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Abstract 
  

In this thesis, a novel Scalable Multiple Description Coding (SMDC) framework is 

proposed. To address the bandwidth fluctuation, packet loss and heterogeneity problems 

in the wireless networks and further enhance the error resilience tools in Moving Pictures 

Experts Group 4 (MPEG-4), the joint design of layered coding (LC) and multiple 

description coding (MDC) is explored. It leverages a proposed distributed multimedia 

delivery mobile network (D-MDMN) to provide path diversity to combat streaming video 

outage due to handoff in Universal Mobile Telecommunications System (UMTS). The 

corresponding intra-RAN (Radio Access Network) handoff and inter-RAN handoff 

procedures in D-MDMN are studied in details, which employ the principle of video 

stream re-establishing to replace the principle of data forwarding in UMTS. Furthermore, 

a new IP (Internet Protocol) Differentiated Services (DiffServ) video marking algorithm 

is proposed to support the unequal error protection (UEP) of LC components of SMDC. 

Performance evaluation is carried through simulation using OPNET Modeler 9.0. 

Simulation results show that the proposed handoff procedures in D-MDMN have better 

performance in terms of handoff latency, end-to-end delay and handoff scalability than 

that in UMTS. Performance evaluation of our proposed IP DiffServ video marking 

algorithm is also undertaken, which shows that it is more suitable for video streaming in 

IP mobile networks compared with the DiffServ video marking algorithm (DVMA) 

proposed in [71] [72]. 
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1 Introduction 

With the emergence of broadband wireless networks and increasing demand of 

multimedia information on the Internet, wireless video communications have received 

great interest from both industry and academia, and wireless multimedia services are 

foreseen to become widely deployed in this decade.  

Real-time transport of live video or stored video is the predominant part of real- time 

multimedia. There are two concepts for delivery of stored video over the Internet or the 

wireless networks, namely the downloadable video and the streaming video [1].  

The video download is the same concept as the file download, but a large file. The 

entire video file is expected to be downloaded on the local machine, where it could be 

played back using the standard media software. It allows simple delivery mechanisms, 

e.g., Transmission Control Protocol (TCP). However, it usually suffers long and perhaps 

unacceptable transfer time and large storage space. Also, download before viewing 

requires the user’s patient. 

In contrast, the streaming video is partitioned into packets. It needs not be 

downloaded in full, but is being played out simultaneously during video delivery. There 

is relatively low delay (e.g., Real and Microsoft use 5-15 seconds) of starting playback 

before viewing. It also minimizes the storage requirement.  

In this thesis, we are more concerned with the streaming video, which refers to real-

time transmission of stored video. Its relevant techniques are also applicable to the 

delivery issues of live video. 

1.1 Motivation of This Research 

1. Bandwidth, packet loss and heterogeneity problems  

Due to its real-time nature of transmission of stored video, video streaming typically 

has quality of service (QoS) requirements, e.g., bandwidth, delay and error requirements. 

However, unreliability, bandwidth fluctuations and high bit error rate of wireless 



2 

channels can cause severe degradation to video quality. In addition, for video multicast, 

network heterogeneity and receiver heterogeneity make it difficult to achieve efficiency 

and flexibility. The bandwidth problems, packet loss and transmission error, and 

heterogeneity problems will be discussed in detail as follows. 

To address the bandwidth fluctuation, packet loss and heterogeneity problems, 

scalable coding (i.e., layered coding) and rate shaping are employed for transport delay- 

and bandwidth-sensitive video. Furthermore, to enhance the video quality in the presence 

of unavoidable packet loss and/or bit error, open- loop error control (e.g., multiple 

description coding) and close- loop error control (e.g., delay-constrained retransmission) 

are explored in this thesis. 

1) Bandwidth problems 

To achieve acceptable presentation quality, a streaming application typically has 

minimum bandwidth requirement. However, the current Internet offers only the best-

effort service and does not provide any bandwidth reservation mechanism. It is well 

known that fluctuations of the Internet traffic have a fractal- like scaling behavior over 

time scales [25]. Due to the self-similar nature of traffic fluctuations in the Internet, the 

available bandwidth is unknown and dynamic.  

In the wireless networks, the wireless channel suffers from both bandwidth 

fluctuation and bandwidth limitation: (1) The throughput of a wireless channel may be 

reduced due to multipath fading, shadowing, co-channel interference, and noise 

disturbances; (2) When a mobile terminal moves between different networks (e.g. from a 

wireless local area network (LAN)  to a wireless wide area network (WAN)), the 

available bandwidth may vary drastically (e.g., from a few megabits per second to a few 

kilobits per second); (3) When a handoff takes place, a base station may not have enough 

unused radio resources to meet the demand of a newly admitted mobile host. Thus, the 

available bandwidth of wireless channel is time-varying and even unknown. 

If the transmission rate of streaming video is faster than the available bandwidth, the 

congestion will occur, resulting in bursty loss, excessive delay and severe drop in video 

quality. On the contrary, it invokes the inefficient utilization of available bandwidth and 

the sub-optimal video quality. Thus, it is desirable for streaming video application to 

employ congestion control mechanisms to match video bit rate with available bandwidth. 
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2) Packet loss and transmission error 

In the wired link of a mobile network or the Internet, most errors are caused by 

packet loss due to congestion or misrouting. The effects of packet loss greatly depend on 

the types of packet loss [47]: isolated single packet loss, burst packet loss and temporary 

outage (loss of communication). Misrouting may occur in the downlink during handoffs, 

which will incur bursty packet loss and temporary outage. 

The wireless channels are typically more error-prone at the bit level. The wireless 

link of a mobile network suffers from very high bit error rate (BER) due to multipath 

fading, shadowing, co-channel interference, noise disturbances and handoff. The types of 

transmission bit error also can be classified into three groups: isolated single bit error, 

burst bit error, and temporary outage (e.g., due to handoff). 

The effects of packet loss or bit error are significant for video streaming due to error 

propagation [27]. Predictive video-encoding algorithms employ motion compensation to 

achieve high compression by reducing temporal redundancies between successive frames. 

When this motion information is lost to the decoder, a reconstruction error can occur. 

Such errors can propagate temporally and spatially if the affected region is subsequently 

used as a prediction for motion compensation. Furthermore, differential encoding is also 

employed to reduce statistical redundancies, for example in the encoding of motion and 

quantizer information. Loss of such information can cause additional spatial degradation 

throughout the affected frames by producing incorrectly predicted motion vectors and 

quantizer levels. Because of motion compensation, these errors also can propagate 

temporally and spatially.  

Because of error propagation of streaming video, isolated single packet loss or bit 

error is converted to burst packet loss or bit error. Also, the video packet which arrives 

beyond a delay bound is useless and has to be considered lost. Such loss or error can 

potentially make the visual presentation displeasing to human eyes or even make the 

presentation impossible.  

From a video communication perspective, it is important to reduce or eliminate the 

effects of burst loss/error and outage. The error characteristics of video communication in 

different environments are roughly summarized in Table 1-1 [28] [38]. 
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Table 1-1  Error characteristics of video communication 

Application Error Characteristics 

Video phone over PSTN (H.324) Very few bit errors and packet losses 

Video conferencing over ISDN (H.320) Practically error free (BER=10-10~10-8) 

Video conferencing over ATM (H.310, H.321) Almost error free (CLR=10-6~10-4) 

Digital television Almost error free (after FEC) 

Terrestrial/cable/satellite TV Almost error free (depend on weather) 

Video phone over the Internet (H.323) BER = 0, Packet loss of 0~30% 

Mobile video phone (H.324 wireless) BER = 10-5~10-3, burst errors 

 

To enhance the video quality in presence of unavoidable packet loss or bit error, 

error control mechanisms should be used. 

3) Heterogeneity problems  

Before addressing the heterogeneity problems, we first compare unicast with 

multicast. The unicast delivers streaming media through point-to-point transmission, 

where only one sender and one receiver are involved. In contrast, multicast delivers 

streaming media through point-to-multipoint transmission, where one sender and multiple 

receivers are involved. For streaming applications such as video conferencing and 

Internet television, multicast delivery can achieve high bandwidth efficiency since the 

receivers can share links. On the other hand, unicast delivery of such applications is 

inefficient in terms of bandwidth utilization. An example is given in Figure 1-1, where, 

for unicast, five copies of the video content flow across Link 1 and three copies flow 

across Link 2 as shown in Figure 1-1 (a); For multicast in Figure 1-1 (b), there is only one 

copy of the video content traversing any link in the network, resulting in substantial 

bandwidth savings. However, the efficiency of multicast is achieved at the cost of losing 

the service flexibility of unicast (i.e., in unicast, each receiver can individually negotiate 

service parameters with the source). Such lack of flexibility in multicast can be 

problematic in a heterogeneous network environment. For example, the receivers in 

Figure 1-1 (b) may attempt to request different video quality with different bandwidth. 



5 

But only one copy of the video content is sent out from the source. As a result, all the 

receivers have to receive the same video content with the same quality. 

 

 

Figure 1-1  Unicast and Multicast video distribution 

In a public land mobile network, there are two kinds of heterogeneity, namely, 

network heterogeneity and receiver heterogeneity [2]. Network heterogeneity refers to the 

different domains (e.g., wireless domain and wired domain) having unevenly distributed 

resources (e.g., processing, bandwidth, storage, and congestion control policies). Network 

heterogeneity can make different users experience different packet loss/delay 

characteristics. Receiver heterogeneity means that receivers have different or even 

varying latency requirements, visual quality requirements, and/or processing capability.  

It is a challenge to design a multicast mechanism that not only achieves efficiency in 

network bandwidth, but also meets the various requirements of the receivers. 
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2. Handoff design issues in media delivery 

The problem of handoff in the wireless network is well-know, however it is largely 

unexplored in the applications of streaming media. There are a serial of problems or 

requirements associated with media streaming during seamless handoff, such as handoff 

latency (or media stream interruption), end-to-end delay (or service delivery time), media 

synchronization and Handoff scalability. However, the handoff procedures in UMTS R99 

and Release 4 [57] [58] [59]may not satisfy the requirements of seamless handoff for 

media streaming services. The handoff design issues of media streaming will be 

discussed in details in Chapter 2. 

To address the handoff problems in media streaming, a Scalable Multiple 

Description Coding framework is proposed together with distributed video storage in the 

DiffServ mobile network to support streaming video handoff. It leverages the distributed 

multimedia delivery mobile network to provide path diversity to combat outage due to 

handoff. Since the media streaming services are pushed to the edge of core network so 

that the streaming media is sent over a shorter network path, it also reduces the media 

service delivery time, the probability of packet loss, and the total network resource 

occupation with relatively consistent QoS in all scenarios.  

3. Error resilience enhancement for MPEG-4 video  

To further explore the error resilience and concealment tools in MPEG-4, the shape, 

motion, and texture information in the bit-stream of an object-based video are re-

organized into different layers in the proposed SMDC scheme to support the 

classification and priority assignment in the DiffServ network. Moreover, due to the joint 

design of LC and MDC, it is possible to overcome the drawbacks of LC and MDC 

4. UMTS QoS and IP DiffServ 

It is challenging to provide QoS attribute translation and mapping between the IP 

networks and the UMTS systems and to implement the IP differentiated services for the 

traffic encapsulated and isolated by tunneling in UMTS. In order to support the unequal 

error protection for layered video, a UMTS-to-DiffServ QoS mapping scheme and its 

marking algorithm for MPEG-4 scalable video are proposed in the thesis. Furthermore, it 

spurs the evolution of UMTS toward its final all-IP phase for the purpose of addressing 

the DiffServ tunneling issue in UMTS.  
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This thesis studies the architecture of third generation mobile networks and the 

handoff procedures for video delivery in UMTS. In order to address the handoff issues in 

video streaming, as well as the bandwidth fluctuation, packet loss and heterogeneity 

problems in the wireless networks, and to further enhance the error resilience tools in 

MPEG-4, a scalable multiple description coding framework together with a distributed 

multimedia delivery mobile network is proposed. The corresponding intra-RAN handoff 

and inter-RAN handoff procedures in D-MDMN are studied. Furthermore, a new IP 

DiffServ video marking algorithm is explored to support the UEP of SMDC. Simulation 

results show that the proposed scheme achieves performance improvements compared 

with the original UMTS and DVMA solutions.  

1.2 Thesis Organization 

The remainder of this thesis is organized as follows. 

Chapter 2 overviews and discusses the General Packet Radio Service (GPRS) and 

UMTS mobile network architecture, handoff protocols and handoff problems for media 

streaming.  

In Chapter 3, the concepts of layered coding and multiple description coding are 

introduced, followed by the proposed mobile system model (i.e., the distributed 

multimedia delivery mobile network) and the protocol stack of network-aware end 

system. 

Chapter 4 presents the details of the proposed scalable multiple description coding, 

the corresponding handoff procedures in the D-MDMN and a novel IP DiffServ MPEG-4 

video marking algorithm. 

The simulation models, system setup, test conditions, and simulation results are 

presented and analyzed in Chapter 5.  

Finally, Chapter 6 gives conclusions of this work and suggestions for further 

research. 
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2 Handoff Design Issues in Media Delivery 

Handoff is a basic mobile network capability for dynamic support of terminal 

migration. In order to illustrate the proposed solution to solve the handoff problems of 

media streaming, the GPRS/UMTS mobile systems and handoff protocols are first 

studied. 

2.1 GPRS Network Architecture 

The GPRS network configuration is outlined in TS 23.002 [60] [64] and illustrated 

in Figure 2-1. 

 

 

Figure 2-1  GPRS Network Architecture 

Current services (voice and circuit-switched data) are supported via the base station 

subsystem (BSS) and network subsystem (NSS). The BSS consists of the base transceiver 

station (BTS) that handles the radio physical layer and the base station controller (BSC) 
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that deals with radio resource management and handover. The NSS for circuit-switched 

services consists of the mobile switching center (MSC), the visitor location register 

(VLR) integrated in the MSC, and the home location register (HLR). 

GPRS provides packet-switched services over the Global System for Mobile 

communications (GSM) radio. The major new element introduced by GPRS is an NSS 

(GPRS backbone) that processes all the data traffic. It comprises two network elements: 

• Serving GPRS support node (SGSN), which keeps track of the location of 

individual mobile stations and performs security functions and access control. 

• Gateway GPRS support node (GGSN), which encapsulates packets received 

from external packet networks (Internet) and routes them toward the SGSN. 

The interface between the BSS and the SGSN is based on the frame relay transport 

protocol. The SGSN and GGSN are interconnected via an IP network. No layer-two 

technology has been specified. 

2.2 3GPP UMTS Network Architecture 

The telecommunication system standardised by the Third Generation Partnership 

Project (3GPP) consists of a core network and a radio access network that may be either 

GERAN or UMTS Terrestrial Radio Access Network (UTRAN), or both. The UMTS 

network [60] [64], shown in Figure 2-2, consists of two independent subsystems 

connected over a standard interface: 

• Radio access network, which may be either GSM/EDGE radio access 

network (GERAN) or UMTS terrestrial radio access network (UTRAN), or 

both. UTRAN composes of node B and a radio network controller (RNC). 

Node B is functionally similar to the GSM BTS, and RNC is similar to the 

GSM BSC. 

• UMTS core network (CN), which is equivalent to the GSM/GPRS NSS. 

The separation of the radio access network (RAN) from the core network is the 

fundamental concept of the cellular system. 

The UMTS core network reuses as much as possible the GSM/GPRS NSS: 
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• Packet switched (PS): an evolution of the GPRS SGSN/GGSN with a more 

optimized functional split between the UTRAN and core network. 

• Circuit switched (CS): an evolution of the NSS with the transcoder function 

moved from the BSS to the core network. 

 

 

Figure 2-2  UMTS Network Architecture 

The UTRAN consists of several possibly interconnected radio network subsystems 

(RNSs). An RNS contains one RNC and at least one node B. The RNC is in charge of the 

overall control of logical resources provided by the node Bs. RNCs can be interconnected 

in the UTRAN (i.e., an RNC can use resources controlled by another RNC). In case of a 

WCDMA RAN, the RNC provides soft handover, combining and splitting between 

streams from different base stations belonging to the same mobile station.  

Node B provides logical resources, corresponding to the resources of one or more 

cells, to the RNC. It is responsible for radio transmission and reception in the cells 

maintained by this node B. A node B controls several cells. 
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2.3 UMTS Handoff Procedures for Media Streaming 

2.3.1 Assumptions 

Before the presentation of the handoff procedures in UMTS Release 4 for media 

streaming, the following assumptions are made [52]. 

1. The handoff procedures are designed specially for media streaming services in 

packet switched service domain. The QoS attributes required by audio and 

video media streams are defined in 3GPP TS 23.107 V5.6.0 [61], as discussed 

in Section 2.4.1. 

2. This research focuses on the hard handoff procedures. Soft handoff may provide 

better performance for media streaming. However, hard handoff is required 

when there are no connections between source RNC and target RNC within the 

mobile network, especially under the consideration of network heterogeneity 

and receiver heterogeneity (such as interworking between UTRAN and GERAN 

or UTRAN and IEEE 802.11 (WLAN)).   

3. The handoff procedures are instantiated in GPRS. However, they are also 

applicable to either GSM (with the SGSN/GGSN being replaced by 

MSC/GMSC), or UMTS (with the BSC/BTS being replaced by RNC/Node B). 

4. Mobile assisted handoff is adopted. That is, the mobile station (MS) assists the 

network by taking periodic measurements on the downlink and relaying them 

back to the network for handoff decision making. 

5. The inherent GPRS tunneling protocol (GTP) of GSM/GPRS/UMTS [51] [70] 

is used to support mobility. 

6. Based on the measurements on both downlink and uplink which are performed 

by MS and BTS/Node B respectively, the BSC/RNC makes handoff decisions. 

7. In both int ra-RAN and inter-RAN handoffs, the MSC/SGSN determines the 

readiness of the new access point to accommodate the handoff; in inter-cell, 

intra-RNS handoff, the BSC/RNC does so; while in intra-cell handoff, the 

BTS/Node B does so. 
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8. For media streaming, the BTS/Node B ensures that the handoff algorithm 

maintains packet sequencing after handoff. 

9. The handoff procedures in UMTS Release 4 are presented as follows only in the 

scenarios of intra-RAN handoff and inter-RAN handoff. The details of other 

scenarios, such as inter-cell, intra-RNS handoff, and intra-cell handoff are 

similar and will not be repeated in this section. 

2.3.2  Handoff Procedures in UMTS Release 4 

2.3.2.1 Intra-RAN Handoff Procedure  

 

 

Figure 2-3  UMTS Rel4 network model of intra-RAN handoff (Data plane) 

Figure 2-3 illustrates a typical UMTS network model under the IP transport mode in 

the scenario of intra-RAN handoff. In UMTS Release 4, the media service provider is 
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outside the CN which consists of SGSNs and GGSN, and far from the MS. The media 

streams should first get through CN and then can feed into the RNS A or B. 

In the IP transport mode, the destination IP address of an end-user packet is not used 

to make the packet forwarding decision. Instead, the packets are encapsulated in an 

intermediate layer (e.g., frame relay transport protocol (FP) in the RAN and GTP in the 

CN, which may be specific to the chosen wireless technology. The encapsulated data 

units are then transported, between the nodes in the segment, over another IP layer. Most 

of the existing proposals espouse this approach, which allows the mobile operator to keep 

many of the legacy components of the 2G network untouched while upgrading just the 

transport layer from point-to-point lines or an ATM network to an IP-based network. 

The control plane of handoff procedure [57] [58] [59] consists of three phases, as 

shown in Figure 2-4, while the data plane of these three phases is shown in Figure 2-3. 

l Phase I: Preparation of RNS handoff and resource allocation  

The MS sends its periodic measurement reports (signal #1). Based on these reports 

and its own measurement and on current traffic conditions, the source RNS (sRNS) makes 

the decision to perform a handoff and sends an HO-required message (signal #2) to inform 

the SGSN about the identifier of the target RNS (tRNS) to which the MS attempts to make 

a handoff. The SGSN then shall generate an HO-request message (signal #3) to the selected 

tRNS and requests the allocation of resources for the MS. The tRNS checks if enough radio 

resources are available and activates a physical channel at the tRNS to prepare for the 

arrival of the MS. Once resource allocation has been completed by the tRNS, it shall return 

an HO-request-ack message (signal #4) to the SGSN.  When this message is received by 

the SGSN, it starts to set up a link (i.e., GTP tunnel) to the tRNS, indicates the completion 

of the preparation phase on the core network side for the handoff by sending an HO-

command message (signal #5) to the sRNS. 

Note that: The HO-request-ack (signal #4) from the tRNS contains the complete 

radio interface message that shall be sent by the sRNS to the MS in the HO-command 

(signal #6), the SGSN transparently passes this radio interface message onto the sRNS. 

For the data plane of handoff phase I, upon receiving the signal #5 at the end of the 

preparation phase, the sRNS stops transmitting downlink data to the MS and should store 

all downlink data which continue to arrive from the SGSN to the sRNC. 
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Figure 2-4  Intra-RAN handoff procedure in UMTS Rel4 (Control plane) 

l Phase II: Moving the serving RNS role to target RNS 

On receipt of the HO-command (signal #5), the sRNS will issue the radio interface 

message HO-command (signal #6), containing a Handover Reference Number previously 

allocated by tRNS, to the MS. The MS will then break its old radio link and access the 

new radio resource using the Handover Reference Number contained in the HO-access 

message (signal #7). The number will be checked by the tRNS to ensure that it is as 

expected and  that the correct MS has been captured. If this is the correct MS, the tRNS 

shall send an HO-detect message (signal #8) to the SGSN. 
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For the data plane of handoff phase II, upon receiving the signal #5 in Phrase I and 

at the beginning of the execution phase, the sRNS starts to forward all the buffered data 

(including state information for session migration) to the tRNS, via SGSN. 

Once data forwarding is started, the tRNS stores all GTP Protocol Data Unit (GTP-

PDUs) forwarded from the sRNS. When Serving RNS operation is initiated, the tRNS 

starts the downlink data processing and transmission from the first forwarded GTP-PDU. 

After the GTP tunnel is created between the tRNS and the SGSN, the uplink flow is 

switched from the old path to the new path. 

l Phase III: Releasing resource reservation in the old path 

For correct resequencing, the sRNS and the SGSN should forward the Sequence 

Number information respectively  to the tRNS as defined in Release 99, so that the tRNS 

can judge whether the data forwarding has been completed or not. This requires 

triggering the GTP Sequence Number field in the GTP header for each video packet. 

When the MS is successfully communicating with the tRNS and after the data 

forwarding is complete, an HO-complete message (signal #9) will be sent by the MS to 

the tRNS. The tRNS will then send an HO-complete message (signal #10) to the SGSN. 

After the SGSN has received the signal #10 from the tRNS, it shall begin to release the 

resources reserved on sRNS for the MS in the old path. In Figure 2-4 the resources are 

released by using the Clear-command message (signal #11) and Clear-complete message 

(signal #12).  

On the data plane of handoff phase III, at the beginning of the releasing phase, the 

downlink media flow is redirected from the old path to the new path. The tRNS should 

store the redirected data until the transmission of all the forwarded data to the MS is 

completed, such that the correct packet sequencing can be ensured. The functionality of 

resequencing is implemented in the BSs. 

2.3.2.2 Inter-RAN Handoff Procedure 

Figure 2-5 illustrates a typical UMTS Release 4 network model under the IP 

transport mode in the scenario of inter-RAN handoff. Similarly, the media service 

provider is outside the CN which consists of SGSNs and GGSN, and far from the MS. 

The media streams should first get through CN and then feed into the Domain A or B. 
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Note that the handoff latency gets worse since the data forwarding has to take place 

between the RNSs which are separated by a transport network. 

 

 

Figure 2-5  UMTS Rel4 network model of inter-RAN handoff (Data plane) 

The control plane of handoff procedure [57] [58] [59] also consists of three phases, 

as shown in Figure 2-6 and Figure 2-7, while the data plane of these three phases is 

shown in Figure 2-5. The differences are described as follows in contrast with the intra-

RAN handoff. 

l Phase I: Preparation of RNS handoff and resource allocation  

The sRNS in RAN A informs the target SGSN (tSGSN) about the MS which 

attempts to make a handoff to the tRNS in RAN B. The source SGSN (sSGSN) sets up a 

link (i.e., GTP tunnel) to the tRNS through the tSGSN, and requests the allocation of 

resources for the MS.  
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For the data plane of handoff phase I, at the end of the preparation phase, the sRNS 

stops transmitting downlink  data to MS and should store all downlink data which 

continue to arrive from the sSGSN to the source RNC. 

 

 

Figure 2-6  Inter-RAN handoff procedure in UMTS (Control plane: Phase I) 

l Phase II: Moving the serving RNS role to target RNS 

Under the handoff command from the sRNS, the MS access to the tRNS. 

Meanwhile, the downlink  and uplink  GTP tunnel is updated between the tSGSN and the 

GGSN through Update-PDP-context-request message (signal #12) and Update-PDP-

context-response message (signal #13), so that the downlink  and uplink  flow can use the 

new route in the next phase. 

On the data plane of handoff phase II, at the beginning of the execution phase, the 

sRNS starts to forward all the buffered data including state information for session 

migration to the tRNS, via a GTP tunnel between the RNSs. When data forwarding starts, 

the tRNS stores all GTP-PDUs forwarded from sRNS. When serving RNS operation is 

initiated, the tRNS starts the downlink data processing and transmission from the first 
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forwarded GTP-PDU. After updating of the uplink GTP tunnel, the uplink  flow is 

switched from the old path to the new path. 

 

 

Figure 2-7  Inter-RAN handoff procedure in UMTS (Control plane: Phase II&III) 

l Phase III: Switching of downlink  flow in CN 

The handoff is completed and the sRNS then releases the resources reserved for the 

MS in the old path.  

For the data plane of handoff phase III, at the beginning of the path-optimization 

phase, the downlink media flow is redirected from the old path to the new path. The 

tRNS should store the redirected data until the transmission of all the forwarded data to 

the MS is completed, such that the correct packet sequencing can be ensured.  

For correct resequencing, the sRNS and the GGSN should forward the Sequence 

Number information respectively  to the tRNS as defined in Release 99, so that tRNS can 
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judge whether the data forwarding has been completed or not. This requires triggering the 

GTP Sequence Number field in the GTP header for each video packet. 

Note that: The mechanism shown in Figure 2-5 assumes that the downlink GTP port 

used for a given media stream in tRNS is the same for all arriving GTP-PDUs regardless 

of their arrival routes. 

2.4 Handoff problems in GPRS/UMTS 

There are several problems or requirements as follows associated with media 

streaming during handoff.  

2.4.1 Bearer Service QoS and Seamless Handoff 

Handoff management for streaming applications is the process of initiating and 

ensuring a seamless handoff, in which the radio access network changes the radio 

transmitters or radio access mode or radio system used to provide the bearer services, 

while maintaining a defined bearer service QoS. “Seamless handoff” means a handoff 

without perceptible interruption of the radio connection according to the definition given 

in 3GPP in [37]. For seamless handoff, it assumes that there is no need to buffer any 

downlink or uplink traffic in the involved nodes considering that packet loss (or frame 

loss) is tolerated to some degree in the streaming application. 

Because of the limitation of the cost and the physical size, a mobile handset 

generally can afford only limited buffer size. It is liable to extend the playout buffer in 

base stations. Also due to the mismatch between high transmission rate over wired links 

and low transmission rate over wireless links, the packet buffer in base stations can be 

used for rate matching and packet resequencing. When handoffs occur, the buffered data 

are then forwarded from the sRNS buffers to the tRNS.  

In addition, packet loss can already occur over the radio or due to congestion in the 

wired link. From Table 1-1, the BER of wireless video can be up to 10-3. Therefore any 

packet loss due to handoff is in addition to the packets lost over the radio or in the wired 

link.  
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In order to maintaining a defined bearer service QoS (BER ≤ 10-3) in Table 2-1, a 

data buffering and forwarding mechanism in UMTS R99 should be reused also in UMTS 

Release 4 for streaming services requiring seamless handoff.  

The values in Table 2-1 are indicative of the QoS attributes required by audio and 

video media streams in 3GPP [61], including BER and frame erasure rates (FER), for the 

Adaptive Multi Rate (AMR) speech codec and the MPEG-4 video codec as examples.   

However, the handoff procedures in UMTS R99 and Release 4 under above 

considerations may not satisfy the requirements of transfer delay, media stream 

interruption, signalling traffic and scalability, as follows. 

Table 2-1  QoS attributes required by audio and video media streams in 3GPP 

Type of 
payload QoS attributes 

Bit rate: 4.75 ~ 12.2 kbit/s 

Delay:   end-to-end delay not to exceed 100ms (codec frame length is 20ms) 

BER:    10-4 for Class 1 bits 

              10-3 for Class 2 bits 

            For some applications, a higher BER class (~10-2) might be feasible. 

AMR 
speech 
codec 

payload 

FER    < 0.5% (with graceful degradation for higher erasure rates) 

Bit rate:  variable, average rate scalable from 24 to 128 kbit/s and higher 

Delay:    end-to-end delay between 150 and 400ms 

               video codec delay is typically less than 200 ms 

BER:    10-6 - no visible degradation 

    10-5 - little visible degradation 

    10-4 - some visible artefacts 

    10-3 - limited practical application 

MPEG-
4 video 
payload 

Packet loss rate: for further study 
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2.4.2 Transfer Delay 

Transfer delay (i.e., end-to-end delay of media service delivery) is used to specify 

the delay tolerated by the media application. It allows UTRAN to set transport formats 

and Automatic Repeat reQuest (ARQ) parameters. For interactive media services, it 

should be minimized. For streaming audio/video, the transfer delay depends on the 

playout buffer length in the Internet. However, as presented in Table 2-1, the transfer 

delay of UMTS bearer service was bounded stringently in 3GPP. In the UMTS network 

model, shown in Figure 2-5, the media providers are separated from the UTRAN by the 

CN. The media streams should first get through CN and then feed into the Domain A or 

B. Thus, the transfer delay requirement may not be satisfied under the current model and 

should be studied further.  

2.4.3 Handoff Latency (Media Stream Interruption) 

Handoff latency is defined as time between the last packet transmitted from the old 

base station (BS) and the first packet transmitted from the new BS. As mentioned 

previously, buffered data forwarding during seamless handoff may result in relatively 

large handoff latency (or media stream interruption) and a large amount of additional 

traffic.  

In the case of inter-RAN handoff, for downlink media streams, there are two 

possible situations wheren media stream gap or overlapping may happen: 

1. The media stream overlap/gap may be introduced when tRNS takes the serving 

RNS role and starts to produce the downlink data from forwarded GTP-PDUs.  

In this case the estimated gap/overlap for hard handoff is equal to the delay of the 

GTP tunnel used for data forwarding. This first instance of media stream overlap 

coincides with radio hard handoff. 

If the transport bearer delay difference is smaller than the air interface Transmission 

Time Interval (TTI) (10, 20, 40 or 80 ms depending on the service), the amount of 

gap/overlap most likely does not exist. 
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2. The additional media stream gap may be introduced when the CN transport is 

optimized. 

In this case the gap will exist only if the delay via the optimized route is larger than 

the delay via the forwarding route. 

The above two types of media stream overlap/gap can also happen during a soft 

handoff. Due to the existence of the Iur interface (i.e., the interface between sRNC and 

tRNC), the first type of overlap/gap during soft handoff should be smaller in theory. 

However, note that the Iur interface is only logical interface, which may be provided via a 

transport network. Thus, in the real world, the handoff latency may be worse due to the 

introduction of the transport network between RNCs.  

The effects of media stream interruption get worse when the network heterogeneity 

and the receiver heterogeneity are considered. Usually, video transcoders [33] have to be 

deployed at the edge of networks, such as at base stations, in order to address the 

heterogeneity problems. However, it incurs the extra state information migration besides 

data forwarding and the temporal dependence issue because of the nature of predictive 

encoding and motion compensation. 

Temporal Dependence 

 

 

Figure 2-8  Temporal dependency in a MPEG-based coding stream 
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MPEG coding is based on both inter- frame and intra- frame coding, which produces 

three types of compressed frames, shown in Figure 2-8 as a group of pictures (GOP) in a 

frame-based MPEG coding stream: 

l I-frame: Intra-coded frame, coded independently of all other frames. 

l P-frame: Predictively coded frame, coded with reference to a previous I-frame or 

P-frame. 

l B-frame: Bi-directionally predicted frame, coded with reference to both previous 

I-frame and future P-frame. 

During the period of combing a group of blocks (GOB) into a medium unit, the 

packet loss caused by handoff makes the combination and decompression incomplete if 

the medium unit is split into different transmitted packets. If the information- lost part due 

to handoff belongs to I- frame I0, and then the whole media sequence becomes erroneous, 

which results in a period of dummy video accompanied with some strange audio. 

Similarly, if the information- lost part due to handoff belongs to P-frame P6, B-frames B4, 

B5, B7, B8 will be erroneously decoded. However, the damage of B-frames does not affect 

the decoding of any other-type frames in the GOP. Thus, the incomplete combination of a 

medium unit makes a multimedia presentation interrupted, asynchronous and 

discontinuous, and results in larger handoff latency. 

State Information Migration  

Typically, three types of state information should be reliably migrated for a 

successful handoff of a media stream: 

1) The session description: 

The session description is typically present at the beginning of the video stream as 

part of specific header information. It is possible to cache it on the old BS and transfer it 

from there to the new BS. Sometimes this information is provided as part of the control 

handshake, for example, using the Session Description Protocol (SDP). 

2) The session parameters at the handoff decision point: 

The session parameters at the handoff decision point include specifications from the 

clients request, the current position (offset) in the video stream, and some way of locating 

the video object, e.g., via a Uniform Resource Locator (URL). The media server should 

preferably have the ability to seek a specified stream offset. 
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3) The transcoding state information: 

There are two types of state information associated with the transcoding process: 

reconstructible state information and dependent state information. Reconstructible state 

information can be recreated given an input stream. It consists of reference frame data 

(both original and down-sampled ones) and macroblock- level side information. 

Dependent state information includes data derived from the output stream. For example, 

the rate control module takes the number of bits consumed so far to evaluate the bit 

budget that can be allocated for the next coding unit. The volume of reconstructible state 

information is usually much larger than that of the dependent state information. In 

general, a transcoder needs to maintain and communicate at least dependent state 

information for a session handoff since the output stream is not shared between the 

transcoders in different BSs. Table  2-2 [10] gives the amount of data required for the 

transcoding state transfer, where CCIR refers to Consultative Committee for International 

Radiocommunication, CIF refers to Common Interleaved Frame, and QCIF refers to 

Quarter Common Interleaved Frame. 

Table 2-2  The required amount of transcoding state information to be transferred 

Total Transferred* 
Source 
Format 

Resolution  
(pixels) 

Reference 
Frame Data 

(bytes) 

Macroblock- level 
side information 

(bytes) àCIF 
(bytes) 

àQCIF 
(bytes) 

CCIR 601 720×480 2,073,600 648,000 3,352,064 2,895,872 

CIF 352×288 608,256 190,080 - 972,608 

QCIF 176×144 152,064 47,520 - - 

* The total transferred includes fixed overheads. 

The data forwarding has to wait until the migration of the above state information 

totally completes, which results in a larger handoff latency. 

The handoff protocols in UMTS R99/Rel 4 are based on measuring the signal’s 

quality to determine the time and place for initiating the handoff procedures, which do 

not consider the temporal dependence issue and the extra state information migration. 
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In [37], the concept of “glue-point” was proposed for resolving the temporal 

dependence issue. Handoff can only occur at glue-point so that the transcoding state 

information can be minimized. The glue-point delimits the boundary of two consecutive 

medium units (e.g., GOB in H.263 or Video Object Planes (VOP) in MPEG-4) or some 

type of boundary that is relatively less temporally dependent.  

However, this solution will not work if the mobile terminal suddenly loses contact 

with the current base station before glue-point arrives, due to deep deterioration of the 

wireless channel condition and the high speed of the mobile user. 

2.4.4 Media Synchronization 

Media synchronization [5] refers to maintaining the temporal relationships within 

one data stream and between various media streams. There are three levels of 

synchronization, namely, intra-stream, inter-stream, and inter-object synchronization. The 

three levels of synchronization correspond to three semantic layers of multimedia data as 

follows [1]. 

1) Intra-stream synchronization 

The unit of the compression layer of the MPEG encoder is a logical data unit such as 

a video/audio frame, which adheres to strict temporal constraints to ensure acceptable 

user perception at playback. Synchronization at this layer is referred to as intra-stream 

synchronization, which maintains the continuity of logical data units. Without intra-

stream synchronization, the presentation of the stream may be interrupted by pauses or 

gaps. 

2) Inter-stream synchronization 

The unit of the synchronization layer is of the MPEG encoder a whole stream. 

Synchronization at this layer is referred to as inter-stream synchronization, which 

maintains temporal relationships among different continuous media. Without inter-stream 

synchronization, skew between the streams may become intolerable. For example, users 

could be annoyed if they notice that the movements of the lips of a speaker do not 

correspond to the presented audio (lip synchronazition). 
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3) Inter-object synchronization 

In MPEG-4, the spatio-temporal location of audio-visual objects is defined by scene 

description using a tree-based structure in the Compress Layer. Synchronization 

according to this tree-based structure is referred to as inter-object synchronization. The 

objective of inter-object synchronization is to start and stop the presentation of the time-

independent data within a tolerable time interval, if some previously defined points of the 

presentation of a time-dependent media object are reached. Without inter-object 

synchronization, for example, the audience of a slide show could be annoyed if the audio 

is commenting one slide while another slide is being presented. 

The media stream interruption introduced due to handoff is typically unpredictable. 

The incurred delays and delay variations can disrupt intra-media, inter-media, and inter-

object synchronization. Therefore, media synchronization mechanisms are required to 

ensure proper rendering of the multimedia presentation at the client. 

For the purpose of media synchronization, the playout buffer in either BS or MS is 

deployed to eliminate the side effects that result from the wired network jitter or handoff 

latency. Due to the limitation of playout buffer, however, the buffered media units may 

be used up if the wired network jitter or handoff latency exceeds the expected value. The 

synchronization strategies thereby are proposed as follows when the expected media units 

are not available at the expected presentation time. 

Nonblocking Strategy 

If an expected video unit does not arrive at the expected time and the playout buffer 

in MS is not empty, the expected one is  considered lost and thus ignored; continues to the 

next one. If an expected video unit does not arrive at the expected time and the playout 

buffer in MS is empty, the most recently displayed video unit is repeated until the video 

stream is available again. 

Blocking Strategy 

If an expected audio unit does not arrive at the expected time and the playout buffer 

in MS is not empty, the expected one  is considered lost and thus ignored; continues to the 

next one. If an expected audio unit does not arrive at the expected time and the playout 

buffer in MS is empty, block the current presentation until the audio stream is available 

again. 
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2.4.5 Handoff Scalability 

Typically, there are four possible  handoff scenarios [55] [68] in GPRS/UMTS, as 

illustrated in Figure 2-9.  

 

 

Figure 2-9  Types of handoff in GSM/GPRS/UMTS 

1. Inter-RAN handoff: The calls are transferred between two cells belonging to 

different MSCs/SGSNs. Both MSCs/SGSNs perform the handover together. 

2. Intra-RAN handoff: The calls are transferred between two cells belonging to 

different RNSs with the same MSC/SGSN. This handoff then has to be 

controlled by the MSC/SGSN. 

3. Inter-cell, intra-RNS handoff: The calls are transferred between two cells but 

stays within the control of the same BSC/RNC. The BSC/RNC then performs a 

handoff, assigns a new radio channel in the new cell, and releases the old one. 

4. Intra-cell handoff: The calls are transferred within the same cell. The BSC/RNC 

makes the handoff decision. 
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In UMTS, the types of handoff can also be classified into: 

1. Inter-system handoff, between cells belonging to different radio access 

technologies (e.g., UMTS and GSM/EDGE) or different radio access modes 

(e.g., FDD/WCDMA and TDD/TD-CDMA). 

2. Intra-system handoff, which can be further subdivided into: 

l Intra- frequency handoff, between cells belonging to the same WCDMA carrier; 

l Inter- frequency handoff, between cells operating on different WCDMA carriers. 

In addition, UMTS supports both hard handoff and soft handoff. The soft handoff is 

fully performed within UTRAN, without involving the core network due to the existence 

of Iur interface. The hard handoff may be also performed within UTRAN or GERAN, or 

between GERAN and UTRAN, or the core network may be involved if the Iur or Iur-g 

interface between RNSs does not exist. Note that the Iur interface is only logical 

interface, which may be provided via a transport network. Thus, in the real world, the soft 

handoff latency may be worse due to the introduction of the transport network between 

RNCs. 

Usually for streaming video services, video sessions are long-term sessions. During 

a long-term video presentation, mobile users may have to experience all or parts of the 

above scenarios. It is important to maintain relatively consistent handoff latency (delay 

jitter) in all the above scenarios so that there are no perceptible video or audio quality 

fluctuations during such a presentation. The handoff procedures are supposed to be 

specially designed to meet this challenge. 

In summary, this chapter overviews the GPRS/UMTS mobile network architecture 

and the corresponding handoff protocols. The problems and requirements in UMTS 

associated with media streaming during handoff, such as bearer service QoS requirement 

and seamless handoff, transfer delay, handoff latency, media synchronization and handoff 

scalability are discussed in details.  



29 

3 System Model 

Before the description of the proposed mobile system model and the protocol stack 

of network-aware end system, the concepts of layered coding and multiple description 

coding will be introduced first. 

3.1 Layered Coding 

From a video-coding point-of-view, scalability plays a crucial role in delivering the 

best possible video quality over unpredictable “best-effort” networks or time-varying 

wireless channels. From a networking point-of-view, scalability is needed to enable a 

large number of users to view any desired video stream, at anytime, and from anywhere. 

So far, layered coding with unequal error protection is the most popular and effective 

scheme for facilitating error resilience in a video transport system. 

 

 

Figure 3-1  Block diagram of layered coding with transport prioritization 

Principle of layered coding 

Layered coding produces a hierarchy of bitstreams, where the first or base layer is 

coded independently at a coarser but acceptable level of quality, and subsequent 

enhancement layers are coded dependently. Each enhancement layer of the hierarchy can 
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increase the frequency, spatial, and temporal resolution over that of the previous layer 

and incrementally improve the quality. Figure 3-1 shows the block diagram of a generic 

two-layer coding and transport system. 

Furthermore, layered coding has inherent error-resilience benefits, particularly when 

the base- layer bitstream can be transmitted with higher priority, guaranteeing a basic 

quality of service, and the enhancement- layer bitstreams can be transmitted with lower 

priorities, refining the quality of service. This approach is commonly referred to as 

layered coding with transport prioritization. By itself, layered coding is a way to enable 

users with different bandwidth capacity or decoding powers to access the same video at 

different quality levels. Therefore, layered coding is also called Scalable Coding. 

Unequal Error Protection will be discussed later. 

Implementation mechanisms  

Basically, there are four scalable mechanisms (data partitioning, temporal 

scalability, SNR scalability, and spatial scalability) depending on the way the video 

information is partitioned.  

1) Data partitioning (Frequency domain partitioning) 

In transform or subband based coding, the coder can include the low-frequency 

coefficients or low-frequency band subsignals in the base layer while leaving the high-

frequency signal in the enhancement layer. 

2) Temporal scalability (Spatial resolution  refinement) 

Temporal scalability is a technique to code a video sequence into two layers at the 

same spatial resolution, but different frame rates. The base layer is coded at a lower frame 

rate. The enhancement layer provides the missing frames to form a video with a higher 

frame rate. Coding efficiency of temporal scalability is high and very close to nonscalable 

coding.  

3) Signal- to-noise ratio (SNR) scalability (Successive amplitude refinement) 

SNR scalability is a technique to code a video sequence into two layers at the same 

frame rate and the same spatial resolution, but different quantization accuracy. The base 

layer can also encode the DCT coefficients of each block with a coarser quantizer, 

leaving the fine details (the error between the original and the coarsely quantized value) 

to be specified in the enhancement layer. A higher accuracy DCT coefficient is obtained 
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by adding the base- layer reconstructed DCT coefficient and the enhancement- layer DCT 

residue. 

4) Spatial scalability (Spatial resolution refinement) 

Spatial scalability is a technique to code a video sequence into two layers at the same 

frame rate, but different spatial resolutions. The base layer is coded at a lower spatial 

resolution and the enhancement layers contain additional information for obtaining higher 

spatial resolution. At the decoder, the reconstructed base-layer picture is up-sampled to 

form the prediction for the high-resolution picture in the enhancement layer.  

Fine granularity scalability (FGS) 

To provide more flexibility in meeting different demands of streaming (e.g., 

different access link bandwidths and different latency requirements), a new scalable 

coding mechanism, called fine granularity scalability (FGS), was proposed to MPEG-4 

[6] [7] [8]. An FGS encoder also compresses a raw video sequence into two substreams, 

i.e., a base layer bit-stream and an enhancement bit-stream. Different from an SNR-

scalable encoder, an FGS encoder uses bitplane coding to represent the enhancement 

stream. With bitplane coding, an FGS encoder is capable of achieving continuous rate 

control for the enhancement stream. This is because the enhancement bit stream can be 

truncated anywhere to achieve the target bit-rate.  

A variation of FGS is Progressive Fine Granularity Scalability (PFGS) [17] which 

is developed by Microsoft Research. PFGS shares the good features of FGS, such as fine 

granularity bit-rate scalability and error resilience. The essential difference between FGS 

and PFGS is that FGS only uses the base layer as a reference for motion prediction while 

PFGS uses multiple layers as references to reduce the prediction error, resulting in a 

higher coding efficiency. PFGS is adopted in our SMDC approach. 

Unequal Error Protection 

To serve as an error resilient tool, layered coding must be paired with UEP in the 

transport system, so that the base layer is protected more strongly, e.g., by assigning a 

more reliable sub-channel, using stronger FEC codes [21] [53] , or allowing more 

retransmissions.  

Different networks may implement transport prioritization using different means. In 

ATM networks, there is one bit (CLP) in the ATM cell header that signals the cell loss 
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priority. When traffic congestion occurs, a network node can choose to discard the cells 

having low priority first. Transport prioritization can also be implemented by using 

different levels of power to transmit the substreams in a wireless transmission 

environment. Also, DiffServ will be well suitable for prioritized transmission.  

Advantages 

1) It is highly adaptable to unpredictable bandwidth fluctuation due to dynamic 

changes in network conditions. 

2) It provides the flexibility to combat both network heterogeneity and receiver 

heterogeneity. The scalable source coding leaves the media servers and proxies 

(or gateways) an opportunity to trim the video stream to appropriate bit rate 

before transmission or relay. 

3) It is applicable to both unicast and multicast. 

4) It provides error resilience through UEP, which is a nice match for future 

DiffServ networks. 

5) There is no feedback channel requirement and therefore lower delay. 

6) It is well suitable to combine with an encryption mechanism to support multiple 

levels of security for intellectual property protection [32]. 

Disadvantages 

1) It will lead to a disastrous effect in the decoded visual quality or even break 

down if a loss is in the base layer or the channel of the base layer fails. 

The current Internet can not support priority service and has to rely on the 

conventional way (e.g., FEC or retransmission) to realize error- free transmission of the 

base layer. However, FEC-based approaches often suffer from dynamic network 

conditions. Retransmission-based approaches are not applicable in streaming applications 

when a back-channel is not available or when the transmission delay is not acceptable. In 

the case of multicast or broadcast, too much feedback creates a problem, called “feedback 

implosion” [49]. Moreover, the sender can not afford to honor independent 

retransmission requests from each receiver. 

2) The significant improvement performance of a layered coder over a single- layer 

coder in the presence of channel errors is at the cost of a coding overhead.  



33 

Generally, the four scalability modes in MPEG—namely, data partitioning, temporal 

scalability, SNR scalability, and spatial scalability—have increasingly better error 

robustness in that order, but also an increasing coding overhead. To be more precise, data 

partitioning requires the least number of bits (only 1% more bits), while the spatial 

scalability has a better reconstructed image when there exist significant losses in the 

enhancement layer. SNR scalability and temporal scalability is in the middle on both 

scales. Table 3-1 [20] summarizes the required ratio of the base layer to the total bit rate 

and the highest packet loss rate at which the video quality is still considered visually 

acceptable. These results are obtained by assuming that the base layer is always intact 

during the transmission. 

Table 3-1 Comparison of different scalability modes in MPEG-2 

Coding Mode Required base layer to total 
bit rate ratio 

The maximum sustainable 
packet loss rate 

One layer (MP@ML) 100% 10-5 

Data partitioning 50% 10-4 

*Temporal scalability <50% 10-4~10-3 

SNR scalability <20% 10-3 

Spatial scalability <20% 10-3~10-2 

* The data of temporal scalability came from theoretical analysis.  

3.2 Multiple Description Coding  

As described in Section 3.1, if a data network were able to provide a preferential 

treatment to the packets of the base layer and transmit them in an error- free channel, 

layered coding would be almost the best solution.  The Internet, however, usually does 

not look inside packets and discriminate; packets are dropped at random (e.g., drop-tail or 

RED) when congestion occurs.  

The typical way to handle lossless transmission in a lossy network is to invoke many 

retransmissions or add a lot of redundancy via strong FEC. In jitter-sensitive streaming 

applications, however, it may not be feasible or cost effective. A better alternative is to 
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make do with whatever arrives upon first transmission and combat the transmission error 

from the source side. Multiple Description Coding is well competent for this challenge 

due to its inherent diversity attribute. 

Principle of multiple description coding 

As with LC, multiple description coding also codes a source into several sub-

streams, known as descriptions, but the decomposition is such that the resulting 

descriptions are correlated and have similar importance. Any single description should 

provide a basic level of quality, and more descriptions together will provide improved 

quality. Figure 3-2 shows the block diagram of a generic two-layer coding and transport 

system. 

 

 

Figure 3-2  Block diagram of MDC coding and decoding 

For each description to provide a certain degree of quality, all the descriptions must 

share some fundamental information about the source, and thus must be correlated. This 

correlation enables the decoder to estimate a missing description from a received one, and 

thus provide an acceptable quality level from any description. On the other hand, this 

correlation is also the source of redundancy in MDC.  

An advantage of MDC over LC is that it does not require special provisions in the 

network to provide a reliable sub-channel. To accomplish their respective goals, LC uses 

a hierarchical, decorrelating decomposition, whereas MDC uses a non-hierarchical, 

correlating decomposition.  
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Implementation mechanisms   

Some approaches [34] [49] that have been proposed for accomplishing such 

decomposition include Multiple Description  quantization, MDC  with correlation 

transform, transform domain subsampling, spatial domain subsampling, temporal domain 

subsampling (e.g. , Multiple State Recovery (MSR) [46]), and interleaved spatial-

temporal sampling. The last approach is known as video redundancy coding (VRC) in 

H.263+ [18]. MSR has excellent capability of error recovery in the presence of packet 

loss on all descriptions and is adopted in our SMDC approach. 

Advantages 

1) Robustness to losses and bit errors 

a. Path diversity  

MDC directly attacks the problem of communicating the continuous-valued source. 

MD coders can be designed with concern for every combination of received descriptions 

with an appreciable probability. MDC assumes that there are several parallel channels 

between the source and the destination and that each channel may be temporarily down or 

suffering from long burst errors. Furthermore, the error events of different channels are 

independent, so that the probability that all channels simultaneously experience losses is 

small.  

Diversity techniques have been studied for many years in the context of wireless 

communication, e.g., frequency, time, and spatial diversity. However, the problem of path 

diversity over a packet network has been largely unexplored. The recent work [26] adds 

justification to our approach for path diversity: in comparing the performance of the 

default path between two hosts on the Internet to that of alternative paths between those 

two hosts, it is found that “in 30-80% of the cases, there is an alternate path with 

significantly superior quality”. The quality is measured in terms of round-trip-time, loss 

rate, and bandwidth. Therefore, diversity would also appear to be beneficial for 

communication over the Internet. There are several ways to set up multiple paths or links 

for a single virtual connection in a wireless network. In a single-hop wireless network, a 

station would need to establish channels to multiple base stations instead of one. This is 

already done in “soft” hand-off systems, during the hand-off phase. In a multiple-hop 

adhoc networks, each station has router- like functionality to establish multiple disjoint 
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paths with another wireless station. The Internet Engineering Task Force (IETF) MANET 

Working Group has been the main forum for research in this area. Most of the proposed 

ad hoc routing protocols have the ability to discover multiple routes. In a CDMA system, 

the multiple antenna technique can be employed with the MDC. Each description should 

use one transceiver and one antenna in the BS and the MS. 

b. Error recovery  

Some MDC algorithms have an excellent capability of error recovery in the presence 

of packet loss on all descriptions, such as multiple states and state recovery [46].  

Due to robustness to losses and bit errors, it is well suitable for the imperfect and 

unpredictable channels that have relatively high loss or failure rates, such as streaming 

media channels over the current Internet or a wireless network. Also, it should be forward 

compatible with the potential DiffServ network.  

2) Enhanced quality 

If a receiver receives multiple descriptions, it can combine them together to produce 

a better reconstruction than that produced from any one of them. 

3) Distributed storage 

Distributed storage [49] of streaming media matches the MD framework well. 

Consider a database of images stored at several locations with MD encoding. A typical 

user would have fast access to the local image copies; for higher quality, one or more 

remote copies could be retrieved and combined with the local copy.  

Distributed storage is common in the use of edge servers for popular content. In 

current implementations, identical data is stored at the servers, so there is no advantage in 

receiving multiple copies. Storage can also be distributed to make the reliability of each 

device less important; lowering reliability requirements can decrease costs.  

4) No feedback channel requirement and therefore lower delay. 

Disadvantages 

1) Low coding efficiency 

To guarantee an acceptable quality with a single description, each description must 

carry sufficient information of the original signal. This implies that there will be overlap 

in the information contained in different descriptions. Obviously, this will reduce the 

coding efficiency. 
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 The core issue in designing MD coder is the tradeoff between coding efficiency and 

redundancy among the descriptions, such that the degradation in quality in the event of 

failures is graceful. A mechanism [19] is required to adapt the amount of redundancy 

added to the channel condition.  

2) Unbalanced MD operation  

The characteristics of each path in a packet network are different and time-varying, 

therefore the available bandwidth in each path may differ. This results in the requirement 

of unbalanced MD operation [26], where the bit rate of each description is adapted based 

on the available bandwidth along its path. We will discuss this issue in the next section. 

3.3 Distributed Multimedia Delivery Mobile Network 

3.3.1 Concept of Content Delivery Network 

Content Delivery Network (CDN) [43] was developed to overcome performance 

problems, such as network congestion and server overload in the star-type network 

topology, which arise when many users access popular content. CDN that is distributed 

via a WAN generally consists of the origin server containing the content and a set of edge 

servers. Each edge server is located closer to users and stores a subset of the content or 

caches popular content. CDN provides a number of advantages.  

1) It enhances server scalability and helps prevent server overload and network 

congestion. 

Conventionally, content is delivered by the central content server to the entire 

network. The central server become a bottleneck of the networks and is lack of scalability 

under the limitation of bandwidth, storage and computational complexity in the content 

server. In the case of media multicast or broadcast, too much feedback creates a problem, 

called “feedback implosion”.  

The numerical investigations in [12] indicated that, for typical scenarios, the revenue 

rate increases logarithmically with the cache space and linearly with the link bandwidth 

connecting the cache space to the central server. Thus, it is beneficial to establish the 

edge servers for caching before increasing the link bandwidth of the central server. With 
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the concept of distributed storage, CDN helps to prevent server overload and network 

congestion, since the replicated content can be delivered to users from edge servers.  

2) It reduces the content delivery time for services, the probability of packet loss, 

and the total network resource occupation 

As content is delivered from the closest edge server and not from the origin server, 

the content is sent over a shorter network path, thus reducing the content delivery time, 

the probability of packet loss, and the total network resource occupation. 

3.3.2 Proposed Mobile Network Model 

While CDN was originally intended for static web content, it can be extended to our 

approach for the delivery of streaming media as well. With the comprehensive 

consideration and integration of concepts of CDN and SMDC, a distributed multimedia 

delivery mobile network is proposed for the introduction of media streaming services in 

GSM/GPRS/UMTS. The proposed network model in the scenario of intra-RAN handoff 

and inter-RAN handoff are illustrated in Figure 3-3 and Figure 3-4 respectively, where 

DiffServ is employed to provision UEP for scalable video coding. The media streaming 

services are pushed to the edge of CN so that the content delivery time for services is 

significantly reduced by the media delivery network. 

In each media delivery network, a set of complementary distributed Media 

Description Servers (MDSs) interact and collaborate with each SGSN or MSC for media 

delivery to mobile stations in the radio access network. Each MDS should keep one 

complementary description of media streams that were originally downloaded from the 

service provider during the streaming service publication.  

In a real world of networks, such as GSM, the high- level streaming service control 

functions (e.g., service registration, publication and discovery, service subscription and 

binding, subscriber authentication and service allowance verification) can be peeled off 

from the MSC and be implemented in VLRs. It is cost-effective because the MSC 

becomes more efficient, does not waste cycles in processing new services, and simplifies 

new service development.  
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Figure 3-3  Proposed network model of  intra-RAN handoff (Data plane) 

The proposed distributed multimedia delivery mobile network helps to deal with the 

following problems:  

1) Network congestion and server overload problems in the star-type network 

topology. 

2) The media streaming handoff problems in the mobile networks. 

The streaming media is delivered from the closest edge server and not from the 

origin server, the streaming media is sent over a shorter network path, thus reducing the 

media service delivery time (end-to-end delay), the probability of packet loss, and the 

total network resource occupation.  

3) The high requirement of storage, reliability and load balancing among the 

distributed media edge servers and thus high cost of network components in the 

conventional CDN. 
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Figure 3-4  Proposed network model of inter-RAN handoff (Data plane) 

One difference between CDN and D-MDMN which should be paid attention to is 

that load balancing is even more important for media edge servers than for web servers, 

since the resource commitment is typically larger and lasts longer. 

Figure 3-5 shows a comparison between the single description (SD) and multiple 

description (MD) approach.  

During the construction phase of conventional CDN where the SD approach is used, 

a redirection server (RS) should choose a set of media edge servers (ESs) that can achieve 

the best end-user performance for each edge router (ER). The ER acts as an entry of a 

wired access network. In Figure 3-5, ES 1 and ES 2 are supposed to be the best set for the 

client. 

Usually, each ER has one RS to monitor and balance the traffic load among the set 

of ESs. Each edge server should keep one copy (SD) of media streams. Suppose ES 1 is 

overloaded during a media delivery, then RS should direct ES 2 which is underloaded to 
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continue the delivery of the rest part of that media stream. This incurs the server-side 

handoff problem [11] due to load balancing. 

Similarly, during the phase of D-MDMN construction, each SGSN or MSC should 

choose a set of MDS that can get the best end-user performance through the simulation of 

system configuration. Each MDS should keep one description of media streams. In 

Figure 3-5, MDS 1 and MDS 2 are supposed to be the best set for the client (SGSN or 

MSC) and keep D1 and D2 of media streams, respectively. 

 

 

Figure 3-5  Single Description versus Multiple Description 

With the employment of the MD approach, however, there is no or extremely less 

requirement of load balancing, especially when the proposed SMDC is used to combat 

the problem of unbalanced MD operation. MDS 1 and MDS 2 provide the delivery of 

different description of a media stream simultaneously. If MDS 1 is overloaded during 

media delivery, it can discard the appropriate enhancement layers to lower its load. If 

MDS 1 remains overloaded even after layer dropping, D2 still can be presented to the 

client at a tolerable quality.  

MD approach also lowers the reliability requirement of MDS due to its loss 

tolerance capability. Suppose the reliability of a single description is 90%, then that of 

two descriptions will be 1-(1-90%)(1-90%) = 99%. Also, each SMDC description is 

almost only 56~60 % of the amount of a SD copy [47], which decreases the storage 

requirement of MDS. In addition, SMDC has a very strong capability of error recovery 

during media transmission.  
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A summary of comparison between the SD and MD approaches is given in Table 3-2. 

Table 3-2  Single Description versus Multiple Description 

 Single Description Multiple Description 

Storage 100 % 56~60 % 

Reliability 90 % 99 % 

Error recovery Weak Strong 

Load balancing Required Not required 

 

3.3.3 MPEG-4 Video Streaming over IP DiffServ  

UMTS QoS Classes and IP DiffServ Classes 

The UMTS specifications define in [61] four QoS classes: conversational, 

streaming, interactive, and background. The main distinguishing factor among these 

classes is delay sensitivity. The conversational class is the most sensitive, while 

background is the least sensitive. Conversational and streaming classes are intended for 

real-time traffic. They both preserve time relation (variation) between information 

elements of the stream, but conversational has stricter delay requirements. Example 

applications are IP telephony for the former and streaming video for the latter. For the 

interactive and background classes, transfer delay is not the major factor. Instead, they 

both preserve the payload content. The interactive class follows a request-response 

pattern and defines three priorities to differentiate bearer qualities, while it does not 

provide explicit quality guarantees. The main characteristic of the background class is 

that the destination does not expect the data within a certain time. Example applications 

are FTP or Web traffic for interactive and download of emails for background. 

 On the other hand, the IETF has also defined DiffServ mechanisms in RFC 2475 

[45] for IP based networks aiming at QoS provisioning by means of Class of Service 

(CoS) approaches, which is well suitable for unequal error protection of video layered 

coding.  
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DiffServ architecture defines a simple forwarding mechanism, i.e., per-hop behavior 

(PHB) [39], at interior network nodes while pushes most of the complexity to network 

boundaries. Differentiated services are realized in RFC 3290 [54] by the use of particular 

packet classification and traffic conditioning mechanisms at boundaries coupled with the 

concatenation of per-hop behaviors along the transit path of the traffic.  

The traffic conditioner is decoupled from the network interior and consists of 

marker, meter, shaper and policer (i.e., dropper). Marking is performed at the source host 

or the first-hop router administrative domain by means of mapping the DiffServ 

codepoint (DSCP) contained in the IP packet header to a PHB. A replacement header 

field, called the DS field, is defined in RFC [44], which is intended to supersede the 

existing definitions of the IPv4 TOS octet and the IPv6 Traffic Class octet. Six bits of the 

DS field are used as a DSCP to select the PHB that a packet experiences at each node.  

In the packet forwarding path, per-hop behaviors are defined to permit a reasonably 

granular means of allocating buffer and bandwidth resources at each node among 

competing traffic streams. PHBs are expected to be implemented by employing queue 

management and scheduling on a network node's output interface queue. In DiffServ, 

three main PHB have been defined: 

l Expedited Forwarding  

Expedited Forwarding (EF) [41] provides a low delay, a low loss and an assured 

bandwidth similarly to CBR in ATM. 

l Assured Forwarding 

Assured Forwarding (AF) PHB group [39], similarly to nrt-VBR/ABR/GFR in 

ATM, is a means for a provider DS domain (i.e., Media Delivery DiffServ Network in 

Figure 3-4) to offer different levels of forwarding assurances for IP packets received from 

a customer DS domain (e.g., a RAN A or B in Figure 3-4).  N independent AF classes are 

defined, where each AF class in each DS node is allocated a certain amount of 

forwarding resources (buffer space and bandwidth). IP packets that wish to use the 

services provided by the AF PHB group are assigned by the video provider in the Media 

Delivery DiffServ Network into one or more of these AF classes according to the services 

that the customer has subscribed to.  All packets belonging to an AF class are admitted 

into one  AF queue to avoid out of order delivery. Within each AF  class, IP packets are 
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marked (again by the video provider DS domain) with one of M different levels of drop 

precedence. In case of congestion, the drop precedence of a packet determines the relative 

importance of the packet within the AF class. A congested DS node tries to protect 

packets with a lower drop precedence value from being lost by preferably discarding 

packets with a higher drop precedence value.  

An IP packet that belongs to an AF class i and has drop precedence j is marked with 

the AF codepoint AFij, where 1 ≤  i ≤  N and 1 ≤  j ≤  M. Currently, four classes (N = 4) 

with three levels of drop precedence in each class (M = 3) are defined in RFC 2597 for 

general use. More AF classes or levels of drop precedence may be defined for local use. 

The queue management and scheduling mechanisms of AF PHBs are illustrated in 

Figure 3-6. The drop preferences within each class should be considered in the potential 

approaches of queue management, such as WRED. The drop precedence queue 

management can be implemented, for example, by using a leaky bucket traffic policer 

with one token rate and two bucket size, which can be decided according to the service 

level agreement (SLA). 

 

 

Figure 3-6  Queue management and scheduling mechanisms of AF PHBs 

l Best Effort  

Best Effort (BE) provides no QoS guarantee. 

It is challenging to provide QoS attribute translation and mapping between the IP 

world and the UMTS world and to implement the IP differentiated services for the traffic 

encapsulated and isolated by tunneling in UMTS. This issue will be addressed in Section 

4.2.1 and Section 4.2.2. 
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IP DiffServ and GTP/FP Tunnels in UMTS 

The protocol stack in the IP transport mode for non-video services in UMTS is 

shown in Figure 3-7 (a) [47] [56] [62] [67] [69], while that for video services in the 

proposed D-MDMN is shown in Figure 3-7 (b), where the Uu, Iub, Iu, Gn and Gi 

interfaces are defined in 3GPP TS 25.401 V5.5.0 [74]. 

 

 

Figure 3-7  Protocol stack in UMTS and the Proposed D-MDMN (Data plane) 

For non-video services, The  uplink user- level packets are segmented by the user 

equipment (UE) into Radio Network Layer (RNL) frames, called transport blocks. These 

are carried over the Radio Frequency Layer (RFL), using W-CDMA access and 

modulation techniques, to the Node Bs within reach of the mobile. Each Node B 
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encapsulates a set of transport blocks into a single frame of the RNL Frame relay 

transport Protocol (FP) and forwards the frame to its RNC over the Iub interface. 

The FP frames can be exchanged between the drifting and serving RNCs over the 

Iur interface. The serving RNC of the host is responsible for frame selection among the 

multiple received copies of the same transport block, processing the other sublayers of 

the RNL, and finally reassembling the user- level packet. 

To deploy the IP transport mode on the Iub interface, the FP frames are encapsulated 

into IP packets. The destination addresses of these packets refer to the network components 

(i.e., RNC or Node B) and not the user’s IP address. In fact, the host’s IP address is never 

used for forwarding purposes in the UTRAN, the decisions being made on the basis of 

RNL specific protocols. The Mobile Wireless Internet Forum has specified further details 

[50] concerning the implementation of IP in the UTRAN in the transport mode.  

In order to communicate with the data network, the mobile host needs to register 

with the CN by performing a GPRS attach operation. This results in the creation of two 

GPRS Tunneling Protocol (GTP) sessions, specific to that host: between the RNC and the 

SGSN on the Iu interface, and between the SGSN and the GGSN on the Gn interface. 

The user- level multi-protocol packets are allowed to be encapsulated into GTP frames 

and be forwarded between the RNC and the GGSN. The GTP protocol is implemented 

only by SGSNs and GGSNs. No other systems need to be aware of the GTP's presence. 

Mobile hosts are connected to an SGSN without being aware of GTP. 

Upon the GPRS attachment, a mapping is created at the RNC between the host 

identity and the GTP session between the RNC and the SGSN. In addition, a record is 

created at the GGSN, which contains the mapping between the host’s IP address and the 

GTP session with the corresponding SGSN.  

To deploy the IP transport mode on the Iu and Gn interfaces, the GTP frames are 

encapsulated into IP packets. The destination addresses of these packets refer to the 

network components (i.e., RNC, SGSN, or GGSN) and not the host’s IP address. 

Forwarding decisions are based on the GTP mapping tables in those nodes. 

For video services, the only UMTS network component needed to be enhanced is 

the SGSN where a media module should be added to interconnect with IP-based media 

delivery network in the IP native mode. The reason not adopting the IP transport mode is 
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based on the overhead of GTP, UDP and another IP layer which has to be inserted 

between L2 and the original IP layer in all MDSs. The IP transport mode is kept, 

however, for non-video services. The deployment of the IP native mode between SGSN’s 

media module and MDS leverages the evolution of UMTS towards its final all IP-based 

phase. The protocol stack of UDP/RTP will be discussed in details in Section 3.4. 

As discussed above, the video IP packets generated from the video provider are 

supposed to pass two different tunnels in UMTS. One is GTP tunnel existing between 

GGSN and RNC in the CN. The other one is FP tunnel started from RNC and terminated 

at Node B in the RAN. As the video IP packets pass through the tunnel, there are 

additional headers (i.e., GTP or FP tunnel header) inserted between the two IP headers.  

The inner IP header is that of the original traffic with differentiated services; an outer IP 

header is attached and detached at tunnel endpoints without differentiated processing.  In 

general, intermediate network nodes between tunnel endpoints operate solely on the outer 

IP header, and hence DiffServ-capable intermediate nodes access and modify only the 

DSCP field in the outer IP header. Thus, it is a challenging design issue [40] to 

implement DiffServ in the mobile network for the traffic which is encapsulated by the 

tunnels.  This issue will be addressed in Section 4.2.3. 

3.4 Protocol Stack of End Systems  

One main design goal of the network-aware end systems is to extend the 

applications of real time streaming protocols in the Internet to wireless networks. The 

protocol stack of streaming server and client is shown in Figure 3-8.  

 

 

Figure 3-8  Protocol stack of network-aware end systems 
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There are two communication planes required by remote media access: a Data Plane 

for media transport, and a Control Plane for media session control. The MPEG-4 

specification adopts out-of-band signaling, so that the Data and Control Planes can use 

different transport protocols, i.e., User Datagram Protocol (UDP) and TCP respectively in 

our approach. The process of transporting of MPEG-4 content over the Internet or 

wireless networks can therefore be split into two parts, the MPEG-4 Media Transport and 

MPEG-4 Media Control. 

3.4.1 MPEG-4 Media Transport  

The transport protocol family for media streaming includes UDP, TCP, Real Time 

Protocol (RTP), and Real Time Control Protocol (RTCP) protocols. UDP and TCP 

provide basic transport functions while RTP and RTCP run on top of UDP/TCP. 

UDP and TCP 

UDP/TCP protocols support such functions as multiplexing, error control, 

congestion control, or flow control. Since TCP retransmission introduces delays that are 

not acceptable for streaming applications with stringent delay requirements, UDP is 

typically employed as the transport protocol for video streams, while TCP is for 

streaming control. In addition, since UDP does not guarantee packet delivery, the receiver 

needs to rely on the upper layer (i.e., RTP) to detect packet loss. 

RTP and RTCP 

The Real Time Protocol [15] is an Internet standard protocol designed to provide 

end-to-end transport functions for supporting real-time applications. The Real Time 

Control Protocol [15] is a companion protocol with RTP and is designed to provide QoS 

feedback to the participants of an RTP session. In other words, RTP is a data transfer 

protocol while RTCP is a control protocol. 

RTP does not guarantee QoS or reliable delivery, but rather, provides the following 

functions in support of media streaming: time-stamping, sequence numbering, payload 

type identification, and source identification. 

RTCP is the control protocol designed to work in conjunction with RTP. In an RTP 

session, participants periodically send RTCP packets to convey feedback on quality of 
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data delivery and information of membership. Basically, RTCP provides the following 

services: 

1) QoS feedback: This is the primary function of RTCP. RTCP provides feedback to 

an application regarding the quality of data distribution. The feedback is in the form of 

sender reports (sent by the source) and receiver reports (sent by the receiver). The reports 

can contain information on the quality of reception such as:  

a) fraction of the lost RTP packets, since the last report;  

b) cumulative number of lost packets, since the beginning of reception; 

c) packet interarrival jitter; 

d) delay since receiving the last sender’s report. The control information is useful to 

the senders, the receivers, and third-party monitors.  

Based on the feedback, the sender can adjust its transmission rate; the receivers can 

determine whether congestion is local, regional, or global; and network managers can 

evaluate the network performance for multicast distribution. 

2) Participant identification 

3) Control packets scaling: To scale the RTCP control packet transmission with the 

number of participants, a control mechanism is designed as follows. The control 

mechanism keeps the total control packets to 5% of the total session bandwidth. Among 

the control packets, 25% are allocated to the sender reports and 75% to the receiver 

reports. To prevent control packet starvation, at least one control packet is sent within 5 s 

at the sender or receiver. 

4) Inter-media synchronization 

5) Minimal session control information 

3.4.2 MPEG-4 Media Control 

In the media control part, specific session control protocol should be used to define 

the messages and procedures to control the delivery of the multimedia data during an 

established session. The Real Time Streaming Protocol (RTSP) [14] is such a session 

control protocol which has been recommended by 3GPP for packet-switched streaming 
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service (PSS) [9] and International Telecommunication Union (ITU) H.323 for 

multimedia teleconferencing services [43]. 

One of the main functions of RTSP is to support video-cassette-recorder- like control 

operations such as stop, pause/resume, fast forward, and fast backward. In addition, 

RTSP also provides means for choosing delivery channels (e.g., UDP, multicast UDP, or 

TCP), and delivery mechanisms based upon RTP. RTSP works for multicast as well as 

unicast. Another main function of RTSP is to establish and control streams of continuous 

audio and video media between the media servers and the clients.  

However, RTSP is specially designed for the Internet. For the wireless applications, 

it should reply on other’s mobility mechanisms, such as the GTP-based link- level 

mobility mechanism in GPRS and UMTS or SIP-based application level mobility 

mechanism. In our approach, an enhanced GTP-based handoff procedure is proposed for 

handling user mobility in media streaming. 

In this chapter, the concepts of layered coding and multiple description coding are 

introduced in order to solve the bandwidth fluctuation, packet loss and heterogeneity 

problem in the wireless environment. The system model is proposed as a distributed 

multimedia delivery mobile network, followed by the discussion of the video streaming 

over IP DiffServ. The protocol stacks of the proposed D-MDMN and the network-aware 

end system are presented. In the next chapter, we propose solutions for video mobility 

under this system model. 
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4 Proposed Solutions for Video Mobility 

The problem of handoff in a wireless network is well-know; however, it is largely 

unexplored in the applications of streaming media.  

For the purpose of solving the handoff problems in media streaming as discussed in 

Chapter 2, a combination of scalable multiple description coding with distributed video 

storage in the DiffServ mobile network to support streaming video handoff is proposed. It 

leverages the distributed multimedia delivery mobile network to provide path diversity to 

combat outage due to handoff. If a feedback channel is available, receiver reports from both 

the base station and mobile host will be employed to split the wired and wireless domain, 

such that the wireless channel condition (e.g., packet loss) can be known by the sender.  

In this chapter, the join design of layered coding and multiple description coding and 

the proposed scalable multiple description coding will be presented. And then, the 

MPEG-4 video streaming issues over the IP DiffServ mobile network and the proposed 

handoff procedures will be discussed. 

4.1 Joint Design of MDC and LC 

There are almost no referenced works on the joint design of layered coding and 

multiple description coding to complement their drawbacks. In our approach, a Scalable 

Multiple Description Coding framework is proposed to leverage the distributed 

multimedia delivery mobile network to provide path diversity to combat outage due to 

handoff. The coded video stream consists of MDC components and LC components. In 

the proposed multimedia delivery mobile network, MDC components enhance the 

robustness to losses and bit errors of LC components through path diversity and error 

recovery. MDC components also reduce the storage, reliability and load balancing 

requirement among distributed media edge servers. At the same time, LC components not 

only deal with the unbalanced MD operation at the server end, but also combat the 

bandwidth frustrations of the time-varying wireless channels. 
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4.1.1 Architecture of Proposed SMDC Framework 

The architecture of the proposed SMDC framework is depicted in Figure 4-1. It is an 

object-based coding which jointly employs the PFGS and Multiple State Recovery (MSR) 

on the condition that it is compatible with MPEG-4. 

 

 

Figure 4-1  Proposed SMDC architecture 

Similar to the human visual system mechanism, the smallest entity in the SMDC is 

each object in a picture with its associated shape, texture in the interior of the shape, and 

motion. The original video input to the encoder is segmented into a set of individual 

video objects (VOs). Each VO then is separately compressed through shape encoding and 

PFGS texture encoding, such that the shape and texture information can be split into four 

different VOPs. For support of two descriptions, the encoder should store the last two 

previously coded frames (instead of just the last one) and choose which previously coded 

frame to be used as the reference for the cur rent prediction. After multiplexing, the four 

different VOPs converge into one video stream with four different layers. This video 
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stream is further partitioned into two subsequences of frames: odd numbered video 

frames (Description 1) and even numbered video frames (Description 2).  

The different descriptions should be transmitted over different channels undergoing 

independent error effects to minimize the chance that both video streams are corrupted at 

the same time. As a matter of fact, the video stream can be partitioned into N 

complementary frame subsequences if there are N different channels between the encoder 

and the decoder. However, it also adds complexity of MD assembling at the decoder. It is 

an open issue to determine how many descriptions should be used for encoding. For 

presentation simplification, two descriptions and two corresponding channels are chosen 

in the following discussion. 

At the decoder, the processing procedures reverse in accordance. Similarly, the 

decoder should alternate which previous erroneously decoded frame it uses as the 

reference for the next prediction. Both MPEG-4 version 2 (NEWPRED mode) [8] [29] 

[30] and H.263+ (RPS mode) [31] [21] support switching prediction among reference 

frames. If both descriptions are received erroneously after parallel to serial converter 

(MD assembler) and demultiplexing, then the shape and texture information of VOs are 

restored from shape and PFGS texture decoder for final composition into reconstructed 

video. If there is an error in a stream, the error propagation will happen in that stream due 

to motion compensation and differential encoding.  

The SMDC framework can employ any shape coding [13] [42], e.g., binary shape 

coding or grayscale coding [63]. The texture coding techniques are still DCT-based 

coding for arbitrary shaped objects. The concept of object based representation makes it 

possible to exploit the content redundancy in addition to the data redundancy and 

improve the coding efficiency for the very low bit-rate transmission. 

For an illustration of the capability of error recovery, an MD approach is compared 

with a conventional single description approach in Figure 4-2 [47]. For simplicity, B-

frames are not illustrated in the figure. There is an error when decoding P-frame 4 in SD 

or P-frame 5 correspondingly in MD which is forward predicted by P-frame 3. In the SD 

approach, P frame 4 is lost and the decoder has to freeze P-frame 3 (or perform other 

error concealment) until I- frame 10. In the MD approach, however, P-frame 5 may be 

recovered or concealed by using information from its previous P-frame 4 and future P-
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frame 6 which are correctly decoded in the other description. Errors on both descriptions 

in decoding P-frames 8 and 11 are recovered or concealed in the same manner as long as 

both descriptions are not simultaneously lost. 

 

Figure 4-2  Single Description versus Multiple Description 

Note that, the MD approach should add extra bits for MD property; and the SD 

approach should also add extra bits (e.g., I-frame 10) for intra coding or FEC. It has been 

shown that the MD approach requires an increase of 12~20 % transmission bit rate as 

compared with the SD approach but will result in much stronger capability of error 

recovery than its counterpart [47]. 

4.1.2 Scalability Structure of SMDC Framework  

The proposed SMDC scalability structure (shown in Figure 4-3) is as follows: 

1) The Shape Base Layer that consists of shape information of VOs in the intra-

coded plane (I-VOP) or shape and motion information of VOs in the predictively 

coded plane (P-VOP); 

2) The Texture Base Layer that consists of basic texture information of VOs 

contoured by the Shape Base Layer; 
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3) The Texture PFGS Layer that consists of texture information of SNR scalable 

enhancement for the Texture Base Layer; 

4) The Texture PFGST Layer that consists of motion-compensated residual frames 

(i.e., motion vectors and bitplane-DCT residual signals) predicted from the 

Texture Base Layer for temporal scalable enhancement. In comparison, the 

motion-compensated PFGST frames in SMDC take the place of B-frames in the 

multilayer FGS-temporal scalability structure presented in [6]. 

 

 

Figure 4-3  Proposed SMDC scalability structure 

For illustration sake, shown in Figure 4-4, suppose the first three layers are 

implemented and the Texture PFGST Layer is left as an option. Thus, playing only one 

description with only the Shape Base Layer gets a black and white (or grayscale) video at 

the half frame rate, shown in Figure 4-4 (a). Playing only one description with the Shape 

Base Layer and the Texture Base Layer gets a color video in a basic quality at the half 

frame rate, shown in Figure 4-4 (b). Playing only one description with all three layers 

yields a color video in a better quality at the half frame rate, shown in Figure 4-4 (c). In 

the same way, if both two descriptions with all the three layers can be decoded correctly, 

it yields a color video in the best quality at the full frame rate, shown in Figure 4-4 (d). 

However, the layering in SMDC is more flexible than that of illustration. The 

Texture PFGS Layer needs not be discarded as a whole. The enhancement bit stream can 
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be truncated anywhere to achieve the target bit-rate. This benefit of achieving continuous 

rate control comes from the bitplane coding in the PFGS encoder [17] for the 

enhancement stream. 

 

                                    

                                                                      
(a) One description with only the Shape Base Layer 

 

                                   

                                                                     
(b) One description with the Shape Base Layer and the Texture Base Layer 

 

                                   

                                                                      

(c) One description with all three layers 
 

 

(d) Both two descriptions with all the three layers 

Figure 4-4  Video illustration of SMDC layered structure 
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4.1.3 Advantages of Proposed LC Component  

1. Wired Domain 

1) Unbalanced MD Operation 

As mentioned in Section 3.2, the requirement of unbalanced MD coding [26] is well-

known but largely unexplored in MD video coding. The characteristics of each path in a 

packet network are different and time-varying, therefore the available bandwidth in each 

path may differ. This results in the requirement of unbalanced MD operation, where the 

bit rate of each description is adapted based on the available bandwidth along its path. 

The proposed SMDC description is scalable along its path without any close- loop 

feedback delay, which is well suitable for unbalanced MD operation. 

The proposed SMDC approach is naturally balanced in both streams (i.e., 

descriptions) assuming that the even and odd frames have equal complexity. To achieve 

unbalanced operation one can adapt the quantization, spatial resolution or frame rate. 

However it is important to preserve approximately equal quality in each stream to prevent 

an observer from perceiving a quality variation (flicker) at half the original frame rate 

(particularly important for the case of no losses).  

Rate control via coarser quantization may be used for small rate changes (e.g., 10% 

rate reduction at a cost of 0.5 dB [26]); however, it may not be appropriate for large rate 

changes. The potential flicker also suggests that changes in spatial resolution (i.e., spatial 

subsampling) may be inappropriate.  

Adapting the frame rate (i.e., temporal subsampling) [26] is a simple and effective 

mechanism for reducing the required bit rate while preserving the quality per frame and 

largely preserving the error recovery capability, as illustrated in Figure 4-5. However, if 

the frame rate of one stream is decreased too much, the quality variation of that stream 

can not be approximately preserved. Also, the unbalanced MD operation will fail if the 

bit rate ratio of these two streams is larger than 2:1, which is illustrated in Figure 4-5. 

Suppose that the bit rate of the upper stream is bigger than that of the lower stream in 

Figure 4-5, where Px denotes the P-frame X. The balanced MD operation is shown in Figure 

4-5 (a), where the damaged P-frame 5 can be recovered or concealed from P-frames 4 and 6, 

and P-frame 11 is recovered or concealed from P-frames 10 and 12. In Figure 4-5 (b), the 

frame rate of the lower stream has to be decreased by 50% for a bit rate ratio of 2:1. That is, 
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P-frames 4 and 8 have to be discarded. The damaged P-frame 5 can be recovered but only 

from P-frame 6, and P-frame 11 can be recovered but only from P-frame 10. It is 

straightforward that the error recovery capability of 2:1 unbalanced MD operation, illustrated 

in Figure 4-5 (b), is lower that that of the balanced MD operation illustrated in Figure 4-5 (a). 

In Figure 4-5 (c), the frame rate of the lower stream has to be decreased by 75% for a bit rate 

ratio of 3:1. However, the damaged P-frames 5 and 11 in the high bit rate stream can not be 

recovered from the low bit rate stream because their adjacent previous P-frames 4 and 10, 

and their adjacent future P-frames 6 and 12 have to be discarded. 

 

 

Figure 4-5  Balanced and Unbalanced MD Operation 
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In order to address the unbalanced problem, the concept of layered coding is 

proposed for the MD video coding. The capability of error recovery of MDC and SMDC 

are compared under the bit rate ratio of 3:1 in Figure 4-6. 

 

 

Figure 4-6  Comparison of Unbalanced MDC with Unbalanced SMDC 

As discussed above, the errors occurred in the high bit rate stream can not be 

recovered or concealed from the low bit rate stream in the case that the bit rate ratio is 

larger than 2:1. Suppose that the bit rate of the upper stream in Figure 4-6 is three units 

and that of the lower stream is only one unit. Instead of temporal subsampling illustrated 

in Figure 4-6 (a), the layered coding is introduced in Figure 4-6 (b) for the unbalanced 

MD operation. As to the path of low bandwidth, part of the enhancement layers can be 

dropped so that the original frame rate can be preserved. In Figure 4-6, Px’ denotes the 

rest past of P-frame X after layer-dropping in order to adapt to the bandwidth limitation. 

Thus, the damaged P-frames 5 and 11 in the upper stream still can be recovered from the 

frame of the lower stream, shown in Figure 4-6 (b), in the same manner as the balanced 

MD operation shown in Figure 4-5 (a). In other words, the unbalanced MD operation 

using LC does not affect the error recovery capability of SMDC. 
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Table 4-1 summaries the methods of adapting bit rate of each description. LC 

technique is suitable for the unbalanced MD operation, especially when the bit rate ratio 

of both descriptions is larger than 2:1. 

Table 4-1  Methods of adapting bit rate of each description 

 Performance without loss  Performance with loss 

Quantization 
Good for small changes (0-
10 %), above which 
possible flickers exist 

Good for small changes (0-
10%), above which error 
recovery capability reduces 

Spatial Subsampling Potential flicker Potentially reduced 

Temporal Subsampling 
Good for middle range of 
bit rate changes (bit rate 
ratio less than 2:1) 

Generally good recovery 
(bit rate ratio less than 2:1) 

Layered Coding in SMDC 
Good for large range of bit 
rate changes (bit rate ratio 
larger than 2:1) 

Generally good recovery 
(bit rate ratio larger than 
2:1) 

 

2) Error Resilience Enhancement 

To explore the error resilience and concealment tools in MPEG-4, there is a clear 

advantage to distinguish not only different kinds of frames (referred to as Video Object 

Plane or VOP in MPEG-4), but also different types of information, such as shape, 

motion, and texture, within the same frame. Therefore, the shape, motion, and texture 

information in the bit-stream of an object-based video is re-organized into different layers 

in the proposed SMDC scheme to support the classification and priority assignment in the 

DiffServ network, which is discussed in details in Section 3.3.3.  

2. Wireless Domain 

1) Open-loop Rate Control 

Design issue 1: RTCP-based rate control is specifically designed for the Internet 

A number of papers have considered how to control the transmission rate of non-TCP 

flows. TCP-friendly model-based [66] and probe-based [36] rate control mechanisms 

calculate their maximum transmission rate using a TCP throughput formula [24] [22] or 

mimicking TCP behavior. To determine the transmission rate, these mechanisms require 

feedback from the receiver to obtain packet loss rate and round trip time (RTT) 
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information. Some rate control mechanisms [36] utilize the RTCP to obtain feedback 

information from receivers . The receiver of an RTP media stream sends back RTCP 

receiver reports, which include packet loss and jitter information, so that the sender can 

identify network congestion condition and control its transmission rate accordingly. Most 

of the rate control mechanisms mentioned above are designed specially for the Internet and 

assumed that packet loss, delay, and jitter are caused by network congestion. 

In mobile networks, however, packet loss and jitter may also be caused by radio link 

errors. Since radio links have much higher bit error rates, packets are frequently discarded 

due to the presence of bit errors. When conventional rate control mechanisms are applied 

to mobile networks, a sender cannot identify the network congestion condition correctly, 

and this leads to inappropriate rate control. A typical symptom is that a sender reduces its 

transmission rate even if the network is not congested [75].  

Design issue 2: The relatively long RTCP transmission interval. 

To scale the RTCP control packet transmission with the number of participants, a 

control mechanism is designed as follows in RFC 1889 [15]. The control mechanism 

keeps the total control packets to 5% of the total session bandwidth. Among the control 

packets, 25% are allocated to the sender reports and 75% to the receiver reports. To 

prevent control packet starvation, at least one control packet is sent within 5 seconds at 

the sender or receiver. 

RTCP makes no provision for timely feedback that would allow a sender to repair the 

media stream immediately: through retransmissions [65], reactive FEC, or media-specific 

mechanisms such as reference picture selection for some video codecs. Typically, the 

feedback interval is constrained on the order of tens to hundreds of milliseconds [48].  

The QoS maintenance or guarantees to multimedia streams using RTCP-based reports 

is still under investigation, especially in the wireless environment. As a result, instead of 

close- loop rate control mechanism, the concept of layered coding is adopted in our 

approach to implement  open- loop adaptive rate control mechanism (e.g., DiffServ-based 

rate filtering) in the BS and other wired intermediate nodes to combat traffic congestion. 

2) Resource Reservation and Heterogeneity 

The concept of layered coding provides a very flexible and efficient solution  to the 

problem of resource reservation and receiver heterogeneity in the wireless domain.   
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First, there is no need to reserve bandwidth for the complete stream since typically 

only the base layer needs QoS guarantee. As a result, CAC can be based only on the 

requirement of the base layer and resources are reserved only for the base layer. Second, 

the enhancement layers of one connection can share the leftover bandwidth with the 

enhancement layers of other connections. The CAC algorithms for wireless channels are 

out of the scope of the thesis. 

In addition, the technique of the layered coder is a better alternative of trancoder in 

the base stations to combat the network heterogeneity or receiver heterogeneity so that 

there are no migration of transcoding state information required, which will be discussed 

in Section 4.3.3. 

4.2 MPEG-4 Video Streaming over IP DiffServ 

4.2.1 QoS Mapping between UMTS and IP DiffServ  

Table 4-2  Mapping of UMTS QoS classes to DiffServ PHB classes 

UMTS 
QoS classes 

Conversational 
Class 

Streaming  
Class 

Interactive 
Class 

Background 
Class 

Application VoIP/video 
conferencing 

Streaming 
audio/video Web browsing 

Background 
download 
/E-mails 

Delay jitter Stringent  
and low 

Bounded Tolerable Unbounded 

Features 

BER Tolerable Tolerable Low Low 

Maximum bit 
rate 2Mbps 2Mbps 2Mbps 2Mbps 

Guaranteed 
bit rate 2Mbps 2Mbps - - 

Defined 
attributes 

Transfer 
delay ≤ 100ms ≤ 280ms - - 

Mapping DiffServ 
PHB classes DSCP = EF DSCP = AF  DSCP =  BE DSCP = BE 
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To provide an end-to-end QoS for IP based traffic over a UMTS network, one of the 

most difficult issues [72] [73] is to provide QoS attribute translation and mapping 

between the IP world and the UMTS world. The features and the attributes of UMTS 

QoS classes defined in [61] are summarized in Table 4-2. Our mapping scheme between 

the DiffServ and UMTS QoS classes is also presented in Table 4-2. 

4.2.2 IP DiffServ MPEG-4 Video Marking Algorithm 

Existing Internet video dissemination schemes usually do not support classification 

of varying video information beyond the simple distinguishment of different types of 

frames (I, P and B frames) [16]. Encoded video data are placed in the bit-stream 

according to the temporal and spatial positions, i.e., block by block, macroblock by 

macroblock, and frame by frame. Different types of information, such as shape, motion, 

and texture, are interleaved together, although they have different levels of importance 

during decoding. For example, the shape and motion information is more important than 

the texture for a P frame in MPEG-4 [30]. If the shape and motion information is lost 

during transmission, it is hard for the decoder to reconstruct the P frame successfully. 

However, if partial texture information is lost, it is still possible to reconstruct the P frame 

with somewhat acceptable quality using error concealment algorithms. 

Aiming at robust transmission, MPEG-4 supports a set of error resilience and 

concealment tools, such as video packet based resynchronization approach which 

provides a flexible self-contained decoding unit, and data partitioning mode which 

separates the shape, motion and texture data in VPs using DC Markers or Motion 

Markers. Such tools are quite suitable for wireless transmissions where most errors are at 

the bit- level, but they are not sufficient for Internet transmission where most errors are 

caused by packet loss. This is because a video packet  (or several video packets) is 

usually encapsulated as packet payload directly, and consequently the information is still 

interleaved together within an IP packet. 

To explore the error resilience [28] [29] [30] and concealment [34] tools in MPEG-

4, there is a clear advantage to distinguish not only different kinds of frames (i.e., VOP in 

MPEG-4), but also different types of information within the same frame. Usually, IP 
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video traffic is classified as one AF class with three different levels of drop precedence. 

For example, an IP DiffServ video marking algorithm (DVMA) is proposed in [71] [72] 

as follows: 

If stream is “video stream” then  

If “base layer video stream” then 

‘Level 1 = minimum QoS’ 

DSCP= AF Low Drop Precedence (e.g., AF21) 

If “enhanced layer video stream 1” then 

‘Level 2 = medium QoS’ 

DSCP= AF Medium Drop Precedence (e.g., AF22) 

If “enhanced layer video stream 2” then 

‘Level 3 = maximum QoS’ 

DSCP= AF High Drop Precedence (e.g., AF23) 

Typically, (W)RED [4] or similar active queue management approach has to be 

adopted to combine stochastic dropping of packets with IP Precedence. The WRED 

gateway calculates the average queue size AvQ, using a low-pass filter with an 

exponential weighted moving average. Given the minimum threshold THmin, a maximum 

threshold THmax, the exponential weight factor ef and the mark probability denominator p, 

the WRED algorithm is described in the following: 

For each packet arrival, calculate the average queue size 

 
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If THmin ≤  AvQ < THmax 

  Drop the arriving packet with probability P 

 Else if  THmax ≤ AvQ 

  Drop the arriving packet 

where  

 ( )ef
qW 21= , 

 ( ) )(1 minmaxmin THTHTHAvQpP −−×= , 

 m = queue_idle_time / transmission_time. 
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 (W)RED takes advantage of the TCP retransmission mechanism. However, as 

discussed in Section 3.4, UDP is more suitable for video streaming. All the random 

dropping packets will be considered as packet loss and will not be retransmitted. Because 

of error propagation of streaming video, the effect of packet loss gets worse. Since MPEG-

4 video is predictive inter- frame coded and layered coded, artifacts due to random packet 

dropping can persist for many frames or layers. For example, consider a 30 frame/s MPEG 

video sequence with one I frame every 15 frames. If an error occurs while transmitting the I 

frame, the effect persists for 15 frames, or 500 ms, which is quite noticeable to a viewer. 

Jill and Gaglianello analyzed and presented the results of the relationship between the 

packet loss rate and the frame error rate [35], shown in Figure 4-7, from a study of 

streaming MPEG compressed video over the public Internet, using the RTP and UDP 

transport protocols. Similarly, if an error occurs while transmitting the base layer, its 

enhancement layers have to be discarded. It means that stochastically isolated single packet 

loss or bit error is converted to burst packet loss or bit errors. Therefore, early random 

packet dropping before congestion is not suitable for video or audio streaming.  

 

 

Figure 4-7  Packet loss effect on frame error rate 

A novel marking algorithm for MPEG-4 video encoded by SMDC is proposed in 

Table 4-3 to support the priority assignment after the classification given in Table  4-2. In 

the proposed SMDC scheme, we re-organize different types of information, such as 

shape, motion, and texture, in the bit-stream of an object-based video into four different 

layers. Moreover, different layers of information are packetized into three different 
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classes of Application Level Packets (ALP) with various priorities, so that more 

important compressed information can be put into higher priority packets and less 

important information into lower priority ones. In comparison with the DVMA solution 

where there is only one queue with three different levels of precedence for video stream, 

each AF class in the proposed algorithm has one separated queue. This algorithm can be 

implemented by class-based Weighted Fair Queuing (WFQ). Details of the WFQ 

algorithm can be found in [76]. WRED should be disabled in each class. 

Table 4-3  Proposed IP DiffServ MPEG-4 video marking algorithm 

 Control 
Information 

Shape Base 
Layer 

Texture Base 
Layer 

Texture PFGS 
Layer 

Texture 
PFGST Layer 

OD & 
BIFS 

DSCP = EF 
or AF11 

- - - - 

I-VOP - 
DSCP = AF11 

(Class I 
stream) 

DSCP = AF11 
(Class I 
stream) 

DSCP = AF21 
(Class II 
stream)  

- 

P-VOP - 
DSCP= AF11 

(Class I 
stream) 

DSCP= AF21 
(Class II 
stream)  

DSCP = AF31 
(Class III 
stream)  

- 

PFGST 
VOP - - - - 

DSCP = AF31 
(Class III 
stream)  

 

In addition, MPEG-4 introduces extra data control stream, such as the object 

descriptor (OD) and scene description (BIFS).  These signalling streams are very loss- 

and jitter-sensitive and need to be protected and marked as EF or AF11 if EF PHB is not 

available.  

4.2.3 Evolution of System Model for Native IP DiffServ  

Evolution of Mobile Network Model 

In order to support DiffServ in UMTS, we propose to copy the DSCP value in the 

inner IP header to the outer IP header at encapsulation and copy the outer header's DSCP 
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value to the inner IP header at decapsulation. This mechanism allows GTP/FP tunnels to 

be configured without regard to DiffServ domain boundaries. 

 

 

Figure 4-8  UMTS network model in IP native mode with 3G AR 

A more efficient alternative, however, is to keep the native DiffServ processing 

procedure in the mobile network rather than the modified one as above (i.e., copying 

DSCP value). This requirement leverages the evolution of UMTS towards its final all IP-

based phase, which is depicted in Figure 4-8. Note that the IP-based CN has enlarged to 

the edge of UTRANs compared with the network model shown in Figure 2-2. The 

functions of the GGSN, SGSN and RNC are further combined and implemented at one 

node, Access Router (AR). The GGSN and SGSN functions within the 3G AR provide all 

the UMTS-specific accounting and security features. The rest of the CN consists of 

regular routers and switches that forward packets on the basis of the user-level IP 

addresses. The Border Router (BR) denotes the functionality to avoid unwanted traffic 

between GPRS CN and the Internet. One or more BRs are served as gateways to the 

public Internet. 

This network architecture provides a solution to implement the IP na tive mode 

forwarding in a larger portion of the operator’s domain independent of any given access 

technology, and hence can be used by the operator to support heterogeneous access 
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networks. As the coverage of the IP native mode increases, the wireless-specific 

protocols are pushed farther toward the access segment. The operator may share the 

domain with other access techniques by just using a specialized AR. For example, an 

IEEE 802.11 AR may coexist with a 3G AR, using the same CN.  

 

 

Figure 4-9  D-MDMN network model in IP native mode with 3G AR 

Along with the enlargement of the IP-based CN, the introduction of D-MDMN in 

the 3GPP network is depicted in Figure 4-9. The IP-based Media Delivery Network can 

also be enlarged around ARs towards the whole IP-based CN, so that the media streaming 

services can be pushed further to the edge of UTRANs. 

Conceivably, the IP native mode coverage can be extended into the UTRAN by 

implementing an AR with collocated Node B, RNC, SGSN and GGSN functions. Some 

equipment vendors are adopting this approach by building what are known as intelligent 

base stations with varying combined functionalities. 

Evolution of Protocol Stack 

In order to further analyse the implementation of DifferServ in Figure 4-9, the 

protocol stack in the IP native mode for non-video services is shown in Figure 4-10 (a), 

while that for video services is shown in Figure 4-10 (b).  
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Figure 4-10  Evolution of Protocol stack (Data plane) 

As the coverage of the IP native mode increases, the stack becomes more efficient, 

and the whole CN uses regular IP forwarding based on the end-user’s IP address instead 

of the tunnel ID. FP frames are transported to and from the ARs over an IP network in the 

transport mode. If the ARs are the next hop of Node Bs, the tunnels are short enough that 

the ingresses (i.e., ARs) can execute DiffServ PHB based-on the inner IP header before 

the it is encapsulated by the addition of the outer FP tunnel header, and the egresses can 

also perform DiffServ PHB based-on the inner IP header after it is decapsulated by the 

removal of the outer FP tunnel header. Thus, the native DiffServ processing procedure in 

the mobile network is implemented rather than copying DSCP value from the inner IP 

header to the outer IP header.   
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4.3 Proposed Handoff Procedures for Video Streaming 

4.3.1 Proposed intra-RAN Handoff Procedure 

Under the proposed intra-RAN network model of the distributed multimedia 

delivery mobile network, shown in Figure 3-3, and the same assumptions given in 

Section 2.3.2, the intra-RAN handoff procedure for media streaming are proposed as 

follows, which also consists of three phases. The control plane of handoff procedure is 

shown in Figure 4-11, while the data plane of these three phases is shown in Figure 3-3. 

Only the differences are described in comparison with that in UMTS Release 4. 

 

 

Figure 4-11  Propose intra-RAN handoff procedure (Control plane) 
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l Phase I: Preparation of RNS handoff and resource allocation  

The control plane of the proposed handoff phase I is almost the same as that in 

UMTS Release 4, shown in Figure 2-4, except that the current position (offset) of the 

received media stream should go along with measurement report given by the MS. It is 

the only state information required for session migration which is small enough to be 

hidden inside the handoff signalling and be relayed to the SGSN. 

On the data plane of handoff phase I, at the end of the preparation phase, the sRNS 

stops transmitting downlink data to the MS but will not store all downlink data which 

continue to arrive from the SGSN to the sRNC as no data forwarding is required. 

l Phase II: Moving the Serving RNS role to target RNS 

The most important difference between the proposed handoff phase II in the control 

plane and that in UMTS Release 4 in Figure 2-4, is that the Stream Re-establishing takes 

the place of the Media Stream Forwarding. There are no buffered data required to be 

forwarded. As soon as the GTP tunnel is created between the tRNS and the SGSN, the 

SGSN initiates the MD-request message (signal # 7) and the uplink flow is switched from 

the old path to the new path. Upon receiving the MD-request, the set of MDSs 

surrounding the SGSN starts the downlink media delivery from the offset point of the 

same stream at the handoff decision according to subscriber-service bindings in VLR 

(i.e., how many descriptions and layers the MS subscribes). In other words, the media 

stream is re-established. The MD-request message contains the offset information at the 

handoff decision point. 

l Phase III: Releasing resource reservation in the old path 

The most important difference between the proposed handoff phase III and that in 

UMTS Release 4, shown in Figure 2-4, is that there is no buffer requirement in the BSs 

for data forwarding and resequencing. Only a smaller buffer is needed in the BSs for 

absorbing the delay jitter of a video stream and for re-ording due to changes in routing 

paths. The functionality of multiple description assembly is implemented in the MSs. 

4.3.2 Proposed inter-RAN Handoff Procedure 

Under the proposed inter-RAN network model of the distributed multimedia 

delivery mobile network, shown in Figure 3-4, and the same assumptions given in 
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Section 2.3.2, the proposed inter-RAN handoff procedure for media streaming also 

consists of three phases. Here the control plane of handoff procedure is briefly presented 

in Figure 4-12, while the data plane of these three phases is shown in Figure 3-4. 

l Phase I: Preparation of RNS handoff and resource allocation  

Note that there is no GTP tunnel required between SGSNs compared to UMTS 

Release 4, since no data forwarding is required. 

l Phase II: Moving the Serving RNS role to target RNS 

l Phase III: Releasing resource reservation in the old path  

 

 

Figure 4-12  Proposed inter-RAN handoff procedure (Control plane) 
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4.3.3 Handoff Enhancement for Streaming Services 

The advantages of the proposed handoff approach for media streaming are 

summarized as follows: 

1. Due to the replacement  of stream re-establishing with data forwarding, the 

handoff latency can be reduced, which also reduce the buffer size in the BSs. 

In the UMTS Rel 4 handoff procedures, for downlink media streams, there are two 

possible situations when media stream gap or overlapping may happen: 

(a) The media stream overlap/gap may be introduced when the tRNS takes the 

Serving RNS role and starts to produce the downlink data from forwarded 

GTP-PDUs. In this case the estimated gap/overlap for hard handoff is equal 

to the delay of the GTP tunnel used for data forwarding. This first instance of 

media stream overlap coincides with radio hard handover. 

(b) The additional media stream gap may be introduced when the CN transport is 

optimized. In this case the gap will exist only if the delay via the optimized 

route is larger than the delay via the forwarding route.  

In comparison, for downlink media streams during the proposed handoff procedures, 

there are only one possible situation when media stream gap (but no overlapping) may 

happen. That is, the media stream overlap/gap may be introduced when the tRNS takes 

the serving RNS role and starts to request a new set of MDSs for the rest of video 

delivery. In this case the estimated gap for hard handoff is equal to the delay of stream re-

establishment for media delivery. This coincides with radio hard handoff. 

If the transport bearer delay difference is smaller than the air interface Transmission 

Time Interval (TTI) (10, 20, 40 or 80 ms depending on the service), the amount of gap is 

most likely not existent. 

In addition, as discussed previously, there is no buffer requirement in the BSs for 

data forwarding and resequencing in case of stream re-establishig. Only a smaller buffer 

is needed in the BSs for absorbing the delay jitter of a video stream and for re-ording due 

to changes in routing paths. The relatively small queue in the BSs also reduces the 

handoff latency. 
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2. It has relatively low packet loss (or frame error), and end-to-end delay. 

Since the media streaming services are pushed to the edge of core network and the 

streaming media can be delivered over a shorter network path, the transfer delay and 

delay jitter of media service delivery, the probability of packet loss, and the total network 

resource occupation will be reduced.  

Furthermore, with the employment of stream re-establishig, the relatively small 

queue in the BSs reduces the end-to-end delay further. 

3. There is no extra handoff latency introduced due to session migration. 

Since the technique of layered coding, e.g., SMDC, is employed as an alternative of 

trancoding to combat the network heterogeneity or receiver heterogeneity, there are no 

migration of transcoding state information required. Also, the migration of session 

description is not necessary because of the principle of stream re-establishing instead of 

data forwarding. Thus, only the migration of session parameters at the handoff decision 

point is required. The amount of state information is thereby small enough to be hidden 

inside the handoff signalling, so that there are no extra handoff latency introduced due to 

session migration. 

4. It has relatively consistent QoS in all scenarios (Handoff scalability 

enhancement). 

In UMTS Release 4, the values of handoff latency (i.e., delay jitter) vary with the 

lengths of data-forwarding path in different handoff scenarios. Also, the end-to-end delay 

varies with different delivery paths and different locations of the media providers, which 

is outside the CN and far from the mobile hosts.  

However, due to the introduction of the distributed multimedia delivery mobile 

network, the values of handoff latency and end-to-end delay in different handoff 

scenarios depend mainly on the length of media delivery path from MDs to SGSN/MSC, 

and then to MS. Usually, the SGSN/MSC and the MDs are neighbor nodes. It is 

straightforward that the length of media delivery path from the MDs to the MS is 

relatively consistent in different handoff scenarios. 

5. The amount of signalling traffic is slightly reduced during inter-RAN handoff. 

A brief summary of above comparison between our proposal and that of UMTS is 

given in Table 4-4. 



75 

The proposed procedure in the scenario of inter-cell, intra-RNS handoff can be 

found in Appendix. Note that, in the scenario of intra-cell handoff, it is not necessary to 

re-establish media stream and the corresponding handoff procedures in UMTS R99 may 

be extended to support media streaming services. 

Table 4-4  Summary of handoff solution comparison 

 UMTS D-MDMN 

Principle Data forwarding Stream re-establishing 

Queue size in the BSs Large  Small  

Packet loss (Frame error) High  Low  

End-to-end delay High  Low  

Handoff latency                     
(gap or overlapping) 

High  
(For downlink, two 

instances of stream gap/ 
overlapping may occur) 

Low  
(For uplink, only one 
instance of stream gap 

may occur) 

Consistency of QoS in all 
scenarios                                
(i.e., Handoff scalability issue) 

Poor  Good  

intra-RAN handoff 12 13 Signalling 
traffic 

inter-RAN handoff 18 16 
 

This chapter presents the details of the proposed solutions for video mobility under 

the system model defined in Chapter 3. In Section 4.1, the Scalable Multiple Description 

Coding framework is proposed to explore the joint design of layered coding and multiple 

description coding. Section 4.2 describes a novel IP DiffServ video marking algorithm to 

support the UEP of SMDC, which re-organizes the shape, motion, and texture 

information of video stream into different layers in order to implement the DiffServ in 

UMTS. Finally, the corresponding intra-RAN handoff and inter-RAN handoff procedures 

in D-MDMN are studied in Section 4.3 with the employment of the principle of video 

stream re-establishing for seamless handoff. 
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5 Simulations 

5.1 Simulation Models 

The simulation model of UMTS intra-RAN and inter-RAN handoff are shown in 

Figure 5-1 and Figure 5-3, respectively. Correspondingly, the simulation model of D-

MDMN intra-RAN and inter-RAN handoff are proposed as illustrated in Figure 5-2 and 

Figure 5-4, respectively. The parameters and configuration attributes of the simulation 

model can be chosen for different simulation scenarios.  

The difference between UMTS and MDMN model is that the central Video Provider 

outside the CN in the UMTS is distributed and pushed to the edge of the RAN in the 

MDMN. For the sake of simplicity, one practical topology of multimedia delivery 

networks in the real world is that each distributed media server is simplified as a 

multimedia database into each SGSN. IP DiffServ is implemented in each node within 

both UMTS and MDMN. 

 Note that since the bandwidth fluctuations and limitation of the wireless channels 

are what we are more concerned with, we set up the system such that no congestion 

happens at wired nodes, except for the BSs. 

  A brief description of the network node and link models and their roles is presented 

below. 

Radio Access Network 

RAN is modeled as RNS and Wireless AP in our simulation. RNS node model is 

shown in Figure 5-5. It consists of RNS (data plane), RNS (control plane), AN router and 

IP-based AN. The radio functionality of Base Station (Node B) is implemented in the 

Wireless AP. The data functionalities of BS and RNC are implemented in the RNS (data 

plane); the control functionalities of BS and RNC are in the RNS (control plane). The 

protocol stack is illustrated in Figure 3-7. The scale of the radio access network is 

dependent on the attributes (e.g., packet latency and packet loss ratio) of IP-based AN 
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cloud model. In our simulation, the packet latency of IP-based AN is configured as 

exponential dis tributed with mean value of 15 ms; the packet loss ratio is zero.  

The BS acts as the extension of mobile clients. It handles the difference between 

wireless and wired networks. Each BS is generally responsible for wireless connection 

setup, handoff support, and medium access control in its service area. For streaming 

video applications, it also has the responsibility of QoS control, such as rate filtering, 

scheduling and ARQ, for media streaming.  

The Packet Analyzer is used for OPNET ACE Tools to capture packet traces, which 

will not affect the simulation results. 

SGSN/GGSN and Video Provider 

SGSN/GGSN node model in UMTS is shown in Figure 5-6. It is composed of 

SGSN/GGSN (data plane), SGSN/GGSN (control plane) and Access Router. Figure 5-7 

shows the SGSN/GGSN node model in MDMN, where Video Providers are distributed as 

multimedia databases. The protocol stacks of SGSN/GGSN and Video Provider are 

illustrated in Figure 3-7. 

IP backbone core network 

The scale of the CN is dependent on the attributes (e.g., packet latency and packet 

loss ratio) of IP backbone CN cloud model. The packet latency of IP backbone CN is 

configured as exponential distribution with mean value of 20 ms; the packet loss ratio is 

zero. 

Mobile Station 

MS node model is shown in Figure 5-8, which is implemented according to the 

protocol stack illustrated in Figure 3-7. The RFL, RNL, ip, ip_encap, tcp, udp, rtp and 

application layer processors are taken from OPNET Modeler’s library. Each MS supports 

three types of services: video streaming service, voice service and web service. The voice 

and web services are configured as background traffic which are established between IP 

Phone User and Voice User, Web Server and Web User, respectively. 
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Figure 5-1  UMTS simulation model (Intra-RAN Handoff) 

 

Figure 5-2  MDMN simulation model (Intra-RAN Handoff) 
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Figure 5-3  UMTS simulation model (Inter-RAN Handoff) 

 

Figure 5-4  MDMN simulation model (Inter-RAN Handoff) 
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Figure 5-5  Node Model of RNS 

 

Figure 5-6  Node Model of SGSN (or GGSN) 

 

Figure 5-7  Node Model of SGSN in the proposed MDMN 
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Figure 5-8  Node Model of MS 

Wired Links 

The PPP point-to-point links at OC3 data rate (155Mbps) are used between nodes 

with serial interfaces (e.g., routers with PPP ports) within the RAN and CN. The video 

provider, IP phone user or web server is connected to a mobile network access point (e.g., 

GGSN) by using a 100BaseT duplex link at 100 Mbps. 

Radio Links 

Unlike point-to-point links, radio links are not statically represented; that is, they 

cannot be seen in the network model. Instead, radio links are dynamically established 

during simulation. Radio links exist between any radio transmitter-receiver channel pair, 

but establishing a link depends on many physical characteristics of the components 

involved, as well as time-varying parameters. During simulation, parameters such as 

frequency band, modulation type, transmitter power, distance, and antenna directionality 

are common factors that determine whether a radio link exists at a particular time or can 

ever exist. 

OPNET uses the radio transceiver pipeline model, shown in Figure 5-9, to model 

wireless transmission of packets. It consists of thirteen stages. The attributes of each stage 

are configured as shown in Figure 5-10. The stage 10 to stage 13 in the radio pipeline 

model which are related to wireless BER will be discussed in Section 5.2. For more 

details of each stage in the radio pipeline model, please refer to the OPNET Modeler 9.0 

documents [77]. 
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Figure 5-9  Radio Transceiver Pipeline Model 

 

Figure 5-10  Radio Transceiver Attributes for Specifying Pipeline Stages 
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5.2 System Setup and Test Conditions 

5.2.1 Rate Shaping (Filtering) and Packetization 

The purpose of rate shaper (filter) [1] [2] [3] [23] includes: optimization of 

bandwidth usage, adoption of filter for handling client heterogeneity, network 

heterogeneity, and optimizations in the retrieval of stored media. 

 

 

Figure 5-11  Level of rate shaping 

In Figure 5-11, the points at which rate shaping can be performed on the compressed 

bit-stream are illustrated.  

Region A is the uncompressed raw video where rate shaping can be preformed 

relatively simply, e.g., resizing/stretching, but the amount of data that has to be processed 

is very large due to its uncompressed nature.  

In region B, the data is the same size as the raw data, but if the bit-stream is being 

decompressed in order to accomplish a particular rate shaping and then recompressed (e.g., 

re-quantization filtering), performing filtering at this point saves completing the 

computationally intensively functions of forward-DCT (FDCT) and inverse-DCT (IDCT).  

In region C, the many zeros produced by the FDCT have been removed and the data 

is considerably smaller, the functions of frequency filtering that are feasible at this point 
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include: low-pass filtering, color-reduction filtering,  color to monochrome conversion 

and simple coder-conversions. The current transcoder which is designed for speed 

therefore operates in this region.  

Compared with region A, B and C, rate shaping (e.g., frame dropping, layer dropping) 

on the fully compressed data in region D is standard specific and relatively simple. We 

employ the techniques of rate shaping in the sender directly to video distribution services as 

network filtering used in the BSs. For simplicity of simulation, we packetize each frame of 

every layer into one packet in order to mimic the principle of a frame dropper in the BSs. 

5.2.2 BER over Rayleigh Fading Channels 

As mentioned previous, the BER on wireless channels is computed at the BER stage 

(stage 11) in the radio pipeline model. In general, the bit error rate provided by this stage 

is a function of the type of modulation used for the transmitted signal. This stage 

evaluates BER based on the previously computed average SNR and also accounts for 

processing gain at the receiver. 

The SNR (in dB) is given by 

SNR = 10 log [ Pr / (Nb+Ni) ] 

where  Pr = received power (Watts), which is computed in stage 7;         

 Nb = background noise power (Watts), which is computed in stage 8;  

 Ni = interference noise power (Watts), which is computed in stage 9. 

The SNR value is added to the processing gain (also in dB) to obtain the effective 

SNR. This effective SNR is also written as Eb / N0 where Eb is the received energy per bit 

(in Joules) and N0 is the noise power spectral density (in Watts/hertz). The bit error rate is 

derived from the effective SNR based on the QPSK (downlink) / BPSK (uplink) 

modulation curve assigned to the receiver in a Rayleigh fading channel. The probability 

of bit error Pb (i.e., BER) is given by [52] 
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Figure 5-12 shows the BER curves for QPSK (downlink) and BPSK (uplink) in a 

Rayleigh fading channel and an AWGN channel. 
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Figure 5-12  BER performance over flat Rayleigh fading channels 

Following the BER stage, the error allocation stage (stage 12) translates the given 

BER computed in stage 11 into an actual set of bit errors for each valid packet which is 

received. The approach taken in stage 12 is to avoid sequencing through all the bits in the 

packet and, therefore, not to generate positional information about bit errors, but to still 

accurately compute the overall number of bit errors. This should be done with the 

minimum number of computations for simulation efficiency considerations. 

The error allocation algorithm is based on the expression for the probability of 

exactly k bit errors occurring in a packet segment of length N. This probability is denoted 

as Pk. Under the assumption of independent bit errors, given the wireless channe l bit error 

probability Pb (i.e., BER), Pk can be expressed by 
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The algorithm first generates a random number r between 0 and 1, to provide a value 

against which the probability of occurrences of different numbers of bit errors will be 
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tested. Next the algorithm begins iterations. First the probability that 0 bit error occurs is 

computed according to the formula above, and compared to r. If r is lower than this 

probability, then 0 is the number of bit errors in the packet. Else, the probability of 

occurrence of 1 or fewer bit errors is computed. If r is less than this probability, yet 

higher than the probability of occurrence of the previous number of bit errors, then 1 is 

the number of bit errors allocated to the packet. The algorithm continues iterating in this 

manner until a value k is found for which the probability of k or fewer errors occurring is 

greater than r. Then the number of errors assigned to the packet is k. 

The purpose of error collection stage (stage 13) is to determine whether or not the 

arriving packet can be accepted in the destination node. This is usually dependent upon 

whether the packet has experienced collisions, the result computed in the error allocation 

stage, and the capability of the receiver to correct the errors affecting the packet. In our 

simulation, there are no error collection techniques implemented except for ARQ. 

The following three cases in Table 5-1 are tested for the evaluation of the 

relationship between BER and frame error rate. 

Table 5-1  Test Cases of BER and FER in wireless channels 

Test Case Channel Model Modulation Multiple Access BER 

α  Rayleigh Fading QPSK (DL), BPSK(UL) DS-CDMA [10-5, 2×10-5] 

β  Rayleigh Fading QPSK (DL), BPSK(UL) DS-CDMA [10-4, 2×10-4] 

γ  Rayleigh Fading QPSK (DL), BPSK(UL) DS-CDMA [.6×10-3, 10-3]  

5.2.3 Delay-constrained ARQ 

To enhance the video quality in the presence of unavoidable packet loss or bit errors, 

error control mechanisms have been proposed. Basically, error control approaches can be 

broadly categorized as open- loop error control (e.g., SMDC, error resilience tools in 

MPEG-4, error concealment) and close- loop error control, (e.g., delay-constrained ARQ). 

However, because of the complexity of open- loop error control, multiple description 

coding, error resilience tools in MPEG-4 and error concealment can not be emulated in 

this simulation. Instead, delay-constrained ARQ is under consideration. 
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According to the decision-making points, delay-constrained retransmission can be 

sender-based, receiver-driven, or hybrid. Since the computational complexity is limited at 

the mobile handset, the sender-based control at the BS is chosen to suppress 

retransmission of packets that will miss their display time at the mobile user. 

Given the maximum transfer delay Dmax in UMTS, the wired link delay Dwired and 

the wireless link RTTwireless, the maximum number of retransmissions NARQ allowed for a 

video packet is approximately given by 
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Typically, the wireless link RTTwireless is about several milliseconds. The BS can 

calculates the wired link delay Dwired from Video Provider to the BS by recording the 

time T when a RTCP sender report (SR) is received, and then subtracting the value of 

NTP timestamp field in SR to obtain Dwired = (T - NTP).  

5.2.4 Traffic Profile 

In order to evaluate the effectiveness of the proposed IP DiffServ MPEG-4 video 

marking algorithm and the streaming video handoff procedures under MDMN, two 

groups of traffic parameters have been set up and are listed in Table 5-2 and Table 5-4, 

respectively. 

Traffic Profile for Evaluation of Video Marking Algorithm 

The video traffic, shown in Figure 5-14, is made up of Class I, Class II and Class III 

layer-coded video streams, shown in Figure 5-13, which are classified through the 

proposed IP DiffServ MPEG-4 video marking algorithm. The video traffic which is 

generated by OPNET has to be subjected to the requirements of UMTS bearer service 

attributes of streaming class [61], listed in Table 5-3.  

The background traffic in each cell is composed of one video client, 25 voice users, 

and web users, shown in Figure 5-15 ~ Figure 5-17, respectively. Under the condition of 

background traffic, the serious congestion will occur in the BSs due to the limitation and 

fluctuation of wireless bandwidth. 



88 

Table 5-2  Traffic profile of each cell for evaluation of video marking algorithm  

Traffic Type User Number Sending Rate (mean) Packet Length (mean) Standard 

Video Stream* 2 240 kbps per client 1 Kbytes MPEG-4 

Voice Stream 25 16 kbps per user 200 Bytes G.728 

Web Traffic - 400 kbps  1 Kbytes HTTP 

* Frame Rate (mean) = 20 frame/s, Frame Length (mean) = 1 Kbytes. 

Table 5-3  UMTS bearer service attributes of streaming class 

Maximum bit rate (outdoor) 384 kbps 

Maximum SDU size 1500 Bytes 

SDU error ratio (i.e., Frame error rate) ≤ 10 % 

Transfer delay ≤ 280 ms 

Delay jitter ≤ 50 ms (Frame Rate = 20 frame/s) 

 

Traffic Profile for Evaluation of Streaming Video Handoff 

Table 5-4  Traffic profile of each cell for evaluation of streaming video handoff 

Traffic Type User Number Sending Rate (mean) Packet Length (mean) Standard 

Video Stream* 2 240 kbps per client 1 Kbytes MPEG-4 

Voice Stream 5 16 kbps per user 200 Bytes G.728 

Web Traffic - 400 kbps  1 Kbytes HTTP 

* Frame Rate (mean) = 20 frame/s, Frame Length (mean) = 1 Kbytes. 

The video traffic, shown in Figure 5-18, is also made up of Class I, Class II and 

Class III layer-coded video streams and has to be subjected to the requirements of UMTS 

bearer service attributes of streaming class [61], listed in Table 5-3. The hard handoff will 

occur 28 times during the testing period of 5 minutes.  

The background traffic in each cell is composed of one video client, 5 voice users, 

and web users, shown in Figure 5-19 ~ Figure 5-21, respectively. With the decrease of 

background traffic, no congestion happens in the BSs during the handoff tests. 
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Figure 5-13  Layered Video Traffic (Video Client1) 

 

Figure 5-14  Video Traffic (Video Client1) 
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Figure 5-15  Background Traffic (Video Client2) 

 

Figure 5-16  Background Traffic (25 Voice Users) 

 

Figure 5-17  Background Traffic (Web Users)
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Figure 5-18  Video Traffic (Handoff occurs 28 times) 

 

Figure 5-19  Background Traffic (Video Client s) 

 

Figure 5-20  Background Traffic (5 Voice Users) 

 

Figure 5-21  Background Traffic (Web Users) 
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5.2.5 Test Cases  

AF Queue Size  

To implement the proposed IP DiffServ video marking algorithm in each node, we 

use WFQ discipline to classify and schedule the incoming packet into and out of EF, 

AF1, AF2, AF3 or BE queue. The WFQ profile for the proposed IP DiffServ video 

marking algorithm in each node is listed in Table 5-5. The selection of buffer size is 

crucial to video over IP network. An optimum buffer size has to be found which balances 

both end-to-end delay and packet loss ratio to tolerable levels. If the buffer is set too low, 

some packets may be lost; if set too high, higher delays result. 

Table 5-5  WFQ profile for proposed IP DiffServ video marking algorithm 

Queue Scheduling Queue 
Classification 

Queue Size                
(1 unit = 100 ms) 

Normalized 
Bandwidth 

BE Queue 15 4.5 % 

AF3 Queue 1~9 9.1 % 

AF2 Queue 1~9 13.7 % 

AF1 Queue 1~9 22.7 % 

 WFQ 

EF Queue 15 50 % 

 

There are eighteen cases, listed in Table 5-6, under test in order to evaluate the effect 

of AF queue size. The effect of AF queue size is analyzed in Section 5.2.5. After the 

evaluation of the effect of AF queue size, we select 500 ms as the optimum queue size of 

the AF1, AF2 and AF3 queue. 

Video Marking Algorithm 

In order to compare the proposed IP DiffServ video marking algorithm with DVMA, 

three scenarios are experimented. The first one is the best effort model using a drop-tail 

BE queue in each node. The second one is the DiffServ model where DVMA is used with 

WRED AF queue. The third one is the DiffServ model where the proposed IP DiffServ 

video marking algorithm is used with the drop-tail AF1, AF2 and AF3 queues. Table 5-7 

lists the configuration of queue scheduling in these three scenarios. Table 5-8 gives the 
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WRED profile for AF Queue in the DVMA scenario. The test cases of video marking 

algorithm are listed in Table 5-9. 

Streaming Video Handoff     

The performance of the proposed streaming video handoff in D-MDMN is examined 

and compared with that in UMTS model under the scenario of the proposed IP DiffServ 

video marking algorithm. The test cases of streaming video handoff are listed in Table 5-10. 

Table 5-6  Test Cases of Effect of Queue Size 

Test Case Physical Characteristics Rayleigh BER QoS Mechanism AF Queue Size 

1 QPFK(DL),DS-CDMA 10-5 DiffServ, WFQ 100 ms 

2 QPFK(DL),DS-CDMA 10-5 DiffServ, WFQ 200 ms 

3 QPFK(DL),DS-CDMA 10-5 DiffServ, WFQ 300 ms 

4 QPFK(DL),DS-CDMA 10-5 DiffServ, WFQ 400 ms 

5 QPFK(DL),DS-CDMA 10-5 DiffServ, WFQ 500 ms 

6 QPFK(DL),DS-CDMA 10-5 DiffServ, WFQ 600 ms 

7 QPFK(DL),DS-CDMA 10-5 DiffServ, WFQ 700 ms 

8 QPFK(DL),DS-CDMA 10-5 DiffServ, WFQ 800 ms 

9 QPFK(DL),DS-CDMA 10-5 DiffServ, WFQ 900 ms 

(1) QPFK(DL),DS-CDMA 10-4 DiffServ, WFQ 100 ms 

(2) QPFK(DL),DS-CDMA 10-4 DiffServ, WFQ 200 ms 

(3) QPFK(DL),DS-CDMA 10-4 DiffServ, WFQ 300 ms 

(4) QPFK(DL),DS-CDMA 10-4 DiffServ, WFQ 400 ms 

(5) QPFK(DL),DS-CDMA 10-4 DiffServ, WFQ 500 ms 

(6) QPFK(DL),DS-CDMA 10-4 DiffServ, WFQ 600 ms 

(7) QPFK(DL),DS-CDMA 10-4 DiffServ, WFQ 700 ms 

(8) QPFK(DL),DS-CDMA 10-4 DiffServ, WFQ 800 ms 

(9) QPFK(DL),DS-CDMA 10-4 DiffServ, WFQ 900 ms 
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Table 5-7  Queue scheduling configuration 

Solution Queue 
Scheduling 

Queue 
Classification 

Queue Size        
(1 unit = 100ms) 

Normalized 
Bandwidth  

Best Effort FIFO BE Queue 45 100 % 

BE Queue 15 4.5 % 

AF Queue 15 45.5 % DVMA WRED+CBQ 

EF Queue 15 50 % 

BE Queue 15 4.5 % 

AF3 Queue 5 9.1 % 

AF2 Queue 5 13.7 % 

AF1 Queue 5 22.7 % 

Proposed WFQ 

EF Queue 15 50 % 

Table 5-8  WRED profile for AF queue in DVMA 

Video Stream 
Class 

Exponential 
Weight Factor 

Min Threshold  
(1 unit = 100 ms) 

Max Threshold   
(1 unit = 100 ms) 

Mark Probability 
Denominator 

AF31 9 1 5 5 

AF21 9 2 5 5 

AF11 9 3 5 5 

Table 5-9  Test Cases of Video Marking Algorithm 

Test Case Physical Characteristics Rayleigh 
BER 

QoS 
Mechanism 

Queue 
Scheduling 

Marking 
Algorithm 

A QPFK(DL), DS-CDMA 10-5 Best Effort IP FIFO BE 

B QPFK(DL), DS-CDMA 10-5 IP DiffServ WRED DVMA 

C QPFK(DL), DS-CDMA 10-5 IP DiffServ WFQ Proposed 

a QPFK(DL), DS-CDMA 10-4 Best Effort IP FIFO BE 

b QPFK(DL), DS-CDMA 10-4 IP DiffServ WRED DVMA 

c QPFK(DL), DS-CDMA 10-4 IP DiffServ WFQ Proposed 
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Table 5-10  Test Cases of Handoff Procedures 

Test 
Case Modulation Rayleigh 

BER 
Network 
Model QoS Mechanism Handoff 

I QPSK(DL), BPSK(UL) 10-5 UMTS DiffServ, WFQ Intra-RAN 

II QPSK(DL), BPSK(UL) 10-5 MDMN DiffServ, WFQ Intra-RAN 

III QPSK(DL), BPSK(UL) 10-5 UMTS DiffServ, WFQ Inter-RAN 

IV QPSK(DL), BPSK(UL) 10-5 MDMN DiffServ, WFQ Inter-RAN 

i QPSK(DL), BPSK(UL) 10-4 UMTS DiffServ, WFQ Intra-RAN 

ii QPSK(DL), BPSK(UL) 10-4 MDMN DiffServ, WFQ Intra-RAN 

iii QPSK(DL), BPSK(UL) 10-4 UMTS DiffServ, WFQ Inter-RAN 

iv QPSK(DL), BPSK(UL) 10-4 MDMN DiffServ, WFQ Inter-RAN 

5.3 Simulation Results and Analysis 

5.3.1 Effect of BER on FER over Wireless Channels 

Figure 5-22 ~ Figure 5-27 show the effect of BER on FER over the Rayleigh fading 

channel. The FER measure indicates the difficulty of sending video stream over the 

wireless channel. A small BER translates into a much higher FER. For example, the BER 

mean value of 1.36×10-4 in Figure 5-23 can translate into the FER mean value of 3.16% 

in Figure 5-26. In the test case α  with a BER mean value of 1.57×10-5, there are no 

frame errors showed in Figure 5-25. That is because we use the delay-constrained ARQ 

to combat Rayleigh BER. 

Given that the maximum frame error rate allowed in UMTS is 10%, the video delivery 

in UMTS can tolerate Rayleigh BER up to 10-4 with delay-constrained ARQ. That is reason 

that we choose BER in the range of [10-5, 2×10-5] and [10-4, 2×10-4] as our test conditions.  

However, from Table 1-1, the BER of wireless video can be as high as 10-3. It is 

desirable to employ the proposed scalable multiple description coding as a diversity 

technique to combat the high BER in the wireless channel. 
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Figure 5-22  Bit Error Rate over the Rayleigh fading channel (Test Caseα ) 

 

Figure 5-23  Bit Error Rate over the Rayleigh fading channel (Test Case β ) 

 

Figure 5-24  Bit Error Rate over the Rayleigh fading channel (Test Case γ ) 
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Figure 5-25  FER over the Rayleigh fading channel (Test Caseα ) 

 

Figure 5-26  FER over the Rayleigh fading channel (Test Case β ) 

 

Figure 5-27  FER over the Rayleigh fading channel (Test Case γ ) 
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5.3.2 Effect of AF Queue Size 

Figure 5-28 ~ Figure 5-31 illustrate the effect of the AF queue size on packet end-to-

end delay and packet loss ratio of AF queue at the BSs. The video traffic begins at time 

25 s and the background traffic starts at time 36 sec. From time 25 s to 36 s, the packet 

arriving rate at BS is lower than the queue service rate and there is no congestion in the 

AF queues. At time 36 s, the packet arriving rate at BS suddenly increases due to the 

background traffic and exceeds the queue service rate. The AF queues continue growing 

until time 50 s and start to drop frames. 

As the AF queue size increases, the packet end-to-end delay increases, but the 

packet loss ratio of AF queue decreases. Compared the results of total nine test cases, we 

choose queue size 500 ms as the optimum value which balances both end-to-end delay 

and packet loss ratio to tolerable levels for further simulation setting. 

5.3.3 Effect of Video Marking Algorithm 

Performance of Frame Error Rate 

MPEG-4 video stream in UMTS can tolerance SDU error rate (i.e., FER) up to 10%. 

The effects of different video marking algorithms on FER are shown in Figure 5-32 ~ 

Figure 5-37.  

In the scenario of BER = 10-5, the FERs are caused by the packet loss at the BSs due 

to congestion. In the scenario of BER = 10-4, the FERs are caused by both the packet loss 

at the BSs due to congestion and the wireless channel bit errors. Due to the employment 

of WRED for proactive packet-dropping in DVMA, the packet loss in DVMA begins 

earlier than that in the proposed solution. However, the packet loss in the tail-dropping 

BE solution occurrs even earlier than that in DVMA. That is because the background 

traffic and the video traffic enter into the same queue, and cause the congestion happened 

earlier. Note that the background traffic and the video traffic are separated in different 

queues in DiffServ-based solutions. 

Since we re-organize the shape, motion, and texture video information into different 

layers, UEP can be introduced and results in differentiated service. If a bit error or a 



99 

packet loss occurs in the MPEG-4 Class I stream, the corresponding bits or packets in the 

MPEG-4 Class II and Class III streams have to be considered erroneous or lost. Similarly, 

if a bit error or a packet loss occurs in the MPEG-4 Class II stream, the corresponding 

bits or packets in the MPEG-4 Class III stream also have to be considered erroneous or 

lost. Some packets may arrive late and will also be considered lost. If the higher priority 

traffic is protected, less packet loss (i.e., FER) will occur.  

Compared with BE and DVMA, the protection of both voice stream and MPEG-4 

Class I stream in the proposed solution is the best. This also results in the least FER 

among all the scenarios. In addition, the protection of EF traffic in DVMA is better than 

that in BE. However, this is at the cost of high FER of AF traffic in DVMA.  

A brief comparison of QoS (e.g., FER) guarantee in the three solutions can be 

summarized in Table 5-11. Note that: “Unacceptable QoS” means that the performance of 

FER can not meet the QoS requirement all the time; “Unpredictable QoS” is a typical 

characteristic of best-effort traffic; “Unwarranted QoS” means that the performance of 

FER meets the QoS requirement sometimes and is predictable; “Guaranteed QoS” means 

that the performance of FER meets the QoS requirement all the time and is predictable. 

Table 5-11  Comparison of QoS (e.g., FER) guarantee in three solutions 

Traffic BE DVMA Proposed 

Voice Stream Unacceptable QoS Unwarranted QoS Guaranteed QoS 

MPEG-4 Class I Unpredictable QoS Unwarranted QoS Guaranteed QoS 

MPEG-4 Class II Unpredictable QoS Unwarranted QoS Unwarranted QoS 

MPEG-4 Class III Unpredictable QoS Unwarranted QoS Unwarranted QoS 

 

Performance of End-to-end Delay and Delay Jitter 

The maximum end-to-end delay and delay jitter of video streaming allowed in the 

simulation are 280 ms and 50 ms, respectively, under the test conditions. The effects of 

different video marking algorithms on end-to-end delay and delay jitter are presented in 

Figure 5-38 ~ Figure 5-49. 

In the BE solution and the DVMA solution, the end-to-end delay and delay jitter of 

video traffic in different classes can not be differentiated. That is because different 
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classes video streams go through the same queue (e.g., BE queue or AF queue). As we 

expect in the proposed solution, the performance of MPEG-4 Class I stream is better than 

Class II; and Class II is better than Class III. 

In the scenario of BER = 10-4, with a sudden increase of the background traffic at 

time 36 s, the end-to-end delay and delay jitter of video streams jump sharply up to a 

higher level. The proposed solution delays 10 s the start point of performance degradation 

compared with BE and DVMA. After the BSs begin to drop packets, the performance of 

end-to-end delay and delay jitter turns better. In DVMA, the video delay jitters of all 

three classes are not acceptable, though Class III and Class II streams in DMVA are 

better than those in the proposed solution. In comparison, the MPEG-4 Class III and 

Class II stream in the proposed solution are sacrificed in order to guarantee the QoS of 

the Class I stream. 

The performance tendency is similar in the scenario of BER = 10-5. Note that only 

MPEG-4 Class III stream in the proposed solution suffers from high delay and delay jitter 

in order to preserve the Class I and Class II streams. However, in DVMA, all three 

classes are not acceptable until about time 1m40s. The results in the scenario of BER = 

10-5 is better than their counterparts in the scenario of BER = 10-4. This is because the 

numbers of ARQ in BER = 10-5 is less than that in BER = 10-4. 

In both BER scenarios, the performance of delay and delay jitter in BE seems better 

than the other two solutions. However, this is at the cost of unacceptable FER in the voice 

stream and unpredictable quality (e.g., FER) of streaming video service. 

5.3.4 Effect of Streaming Video Handoff  

As discussed previously, the maximum end-to-end delay and delay jitter of video 

streaming allowed in both UMTS and MDMN are 280 ms and 50 ms, respectively, under 

the test conditions. The handoff latency also should keep below 50 ms as a delay jitter. 

Figure 5-50 ~ Figure 5-57 show the performance of end-to-end delay and delay jitter 

in the scenario of BER = 10-5. Figure 5-58 ~ Figure 5-65 illustrate the performance of 

end-to-end delay and delay jitter in the scenario of BER = 10-4. 

In UMTS, only the performance of maximum end-to-end delay in test case iii (Inter-

RAN Handoff, BER = 10-4) exceeds 280 ms. Furthermore, in all the UMTS test cases, the 
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handoff latency can not satisfy the 50 ms delay bound. Note that, because the distance 

between the Video Provider and GGSN is unknown, we choose the best case in the 

UMTS simulation model. That is, the distance between them is only one hop. If the 

Video Provider is far from the UMTS core network, the performance of maximum end-

to-end delay in UMTS may not meet the QoS requirement of UMTS any more.  

In comparison, with the proposed stream re-establishing handoff solution, all the test 

cases in MDMN meet the performance requirement of the maximum end-to-end delay 

and handoff latency. Because the Video Provider is distributed as the media databases 

inside the core network, the handoff performance keeps stable in MDMN and does not 

have the distance problem as mentioned above in UMTS. 

A brief comparison of handoff performance in UMTS and MDMN is summarized in 

Table 5-12. This comparison shows that the improvement of handoff performance 

ascends with the increase of the scale of the mobile core network. For example, the 

handoff latency improvement in the intra-RAN scale is 26 ms or 45 ms under different 

conditions of wireless BER, but in the inter-RAN scale it is 38 ms or 57 ms. Furthermore, 

the proposed stream re-establishing handoff performance in MDMN is relatively 

consistent in all scenarios. This validates the enhancement of handoff scalability in 

MDMN. 

Table 5-12  Comparison of handoff performance in UMTS and MDMN 

Test Case End-to-end Delay 
(mean) 

∆ Delay Handoff Latency 
(mean) 

∆ Handoff 
Latency 

I    (UMTS, Intra-RAN) 74 ms 68 ms 

II  (MDMN, Intra-RAN) 42 ms 
32 ms 

42 ms 
26 ms 

III (UMTS, Inter-RAN) 75 ms 91 ms 

IV  (MDMN, Inter-RAN) 45 ms 
30 ms 

46 ms 
45 ms 

i    (UMTS, Intra-RAN) 79 ms 82 ms 

ii   (MDMN, Intra-RAN) 45 ms 
34 ms 

44 ms 
38 ms 

iii  (UMTS, Inter-RAN) 131 ms 104 ms 

iv   (MDMN, Inter-RAN) 56 ms 
75 ms 

47 ms 
57 ms 
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In this chapter, the simulation models, system setup, test conditions, and simulation 

results are presented and analyzed. Section 5.1 describes the UMTS and the proposed D-

MDMN simulation model, and the simulation pipeline stage of the radio transceiver. In 

Section 5.2, we discuss the simulation and design issues, such as rate shaping and 

packetization, BER over Rayleigh fading channels, delay-constrained ARQ, followed by 

the description of traffic profile and test cases. Section 5.2.5 first evaluates the effect of 

BER on FER over wireless channels and the effect of AF queue size for optimization of 

system setup. Then performance evaluation of the proposed IP DiffServ video marking 

algorithm is undertaken to show that it is more suitable for video streaming in IP mobile 

networks compared with DVMA solution. Finally, the simulation analysis is concluded 

by the handoff performance comparison of UMTS versus D-MDMN, indicating that the 

proposed handoff procedures in D-MDMN have better performance in terms of handoff 

latency, end-to-end delay and handoff scalability than that in UMTS. 
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Figure 5-28  Average of End-to-End Delay (Test Case 1~9: BER = 10-5) 

 

Figure 5-29  Average of Packet Loss Ratio (Test Case 1~9: BER = 10-5) 
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Figure 5-30  Average of End-to-End Delay (Test Case (1)~(9): BER = 10-4) 

 

Figure 5-31  Average of Packet Loss Ratio (Test Case (1)~(9): BER = 10-4) 
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Figure 5-32  FER (Test Case A: Best Effort, FIFO, BER = 10-5) 

 

Figure 5-33  FER (Test Case B: DiffServ, WRED, BER = 10-5) 
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Figure 5-34  FER (Test Case C: DiffServ, WFQ, BER = 10-5) 

 

Figure 5-35  FER (Test Case a: Best Effort, FIFO, BER = 10-4) 
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Figure 5-36  FER (Test Case b: DiffServ, WRED, BER = 10-4) 

 

Figure 5-37  FER (Test Case c: DiffServ, WFQ, BER = 10-4) 
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Figure 5-38  End-to-end Delay (Test Case A: Best Effort, FIFO, BER = 10-5)  

 

Figure 5-39  End-to-end Delay (Test Case B: DiffServ, WRED, BER = 10-5) 

 

Figure 5-40 End-to-end Delay (Test Case C: DiffServ, WFQ, BER = 10-5) 



109 

 

Figure 5-41  End-to-end Delay (Test Case a: Best Effort, FIFO, BER = 10-4)  

 

Figure 5-42 End-to-end Delay (Test Case b: DiffServ, WRED, BER = 10-4)  

 

Figure 5-43  End-to-end Delay (Test Case c: DiffServ, WFQ, BER = 10-4) 
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Figure 5-44  Delay Jitter (Test Case A: Best Effort, FIFO, BER = 10-5) 

 

Figure 5-45  Delay Jitter (Test Case B: DiffServ, WRED, BER = 10-5) 

 

Figure 5-46  Delay Jitter (Test Case C: DiffServ, WFQ, BER = 10-5) 
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Figure 5-47  Delay Jitter (Test Case a: Best Effort, FIFO, BER = 10-4) 

 

Figure 5-48  Delay Jitter (Test Case b: DiffServ, WRED, BER = 10-4) 

 

Figure 5-49  Delay Jitter (Test Case c: DiffServ, WFQ, BER = 10-4) 
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Figure 5-50  End-to-End Delay (Test Case I: UMTS, Intra-RAN, BER = 10-5) 

 

Figure 5-51  Delay Jitter (Test Case I: UMTS, Intra-RAN, BER = 10-5) 
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Figure 5-52  End-to-End Delay (Test Case II: MDMN, Intra-RAN, BER = 10-5) 

 

Figure 5-53  Delay Jitter (Test Case II: MDMN, Intra-RAN, BER = 10-5) 
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Figure 5-54  End-to-End Delay (Test Case III: UMTS, Inter-RAN, BER = 10-5) 

 

Figure 5-55  Delay Jitter (Test Case III: UMTS, Inter-RAN, BER = 10-5) 
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Figure 5-56  End-to-End Delay (Test Case IV: MDMN, Inter-RAN, BER = 10-5) 

 

Figure 5-57  Delay Jitter (Test Case IV: MDMN, Inter-RAN, BER = 10-5) 
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Figure 5-58  End-to-End Delay (Test Case i: UMTS, Intra-RAN, BER = 10-4) 

 

Figure 5-59  Delay Jitter (Test Case i: UMTS, Intra-RAN, BER = 10-4) 
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Figure 5-60  End-to-End Delay (Test Case ii: MDMN, Intra-RAN, BER = 10-4) 

 

Figure 5-61  Delay Jitter (Test Case ii: MDMN, Intra-RAN, BER = 10-4) 
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Figure 5-62  End-to-End Delay (Test Case iii: UMTS, Inter-RAN, BER = 10-4) 

 

Figure 5-63  Delay Jitter (Test Case iii: UMTS, Inter-RAN, BER = 10-4) 
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Figure 5-64  End-to-End Delay (Test Case iv: MDMN, Inter-RAN, BER = 10-4) 

 

Figure 5-65  Delay Jitter (Test Case iv: MDMN, Inter-RAN, BER = 10-4) 
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6 Conclusions and Future Work 

To address the handoff problems in video streaming, as well as the bandwidth 

fluctuation, packet loss and heterogeneity problems in the wireless networks, and to 

further enhance the error resilience tools in MPEG-4, the 3G mobile network architecture 

and the handoff procedures for video delivery in UMTS are studied. 

The contributions of this thesis are: 

1) A Scalable Multiple Description Coding framework is proposed to explore the 

joint design of layered coding and multiple description coding. 

Under the SMDC framework, MDC components enhance the robustness to losses 

and bit errors of LC components through path diversity and error recovery. MDC 

components also reduce the storage, reliability and load balancing requirement among 

distributed media edge servers. At the same time, LC components not only deal with the 

unbalanced MD operation at the server end, but also combat the bandwidth frustrations of 

the time-varying wireless channel. Furthermore, SMDC leverages the distributed 

multimedia delivery mobile network to provide path diversity to combat video streaming 

outage due to handoff. 

2) A Distributed Multimedia Delivery Mobile Network is proposed for the UMTS 

core network. 

D-MDMN introduces and combines the concepts of CDN and SMDC into the 

UMTS network in order to solve the video handoff problem and meet the stringent QoS 

requirements of video streaming in 3GPP. Since the media streaming services are pushed 

to the edge of core network, it also reduces the media service delivery time, the 

probability of packet loss, and the total network resource occupation with relatively 

consistent QoS in all scenarios. 

3) Handoff procedures of video streaming in D-MDMN are proposed. 

The proposed handoff procedures employ the principle of video stream re-

establishing to replace the principle of data forwarding in UMTS. The intra-RAN handoff 

and inter-RAN handoff procedures are studied in details. 
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4)  A novel IP DiffServ video marking algorithm is proposed to support the unequal 

error protection of LC components of SMDC. 

The proposed algorithm re-organizes the shape, motion, and texture information of 

video stream into different layers in the proposed SMDC scheme to implement the 

DiffServ mobile network in UMTS. Furthermore, it spurs the evolution of UMTS toward 

its final all-IP phase for the purpose of addressing the DiffServ tunneling issue in UMTS. 

The above proposed schemes have been validated through the simulation presented 

in Chapter 5, except that the verification of MDC components of SMDC can not be 

undertaken because of technical complexity and time limitation. 

The limitations and cost of the proposed schemes also can be summarized as 

follows. 

1) The significant performance improvement of SMDC is achieved at the cost of a 

coding overhead. 

2) The D-MDMN network solution is feasible as a client-server solution for video 

streaming delivery service, but not for end-to-end real- time video conversation. 

3) For video streaming delivery, the video descriptions should be distributed in 

advance into all complementary MDSs at the edge of the RANs according to the service 

subscription of video mobile users, which adds the complexity to UMTS. A potential 

video adaptive deployment solution can be given as follow.  

Firstly, during the CAC, the video service subscribed by an MS are distributed to the 

MDSs in the current local RAN and all its neighbor RANs. Secondly, if the MS moves to 

another RAN, this video service should be simultaneously distributed to the MDSs in all 

its new neighbor RANs after the handoff successfully takes place. 

Further work will include the verification of the proposed SMDC under the object-

based MPEG-4 video stream, especially the MDC components over the Rayleigh fading 

channel, the study of the effect of SMDC coding overhead and  the soft handoff 

procedures in D-MDMN. In addition, the proposed solutions of video streaming may be 

applicable to audio streaming. The joint design of audio LC and MDC, the distributed 

audio delivery network, the IP DiffServ audio marking algorithm, and the media 

synchronization between video stream and audio stream should be studied further. 
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Appendix 

Proposed inter-cell, intra-RNS handoff procedure 

In the scenario of inter-cell, intra-RNS handoff, the proposed handoff procedures, 

shown in Figure 0-1, consists of three phase:  

l Phase I: Preparation of BTS handoff and resource allocation 

l Phase II: Moving the Serving BTS role to target BTS 

l Phase III: Releasing resource reservation in the old path 

 

 

Figure 0-1  Proposed inter-cell, intra-RNS handoff procedure (Control plane) 
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Acronyms 

3GPP    Third Generation Partnership Project 

ABR    Available Bit Rate 

AF    Assured Forwarding 

ALP    Application Level Packets 

AMR    Adaptive Multi Rate 

AR    Access Router 

ARQ    Automatic Repeat reQuest 

ATM    Asynchronous Transfer Mode 

BE    Best Effort 

BER    Bit Error Rate 

B-frame   Bi-directionally predicted frame 

BIFS    Binary Format for Scene 

BPSK    Binary Phase Shift Keying 

BR    Border Router 

BS    Base Station 

BSC    Base Station Controller 

BSS    Base Station Subsystem 

BTS    Base Transceiver Station 

CAC    Call Admission Control 

CBQ    Class Based Queuing 

CBR    Constant Bit Rate 

CCIR    Consultative Committee for International Radiocommunication 

CDMA   Code Division Multiple Access 

CDN   Content Delivery Network 

CIF    Common Interleaved Frame 

CLR    Cell Loss Rate 

CN    Core Network 
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CoS    Class of Service 

CS    Circuit Switched 

DC    Direct Current 

DCT    Discrete Cosine Transform 

DiffServ   Differentiated Services 

DL    Down Link 

D-MDMN   Distributed Multimedia Delivery Mobile Network 

DS    DiffServ 

DSCP    DiffServ CodePoint 

DVMA   DiffServ video marking algorithm 

EDGE    Enhanced Data rates for GSM Evolution 

EF    Expedited Forwarding 

ER    Edge Router 

FDCT    Forward-DCT 

FDD    Frequency Division Duplex 

FEC    Forward Error Correction 

FER    Frame Erasure Rates 

FGS    Fine granularity scalability 

FP    Frame relay transport Protocol 

GERAN   GSM/EDGE radio access network 

GFR    Guaranteed Frame Rate 

GGSN   Gateway GPRS Support Node 

GOB    Group Of Blocks 

GOP    Group Of Pictures 

GPRS    General Packet Radio Service 

GSM    Global System for Mobile communications 

GTP    GPRS Tunneling Protocol 

HLR    Home Location Register 

IDCT    Inverse-DCT 

IEEE    Institute of Electrical and Electronics Engineers 

IETF    Internet Engineering Task Force 
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I-frame   Intra-coded frame 

IP    Internet Protocol 

ISDN    Integrated  Services Digital  Network 

ITU    International Telecommunication Union 

I-VOP    Intra-coded Video Object Plane 

LAN    Local Area Network 

LC    Layered Coding 

MC-CMDA   Multiple Carrier CDMA 

MD    Multiple Description 

MDC    Multiple Description Coding 

MDS    Media Description Server 

MPEG   Moving Pictures Experts Group 

MS    Mobile Station 

MSC    Mobile Switching Center 

nrt-VBR   non real-time Variable Bit Rate 

NSS    Network Subsystem 

OD    Object Descriptor 

OFDM   Orthogonal Frequency Division Multiplexing 

PDU    Protocol Data Unit 

PFGS    Progressive Fine Granularity Scalability 

PFGST   PFGS Temporal 

P-frame   Predictively coded frame 

PHB    Per-Hop Behavior 

PS    Packet Switched 

PSS    Packet-switched Streaming Service 

PSTN    Public Switched Telephone Network 

P-VOP   Predictively coded Video Object Plane 

QCIF    Quarter Common Interleaved Frame 

QoS    Quality of Service 

QPSK    Quadrature Phase Shift Keying 

RAN    Radio Access Network 
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RED    Random Early Detection 

RFC    Request For Comments 

RFL    Radio Frequency Layer 

RNC    Radio Network Controller 

RNL    Radio Network Layer 

RNS    Radio Network Subsystems 

RPS    Reference Picture Selection 

RS    Redirection Server 

RTCP    Real Time Control Protocol 

RTP    Real Time Protocol 

RTSP    Real Time Streaming Protocol 

RTT    Round Trip Time 

SD    Single Description 

SDP    Session Description Protocol 

SDU    Service Data Unit 

SGSN    Serving GPRS Support Node 

SIP   Initiation Protocol 

SLA    Service Level Agreement 

SMDC   Scalable Multiple Description Coding 

SNR    Signal- to-Noise Ratio 

sRNS    source RNS 

sSGSN   source SGSN 

TCP    Transmission Control Protocol 

TD-CDMA   Time Division-CDMA 

TDD    Time Division Duplex 

tRNS    target RNS 

tSGSN   target SGSN 

TTI    Transmission Time Interval 

UDP    User Datagram Protocol 

UE    User Equipment 

UEP    Unequal Error Protection 
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UL    Up Link 

UMTS   Universal Mobile Telecommunications System 

URL    Uniform Resource Locator 

UTRAN   UMTS Terrestrial Radio Access Network 

VLR    Visitor Location Register 

VO    Video Object 

VoIP    Voice over IP 

VOP    Video Object Planes 

VP    Video Packet 

WAN    Wide Area Network 

WCDMA   Wideband-CDMA 

WFQ    Weighted Fair Queuing 

WRED   Weighted Random Early Detection 
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