1,466 research outputs found

    Using a Remote Sensing-Supported Hydro-Agroecological Model for Field-Scale Simulation of Heterogeneous Crop Growth and Yield: Application for Wheat in Central Europe

    Get PDF
    The challenge of converting global agricultural food, fiber and energy crop cultivation into an ecologically and economically sustainable production process requires the most efficient agricultural management strategies. Development, control and maintenance of these strategies are highly dependent on temporally and spatially continuous information on crop status at the field scale. This paper introduces the application of a process-based, coupled hydro-agroecological model (PROMET) for the simulation of temporally and spatially dynamic crop growth on agriculturally managed fields. By assimilating optical remote sensing data into the model, the simulation of spatial crop dynamics is improved to a point where site-specific farming measures can be supported. Radiative transfer modeling (SLC) is used to provide maps of leaf area index from Earth Observation (EO). These maps are used in an assimilation scheme that selects closest matches between EO and PROMET ensemble runs. Validation is provided for winter wheat (years 2004, 2010 and 2011). Field samples validate the temporal dynamics of the simulations (avg. R-2 = 0.93) and > 700 ha of calibrated combine harvester data are used for accuracy assessment of the spatial yield simulations (avg. RMSE = 1.15 t center dot ha(-1)). The study shows that precise simulation of field-scale crop growth and yield is possible, if spatial remotely sensed information is combined with temporal dynamics provided by land surface process models. The presented methodology represents a technical solution to make the best possible use of the growing stream of EO data in the context of sustainable land surface management

    Using a Remote Sensing-Supported Hydro-Agroecological Model for Field-Scale Simulation of Heterogeneous Crop Growth and Yield: Application for Wheat in Central Europe

    Get PDF
    The challenge of converting global agricultural food, fiber and energy crop cultivation into an ecologically and economically sustainable production process requires the most efficient agricultural management strategies. Development, control and maintenance of these strategies are highly dependent on temporally and spatially continuous information on crop status at the field scale. This paper introduces the application of a process-based, coupled hydro-agroecological model (PROMET) for the simulation of temporally and spatially dynamic crop growth on agriculturally managed fields. By assimilating optical remote sensing data into the model, the simulation of spatial crop dynamics is improved to a point where site-specific farming measures can be supported. Radiative transfer modeling (SLC) is used to provide maps of leaf area index from Earth Observation (EO). These maps are used in an assimilation scheme that selects closest matches between EO and PROMET ensemble runs. Validation is provided for winter wheat (years 2004, 2010 and 2011). Field samples validate the temporal dynamics of the simulations (avg. R-2 = 0.93) and > 700 ha of calibrated combine harvester data are used for accuracy assessment of the spatial yield simulations (avg. RMSE = 1.15 t center dot ha(-1)). The study shows that precise simulation of field-scale crop growth and yield is possible, if spatial remotely sensed information is combined with temporal dynamics provided by land surface process models. The presented methodology represents a technical solution to make the best possible use of the growing stream of EO data in the context of sustainable land surface management

    Improving Satellite Leaf Area Index Estimation Based On Various Integration Methods

    Get PDF
    Leaf Area Index (LAI) is an important land surface biophysical variable that is used to characterize vegetation amount and activity. Current satellite LAI products, however, do not satisfy the requirements of the modeling community due to their large uncertainties and frequent missing values. Each LAI product is currently generated from only one satellite sensor data. There is an urgent need for advanced methods to integrate multiple LAI products to improve the product's accuracy and integrality for various applications. To meet this need, this study proposes four methods, including the Optimal Interpolation (OI), Bayesian Maximum Entropy (BME), Multi-Resolution Tree (MRT) and Empirical Orthogonal Function (EOF), to integrate multiple LAI products. Three LAI products have been considered in this study: Moderate Resolution Imaging Spectroradiometer (MODIS), Multi-angle Imaging SpectroRadiometer (MISR) and Carbon cYcle and Change in Land Observational Products from an Ensemble of Satellites (CYCLOPES) LAI. As the basis of data integration, this dissertation first validates and intercompares MODIS and CYCLOPES LAI products and also evaluates their geometric accuracies. The CYCLOPES LAI product has smoother temporal profiles and fewer spatial variations, but tends to produce spurious large errors in winter. The Locally Adjusted Cubic-spline Capping algorithm is revised to smooth multiple years' average and variance. Although OI, BME and MRT based methods have been used in other fields, this is the first research to employ them in integrating multiple LAI products. This dissertation also presents a new integration method based on EOF to solve the problem of large data volume and inconsistent temporal resolution of different datasets. High resolution LAI reference maps generated with ground measurements are used to validate these algorithms. Validation results show that all of these four methods can fill data gaps and reduce the errors of the existing LAI products. The data gaps are filled with information from adjacent pixels and background. These algorithms remove the spurious large temporal and spatial variation of the original LAI products. The combination of multiple satellite products significantly reduces bias. OI and BME can reduce the RMSE from 1.0 (MODIS) to 0.7 and reduce the bias from +0.3 (MODIS) and -0.2 (CYCLOPES) to -0.1. MRT can produce similar results with OI but with significantly improved efficiency. EOF also generates the results with the RMSE of 0.7 but zero bias. Limited ground measurement data hardly prove which methods outperform the others. OI and BME theoretically produce statistically optimal results. BME relaxes OI's linear and Gaussian assumption and explicitly considers data error, but bears a much higher computational burden. MRT has improved efficiency but needs strict assumptions on the scale transfer function. EOF requires simpler model identification, while it is more "empirical" than "statistical". The original contributions of this study mainly include: 1) a new application of several different integration methods to incorporate multiple satellite LAI products to reduce uncertainties and improve integrality, 2) an enhancement of the Locally Adjusted Cubic-spline Capping by revising the end condition, 3) a novel comprehensive comparison of MODIS C5 LAI product with other satellite products, 4) the development of a new LAI normalization scheme by assuming the linear relationship between measurement error and LAI natural variance to account for the inconsistency between products, and finally, 5) the creation of a new data integration method based on EOF

    Remote Sensing Of Rice-Based Irrigated Agriculture: A Review

    Get PDF
    The ‘Green Revolution’ in rice farming of the late 1960’s denotes the beginning of the extensive breeding programs that have led to the many improved rice varieties that are now planted on more than 60% of the world’s riceland (Khush, 1987). This revolution led to increases in yield potential of 2 to 3 times that of traditional varieties (Khush, 1987). Similar trends have also been seen in the Irrigation Areas and Districts of southern New South Wales (NSW) as the local breeding program has produced many improved varieties of rice adapted to local growing conditions since the 1960’s (Brennan et al., 1994). Increases in area of rice planted, rice quality, and paddy yield resulted (Brennan et al., 1994). Increased rice area, however, has led to the development of high water tables and risk of large tracts of land becoming salt-affected in southern NSW (Humphreys et al., 1994b). These concerns have led to various environmental regulations on rice in the region, culminating in 1994 when restrictions on rice area, soil suitability, and water consumption were fully enacted (Humphreys et al., 1994b). Strict environmental restrictions in combination with large areas of land make the management of this region a difficult task. Land managers require, among other things, a way of regulating water use, assessing or predicting crop area and productivity, and making management decisions in support of environmentally and economically sustainable agriculture. In the search for more time and cost effective methods for attaining these goals, while monitoring complex management situations, many have turned to remote sensing and Geographic Information System (GIS) technologies for assistance. The spectral information and spatial density of remote sensing data lends itself well to the measurement of large areas. Since the launch of LANDSAT-1 in 1972, this technology has been used extensively in agricultural systems for crop identification and area estimation, crop yield estimation and prediction, and crop damage assessment. The incorporation of remote sensing and GIS can also help integrate management practices and develop effective management plans. However, in order to take advantage of these tools, users must have an understanding of both what remote sensing is and what sensors are now available, and how the technology is being used in applied agricultural research. Accordingly, a description of both follows: first a description of the technology, and then how it is currently being applied. The applications of remote sensing relevant to this discussion can be separated into crop type identification; crop area measurement; crop yield; crop damage; water use/ moisture availability (ma) mapping; and water use efficiency monitoring/mapping. This report focuses on satellite remote sensing for broad-scale rice-based irrigation agricultural applications. It also discusses related regional GIS analyses that may or may not include remote sensing data, and briefly addresses other sources of finer-scale remote sensing and geospatial data as they relate to agriculture. Since a complete review of the remote sensing research was not provided in the rice literature alone, some generic agricultural issues have been learned from applications not specifically dealing with rice. Remote sensing specialists may wish to skip to section 2

    Remote Sensing Of Rice-Based Irrigated Agriculture: A Review

    Get PDF
    The ‘Green Revolution’ in rice farming of the late 1960’s denotes the beginning of the extensive breeding programs that have led to the many improved rice varieties that are now planted on more than 60% of the world’s riceland (Khush, 1987). This revolution led to increases in yield potential of 2 to 3 times that of traditional varieties (Khush, 1987). Similar trends have also been seen in the Irrigation Areas and Districts of southern New South Wales (NSW) as the local breeding program has produced many improved varieties of rice adapted to local growing conditions since the 1960’s (Brennan et al., 1994). Increases in area of rice planted, rice quality, and paddy yield resulted (Brennan et al., 1994). Increased rice area, however, has led to the development of high water tables and risk of large tracts of land becoming salt-affected in southern NSW (Humphreys et al., 1994b). These concerns have led to various environmental regulations on rice in the region, culminating in 1994 when restrictions on rice area, soil suitability, and water consumption were fully enacted (Humphreys et al., 1994b). Strict environmental restrictions in combination with large areas of land make the management of this region a difficult task. Land managers require, among other things, a way of regulating water use, assessing or predicting crop area and productivity, and making management decisions in support of environmentally and economically sustainable agriculture. In the search for more time and cost effective methods for attaining these goals, while monitoring complex management situations, many have turned to remote sensing and Geographic Information System (GIS) technologies for assistance. The spectral information and spatial density of remote sensing data lends itself well to the measurement of large areas. Since the launch of LANDSAT-1 in 1972, this technology has been used extensively in agricultural systems for crop identification and area estimation, crop yield estimation and prediction, and crop damage assessment. The incorporation of remote sensing and GIS can also help integrate management practices and develop effective management plans. However, in order to take advantage of these tools, users must have an understanding of both what remote sensing is and what sensors are now available, and how the technology is being used in applied agricultural research. Accordingly, a description of both follows: first a description of the technology, and then how it is currently being applied. The applications of remote sensing relevant to this discussion can be separated into crop type identification; crop area measurement; crop yield; crop damage; water use/ moisture availability (ma) mapping; and water use efficiency monitoring/mapping. This report focuses on satellite remote sensing for broad-scale rice-based irrigation agricultural applications. It also discusses related regional GIS analyses that may or may not include remote sensing data, and briefly addresses other sources of finer-scale remote sensing and geospatial data as they relate to agriculture. Since a complete review of the remote sensing research was not provided in the rice literature alone, some generic agricultural issues have been learned from applications not specifically dealing with rice. Remote sensing specialists may wish to skip to section 2

    Crop growth and yield monitoring in smallholder agricultural systems:a multi-sensor data fusion approach

    Get PDF
    Smallholder agricultural systems are highly vulnerable to production risks posed by the intensification of extreme weather events such as drought and flooding, soil degradation, pests, lack of access to agricultural inputs, and political instability. Monitoring the spatial and temporal variability of crop growth and yield is crucial for farm management, national-level food security assessments, and famine early warning. However, agricultural monitoring is difficult in fragmented agricultural landscapes because of scarcity and uncertainty of data to capture small crop fields. Traditional pre- and post-harvest crop monitoring and yield estimation based on fieldwork is costly, slow, and can be unrepresentative of heterogeneous agricultural landscapes as found in smallholder systems in sub-Saharan Africa. Devising accurate and timely crop phenology detection and yield estimation methods can improve our understanding of the status of crop production and food security in these regions.Satellite-based Earth observation (EO) data plays a key role in monitoring the spatial and temporal variability of crop growth and yield over large areas. The small field sizes and variability in management practices in fragmented landscapes requires high spatial and high temporal resolution EO data. This thesis develops and demonstrates methods to investigate the spatiotemporal variability of crop phenology detection and yield estimation using Landsat and MODIS data fusion in smallholder agricultural systems in the Lake Tana sub-basin of Ethiopia. The overall aim is to further broaden the application of multi-sensor EO data for crop growth monitoring in smallholder agricultural systems.The thesis addressed two important aspects of crop monitoring applications of EO data: phenology detection and yield estimation. First, the ESTARFM data fusion workflow was modified based on local knowledge of crop calendars and land cover to improve crop phenology monitoring in fragmented agricultural landscapes. The approach minimized data fusion uncertainties in predicting temporal reflectance change of crops during the growing season and the reflectance value of fused data was comparable to the original Landsat image reserved for validation. The main sources of uncertainty in data fusion are the small field size and abrupt crop growth changes between the base andviiprediction dates due to flooding, weeding, fertiliser application, and harvesting. The improved data fusion approach allowed us to determine crop phenology and estimate LAI more accurately than both the standard ESTARFM data fusion method and when using MODIS data without fusion. We also calibrated and validated a dynamic threshold phenology detection method using maize and rice crop sowing and harvest date information. Crop-specific phenology determined from data fusion minimized the mismatch between EO-derived phenometrics and the actual crop calendar. The study concluded that accurate phenology detection and LAI estimation from Landsat–MODIS data fusion demonstrates the feasibility of crop growth monitoring using multi-sensor data fusion in fragmented and persistently cloudy agricultural landscapes.Subsequently, the validated data fusion and phenology detection methods were implemented to understand crop phenology trends from 2000 to 2020. These trends are often less understood in smallholder agricultural systems due to the lack of high spatial resolution data to distinguish crops from the surrounding natural vegetation. Trends based on Landsat–MODIS fusion were compared with those detected using MODIS alone to assess the contribution of data fusion to discern crop phenometric change. Landsat and MODIS fusion discerned crop and environment-specific trends in the magnitude and direction of crop phenology change. The results underlined the importance of high spatial and temporal resolution EO data to capture environment-specific crop phenology change, which has implications in designing adaptation and crop management practices in these regions.The second important aspect of the crop monitoring problem addressed in this thesis is improving crop yield estimation in smallholder agricultural systems. The large input requirements of crop models and lack of spatial information about the heterogeneous crop-growing environment and agronomic management practices are major challenges to the accurate estimation of crop yield. We assimilated leaf area index (LAI) and phenology information from Landsat–MODIS fusion in a crop model (simple algorithm for yield estimation: SAFY) to obtain reasonably reliable crop yield estimates. The SAFY model is sensitive to the spatial and temporal resolution of the calibration input LAI, phenology information, and the effective light use efficiency (ELUE) parameter, which needs accurate field level inputs during modelviiioptimization. Assimilating fused EO-based phenology information minimized model uncertainty and captured the large management and environmental variation in smallholder agricultural systems.In the final research chapter of the thesis, we analysed the contribution of assimilating LAI at different phenological stages. The frequency and timing of LAI observations influences the retrieval accuracy of the assimilating LAI in crop growth simulation models. The use of (optical) EO data to estimate LAI is constrained by limited repeat frequency and cloud cover, which can reduce yield estimation accuracy. We evaluated the relative contribution of EO observations at different crop growth stages for accurate calibration of crop model parameters. We found that LAI between jointing and grain filling has the highest contribution to SAFY yield estimation and that the distribution of LAI during the key development stages was more useful than the frequency of LAI to improve yield estimation. This information on the optimal timing of EO data assimilation is important to develop better in-season crop yield forecasting in smallholder systems

    Remote sensing and hydrogeophysics give a new impetus to integrated hydrological models: a review

    Get PDF
    Integrated Hydrological Models (IHMs) dynamically couple surface and groundwater processes across the unsaturated zone domain. IHMs are data intensive and computationally demanding but can provide physically realistic output, particularly if sufficient input data of high quality is available. In-situ observations often have a small footprint and are time and cost-demanding. Satellite remote sensing observations, with their long time series archives and spatially semi-continuous gridded format, as well as hydrogeophysical observations with their flexible, ‘on-demand’ high-resolution data coverage, perfectly complement in-situ observations. We review the contribution of various satellite remote sensing products for IHM: (1) climate forcings, (2) parameters, (3) boundary conditions and (4) observations for constraining model calibration and data assimilation. Our review of hydrogeophysics focuses on the four mentioned IHM contributions, but we analyze them per data acquisition platform, i.e., surface, drone-borne and airborne hydrogeophysics. Finally, the review includes a discussion on the optimal use of satellite remote sensing and hydrogeophysical data in IHMs, as well as a vision for further improvements of data-driven, integrated hydrological modelling

    An approach for heavy metal pollution detected from spatio-temporal stability of stress in rice using satellite images

    Get PDF
    Stable stressors on crops (e.g., salts, heavy metals), which are characterized by stable spatial patterns over time, are harmful to agricultural production and food security. Satellite data provide temporally and spatially continuous synoptic observations of stable stress on crops. This study presents a method for identifying rice under stable stress (i.e., Cd stress) and exploring its spatio-temporal characteristics indicators. The study area is a major rice growing region located in Hunan Province, China. Moderate-resolution imaging spectroradiometer (MODIS) and Landsat images from 2008–2017 as well as in situ measurements were collected. The coupling of a leaf canopy radiative transfer model with the World Food Study Model (WOFOST) via a wavelet transform isolated the effects of Cd stress from other abrupt stressors. An area wavelet transform stress signal (AWTS), based on a time-series Enhanced Vegetation Index (EVI), was used to detect rice under Cd stress, and its spatio-temporal variation metrics explored. The results indicate that spatial variation coefficients (SVC) of AWTS in the range of 0–1 ha d a coverage area greater than 70% in each experimental region, regardless of the year. Over ten years, the temporal variation coefficients (TVC) of AWTS in the range of 0–1 occurred frequently (more than 60% of the time). In addition, the Pearson correlation coefficient of AWTS over two consecutive years was usually greater than 0.5. We conclude that a combination of multi-year satellite-derived vegetation index data with a physical model simulation is an effective and novel method for detecting crops under environmental stress. A wavelet transform proved promising in differentiating between the effects of stable stress and abrupt stress on rice and may offer a way forward for diagnosing crop stress at continental and global scales
    • …
    corecore