
Contents lists available at ScienceDirect

Int J Appl Earth Obs Geoinformation

journal homepage: www.elsevier.com/locate/jag

An approach for heavy metal pollution detected from spatio-temporal
stability of stress in rice using satellite images

Meiling Liua,⁎, Andrew K. Skidmoreb,c, Tiejun Wangb, Xiangnan Liua, Ling Wua, Lingwen Tiana

a School of Information Engineering, China University of Geosciences, Beijing 100083, China
b Faculty of Geo-Information Science and Earth Observation (ITC), University of Twente, P.O. Box 217, 7500 AE Enschede, the Netherlands
c Department of Environmental Science, Macquarie University, NSW 2109, Australia

A R T I C L E I N F O

Keywords:
Spatio-temporal stability
Stable stress
Satellite imagery
Wavelet transform

A B S T R A C T

Stable stressors on crops (e.g., salts, heavy metals), which are characterized by stable spatial patterns over time,
are harmful to agricultural production and food security. Satellite data provide temporally and spatially con-
tinuous synoptic observations of stable stress on crops. This study presents a method for identifying rice under
stable stress (i.e., Cd stress) and exploring its spatio-temporal characteristics indicators. The study area is a major
rice growing region located in Hunan Province, China. Moderate-resolution imaging spectroradiometer (MODIS)
and Landsat images from 2008–2017 as well as in situ measurements were collected. The coupling of a leaf
canopy radiative transfer model with the World Food Study Model (WOFOST) via a wavelet transform isolated
the effects of Cd stress from other abrupt stressors. An area wavelet transform stress signal (AWTS), based on a
time-series Enhanced Vegetation Index (EVI), was used to detect rice under Cd stress, and its spatio-temporal
variation metrics explored. The results indicate that spatial variation coefficients (SVC) of AWTS in the range of
0–1 ha d a coverage area greater than 70% in each experimental region, regardless of the year. Over ten years,
the temporal variation coefficients (TVC) of AWTS in the range of 0–1 occurred frequently (more than 60% of the
time). In addition, the Pearson correlation coefficient of AWTS over two consecutive years was usually greater
than 0.5. We conclude that a combination of multi-year satellite-derived vegetation index data with a physical
model simulation is an effective and novel method for detecting crops under environmental stress. A wavelet
transform proved promising in differentiating between the effects of stable stress and abrupt stress on rice and
may offer a way forward for diagnosing crop stress at continental and global scales.

1. Introduction

Crop stress is defined as any environmental factor that is potentially
unfavorable to crops’ metabolism, growth, or development (Levitt,
1980; Lichtenthaler, 1998). Environmental stressors are increasingly
affecting crop production around the world. It has been reported that
crop production is limited by a suite of environmental stressors re-
sulting in 30%–60% yield losses globally each year (Dhlamini et al.,
2005). Crop stressors are typically classified as being either abrupt or
stable. Abrupt stressors (e.g., drought, pests/diseases, and misman-
agement) are transient, often varying intra-annually (Scudiero et al.,
2014). Conversely, stable stressors (e.g., salts, heavy metals) are de-
fined herein as stressors that are relatively stable in space over long
time scales (within a decade) and persistent throughout all crop growth
stages (Liu et al., 2016a,b,c, 2018a,b; Tian et al., 2017). Heavy metals,
which are influenced by natural and anthropogenic factors, including

parent materials, land use, and application of pesticides and fertilizers,
are extremely persistent in the environment; they are non-biodegrad-
able and non-thermo-degradable and thus readily accumulate to toxic
levels (Nagajyoti et al., 2010). Heavy metal stress, which occurs on a
regional scale, is a major cause of crop loss. Soil to crop transfer is one
of the key components of human exposure to heavy metals through the
food chain and poses serious human health risks (Srivastava et al.,
2017). Quantifying stress in crops caused by heavy metals is critical for
agricultural production and food safety.

Stress-induced damage in crops has been detected using reflectance
spectra (Ren et al., 2009; Liu et al., 2010, 2011a, 2011b; Wang et al.,
2012, 2018). Reflectance spectra or vegetation indices of crops do in-
dicate variation throughout all crop growth stages, with heavy metal
stress for a crop being persistent in a specific region and thus changes
the crops’ growth trajectory (Wu et al., 2013; Tian et al., 2017). In other
words, dynamic changes in vegetation indices or physiological

https://doi.org/10.1016/j.jag.2019.04.012
Received 19 January 2019; Received in revised form 9 April 2019; Accepted 12 April 2019

⁎ Corresponding author.
E-mail address: liuml@cugb.edu.cn (M. Liu).

Int J Appl  Earth Obs Geoinformation 80 (2019) 230–239

Available online 04 May 2019
0303-2434/ © 2019 Elsevier B.V. All rights reserved.

T

http://www.sciencedirect.com/science/journal/03032434
https://www.elsevier.com/locate/jag
https://doi.org/10.1016/j.jag.2019.04.012
https://doi.org/10.1016/j.jag.2019.04.012
mailto:liuml@cugb.edu.cn
https://doi.org/10.1016/j.jag.2019.04.012
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jag.2019.04.012&domain=pdf


parameters can reflect the growth trajectory of crops under various
stress conditions. For example, Tian et al. (2017) suggested that crop
tissues or variation in physiological parameters, such as leaf area index
(LAI) values simulated using the Enhanced World Food Studies (WO-
FOST) model, and then combined with remotely sensed data collected
during all the growth stages, could be used to detect heavy metal stress
in rice. However, healthy rice and heavy-metal-stress-induced rice were
not compared by Tian et al. (2017). One particular method that holds
considerable promise for assessing crop growth states in unstressed
environmental conditions is the use of a crop growth model, such as the
WOFOST model (Jin et al., 2015; Liu et al., 2016a,b,c). This crop
growth model can be used to predict the potential growth, develop-
ment, and yield of crops on a continuous time scale when a set of re-
levant biological and environment parameters are provided (Montieth,
1996). Vegetation indices of healthy rice over all the growth stages
have been derived, when the crop growth model has been coupled to
the PROSPECT+ SAIL canopy radiative transfer model (Jacquemoud
et al., 2009; Wu et al., 2013). The accurate calculation of stress signals
in crops is made possible by combining simulated data with remotely
sensed data (Whitney et al., 2018).

However, in real agricultural ecosystems, two different types of
stressors, abrupt and stable, act simultaneously on crops, resulting in
the frequent combination of the effects of heavy metals, pests, and
diseases on the crops’ growth periods. The challenge thus arises of how
to isolate the effects of stable stressors from abrupt stressors. Multi-
temporal analysis of vegetation indices can be used to differentiate
between stable stressors and abrupt stressors, since vegetation indices’
time series are characterized by patterns such as a crop’s intrinsic
growth trend and stationary and localized abrupt changes or dis-
continuities resulting from continuous and disturbance events respec-
tively (de Beurs and Henebry, 2005; Campos and Bella, 2012; Scudiero
et al., 2014; Tian et al., 2017). Application of a wavelet transform (WT)
is a well-known and promising approach to analyzing non-stationary
and stationary signal variations. For example, the relationship between
variation in vegetation indices and climate anomalies have been ex-
plored using this approach (Li and Kafatos, 2000; Wang et al., 2001;
Tateishi and Ebata, 2004; Erasmi et al., 2009). WTs have been used to
capture and describe non-stationary and stationary variations in

vegetation indices (Martinez and Amparo Gilabert, 2009 Li and Kafatos,
2000; Piao et al., 2012). We therefore concluded that it may be feasible
to employ a WT to distinguish between rice under stable stress and rice
under abrupt stress.

Heavy metal stress is considered to be fairly stable over long periods
of time (e.g., a decade). To reveal the stable characteristics of rice under
heavy metal stress, a long time frame and large spatial scale, which can
be provided by a long time series of satellite images (e.g., MODIS and
Landsat remotely sensed data), were considered in this research. In
general, compared with MODIS alone, combined high temporal and
spatial resolution can make it easy to discriminate farm land from non-
agricultural features and thus monitor crop growing processes (Gao
et al., 2006). Satellite images can be employed to obtain the EVI of rice
growing on a large scale over all the growth stages of a plant over
multiple years. Multi-year data make it possible to identify similarities
in the stable stress signal over a long time period such as a decade. In
addition, complete growth stage data make it possible to detect the
dynamic and continuous processes of heavy metal accumulation in
crops as they affect the stable stress signal, which reflects the degrees of
heavy metal stress on crops at different stages and explains the soil’s
heavy metal pollution conditions.

Recently, researchers have mapped salinity over semi-arid farmland
using multiple-year time series of vegetation indices derived from
MODIS and Landsat (Lobell et al., 2007, 2010; Scudiero et al., 2014,
2015; Whitney et al., 2018; Paliwal et al., 2018). These studies focused
on establishing the relationships between multi-year maxima, average
values of vegetation indices, and ground-truth soil salinity. Previous
attempts to use satellite imagery to assess soil salinity were unsuccessful
in isolating the effects of stable salinity stress on vegetative growth
from the effects of other abrupt factors. The objectives of this study
were to (i) extract the heavy metal stress signal from the data by iso-
lating the effects of heavy metal stress on rice from the effects of other
abrupt stressors and (ii) exploring the spatio-temporal characteristics
indicators for heavy metal stress on rice.

Fig. 1. Description of the study area: (a) Location of the study area in Hunan Province, China; (b) the distribution of 19 experimental sites.
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2. Study area and data

2.1. Study area

The study area is a heavy-metal-contaminated area (2025 km2) lo-
cated in Hunan Province, China (centered at Lat. 27°48′9″ N, Lon.
113°6′24″ E) (Fig. 1). This area is characterized by a subtropical mon-
soon climate with a mean annual temperature of approximately
16–18 °C and a mean annual rainfall of approximately 1500mm. This
area is a typical red soil hilly landform, and has dense rive network and
developed agricultural irrigation system. About 35% of the land was
used for agricultural farming, 52% of the land was occupied by forests.
And the rest occupied by residential settlements, factories, river and
roads. The predominant soil type is red soil with sufficient organic
matter (2–3%). Rice is the dominant crop in this region, for the single-
rice cropping region in Hunan Province, the rice is often transplanted in
early June and harvested in late September.

To analyze the spatio-temporal characteristic of the rice under
heavy metal stress, 19 experimental sites were selected, based on the
spatially widespread and continuous rice distribution. All experimental
sites were planted with rice over ten years. Thus, land use of experi-
mental sites is hardly changed. The experimental sites were designated
S1, S2, S3, etc., through S19 (Fig. 1). Reference squares covering
120×120 Landsat pixels (12.96 km2) were delineated to create a rice
paddy mask. The spatial distribution of paddies with a spatial resolu-
tion of 30m was obtained from the Global Agriculture Maps (https://
web.croplands.org). The pixel numbers corresponding entirely to the
rice paddies measured in each experiment are shown in Table S1. This
is an important industrial zone, as well as an agricultural zone, and the
agricultural land being impacted by industrial activities. Previous stu-
dies have shown that Cd is the predominant pollutant in paddy soils
that are watered from the Xiang Jiang River, which contains industrial
wastewater discharge (Lei et al., 2015; Chen et al., 2016). Heavy metal
ions, especially Cd, in the Xiang Jiang River have been found to be
much higher than those in the soil trace element background for Hunan
Province (Liu et al., 2017). The soil Cd concentrations in the experi-
mental sites range from 0.9 to 9mg.kg−1 (the threshold value soil of
Level II Soil Environmental Quality Standards in China is 0.3mg kg-1).
It should be noted that differences in the soil Cd concentration among
the experimental sites were not considered in the analysis because the
spatio-temporal characteristics of rice under heavy metal stress were
analyzed with respect to each individual experimental region. To obtain
the test data for the EVI simulation, one control site in the study area
(designated the “Reference site”) was identified. This site has been
unstressed by Cd; has had rice growing in the field from 2014 to 2016;
has been cultivated on an experimental farm; and has been supplied
with abundant fertilizers, manure, and irrigation water to avoid other
environmental factors causing unwanted stress.

2.2. Remote sensing data

The Landsat-8 Operational Land Imager (OLI), Landsat-7 Enhanced
Thematic Mapper Plus (ETM+), and MOD09A1 (MODIS surface re-
flectance products) from 2008–2017 were used in this study. To im-
prove the quality of the data fusion, all of the data available for the
study area between late April and late October, which is a longer period
than the rice growing season, were selected. The MOD09A1 product is
eight-day composite surface reflectance data with a spatial resolution of
500m (https://ladsweb.modaps.eosdis.nasa.gov). The Landsat series
data, which were downloaded from the USGS Earth Explorer website
(http://earthexplorer.usgs.gov), have a spatial resolution of 30m and a
temporal resolution of 16 d. High-quality Landsat images (with cloud
cover less than 35%) of the study area were selected. A total of 250
images were selected: 70 Landsat images and 180 MODIS images (Fig.
S1). The MOD09A1 product provides bands 1–7, while Landsat-8 OLI
and Landsat-7 ETM+ include bands 1–8 and bands 1–9. Blue, green,

red, and near-infrared in all images were used. Further information is
provided in Table S2.

2.3. In situ measured data

We carried out investigations and data collection during typical rice
growth stages from 2014 – 2016. Topsoil samples were collected at
depths in the range of 0–20 cm. The metal Cd concentration in the soil
was analyzed by the Chinese Academy of Agricultural Sciences, Beijing,
China. Soil samples were also analyzed for heavy metal extractable with
diethylenetriaminepentaacetic acid using the method proposed by
Lindsay and Norvell (1978) and the AAS to determine Cd concentra-
tions. The LAI of the study area was determined nondestructively using
a botanical canopy analyzer (AccuPAR model LP-80, METER Group,
Inc., USA) at five random positions in each sample plot. Leaf chlor-
ophyll was determined using a SPAD-502 portable chlorophyll meter
(Minolta Corporation, Ramsey, NJ, USA). All spectral measurements
were taken under cloudless or near-cloudless conditions between 10:00
and 14:00 using an ASD FieldSpec Pro spectrometer (Analytical
Spectral Devices, Boulder, CO, USA). The spectrometer was fitted with
10°-field-of-view fiber optics and operated in the 350–2500 nm spectral
region at sampling intervals of 2 nm.

The meteorological data used in this study included daily maximum
and minimum air temperatures and the actual daily hours of sunshine
(Table S3). The data for 2008–2017 were downloaded from the China
Meteorological Administration (http://www.cma.gov.cn/). These data
were transformed into solar radiation as a climatic input parameter for
the enhanced WOFOST model (Liu et al., 2004; Van Laake and Sanchez-
Azofeifa, 2005). Phenological information, including the transplanting
date (i.e., the first ten-day period of June), anthesis date (i.e., the first
ten-day period of August) and harvesting data of rice (i.e., the last ten-
day period of September) for the study area was obtained from China
Agriculture and Affairs (http://www.zzys.moa.gov.cn).

3. Methods

An important methodological step is establishing a clear conceptual
framework for defining the stress signal, defined herein as stress-in-
duced spectral variation that represents the difference between the
vegetation index of healthy rice and the vegetation index of stressed
rice. The procedure for the calculation and characterization of the stress
signal can be summarized as follows (see Fig. 2). (i) The vegetation
index of rice growing in a real agricultural ecosystem (i.e., stressed rice)
was calculated by blending selected bands of the Landsat and MODIS
images (Fig. 2a). (ii) The vegetation index of healthy rice was simulated
using a theoretical model (Fig. 2b). (iii) The stress signal was evaluated
by application of a wavelet transform to isolate stable stress from
abrupt stress (Fig. 2c). (iv) Key parameters of the spatio-temporal
variations of the stress signal were selected (Fig. 2d).

3.1. Reconstruction of VI time series

To generate time series data with a high spatial and temporal re-
solution, we applied cloud and cloud shadow masks generated from the
Quality Flag in the MOD09A1 product as well as data preprocessing,
including radiance calibration, atmospheric correction, image clipping,
and resampling. The Enhanced Spatial and Temporal Adaptive
Reflectance Fusion Model (ESTARFM) was used to obtain a time series
of the 8-d surface reflectance product (30m) by blending the selected
bands of Landsat and MODIS images (Zhu et al., 2010; Gao et al., 2015).
The ESTARFM algorithm uses two pairs of Landsat–MODIS images (i.e.,
dates t1 and t3) and one MODIS image (date t2) to predict a Landsat-like
image at date t2. In this study, a total of 115 synthetic fine-resolution
images that covered the rice growing seasons from 2008–2017 were
created.

In this study, EVI was used to evaluate the process of paddy growth
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adequately over a wide dynamic range, due to the fact that EVI is more
practical than NDVI for rice growing in high humidity and in the rainy
season (Huete et al., 2002; Sakamoto et al., 2005). It was necessary to
reconstruct the time-series EVI data before application because of the
considerable noise present. The EVI time series were fitted using
double-logistic filtering (Jonsson and Eklundh, 2002, 2004; Bradley
et al., 2007; Hird and McDermid, 2009; Liu et al., 2018a, b).

3.2. Radiation transfer model coupled with the WOFOST model

The WOFOST and PROSPECT models were used to simulate the VI
of healthy rice. The PROSAIL model is a coupled model of the PROS-
PECT leaf optical properties model and the 4SAIL canopy bi-directional
reflectance model, which is widely used to calculate canopy reflectance
(Feret et al., 2008; Jacquemoud et al., 2009); in this study, the PROSAIL
model was used to simulate the canopy reflectance of healthy rice.
Details of the input parameters used with the PROSAIL model are
shown in Table S4. The three main types of parameters are as follows:
(1) leaf parameters, namely the leaf mesophyll structure parameter
(Ns), leaf a and b content (Cab), leaf equivalent water thickness (Cw),
leaf dry matter content (Cm), leaf brown pigment content (Cbr), and
carotenoid content (Car); (2) canopy parameters, namely the leaf area

index (LAI), average leaf angle (ALA), hotspot parameters (hotspot),
and soil brightness parameters (Psoil); and (3) illumination parameters,
namely, the fraction of diffused incoming solar radiation (SKYL), sun
zenith angle (SZA), sensor zenith angles (VZA), and azimuth angle
between the sun and the sensor (RAA).

Previous studies have demonstrated that the value of physiological
parameters, such as the chlorophyll content, water content, and LAI,
often change when crops are exposed to environmental stressors (Levitt,
1980; Ren et al., 2009; Liu et al., 2010) and that this triggers variation
in the crops’ reflectance spectra. Wu et al. (2012) conducted a sensi-
tivity analysis and found that variation in the chlorophyll content,
water content, and LAI resulted in variation in the reflectance of the
visible light, middle-infrared, and whole-region bands between 350 nm
and 2500 nm, respectively. EVI is calculated over the NIR band, red
band, and blue band. In other words, EVI is mostly affected by the
chlorophyll content and LAI, rather than the water content. Our field
investigation found that the chlorophyll content in rice is closely cor-
related to the rice LAI. Based on the chlorophyll content and rice LAI
data collected from 2014 to 2016 (Fig. S2), the chlorophyll content was
calculated from the LAI simulation using the following equation:

= − + −y x x3.747 44.450 92.5762 (1)

Fig. 2. Flow chart for extraction and analysis of rice under stable stress.
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where y is the chlorophyll content and x is the LAI. The coefficient of
determination (R2) between the measured chlorophyll content and the
predicated chlorophyll content was 0.701.

Based on these analysis results, the primary emphasis was on de-
riving LAI and then calculating the EVI (Wu et al., 2012, 2013). The LAI
was derived from the WOFOST model. The WOFOST model is a dy-
namic and interpretative model that simulates the LAI growth of a crop
at a daily time step under specific soil and climate conditions. This si-
mulation can be implemented at the potential productivity level on the
basis of the main factors that limit crop growth, such as the solar ra-
diation and temperature. The input parameters of the WOFOST model
were set on the basis of values reported in the literature of this study
area (Jin et al., 2015; Huang et al., 2016; Liu et al., 2016a, b, c; Zhou
et al., 2017). The primary parameter values used are shown in Table S5.
The values of other parameters in the PROSAIL model were derived
from LOPEX (Ceccato et al., 2001; Hosgood et al., 1994; Zhou et al.,
2017) and remote sensing data (Table S4). It should be noted that the
growth of healthy rice in a given year at any site within this area is
expected to be the same because they experienced the same meteor-
ological conditions. Thus, the single growth curve of simulated EVI by
WOFOST and PROSAIL model represents healthy rice at 19 experi-
mental sites. To confirm the credibility of the EVI simulation, the si-
mulated EVI was tested against our field data collected from 2014 –
2016.

3.3. Obtaining a stable stress signal (AWTS) using a wavelet transform

The wavelet transform (WT) has excellent time and frequency
properties by decomposing the wavelet low-frequency component (aj)
and high-frequency components (dj) (denoted by subscript numbers).
The equation is as follows:

∑= +
=

f λ a λ d λ( ) ( ) ( )j
i

j

i
1 (2)

Here, f λ( ) is original signal, aj represents the high-scale, low-fre-
quency components of a signal and is associated with averages over
scales, and it can capture the stationary level of the original signal
(Percival and Walden, 2000). dj represent the low-scale, high-frequency
components, and it is well suited to detecting transient changes and
hence is associated with fluctuations and abnormal variations on a
scale.

Based on the above analysis, we assumed that the frequency of noise
components and abrupt stress in rice are included in the high-frequency
components of the rice stress signal EVI and that the stable stress of rice
is related to the low-frequency component of the rice stress signal. We
used a routine written in MATLAB (the Mathworks, Inc., Natick,
Massachusetts, USA) to apply discrete wavelet decompositions to each
of the original stress signal with the Daubechies wavelet (“db5”) (Liu
et al., 2011a,b). Different decomposition scales for the db5 wavelet
have been tested, and the results have shown that scale 32 (= 25) is
effective in detecting heavy metal stress information in a satisfactory
way by eliminating the abrupt change and noise in time-series VI data
around the planting and harvesting seasons of rice (Liu et al., 2011a,b;
Sakamoto et al., 2005). In this way, the original stress signal was de-
composed into a low-frequency component (a5) and high-frequency
components (d1–d5).

In this study, a new proposed index, namely an area wavelet
transform stress signal (AWTS) was calculated. Three steps were taken
to achieve a stable stress signal (AWTS) (Fig. 2c and d):

(1) subtracting the stressed rice EVI (i.e., the observed EVIs) by the
healthy rice EVI (i.e., simulated EVIs) as the original stress signal
(Fig. 2c).

(2) extracting a5 by using wavelet transform at the fifth decom-
position level, as mentioned above (Fig. 2c).

(3) calculating the area of (a5) from DOY152 (the 152nd day of the

year) to DOY 262 over the entire growth stage (denoted AWTS)
(Fig. 2d).

3.4. Constructing key parameters for spatio-temporal characteristics

To validate the spatio-temporal stability of AWTS for monitoring Cd
stress in rice in each experimental region over ten years (i.e., 10-yr),
four categories of parameters were selected to study the spatial and
temporal variations of AWTS. The first category of parameters related
to the spatial variation of AWTS. The coefficients of spatial variation
(SVC) were defined as follows (Fig. S3(a)).

=
−

SV
SV j i SV

δ
| , |

C
C C

j i, (3)

where SV j i,C , SVC , and δj i, are the ith-pixel AWTS value in the jth ex-
perimental region (j= 1–19), the area-averaged mean value, and the
standard deviation along a given AWTS in the jth experimental region,
respectively. SVC is divided into three groups, namely 0< SVC < 1,
1< SVC < 2, and SVC >2. The lowerSVC is, the greater the homo-
geneity of VS Cis. When crops are stressed by stable stressors, SVChas a
lower value because the AWTS changes uniformly within this area. It
should be noted that the values of 1 and 2 represent 99% and 95%
confidence levels, which are often considered effective threshold values
of “stable status” versus “abnormal status.”

Similarly, the second category of parameters are related to temporal
variation features of AWTS and are defined as follows.

(1) TVC, the coefficients of temporal variation for AWTS TVC, for-
mulated simply as follows (Fig. S3(b)):

=
−

TV
TV TV

δ
| |

C
Cm i C

m i

,

, (4)

where TV m i,C , TVC , and δm i, are the ith-pixel AWTS value in the mth

year (m=10), time-averaged value, and standard deviation along a
given AWTS over 10 years, respectively. TVCis categorized in the same
way as SVC into three different groups, namely 0<TVC < 1,
1<TVC < 2, and TVC >2. Lower values can be regarded as reflecting
the stable characteristics of AWTS over the time period.

(2) TVF , the frequency of the temporal variation for AWTS, reflects
the number of AWTS across the three TVC classifications occurring re-
peatedly over ten years. TVF is formulated simply as follows:

=
∑ =

TV
TV

TV
F

C P

P C P

,

1
3

, (5)

where P= 1, 2, 3.TVC P, is the number ofTVC in each classification group
(TVC,1, TVC,2, and TVC,3) across the same pixel across 10 years, namely,
0<TVC,1 < 1, 1<TVC,2 < 2, and TVC,3 >2. TVF ranges from 0–10.
The greater the frequency of low changes is, the greater the stability
over time is.

(3) TVR, the Pearson's correlation coefficient of AWTS, is used as a
similarity measure for remote sensing time series (Lhermitte et al.,
2011). Here, TVR is formulated simply as follows:

∑ ⎜ ⎟⎜ ⎟=
−

⎛
⎝

− ⎞
⎠

⎛
⎝

+ − + ⎞
⎠= +

TV
j
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δ
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δ

1
1

1 1
R

s

j
j m j m

j m

j m j m

j m1

, ,

,

, ,

, 1 (6)

whereVj m, and +V 1j m, are a given AWTS of the jth experimental region
(j= 1–19) in the mth and (m + 1)th years, Vj m, and +V 1j m, are the
average values of the two signals, and δj m, and +δj m, 1 are the standard
deviations of the two signals. TVRranges from 0–1. The higher the TVR
value is, the more similar the signal curves are, and the better the
stability of the stress signal is.
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4. Results

4.1. Calculation of area wavelet transform stress signal (AWTS)

Using the WOFOST and PROSAIL models, the EVI of healthy rice
(i.e., the potential or optimal productivity level) over 10 years was si-
mulated. The input parameter values for the two models were set
(Tables S4 and S5), and the same meteorological conditions and crop
parameters in a given year prevailed throughout the area, while there
were some differences in the meteorological conditions from year to
year (Table S3). Therefore, each EVI simulates the growth curve of
healthy rice in a given year (Fig. 3). As Fig. 3 details, the EVI initially
increased and then gradually decreased. The EVI time series for healthy
rice revealed the rice’s inherent growth trend without stress. In addi-
tion, a comparison between the simulated EVI and measured EVI was
made. As Fig. 3(b) shows, the R2 of the simulated EVI versus the
measured EVI was 0.87, which confirms the credibility of the simula-
tion results.

Using the simulated EVI and EVI values for rice growth at the 19
sites, the AWTS was calculated on the basis of Fig. 2(c). The distribution
of the area-averaged AWTS for every site from 2008–2017 are shown in
Fig. 4. As this figure shows, most of the sites had AWTS values from 5 to
15 during that 10-yr period, and some of the abnormal values were
found to be relatively high for some of the sites. Spatially, relatively
higher values of area-averaged AWTS occurred at sites S4, S5, and S8.
Lower area-averaged AWTS occurred at the sixteen other sites.

4.2. Spatio-temporal stability analysis of area wavelet transform stress
signal (AWTS)

4.2.1. Spatial analysis of AWTS
Using Eq. (3), the SVC of AWTS at each site was calculated. The

annual cycle of the SVC of AWTS from 2008–2017 is shown in Fig. 5.

The spatial variation of the annual SVC of AWTS was similar in every
year. This figure clearly shows that the variability of SVC was spatially
and annually small. In addition, low values of the SVC of AWTS (< 1)
occurred over the 10 years and maintained a stable distribution for each
experimental site. Fig. 6 shows the annual SVC of AWTS by area (%) for
each variation classification, with the SVC of AWTS concentrated be-
tween 0 and 1 for most of the study area. Lower SVC values (< 1) were
relatively widespread throughout the study area, ranging from 70% to
95%. The maximum value of the SVC area percentage occurred in 2016,
while the minimum occurred in 2013. The second highest value of the
SVC coverage area was between 1 and 2. The SVC coverage area varied
from 5% to 25%. It should be noted that the area percentage variation
of greater SVC values (> 2) was less than 5%.

Based on the above analysis results, the area where the SVC was
concentrated between 0 and 1 was wide (greater than 70%), whereas
the area where the SVC exceeded 2 was small (less than 5%). This
suggests that greater homogeneity existed in the AWTS output and re-
sulted in uniform change in AWTS in the study area. When crops are
stressed by heavy metals, AWTS exhibits spatial stability over 10 years.

4.2.2. Temporal analysis of AWTS
Fig. 7 illustrates the temporal variation of AWTS, including the

mean value and standard value of AWTS over 10 years (Fig. 7(d) and
(e)). The mean value of AWTS over the 10 years ranged mostly from 5
to 45, and the standard deviation of AWTS over the same time ranged
mostly from 2 to 18. The spatial distribution and its statistical features
were evaluated and compared for the three different variation classi-
fications (Fig. 7(a), (b) and (c)). The TVC of AWTS was concentrated
between 0 and 1for each site. In general, lower TVC values (< 1) were
associated with larger frequency values, while values in the middle
range (1<TVC < 2) and higher range (TVC >2) over the 10 years
were associated with lower frequency values. To calculate the fre-
quency value of TVC over the 10 years (i.e., TVF), ten different fre-
quencies from 0 to 9 years (9-yr) were classified. Fig. 8 shows the area
percentage (%) of the ten different frequencies for the three TVC var-
iation classification ranges. The relatively higher values (TVC >2) were
limited to 1-yr; midrange values (1<TVC < 2) mostly remained
connected with the time from 1-yr to 4-yr, and lower values (TVC < 1)
were mainly concentrated in 6-yr, 7-yr, 8-yr, and 9-yr with approxi-
mately 95% of the total area percentage. In short, the lower the value of
TVC is, the higher the value of TVF is.

It is important to understand whether it is effective to derive a
heavy metal stress signal for rice using WT. A comparison of the
Pearson’s correlation coefficient values for AWTS in the adjacent two
years between Before-WT and After-WT was also conducted. As Table 1
shows, most of the Pearson’s correlation coefficients of AWTS in the
adjacent two years were higher than for the before-WT stress signal.

Based on the above analysis results, over ten years, theTVC of AWTS
in the range of 0–1 occurred frequently (more than 60% of the time),
while the TVC of AWTS exceeding 2 seldom happened. The Pearson

Fig. 3. EVI of healthy rice: (a) simulated EVI based on WOFOST and PROSAIL models over 10 years; (b) comparison of simulated EVI and measured EVI.

Fig. 4. Variation of area-averaged AWTS for 19 experimental sites over 10
years.
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correlation coefficient of AWTS over two consecutive years was usually
greater than 0.5. This suggests that heavy-metal-induced stress in rice
exhibits stable variability over a 10-yr time period.

5. Discussion

A small number of studies have attempted to apply NDVI or EVI to
detect crop stress under saline conditions (Lobell et al., 2007, 2010;
Platonov et al., 2013; Wu et al., 2014; Scudiero et al., 2014, 2016).
Here, we demonstrated the use of EVI curves across all growth stages of
a plant, instead of a single growth stage, to characterize persistent stress
signal characteristics (Wang et al., 2015). Our study showed that heavy
metal pollution in crops results in persistent and stable characteristics
over space and time. An area wavelet transform stress signal (AWTS)
could prove meaningful and effective as an indicator for crop stress
monitoring and environmental assessment. Satisfactory performance
was obtained, which can be attributed to two factors. First, the EVI of

healthy rice, simulated using the WOFOST and PROSAIL models, re-
flects the rice growing at its potential productivity level, while the
difference between simulated EVI values and the EVI values of rice
growing in real agricultural ecosystems reflects the original stress
signal, thereby isolating the effects of differences in environmental
factors from year to year on the crop stress signal. Second, the original
stress signal was decomposed into a detailed component and an ap-
proximation component using WT, and the approximation component
was not affected by the “noise” introduced by the abrupt crop stress.
This uncertainty has been shown to be much smaller when using the
approximation component series, which behaves as a smoothing pro-
cedure and eliminates anomaly variations in the signal under certain
scales (Martinez and Amparo Gilabert, 2009; Liu et al., 2011a, 2011b).
That is to say, WT was implemented to decompose the original stress
signal in order to isolate the effects of Cd stress from other confounding
factors (de Beurs and Henebry, 2005; Scudiero et al., 2014; Tian et al.,
2017).

Although we obtained better performance using our approach, er-
rors in AWTS can be introduced in the following ways. (i) The PROSAIL
and WOFOST models, which were coupled to simulate the EVI of
healthy rice because of potential bias associated with the input para-
meters, such as LAI and the chlorophyll content. (ii) Reconstruction of
the stressed rice EVI time series can introduce error as a result of the
algorithm used to combine data from Landsat and MODIS and the VI
time series fitting methods. (iii) Fallow crops in some years can result in
an overestimation of AWTS. In this study, this occurred at site S4 in
2009, S10 in 2012, S15 in 2015, S3 in 2016, and S17 in 2017. We
focused on a method for extracting the stress signal of rice under stable
stress (i.e., Cd stress). Although the Cd concentration in the soil can
affect changes in the crop stress signal, this relationship is difficult to
quantify. Further work will be required to establish a model to detect
the heavy metal stress levels of crops using a soil-plant system and to
use this model to describe the occurrence of paddy soils contaminated
with heavy metals.

6. Conclusion

This study established as method for deriving the Cd stress signal in
rice and examined the spatio-temporal stability of Cd stress in rice in a

Fig. 5. Spatial variation of the coefficients of spatial variation (SVc) over 10 years.

Fig. 6. Area percentage of the coefficients of spatial variation (SVc) in each
classification over 10 years.
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large study area in China over a period of 10 years. The coupling of the
PROSAIL and WOFOST models was found to be an effective method of
simulating the EVI of healthy rice in all the growth stages. MODIS and
Landsat data corresponding to the rice growing seasons over a period of
10 years were combined to determine the EVI of rice under stress. A
wavelet transform was used to derive the signal features of rice under
stable stress by differentiating it from the stress signal of rice under
abrupt stress. The area of the fifth low frequency signal (i.e., AWTS) can
be used to quantify the features of rice under stable stress in all the
growth stages. In addition, four key parameters of AWTS, namely the
spatial variation coefficient (SVC), the temporal variation coefficient
(TVC), the frequency of TVC (TVF), and TVR can be used to characterize
the spatial-temporal variation of rice under Cd stress. The SVC and TVC
of AWTS were concentrated between 0 and 1 in the study area over the
10-yr period, regardless of the site and across different years, indicating
the low spatio-temporal variability and stability of Cd-induced stress in
rice over space and time. In addition, lower TVC values were found to
occur more often over the study period. The adjacent two years of
AWTS values had greater Pearson correlation coefficients and exhibited
a pattern consistent with those over the study period. The key para-
meters described above can effectively capture the spatio-temporal
variation of rice under stable stress.

Thus, a wavelet transform can detect the stable stress signal of a
crop by differentiating it from abnormal or abrupt stress signals. The

Fig. 7. Temporal variation of AWTS over 10 years: (a) the frequency value of lower values (0<TVC < 1); (b) the frequency value of midrange values (1<TVC <
2); (c) the frequency value of high values (TVC >2); (d) the mean value of AWTS ; (e)standard value of AWTS.

Fig. 8. Area percentage of the coefficients of temporal variation (TVC) in each
classification range over 10 years.
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physical models used, in combination with long-time-series remote
sensing data, proved to be very promising in quantifying and under-
standing crop stress status in response to various environmental stres-
sors and even potentially in response to climate change.

Acknowledgments

This research was financially supported by the National Natural
Science Foundation of China (No. 41601473 and No. 41371407), the
Fundamental Research Funds for the Central Universities (No.
2652017116 and No. 2652018080) and the China Scholarship Council
and co-funded by the Faculty of Geo-Information Science and Earth
Observation (ITC), University of Twente, the Netherlands.

References

Bradley, B.A., Jacob, R.W., Hermance, J.F., Mustard, J.F., 2007. A curve fitting procedure
to derive inter-annual phenologies from time series of noisy satellite NDVI data.
Remote Sens. Environ. 106 (2), 137–145.

Campos, A.N., Bella, C.M.D., 2012. Multi-temporal analysis of remotely sensed informa-
tion using wavelets. J. Geogr. Inf. Syst. 4, 383–391.

Ceccato, P., Flasse, S., Tarantola, S., Jacquemoud, S., Gregoire, J.M., 2001. Detecting
vegetation leaf water content using reflectance in the optical domain. Remote Sens.
Environ. 77 (1), 22–33.

Chen, D., Guo, H., Li, R., Li, L., Pan, G., Chang, A., Joseph, S., 2016. Low uptake affinity
cultivars with biochar to tackle Cd-tainted rice - a field study over four rice seasons in
hunan. China. Sci. Total Environ. 541, 1489–1498.

de Beurs, K.M., Henebry, G.M., 2005. A statistical framework for the analysis of long
image time series. Int. J. Remote Sens. 26 (8), 1551–1573.

Dhlamini, Z., Spillane, C., Moss, J.P., Ruane, J., Urquia, N., Sonnion, A., 2005. Status of
Research and Application of Crop Biotechnologies in Developing Countries. Food and
Agriculture Oganization of the United Nations Natural Resources Management and
Environment Department, Rome, Italy.

Erasmi, S., Propastin, P., Kappas, M., Panferov, O., 2009. Spatial patterns of NDVI var-
iation over indonesia and their relationship to ENSO warm events during the period
1982-2006. J. Clim. 22 (24), 6612–6623.

Feret, J.B., Francois, C., Asner, G.P., Gitelson, A.A., Martin, R.E., Bidel, L.P.R., Ustin, S.L.,
le Maire, G., Jacquemoud, S., 2008. PROSPECT-4 and 5: advances in the leaf optical
properties model separating photosynthetic pigments. Remote Sens. Environ. 112 (6),
3030–3043.

Gao, F., Masek, J., Schwaller, M., Hall, F., 2006. On the blending of the landsat and
MODIS surface reflectance: predicting daily landsat surface reflectance. ITGRS. 44
(8), 2207–2218.

Gao, F., Hilker, T., Zhu, X., Anderson, M.C., Masek, J.G., Wang, P., Yang, Y., 2015. Fusing
landsat and MODIS data for vegetation monitoring. IEEE Geosci. Remote Sens. Mag. 3
(3), 47–60.

Hird, J.N., McDermid, G.J., 2009. Noise reduction of NDVI time series: an empirical
comparison of selected techniques. Remote Sens. Environ. 113 (1), 248–258.

Hosgood, B., Jacquemoud, S., Andreoli, G., Verdebout, J., Pedrini, G., Schmuck, G., 1994.
Leaf Optical Properties Experiment 93 (lopex93). Joint Research Centre / Institute for
Remote Sensing Applications.

Huang, Z., Liu, X., Jin, M., Ding, C., Jiang, J., Wu, L., 2016. Deriving the characteristic
scale for effectively monitoring heavy metal stress in rice by assimilation of GF-1 data
with the WOFOST model. Sensors 16 (3).

Huete, A., Didan, K., Miura, T., Rodriguez, E.P., Gao, X., Ferreira, L.G., 2002. Overview of
the radiometric and biophysical performance of the MODIS vegetation indices.
Remote Sens. Environ. 83 (1-2), 195–213.

Jacquemoud, S., Verhoef, W., Baret, F., Bacour, C., Zarco-Tejada, P.J., Asner, G.P.,
Francois, C., Ustin, S.L., 2009. PROSPECT plus SAIL models: a review of use for ve-
getation characterization. Remote Sens. Environ. 113, 56–66.

Jin, M., Liu, X., Wu, L., Liu, M., 2015. An improved assimilation method with stress
factors incorporated in the WOFOST model for the efficient assessment of heavy
metal stress levels in rice. IJAEO 41, 118–129.

Jonsson, P., Eklundh, L., 2002. Seasonality extraction by function fitting to time-series of
satellite sensor data. ITGRS 40 (8), 1824–1832.

Jonsson, P., Eklundh, L., 2004. TIMESAT - a program for analyzing time-series of satellite
sensor data. Comput Geosci. 30 (8), 833–845.

Lei, M., Tie, B.Q., Song, Z.G., Liao, B.H., Lepo, J.E., Huang, Y.Z., 2015. Heavy metal
pollution and potential health risk assessment of white rice around mine areas in
Hunan Province. China. Food Secur. 7 (1), 45–54.

Levitt, J., 1980. Responses of plants to environmental stresses. Academic Press. 1 (5),
3642–3645.

Lhermitte, S., Verbesselt, J., Verstraeten, W.W., Coppin, P., 2011. A comparison of time
series similarity measures for classification and change detection of ecosystem dy-
namics. Remote Sens. Environ. 115 (12), 3129–3152.

Li, Z.T., Kafatos, M., 2000. Interannual variability of vegetation in the United States and
its relation to El Nino/Southern oscillation. Remote Sens. Environ. 71 (3), 239–247.

Lichtenthaler, H.K., 1998. The stress concept in plants: an introduction. Ann. N.Y. Acad.
Sci. 851, 187–198.

Liu, J., Wang, L., Ma, L., Wu, W., Liu, Y., Sun, Y., 2004. A loss estimation method of
monitoring and estimating the yield loss of wheat by drought in dry farming areas in
northwest of China. Sci Agric Sin. 37 (2), 201–207.

Liu, M., Liu, X., Li, M., Fang, M., Chi, W., 2010. Neural-network model for estimating leaf
chlorophyll concentration in rice under stress from heavy metals using four spectral
indices. Biosyst. Eng. 106 (3), 223–233.

Liu, M., Liu, X., Ding, W., Wu, L., 2011a. Monitoring stress levels on rice with heavy metal
pollution from hyperspectral reflectance data using wavelet-fractal analysis. IJAEO
13 (2), 246–255.

Liu, M., Liu, X., Wu, L., Duan, L., Zhong, B., 2011b. Wavelet-based detection of crop zinc
stress assessment using hyperspectral reflectance. Comput. Geosci. 37 (9),
1254–1263.

Liu, F., Liu, X., Wu, L., Xu, Z., Gong, L., 2016a. Optimizing the temporal scale in the
assimilation of remote sensing and WOFOST model for dynamically monitoring
heavy metal stress in rice. IEEE J-STARS 9 (4), 1685–1695.

Liu, M., Liu, X., Liu, M., Liu, F., Jin, M., Wu, L., 2016b. Root mass ratio: index derived by
assimilation of synthetic aperture radar and the improved world food study model for
heavy metal stress monitoring in rice. J. Appl. Remote Sens. 10, 26–38.

Liu, M., Liu, X., Zhang, B., Ding, C., 2016c. Regional heavy metal pollution in crops by
integrating physiological function variability with spatio-temporal stability using
multi-temporal thermal remote sensing. Int. J. Appl. Earth Observ. Geoinform. 51,
91–102.

Liu, H., Zhang, K., Chai, L., Yang, Z., Yang, W., Liao, Q., Li, H., Liu, Y., 2017. A com-
parative evaluation of different sediment quality guidelines for metal and metalloid
pollution in the Xingjian River, Hunan, China. Arch. Environ. Contam. Toxicol. 73
(4), 593–606.

Liu, M., Wang, T., Skidmore, A.K., Liu, X., 2018a. Heavy metal-induced stress in rice crops
detected using multi-temporal Sentinel-2 satellite images. Sci. Total Environ
637–638, 18–29.

Liu, T., Liu, X., Liu, M., Wu, L., 2018b. Evaluating heavy metal stress levels in rice based
on remote sensing phenology. Sensors 18 (3).

Lobell, D.B., Ortiz-Monasterio, J.I., Gurrola, F.C., Valenzuela, L., 2007. Identification of
saline soils with multiyear remote sensing of crop yields. Soil Sci. Soc. Am. J. 71 (3),
777–783.

Lobell, D.B., Lesch, S.M., Corwin, D.L., Ulmer, M.G., Anderson, K.A., Potts, D.J., Doolittle,
J.A., Matos, M.R., Baltes, M.J., 2010. Regional-scale assessment of soil salinity in the
Red River Valley using multi-year MODIS EVI and NDVI. J. Environ. Qual. 39 (1),
35–41.

Martinez, B., Amparo Gilabert, M., 2009. Vegetation dynamics from NDVI time series
analysis using the wavelet transform. Remote Sens. Environ. 113 (9), 1823–1842.

Montieth, J.L., 1996. The quest for balance in modeling. Agron. J. 88 (5), 695–697.
Nagajyoti, P.C., Lee, K.D., Sreekanth, T.V.M., 2010. Heavy metals, occurrence and toxi-

city for plants: a review. Environ. Chem. Lett. 8, 199–216.
Paliwal, A., Laborte, A., Nelson, A., Singh, R.K., 2018. Salinity stress detection in rice

crops using time series MODIS VI data. Int. J. Remote Sens. 0, 1–17.
Percival, D.B., Walden, A.T., 2000. Wavelet Methods for Time Series Analysis. Cambridge

University Press, pp. 594.
Piao, Y., Yan, B., Guo, S., Guan, Y., Li, J., Cai, D., 2012. Change detection of MODIS time

series using a wavelet transform. Int. Conf. Syst. Inform. 2093–2097.
Platonov, A., Noble, A., Kuziev, R., 2013. Soil Salinity Mapping Using Multi-Temporal

Satellite Images In Agricultural Fields of Syrdarya Province of Uzbekistan.
Developments in Soil Salinity Assessment and Reclamation, pp. 87–89.

Ren, H., Zhuang, D., Singh, A., Pan, J., Qiu, D., Shi, R., 2009. Estimation of As and Cu
contamination in agricultural soils around a mining Area by reflectance spectroscopy:
a case study. Pedosphere 19 (6), 719–726.

Sakamoto, T., Yokozawa, M., Toritani, H., Shibayama, M., Ishitsuka, N., Ohno, H., 2005.
A crop phenology detection method using time-series MODIS data. Remote Sens.
Environ. 96 (3-4), 366–374.

Scudiero, E., Teatini, P., Corwin, D.L., Ferro, N.D., Simonetti, G., Morari, F., 2014.
Spatiotemporal response of maize yield to edaphic and meteorological conditions in a
saline farmland. Agron. J. 106 (6), 2163–2174.

Scudiero, E., Skaggs, T.H., Corwin, D.L., 2015. Regional-scale soil salinity assessment
using Landsat ETM + canopy reflectance. Remote Sens.Environ. 169, 335–343.

Scudiero, E., Skaggs, T.H., Corwin, D.L., 2016. Comparative regional-scale soil salinity
assessment with near-ground apparent electrical conductivity and remote sensing
canopy reflectance. Ecol. Indic. 70, 276–284.

Table 1
Pearson’s correlation coefficient of stress signal in the adjacent two years between Before-WT and After-WT.
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2010

2010-
2011
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2014

2014-
2015

2015-
2016

2016-
2017

Before-WT 0.55 0.25 0.34 0.34 0.38 0.50 0.33 0.01 0.42
After-WT 0.73 0.77 0.65 0.37 0.79 0.50 0.77 0.10 0.79
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