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A B S T R A C T   

Integrated Hydrological Models (IHMs) dynamically couple surface and groundwater processes across the un-
saturated zone domain. IHMs are data intensive and computationally demanding but can provide physically 
realistic output, particularly if sufficient input data of high quality is available. In-situ observations often have a 
small footprint and are time and cost-demanding. Satellite remote sensing observations, with their long time 
series archives and spatially semi-continuous gridded format, as well as hydrogeophysical observations with their 
flexible, ‘on-demand’ high-resolution data coverage, perfectly complement in-situ observations. We review the 
contribution of various satellite remote sensing products for IHM: (1) climate forcings, (2) parameters, (3) 
boundary conditions and (4) observations for constraining model calibration and data assimilation. Our review 
of hydrogeophysics focuses on the four mentioned IHM contributions, but we analyze them per data acquisition 
platform, i.e., surface, drone-borne and airborne hydrogeophysics. Finally, the review includes a discussion on 
the optimal use of satellite remote sensing and hydrogeophysical data in IHMs, as well as a vision for further 
improvements of data-driven, integrated hydrological modelling.   

1. Introduction 

Modern water management requires spatially distributed numerical 
hydrological models as tools to integrate data for analyses and forecasting 
scenarios. Traditionally, hydrologists have focused on modelling specific 
hydrological domains, i.e., the saturated zone, unsaturated zone or land 
surface-atmosphere (including hydrological processes in open water 
bodies). Consequently, different modelling expertises were developed to 
address these hydrological domains, i.e., land surface modelling 
(including 2D watershed modelling, also described as rainfall-runoff 
models) and subsurface modelling, the latter separately dealing with 
either unsaturated zone or saturated zone domains. The models addressing 
only one hydrological domain are referred to hereafter as standalone 
models. Various simplifying assumptions are made in each model type, 
generating conceptual or structural uncertainty (Enemark et al., 2019). 

A land surface model uses quantitative methods to simulate the ex-
change of water and energy fluxes at the Earth surface-atmosphere 
interface. Some of these models, such as the rainfall-runoff models, 

can simulate streamflow generation and routing based on meteorolog-
ical data and land surface characteristics. The main output is generally 
the streamflow hydrograph at the outlet of a simulated watershed, 
which is compared with the measured hydrograph during model cali-
bration. Also, evapotranspiration (ET) is an output of land surface 
models, so it can be compared or calibrated with ground ET measure-
ments, e.g., with data from eddy covariance towers or ET observations 
from space. Like other models, land surface models have inherent un-
certainties due to system heterogeneity. However, their largest uncer-
tainty is at their bottom boundary. Most do not include or simplify 
subsurface flow, neglecting the subsurface lateral flow (Zhao et al., 
2021) and flow exchanges between land surface and aquifers. In 
contrast, in groundwater models, the most uncertain boundary is the top 
boundary, i.e., the spatiotemporally variable net recharge at the inter-
face between the unsaturated and the saturated zone. Unsaturated zone 
models are the most uncertain because their top and bottom boundaries 
are uncertain, and also, their variably-saturated domain requires solu-
tions of highly non-linear flow equations. 
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In reality, the saturated, unsaturated and surface flow domains 
represent one dynamically interconnected hydrological system. Inte-
grated hydrological models (IHMs) combine these three hydrological 
domains in different ways depending on the IHM type into one dynamic 
system. The IHMs are forced by external climate forcings (e.g. rainfall), 
restricted by boundary conditions and regulated by parameters of all 
three domains, which are adjusted in a model calibration by minimizing 
the difference between calibrated state variables and observations. The 
term ‘calibrated state variable’ or just ‘state variable’ was assigned after 
Ahlfeld et al. (2011) and represents the modelled state of the hydro-
logical system at a particular time and location, for example, hydraulic 
head, temperature, soil moisture, storage or concentration, but also 
evapotranspiration flux or river flow. As such, next to system con-
ceptualisation, the reliability of IHMs depends on the quality of a wide 
range of data, spatiotemporal data coverage, the number of different 
types of observations applied for calibration of state variables, and the 
goodness of model calibration. 

The acquisition of in-situ point data and their use for setting up and 
calibrating models is important but time-consuming, expensive and 
usually spatially-wise insufficient. Point data typically have small foot-
prints, i.e. the surface area or subsurface volume from which the 
measured signal arises. So, they have limited capacity to represent 
spatiotemporal variability. Even a large number of in-situ point data 
distributed over a study area can be insufficient because interpolation 
usually cannot reproduce its true spatiotemporal variability. In that 
respect, climate forcings of IHMs are the most vulnerable to interpola-
tion errors, because they are the most spatiotemporally variable (espe-
cially precipitation), but have to be assigned for each stress period of a 
model. Remote sensing (RS) and hydrogeophysics, when bias-corrected 
using in-situ point data and applying appropriate geostatistical methods, 
can better handle the spatiotemporal variability of model input data 
than interpolation alone. Therefore, RS and hydrogeophysics are 
increasingly being used as sources of input data for distributed models, 
including IHMs. This manuscript aims to review current and potential 
RS and hydrogeophysics contributions to IHMs to increase their reli-
ability and stimulate wider use of RS and hydrogeophysics data in IHMs. 

Remote sensing and hydrogeophysics have the same main principle, 
i.e., they acquire information about the target from a distance without 
direct contact with it. This is why the scientific literature has 
terminology-related unclarity on where to put the boundary between RS 
and hydrogeophysics. Moreover, there are even opinions that 
geophysics is part of remote sensing or that remote sensing is part of 
geophysics. In this study, we decided to compromise on the terminology. 
Traditionally, sensing the ground surface and subsurface from satellites 
has always been referred to as remote sensing, while sensing the sub-
surface from the ground has always been referred to as surface 
geophysics or surface hydrogeophysics if targeting water. This tradition 
is respected in this review, and the terms satellite remote sensing or just 
remote sensing refer exclusively to data acquisition from satellites, while 
the data acquisition from the ground surface is referred to as surface 
hydrogeophysics. The remaining data acquisition type from above, but 
from near the ground surface, is where the largest terminological con-
troversy is present. Unlike most satellite data acquisition programs, 
these data acquisitions are typically made ‘on demand’ (as in surface 
geophysics) and also from a much lower height. Hence, they cover much 
smaller footprints than satellites but at higher spatial resolution. As such 
we classify them as hydrogeophysics, being divided into airborne 
hydrogeophysics, where data acquisition occurs from pilot-operated 
flying machines (from helicopters or small airplanes) and drone-borne 
hydrogeophysics, where data acquisition occurs from drones, remotely 
operated from the ground surface. Note, only non-invasive hydro-
geophysical methods are discussed hereafter. 

2. Integrated hydrological models 

In the last decades, many physically based modelling approaches 

have been developed addressing multiple processes interacting over a 
range of scales and across different hydrological domains (Paniconi and 
Putti, 2015), giving rise to integrated hydrological models. Each IHM 
has its own way of adapting the governing equations for the surface and 
the subsurface flow domains, the coupling strategy and the solution 
technique (Haque et al., 2021; Maxwell et al., 2014; Ntona et al., 2022; 
Yang et al., 2021). The most important characteristic of IHMs is that they 
dynamically couple the surface water and groundwater flow domains 
across the unsaturated zone, meaning that the solution of several flow 
domains is computed within the same single model simulation. 

Following Daoud et al. (2022), IHMs can be divided according to the 
complexity of integration of the surface water and groundwater flow 
domains into: (1) fully-coupled IHMs; and (2) simplified IHMs. In the 
fully-coupled IHMs, the physically-based governing equations of all 
modelling domains are solved simultaneously. Examples of fully-coupled 
IHM codes are CATHY (Camporese et al., 2010), HydroGeoSphere 
(Therrien and Sudicky, 1996), MODHSM (Panday and Huyakorn, 2004), 
and PARFLOW (Kollet and Maxwell, 2006). Those fully-coupled IHMs 
provide a high level of process detail, but are also costly in terms of 
modelling time and computational requirements. The simplified IHMs, 
also dynamically couple surface water and groundwater, but simplify 
governing equations of one or more flow domains, achieving a compu-
tationally more efficient model than a fully-coupled IHM. Examples of 
simplified IHM codes are various MODFLOW codes extended with the 
UZF Package, where vertical flow across the unsaturated zone is simu-
lated by the kinematic wave approximation (Niswonger et al., 2006) of 
the 1D Richards’ equation. The IHMs with such simplification require 
fewer input parameters than those including a solution of the Richards’ 
equation and avoid the highly non-linear and computationally intensive 
solution of the Richards’ equation. Thanks to their efficiency, the 
simplified IHMs are particularly suitable for catchment or coarser-scale 
model applications, because the potential errors associated with the ki-
nematic wave approximation are small relative to the errors resulting 
from scaling effects and from a reduced set of parameters representative 
of a highly complex system (Morway et al., 2012). 

The simplified IHMs can be either: (a) multi-environment; or (b) 
single-environment. A multi-environment IHM involves the dynamic 
coupling of two or more codes, such as the coupling of MODFLOW with 
PRMS in the GSFLOW (Markstrom et al., 2008). A single-environment 
IHM code, e.g. MODFLOW 6 (Hughes et al., 2017), internally simulates 
flow across the unsaturated zone by using so-called advanced packages 
(Langevin et al., 2017), which dynamically integrate the surface flow 
domain with the groundwater flow domain across the unsaturated zone 
domain. It can also integrate different model components through the 
Water Mover (MVR) Package, which allows the transfer of water fluxes 
between different hydrological domains (Daoud et al., 2022). 

Even if well-calibrated using ample, high-quality input data, all hy-
drological models still have inherent uncertainty. The data assimilation 
technique, commonly used in weather forecasting, where model states 
are continuously updated with real-time data, is increasingly used in 
IHMs. It allows not only to adapt a model to real-time states but also to 
improve model parameterisation with new data, reducing model uncer-
tainty (Camporese and Girotto, 2022; De Lannoy et al., 2022; Doherty and 
Moore, 2020; Liu et al., 2012). Considering groundwater IHM studies, so 
far, the data assimilation has gained mainly interest through research 
applications, applying complex multi-environment, Richards’ equation- 
based models (He et al., 2019; Zhang et al., 2018). However, recently, 
more efficient, practical engineering solutions have also become avail-
able (Doherty and Moore, 2020), such as the open-source data assimila-
tion tool PESTPP-DA, which is part of the PEST++ framework (White 
et al., 2020), run under the pyEMU environment (White et al., 2016). 

3. Application of remote sensing in integrated hydrological 
models 

RS can contribute to IHMs by assigning: i) climate forcings, also 
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referred to as forcings (Section 3.1); ii) parameters of land surface and 
shallow soil (Section 3.2); iii) boundary conditions (Section 3.3); and iv) 
observations to constrain calibrated state variables of an IHM (Section 
3.4). Climate forcings, system parameters and boundary conditions 
determine IHM solutions, while observations (RS, hydrogeophysics and 
in-situ) help to constrain simulated state variables in IHM calibration 
and data assimilation (Fig. 1). 

3.1. Climate forcings 

The common IHM climate forcings include effective precipitation 
and potential evapotranspiration (PET). Effective precipitation is the 
difference between precipitation and rainfall interception by plants, or 
shortly interception. Certain IHMs, which do not include inherent esti-
mate of plant interception, e.g. MODFLOW 6, similarly require effective 
PET (PET minus interception) climate forcing. All the climate forcings’ 
components are spatiotemporally variable, and as such, can be well- 
captured by RS, being particularly useful if bias-corrected by ground 
measurements. 

3.1.1. Precipitation 
Precipitation is the most important climate forcing input of IHMs. 

The standard way of obtaining precipitation measurements is by tipping 
bucket rain gauges connected with logging devices. However, the 
representativeness of such measuring devices is restricted to an area of 
between 250 and 3,000 m2 only (Kidd et al., 2017), depending on terrain 
complexity. Hence, considering the large spatiotemporal rainfall vari-
ability, particularly in topographically complex, water-limited envi-
ronments (Derin and Yilmaz, 2014; Gebremedhin et al., 2021; 
Rahmawati and Lubczynski, 2018), an unrealistically large number of 
rain gauges would be required to assess rainfall properly, for example by 
interpolation (Camera et al., 2014). However, even that does not guar-
antee a reliable precipitation retrieval, as the high spatiotemporal 
variability of precipitation makes it rather impossible to capture pre-
cipitation reliably by interpolation. In this regard, earth observation of 

precipitation provides a valuable contribution to spatiotemporal pre-
cipitation assessment. 

Background information on the remote sensing of precipitation can 
be found in Levizzani and Cattani (2019) and Tang et al. (2020). Many 
RS precipitation products are freely available (Le Coz and van de Giesen, 
2020) and do not require specialised RS knowledge. Sun et al., (2018a) 
compared 30 satellite precipitation products with global or reanalysis 
precipitation data sets. They found large differences in the magnitude 
and in the variability of the precipitation estimates and also that the 
spatial coverage of surface stations primarily constrained the reliability 
of precipitation estimates. Although the reliability (accuracy, spatial 
resolution, temporal resolution) of satellite precipitation products is 
continuously improved, they are all affected by biases of various types 
and origins. Therefore, the final reliability of precipitation estimates still 
strongly depends on: (i) the number and spatial distribution of gauges 
for bias correction, guidelines on the optimal location of rain gauges can 
be found in Morsy et al. (2021) and Di et al. (2020); (ii) the method of 
bias correction (see below); and also (iii) the accuracy and spatiotem-
poral resolution of a selected RS precipitation product. 

There are many methods of rainfall bias correction (Ghimire et al., 
2019). The accuracy of such methods, for a given number of gauges, 
their spatial distribution relative to the spatial scale of an IHM assess-
ment and required by IHM temporal distribution, depends on how the 
bias is distributed (spatiotemporally). That distribution is influenced by 
various natural factors contributing differently to the bias (Gebremedhin 
et al., 2021; Rahmawati and Lubczynski, 2018). The most influencing 
bias correction factor is topography. Because rainfall increases with 
altitude, the bias increases, too. Hence, simple bias correction methods, 
such as those applied in the flat Kalahari Desert by Lekula et al. (2018), 
are not applicable in topographically complex areas where more so-
phisticated methods of merging satellite and daily gauge precipitation 
data are required; for example, the geographically weighted regression 
method is one of such methods, successfully applied for the bias 
correction of daily MPEG (Multi-sensor Precipitation Estimate- 
Geostationary), ~3 km spatial and 15 min temporal resolution and 

Fig. 1. Flowchart summarizing the use of remote sensing and hydrogeophysics in integrated hydrological models.  
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CHIRPS (Climate Hazards Group InfraRed Precipitation with Station), 
~5 km spatial and 1-day temporal resolution satellite rainfall products 
in the topographically complex Upper Tekeze Basin in Ethiopia 
(Gebremedhin et al., 2021). Bias correction is also dependent on the 
scale of the temporal assessment. At coarse temporal scales, i.e. monthly, 
decadal or even weekly, the temporal data accumulation ‘conveniently’ 
reduces the systematic bias (AghaKouchak et al., 2012; Tian et al., 
2009), but the daily bias correction is by far more demanding. 

An optimal selection of a satellite precipitation product requires 
choosing the most accurately performing product at a given study area, 
considering its spatiotemporal characteristics and matching it with the 
IHM grid size and stress period. In the scientific literature, dozens of 
papers validate various satellite precipitation products at different lo-
cations to define the optimal one for an investigated area. However, 
most of the precipitation products used in those studies are at relatively 
coarse spatiotemporal resolution. To our knowledge, currently, the 
highest spatial resolution of satellite rainfall products, with at least daily 
temporal resolution (typically required by IHMs), are provided by MPEG 
and CHIRPS. The difference between the two, except for the spatio-
temporal resolution differences (see above), is that CHIPRS, in contrast 
to MPEG, is inherently bias-corrected by selected gauging stations. 
Among coarser products, the IMERG (Integrated MultisatellitE Re-
trievals for GPM) algorithm combining TRMM (Tropical Rainfall 
Measuring Mission) and GPM (Global Precipitation Measurement) with 
spatial resolution 0.1◦ (~10x10 km) and temporal 30 min, seems to be 
most interesting at present. IMERG appropriately detects and estimates 
regional precipitation patterns and reproduces extreme precipitation 
better than other coarse satellite products, although its performance in 
complex, especially mountainous terrains, needs improvement (Pradhan 
et al., 2022). Another global precipitation product MSWEP (Multi- 
Source Weighted-Ensemble Precipitation) merging gauge, satellite, and 
reanalysis data (Beck et al., 2019), is available since 1979 to real-time 
and has also a spatial resolution of 0.1◦ but a coarser temporal resolu-
tion of 3 h. 

3.1.2. Rainfall interception loss by plants 
Rainfall interception loss by plants, hereafter referred shortly as 

interception, represents part of rainfall never reaching the ground sur-
face, so it is unavailable for infiltration or runoff. It is a major component 
of surface evaporation (Daoud et al., 2022) and is part of ET. In vege-
tated areas, interception can represent a considerable portion of ET. As 
interception reduces rainfall to effective precipitation and PET to 
effective PET, disregarding it or its erroneous estimation automatically 
introduces errors in the subsequent model-simulated processes (Save-
nije, 2004). Experimentally, the interception of trees is measured by 
subtracting the sum of measured throughfall and stemflow from rainfall 
measurement (Ghimire et al., 2017; Ghimire et al., 2012), while 
cumbersome lysimeters (Crouse et al., 1966; McMillan and Burgy, 1960) 
or specific devices such as interception tubes (Demir et al., 2022), can 
estimate the interception of shorter plants such as grasses. However, in 
large areas with various land cover types, field experimental assessment 
of interception is not feasible, but IHMs still require its spatiotemporal 
estimate. 

The most direct RS-based spatiotemporal interception assessment 
involves upscaling of field interception measurements by applying very 
high-resolution satellite images, as proposed by Hassan et al. (2017), 
who scaled field tree interception measurements by very fine (~1 m) 
spatial resolution IKONOS and WORLDVIEW II satellite images. Another 
option is to use analytical interception models (e.g. Gash, Rutter or Liu), 
evaluated by Eliades et al. (2022). These models were developed to 
quantify the temporal variability of interception of single trees based on 
field experimental measurements. Still, with the help of RS, they can be 
adapted to spatiotemporal assessment (Cui et al., 2015), because not 
only their hydrometeorological spatiotemporal variables, but also bio-
physical spatiotemporal variables (fraction of canopy cover and the 
canopy storage capacity) are definable from RS Leaf Area Index 

estimates (Vegas Galdos et al., 2012; Zheng and Moskal, 2009). There 
are various RS adaptations of interception models, especially of the Gash 
model (Gash et al., 1995), e.g. at the global scale by Miralles et al. (2010) 
and at the catchment scale by Cui and Jia (2014); Gebremedhin et al. 
(2023). An example of spatiotemporal RS-based Gash model imple-
mentation in a catchment scale IHM (MODFLOW 6) is presented by 
Daoud et al. (2022). 

Readily available interception products are still scarce. To our 
knowledge, the only such product is the WaPOR from the FAO portal at 
250 m spatial resolution and decadal temporal resolution. However, 
WaPOR is available only for a selected part of Africa. Besides, it should 
be validated before it is used because compared to the RS Gash model, 
the WaPOR indicated substantial underestimation of interception and 
unrealistically low and invariable seasonal dynamics, likely because it 
simplifies the interception calculation, neglecting plant canopy storage 
capacity (Gebremedhin et al., 2023). 

3.1.3. Potential evapotranspiration 
PET is a controversial term in hydrology (Gebremedhin et al., 2022; 

Miralles et al., 2020; Savenije, 2004), as it is based on different ap-
proaches and definitions. However, regardless of the terminology, PET is 
a useful concept and an important IHM climate forcing, defined as ‘the 
maximum amount of water that can be evaporated from soil, from surface 
features and from the subsurface as well as transpired by plants, under un-
limited water availability condition’ (Gebremedhin et al., 2022). The most 
common way of estimating PET (Allen et al., 1998) is as the product of 
the FAO reference evapotranspiration (ETo) and crop factor (Kc). As the 
FAO Kc refers exclusively to crops, Gebremedhin et al. (2022) addressed 
Kc as a land use-land cover factor, which refers not only to crops but also 
to natural vegetation. 

FEWSNET (~111 km grid) and DMETREF (3 km grid) portals claim 
to provide RS-based, daily ETo corresponding with the FAO ETo. 
Considering the spatial resolution, the latter is more interesting, 
although it is affected by heat advection bias (Gebremedhin et al., 
2022). Heat advection depends on the near-surface air temperature 
(Trigo et al., 2018). Hence, the bias can be corrected as a function of 
temperature. Gebremedhin et al. (2022) corrected ETo by applying ERA- 
5-Land temperature product (corresponding with measurements at the 
2 m height), merging it with in-situ temperature measurements at the 2 
m height, and applying the geographically weighted regression method. 

For crops, the Kc is already well-defined by lysimetric measurements 
(Allen et al., 1998), but not for most natural land covers. The lysimetric 
measurements are cumbersome and inefficient, so they are generally not 
applicable for large area assessment, only for Kc calibration and vali-
dation. For spatiotemporal Kc variability in large areas, RS provides a 
valuable solution as Kc is linearly dependent on vegetation indices, 
particularly on NDVI (Rafn et al., 2008), and at given climatic conditions 
can be replicated from one area to another (Campos et al., 2010; Campos 
et al., 2013; Choudhury et al., 1994). An overview of recent improve-
ments in applying RS to map Kc is presented by Pôças et al. (2020). 

The Moderate Resolution Imaging Spectroradiometer (MODIS) pro-
vides an RS-based PET product at 500 m spatial and 8-day temporal 
resolution. However, the input data for this product is derived from the 
Global Modeling and Assimilation Office meteorological data at 1◦ x 
1.25◦ (~111 km x 138.75 km) spatial resolution applying spatial 
smoothing (Mu et al., 2007). While this is acceptable for global or 
continental-scale IHMs, at the catchment-scale, it may lead to substan-
tial biases (Mu et al., 2011). Another RS product, GLEAM, provides PET 
at daily resolution but at the global spatial resolution of 0.25◦ and is 
based on the Priestley and Taylor equation driven by observations of 
surface net radiation and near-surface air temperature (Martens et al., 
2017). 

3.1.4. Implementation of climate forcings in integrated hydrological models 
IHM codes differ in their requirements for climate forcings as input. 

For example, MODFLOW 6 calculates evapotranspiration from the 
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subsurface only, i.e. without considering interception. Consequently, 
when creating climate forcings’ inputs, interception has to be externally 
subtracted from rainfall and from PET. In other IHM codes, where 
interception is internally calculated (e.g. GSFLOW), precipitation and 
PET can be directly used as climate forcing inputs. 

If the time series of RS climate forcings contain data gaps (e.g. 
missing days in satellite products), then the missing data must be filled 
in, e.g. with statistical techniques. Moreover, RS climate forcings typi-
cally provide coarser spatial resolutions than the spatial resolution 
commonly used by IHMs. In such cases, the RS products can be down-
scaled to the required IHM grid size. A recent review of downscaling 
methods of satellite-based precipitation estimates is provided by 
Abdollahipour et al. (2022). Conversely, if a satellite product has a finer 
resolution than the model grid, it can be aggregated, e.g. as a mean, to 
match with the IHM grid. 

3.2. Parameters 

In contrast to climate forcings and state variables, model parameters 
are time-invariant (at least at the temporal scale of IHM). Satellite RS has 
limited contributions to system parameterisation because RS signals can 
only inform land surface and very shallow subsurface, typically in the 
order of a few centimetres depth only. 

Optical and multispectral (e.g. Landsat, Sentinel, etc.) satellite im-
ages provide georeferenced background for setting numerical model 
grids and for assignment of model features such as rivers, lakes, trees, 
urban areas, etc. (Qin and Liu, 2022; Tamiminia et al., 2020). They also 
provide landscape information, allowing land use-land cover 
classification. 

A very important RS input for IHMs is a digital elevation model 
(DEM), which provides fundamental depictions of the three-dimensional 
shape of the Earth’s surface (Guth et al., 2021). DEM provides important 
slope parameters influencing runoff and can help delineate watershed 
divides, river hydraulic gradient, etc. A DEM can also be used to study 
surface relief changes; for example, a combination of optical satellite 
images and the Shuttle Radar Topography Mission (SRTM) DEM was 
applied to map large-scale paleo-features, including a mega paleolake 
Chad, for the standalone groundwater model of the Lake Chad Basin 
(Leblanc et al., 2006a; Leblanc et al., 2007; Leblanc et al., 2006b). 

RS DEMs are based on radar sensors (e.g. SRTM or ALOS), digital 
photogrammetry (IKONOS, ASTER) and Light Detection And Ranging 
(LiDAR) measurements. Hawker et al. (2019) list and compare global 
DEM products (coverage, acquisition years, sensor type, wavelength, 
resolution and vertical accuracy), focusing on performance comparison 
between SRTM, MERIT and TanDEM-X 90 applying airborne LiDAR as 
the reference. For IHMs, the most important element of a DEM is its 
vertical accuracy because it is used for referencing hydraulic heads and 
stages (for more information see Section 3.3). The vertical accuracy of 
different DEM products has been validated at various world locations; 
Shikoku Island (Japan) by Pakoksung and Takagi (2021); Maqu catch-
ment of Tibetan Plateau by Li et al. (2021); and throughout the whole of 
Mexico by Carrera-Hernández (2021). Recently, a global 30 m resolu-
tion Copernicus surface DEM was presented for the first time, with 
buildings and forests removed by machine learning (Hawker et al., 
2022). 

One of the main RS applications for IHMs is RS-based soil parame-
terisation, i.e. mainly soil type and texture. General overviews of tech-
niques, data sources and RS assessments of soil at different scales are 
available from Chen et al. (2022), Dewitte et al. (2012) and Mulder et al. 
(2011). Soil type and texture can be investigated by applying different 
RS data, such as: i) a combination of radar and optical data from Sentinel 
1 and 2 (Bousbih et al., 2019); ii) multitemporal Landsat 8 data (Duan 
et al., 2022); or iii) hyperspectral data (Vibhute et al., 2015). Other IHM- 
important soil parameters can also be assessed through a combination of 
RS and other data types, mainly field-acquired data. For example, 
Honarbakhsh et al. (2022) used various RS data, including relief data in 

combination with field-acquired, easy-to-measure soil properties, to 
determine spatially distributed soil-saturated hydraulic conductivity 
and pedo-transfer functions. Francés and Lubczynski (2011) used RS 
image processing of QuickBird, ASTER-GDEM (satellite images), aerial 
photographs, surface geophysics (EM-31), and reference soil samplings 
in geostatistical mixed linear model, all to determine the spatial vari-
ability of the clayey topsoil thickness for a catchment of ~ 19 km2 at a 
spatial resolution of 25 m. 

3.3. Boundary conditions 

Boundary conditions are critical for model performance and should 
be defined with particular care. Adequate model boundaries align with 
physical boundaries (Anderson et al., 2015). Different types of boundary 
conditions can be defined on the basis of RS products. The lateral no- 
flow boundary conditions, such as watershed divides, can be deter-
mined from RS DEMs, while the contacts between different rock types, 
e.g. between permeable and impermeable rocks, as well as identification 
of fault lines or dyke locations, can be supported by digital processing of 
multispectral images. Optical and thermal remote sensing can also be 
used to detect and map groundwater discharge areas (Sass et al., 2014; 
Tweed et al., 2007). 

Surface water bodies (e.g. lakes, rivers, etc.) are often assigned as 
boundary conditions of IHMs, especially if they are in hydraulic contact 
with groundwater. RS can identify surface water bodies and define their 
stages and related spatial extent. If they are assigned as specified head 
boundaries, then heads corresponding with these stages are forced, so all 
the uncertainty attributed to their assessment is carried over into the 
model results. The head-dependent boundary is a better solution as it is 
less constrained. In that solution, a temporally variable hydraulic 
gradient driving a flow (seepage) across the bottom of a surface water 
body is estimated from the difference between a stage observation and 
the simulated hydraulic head or simulated stage. For example, in 
MODFLOW, bottom seepages can be simulated through River or 
Reservoir Packages but also through more complex solutions offered by 
‘advanced’ head-dependent boundaries, such as the SFR2 (for rivers) 
and Lake Packages of MODFLOW. In the latter two boundary cases, 
water exchanges between a surface water body and underlying unsat-
urated and saturated zone can be quantitatively controlled by observa-
tions of river discharges and lake stages, respectively. For example, El- 
Zehairy et al. (2018) used time series of river discharges and lake stage 
observations to constrain state variables in multivariate model calibra-
tion. More about RS observations of surface water body stages is pre-
sented in section 3.4. 

Another type of boundary condition is groundwater abstraction. In 
irrigated areas, groundwater abstractions have been evaluated using RS 
of evapotranspiration (Ahmad et al., 2005; Vu et al., 2020). However, 
such RS assessment of groundwater withdrawals does not account for 
return flows to aquifers and does not differentiate between surface and 
groundwater, which can be problematic in the case of conjunctive water 
use for irrigation. 

3.4. Remote sensing observations to constrain calibration of state 
variables 

State variables represent in an IHM a simulated state of a hydro-
logical system for a certain hydrological domain at a particular time and 
location. In calibration and data assimilation of IHMs, state variables are 
compared with observations (in-situ, hydrogeophysics or RS) to mini-
mize the difference between them. Traditionally, groundwater, unsat-
urated zone and surface water flow model domains have been calibrated 
against classical in-situ observations, i.e. hydraulic heads, profile soil 
moisture (or matric potential) and surface water levels (stages) and 
discharges, respectively. In IHMs, various state variables of all model 
domains can be calibrated simultaneously. If the classical data are 
scarce, predictive uncertainty of IHMs can be reduced by calibration 
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and/or data assimilation using unconventional observations (tracer 
concentrations, residence and travel times, exchange fluxes and tem-
perature) as proposed by Schilling et al. (2019), but also by spatiotem-
porally variable RS (also hydrogeophysics) data originating from 
various satellite products. 

3.4.1. Stages and discharges 
RS-derived stages of surface water bodies, such as lakes, rivers etc., 

further referred shortly as stages, represent important observations for 
calibration of simulated stages or simulated stream discharges – in the 
latter case, the stream discharges are obtained from RS-derived stages. 
The easiest way to define the temporal variability of stages is by 
installing an automatic water level (stage) logging device. However, if 
such installation is not possible, RS provides the following possibilities 
to define stages of surface water bodies: i) indirect, by very high- 
resolution satellite observation of the extent of a surface water body, 
using an extent-stage relationship; ii) direct, by satellite altimetry. An 
example of the indirect RS estimate is how decadal time series of fluc-
tuations for Lake Chad in Africa were inferred from high-resolution 
optical and thermal data (Leblanc et al., 2007; Leblanc et al., 2011). 
For smaller surface water bodies like rivers, the very high resolution (~1 
m or better) optical RS monitoring showed a large potential for 
modelling ungauged catchments. For example, Sun et al., (2018b) used 
commercial, very high-resolution QuickBird, Ikonos and WorldView-1 
images to calibrate a hydrological model of the upper Yalongjiang 
River Basin on the Tibetan Plateau. A similar study was proposed by 
Huang et al. (2022), who defined river stages by IKONOS, QuickBird, 
RapidEye-1/2/4/5, GeoEye-1, WorldView-2 and Landsat satellite im-
ages and applied them in a hydrological model to test its estimates of 
flows of the Lhasa, Salween, Mekong, and Yangtze Rivers at sections of 
~100 m width. The reliability of the simulated discharges was 
confirmed by high Nash-Sutcliffe efficiency coefficients ranging be-
tween 0.5 and 0.8. 

Direct RS measurement of stages of surface water bodies can be 
performed by high-resolution satellite altimetry, i.e. radar or laser 
altimetry. Satellite radar altimetry measures the time it takes for a radar 
pulse to travel from the satellite to the surface and back to the satellite 
receiver. Satellite laser altimetry does the same, only using light (pho-
tons) pulses. The Copernicus Sentinel 3A/3B, with a 300 m along-track 
and 1.64 km across-track footprint, was suitable for monitoring stages of 
wetlands in a direction parallel to the satellite tracks (Kittel et al., 2021). 
Deidda et al. (2021) showed, based on 22 Italian river sections with 
widths ranging from 50 to 555 m, that the stages of rivers can be quite 
accurately measured by free Sentinel 3A/3B and Jason 2/3 data. Garkoti 
and Kundapura (2021) used the same Copernicus altimetric missions to 
estimate river discharge solely using RS. The estimation was based on 
the simplified Manning’s equation, assuming that a river’s wetted 
perimeter was much larger than the river depth, which applies to 
discharge calculations of very wide rivers only. The river depth was 
estimated using satellite altimetry, the river bed slope by SRTM DEM 
and the river widths from the RivWidthCloud algorithm (Yang et al., 
2020) processing of Sentinel 1 and Sentinel 2 images in Google Earth 
Engine. However, a cross-section geometry of a river is not always 
available, nor is the assumption of a wetted perimeter ≫ river depth, 
valid. For such cases, Jiang et al. (2021) proposed an approach based on 
a 1D MIKE HYDRO, i.e., a hydrodynamic model, combining cross- 
section geometry and roughness into one conveyance parameter. They 
used river widths from CryoSat-2 radar altimetry and Landsat imagery 
extracted using the RivWidthCloud algorithm in Google Earth Engine for 
model calibration. 

For monitoring stages of large rivers wider than 100 m and for 
monitoring of surface water bodies, such as for example lakes, with a 
surface area larger than 250x250 m, very promising is the SWOT (Sur-
face water and Ocean Topography) satellite hydrology mission, which 
was launched on 16 December 2022. This interferometry mission is 
expected to provide continuous information on the dynamics of surface 

water bodies. One of its important products is SWORD (SWOT River 
Database), which contains data describing different river attributes such 
as network structure, water surface elevation, river width, and river 
type, so it can serve as a framework for global hydrological analyses 
using models, in situ measurements, and additional satellite observa-
tions (Altenau et al., 2021). 

The disadvantage of RS radar altimetry in surface water body 
assessment is that it is still restricted to relatively large rivers, i.e. larger 
than ~ 100 m in width. The RS laser altimetry from ATLAS (Advanced 
Topographic Laser Altimeter System) onboard the ICESat-2 satellite 
mission, launched on 15 September 2018, overcomes this limitation. It 
offers a unique opportunity to measure river (Coppo Frias et al., 2023) 
and lake stages (Liu et al., 2022) at a much higher resolution than radar 
altimetry. For example, the along-track resolution of the ATL03 product 
is 0.7 m. The ICESat-2 not only allows for accurate assessment of water 
stages but also to map river (and lake) cross sections (Coppo Frias et al., 
2023) and river water surface slopes (Scherer et al., 2022), both 
extremely useful for retrieval of river discharges even in non-uniform 
flow condition (Liu et al., 2023). A significant enhancement of surface 
water body monitoring is also expected through using ICESat-2 mea-
surement via SWORD. For example, Christoffersen et al. (2023) devel-
oped an R package called ICE2WSS, which provides the opportunity to 
estimate the water surface slopes along the river centre lines in the 
SWORD using the ICESat-2 ATL13 water surface elevation measure-
ments. They stated that the method works for slopes larger than 0.5 cm/ 
km and river widths larger than 50 m. The main disadvantage of ICESat- 
2 is its limited data availability; as the mission was designed to monitor 
ice at the southern and northern poles, its data coverage declines to-
wards the equator. 

3.4.2. Evapotranspiration 
RS estimates of ET represent useful observations capable of con-

straining simulated ET in model calibration and data assimilation. 
Originally, such applications used ET derived by RS solution of energy 
balance algorithms, such as the SEBAL (Bastiaanssen et al., 1998) 
applied to MODIS imagery to constrain the ET simulated by distributed 
rainfall-runoff SWAT (Arnold et al., 2012) model (not an IHM) of the 
Krishna basin (India) (Immerzeel and Droogers (2008). The study 
concluded that the RS-based ET could significantly improve the model 
calibration of the river discharge. A decade later, Wambura et al. (2018) 
also used RS-based ET as an observation to constrain a SWAT model, but 
instead of cumbersome and specialised energy balance ET calculations, 
they used a freely available MODIS ET product. In their study of the 
Wami River basin in Tanzania, a comparison was made between two 
cases: (a) using only a hydrograph as observation for model calibration; 
and (b) using hydrograph and MODIS-ET observations. They concluded 
that using the MODIS ET as an additional calibration constraint led to: 
(i) a better parameter calibration; (ii) a better capturing of the mean 
behaviour of ET; and (iii) a reduced prediction uncertainty. 

The ET has also been used as an additional observation constraint in 
IHMs. For example, the MODIS ET product was used in the HydroGeo-
Sphere IHM calibration next to groundwater levels and stream dis-
charges of a hillslope catchment in Scotland by Ala-aho et al. (2017). 
The simulations revealed the critical role of groundwater in runoff 
generation but did not reproduce the remotely sensed evapotranspira-
tion time series well. Hassan and Lubczynski (2024) also used MODIS ET 
product as additional (next to heads and 4 soil moisture profiles) 
constraint in GSFLOW calibration of a very fine, 5x5 m grid model, to 
investigate net recharge dependence on hydrotopes. Gelsinari et al. 
(2020) carried out a feasibility study of improving modelling results by 
applying a Kalman filter data assimilation of MODIS ET in a 1D con-
ceptual unsaturated zone model coupled to MODFLOW 2005. The use of 
ET for data assimilation of the IHM was justified by the impact of the ET 
on groundwater levels and net recharge. The data assimilation improved 
not only the simulated evapotranspiration but also the net recharge, 
emphasizing the potential of RS ET as a calibration state variable. 
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Recently, Gelsinari et al. (2021) compared also the two ET assimilation 
cases, i.e., the simple, 1D conceptual unsaturated zone model coupled to 
MODFLOW 2005 and the complex, Richards’ equation 1D SWAP un-
saturated zone model coupled to MODFLOW 2005. Remarkably, the 
data assimilations of the two coupled cases provided similar results. 

3.4.3. Soil moisture 
RS soil moisture (SM) has been used less frequently in IHMs as an 

observation to constrain model state variables than ET. Ridler et al. 
(2014) proposed one of the first studies assimilating satellite SMOS (Soil 
Moisture and Ocean Salinity) data in the MIKE SHE IHM. The RS SM 
observations substantially improved the simulated SM down to 25 cm 
depth but did not improve deeper SM at 50 cm depth, nor did the 
simulated river discharge improve. A more recent study by Zhao et al. 
(2021) assimilated SM of the SMAP (Soil Moisture Active Passive) 
product, first in the surface community land model (CLM) and then in 
the IHM coupling of the same CLM with the ParFlow (subsurface). In 
contrast to CLM alone, which considered only vertical flow, the CLM- 
ParFlow IHM considered both vertical and lateral flows, showing less 
bias and similar random errors but a slightly smaller correlation with the 
measurements. Nevertheless, the CLM-ParFlow reproduced better soil 
moisture dynamics, emphasizing the advantage of multi-domain IHMs 
compared to single-domain standalone models (Zhao et al., (2021). The 
highest spatial SM resolution (1 km) is provided by SENTINEL-1 (C-SAR) 
product (https://land.copernicus.eu/global/products/ssm) available 
daily in Europe since October 2014. For example, the applicability of 
SENTINEL-1 topsoil SM for hydrological simulation with HEC-HMS 
model has been tested in Keramianos basin in Crete by (Alexakis 
et al., 2017). 

3.4.4. Change of terrestrial water storage 
Another observation type that can be applied as a constraint of state 

variables in IHM calibration and data assimilation is the temporal 
change of terrestrial water storage (TWS) recorded by the Gravity Re-
covery and Climate Experiment (GRACE) mission since 2002 (Hum-
phrey et al., 2023). However, isolating the groundwater component 
from the TWS remains a challenge. This is generally achieved by 
removing from TWS soil moisture, snow and surface water components, 
which are estimated, depending on the complexity of a basin, using a 
combination of in situ data, satellite data and models as proposed by 
Frappart and Ramillien (2018). Different solution was proposed by 
Andrew et al. (2017), who showed that wavelet decomposition might 
also be used to split total water storage into different components, 
including soil water and groundwater. 

The validations of GRACE groundwater storage changes have been 
carried out by directly comparing them with groundwater level changes 
in wells and with models. For example, Rateb et al. (2020) compared 
groundwater storage changes from GRACE over 15 years (2002–2017) 
in 14 major U.S. aquifers, with groundwater-level monitoring data in ~ 
23,000 wells and with regional and global hydrological and land surface 
models. For validation of GRACE groundwater storage changes, IHMs 
have also been used. For example, Seyoum and Milewski (2016) 
developed a MIKE SHE model of the Northern High Plains in the USA 
that was calibrated against independent, in-situ (heads, stream flows, 
soil moisture) observations. They found a good agreement between 
GRACE TWS and the TWS of the MIKE SHE IHM (simulating the entire 
terrestrial water cycle). 

The usefulness of GRACE observations to control IHM state variables 
is unquestionable, as GRACE data can help to further constrain IHM 
parameters compared to in situ data alone. Sun et al. (2012) used GRACE 
groundwater storage change to calibrate a MODFLOW-based ground-
water model of a regional aquifer in the USA, adjusting hydraulic con-
ductivity, specific yield, and a diffuse recharge multiplier 
simultaneously. Hu and Jiao (2015) used GRACE groundwater storage 
change to calibrate the hydraulic conductivity of a large-scale FEFLOW 
model of the Qaidam Basin, China. They converted GRACE groundwater 

storage into an average groundwater head for each model cell. Li et al. 
(2019) assimilated a state-of-the-art TWS GRACE product into NASA’s 
Catchment Land Surface Model at the global scale, with the goal of 
generating groundwater storage time series that were useful for drought 
monitoring and other applications. Evaluation using in situ data from 
nearly 4,000 wells showed that GRACE data assimilation improved the 
simulation of groundwater at regional and point scales, with estimation 
errors reduced by 36 % and 10 % and correlation improved by 16 % and 
22 %, respectively. 

The main limitation of GRACE data is its very coarse spatial resolu-
tion (not better than 100x100 km), restricting its use to large basins or 
continental scales. However, interestingly, land surface and hydrologi-
cal models can be used for downscaling GRACE, e.g. Vishwakarma et al. 
(2021). Other downscaling approaches, based on artificial intelligence, 
were also able to provide useful data for IHMs. For example, Jyolsna 
et al. (2021) established GRACE TWS correlation with various land 
surface and hydroclimatic variables in two commonly used machine 
learning algorithms (multi-linear regression and random forest models) 
to downscale groundwater storage changes. 

3.4.5. Multi-mission observations 
The combined use of multi-mission satellite products provides IHM 

input of different types and different spatiotemporal resolutions. The 
multi-mission satellite products can be applied as observations next to 
in-situ data for multivariate calibration or data assimilation. The multi- 
mission data better constrain model solutions than single-mission data, 
so it also better reduces model uncertainty. The use of multi-mission 
satellite products in a SWAT model of the Okavango Basin was pro-
posed by Milzow et al. (2011), who used a combination of: i) satellite 
altimetry from the RLA (River and Lake Altimetry) product of Montfort 
University based on various altimetry missions; ii) soil moisture from 
ASAR (Advanced Synthetic Aperture Radar) and iii) total water storage 
from the GRACE satellite mission. The satellite-based and ground-based 
observations were calibrated through an automatic, multivariate pro-
cedure, which confirmed the benefit of using different, multi-mission 
observations in the model calibration, but also emphasised a loss of 
model accuracy in simulating catchment outflow due to errors in the RS- 
obtained precipitation forcing. Dembele et al. (2020) used multi-mission 
satellite products in a multivariate calibration framework of a concep-
tual, distributed mesoscale Hydrologic Model (mHM) (not IHM) for the 
gauged Volta River basin in West Africa. In the mHM calibration, they 
simultaneously incorporated streamflow and three satellite products, i. 
e., ET from GLEAM (Global Land Evaporation Amsterdam Model; 
https://www.gleam.eu), SM from ESA-CCI (European Space Agency 
Climate Change Initiative; https://www.climate.esa.int) and TWS from 
GRACE (www2.jpl.nasa.gov/grace/). The MODIS land surface temper-
ature data set was used for model evaluation. The study confirmed and 
demonstrated benefits of using multiple satellite data sets in a model 
calibration. 

Very few studies, especially those using physically based IHMs, 
simulate both the surface water and groundwater domains while inte-
grating multi-mission satellite products as observations to constrain 
model calibration. Two different satellite-based products, i.e. ET of 
GLEAM and SM of ESA-CCI, were used by Lopez et al. (2017) in the 
calibration of a large scale (~38,000 km2 and a 10 by 10 km grid) hy-
drological PCRaster GLOBal Water Balance (PCR-GLOBWB) model in 
Morocco. The PCR-GLOBWB is not a physically based IHM but a leaky- 
bucket type water balance model, which involves all model domains, 
including the groundwater system simulated as a combination of two 
conceptual reservoirs. The multivariate model calibration with ET and 
SM controlled by in-situ river discharge measurements, provided better 
results than using ET or SM separately, substantially reducing the 
equifinality problem. Gaur et al. (2022) used two RS-based observation 
products, the ET of MODIS and the SM of ESA-CCI, in a physically based 
MIKE SHE IHM of the 19,276 km2 and 5 by 5 km grid over Subarnarekha 
catchment in Eastern India. The multivariate calibration focused on the 
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intercomparison of RS-based ET and SM patterns with the simulated 
patterns, applying three spatial performance metrics as diagnostic tools: 
i) joint empirical orthogonal functions; ii) fractional skill score; and iii) 
spatial efficiency. Finally, the uncertainty associated with these pat-
terns, was assessed through the quantile regression technique, which 
confirmed that the ET and SM improved the water balance of the 
catchment. An example of the evaluation (not calibration) of the fully- 
coupled ParFlow-CLM (PF-CONUS v.1) IHM, developed by Maxwell 
et al. (2015), applying several RS products and thousands of in-situ data, 
is presented by O’Neill et al. (2021). The transient model was run hourly 
for four years at the continental scale of the USA, using a 1 by 1 km grid. 
The study showed the benefit of using remote sensing data for model 
evaluation. 

The multivariate data assimilation of multi-mission satellite products 
was proposed by Khaki et al. (2020), who tested the global water bal-
ance W3RA model over two different large basins, the Murray-Darling 
and Mississippi. The RS products used as observations included: soil 
moisture from SMOS and AMSR-E (Advanced Microwave Scanning 
Radiometer-Earth Observing System), Leaf Area Index from AVHRR 
(Advanced Very-High Resolution Radiometer) and terrestrial water 
storage from GRACE. Although the W3RA model was not an IHM, the 
study showed that simultaneous assimilation of observations from 
multiple satellite products, combined with parameter estimation, 
strongly improved model predictive capability compared with single 
satellite products or state estimation alone. To our knowledge, no pub-
lished study has applied multi-mission satellite products in multivariate 
data assimilation of physically based IHM, at least not by the time of the 
release of this review. 

4. Application of hydrogeophysics in integrated hydrological 
models 

The usefulness of geophysics, so also hydrogeophysics, in obtaining 
input data for IHMs, depends on the presence of contrast in physical 
properties of the subsurface that can be inferred from hydrogeophysical 
surveys and their analysis. The subsurface physical properties or quan-
tities that can be measured during such surveys include: electrical 
properties (resistivity, permittivity, induced and spontaneous polar-
isation), seismic velocities, radioactivity, gravity, earth magnetic field, 
or hydrogen proton precession in Nuclear Magnetic Resonance, etc. 

Three types of hydrogeophysical surveys as dependent on data 
acquisition platforms, are discussed considering their potential input for 
IHMs: i) surface hydrogeophysics, i.e. surveys carried out from the 
ground surface ii) drone-borne hydrogeophysics, i.e. surveys carried out 
from remotely controlled drones; iii) airborne hydrogeophysics, i.e. 
surveys carried out from piloted aircraft, mainly airplanes and 
helicopters. 

4.1. Surface hydrogeophysics 

Six different surface hydrogeophysical methods are discussed: elec-
trical resistivity (ER), electromagnetic (EM), ground penetrating radar 
(GPR), seismic reflection, terrestrial gravimetry and magnetic resonance 
sounding (MRS). 

4.1.1. Electrical resistivity 
ER techniques (tomography and profiling) focus on mapping the 

subsurface’s electrical resistivity by injecting electrical current into the 
ground and measuring the resulting electrical potential in a set of 
electrodes. In resistive and moderately resistive environments, ER 
technique can reach large depths by increasing the electrodes’ distance 
(large array size), although losing resolution with depth. The ER tech-
nique is less sensitive to environmental noise than other hydro-
geophysical methods, but it has moderate operational efficiency because 
of time-consuming field installation and data acquisition (Francés et al., 
2014). Besides, the ER method requires good electrical contact with the 

subsurface to inject the current. Therefore, its use in dry soils and 
outcropping rocks can be problematic. Nevertheless, the ER techniques 
have a long-proven record of contributing relevant hydro(geo)logical 
information (Hübner et al., 2015). The equipment’s reasonable cost and 
the measured parameter’s dependence upon soil and rock composition, 
porosity, interstitial water salinity, saturation, etc., make the technique 
still attractive. Since it lacks selectivity for water, optimal exploitation 
assumes at least general local geology and hydrogeology knowledge. 

4.1.2. Electromagnetic 
EM surveys measure apparent electrical conductivity either in the 

frequency domain electromagnetic (FDEM) (Siemon, 2009) or in the 
time domain electromagnetic (TDEM), the latter also known as transient 
electromagnetics (TEM) (Christiansen et al., 2006). FDEM measures the 
signal amplitude and phase of an EM-induced field, while TDEM mea-
sures signal amplitude and decay time constant following an EM pulse 
induced by a transmitter. Both EM methods assume that some of the 
hydrostratigraphic units are at least moderately conductive. The field 
FDEM survey is very efficient as no galvanic contact with the ground is 
needed to assess the electrical properties of the subsurface and, there-
fore, is typically adapted to provide lateral changes in the conductivity 
of the shallow subsurface. Its depth of investigation depends on the 
range of frequencies, coil spacing, signal-to-noise (S/N) ratio and model 
used for data inversion (Francés and Lubczynski, 2011). For example, 
with a fixed 5 m coil spacing on a rigid frame enhancing S/N ratio, and 
using the Slingram method with the MAX-MIN 18S equipment with 8 
frequencies from 444 Hz to 56 kHz, Frances et al. (2014) were able to 
reach 50 m depth penetration in weathered and fractured granites, while 
realizing a survey transect of 1620 m with data acquired every 60 m 
within ~ 5 h. The field TDEM survey, in its classical implementation, is 
less efficient than FDEM, as it involves on the ground setup of electrical 
cables of a transmitter and receiver coils, with the size proportional to 
the required depth of investigation. However, when used with large coil 
separations and frequencies adjusted to the local mineral composition of 
targets (deep aquifers, deep basement boundary, freshwater-saltwater 
interface, etc.), the TDEM can map the subsurface even down to 
several hundred meters (Frances et al., 2015). Recent advances in the 
TDEM resulted also in efficient, towed TDEM instrument implementa-
tion, capable of high-resolution 3D imaging of the subsurface down to a 
depth of 70 m (Auken et al., 2019). 

4.1.3. Ground penetrating radar 
GPR (also known as Georadar) instruments are equipped with 

transmitting and receiving antennas with varying frequencies, typically 
from 40 MHz to 2 GHz. The transmitting antenna sends electromagnetic 
waves, which, if reflected at interfaces (e.g., at boundaries of subsurface 
layers or bodies differing by dielectric permittivity), are then registered 
by the receiving antenna. The time-wise operational efficiency of GPR is 
even larger than that of the FDEM, as the GPR can work in continuous 
mode being towed by a vehicle (Mahmoudzadeh et al., 2012). Theo-
retically, in resistive environments, GPR has a large penetration depth 
(up to 30 m), but in conductive environments, its signal can be attenu-
ated even at a very shallow subsurface, i.e. ~ 1 m. GPR has many 
different applications, but in hydrology, its main application is the 
assessment of soil moisture (Lambot et al., 2008; Tran et al., 2015; Wu 
et al., 2022). Also, the bathymetry of water bodies and characteristics of 
bottom sediments, such as sediment porosity, can be done by GPR 
(Sambuelli and Bava, 2012). However, the GPR bathymetry survey 
works well only in freshwater environments, but with increased electric 
conductivity and dielectric permittivity of water, its penetration depth 
decreases. An assessment of water table depth is also considered a very 
important GPR application. However, the anticipated water table 
response is not observed in the GPR data at many sites (Annan et al., 
1991). For example, in favourable, highly resistive weathered granite 
survey conditions, while working at 200 MHz GPR frequency, Mah-
moudzadeh et al. (2012) could detect water table depth only down to ~ 
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3 m b.g.s. 

4.1.4. Seismic reflection 
The seismic reflection method measures the propagation velocity of 

seismic waves artificially generated in rocks, soils or structures. The 
elastic seismic waves employ energy sources like electronically 
controlled vibrators, sledge hammers or controlled explosions. The ve-
locity of propagation of initiated waves (variable for different materials 
crossed) is detected utilizing sensors (geophones) placed according to 
linear or 3D arrays on the ground or in equipped boreholes (Rubin and 
Hubbard, 2005). The velocity analyzed provides 3D geological and 
hydrostratigraphic information, including soil density and texture down 
to kilometres of depth, although losing resolution with depth (Bertoni 
et al., 2020). Active seismic using an accelerating weight striking a steel 
plate and geophones was shown to be able to define the position of the 
groundwater table (Flinchum et al., 2020). Also, employing the passive 
seismic, using geophones or fibre-optic cables (e.g. designed for tele-
communication) showed that the measured ambient seismic noise cor-
relates with the water table fluctuation (Garambois et al., 2019; 
Tribaldos and Ajo-Franklin, 2021). Like the electrical methods, the 
seismic reflection is affected by non-uniqueness due to the equivalence 
of different shear-wave velocity profiles (Foti et al., 2009). 

4.1.5. Terrestrial gravimetry 
Terrestrial gravimetry measures the acceleration of gravity at the 

Earth’s surface, varying in space and time (Güntner et al., 2017). The 
major advantage of the gravity signal for hydrological studies is the 
direct relation between gravity variations and variations of water masses 
(Fores et al., 2016). Time-lapse relative gravimetry can give an inte-
grated measure of water storage changes over tens to hundreds of cubic 
meters (Christiansen et al., 2011b). Extensive testing of gravimeter 
observation against hydrological monitoring, neutron probe measure-
ments of water content and magnetic resonance sounding, were carried 
out applying absolute gravity (Hector et al., 2013) and relative gravity 
measurements (Pfeffer et al., 2013). The benefits of gravimeter obser-
vations for modelling total water storage changes have been assessed by 
Creutzfeldt et al. (2010). They calibrated a simple hydrological con-
ceptual model against gravimeter records, soil moisture and ground-
water time series and validated the model against lysimeter storage 
changes. They concluded that gravimeter data substantially improved 
predictive capability of the model. However, they also stated that the 
gravimeter alone could contribute neither to internal model structure 
nor parameterisation. Christiansen et al., (2011a) showed for the Mat-
sibe River bank storage site at the Okavango Delta in Botswana, that 
time-lapse gravity data combined with hydraulic head data in a coupled 
hydrogeophysical inversion, allowed to decrease parameter correlation 
in a groundwater model and constrained specific yield, hydraulic con-
ductivity, riverbed conductance and evapotranspiration. Also, Piccol-
roaz et al. (2015) showed that coupling gravimetric data with 
hydrological data in inverse modelling of the Alpine Vermigliana 
catchment, led to better constraining of the model, i.e., better identifi-
cation of model parameters. The main disadvantages of the terrestrial 
gravimeters are high cost, significant installation effort and related lack 
of mobility. 

4.1.6. Magnetic resonance sounding 
MRS, sometimes also referred to as Surface Nuclear Magnetic Reso-

nance, is the only hydrogeophysical survey that can directly provide 
quantitative information on the distribution of water content and 
permeability of rocks with depth (Boucher et al., 2009; Lubczynski and 
Roy, 2003; Lubczynski and Roy, 2007). However, the operational effi-
ciency of MRS is rather low, and also the success of a survey is dependent 
on the geographically variable S/N ratio (Lubczynski and Roy, 2004), 
although that dependence has recently been mitigated by various de-
velopments in MRS hardware, software and in the ways of MRS field 
data acquisition (Grombacher et al., 2022; Grombacher et al., 2021; 

Legchenko et al., 2016). An important improvement in field surveys is 
the simultaneous use of MRS with other hydrogeophysical methods, 
such as with ER (Skibbe et al., 2020) or with EM (Behroozmand et al., 
2012; Legchenko et al., 2008; Vilhelmsen et al., 2014). Also, recent 
advances in signal processing by spectral analysis allowed the inversion 
of the subsurface with reduced model uncertainty, which permitted 
more reliable identification of 3D heterogeneity (Larsen et al., 2021). 

In favourable S/N conditions, the current MRS hardware imple-
mentation can reach penetration depths of a maximum of 100–150 m. In 
low S/N conditions, MRS surveys are usually performed with discrete, 
1D stratification, the penetration depth is low, and approximately only 
two survey locations per day can be achieved. With current MRS 
instrumental characteristics and relatively low time-wise operational 
efficiency, the MRS is not suitable for groundwater exploration. Instead, 
it can provide quantitative system parameterisation input for IHMs, 
comparable with pumping tests (Lubczynski and Roy, 2005; Vouillamoz 
et al., 2014) and also can be used to confirm site suitability for 
groundwater exploitation (Vouillamoz et al., 2002; Vouillamoz et al., 
2016). At a given site, the MRS can assess porosity, specific yield, hy-
draulic conductivity and transmissivity, all as depth-dependent data. 
Recently, MRS was also used to monitor unsaturated water content 
(Legchenko et al., 2022) and to calibrate a HYDRUS 1D unsaturated 
zone model (Legchenko et al., 2020). The main disadvantage of the MRS 
is the high cost of the instrument. 

4.2. Drone-borne hydrogeophysics 

The last two decades have seen a rapid development of drone plat-
forms. The technical details of drone platforms and their capabilities can 
be found in recent reviews by Acharya et al. (2021) and Velez-Nicolas 
et al. (2021). Both reviews use different terms for a flying system, the 
former addressing it as Unmanned Aerial Vehicle (UAV) and the latter as 
Unmanned Aerial System (UAS). That terminology confusion is also 
embedded in the scientific literature. In this study, we assume that a 
UAV is a drone vehicle with a navigation system, while the whole flying 
system, i.e., a drone with a navigation system and imaging sensors, is a 
UAS. The significant advantage is that it can fly on-demand equipped 
with modern operational sensors (e.g., GPS receiver, a WiFi serial 
transceiver, a distance sensor to measure the height) and various types 
of imaging sensors depending on the survey type. However, there are 
limitations for a given drone type, such as payload, power supply, wind 
resistance, etc. Fortunately, with rapid technological improvements, all 
sensors are becoming lighter while the payload, flight time, and control 
of drones are improving. 

The six standard sensor types, typically placed on board satellites 
(section 3), are also being implemented onboard drones. These six are: 
RGB (red–green–blue), multispectral, hyperspectral, LiDAR, thermal 
infrared and microwave. The explanation of the advantages and disad-
vantages of these sensors in various drone-borne hydrological applica-
tions is discussed by Acharya et al. (2021), Velez-Nicolas et al. (2021) 
and Mangel et al. (2022). The most typical drone application is RGB 
aerial photogrammetry of the land surface, which can help identify with 
high precision, ground surface objects (rivers, lakes, crops, etc.) typi-
cally embedded in IHMs and monitor land cover changes. Multispectral 
cameras allow for determining vegetation indices, e.g. Leaf Area Index 
(Gong et al., 2021) or NDVI (Wahab et al., 2018), used in the assessment 
of rainfall interception loss (section 3.1.2) and PET (section 3.1.3), 
respectively. Hyperspectral sensors offer two important applications, i.e. 
water quality monitoring (Lu et al., 2021) and classification of plant 
species (Olariu et al., 2022). The main application of drone-borne 
thermal infrared cameras in IHMs is that they provide high-resolution 
surface temperature for the estimation of evapotranspiration (Niu 
et al., 2020), but also to identify places of surface–groundwater ex-
change (Abolt et al., 2018). The near-infrared LiDAR shows potential in 
3D high-resolution reconstruction of surface topography and vegetation 
characteristics (height, roughness, and density), applicable for flood risk 
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assessment and for monitoring ecosystem changes (Resop et al., 2021; 
Trepekli et al., 2022). However, it has been shown (Bandini et al., 2020) 
that its use for the assessment of water bodies is not optimal, being 
outperformed by green (bathymetric) LiDAR (Mano et al., 2020; Sza-
farczyk and Toś, 2023) and GPR. Finally, there are implementations of 
passive L-band microwave sensors (in contrast to active GPR), mounted 
on board of drones to monitor soil moisture (Acevo-Herrera et al., 2010; 
Houtz et al., 2020a; Houtz et al., 2020b). 

Recent technological advances are observed in adopting classic 
surface hydrogeophysical methods onboard drones. The most significant 
such drone developments are with GPR and its applications in soil 
moisture mapping. In that respect, Wu et al. (2019) and Wu et al. (2022) 
proposed a whole radar system with a lightweight antenna of only 1.5 
kg, based on a handheld vector network analyzer, working in the fre-
quency domain and applying a full-wave inversion to derive soil mois-
ture. Another drone GPR application is presented by Valence et al. 
(2022), who conducted a snowpack evolution survey in a 200 m2 area in 
Canada, with weekly surveys of snow depth, density, snow water 
equivalent and bulk liquid water content. Compared to surface GPR, the 
advantages of such a drone-borne survey are that the snow is not com-
pacted, and the survey is faster. Finally, a very interesting, drone-borne 
GPR application for mapping inland water bathymetry is presented by 
Bandini et al. (2023). Their study confirmed larger efficiency and similar 
accuracy as a GPR survey from a boat (see 4.1.3), but had two limita-
tions: i) a more restrictive minimum water body depth requirement 
(typically 0.8–1.1 m for drone-borne GPR, while 0.3–0.4 m for boat 
GPR); ii) requirement to fly the GPR antenna at altitudes of approx. 0.5 
m above the water surface. Not only GPR but also the electromagnetic 
method has its recent drone-borne implementations. The version 
developed in The Netherlands (Karaoulis et al., 2022) focused on low- 
cost monitoring of local water saturation and salinity changes, while 
the version developed in Japan (Mitsuhata et al., 2022) aimed at soil 
resistivity mapping. 

4.3. Airborne hydrogeophysics 

There are hydrogeophysical surveys that cannot be performed with 
drones but only with piloted helicopters or airplanes, especially when: i) 
heavy instruments need to be onboard (large payload required); ii) a 
large area needs to be flown (aircraft can fly at high altitude and have 
sufficient power supply); iii) harsh conditions of survey prevail (aircraft 
can overcome significant wind or fly in inaccessible areas); iv) survey 
need to be done fast (better speed and maneuverability). 

The same six standard sensor types as used onboard drones and 
discussed in the previous section 4.2, have also been widely utilised in 
airborne campaigns. Airborne surveys with these sensors are similar to 
drone-borne surveys, differing mainly by larger airborne-surveyed 
areas; therefore, their descriptions are not repeated here. However, in 
contrast to drones introduced only recently, airborne campaigns with 
these six standard sensors (or at least some of them) have been carried 
out since the early 20th Century, so some archive data is available in 
many regions. For example, in Niger, historical panchromatic aerial 
photographs enabled change detection from 1950 to 1992 and showed 
the important impact of deforestation on both, surface runoff and 
groundwater recharge (Leblanc et al., 2008). 

Considering classic hydrogeophysical airborne applications, the 
airborne EM method is the most frequently used for groundwater ap-
plications and, hence, most applicable for IHMs. The airborne EM can 
operate as FDEM or TDEM (see 4.1.2) from helicopters or airplanes 
equipped with a transmitter loop or coil to induce current flow into the 
ground and create a secondary magnetic field that a receiver coil senses. 
The airborne EM signals can reach depths of several hundred meters, 
depending on the method used, flight height, type of instrument, and 
ground conductivity (Christiansen et al., 2006; Siemon, 2009). The main 
applications of airborne EM include: i) water quality mapping, in 
particular, to delineate fresh and saltwater zones in aquifers (Chongo 

et al., 2015; Podgorski et al., 2017); ii) acquisition of lithological in-
formation applied for 3D subsurface hydrostratigraphy (Marker et al., 
2015); iii) determination of 3D spatial hydraulic conductivity distribu-
tion, e.g. at the catchment scale, integrating ground measurements of 
electrical resistivity and borehole data (O’Connell et al., 2020); iv) 
identification of groundwater resources, e.g. in buried valleys (Morgan 
et al., 2019). 

The airborne EM campaigns are typically combined with simulta-
neous magnetic and gamma-ray measurements, which in contrast to 
airborne EM, do not directly contribute to groundwater assessments, but 
still can provide useful data for IHMs. The magnetometer measurement 
can delineate igneous rock intrusions at depth (e.g. lava flows such as 
basalt), local magnetic anomalies caused by faults or dykes, etc. Gamma- 
ray spectrometers measure radioelement concentrations in a thin surfi-
cial layer of the earth’s surface. It is applied mainly for geology, li-
thology, regolith and soil mapping (Rubin and Hubbard, 2005). The 
SkyTEM system is a popular example of an airborne implementation of 
TEM, magnetometer and gamma-ray spectrometer, all mounted directly 
on the TEM frame. The SkyTEM system is typically carried by a heli-
copter, allowing measurements close to the ground surface (Steuer et al., 
2009). 

There are also airborne GPR implementations. Easily accessible areas 
can be operated by drone GPR systems, but difficult-to-access areas, like 
mountainous areas, would need to be operated by helicopter-borne GPR. 
Most of such applications are related to the estimation of ice thickness 
and below-ice morphology. Pros and cons of helicopter-borne GPR in 
rugged mountainous areas are discussed by (Forte et al., 2019). 

4.4. Integrations of hydrogeophysics with models 

Various hydrogeophysical techniques in support of conceptual and 
numerical groundwater models have been well documented (Dam and 
Christensen, 2003). Considering surface hydrogeophysics, for example, 
GPR was used to develop a conceptual model of an aquifer architecture 
(facies heterogeneity) within a shallow coastal alluvial plain (Ezzy et al., 
2006). In contrast, TDEM was used to calibrate a saltwater intrusion 
model (Herckenrath et al., 2013b) and reduce groundwater model pre-
diction error (Christensen et al., 2016). Also, airborne hydrogeophysics 
contributed to groundwater models. Dickson et al. (2014) utilised 
airborne and ground-based magnetic surveys to map low-permeability 
dolerite dykes for implementation in a groundwater flow model. Mor-
gan et al. (2019) used airborne electromagnetic (SkyTEM), borehole 
gamma-ray and lithology logs to map buried valleys and conceptualize a 
groundwater flow model. 

Many groundwater modelling studies used two or more hydro-
geophysical methods simultaneously. For example, Herckenrath et al., 
(2013a) applied sequential and joint hydrogeophysical inversion of 
TDEM and ER tomography in a groundwater flow model. Boucher et al. 
(2012) used MRS supported by TDEM to constrain model calibration and 
reduce model uncertainty. Luoma et al. (2021) conducted a complex 
study applying many different methods such as gravimetric, ground- 
penetrating radar, shallow seismic surveys, drill logs, groundwater 
level monitoring data, and a LiDAR digital elevation model to setup a 
groundwater flow model to quantify submarine groundwater discharge. 

The use of hydrogeophysics for IHMs is relatively new. Baroncini- 
Turricchia et al. (2014) used MRS to support the hydrogeological 
parameterisation of a MARMITES-MODFLOW IHM of the Carrizal 
catchment, Spain. Marker et al. (2015) defined the hydrostratigraphy of 
a MIKE SHE IHM using airborne EM and lithological borehole logs. Ala- 
Aho et al. (2015) used airborne thermal infrared imaging to define the 
spatial occurrence of groundwater–lake interactions, implemented in 
the HydroGeoSphere IHM. Lesparre et al. (2020) conditioned the Nor-
mally Integrated Hydrological Model with MRS measurements and 
streamflow data to provide reliable model calibration in a data-scarce 
catchment. Various geophysical techniques, including MRS, GPR, 
FDEM and ER, next to RS and field observations, were applied by 

M.W. Lubczynski et al.                                                                                                                                                                                                                        



Journal of Hydrology 633 (2024) 130901

11

Francés et al. (2014) to define a conceptual model of an experimental, 
about 80 km2 granitic Sardon catchment, recently implemented in the 
MODFLOW 6 IHM by Daoud et al. (2022). 

5. Discussion 

Traditionally, the predictive capacities of standalone (single hydro-
logical domain) groundwater, unsaturated zone or land-surface models 
have always suffered from large uncertainty, mainly due to limited 
knowledge of boundary conditions. Standalone models used to have 
particularly poor performance in shallow groundwater table environ-
ments with distinct surface–groundwater interactions, where frequent 
and important water flux exchanges between aquifer, unsaturated zone, 
land surface, and the atmosphere occur. Still, two decades back, Bate-
laan and De Smedt (2004) proposed groundwater model improvements 
in that respect, but even these improvements could not quantify surfa-
ce–groundwater interactions adequately because standalone models are 
not adapted to such tasks. 

The complexity of water flux exchanges across the unsaturated zone, 
especially at its bottom (net recharge) and top (infiltration and exfil-
tration), stimulated the replacement of standalone models by IHMs. That 
integration of surface water domain with groundwater domain across 
the unsaturated zone makes the IHM setup and calibration more com-
plex but also more reliable because: i) water fluxes of all model domains 
are dynamically integrated into one hydrological system; ii) the top IHM 
boundary, with its spatiotemporally variable climate forcings, can be 
defined in a more realistic manner than the top net recharge boundary in 
standalone groundwater models, especially in shallow water table en-
vironments; iii) the top and the bottom of the IHM unsaturated zone 
domain are represented more realistically, e.g. by field, RS and hydro-
geophysical measurements, than the bottom in standalone land-surface 
and the top in groundwater models; iv) many different types of obser-
vations, also spatiotemporal RS and hydrogeophysical data covering the 
entire grid domain, can be used to constrain IHM state variables, in a 
multivariate calibration or data assimilation. 

RS is a rapidly expanding field of science providing space-borne data 
at continuously improving spatiotemporal resolution. Satellite products 
(e.g., precipitation, PET, ET, SM, stages etc.) have become widely 
available online. Their use typically does not require specialised RS- 
processing knowledge, so RS products can be directly downloaded 
from online data portals. The most widely used platforms to access 
archive remote sensing data include NASA (https://www.earthdata. 
nasa.gov/), ESA (https://earth.esa.int/eogateway/) and Google Earth 
Engine (https://earthengine.google.com). Moreover, a user can also 
have access to near-real time RS products, for example, Copernicus sites 
(https://land.copernicus.eu/ and https://dataspace.copernicus.eu/), 
but also through self-installed, cost-effective satellite-based dissemina-
tion systems such as GEONETCast, which facilitates easy import of 
access-free and open ftp/http time series of environmental data (Maa-
thuis et al., 2012). 

The main advantages of RS products as input for IHMs are the 
spatially and temporally semi-continuous data, with historical archives 
(change detection), typically free-of-charge. The main disadvantages are 
uncertainty and frequently insufficient spatial resolution compared to 
the heterogeneity and complexity of an area simulated by an IHM. 
However, the uncertainty of RS products can be substantially reduced by 
their integration (mainly bias-correction) with in-situ data (Gebre-
medhin et al., 2021) or, for some applications, also with drone-borne 
measurements. 

The main advantages of airborne and drone-borne hydrogeophysics 
as compared to RS are that they can: i) observe not only the ground 
surface but also the subsurface, even deep subsurface; ii) provide high 
spatial and temporal resolution typically higher than RS; iii) acquire 
data ‘on demand’ according to project need, including in cloudy con-
ditions; and iv) easily integrate with ground measurements. The main 
disadvantages of airborne and drone-borne hydrogeophysics as 

compared to RS are: i) the higher costs of campaigns, although less for 
those using drones; ii) lower spatial efficiency with a smaller footprint; 
iii) requirement of specialised knowledge; iv) requirement of cumber-
some data processing; v) lack of long time series archives. Compared to 
surface hydrogeophysics, the main advantages of airborne and drone- 
borne hydrogeophysics are their better efficiency and larger footprint. 
The main disadvantages are the lower spatial resolution and, hence, the 
lower ability to resolve small targets. Also, not all the hydrogeophysical 
methods are adapted to airborne and drone-borne surveys, e.g. MRS is 
not. 

IHMs use four types of input data (Fig. 1): i) climate forcings 
(spatiotemporally variable); ii) parameters (spatially variable); iii) 
boundary conditions (spatially or spatiotemporally variable); and iv) 
observations to constrain state variables (spatiotemporally variable). 
Climate forcings, parameters, and boundary conditions are indispens-
able to running an IHM, which produces simulated state variables that 
are compared with observations to minimize the differences between 
them. Climate forcings and some boundary conditions are typically 
required daily as continuous time series, in contrast to state variables 
that can be assigned incidentally. Climate forcings must be assigned over 
the entire model domain, parameters in every grid cell at any layer, 
while boundary conditions and state variables can be set locally. These 
requirements constrain different data sources and methods of IHM input 
data preprocessing. 

5.1. Climate forcings 

Precipitation is the most important input data of IHMs and the most 
difficult to define properly because of its large spatiotemporal vari-
ability. As transient IHMs require time series of precipitation covering 
the entire grid and every stress period simulated, a combination of sat-
ellite RS products and ground measurements is often used for that 
purpose. Inaccurate precipitation estimates, e.g. made by RS only, can 
jeopardize IHMs as the precipitation uncertainty propagates into the 
IHM results. Besides, standard 0.1◦ RS precipitation products (or 
coarser) have inherent uncertainty related to their large pixel area 
(typically ≥ 100 km2), particularly distinct in topographically complex 
terrains. In such pixels, the comparison of the mean precipitation with 
the point (gauge) precipitation estimate is problematic (Jiang and 
Bauer-Gottwein, 2019). The true precipitation at coarse scale products 
(10–100 km) is essentially unknown. Therefore, higher spatiotemporal 
resolution products (e.g. MPEG with ~ 3 km spatial and 15 min tem-
poral resolution), especially after bias correction using ground mea-
surements, in general, provide more reliable results. 

Numerous RS precipitation products perform differently in various 
locations, as presented in section 3.1.1. Therefore prior to using a 
particular RS precipitation product in an IHM, it is recommended to: i) 
validate different RS precipitation products against available rain 
gauges to select the most reliable RS product; if there are no rain gauges 
or an insufficient number to provide reliable evaluation, one may 
consider installing some, even for a limited period, to obtain informa-
tion, just for validation and bias correction; ii) select and apply an 
optimal bias correction method accounting for the complexity of an 
investigated area; iii) validate the bias-corrected RS precipitation; iv) if 
necessary scale (down or up) the RS precipitation to match it with the 
IHM grid. 

Rainfall interception loss can represent a large part of precipitation 
but is typically underestimated or even neglected by modellers. If 
interception represents even only a few percent of rainfall, it can sub-
stantially change the water budget of a model (Hassan and Lubczynski, 
2024). However, in forests of tropical and moderate climates, inter-
ception can exceed even 30 % of rainfall (Gerrits et al., 2010; McJannet 
et al., 2007; Miralles et al., 2010), while in seasonally dry savannah, it 
largely depends on tree density and species composition (evergreen or 
deciduous), but together with the forest floor it can also exceed 30 % 
(Tsiko et al., 2012). So, interception is an essential component of IHMs 
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and must not be disregarded in IHMs, particularly as there are nowadays 
RS and hydrogeophysical tools to estimate it even in environments 
without in-situ measurements. Such estimates are by far more reliable 
than arbitrary interception assumptions, especially those neglecting 
interception. 

Field measurements of interception (see 3.1.2) are tedious and 
require lots of gauges, especially in areas with complex vegetation 
patterns and composition; as such, they are accurate only at the plot 
scale. At the catchment (or coarser) scale, if interception measurements 
per each plant species are available, spatiotemporal interception can be 
scaled up by applying very high-resolution RS (Hassan et al., 2017), but 
also by airborne or drone-borne hydrogeophysics. However, if field 
interception measurements are not available or available only for some 
species, a use of RS (Cui and Jia, 2014; Cui et al., 2015; Gebremedhin 
et al., 2023) or drone-borne (Bolaños-Sánchez et al., 2021) driven 
analytical interception model, such as the Gash model, is recommended. 

Most IHMs require as input spatiotemporally variable PET forcing 
(see 3.1.3). Although the PET definition is quite well-accepted and used, 
there is no consensus on the method for its estimation. For the PET, after 
Dassargues (2018), we recommend PET = ETo * Kc following the FAO 
approach because: i) the FAO ETo is standardised (Allen et al., 1998) and 
can be well defined not only by ground measurements but also by RS 
estimates (Gebremedhin et al., 2022); ii) the Kc for different crops is 
already well defined (Allen et al., 1998; Pereira et al., 2021a; Pereira 
et al., 2021b); iii) the Kc of natural vegetation can be estimated from 
spatiotemporally variable indices, such as e.g., from the NDVI, which 
nowadays can be derived not only from RS and airborne hydro-
geophysics but also at very high resolution using Unmanned Aerial 
Systems (Jiang et al., 2020). 

5.2. Parameters 

IHMs require parameters of all hydrological domains. Satellite RS 
provides land surface and shallow soil characterisation but is of little or 
no use for subsurface hydrostratigraphy and parameterisation. Optical 
RS imagery provides useful information for setting up an IHM, such as 
catchment boundaries, slopes, rivers and water bodies’ locations, etc. 
while multi-temporal optical data allows monitoring of important land 
surface changes (land use-land cover change, temporal variability of 
vegetation indices, etc.). Surface topography (DEM) is a very important 
IHM contribution of RS (section 3.2), drone-borne (section 4.2) and 
airborne (section 4.3) hydrogeophysics. However, one aspect of DEM is 
often underrated in setting and calibrating hydrological models: eleva-
tion accuracy. The accuracy of elevation greatly influences the reli-
ability of IHMs because the estimates of hydraulic heads and stages of 
surface water bodies, directly depend on the precision of the elevation 
estimates. For example, how precise is a hydraulic head calculated from 
field measurements of water table depth with +/- 1 cm accuracy and RS 
elevation estimate with +/- ~10 m? Hence, standard RS DEM products 
with elevation accuracy of several meters must not be used for refer-
encing hydraulic heads and stages of surface water bodies. The best 
elevation accuracy can obviously be obtained on the ground with 
geodetic, differential GPS providing accuracy of +/-1 cm, or by 
cumbersome, but also precise, classic geodetical equipment. A good 
option is also airborne or drone-borne green LiDAR or radar altimetry 
(see 4.2 and 4.3), especially in areas not accessible for ground-based 
elevation measurements. Considering satellite data, to our knowledge, 
the only comparable elevation accuracy is provided by the data of the 
ICESat-2 satellite mission, but its data availability declines from the 
poles towards the equator (see 3.3). 

Parameterisation of shallow soils refers to soil type and texture, 
which often leads to the development of pedo-transfer functions. The 
microwave ability of soil penetration has been widely used for that 
purpose. Currently, the microwave Sentinel-1 operating in C-band (5.4 
GHz) is the most suitable for that purpose, but in 2024, very high spatial 
resolution NISAR (NASA-ISRO Synthetic Aperture Radar) will be 

launched, which will acquire data in S-band (3.2 GHz) and L-band (1.25 
GHz). Soil type and texture can also be adequately provided by airborne 
and drone-borne hydrogeophysical platforms (section 4.2 and 4.3). In 
that respect, excellent results have been obtained from multi-temporal 
airborne microwave data acquired at 1.3 GHz and in different polar-
isations by Marzahn and Meyer (2020) as validated at the TERENO test- 
site “North-Eastern German Lowland Observatorium”, resulting in a 
mean RMSE of only 2.42 (Mass-%). The main disadvantage of micro-
wave soil parameterisation is the limited signal penetration, which even 
for L-band is in order of 3–5 cm (Xu et al., 2014). 

Parameterisation of the medium and deep subsurface is optimally 
done by combining hydrogeophysical and borehole data, while RS 
contribution is marginal. The hydraulic properties of the unsaturated 
zone can be investigated by surface hydrogeophysics (Francés and 
Lubczynski, 2011; Gallistl et al., 2022), but also more efficiently by 
airborne and recently also by drone-borne EM and GPR methods, which 
can also be used for spatial extrapolation of borehole data and surface 
hydrogeophysical surveys. Considering quantitative hydraulic parame-
terisation of the subsurface (unsaturated and saturated zone), the sur-
face hydrogeophysical method of MRS is the only method providing 
quantitative estimates of hydrogeological parameters such as aquifer 
transmissivity, hydraulic conductivity and aquifer storage coefficient. 

Hydrostratigraphy is an important element of conceptualised 3D 
pictures of the subsurface (Enemark et al., 2019). As such, it is indis-
pensable in all constructed IHMs. 3D hydrostratigraphic models 
involving hydrostratigraphy and parameterisation, can be built based on 
borehole logs if they are sufficiently available. However, in many pro-
jects, the density of borehole logs is insufficient. Hydrogeophysical 
methods can provide supplementary hydrostratigraphic information to 
fill data gaps between the boreholes, although with different contribu-
tions, accuracy, and efficiency in different media (Enemark et al., 2020). 
The EM, ER, GPR and seismic reflection methods are affected by non- 
uniqueness mainly because the relationships between their measured 
physical signal and hydrogeological interpretation are proxies, 
confusing different hydrogeological media of similar physical proper-
ties, but they are operationally efficient. Therefore, they are well-suited 
for hydrostratigraphy extrapolation (Francés et al., 2014), although not 
for quantitative hydrogeological parameterisation. The MRS also pro-
vides hydrostratigraphic assessment (Lubczynski and Roy, 2003; Muller- 
Petke et al., 2011), even more reliable than other hydrogeophysical 
methods, but its use for hydrostratigraphy assessment is not time-wise 
optimal, considering the low number of survey locations that can be 
done per day, particularly in low signal-to-noise ratio environments 
(Lubczynski and Roy, 2004). To our knowledge, gravity measurements 
have neither been used for hydrostratigraphy assessment nor for 
hydrogeological system parameterisation. 

5.3. Boundary conditions 

Numerical models involve external and internal boundary condi-
tions. Very often, those models are bound from outside by no-flow 
boundaries assigned along catchment water divides delineated by RS- 
defined DEM. The lithological boundaries, such as contacts between 
permeable and impermeable rocks as well as fault lines, can be delin-
eated by multi-spectral RS, airborne or drone-borne imaging, if not 
entirely hidden in the subsurface. If, however, these structures are 
hidden, efficient hydrogeophysical methods such as EM in conductive 
and GPR in resistive environments are recommended. 

Internal boundary conditions of models are mainly represented by 
surface water bodies such as rivers, streams and lakes. Temporally 
variable estimates of stages of surface water bodies presented in section 
3.4.1 and discussed in 5.4, can serve either as time-varying specified- 
head boundary conditions or as observations to constrain calibrated 
state variables at the boundary. The temporal variability of stages can 
also lead to river flow and lake volume estimates. If river cross-sections 
and flow rating curves are known, river discharges can be deduced from 
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the temporal variability of river stages (Seibert and Vis, 2016). Simi-
larly, lake volumetric changes can be estimated from stages if the rela-
tionship between lake volume and stage height is available (e.g. from 
accurate DEMs). For bathymetry of rivers and lakes, synthetic aperture 
radar satellite RS can be used, but it is limited to large (>100 m width) 
water bodies (Bandini et al., 2020; Dettmering et al., 2020). For the 
bathymetry of smaller streams, considering space-borne data, only 
ICESat-2 is currently suitable (Bandini et al., 2023; Liu et al., 2022). If in 
a given project location, ICESat-2 data is not available, targeted data 
collection requests to the National Snow and Ice Data Center (NSIDC) 
are sometimes considered, although not guaranteed (information from 
personal communication with NSIDC). If no relevant satellite data is 
available, airborne or drone-borne bathymetry applications can be 
considered using green LiDAR or GPR sensors. 

5.4. Observations to constrain calibrated state variables 

Observations are indispensable to constrain state variables in the 
calibration or data assimilation of a model. The reliability of IHMs de-
pends on the number of observations, preferably of different types, but 
also on data quality and its spatiotemporal distribution. Schilling et al. 
(2019) argue that classical observations (heads and stream flows) do not 
contain sufficient information and that additional, unconventional ob-
servations are needed to calibrate models reliably. In that respect, we 
emphasize the benefits of RS and hydrogeophysics as additional un-
conventional data sources for calibration and data assimilation because 
they provide spatially semi-continuous (gridded) data with good tem-
poral resolution. Such data is usually not as accurate as the in-situ 
measured equivalents, but still can contribute to reducing model un-
certainty, particularly because the current modelling technology can 
handle computer-power-demanding, spatially semi-continuous obser-
vations and also allow for multivariate calibration and data assimilation 
(Khaki et al., 2020), where the confidence of data can be assigned 
through weights (White et al., 2020). 

The observation of surface water body stages is one of the most 
important RS and hydrogeophysical applications. Certainly, the simplest 
and the most accurate way of monitoring water levels, so also stages, is 
by installing cost-effective pressure transducers. However, their use in 
hydrological monitoring is not always possible, e.g., in cases when sites 
are not accessible or risky for a person installing it or for the device to be 
stolen, vandalised or taken away by floods. For monitoring of stages of 
large surface water bodies (>100 m), high-resolution altimetry products 
such as Jason-2/3, Cryosat-2 or Sentinel 3A/3B missions (Deidda et al., 
2021) or the recently launched SWOT (Biancamaria et al., 2016) are 
suitable. 

Monitoring of stages of small-sized surface water bodies (<100 m) 
can be done indirectly by very high-resolution optical images with 
spatial resolution ~ 1 m (such space-borne images are proprietary), 
provided river or lake relation between a surface water body extent and 
a stage is available. In such a case, a stage is deduced from the spatio-
temporal analysis of the surface water body extent. For that task, the 
river width software package called RivWidthCloud, developed on the 
Google Earth Engine cloud computing platform, is particularly suitable 
as it automatically extracts river centerlines and widths from optical 
images (Yang et al., 2020). Stages of small-sized surface water bodies 
can also be accurately monitored by space-borne ICESat-2 and by 
airborne or drone-borne green LiDAR or GPR. 

Evapotranspiration is probably the most widely used RS observation 
type applied as a constraint of state variables in IHM calibration and 
data assimilation. In-situ ET measurements, e.g. through eddy covari-
ance towers, require expensive equipment and specialised processing 
expertise and are restricted to small footprints. As such, the widespread 
use of eddy covariance towers to provide spatiotemporally distributed 
ET estimates for a catchment, is unrealistic. Thermal RS energy balance 
approaches provide cost-effective alternatives for the ET assessment at 
the catchment, regional or global scales, and they integrate well with 

IHMs. However, the processing of such data to obtain ET is complex and 
specialised. A review of different RS-based ET estimation algorithms is 
presented by Zhang et al. (2016). However, RS ET is also readily 
available (via the Internet) for non-experts as RS ET products. The most 
widely used in IHMs is the MODIS ET product, available at 500 m spatial 
and eight days temporal resolution. Its use has already been proven 
beneficial for lowering the predictive uncertainty of IHMs (Gelsinari 
et al., 2020; Gelsinari et al., 2022; Gelsinari et al., 2021). If an IHM needs 
ET of higher spatial resolution, the following options can be considered: 
i) downscaling the MODIS ET, which is the simplest but also the least 
accurate option (does not require specialised RS ET expertise); ii) use of 
higher resolution RS data, e.g. Landsat data processed through Google 
Earth Engine (Senay et al., 2022) and RS energy balance algorithms 
(requires RS ET expertise); iii) use of UAVs lightweight sensors, such as 
multispectral cameras, including thermal infrared spectrum (requires 
not only RS ET expertise but also UAV expertise); such UAVs can provide 
ET at a spatial resolution in the order of centimeters (Niu et al., 2020). 

Another RS observation type applied as a constraint in IHM cali-
bration and data assimilation is soil moisture (SM). SM products are 
generally uncertain (Peng et al., 2017), mainly because images applied 
to determine SM are too coarse to depict small-scale SM patterns. For 
example, according to Peng et al. (2017), global SM products (e.g. 
SMAP ~ 36 km or ASCAT ~ 25 km) are not suitable for regional studies 
due to their coarse spatial resolution. The new, high-resolution SM 
product from Sentinel-1 (C-band), at 1 km spatial and daily temporal 
resolution, is promising for the use as a state variable of IHMs (Xu, 
2021), but is mainly restricted to Europe. Moreover, the number of us-
able Sentinel-1 images depends strongly on the area chosen. In 2024, the 
even higher spatial resolution SM NISAR (S- and L-band) product is 
expected (https://nisar.jpl.nasa.gov/mission/quick-facts/), with 3–10 
m mode-dependent spatial resolution and 12 days repeat cycle. Such 
high-resolution SM data may contribute substantially to lowering IHM 
uncertainty, although this still has to be proven. Very high-resolution 
soil moisture can also be acquired from airborne and drone-borne 
hydrogeophysics. 

The total water storage (TWS), especially its change in time obtained 
from gravity surveys, can be a very useful input for calibration or data 
assimilation of IHMs. TWS can be obtained from satellite gravity mis-
sions (e.g. GRACE), airborne gravity missions and ground gravity sur-
veys with gravimeters. The GRACE mission provides excellent data for 
global and continental research projects, and its TWS changes have been 
widely validated, and methods to separate contributions of different 
hydrological domains have been developed (Li et al., 2019; Shen et al., 
2015). However, the extremely coarse spatial resolution of GRACE data, 
limits its use for applied management projects at the regional, catchment 
or finer scale. Airborne gravity surveys are quite common in earth re-
sources surveys (oil, gas, etc.) but not in hydrology. This is mainly 
because of technical implementation barriers related to low signal-to- 
noise ratio of airborne gravity implementation due to the large 
aircraft noise. The ground-based change of TWS by gravimeters applied 
as input for local scale models has already been tested in a simple con-
ceptual model (not IHM) by Creutzfeldt et al. (2010) and in a MOD-
FLOW96 groundwater model by Christiansen et al., (2011a). However, 
gravimeters: i) are limited in use due to demanding site installation (not 
mobile); ii) provide changes in total water storage without discrimi-
nating between different components spatially; iii) are too expensive to 
be widely applied in water management projects, as there are more 
efficient and cheaper ways to characterize changes in subsurface water 
storage, for example, by installing pressure transducers. Therefore, 
despite being interesting from a scientific point of view, the ground- 
based gravimetric measurements of TWS change are not likely to 
contribute much to IHMs. 

RS and hydrogeophysics efficiently provide a lot of valuable data 
from space, near-surface and ground surface. However, the position of 
the water table, the most important hydrogeological data type, is still 
difficult to detect by RS or hydrogeophysical methods with sufficient 
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accuracy. Due to low penetration depth, RS does not contribute at all. 
Also, hydrogeophysics has little to offer for assessing water table depth. 
The best in that respect is MRS, which can detect water table down to 
100–150 m depth, but with an accuracy not better than +/-1m for the 
first ~ 50 m depth b.g.s., and declining with depth. GPR detection of the 
water table is unreliable as it works in some areas, while in others, even 
in favourable resistive environments, it does not (Mahmoudzadeh et al., 
2012). The GPR method can be affected by various survey-disturbing 
factors such as the number of reflective subsurface layers, the grada-
tional transition from the unsaturated to the saturated zone due to a 
capillary fringe, heterogeneity, electrical conductivity, etc. Promising 
for water table depth estimation are the research developments in using 
seismic noise (see p. 4.2), but to our knowledge, there is no operational, 
non-invasive hydrogeophysical method yet that can reliably and accu-
rately (at least up to a few centimetres accuracy) estimate and monitor 
water table depths. As such, the assessment of hydraulic heads is still 
bound to in-situ measurements and precise surveys of well elevation (see 
section 3). 

5.5. Scales and uncertainties 

The scale of a model, especially while using IHMs, is an important 
constraint because, together with the resolution of models, the scale 
determines input data requirements and also reliability of model simu-
lations. However, quantitative definitions and terminology related to 
scales in hydrology are not well defined. If global and continental scales 
are unique, the two potentially overlapping scale categories, i.e. 
regional vs catchment vs basin scales and local vs plot vs hillslope scales, 
are not well defined and not quantified. Global and continental scale 
‘research IHMs’ typically have grids coarser than 5 km in contrast to 
hyperresolution models with grid resolution of 1 km or finer (Beven 
et al., 2015). The global and the continental ‘research IHMs’ are typi-
cally not calibrated due to their size, complexity and computational 
effort. Instead, they are just evaluated with available data (in-situ, RS 
and hydrogeophysics). These models (published in large numbers in 
high-cited journals) are considered to be helping to understand and 
predict water cycle changes over large scales and the spatial distribution 
of land–atmosphere moisture and energy fluxes (Maxwell et al., 2015), 
including their spatiotemporal variability (Schwingshackl et al., 2017) 
and also to capture macro-scale processes, which can affect water se-
curity (Naz et al., 2023). However, according to Bronstert et al. (2017), 
such models “can be of little or no use for water resources decisions and even 
misleading for public debates or decision making” because “many hydro-
logical processes are of non-linear nature, including threshold-type behav-
iour”, and they “cannot be reflected by such large scale entities”. A similar 
opinion is presented by Beven et al. (2015). Nevertheless, there is the 
vision that one day, it may be feasible to perform global-scale hydro-
logical modelling with an acceptable accuracy at a much higher reso-
lution than today, i.e. with grid cells of 1 km to 100 m (Döll et al., 2016; 
Wood et al., 2011) or even finer. However, before that happens, more 
‘applied IHMs’ at the regional/catchment/basin, with resolution closer 
to 100 m rather than to 1000 m, should be developed and calibrated. 

Nowadays, earth observations from satellites, aircraft and ground 
surfaces provide data of various types at different spatiotemporal reso-
lutions and with different uncertainties, influencing the predictive un-
certainty of IHMs. Current modelling techniques can quantify 
uncertainties but there are also ways to reduce model uncertainty: i) 
when using RS or hydrogeophysics data as input of IHM, always try to 
improve the reliability of the input data by removing bias with available 
ground data, as there is a risk of error propagation to the final IHM re-
sults; ii) when calibrating a model, try to use automated calibration 
(optimisation) (Schilling et al., 2019); however if shortage of computer 
power makes such calibration unrealistic, apply forward calibration (by 
trial and error) and once obtaining satisfactory results, apply final 
automated optimisation; iii) quantify model uncertainty; automated 
optimisation codes typically provide uncertainty estimates; iv) use as 

many observations and as many different observation types as possible 
to constrain state variables of all parts of the model domain (Finger 
et al., 2015), as it is challenging to improve an IHM, having data of only 
one part of the model domain (Camporese and Girotto, 2022), e.g. only 
of shallow soil moisture; v) when possible, apply data assimilation, with 
joint update of system states and model parameters, which usually is 
more effective in the reduction of model uncertainty than standard 
model calibration (Camporese and Girotto, 2022); e.g. the weighted 
multivariate objective functions, implemented in PEST++ (White et al., 
2020), allow simultaneous calibration and data assimilation against 
diverse observation types using automated mathematical calibration 
routines; however, that approach is complex, especially when dealing 
with RS data (e.g. ET or SM), which cover the entire grid, so considerable 
computer power is required, typically not available in standard PC 
machines. 

IHMs provide unquestionable benefits to hydrology and water 
management, but they are also computer power demanding, especially 
the 3D, fully-coupled IHMs, which: i) involve highly non-linear solutions 
of Richards’ equation; ii) use different types of observations, particularly 
spatially-semi-continuous (gridded) observations, constraining entire 
grid domains, as e.g. RS-based ET; iii) use automated optimisation or 
data assimilation packages. However, nowadays, the availability of 
computational resources is widely increasing, especially in research 
organisations, so computer resources can be provided in different forms, 
for example, through: (a) high-performance clusters, which may offer 
hundreds of cores and multiple CPUs, i.e. Linux servers; (b) multiple 
computers connected through an office network; and (c) cloud 
computing platforms. The main difference between them is that (a) and 
(b) are local options while (c) is cloud-based. Some cloud computing 
platforms, such as Google Earth Engine, are available worldwide. In 
contrast, others are available only for specific applications or in certain 
areas, such as the SURF platform in the Netherlands (https://www.surf. 
nl/en/research-it). 

6. Conclusions and future perspectives 

The advent of IHMs has opened up exciting prospects for the broader 
use of remote sensing and hydrogeophysics as input data for integrated 
water resources modelling and management with IHMs. 

The dynamic integration of all hydrological domains in IHMs implies 
that IHMs are more reliable than standalone models, especially in areas 
with distinct surface–groundwater interactions, but also more data- and 
computer-power demanding. 

While coarse-scale ‘research’ IHMs (e.g. at global or continental 
scale) continue to improve, the ‘applied’, finer spatial resolution IHMs 
(≤1 km2), still face many challenges; they struggle to close the water 
balance despite being the most needed for integrated water resources 
management at the local, catchment and regional scales. 

A significant advantage of RS and hydrogeophysics as input data of 
IHMs is that they can provide semi-continuous spatial data coverage of 
model domains. Additionally, RS provides a spatiotemporal data 
archive, while hydrogeophysics can provide spatiotemporal data on 
demand with the desired spatial and temporal resolution. The main 
disadvantage of RS and hydrogeophysical data is their uncertainty, 
which differs between the methods and applications, although reference 
in-situ measurements can substantially reduce that uncertainty. 

Most spatial observations acquired with satellite RS can also be ac-
quired through airborne or drone-borne hydrogeophysics. However, not 
every surface hydrogeophysical method can be implemented through 
airborne or drone-borne surveys (e.g. MRS cannot). Thanks to recent 
drone and sensors’ developments, drone-borne applications already 
cover most airborne applications. However, they still have limits, mainly 
due to restricted payloads and survey difficulties in extreme conditions. 

IHMs use four types of data: i) climate forcings; ii) parameters; iii) 
boundary conditions, and iv) observations to constrain model state 
variables. 
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Climate forcings are optimally derived by a combination of RS 
archive time series data and ground-based, reference measurements 
used for bias correction. 

Parameterisation of the ground surface and shallow soil can be 
conveniently derived from standard RS or from hydrogeophysics if 
higher resolution is needed. For deeper subsurface, only hydro-
geophysics is suitable. In conductive environments, hydrostratigraphy 
of electrically conductive subsurface can be optimally done with EM 
methods, while in resistive environments, with GPR. Quantitative 
hydrogeological parameterisation of the deep subsurface is still 
restricted to the surface hydrogeophysical survey with MRS. 

Boundary conditions are the most reliable if assigned along physical 
boundaries. Topographic catchment boundaries are typically derived 
from RS-based digital elevation models, geological and structural 
boundaries from hydrogeophysics, but surface water bodies either by RS 
or hydrogeophysics. 

Surface water bodies are described by their bathymetry and temporal 
variability of stages; large surface water bodies (>100 m) can be 
assessed accurately by RS altimetry, but small ones (<100 m), by ICESat- 
2 and by airborne or drone-borne green LiDAR or GPR. Stream discharge 
can be derived from bathymetry and a time series of stages at the 
investigated stream section. 

Actual evapotranspiration and soil moisture obtained from RS, or 
hydrogeophysics, are the most common non-classical observations 
applied to constrain IHM calibration or data assimilation. The main 
advantage of these RS and hydrogeophysical observations is that they 
provide semi-continuous spatial data coverage, while the main disad-
vantage is their uncertainty. 

Unfortunately, head observations, the most common and classical 
observations, can be neither accurately defined by RS nor by 
hydrogeophysics. 

In general, the temporal resolution of RS data is already sufficient for 
IHMs, but the spatial resolution, especially for ‘applied’ fine grid IHMs, is 
not always optimal. Continuous improvements in the spatial and tem-
poral resolutions of RS platforms provide an opportunity for advancing 
the reliability of IHM calibration, data assimilation and predictions. In 
projects where RS does not provide sufficient spatial resolution, airborne 
or drone-borne hydrogeophysics offers alternative solutions, whereby 
the latter are particularly rapidly increasing. 

We hope this review will contribute to the broader use of remote 
sensing and hydrogeophysical data in IHMs. 
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