75 research outputs found

    Error Resilient Video Coding Using Bitstream Syntax And Iterative Microscopy Image Segmentation

    Get PDF
    There has been a dramatic increase in the amount of video traffic over the Internet in past several years. For applications like real-time video streaming and video conferencing, retransmission of lost packets is often not permitted. Popular video coding standards such as H.26x and VPx make use of spatial-temporal correlations for compression, typically making compressed bitstreams vulnerable to errors. We propose several adaptive spatial-temporal error concealment approaches for subsampling-based multiple description video coding. These adaptive methods are based on motion and mode information extracted from the H.26x video bitstreams. We also present an error resilience method using data duplication in VPx video bitstreams. A recent challenge in image processing is the analysis of biomedical images acquired using optical microscopy. Due to the size and complexity of the images, automated segmentation methods are required to obtain quantitative, objective and reproducible measurements of biological entities. In this thesis, we present two techniques for microscopy image analysis. Our first method, “Jelly Filling” is intended to provide 3D segmentation of biological images that contain incompleteness in dye labeling. Intuitively, this method is based on filling disjoint regions of an image with jelly-like fluids to iteratively refine segments that represent separable biological entities. Our second method selectively uses a shape-based function optimization approach and a 2D marked point process simulation, to quantify nuclei by their locations and sizes. Experimental results exhibit that our proposed methods are effective in addressing the aforementioned challenges

    Multiple Description Video Coding Using Joint Frame Duplication/Interpolation

    Get PDF
    Multiple description coding (MDC) is a promising alternative to combatting information loss without any retransmission. In this paper, an effective MD video codec is designed based on temporal pre- and post-processing of video sequences without modifying the actual coding process itself, which makes it compatible with the current standard source or channel codec. For ease of post-processing, motion-compensated interpolation (MCI) based on piecewise uniform motion assumption is adopted to estimate the lost frame in side decoding. Accordingly, to match the post-processing, in the pre-processing joint frame duplication/interpolation is first applied to the original video data before performing odd/even frame splitting, which attempts to make the motion variety in the generated descriptions piecewise uniformly thus achieving better side reconstructed quality based on MCI. The experimental results exhibit better performance of the proposed scheme than some other tested schemes, in both the on-off channel environment and packet loss network

    Frame-based multiple-description video coding with extended orthogonal filter banks

    Get PDF
    We propose a frame-based multiple-description video coder. The analysis filter bank is the extension of an orthogonal filter bank which computes the spatial polyphase components of the original video frames. The output of the filter bank is a set of video sequences which can be compressed with a standard coder. The filter bank design is carried out by taking into account two important requirements for video coding, namely, the fact that the dual synthesis filter bank is FIR, and that loss recovery does not enhance the quantization error. We give explicit results about the required properties of the redundant channel filter and the reconstruction error bounds in case of packet errors. We show that the proposed scheme has good error robustness to losses and good performance, both in terms of objective and visual quality, when compared to single description and other multiple description video coders based on spatial subsampling. PSNR gains of 5 dB or more are typical for packet loss probability as low as 5%

    Error Concealment for Frame Losses in MDC

    Full text link

    Scalable Multiple Description Coding and Distributed Video Streaming over 3G Mobile Networks

    Get PDF
    In this thesis, a novel Scalable Multiple Description Coding (SMDC) framework is proposed. To address the bandwidth fluctuation, packet loss and heterogeneity problems in the wireless networks and further enhance the error resilience tools in Moving Pictures Experts Group 4 (MPEG-4), the joint design of layered coding (LC) and multiple description coding (MDC) is explored. It leverages a proposed distributed multimedia delivery mobile network (D-MDMN) to provide path diversity to combat streaming video outage due to handoff in Universal Mobile Telecommunications System (UMTS). The corresponding intra-RAN (Radio Access Network) handoff and inter-RAN handoff procedures in D-MDMN are studied in details, which employ the principle of video stream re-establishing to replace the principle of data forwarding in UMTS. Furthermore, a new IP (Internet Protocol) Differentiated Services (DiffServ) video marking algorithm is proposed to support the unequal error protection (UEP) of LC components of SMDC. Performance evaluation is carried through simulation using OPNET Modeler 9. 0. Simulation results show that the proposed handoff procedures in D-MDMN have better performance in terms of handoff latency, end-to-end delay and handoff scalability than that in UMTS. Performance evaluation of our proposed IP DiffServ video marking algorithm is also undertaken, which shows that it is more suitable for video streaming in IP mobile networks compared with the previously proposed DiffServ video marking algorithm (DVMA)

    Low-complexity video compression algorithm and video encoder LSI design

    Get PDF
    制度:新 ; 報告番号:甲2876号 ; 学位の種類:博士(工学) ; 授与年月日:2009/9/15 ; 早大学位記番号:新510

    Signal processing for improved MPEG-based communication systems

    Get PDF
    corecore