1,288 research outputs found

    Quantitative magnetic resonance image analysis via the EM algorithm with stochastic variation

    Full text link
    Quantitative Magnetic Resonance Imaging (qMRI) provides researchers insight into pathological and physiological alterations of living tissue, with the help of which researchers hope to predict (local) therapeutic efficacy early and determine optimal treatment schedule. However, the analysis of qMRI has been limited to ad-hoc heuristic methods. Our research provides a powerful statistical framework for image analysis and sheds light on future localized adaptive treatment regimes tailored to the individual's response. We assume in an imperfect world we only observe a blurred and noisy version of the underlying pathological/physiological changes via qMRI, due to measurement errors or unpredictable influences. We use a hidden Markov random field to model the spatial dependence in the data and develop a maximum likelihood approach via the Expectation--Maximization algorithm with stochastic variation. An important improvement over previous work is the assessment of variability in parameter estimation, which is the valid basis for statistical inference. More importantly, we focus on the expected changes rather than image segmentation. Our research has shown that the approach is powerful in both simulation studies and on a real dataset, while quite robust in the presence of some model assumption violations.Comment: Published in at http://dx.doi.org/10.1214/07-AOAS157 the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Spatial and spatio-temporal statistical analyses of retinal images: a review of methods and applications.

    Get PDF
    Background: Clinical research and management of retinal diseases greatly depend on the interpretation of retinal images and often longitudinally collected images. Retinal images provide context for spatial data, namely the location of specific pathologies within the retina. Longitudinally collected images can show how clinical events at one point can affect the retina over time. In this review, we aimed to assess statistical approaches to spatial and spatio-temporal data in retinal images. We also review the spatio-temporal modelling approaches used in other medical image types. Methods: We conducted a comprehensive literature review of both spatial or spatio-temporal approaches and non-spatial approaches to the statistical analysis of retinal images. The key methodological and clinical characteristics of published papers were extracted. We also investigated whether clinical variables and spatial correlation were accounted for in the analysis. Results: Thirty-four papers that included retinal imaging data were identified for full-text information extraction. Only 11 (32.4%) papers used spatial or spatio-temporal statistical methods to analyse images, others (23 papers, 67.6%) used non-spatial methods. Twenty-eight (82.4%) papers reported images collected cross-sectionally, while 6 (17.6%) papers reported analyses on images collected longitudinally. In imaging areas outside of ophthalmology, 19 papers were identified with spatio-temporal analysis, and multiple statistical methods were recorded. Conclusions: In future statistical analyses of retinal images, it will be beneficial to clearly define and report the spatial distributions studied, report the spatial correlations, combine imaging data with clinical variables into analysis if available, and clearly state the software or packages used

    Tensor Analysis and Fusion of Multimodal Brain Images

    Get PDF
    Current high-throughput data acquisition technologies probe dynamical systems with different imaging modalities, generating massive data sets at different spatial and temporal resolutions posing challenging problems in multimodal data fusion. A case in point is the attempt to parse out the brain structures and networks that underpin human cognitive processes by analysis of different neuroimaging modalities (functional MRI, EEG, NIRS etc.). We emphasize that the multimodal, multi-scale nature of neuroimaging data is well reflected by a multi-way (tensor) structure where the underlying processes can be summarized by a relatively small number of components or "atoms". We introduce Markov-Penrose diagrams - an integration of Bayesian DAG and tensor network notation in order to analyze these models. These diagrams not only clarify matrix and tensor EEG and fMRI time/frequency analysis and inverse problems, but also help understand multimodal fusion via Multiway Partial Least Squares and Coupled Matrix-Tensor Factorization. We show here, for the first time, that Granger causal analysis of brain networks is a tensor regression problem, thus allowing the atomic decomposition of brain networks. Analysis of EEG and fMRI recordings shows the potential of the methods and suggests their use in other scientific domains.Comment: 23 pages, 15 figures, submitted to Proceedings of the IEE

    Temporal Registration in In-Utero Volumetric MRI Time Series

    Get PDF
    We present a robust method to correct for motion and deformations in in-utero volumetric MRI time series. Spatio-temporal analysis of dynamic MRI requires robust alignment across time in the presence of substantial and unpredictable motion. We make a Markov assumption on the nature of deformations to take advantage of the temporal structure in the image data. Forward message passing in the corresponding hidden Markov model (HMM) yields an estimation algorithm that only has to account for relatively small motion between consecutive frames. We demonstrate the utility of the temporal model by showing that its use improves the accuracy of the segmentation propagation through temporal registration. Our results suggest that the proposed model captures accurately the temporal dynamics of deformations in in-utero MRI time series.National Institutes of Health (U.S.) (NIH NIBIB NAC P41EB015902)National Institutes of Health (U.S.) (NIH NICHD U01HD087211)National Institutes of Health (U.S.) (NIH NIBIB R01EB017337)Wistron CorporationMerrill Lynch Wealth Management (Fellowship

    Temporal Registration in In-Utero Volumetric MRI Time Series

    Get PDF
    We present a robust method to correct for motion and deformations in in-utero volumetric MRI time series. Spatio-temporal analysis of dynamic MRI requires robust alignment across time in the presence of substantial and unpredictable motion. We make a Markov assumption on the nature of deformations to take advantage of the temporal structure in the image data. Forward message passing in the corresponding hidden Markov model (HMM) yields an estimation algorithm that only has to account for relatively small motion between consecutive frames. We demonstrate the utility of the temporal model by showing that its use improves the accuracy of the segmentation propagation through temporal registration. Our results suggest that the proposed model captures accurately the temporal dynamics of deformations in in-utero MRI time series.National Institutes of Health (U.S.) (NIH NIBIB NAC P41EB015902)National Institutes of Health (U.S.) (NIH NICHD U01HD087211)National Institutes of Health (U.S.) (NIH NIBIB R01EB017337)Wistron CorporationMerrill Lynch Wealth Management (Fellowship

    Medical image analysis methods in MR/CT-imaged acute-subacute ischemic stroke lesion:Segmentation, prediction and insights into dynamic evolution simulation models. A critical appraisal

    Get PDF
    AbstractOver the last 15years, basic thresholding techniques in combination with standard statistical correlation-based data analysis tools have been widely used to investigate different aspects of evolution of acute or subacute to late stage ischemic stroke in both human and animal data. Yet, a wave of biology-dependent and imaging-dependent issues is still untackled pointing towards the key question: “how does an ischemic stroke evolve?” Paving the way for potential answers to this question, both magnetic resonance (MRI) and CT (computed tomography) images have been used to visualize the lesion extent, either with or without spatial distinction between dead and salvageable tissue. Combining diffusion and perfusion imaging modalities may provide the possibility of predicting further tissue recovery or eventual necrosis. Going beyond these basic thresholding techniques, in this critical appraisal, we explore different semi-automatic or fully automatic 2D/3D medical image analysis methods and mathematical models applied to human, animal (rats/rodents) and/or synthetic ischemic stroke to tackle one of the following three problems: (1) segmentation of infarcted and/or salvageable (also called penumbral) tissue, (2) prediction of final ischemic tissue fate (death or recovery) and (3) dynamic simulation of the lesion core and/or penumbra evolution. To highlight the key features in the reviewed segmentation and prediction methods, we propose a common categorization pattern. We also emphasize some key aspects of the methods such as the imaging modalities required to build and test the presented approach, the number of patients/animals or synthetic samples, the use of external user interaction and the methods of assessment (clinical or imaging-based). Furthermore, we investigate how any key difficulties, posed by the evolution of stroke such as swelling or reperfusion, were detected (or not) by each method. In the absence of any imaging-based macroscopic dynamic model applied to ischemic stroke, we have insights into relevant microscopic dynamic models simulating the evolution of brain ischemia in the hope to further promising and challenging 4D imaging-based dynamic models. By depicting the major pitfalls and the advanced aspects of the different reviewed methods, we present an overall critique of their performances and concluded our discussion by suggesting some recommendations for future research work focusing on one or more of the three addressed problems

    A Novel Synergistic Model Fusing Electroencephalography and Functional Magnetic Resonance Imaging for Modeling Brain Activities

    Get PDF
    Study of the human brain is an important and very active area of research. Unraveling the way the human brain works would allow us to better understand, predict and prevent brain related diseases that affect a significant part of the population. Studying the brain response to certain input stimuli can help us determine the involved brain areas and understand the mechanisms that characterize behavioral and psychological traits. In this research work two methods used for the monitoring of brain activities, Electroencephalography (EEG) and functional Magnetic Resonance (fMRI) have been studied for their fusion, in an attempt to bridge together the advantages of each one. In particular, this work has focused in the analysis of a specific type of EEG and fMRI recordings that are related to certain events and capture the brain response under specific experimental conditions. Using spatial features of the EEG we can describe the temporal evolution of the electrical field recorded in the scalp of the head. This work introduces the use of Hidden Markov Models (HMM) for modeling the EEG dynamics. This novel approach is applied for the discrimination of normal and progressive Mild Cognitive Impairment patients with significant results. EEG alone is not able to provide the spatial localization needed to uncover and understand the neural mechanisms and processes of the human brain. Functional Magnetic Resonance imaging (fMRI) provides the means of localizing functional activity, without though, providing the timing details of these activations. Although, at first glance it is apparent that the strengths of these two modalities, EEG and fMRI, complement each other, the fusion of information provided from each one is a challenging task. A novel methodology for fusing EEG spatiotemporal features and fMRI features, based on Canonical Partial Least Squares (CPLS) is presented in this work. A HMM modeling approach is used in order to derive a novel feature-based representation of the EEG signal that characterizes the topographic information of the EEG. We use the HMM model in order to project the EEG data in the Fisher score space and use the Fisher score to describe the dynamics of the EEG topography sequence. The correspondence between this new feature and the fMRI is studied using CPLS. This methodology is applied for extracting features for the classification of a visual task. The results indicate that the proposed methodology is able to capture task related activations that can be used for the classification of mental tasks. Extensions on the proposed models are examined along with future research directions and applications
    corecore