tops of these curves (filled triangles) correspond
to equally defended prey, λ1 = λ2. Shaded area indicates the
region of mutualistic mimicry (f1 > 1) — clearly confined to
λ2 < 0.5, thus yielding a negative answer to the “mutualism
with palatable mimic” question.
Inset shows, for one mutualistic (f1 > 1) and one parasitic
(f1 < 1) case, that the dependence on resemblance coefficient
r is monotonic, so that the same negative answer holds for
arbitrary r.

forgetting tries to push them back to the naive value
P0. With increasing relative density δ, the learning pro-
cess becomes more important compared to the forgetting
process, which is density-independent, so that the asymp-
totic Pi get closer to the palatibilities λi. For palatable

mimics (λ2 > 0.5), the P
(r=0)
2 (t → ∞) monotonically in-

creases with relative mimic density δ. The finite-r asymp-

tote, P
(r>0)
2 , also grows with δ, but at a different rate,

and as a result the ratio (favorability) can depend non-
monotonically on δ, as illustrated in the main text.

3. Further applications and extensions

We outline below some further applications of our for-
mulation.

a. Mutualistic mimicry with palatable mimic?

The ease of calculations with the differential-equation
setup encourages us to ask more challenging questions,
e.g., is there a situation in which a palatable mimic can be
favorable for a defended model? Within our formulation,

this means asking whether one can have benefit to the
model (f1 > 1) when λ1 < P0 < λ2.
For both perfect (r = 1) and imperfect (0 < r < 1)

mimicry, our exact asymptotic solutions [of equations
(3,4) in the main text] give a negative answer for the
above question: mutualistic mimicry requires λ2 < P0.
To explore the question further, we have studied sev-

eral modifications of our basic equations, in particular
(A) using a palatability-dependent learning coefficient,
α(λ) = α0(0.5 + |λ− 0.5|), as in Ref. [13];
(B) replacing the linear forgetting term in equations
(3,4) by various nonlinear forms, such as γc(P0 − P )3

or γ̃(P 2
0 − P 2).

None of these variants of predator behavior allowed for
mutualistic mimicry when λ1 < P0 < λ2. Although the
negative statement is impossible to prove strictly, our re-
sults indicate that mutualistic mimicry generically does
not occur for palatable mimic species, at least within
a wide class of approximations formulated within the
framework represented in figure 1 in the main article.
In figure 7, we demonstrate the absence of mutualism for
one of the variants we have treated.

b. Resemblance and discrimination

Our last example application is motivated by the fact
that mimicry is rarely perfect in nature. The evolution of
imperfect resemblance and the result of predator discrim-
ination errors are important active topics in evolutionary
theory [26, 32, 33, 34, 35]. In our formalism, the ability
of the predator to discriminate between prey species (or
the degree of resemblance) is parametrized by a continu-
ous variable r, providing the opportunity to explore the
whole resemblance spectrum. For example, figures 2b,
2e, 3b, 3d plot attack probabilities as a function of the
resemblance spectrum.
The evolution of resemblance can be thought of as

modification of the r variable. We can interpret the r-
dependence of the attack probabilities: dP/dr measures
the driving force for evolutionary change. We can treat
evolutionary dynamics by allowing r to be a dynamical
variable itself. The simplest equation would be of the
type

dr

dt
= − ǫ1

∂P1

∂r
− ǫ2

∂P2

∂r

Our formalism is thus potentially well-suited for a simple
mathematical description of the dynamics of resemblance
evolution.
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