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ABSTRACT

Gadgil, Neeraj Jayant. Ph.D., Purdue University, August, 2016. Error Resilient Video
Coding Using Bitstream Syntax And Iterative Microscopy Image Segmentation. Ma-
jor Professor: Edward J. Delp.

There has been a dramatic increase in the amount of video traffic over the Inter-

net in past several years. For applications like real-time video streaming and video

conferencing, retransmission of lost packets is often not permitted. Popular video cod-

ing standards such as H.26x and VPx make use of spatial-temporal correlations for

compression, typically making compressed bitstreams vulnerable to errors. We pro-

pose several adaptive spatial-temporal error concealment approaches for subsampling-

based multiple description video coding. These adaptive methods are based on motion

and mode information extracted from the H.26x video bitstreams. We also present

an error resilience method using data duplication in VPx video bitstreams.

A recent challenge in image processing is the analysis of biomedical images ac-

quired using optical microscopy. Due to the size and complexity of the images, au-

tomated segmentation methods are required to obtain quantitative, objective and

reproducible measurements of biological entities. In this thesis, we present two tech-

niques for microscopy image analysis. Our first method, “Jelly Filling” is intended

to provide 3D segmentation of biological images that contain incompleteness in dye

labeling. Intuitively, this method is based on filling disjoint regions of an image

with jelly-like fluids to iteratively refine segments that represent separable biological

entities. Our second method selectively uses a shape-based function optimization

approach and a 2D marked point process simulation, to quantify nuclei by their loca-

tions and sizes. Experimental results exhibit that our proposed methods are effective

in addressing the aforementioned challenges.
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1. INTRODUCTION

1.1 Video Coding And Transmission

In recent years there has been a dramatic increase in the volume of video traffic

over the Internet. With the development of digital communication standards such

as 3G/4G/LTE and WiFi networks, the demand for video delivery is projected to

increase even more. According to a recent network usage study by Cisco Inc., 64% of

global Internet traffic was used for video delivery in the year 2014 and this usage is

predicted to increase to 80% by the year 2019 [1]. In 2014, wired devices accounted for

the majority of the IP traffic (54%), soon to be overtaken by the traffic from WiFi and

mobile devices (66%) in 2019 [1]. This rapid increase in traffic over wireless channels

and among heterogeneous clients has presented significant challenges for developing

video coding techniques for wireless transmission.

As shown in Figure 1.1, a common video transmission system consists of a source

encoder, a channel encoder, the transmission channel, a channel decoder and a source

decoder.

Fig. 1.1.: A common video transmission system

One of the defining characteristics of a typical wireless channel is the variation of

the channel strength over time and frequency [2]. This can cause packet loss during

video transmission such that the encoded video information in a lost packet is not

available at the receiver. In real-time applications such as video chat, live streaming,
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retransmission of lost content is unacceptable because of the strict constraints on the

deadline of displaying them. As a result, only a subset of total transmitted packets

is available at the receiver, which must reconstruct the signal from the available

information.

Traditionally, the goal of any source coding is to represent source symbols by the

lowest data rate (bits/pixel or bits/second) for a given reconstruction quality [3].

This is achieved by removing statistical redundancies from the source signal [4, 5].

Typical video compression systems use statistical correlations within a video frame

to reduce the spatial redundancy and among the neighboring video frames to reduce

the temporal redundancy. In addition, orthogonal transformations are used to further

decorrelate the signal [6].

To ensure inter-operability between different manufacturers and devices, many

video coding standards have been developed over last couple of decades. Many well-

established and popular standards such as MPEG-2 [7], H.264 [8] or high efficiency

video coding (HEVC or H.265) [9], VP8 [10], VP9 [11] or VP10 [12] are mainly aimed

at achieving better compression efficiencies by removing signal redundancies. This

makes the encoded video bitstreams vulnerable to errors. All of the above stan-

dards only specify the bitstream syntax such that the decoder is always standardized,

whereas the encoder can be designed as per application-specific needs. Yet, mainly

due to the high complexity of the coding tools, most encoders are designed according

to the design guidelines specified in a standard specification draft which is usually

accompanied by its reference software. Typically, during the encoding process, error-

free frames are used as a reference to obtain the prediction signal for the current

frame. However, if the reference frame becomes corrupt due to transmission losses,

error may propagate until the next instantaneous decoding refresh (IDR) (for H.26x)

or key frame (for VPx). This phenomenon is known as the encoder-decoder Mis-

match [13].

When a packet is lost during the transmission, the decoder needs to reconstruct the

signal from the available information and by concealing the lost video content. This
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is known as video error concealment [14]. To further improve the end-to-end video

delivery performance, the encoded bitstream is often made error-resilient by designing

video coders such that the loss of a part of it can still be faithfully recovered from the

received bitstream contents. Therefore, error concealment and resilience methods are

indispensable especially for video delivery over unreliable channels such as wireless

networks [15].

We first present an overview of video coding standards.

1.1.1 Overview Of Video Coding Standards

Recent video coding standards are designed to address the increasing diversity of

services, the growing popularity of high definition (HD) video and the emergence of

beyond HD formats such as 4k×2k and 8k×4k pixels in spatial resolution and 60-100

frames per second (fps) in temporal resolution [9, 11]. Achieving better compression

efficiency while encoding digital video in high quality and with a reasonable com-

putational complexity is generally the main idea behind the development of a new

standard. In a typical video coding standard, only the bitstream structure and syn-

tax is standardized. The decoding process after the semantic interpretation of various

syntax elements is specified so that any decoder conforming to that particular stan-

dard, needs to produce the same output video for a given encoded bitstream. This

allows freedom to design various video encoders suitable for specific applications [9].

There are mainly two groups of currently popular video coding standards. The

first group consists of standards jointly developed by the ITU-T and the ISO/IEC

organizations. H.264 [8] and HEVC [9] are the two latest and popular standards from

this group. The other group of video coding standards is released by Google Inc.

as an open-source libvpx software repository of the WebM [16] project. VP8 [10],

VP9 [11] and the latest VP10 [12] belong to this group.

Figure 1.2 depicts the block diagram of a typical video encoder that uses block-

based coding approach. The dashed green lines represent the original video data
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Fig. 1.2.: A typical video encoder

sent to various blocks of the encoder, the dashed red lines represent the signal from

the central coder control and the blue lines denote the encoded information. Other

exchanges between various blocks are shown using black lines. The encoder contains

an in-loop decoder (blocks colored in gray) that mimics the operations of a decoder so

that the prediction signal used to estimate a current frame is taken from the decoded

(not the original) part of the video sequence.

A frame of the original video sequence is first divided into basic coding units or

pixel-blocks. Each pixel-block is predicted using already encoded one or multiple

pixel-blocks from either the same frame (“Intra”) or different frames (“Inter”). Intra

prediction uses a directional mode for estimating pixel values of the current block. In-

tra mode estimation selects for a pixel-block, a directional mode of the various options

made available by a specific standard. Inter prediction employs motion compensated

prediction (MCP) in which pixel values of the current pixel-block are estimated from

that of the coded pixel-block(s) from other frame(s), typically by shifting them in the

X and the Y direction. For an Inter-coded block, the amount of shift of the other
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frame needed to form the prediction signal of a current pixel-block, is known as the

motion vector (MV) and it is generally specified in sub-pixel units. The process of

selecting an MV is known as motion search or motion estimation (ME). ME is gen-

erally computationally intensive and an encoder can employ an estimation technique

suitable to a particular application, considering the trade-off between the accuracy

of inter prediction and computational complexity. Thus, the prediction signal (Intra

and/or Inter) is used to estimate the original signal of the current pixel-block.

The prediction error/residue then undergoes an orthogonal transformation such as

discrete cosine transform (DCT), discrete sine transform (DST) or Walsh-Hadamard

transform (WHT). This reduces the statistical correlation within the residue and

also allows its spatial frequency-based analysis useful during quantization. The lossy

compression occurs next, in the process of quantization of the transformed residue

signal. A parameter that specifies the width of the quantizer bin is known as the

quantization parameter (QP) and is often used to specify the level of compression

for the input video. Many encoders employ rate control techniques with constant

bit rate (CBR) and variable bit rate (VBR) as a part of the coder control. A few

advanced encoders also have quality control mechanisms such as a constant quality

(CQ) mode. In order to form the prediction signal as it would be at the decoder,

the in-loop decoder uses inverse transformation of the quantized signal. This signal

is then added to the previously predicted signal to form the pre-filtered signal. A

deblocking filter is then applied to reduce the artifacts of the block-based signal

processing. Some standards also specify syntax for additional filters e.g. the sample

adaptive offset (SAO) filter used in HEVC. The output of this filter is the decoded

video frame that is stored in the decoded picture buffer (DPB) that is used to obtain

prediction signals for encoding the subsequent frames.

Thus, each pixel-block of the input video sequence is expressed in terms of mode/motion

and filter data, transform coefficients and control signals. Control signals contain a

few sequence-specific and picture-specific parameters such as frame type, timestamp,

type of filters used etc. Above described data is then concatenated and entropy-coded
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using arithmetic coding (AC). The encoded bitstream consists of entropy-coded sym-

bols representing different syntax elements that are compliant with a specific standard

decoder. Each functional block of Figure 1.2 has been studied with a great interest

and many new techniques and inventions have been documented.

A standard has its own specification for the bitstream syntax and the decoding

procedures. The details of these for H.264, HEVC and VP8 are specified in [10,17,18].

The reference softwares for these standards: JM (H.264/AVC) [19], HM (HEVC) [20]

and VPx (libvpx ) [16] are also available to provide guidelines for researchers and

video systems engineers. The transport mechanisms such as real time protocol and

user datagram protocol (RTP/UDP) [21], H.320 [22], MPEG-2 transport stream

(MPEG-TS) [23] and dynamic adaptive streaming over hypertext transfer protocol

(DASH) [24] are out of the scope of the video coding standards.

1.1.2 Video Error Resilience And Concealment

Many error concealment methods have been proposed recently. This consists of

spatial pixel interpolation, frequency domain reconstruction and motion-compensated

temporal concealment. A boundary matching algorithm (BMA) is used to recover

the lost motion vectors to avoid error propagation [25]. It has been used as a ref-

erence concealment method in many studies. A two-stage error concealment that

makes use of available motion vectors, an image continuity preserving method and

a MAP estimation-based refinement is presented in [26]. A method based on a two-

step spatial-temporal extrapolation is described in [27]. Due to high computational

complexity of block-matching, BMA and other methods, efforts are made to develop

a practical yet effective methods [28]. A comprehensive overview of various error

concealment methods is described in [15, 29].

To improve the end-to-end video delivery performance, the encoded bitstream is

often made more error-resilient by designing video coders that allow retaining some

redundancy in the encoded bitstreams. This redundancy is for the use by the receiver
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when some part of the bitstream is lost during transmission. H.26x and VPx standards

offer tools for error resilience in their encoder profiles [11, 30].

Flexible macroblock ordering (FMO) is a macroblock (MB) ordering syntax pro-

vided by the H.264 standard for an increased error resilience to the bitstream. Gener-

ally, a coded slice [8] contains a number of MBs following the raster scan order. When

FMO is enabled, the encoder can define a specific allocation of MBs using MB-to-slice

mapping (MBAmap) that has a variety of mapping options such as checkerboard, in-

terleave and also custom mapping [19]. Another H.264 tool is the switching-P (SP)

and switching-I (SI) slices. They are two special slices that enables efficient switching

between video streams and random access for decoders [29, 31].

Since some syntax elements of the bitstream such as motion vectors are more

important than others, H.264 allows data partitioning (DP) i.e. partitioning a slice

into up to three different partitions for unequal error protection. Each partition

can be encapsulated into a separate network abstraction layer (NAL) packet [8, 29].

“DP-A” contains the header information such as MB types, quantization parameters

and motion vectors, which are the most important part of data in a slice. “DP-B”

contains intra coded block patterns (CBPs) and transform coefficients of I blocks,

which are the second most important part of data in a slice. “DP-C” contains inter

CBPs and transform coefficients of P blocks which are the least important part. A

detailed overview of DP used in the H.264 standard and more advanced DP schemes

can be found in [30,32].

As described in [10–12], VPx offer a few resilience tools for communication of

conversational video with low latency over an unreliable network. When arbitrary

frames are lost, it becomes necessary to support a coding mode where decoding can

still continue regardless of inconsistencies in the received bitstream. A key assump-

tion is that the drift between the encoder and the decoder is still manageable until

a key frame is received. It is important that the arithmetic encoder must be able

to decode symbols correctly in frames subsequent to the lost one, in spite of corrupt

frame buffers leading to a mismatch. In the current VP9 implementation [16], a
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flag “error resilient mode” is used to achieve error resilience while encoding a source

sequence. This mode restricts encoder in the following ways. First is that the en-

tropy coding context probabilities are reset to defaults at the beginning of each frame.

Another restriction is on the MV reference selection, where the colocated MV from

previously encoded reference frame cannot be included in the candidate list and sort-

ing of the initial list of MV reference candidates based on search in the reference

frame buffer is disabled. However, this cannot prevent drift between the encoder and

decoder and a key frame is required for resetting the buffers. It also causes a drop in

compression efficiency (in the order of 4-5%) and is not recommended when there is

no packet loss [11].

Scalable video coding (SVC) [33] has been developed to address the demand of

services to heterogeneous clients with various network conditions and device capabil-

ities. In 2007, the JVT approved the SVC [33] extension of the H.264 standard [8].

Multiple description coding (MDC) [34, 35] is another popular error resilient coding

technique.

In our work, we investigate MDC in detail.

1.1.3 Overview Of Multiple Description Coding

In MDC, a single signal source is partitioned into several equally important de-

scriptions so that each description can be decoded independently at an acceptable

decoding quality. The decoding quality is improved when more descriptions are re-

ceived. The encoded descriptions are sent through the same or different channels.

When packet loss occurs, the bitstream is still decodable and any subset of the de-

scriptions can reconstruct the original signal with a reduced quality. Thus, when even

one of the descriptions is received, the decoder is still able to decode the bitstream to

provide an acceptable quality without retransmission. Figure 1.3 shows a basic MDC

architecture taken from [36].
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Fig. 1.3.: A basic MDC architecture.

The problem of multiple descriptions was first described at the September 1979

IEEE Information Theory Workshop by Gersho, Witsenhausen, Wolf, Wyner, Ziv and

Ozarow [34,37]. Then, with a series of following articles published in The Bell System

Technical Journal, the first theoretical framework was established. Witsenhausen, in

February 1980, proposed the use of two independent channels and analyzed channel

breakdown for reliable delivery [38]. Wolf, Wyner and Ziv presented a systematic

treatment of the problem of multiple descriptions using Shannon’s rate-distortion

analysis [4] and provided theoretical lower bounds on the distortion [36]. Witsen-

hausen and Wyner improved the bounds in [39]. Ozarow extended the discussion to

Gaussian memoryless sources and presented a complete solution [40]. Jayant applied

the concept of multiple descriptions to a speech system with the sample-interpolation

procedure that consisted of partitioning of odd-even speech samples [41,42]. In 1982,

El Gamal and Cover provided a detailed analysis for achievable rates for multiple

descriptions [43, 44]. Berger and Zhang analyzed it further in [37, 45]. The problem

was also studied by Ahlswede in 1985 [46,47].

The pioneering MD video coder was presented in [48] by Vaishampayan et al. with

the design of a multiple description scalar quantizer (MDSQ). In this approach, two

substreams are created by using two indexes, corresponding to two different quantiza-

tion levels. To design the quantizer, a method that uses two quantizers whose decision

regions are shifted by half of the quantizer interval with respect to each other was
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developed by Wang et al. [15]. To improve the coding efficiency, the MDSQ approach

was extended to entropy-constrained multiple description scalar quantizers (ECMD-

SQs), which uses variable length codes for the index streams [49]. The original MDSQ

was developed for memoryless sources, with an asymptotic analysis been presented

in [50]. For systems with memory, such as communication over a Rayleigh fading

channel or a lossy packet network, a multiple description transform coder (MDTC)

was proposed by Batllo et al. [51, 52].

Pairwise correlating transform (PCT) approach introduces dependencies between

two descriptions [53–55]. Here, the main concept is to divide the transform coefficients

into several groups so that the coefficients between different groups are correlated

while the coefficients within the same group are uncorrelated. In [56], the design of

lapped orthogonal transform (LOT) bases is proposed. In this method, a transform is

selected based on the channel characteristics, the desired reconstruction performance,

and the desired coding efficiency. In [57], a LOT-DCT basis approach is proposed to

maximize the coding efficiency.

The design of an MD video coder has two main challenges: mismatch control and

redundancy allocation. Addressing these challenges a general framework using MCP,

a prominent feature of most established video coding standards, has been developed

by Reibman in [58]. A detailed treatment to this approach is presented in [58,59]. It

also describes three specific methods using different prediction paths in this general

video coder. They demonstrate that mismatch control can be advantageous when

there is packet loss as against the complete loss of description [58]. When subjected

to packet loss, this MD video coder performs significantly better than the traditional

SD coders [59].

There have been efforts to classify MDC approaches to summarize the develop-

ment. In [60], three classes have been defined based on the predictor type. Class

A aims at achieving mismatch control [61–64]. Class B aims at achieving prediction

efficiency [65, 66]. Class C represents a trade off between Class A and Class B [67].

Another classification of MDC methods is proposed in [68] to study various MDC
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approaches based on the partitioning stage. The coders developed above incorpo-

rate spatial and temporal prediction mechanisms into the MD framework. Multiple

candidate predictors make this system practically very complicated. The central de-

coder can use information from both streams to form the best predictor, but at a side

decoder, information from the other channel is unavailable and this may cause mis-

match. An estimation-theoretic approach to prediction and reconstruction has been

presented in [69]. This approach is advantageous because it takes into account all

the information available at each decoder for an optimal estimate, and mitigates the

degradation due to quantization in the prediction feedback loop. The MDC method

described in [58] yields a poor prediction when both descriptions are available. There-

fore, an MDC scheme based on a matching pursuits (MP) video coding framework

is presented in [70]. In [65], a MD video coder is proposed based on rate-distortion

splitting in which the output of a standard video coder is split into two correlated

streams. The problem of formation of unbalanced descriptions due to alternation of

nonzero DCT coefficients is addressed using MD-balanced rate distortion splitting

(MD-BRDS) [71].

Some MDC methods are developed to address source and channel coding jointly

for error robustness. One such FEC-based MDC method is proposed in [72] in which

the maximum distance separable (n, k) erasure channel codes are used to generate

multiple substreams using a joint source-channel coding method. An example of the

spatial subsampling-based methods can be found in [73]. One approach to implement

the preprocessing data partitioning in the frequency domain is to add zeros to the

transform coefficients in both dimensions after DCT, followed by MD generation using

polyphase downsampling [74]. Another approach is to split the wavelet coefficients

into maximally separated sets [75] and use simple error concealment methods to

produce estimates of lost signal samples.

A multiple description scalable video coding (MDSVC) scheme based on motion-

compensated temporal filtering (MCTF) [76] is described in [77] in which the ad-

vantages of SVC and MDC are combined. In [78], a method based on fully scalable
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wavelet video coding is described where post encoding is done to adapt the number

of descriptions, the redundancy level and the target data rate.

Many recent approaches take into account adaptive redundancy control (ARC) to

optimize the performance of MDC with time-varying channels. In [79], a redundancy

allocation for a three-loop slice group MDC is presented. Another three-loop frame-

work is proposed in [80] that uses the slice group-coding tool proposed in H.264 [8].

In [81] an ARC scheme for a prediction-compensated polyphase MDC is described.

In [82] presents another ARC scheme for MDC at MB-level. An MDC method based

on the concept of redundant slice from H.264 [8] is presented in [83].

Many methods mentioned above are incompatible with the ITU-T H.26X [8, 9]

video standards. The use of MDC at pre- and/or post-processing stages allows pro-

ducing standard-compliant bitstreams [84]. The general idea is to split the video

source into two subsequences, which are encoded independently. At the decoder side,

when the two descriptions are received, the decoded subsequences are post-processed

to recover the full quality video. When only one description is received, the received

description is used to reconstruct the video at a coarser quality using error conceal-

ment. In [85], an oversampling method is proposed to add redundancy to an image.

Then, with a partitioning scheme of the oversampled image, multiple sub-images of

equal pixel dimensions are created. This has been extended to video applications

in [74], which uses zero padding in the two-dimensional DCT domain. In [86], a

method to generate an arbitrary number of descriptions based on zero padding in

the DCT domain is described. A simple way to generate two descriptions is to use

horizontal or vertical downsampling. To generate more than two descriptions, the

partition is done in such a way that redundancy is uniformly distributed along the

image columns and rows [62, 64, 87]. Other subsampling-based MDC in the spatial,

temporal or frequency domain can be found in [61,64,75,77,78, 88–92].

Recently, there has been an increasing interest in MDC methods with more than

two descriptions for applications in scalable, multicast and P2P environments. Zhu

and Liu [68] propose a multi-description video coding based on hierarchical B-pictures
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where the temporal level based key pictures are selected in a staggered way among

different descriptions. In [93], an MDC architecture with polyphase permuting and

splitting of residual blocks is presented. It uses joint temporal and spatial adap-

tive concealment method based on pixel gradients. A flexible redundancy allocation

framework, based on an end-to-end distortion model for three loop, two description

MDC is presented in [94]. Hsiao and Tsai [95] present a four-description MDC which

takes advantage of residual-pixel correlation in the spatial domain and coefficient

correlation in the frequency domain. Several adaptive spatial-temporal concealment

methods for subsampling-based MDC architectures are presented in [91, 92, 96–98].

MDC is an active area for inventions and many new implementations have been

documented. Some key proposals are [99–113]. A more comprehensive overview of

MDC is presented in [34, 35].

Next, we discuss an interesting topic in image processing: analysis of biomedical

images. We first review the basic concepts of microscopy imaging with its various

modalities.

1.2 Microscopy Imaging

Optical microscopy is considered as an important tool for biomedical research [114,

115]. In recent years, fluorescent microscopy, a form of optical microscopy, has per-

meated all of cell and molecular biology. It is in a state of rapid evolution, with

new techniques, probes and equipment appearing almost daily [116]. Imaging live

biological samples (in-vivo) has provided key insights towards the functional studies

which help characterize various physiological processes [117]. This form of imaging,

also known as intravital microscopy, is able to image dynamic processes such as in-

tracellular transport, cell migration and motility, and other cellular interactions and

metabolic activities, all of which are important for getting advanced knowledge about

clinical diagnosis and treatments [118]. Intravital microscopy has a long history of

understanding functional behavior of visceral organs such as the liver [119, 120] and
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the kidney [121–123]. Intravital multiphoton microscopy, an advanced optical imaging

modality, has been recently used to obtain unique insights into the in-vivo cell biology

of the brain [124,125], the immune system [126–128] and cancer tissues [129–131].

Acknowledging the impact of advances in this area, the 2008 Nobel prize in Chem-

istry was awarded “for the discovery and development of the green fluorescent protein,

GFP” that enables scientists to track, amongst other things, how cancer tumors form

new blood vessels, how Alzheimer’s disease kills brain neurons and how HIV infected

cells produce new viruses [132]. The 2014 Nobel prize in Chemistry was awarded “for

the development of super-resolved fluorescence microscopy” that allowed a resolution

far beyond Abbe’s famous limit [133].

We first discuss the background and basic principles of optical microscopy.

1.2.1 Optical Microscopy Background

Optical microscopy or light microscopy uses visible light and a system of lenses

to project a magnified image of an object onto the retina of the eye or an imaging

device [134]. A typical compound microscope consists of two important components

the objective lens and the condenser lens. The objective lens that collects light

diffracted by the object and forms a magnified real image near the eyepiece. The

condenser lens focuses light from the illuminator onto a small area of the object [134].

During microscope design, it is important to use Kohler illumination that gives bright,

uniform illumination of the object and simultaneously positions the sets of image and

diffraction planes at their proper locations [134, 135]. In an advanced microscope,

both these components consists of smaller sub-components and they perform close to

their theoretical limits. The early development of the theory of diffraction and image

formation is attributed to Abbe who also set the famous diffraction limit (known

as Abbe diffraction limit) that specifies the maximum spatial resolution that can be

achieved while imaging an object [135].
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The human visual system requires contrast to perceive details of objects [136].

The simplest and very effective contrasting method is dark-field [137] that uses the

scattering of light on small particles that differ from their environment in refractive

index, the phenomenon known as Tyndall effect [136]. Based on the illumination

technique, a few major techniques are phase contrast [138] proposed by Zernike,

differential interference contrast (DIC) [139] developed by Nomarski, reflection [140]

and modulation contrast [141] microscopy. The most popular contrasting technique

is Fluorescence microscopy [116, 136]. It is an advanced imaging modality based on

the principle of fluorescence exhibited by fluorophores which absorb light in a specific

wavelength range and emit it with lower energy shifting the emitted light to a longer

wavelength.

More recent super-resolution microscopy techniques such as stimulated emission

depletion (STED) microscopy [142], photo-activated localization microscopy (PALM)

[143] and stochastic optical reconstruction microscopy (STORM) [144] have success-

fully broken the diffraction limit to provide higher resolution. A detailed discussion

of imaging modalities is presented in [134–136].

Below we review fluorescence microscopy in more detail.

1.2.2 Fluorescence Microscopy

The phenomenon of fluorescence was first documented by Herschel as dispersive

reflection in 1825 when he observed blue light emitted from the surface of a solution of

quinine [135]. Later in 1852, Stokes coined the term fluorescence when he studied the

distance between the maximum of excitation and emission wavelength. This distance

is known as Stokes shift [116,135].

The outermost electron orbitals in a fluorophore determine the wavelengths of ab-

sorption and emission, and also its efficiency as a fluorescent compound [116]. When

a ground state fluorophore absorbs energy from photons, the electronic, vibrational

and rotational states of the molecule can alter. The absorbed energy makes an elec-
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tron jump into a different orbital farther from the nucleus. This state is known as the

excited state. The transition from ground-to-excited state typically takes a few fem-

toseconds. The absorbed energy is then released in the form of photon emission and

via vibrational relaxation, the molecule returns to its ground state [116]. The details

of excitation and emission process were studied using a form of diagram proposed by

Jablonski in the 1930s [145]. This diagram is known as Jablonski diagram that is a

schematic drawing based on electronic states corresponding to various energy levels.

Fig. 1.4.: Jablonski diagram for single and two photon excitation

Figure 1.4 represents the Jablonski diagram showing attainable energy levels in a

fluorescent molecule. The molecule can absorb one photon of the ultra-violet (UV)-

blue wavelength or two photons of the red wavelength of the visible spectrum. The

absorption of a UV photon can cause electron excitation to a higher energy singlet

state (S1), whereas a blue photon can cause excitation to S0, a lower energy singlet

state [116, 134]. Also, two red photons can cause electron excitation to S0 from the

ground state [146,147]. The collapse to the ground state from the either singlet state

can occur through one of the following three ways:
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• Fluorescence emission: The molecule emits a photon. The process of absorp-

tion and emission occurs almost simultaneously (in the interval of 10−9 − 10−12

seconds).

• Internal conversion: The molecule releases vibrational energy in the form of

heat without photon emission to enter either a lower energy singlet state or the

ground state.

• Triplet state: The excited electron enters the triplet state that can make the

molecule chemically active often leading to photobleaching, the permanent loss

of fluorescence. The electron in the triplet state can return to the ground state

through internal conversion or by the phenomenon of phosphorescence. Unlike

fluorescence, phosphorescence the emission is not instantaneous and typically

lasts fraction of a second to minutes.

As shown in Figure 1.4, the energy of the emitted photon is less than that of

the absorbed photon. The energy (E) of a photon is inversely proportional to its

wavelength(λ): E = hc/λ, where h is the Planck’s constant and c is the speed of

light. Therefore, for single-photon excitation, the wavelength of the emitted photon

is longer than that of the absorbed photon. In case of two-photon (or multi-photon)

excitation, the wavelength of the emitted photon is typically shorter than that of the

absorbed photons.

Fluorophores that are used for staining biological specimen are known as fluo-

rescent dyes (dyes hereafter). The absorption and emission spectra of a dye are

distinct and considered as an important property while selecting the dyes to stain a

biological specimen. When two or more molecules in the same specimen are required

to be labeled with dyes, it is essential to study their absorption and emission spec-

tra [134]. In practice, Stokes shift is obtained as the difference between the emission

and absorption maxima. For two-photon and multi-photon excitation, this difference

is known as anti-Stokes shift [147,148], since the emission wavelength is shorter than

the absorption wavelength. Depending on the properties of a fluorophore, this shift
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can range from a few to several hundred nanometers [134]. It is important to note

that for a particular dye, the two-photon absorption spectrum scaled to half the wave-

length is typically not equivalent to its single-photon absorption spectrum [147]. Dyes

exhibiting a large Stokes shift or anti-Stokes shift are advantageous for fluorescence

microscopy because the bands of absorption and emission are easier to isolate using

interference filters. The probability that a dye molecule absorbs a photon is known

as its molar extinction coefficient (ε) which is typically expressed in per mole per

centimeter (M−1cm−1) [116]. Another important property of a dye is its quantum

efficiency of fluorescence emission. Quantum efficiency is the ratio of the number

of emitted photons causing fluorescence, to the number of absorbed photons. Other

main characteristics of dyes are resistance to photobleaching, solubility and chemical

stability [134]. Newly developed dyes such as Alexa and Cyanine dyes are popular be-

cause of their high quantum efficiency and high resistance to photobleaching. Green

fluorescent protein (GFP) obtained from the jellyfish Aequorea victoria with its mu-

tated forms blue, cyan and yellow fluorescent proteins and a recently developed group

red fluorescent proteins (DsRed) are some other examples of commonly used dyes. A

detailed discussion of fluorescent dyes and their applications is provided in [149].

When a biological specimen is stained with a fluorescent dye, it can be ob-

served using an optical microscope. Figure 1.5 shows optical schematic diagrams

of three types of microscopes: conventional (widefield), confocal and two-photon re-

spectively [135, 147, 150]. A widefield microscope (Figure 1.5 (a)) is a conventional

imaging device that can illuminate the specimen using Kohler illumination and mag-

nify the optical signal emitted by a relatively wide region of the specimen. This has

an obvious disadvantage of collecting a considerable amount of out-of-focus signal. To

solve this, Minsky, in the 1950s, proposed the design of a “confocal” microscope [151]:

Figure 1.5 (b). Unlike viewing the whole sample in case of widefield microscopy, the

specimen is scanned point-by-point by making the excitation light and the detector

“in-focus.” The use of pinhole is to block all out-of-focus signal resulting in increased

signal contrast [135]. Confocal microscopes can provide 3D resolution using a set
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(a) Widefield (b) Confocal

(c) Two-Photon

Fig. 1.5.: Fluorescence microscope schematics



20

of conjugate apertures functioning as spatial filters [147]. As shown in Figure 1.5

(c), two-photon excitation microscope developed in the 1990s by Denk et al. [152]

uses a high-power pulsed laser to illuminate the specimen with longer (than confocal

microscope) wavelength photons. The excitation is restricted to a small focal vol-

ume, eliminating the need to use pinhole [150]. Although confocal and two-photon

microscopy techniques are similar, two-photon has a number of advantages:

• Photobleaching and Photodamage: In confocal microscopy, the entire specimen

is typically subjected to high-energy UV photons. While imaging a specimen in-

vivo, this photon excitation can cause rapid photobleaching of the fluorophore

and photodamage (damage to the specimen) outside the focal region [153,154].

In two-photon microscopy, only a part of the specimen at a particular focal

plane is excited and the damage is limited to that region.

• Signal loss: Confocal microscopy uses the pinhole that rejects light from most

part of specimen that is out-of-focus [147]. But two-photon microscopy does not

require pinhole aperture and hence can minimize signal loss. Due to localized

excitation of the specimen, all of the fluorescence emanating from it may be

collected and mapped to this single focal point in 3D space [154].

• Scattering: The wide separation between the absorption and emission spec-

tra (anti-Stokes shift) in two-photon microscopy helps filter out the excitation

photons and Raman scattering effect, while collecting photons emitted by the

specimen [147].

• Imaging depth: The amount of scattering of light as it passes through a spec-

imen decreases as the wavelength of the light increases [147]. Confocal uses

UV (shorter wavelength) light, thus cannot practically penetrate beyond cer-

tain depth. Two-photon microscopy uses near-infrared (IR) (longer wavelength)

excitation that is suitable for penetrating deeper into a biological tissue. How-

ever, it should be noted that the maximum imaging depth also depends on the
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properties of the tissue sample, the quantum efficiency of the fluorophore and

the properties of the microscopy optics [154].

Now we discuss the properties of images acquired using fluorescence microscopy

and current challenges in analyzing them.

1.2.3 Challenges In Microscopy Image Analysis

Due to the recent advances in fluorescence microscopy as discussed earlier, it is

possible to obtain images of thick biological tissues. Two photon microscopy allows

collection of hundreds of focal plane images providing the capability to characterize

3D structures at subcellular resolution [114, 115]. The size and complexity of such

3D image data makes manual image analysis and visualization almost impracticable.

Automated methods of image segmentation are required to obtain quantitative, ob-

jective and reproducible analysis [155]. Fluorescent microscopy when combined with

automated digital image analysis such as image segmentation, becomes a powerful

tool for biomedical research [154].

Image segmentation is the process of assigning a label to every pixel in an image

such the pixels with the same label have similar visual characteristics. Visual char-

acteristics include color, intensity, texture, shape or some other computed value. All

pixels in a particular region are similar with respect to one or multiple visual charac-

teristics, while pixels belonging to different regions are significantly different than one

another [154,156]. Biomedical image segmentation typically require labeling different

biological entities such as tubules, vasculature, lumen, cell-nuclei in 2D or 3D, often

based on the above characteristics, the understanding of the imaging modality and

some prior knowledge of the biological structure.

Automatic analysis of microscopy images, however has many challenges. The

images are inherently anisotropic, with aberrations and distortions that vary in dif-

ferent axes. For images taken successively in the z-direction by shifting the focal

plane deeper in the sample, image contrast decreases with depth. This reduced con-
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trast exacerbates a common problem of fluorescence of having characteristically low

signal levels consisting of as little as a single photon [157]. Attempts to increase the

image contrast during acquisition come at a cost of limiting spatial-temporal reso-

lution and higher chances of photodamage, photobleaching and signal noise [154].

Moreover, the biological objects to be segmented have poorly defined edges and the

object boundaries do not contain continuous edges. Due to the inherent trade-off

between the spatial and temporal resolution, images representing dynamic biological

processes must be captured at low spatial resolution. This makes microscopy image

segmentation and rendering very sensitive to small changes in regularity assumptions

and mathematical parameters used in analysis, often leading to inconsistent and un-

predictable results [114].

Physical and optical properties of a microscope can result into planar and angular

distortions some of which can be modeled using the point-spread function (PSF).

The PSF is defined as the 3D convolution of a point source object by the microscope

objective. It specifies how that microscope images a point source and how the lens

spreads the optical signal along the three axes [154]. A bad PSF results in decreased

image contrast, poorer edge details and worse signal-to-noise ratio (SNR) as com-

pared with a near-ideal PSF. The authors in [158] describe ways to reverse the effects

of the PSF by deconvolution, whereas others [159] argue that deconvolution is not

necessarily helpful in improving the image quality considering the goals of a biological

study.

In multiphoton microscopy data from multiple spectral regions is recorded. This

acquisition process uses band-pass filters, each of that aggregates a range of wave-

length to one spectral channel. This channel isolation is often imperfect causing

crosstalk between different spectral channels [115]. An example of the effect of

crosstalk is the data from one particular channel appears in the data from other

channels with reduced intensity. Crosstalk effect is aggravated when a channel be-

comes saturated with more number of photon emissions than the acquisition device

can capture. In in-vivo imaging, motion artifacts are introduced as a result of respi-
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ration and heartbeat of the live specimen. Image registration is required to address

this problem. This introduces distortions such as translations and warping into the

images, degrading image quality [154].

1.2.4 Overview Of Image Segmentation Methods

There have been many recent techniques developed to segment and analyze bio-

logical images. Edge detection methods proposed by Canny [160], Harris [161] are

often used for segmenting boundaries of biological quantities. Primary image process-

ing methods such as thresholding [162], morphological operations [163, 164], 2D/3D

filters with various kernels [156] are used as preprocessing to remove noise, distortions

and binarize images before doing segmentation.

Active contours (also known as snakes) is a widely used segmentation approach.

In principle, an active contour is a curve that evolves within an image from some

initial position toward the boundary of the biological object [165, 166]. The initial

position of the snake is usually specified by the user or is otherwise provided by an

auxiliary rough detection algorithm. The evolution of the snake is formulated as

a minimization problem. The associated cost function is usually referred to as the

snake energy. Edge-based active contours [165,167] compute image gradients map to

identify objects. Snakes has been investigated using region-based approaches, seeking

an energy equilibrium between the foreground and the background [168]. The region-

based methods can typically produce better segmentation results than the edge-based

methods. This is because the region-based methods are relatively independent of

initial contour location and more robust against image noise. Yet, these region-

based methods fail to segment when images have inhomogeneous intensities [169]

Another popular approach is the stochastic active contour scheme (STACS) that uses

textures, edge, and region-based information [170]. A topology preserving variant of

STACS that combines topology with level set formulation is developed in [171] and

is shown to outperform the widely used seeded watershed technique [172]. A vector
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field convolution based active contour model is proposed in [173]. In [174], an open

active contour model for analyzing actin filament is presented. A 3D active surfaces

is proposed in [175] that considers images as a 3D volume using modified energy

functions.

Although lots of work have been done in active contour and its variations, it still

has many limitations [166]. First and foremost, active contour is very sensitive to

the initial curves. If the initial curves are too far from the region of interest, it takes

considerable time to capture the region while often failing in segmenting the desired

quantities. Manual initialization is time consuming often questioning the very moti-

vation of having an automatic segmentation method. Some approaches for automatic

initialization of the contours have been proposed in [176] and references therein. Yet

it remains an open research topic without a widely-accepted solution. Snakes have

issues with robustness when used on images acquired in typical microscopy imaging

conditions that unavoidably introduce noise, bias field and low contrast in the images.

Another major problem is the lack of multi-object discrimination which can be an

essential requirement for many biomedical applications e.g. cell tracking [166].

Watershed technique [177] is another popular segmentation approach based on

mathematical morphology. Intuitively, the image is considered as topographic relief

such that the height of each point is directly related to its gray level. The rain-

fall gradually begins to fill the low-terrain forming “lakes” (or “catchment basins”).

The watershed lines are defined as the lines that separate the lakes. Generally, the

watershed transform is computed on the gradient of the original image, so that the

catchment basin boundaries are located at high gradient points. Many variations of

this approach have been proposed over the years. A method that uses prior prob-

abilistic information with the watershed transform is presented in [178]. In [179],

a two step watershed method is presented in which, three types of cell structures:

nuclei, cell walls and cell-cell contacts are segmented in order to distinguish different

actin-binding proteins from the images of Epithelial cells. However, watershed used in

biological images typically suffers from over-segmentation that results into thousands
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of small basins [178]. This is addressed using a marker image [180], that reduces the

number of minima in an image. Like active contours, watershed methods are also

highly sensitive to image noise. The use of anisotropic filters [181] has been proposed

to address this. Yet, watershed typically produces bad segmentation results in low

contrast and poor edge-areas that are typical artifacts in microscopy images.

An active mask framework that uses a multiscale and multiresolution approach

as well as region-based and voting-based functions is proposed [182]. Another region-

based method called discrete region competition is proposed in [183]. Other methods

include the sliding band filter (SBF)-based joint segmentation approach presented

in [184], that is useful in detecting overall convex shapes. A method to segment

vasculature in 3D, that uses noise modeling, planer geometry and adaptive region

growing is presented in [185]. A novel approach for coupling image restoration-

segmentation [186] has been proved effective in segmenting 3D biological structures

e.g. the endoplasmic reticulum (ER) and the Drosophila wing disc. A recent pop-

ular edge and ridge-based method that uses steerable filters for feature detection is

proposed in [187]. Recently, several methods based on convolutional and deep neural

networks are proposed for biomedical image segmentation [188–191]

ImageJ [192] is a popular open-source, Java-based image analysis toolkit that is

developed by Rasband and currently maintained by the National Institutes of Health

(NIH). Fiji [193] is a distribution of ImageJ that has more specific tools for biomedical

image analysis. Another platform called Icy is a collaborative bioimage informatics

framework that combines a website for sharing tools and material, and software with

high-end visual programming capabilities [194]. There have been several 3D image

rendering softwares e.g. Voxx [195].

1.2.5 Our Image Data And Notation

The images presented in this work are of biological tissues mainly belonging to

the kidney and the liver, collected in-vivo using intravital multiphoton microscopy for
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various structural and functional biological studies [115, 117, 196, 197]. As shown in

Fig. 1.6.: Our image data notation

Figure 1.6, our data has three spatial dimensions that represent a biological specimen

in space, the time dimension which indicates that the data is collected over several

time instances and the spectral dimension that represents the fluorescence of multiple

dyes injected into the specimen. Let Izp,tq ,cr represent a grayscale image of X × Y

pixels collected from the p’th focal slice in the z-direction at the q’th time sample, rep-

resenting the r’th spectral (or color) channel, where p ∈ {1, 2, ..., P}, q ∈ {1, 2, ..., Q}

and r ∈ {1, 2, ..., R}. P is the number of focal slices, Q is the number of time samples

and R is the number of color channels of data collected from one biological specimen.

Note that our data and thus the notation consists of three types of dimensions:

space, time and color. We call each of them a dimension-type. It is possible for a

particular specimen, only one point from a dimension-type is collected. In such case

our notation will drop that specific dimension-type from the original notation that

consists of the three dimension-types. For example, in many structural studies the

data is collected only at one time sample. For such data, we use the notation Izp,cr . In

some cases only one dye is injected into a specimen producing data only in one color
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channel. For that data, the notation becomes Izp,tq . We will use the above described

notation and conventions throughout the thesis.

Some examples of images used in our work are shown in Figure 1.7. Figure 1.7 (a)

(a) (b)

(c) (d)

Fig. 1.7.: Examples of microscopy images used in our work

and (b) are from rat kidney samples. In this image data, the red channel represents

proximal tubules with their lumen (brush border) and the blue channel represents

cell nuclei in the kidney. Figure 1.7 (c) and (d) are separated red and blue channels

respectively, of the data collected from a rat liver. The red channel represents vas-

culature, portal vein and hepatocytes, whereas the blue channel represents the cell

nuclei. Our specific image analysis goals and methods will be discussed in Chapter 4

and Chapter 5.
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We next discuss video surveillance and crowdsourcing for public safety applica-

tions.

1.3 Crowdsourcing For Public Safety

Video surveillance systems are widely deployed for public safety [198, 199]. They

are used as an effective tool for crime prevention and an after the fact forensic tool.

Agencies such as airport security, border control use real-time monitoring systems that

have active warning capabilities. Most systems have multiple surveillance cameras.

The huge amount of data being collected in real-time makes it practically impossible

to do manual analysis and crime detection. Automatic methods are often used to

reduce the manual efforts.

Automatic Detection For Surveillance Applications: There are many recent

approaches to real-time monitoring and alerting for video surveillance systems [200,

201]. Some main technical areas are object detection, tracking and categorization,

human action and behavior analysis [202–207]. However they have many challenges

such as dealing with occlusions, shadows, illumination changes and the requirements

to track objects across multiple cameras. Detection methods are not perfect and are

susceptible to miss detections and false alarms. Automatic object tracking can be a

problem due to occlusions [199, 208]. The work on object recognition in the past 30

years has demonstrated that object recognition or categorization even from a single

image is a highly complex task [200,209]. A comprehensive overview of machine recog-

nition of human activities is presented in [205] that discusses several non-parametric,

volumetric and parametric modeling methods. Some of the main challenges in au-

tomatic detection arise from noisy real-world conditions, the difficulties in finding

invariance in human actions and the sparsity of standardized testbeds. The advances

in this field lack in robustness to real-world conditions and real-time performance.

Whereas, establishing feature correspondence between consecutive video frames is

considered as a bottleneck in tracking-based human motion analysis [203].
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A probabilistic technique along with other computer vision methods is used to

model scene dynamics in [210]. However, it is sensitive to severe occlusions and it

can be impacted by illumination changes. Improving the performance of such intel-

ligent systems remains an active research area within the image processing and the

computer vision community. Human motion analysis has been studied in great depth

over the years. A popular approach to tracking multiple occluding people by localiza-

tion of multiple planes is described in [211]. Here, a planar homographic occupancy

constraint that fuses foreground likelihood information from multiple views is used

to resolve occlusions and localize humans. This method faces issues such as missed

detections in the case of similar appearance of background to a person and occlusions

from the background. Also, two or more occupancy tracks of humans can merge to

cause “identity switching.” The limitations of automatic systems are also highlighted

in the failure cases from [203,211,212].

Crowdsourcing: As defined by J. Howe in 2006 [213], “crowdsourcing” also referred

to as the collective intelligence, the wisdom of the “crowd” or human computation,

is often considered as an effective solution to problems that involve cognitive tasks.

According to Surowiecki, the crowd is often holding a nearly complete picture of the

world in its collective brains [214]. A crowd can perform the same or sometimes even

better than an expert when the crowd typically satisfies the basic conditions: diver-

sity, independence, decentralization and aggregation [214]. There have been efforts to

use this collective intelligence to do tasks that machines find very difficult. The Inter-

net provides a perfect platform to reach out to the crowd or contributors and collect

their inputs. There has been an increasing interest in providing web-based crowd-

sourcing platforms such as Amazon’s Mechanical Turk (MTurk), Turkit, Freelancer,

CloudCroud, uTest, Mob4hire, Topcoder and CrowdFlower [215]. The members of

the crowd work on a variety of tasks such as language translation, copying text from

images and writing transcripts from audio messages. Such platforms are useful for

many research communities including image/video processing for subjective experi-

ments. In [216], a web-based platform is developed for quality of experience (QoE)
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assessment and is integrated with MTurk. A subjective video quality evaluation

system to assess Internet video quality using crowdsourcing was presented in [217].

According to [218], the proposed subjective QoE assessment method for YouTube

videos based on crowdsourcing is highly effective and reliable.

Describing the important contents and actions in a video sequence is known as

video annotation [219]. This is an area in which crowdsourcing is very useful [220].

The video event representation language (VERL) is a formal language for representing

events for designing an ontology for an application domain and for annotating data

with the ontology’s categories [221]. An example is sports annotation as described

in [222]. Another area of interest is object detection and tracking. Crowdsourcing-

based annotation is very useful not only for obtaining the annotations, but for im-

proving the performance of automatic detection methods. In [223], MTurk is used to

provide annotations to train object detectors where the system automatically refines

its models by actively requesting annotations of images from the crowd. In [224], a

system in which machine learning and crowdsourcing enhance each other is proposed.

In this system, a semi-automatic image annotation approach is presented that uses

crowdsourcing to help robots register novel objects with their semantic meaning. A

web-based social analysis tool is proposed in [225] in which several key strategies are

presented that improve the quality and diversity of worker-generated explanations.

Crowdsourcing For Surveillance Using Annotation Tools: A recent approach

to crowdsourcing surveillance videos is described in [226] where CrowdFlow : an

MTurk-based toolkit for integrating machine learning with crowdsourcing is pre-

sented. Crowded is another such web-based platform developed by the defense sci-

ence & technology laboratory (DSTL) in which, images of a particular location are

collected from a variety of media sources to provide an operator with real-time sit-

uational awareness [227]. A similar MTurk-based web interface, known as VATIC

was developed to monetize, high quality crowdsourced video labeling [228]. While

these platforms combine ideas of crowdsourcing and video annotations, they are not
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designed specifically to help law enforcement authorities with surveillance video anal-

ysis and alerting systems.

Developing and deploying crowdsourced annotation tools for law enforcement in-

volve many issues. For example, as described in [229], protecting the video contents

and allowing freedom of speech to the annotators while avoiding chaos and protests

are some important considerations. Therefore, there are significant issues in using

commercial crowdsourcing tools such as MTurk for the security applications. There

is need to develop a web-based video annotation system for crowdsourcing surveil-

lance videos in a controlled environment. Such system can help the law enforcement

authorities recognize potential threats and investigate criminal activities.

1.4 Contributions Of The Thesis

In this thesis, we developed new methods for error resilient video coding, mi-

croscopy image segmentation and an implementation of a video annotation platform.

The main contributions of the thesis are:

• Adaptive Error Concealment for Multiple Description Video Coding

We propose two adaptive error concealment methods for a temporal-spatial four

description multiple description video coding architecture. Our adaptive meth-

ods are motion vector analysis and error estimation using the H.264-coded MDC

bitstreams. We propose another adaptive concealment method for a spatial-

subsampling based MDC architecture. This method uses motion information

and prediction mode extracted from HEVC-coded MDC bitstreams. Experi-

mental results show that our proposed methods are effective under packet loss

conditions during video transmission.

• Error Resilient Video Coding using Duplicated Prediction Information for VPx

Bitstreams

We describe an error resilient coding method for VPx-coded bitstreams using
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duplication of prediction information. Experiments indicate that our method

provides a graceful quality degradation under packet loss conditions.

• Jelly Filling Segmentation of Biological Images Containing Incomplete Labeling

We propose an iterative 3D segmentation method mainly for fluorescence mi-

croscopy images containing the incomplete labeling artifact. Intuitively, our

method is based on filling the disjoint background regions of an image with

“jelly-like” fluid such that the interactions between the “jellys” and the seg-

mented foreground can be used to separate different biological entities in 3D.

Experiments with our images exhibit the effectiveness of our proposed method

as against some existing methods.

• Nuclei Segmentation of Microscopy Images using Midpoint Analysis and Marked

Point Process

We present a cell-nuclei segmentation method based on midpoint analysis and a

random process simulation. Midpoint analysis is used to classify the segmented

regions into single-/multi-centered objects based on their shape properties. A

2D spatial point process simulation is then used to quantify cell-nuclei by their

location and size.

• A Video Annotation Tool for Crowdsourcing Surveillance Videos

We describe our implementation of a web-based video annotation tool built

for the use of the law enforcement authorities for rapid analysis of surveillance

videos. The tool makes use of crowdsourcing in a controlled manner to distribute

annotation tasks to a set of trained “crowds” and aggregates the results for the

law enforcement authorities.
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2. ERROR RESILIENT VIDEO CODING USING

ADAPTIVE ERROR CONCEALMENT FOR MDC

As described earlier, an MDC encoder generates multiple correlated descriptions so

they contain redundancy when more than one descriptions are received. In case of

packet loss, parts of one or more descriptions are lost. The decoder can use the

redundancy in the descriptions to do error concealment that essentially provides an

estimation of the lost video signal. Depending on the nature of redundancy between

the descriptions, it is possible to have more than one concealment method available

at the decoder so that the decoder can select one of them based on various receiving

scenarios of the descriptions and available bitstream parameters.

For a subsampling-based Class AMDC [60], the descriptions have spatial and tem-

poral redundancy that can be used at the decoder to apply either spatial or temporal

concealment method. In a related previous work [64], this selection of concealment

method for a four-description MDC is made only based on the type of received de-

scriptions. The concealment performance is further improved by using an “adaptive”

concealment strategy such that the decoder selects a method based on some analysis

for each lost unit such as a frame or an MB from the H.264 standard. A frame-

level method uses error tracking to adaptively select the concealment strategy for the

four-description MDC [91]. Another adaptive method uses foreground-background

and distortion mappings to make the selection for each lost MB [92]. A detailed de-

scription of these methods is presented in [29, 230]. However, both of these adaptive

methods require reliable transmission of the additional or “side” information to the

decoder. Sending the side information also adds to the data rate. They also require

a considerable pre-processing at the encoder. This is not always feasible in many

real-time transmission scenarios. In this chapter, we describe our proposed adaptive
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concealment methods for subsampling-based MDC architectures [96–98]. Our adap-

tive methods make use of the bitstream-embedded parameters, hence not requiring

any side information.

2.1 Temporal-Spatial Four Description MDC

A four description MDC architecture is shown in Figure 2.1. This architecture is

used to develop various non-adaptive and adaptive error concealment approaches that

are discussed in [29,64,91,92,96,97,231]. The original video sequence is first split along









































Fig. 2.1.: Temporal-spatial four description MDC architecture

temporal dimension into two subsequences. One is from all the odd-numbered frames

and the other is from all the even-numbered frames. Each of the two subsequences

is then partitioned along spatial dimension into two descriptions through horizontal

downsampling. Odd columns in a frame form one description, and even columns form

the other description. As a result, Even1 and Odd1 are from odd columns of even-

numbered frames and odd-numbered frames respectively, while Even2 and Odd2 are

from even columns of even-numbered frames and odd-numbered frames respectively.

“Even” and “Odd” refer to even-numbered frames and odd-numbered frames. The
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subscripts “1” and “2” denote odd columns and even columns of each frame at original

resolution. For example, “Even1” denotes the odd columns from even-numbered

frames after horizontal downsampling. The newly generated four descriptions are

encoded independently and are sent through the same or different channels. This is a

Class A method that we discussed in Chapter 1 and which has good mismatch control

at the cost of losing some coding efficiency [60]. We call two descriptions generated

from the same frames “spatially neighboring” descriptions. Two pairs of spatially

neighboring descriptions are: Even1-Even2 and Odd1-Odd2. We call two descriptions

generated from the same column locations as “temporally neighboring” descriptions.

Two pairs of temporally neighboring descriptions are: Even1-Odd1 and Even2-Odd2.

The descriptions generated with the proposed splitting mechanism possess inherent

spatial and temporal correlations. Spatial concealment is performed by applying a

two-neighbor bilinear filter. For temporal concealment, the pixel value of the same

position from the previous frame is used.

When the four descriptions are correctly received, each description can be decoded

independently. The final reconstructed video is the combination of the four decoded

sub-videos. However, when packet loss occurs during transmission, joint decoding

is performed. Depending on the packet the network has suffered from, the decoder

is presented with a particular decoding scenario. For four descriptions, there are 16

such scenarios. The following two schemes are developed using spatial and temporal

concealment as default methods respectively. In the “default-spatial” concealment

scheme, spatial concealment is used as the primary method and temporal concealment

as a secondary method.

Table 2.1 shows the error concealment scheme for each packet loss scenario, where

the first row indicates which descriptions of the Odd sequence are received and the first

column indicates which descriptions of the Even sequence are received. “Odd1+Odd2”

means both Odd1 and Odd2 sequences are received, “Odd1” means only Odd1 of the

Odd sequence is received and “Loss” in the first row denotes that neither Odd1 nor

Odd2 is received. Similarly, “Even1+Even2” denotes both Even1 and Even2 sequences
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Table 2.1: Error concealment schemes: Default spatial scheme

are received, “Even1” means only Even1 of the Even sequence is received and “Loss”

in the first column denotes neither Even1 nor Even2 is received. “Spatial-Temporal”

means spatial concealment is done first then temporal concealment is done.

According to Table 2.1, when one description is received, such as Odd1, we use

spatial concealment to conceal Odd2 first and then use temporal concealment to con-

ceal Even1 and Even2. When two descriptions are received, if the two descriptions are

from the same spatial correlation such as Odd1 and Odd2, we use temporal conceal-

ment to conceal Even1 and Even2, otherwise we use spatial concealment. When three

descriptions are received, we use spatial concealment. When the four descriptions are

lost at the same time, we use the previously decoded reference frame for concealment

which is called “Frame Repeat” in the table.

Table 2.2: Error concealment schemes: Default temporal scheme

The default temporal scheme is summarized in table 2.2. The difference from

the default spatial is that it uses temporal concealment as the primary method and

spatial concealment as the secondary method. Note that in table 2.1 and table 2.2,
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the concealment methods differ in 6 scenarios shaded in blue. For these scenarios, the

default Spatial scheme uses the spatial concealment, whereas the default Temporal

scheme uses the temporal concealment.

2.2 H.264 Bitstream-Based Adaptive Error Concealment

The above described default spatial and default temporal methods give good

concealment performance only for either “higher” or “lower” motion videos respec-

tively [64]. Table 2.3 summarizes our MB-level adaptive concealment scheme for

different MB receiving scenarios. Our adaptive concealment approach for various MB

Table 2.3: Error concealment schemes: Adaptive scheme

loss scenarios is summarized in Table 2.3. The MBs from different descriptions having

the same MB index (raster-scan order) are labeled as Mk; where “k” is the description

index such that kε{Odd1, Odd2, Even1, Even2}.

1) No Loss: If each Mk is received, joint decoding without any concealment is done.

2) One Description Loss: When one of the Mk’s is lost, Adaptive Concealment

Using Motion Vector Analysis is done.

3) Two Description Loss: When two of the Mk’s are lost, there are three possible

scenarios: (a) When MBs from spatially correlated descriptions are lost (e.g. MEven1

and MEven2), then the MBs are concealed from their respective temporally correlated

descriptions (e.g. MOdd1 and MOdd2) using Temporal Concealment. (b) When MBs

from temporally correlated descriptions are lost (e.g. MEven1 and MOdd1), then the

lost MBs are concealed from their respective spatially correlated descriptions (e.g.
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MEven2 and MOdd2) using Spatial Concealment. (c) When MBs from different spatial-

temporal correlation are lost (e.g. MEven1 and MOdd2), then Adaptive Concealment

Using Motion Vector Analysis is used.

4)Three Description Loss: When three of Mk’s are lost (e.g. MEven1 , MEven2 and

MOdd1), then first, Spatial Concealment and Temporal Concealment are done to con-

ceal the correlated descriptions (e.g. MOdd1 and MEven2 respectively) and then Spatial

Concealment is used to obtain the MB from the remaining description (e.g. MEven1).

5)All Description Loss: When MBs from all descriptions are lost, they are con-

cealed from the previous frame by Temporal Concealment.

Notice that, Adaptive concealment method is used in 6 out of 16 possible scenarios.

As seen earlier in Table 2.1 and Table 2.2, this scheme also differs in the same six

scenarios (highlighted in yellow) where any of the basic concealment methods can

be used for concealment. So, the decoder decides adaptively which of these basic

methods are to be used based on a certain mathematical criteria.

We next describe our proposed two adaptive concealment methods that can se-

lect either spatial or temporal concealment for each lost MB based on H.264 MDC

bitstream parameters. Our first method is based on using motion vectors (MVs) and

our second method is to use error estimation for selecting the type of concealment.

2.2.1 Motion Vector Analysis Method

Our first adaptive method is based on the analysis of motion vectors (MVs) to

classify an MB as “Higher” or “Lower” motion and then selecting either spatial or

temporal concealment [96]. Recall that in a typical video encoder Inter prediction is

done using motion compensated prediction (MCP). Motion estimation (ME) gener-

ates MVs to specify the amount of translational motion to do the MCP for Inter-coded

pixel-blocks. ME is out of the scope of a typical standard, yet a “good” encoder imple-

ments ME that gives a fair idea of the amount of movement of that MB as compared

to previous frame. We do not suggest any particular ME method for the encoder
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but assume that it implements a fair ME algorithm. This is typically the case with

most standard-compliant bitstreams utilizing the compression potential the way it is

intended. We extract the motion information in the form of MVs from the received

bitsream and use it to estimate the motion from a lost MB. This is described next.

The term “macroblock (MB)” refers to a submacroblock in one of the four represen-

tations encoded using the H.264 standard [8].

Average Motion of a Macroblock: For a received MB, we estimate the aver-

age motion within it as the weighted average of all motion vectors associated with

different partitions of that MB. Let M be a MB from a received slice and N be

the total number of partitions in M . Let the i ’th partition of M have pixel dimen-

sions of (P × Q)i and motion vectors as ((mvx)
i, (mvy)

i). For example, consider

an MB with partition P 16x8 with motion vectors of (2,2) and (-4,6). In this case,

(P × Q)1 = (16 × 8) and (mvx)
1 = 2, (mvy)

1 = 2. Similarly, (P × Q)2 = (16 × 8)

and (mvx)
2 = −4, (mvy)

2 = 6. Now, (βx)M , the average absolute motion in the

x-direction for M is given by:

(βx)M =

∑N
i=1 |(mvx)i| ∗ (P ×Q)i

∑N
i=1(P ×Q)i

(2.1)

Similarly, in y-direction:

(βy)M =

∑N
i=1 |(mvy)i| ∗ (P ×Q)i

∑N
i=1(P ×Q)i

(2.2)

where, (βy)M is the average absolute motion in the y-direction for M . For the bi-

predictive mode present in a partition, the effective motion vectors are obtained by

the weighted average of two motion vectors and used as ((mvx)i, (mvy)i) in the above

equations. The average motion (γ) within the MB M is:

γM =
√

(βx)2M + (βy)2M (2.3)
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Estimating Motion of a Lost Macroblock: Recall that the 4 descriptions are

spatially and temporally correlated, we estimate the average motion of a lost MB

from the average motion of the received MBs that are highly correlated to the

lost MB. Let M be a set of correlated MBs; in which each member Mk has the

same raster-scan order (MB index), but belongs to a different description. “k” is

the description index such that k ε {Odd1, Odd2, Even1, Even2}. Therefore M =

{MOdd1 ,MOdd2 ,MEven1 ,MEven2} is a set of spatially and temporally correlated MBs

for a particular MB index. The average motion within a lost MB (Ml ε M) is esti-

mated from the received MBs from M . When one of the Mk’s is lost, the average

motion within it (γ̂Ml
) is estimated as:

γ̂Ml
=

∑R
i=1 γMi

R
(2.4)

where “R” is the number of received MBs from M and γMi
is the average motion of

a received MB Mi (ε M). If R = 0, no motion data is available for that MB.

Adaptive Concealment Using Motion Vector Analysis: When the conceal-

ment data is available from both the concealment methods above, the joint decoder

makes a choice between them based on the motion analysis. Then a lost MB i.e. Ml

(εM) is concealed in the following steps:

1) The received and the lost MBs within the set

M = {MOdd1 ,MOdd2 ,MEven1 ,MEven2} are identified.

2) The average motion values of all the received MBs from M are obtained by equa-

tion 2.11.

3) The average motion within Ml is estimated by equation 2.6

4) A globally-defined threshold (T) is used on this estimated value of average motion

to label the MB as either “Higher” or “Lower” motion. This threshold has units of

a quarter-pixel and has a constant value for all video sequences.

5) If the MB is labeled as “Higher” motion, Spatial Concealment is used; otherwise

(for an MB labeled as “Lower” motion) the Temporal Concealment is used.
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2.2.2 Error Estimation Method

The goal of error concealment is to minimize the amount of error caused due to

packet loss. An adaptive choice can be made using estimates of error introduced by

using each method to conceal the video contents within the lost packets. This error

depends on the codec and its parameters, the packetization strategy, the decoder

error concealment and the video content [232]. We next describe our second adaptive

concealment method based on error estimation at the decoder [97].

In this method, our MDC encoder is configured to preprocess a short segment of

the sequence to compute sequence-specific parameters that are sent to the decoder

with the picture parameter set (PPS) of the H.264 [8]-encoded bitstream. We develop

a model to estimate total error (in terms of MSE) caused due to concealment that is

used for the lost MBs. We call this “concealment error.” The error due to quantiza-

tion (quantization error) is modeled as being independent of the error due to packet

loss (concealment error). We consider using an NR method based on analyzing lost

MBs based on the parameters extracted from the bitstream. For a particular lost

MB, only one concealment scheme (spatial or temporal) is used. At each conceal-

ment, one new type of concealment error is introduced and propagated across the

reconstructed video. To adaptively select the best error concealment, it is useful to

estimate the potential effects of a concealment when it is introduced. To be able to

do this, we need to take into account the frame type (I/P or B) (FRAMETYPE ),

average distance from a reference frame (average of DistToRef ), a property of the

GOP structure, motion parameters such as the average estimated motion within a

lost MB (MOTM ) computed from neighboring motion vectors and an occurrence of

scene change (SceneChange) [232, 233]. With these parameters, we assume that the

contributions of spatial and temporal concealment errors to the total concealment

error (denoted by ε̂2c) are separable. We assume this because for each lost MB, only

one type of concealment is used [94].
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Let ε̂2c be the total concealment error. Let ε̂2Temp and ε̂2Sp be MSEs due to temporal

and spatial concealment respectively.

ε̂2c = ε̂2Temp + ε̂2Sp (2.5)

Temporal Concealment Error

Error caused due to temporal concealment depends on FRAMETYPE, average of

DistToRef and decoder concealment strategy. We copy pixels from temporally neigh-

boring description to conceal a lost MB. Therefore, MOTM is also used as a model

parameter.

Let ε̂2Temp,k be the total MSE due to temporally concealed MBs of FRAMETYPE

k (kε{I, P,B}).

ε̂2Temp =
∑

kε{I,P,B}

ε̂2Temp,k (2.6)

Now, consider ε̂2Temp,k. Let γ̂Ml
be the estimated average motion of a lost MB Ml as

computed in [96]. Changing the notation slightly to accommodate FRAMETYPE, let

γ̂j,i be the estimated average motion of the ith temporally concealed MB of FRAM-

ETYPE j (jε{P,B}). γ̂j,i is used as a measure of MOTM. Let total number of

temporally concealed j MBs be NTemp,j. We use a linear model for ε̂2Temp,j.

ε̂2Temp,j = CTemp,j

NTemp,j
∑

i=1

γ̂j,i
Dj

(2.7)

where Dj is average of DistToRef that depends on FRAMETYPE and GOP struc-

ture. CTemp,j is a multiplier for the ith MB, modeled as being constant over all i ’s

for a specific FRAMETYPE j.

Spatial Concealment Error

Spatial concealment is achieved by using a bilinear filter on the spatially neighboring

description. Therefore we consider only FRAMETYPE and sequence-specific con-

stants CSp,k where kε{I, P,B}. We use the model that the total error due to spatial

concealment is linearly related to the number of spatially concealed MBs.

ε̂2Sp =
∑

kε{I,P,B}

CSp,k ×NSp,k (2.8)
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where, NSp,k is the count of lost k MB that are spatially concealed.

Adaptive Error Concealment Using Error Estimation The four description

MDC encoder is configured to process a short segment of the sequence to deter-

mine sequence-specific parameters: CTemp,j (jε{P,B}) and CSp,k (kε{I, P,B}) that

are made available to the decoder using the sequence parameter set (SPS). For each

SceneChange occurrence an SPS is sent with the new parameter estimates.

1) The decoder computes ε̂2Sp,Ml
and ε̂2Temp,Ml

for the lost MB (Ml) based on Equa-

tions 2.9 and 2.10.

ε̂2Temp,Ml
= CTemp,j ×

γ̂Ml

Dj
(2.9)

ε̂2Sp,Ml
= CSp,k (2.10)

2) The decoder selects the concealment method as following:

ε̂2Sp,Ml
≤ ε̂2Temp,Ml

→ Spatial Concealment

ε̂2Sp,Ml
> ε̂2Temp,Ml

→ Temporal Concealment

In the next section, we present another subsampling-based MDC with adaptive

error concealment for HEVC [9]-encoded bitstreams [98].

2.3 Spatial Subsampling-Based MDC

As shown in Figure 2.2, the original video sequence is split into two subsequences

by using even and odd numbered columns of pixels in each frame. Each is indepen-

dently encoded using an HEVC [9] encoder to produce two encoded bitstreams. We

denote the descriptions as the Even and Odd descriptions. One description is known

as the “neighboring” description of the other. Note that the frame rate for each

encoded description is the same as the original video sequence. When transmitted

across the network the descriptions may undergo packet-loss. The receiver uses an
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Fig. 2.2.: Our spatial subsampling-based MDC framework.

adaptive error concealment method to jointly decode the descriptions to reconstruct

the video. The use of independent encoding loops for the two descriptions is used to

provide a better robustness against error propagation.

The next section describes an adaptive error concealment for this architecture.

2.4 HEVC Bitstream-Based Adaptive Error Concealment

Coding tree unit (CTU) is the basic coding structure used in the HEVC stan-

dard [9]. It is analogous to MB defined in the H.264 standard. A slice consists of an

integer number of CTUs. When a packet is not received before the display time of its

video contents, all CTUs within that packet are lost. A lost coding tree unit (CTU) is

concealed from a set of CTUs (if received) in the spatial and temporal neighborhood

of the lost CTU. We consider the top (T), left (L), temporally collocated (C) and

neighboring description (N) CTUs and the entire previous frame for concealment. As

shown in Figure 2.3, we describe the following basic concealment methods.

Spatial Concealment (Sp)

A Lost CTU is concealed from the CTU with the same index in its neighboring de-

scription. A bilinear filter is used to interpolate the pixel values. e.g. a lost CTU

from Even is concealed from Odd.

Temporal Concealment
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Fig. 2.3.: Basic concealment schemes.

A lost CTU is concealed using a motion compensated block of pixels using the previ-

ous frame as the reference frame and a motion vector denoted by mvcx,mvcy. We use

this motion vector for the entire CTU and it is computed as the weighted median of

all motion vectors belonging to the CTUs used for concealment in the following way:

We denote the set of CTUs used for concealment by Sc. We extract the coded

information such as prediction unit (PU) partitions, their motion vectors and the ref-

erence frames for CTUs belonging to Sc. A motion vector is scaled using the distance

to the reference frame. Distance to the reference frame is the difference in the display

count of the current frame and that of the reference frame used to obtain the motion

compensated prediction signal for that PU.
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mvx,sc =
mvx
d

,mvy,sc =
mvy
d

, (2.11)

where d is the distance to the reference frame and (mvx,sc,mvy,sc) is the scaled motion

vector.

Let M be a set of scaled motion vectors from the prediction units (PUs) belonging

to Sc and W be a set of motion vector weights expressed as the numbers of pixels

belonging to the corresponding PUs. For example, a motion vector (3,−5) represent-

ing a PU of size 32× 32 has the weight 32× 32 = 1024. Therefore, the values 3 and

−5 have the weight of 1024. Weights are considered as the number of occurrences of

each vector. Median of m numbers each with multiple occurrences is computed by

placing the numbers in ascending order with each number appearing so many times

as its occurrence (or weight) and selecting the number at the center of the order.

This is done separately for X- and Y-components of scaled motion vectors. Thus,

mvcx and mvcy are computed as weighted median motion vector components using the

set of scaled motion vectors, M and their corresponding weights, W . Based on Sc

i.e. the set of CTUs used for concealment, we describe the following two temporal

concealment methods:

Method T-I : A Lost CTU is concealed using motion information from the CTU

having the same index from the previous frame from the same description and the

CTUs at top and left of the lost CTU in the current frame. Therefore, Sc = {C,L, T}.

Method T-II : A Lost CTU is concealed using motion information from the CTU

with same index in its neighboring description. Therefore, Sc = {N}.

For temporal concealment, we use motion compensated concealment using the

median motion vector computed from spatially or temporally neighboring CTU in-

formation. Therefore, T-I or T-II uses the previous reconstructed frame from the

same description and the displacement vector computed using a set of neighboring

CTUs. Whereas, Sp uses reconstructed pixels from the current frame of the neigh-

boring description. To do adaptive concealment for a lost CTU, Sp and T-II are

considered as candidates.
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Inter-to-Intra Ratio: To determine the most suitable of the two candidates, we

first examine the same index-CTU from the neighboring description by counting the

numbers of pixels coded as Inter and Intra. We denote the ratio by βN .

βN =
Number of Inter pixels in CTU “N”

Number of Intra pixels in CTU “N”
(2.12)

where N denotes the same-index CTU from the neighboring description. A large

number of Intra pixels relative to Inter is considered as lower dependency on the

previous frame. This is due to the rate-distortion mode decision by the encoder that

may be indicative of lower spatial prediction errors produced due to higher spatial

consistency, a complex motion of the existing objects, new object being introduced or

scene change in the current frame. Therefore, if βN is lower than a threshold (τβ), we

use Sp that uses pixels from the current frame of the neighboring description, rather

than T-II, a motion compensated temporal method.

Motion Non-Uniformity: If βN is higher than τβ, a second criterion, non-uniformity

of motion vectors in a CTU, is tested. We process the motion vectors from Inter -coded

PUs of the same-index CTU from the neighboring description. Let (mvcx,N ,mvcy,N) be

the weighted median motion vector using the same-index CTU from the neighboring

description, as indicated in Method T-II. Let (mvix,sc,N ,mviy,sc,N) be the scaled motion

vector from ith PU of the same-index CTU from the neighboring description. Assume

that ith PU consists of wi pixels. Now, we compute motion non-uniformity γx and

γy in X- and Y-direction using weighted sum of absolute differences (SAD):

γx =

∑R
i=1wi · |mvix,sc,N −mvcx,N |

∑R
i=1 wi

, (2.13)

γy =

∑R
i=1 wi · |mviy,sc,N −mvcy,N |

∑R
i=1 wi

, (2.14)

γ = γx + γy, (2.15)

where R is total number of PUs and γ is total motion non-uniformity in the CTU. If

γ is higher than a threshold τγ, Sp is chosen. Otherwise T-II is done using (mvcx,N ,

mvcy,N) as motion vector for motion compensated temporal concealment.
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Our adaptive method is summarized below.

Adaptive Concealment Method
Require: A lost CTU where its corresponding CTU from the neighboring description is received.

Get motion vector data and mode information of the received neighboring CTU.

if βN < τβ then

Conceal the lost CTU using Sp. {Higher spatial dependency}

else if γ > τγ then

Conceal the lost CTU using Sp. {Motion non-uniformity}

else

Conceal the lost CTU using T-II, with (mvcx,N , mvcy,N ) as motion vector for motion compen-

sated temporal concealment.

The Proposed concealment Scheme

Our proposed adaptive concealment scheme is shown in Figure 2.4 using different loss

scenarios. The CTUs from Even and Odd descriptions having the same index are

considered during the lost CTU concealment.

1) No Loss: If both CTUs are received, decoding without any concealment is done.

Fig. 2.4.: Adaptive concealment scheme.

2) One Description Loss: When a CTU from either Even or Odd description is

lost, Adaptive concealment is done according to the method described above.

3) Two Description Loss: When the same-index CTUs from both descriptions are

lost, they are concealed using Method T-I.
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2.5 Experimental Results

In this section, we present the experimental results of our three adaptive error

concealment methods for test video sequences [96–98].

2.5.1 Network Channel Model

In a typical network scenario, packet loss patterns are usually bursty. Therefore,

simply using a symmetric packet loss model cannot represent the realistic network

transmission characteristics. In this work, a Gilbert model is used as the channel

model for burst packet loss [29,234]. Packet loss rate considered is generally between

0 and 0.6, and burst-length is between 2 and 20. When packet loss rate is small,

burst length is large; and vice versa [235]. The theoretical details of Gilbert model

using state transition probabilities are presented in [29,235]. The parameters for the

Gilbert model in our experiments are listed in Table 2.4.

Table 2.4: Gilbert model parameters for various packet loss rates: Adaptive error

concealment

Loss Rate 5% 10% 15% 20% 25% 30%

Burst Length 5 5 4 4 3 3

2.5.2 Motion Vector Analysis Method

We first compare the performance of our motion vector analysis method with

the two non-adaptive default spatial (Sp) and default temporal (Temp) concealment

methods. The temporal-spatial four description architecture with adaptive conceal-

ment methods is implemented by modifying the H.264 reference software: JM version

17.1. Three video sequences Mother-Daughter, News and Foreman are used in our

experiments. The test sequences used are CIF resolution at 30 frames/sec with 200-
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frame length, thus each description has 100 subframes at 15 frames/sec. The coding

structure is “IBBBPBBBP...”, with I-frame refresh every 15 subframes in each de-

scription. The quantization parameters for I frame and P frame are 18, 22, 26, 30,

34 and 38 and the deblocking filter is disabled.

I-frames are assumed error-free. Packetization was carried out as fixed MBs per

packet (22 MBs/packet). All the experiments are run 100 times with different permu-

tations of lost packets for each packet loss rate and the results represent the average

of the PSNR obtained from these loss patterns.

Figures 2.5 and 2.6 show the packet loss performance of our adaptive method at

packet loss rate from 5% to 30% for the Mother-Daughter and the News sequences

respectively. For the Mother-Daughter sequence, Sp slightly outperforms Temp and

for the News sequence, Temp clearly out performs Sp. In both the cases, our proposed

method does better than Sp and Temp. This is indicative of the fact that our method

is adaptive to the amount of motion present in the sequence. As seen in Figure 2.8

and 2.9, there is a clear visual difference between the quality of images obtained

from different methods. Our proposed method has produced sharper images with

less distortions.

For the Foreman sequence, the foreground figure occupies a large portion of an

image, resulting into a large average absolute motion. Most MBs have significantly

large motion vectors. As seen in Figure 2.7, Sp outperforms Temp in an obvious way.

Our proposed method is close to Sp, but performs slightly worse than Sp. In this case,

ideally, our proposed method should give the same performance as Sp if not better.

However, our analysis of the motion is solely based on the received motion vectors

which may not accurately represent the true motion. The threshold (T) that we use

to classify motion, is fixed for all sequences. Hence, it adapts to the motion, with a

fixed algorithm, to choose among the best concealment methods for each sequence.

In Figure 2.7, our proposed method does better than Temp with a significant margin

and is very close to Sp. This shows that our proposed method has identified the
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Fig. 2.5.: Packet loss performance comparison for the Mother-Daughter sequence.
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Fig. 2.6.: Packet loss performance comparison for the News sequence.



56

0 1000 2000 3000 4000
28

30

32

34

36

38

40

42

Data Rate(kbps)

PS
N

R
(d

B)

 

 
M:5%
Sp:5%
Temp:5%

(a) Packet Loss: 5%

0 1000 2000 3000 4000
26

28

30

32

34

36

38

Data Rate(kbps)

PS
N

R
(d

B)

 

 
M:10%
Sp:10%
Temp:10%

(b) Packet Loss: 10%

0 1000 2000 3000 4000
26

28

30

32

34

36

Data Rate(kbps)

PS
N

R
(d

B)

 

 

M:15%
Sp:15%
Temp:15%

(c) Packet Loss: 15%

0 1000 2000 3000 4000
26

28

30

32

34

36

Data Rate(kbps)

PS
N

R
(d

B)

 

 
M:20%
Sp:20%
Temp:20%

(d) Packet Loss: 20%

0 1000 2000 3000 4000
26

27

28

29

30

31

32

33

Data Rate(kbps)

PS
N

R
(d

B)

 

 

M:25%
Sp:25%
Temp:25%

(e) Packet Loss: 25%

0 1000 2000 3000 4000
26

27

28

29

30

31

32

Data Rate(kbps)

PS
N

R
(d

B)

 

 

M:30%
Sp:30%
Temp:30%

(f) Packet Loss: 30%

Fig. 2.7.: Packet loss performance comparison for the Foreman sequence.
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presence of “Higher” motion based on the motion vector analysis and chosen the

correct concealment method for most of the lost MBs.

(a) M (b) Sp

(c) Temp (d) No Packet Loss

Fig. 2.8.: Performance comparison for the Mother-Daughter sequence with identical

packet loss against no packet loss.

Therefore, we can conclude from Figure 2.5 and 2.6 that our proposed method has

an obvious improvement over the other two methods for sequences with a combina-

tion of “Higher” and “Lower” absolute motion. For a sequence containing “Higher”

absolute motion, our proposed method has an obvious improvement over Temp and is
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(a) M (b) Sp

(c) Temp (d) No Packet Loss

Fig. 2.9.: Performance comparison for the News sequence with identical packet loss

against no packet loss.

close to Sp (as shown in Figure 2.7). In general, our proposed method has improved

the previous work by adapting to any type of sequences.

2.5.3 Error Estimation Method

We first describe the error estimation performance with parameter estimation at

the encoder and the next describes the adaptive error concealment performance at the
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decoder subjected to simulated packet loss. This set of experiments was performed at

the encoder using 25 frames of each description. The quantization parameters (QP)

used for I frames are 24, 28 and 32. P and B frames used 26, 30 and 34 as QPs. Each

experiment is repeated 25 times with different permutation of packet loss patterns.

The sequence-specific parameters are determined as the ratio of the average (taken

over all data points) actual MSE to the average (taken over the corresponding data

points) of summation terms from the error estimation expression. Table 2.5 sum-

marizes the estimated parameters for three tested sequences. These parameters are

computed only at the beginning of each sequence and applied for the whole sequence

of 200 frames.

Table 2.5: Estimated parameters for test sequences (×10−3)

Sequence CSp,P CSp,B CTemp,P CTemp,B

Bridge-Close 4.14 2.07 1.78 0.89

Foreman 2.1 1.0 1.31 0.66

Football 3.75 1.87 5.16 2.58
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Fig. 2.10.: Error estimation performance for the Foreman sequence.
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Fig. 2.11.: Error estimation performance for the Bridge-Close sequence.

Figure 2.10 and Figure 2.11 illustrate the results of our experiments with the

Foreman and the Bridge-close sequences. The results are presented as scatter plots

of estimated MSE Vs Actual MSE. The density of data points is higher close to the

45 degree reference line. Some estimates are falsely indicating higher/lower MSE

than the actual MSE. This is because firstly, the encoder is allowed to process only a

short sequence (25 frames/description) and secondly, the depth of bitstream-parsing is

limited to extracting relatively high-level parameters e.g. DCT coefficient information

is not considered in our framework. Both these constraints are used to maintain a

reasonable computational complexity at the encoder and the decoder. The results

presented below demonstrate that this level of accuracy is acceptable to adaptively

select spatial or temporal concealment for a lost MB.

Now we compare the performance of the adaptive error concealment method using

error estimation (“Proposed”) with the motion vector analysis method (“Old-ad”)

and the non-adaptive default spatial (Spatial) method. The experimental setup was

identical to that of motion vector analysis method.

Figure 2.12 shows the comparison for the Bridge-Close sequence. In this case,

“Proposed” and “Old-ad” clearly outperform “Spatial” in terms of PSNR. “Spatial”

is based on spatial concealment by default and Bridge-close has relatively lower mo-



61

0 500 1000 1500 2000 2500 300028

30

32

34

36

38

40

Data Rate (kbits/sec)

PS
N

R

 

 
5%:Old−ad
5%:Spatial
5%:Proposed
10%:Old−ad
10%:Spatial
10%:Proposed
15%:Old−ad
15%:Spatial
15%:Proposed
20%:Old−ad
20%:Spatial
20%:Proposed

Fig. 2.12.: Packet loss performance for the Bridge-Close sequence.

tion. Therefore both adaptive methods give better performance by selecting temporal

concealment for most lost MBs. Figure 2.13 shows the comparison for the Foreman

sequence. Here, “Proposed” and “Spatial” perform significantly higher than “Old-ad”

in terms of PSNR. This is indicative of the fact that our new adaptive method has

correctly identified the best concealment strategy (spatial) for most lost MBs using

error estimation, whereas “Old-ad” method which is based on a globally fixed thresh-

old has failed to choose the best concealment for most MBs, hence performing worse

than the other two. Figure 2.14 shows the comparison for the Football sequence,

where “Proposed” outperforms “Old-ad” by a narrow margin and performs equally

as that of “Spatial” in terms of PSNR. The margin is less because Football contains

relatively higher motion and the “Old-ad” identifies correctly more MBs containing

high motion.
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Fig. 2.13.: Packet loss performance for the Foreman Sequence.

Therefore, for each of the tested sequences, our proposed method outperforms one

of the two other methods in terms of PSNR. It performs equally as the other, hence

making itself adapt to any type of sequence based on error estimation.

2.5.4 HEVC Bitstream-Based Concealment Method

The experiments are implemented by modifying the HEVC reference software HM

8.2 decoder. Three video sequences RaceHorses, BasketBallDrill and PartyScene of

resolution 832× 480 are used for our experiments. The frame rate of BasketBallDrill

and PartyScene is 50 fps and for RaceHorses it is 30 fps. For each sequence, 200

frames of the two spatially-subsampled descriptions are encoded using a “IPPP...”

GOP structure with IDR-refresh every 16 subframes. The quantization parameters

(QP) used are 20, 24, 28 and 32. The deblocking filter and SAO are disabled. Pack-

etization is done such that each packet contains no more than 1500 bytes. We used
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Fig. 2.14.: Packet loss performance for the Football Sequence.

(a) Old-ad (b) Proposed

Fig. 2.15.: Performance comparison for the Foreman sequence with identical (10%)

PLR.
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adaptive concealment thresholds τβ = 10 and τγ = 1 for all sequences.

Side Reconstruction Performance: When the output video is reconstructed using

only one description, this is known as side reconstruction and it is done by decod-

ing the received description and concealing the lost one [34, 64]. When an Even or

Odd description is totally lost, we use Sp to conceal the totally lost description. The

results represent the average of the two loss cases i.e. lost-Even and lost-Odd de-

scription. Table 2.6 and Tabel 2.7 present the side reconstruction performance for

two sequences, RaceHorses and BasketBallDrill respectively, encoded using different

QPs. SDC represents single description reconstruction performance, while MDC has

two cases: one description received (Even or Odd) and both descriptions received.

When the receiver can only receive a half of the data due to bandwidth limitation

Table 2.6: RaceHorses sequence

SDC MDC

One (Even or Odd) Two (Even+Odd)

PSNR

(dB)

Data Rate

(kbps)

PSNR

(dB)

Data Rate

(kbps)

PSNR

(dB)

Data Rate

(kbps)

40.55 10775.1 32.52 7404.1 40.94 14808.2

36.95 5568.9 31.91 4187.3 37.54 8374.5

33.42 2693.5 30.79 2101.1 34.50 4202.2

30.54 1404.5 29.35 1032.7 32.00 2065.3

or network congestion, our proposed MDC method provides a graceful degradation

by providing one description and concealing the loss. In this case a set of either even

or odd columns from each frame is completely lost and concealed from the other set

of columns. The concealment method produces an acceptable quality of the recon-

structed video. When clients start receiving second description, the performance is

improved. In case of single description coding, if clients cannot receive data at the
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Table 2.7: BasketBallDrill sequence

SDC MDC

One (Even or Odd) Two (Even+Odd)

PSNR

(dB)

Data Rate

(kbps)

PSNR

(dB)

Data Rate

(kbps)

PSNR

(dB)

Data Rate

(kbps)

40.87 6693.5 32.77 4803.5 41.40 9606.9

38.04 3732.5 32.38 2723.9 38.94 5447.7

35.28 2077.1 31.68 1496.1 36.44 2993.1

32.82 1166.6 30.66 823.15 34.12 1646.3

rate required for transmission of encoded video, to avoid disruptions in displaying the

video contents, a lower quality video needs to be transmitted by the sender. Switching

to a lower quality video can also involve a noticeable time delay due to the receiver

sending feedback to the sender. Whereas, our proposed MDC method is able to re-

construct the contents based on the state of received descriptions.

Packet Loss Performance: Packet loss is caused when a network packet is not

delivered at the receiver at all or delivered after the display time of its video con-

tents. We now present the results of our experiments under packet loss conditions. A

Gilbert model is used to simulate packet loss pattern. When packet loss rate is small,

burst length is large; and vice versa [235]. We used burst length of 5 for 5% and 10%,

4 for 15% and 20%, and 3 for 25% packet loss. IDR-frames are assumed error-free.

Three sequences RaceHorses, BasketBallDrill and PartyScene encoded with different

QPs are tested for various loss rates. Each experiment is repeated 50 times with dif-

ferent permutation of packet loss patterns for loss rates of 5%, 10%, 15% (and 20%,

25% for PartyScene). The results represent the average of the Luma PSNR obtained

from these different loss patterns. The performance of our proposed adaptive method

(represented by “MDC”) is compared with SDC that uses T-I temporal concealment
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(represented by “SDC”).

Figure 2.16 and Figure 2.17 present the performance for RaceHorses and Basket-

(a) Lossless (b) Packet Loss = 5%.

(c) Packet Loss = 10%. (d) Packet Loss = 15%.

Fig. 2.16.: Packet loss performance comparison for RaceHorses sequence: MDC Vs.

SDC

BallDrill respectively. For both sequences, SDC outperforms MDC in “Lossless”

case. Our MDC is based on spatial subsampling before encoding. Two descriptions

are generated from separate HEVC encoding loops. Therefore, MDC loses some cod-

ing efficiency in the process as expected. When “5%” packets are lost, MDC begins

to outperform SDC for higher data rates. For RaceHorses, MDC performs equally

as or better than SDC for all data rates. For BasketBallDrill, MDC performs better

than SDC at rates higher than approximately 3000 kbits/sec. For the “10%” and

“15%” cases, MDC clearly outperforms SDC in terms of PSNR for both sequences.
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(a) Lossless (b) Packet Loss = 5%.

(c) Packet Loss = 10%. (d) Packet Loss = 15%.

Fig. 2.17.: Packet loss performance comparison for BasketBallDrill sequence: MDC

Vs. SDC

Note that, SDC has produced non-smooth rate-distortion curves, indicating a severe

degradation of performance. It shows that increase in the data rate does not ensure

a better performance in terms of PSNR.

As shown in Figure 2.18, for PartyScene, SDC performs better than MDC for “Loss-

less”, “5%” and “10%” cases. For cases “15%”, “20%” and “25%”, MDC and SDC

curves are close to each other at most data rates except one high PSNR value for

SDC, with one performing better than the other over certain ranges of data rates.

We observe that, MDC curves are smooth, with PSNR increasing with the data rate.

However, SDC curves exhibit unreliable trend of PSNR Vs. data rate. PartyScene se-

quence contains many pixel-level details and a lower QP may have been more effective
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(a) Lossless (b) Packet Loss = 5%.

(c) Packet Loss = 10%. (d) Packet Loss = 15%.

(e) Packet Loss = 20%. (f) Packet Loss = 25%.

Fig. 2.18.: Packet loss performance comparison for PartyScene sequence: MDC Vs.

SDC

to produce better reconstructed pixels than the effects of adaptive error concealment

method. A further analysis is needed to support this claim.
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(a) Without Concealment (b) With Adaptive Concealment

(c) Without Concealment (d) With Adaptive Concealment

Fig. 2.19.: MDC adaptive error concealment performance (luma) for RaceHorses and

PartyScene.

Figure 2.19 shows example frames from RaceHorses and PartyScene without and

with concealment. Some CTUs from the RaceHorses frame has undergone one de-

scription loss, and some have suffered from both description loss. Some CTUs from

the PartyScene frame have undergone one description loss. However, in both frames,

our adaptive method has concealed the losses reasonably well.

In conclusion, our proposed adaptive concealment methods developed for the

H.26x MDC bitstreams work well in terms of both PSNR and visual quality. They

provide a graceful degradation in performance with packet loss.
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3. VPX ERROR RESILIENT VIDEO CODING USING

DUPLICATED PREDICTION INFORMATION

As described in Chapter 1, in a typical video coding system, each square block of

pixels is predicted from previously decoded set of pixels. Each frame is divided into

partitions (and blocks) by the encoder. This prediction can be Intra that uses the

same frame or Inter that uses previously coded frame(s) and generally represented in

terms of Intra-direction mode or motion vectors (MVs). Prediction error is transform-

coded to provide additional information to the prediction signal [13]. A “good”

encoder generates partition and prediction signal such that it minimizes the prediction

error. Therefore, in case of frame-loss, it is important to recover its prediction signal

that mainly consists of partition, mode and motion information.

In this chapter, we propose a VPx-based video coding system that uses dupli-

cation of frame-level macroblock (MB) prediction information to provide error re-

silience [236].

3.1 System Architecture

As shown in Figure 3.1, a video sequence is encoded using a standard VPx encoder

with each encoded frame shown in blue. Our proposed system is designed to form an

“error resilience packet” (shown in yellow) for a given interval of time. This packet

consists of only the prediction information of each frame that was transmitted from

the occurrence of last error resilience packet. This packet follows syntax specific to

VPx standard. These packets are sent either embedded in the bitstream or over a

separate channel. When the VPx decoder receives the bitstream from a lossy network

(lost frames in red) it uses the corresponding error resilience packet (when available)

to conceal the lost frames to produce a reconstruction signal.
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Fig. 3.1.: Our proposed coding architecture

In VPx standard [10], every compressed frame has three or more parts. It begins

with an uncompressed data chunk comprising 10 bytes in the case of key (Intra) frames

and 3 bytes for Interframes. This is followed by two or more blocks of compressed data

known as partitions. The first compressed partition consists of two subsections: (a)

Header information that applies to the frame as a whole and (b) Per-MB information

specifying how each MB is predicted from the already-reconstructed data that is

available to the decompressor. The rest of the partitions contain, for each block, the

quantized DCT/WHT coefficients of the residue signal to be added to the predicted

block values [10]

In our proposed system, we duplicate, for each frame, the uncompressed data

chunk and the first compressed partition e.g. (a) header and (b) per-MB information.

We concatenate this information from N frames to form our error resilience packet.

This error resilience packet is sent after every N frames. The bitstream produced by

our system is not compliant with the current VPx standard.

3.2 Error Concealment

When a packet loss occurs, our proposed method the decoder uses the encoded

prediction information obtained using the error resilience packet to reconstruct the

prediction signals for that frame. This is different than a conventional VPx decoder
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that uses previous frame’s encoded or pixel information to estimate the lost frame.

For Interframe, the decoder forms motion compensated prediction signal using the

motion information: mode, motion vectors and reference frame to reconstruct the

Interframe prediction signal. Residue information cannot be recovered because it is

not duplicated and sent via the error resilience packet. In case of a lost keyframe, the

decoder forms Intra prediction signal for each coded MB. However, recovering a lost

keyframe using this method is not very effective because often the keyframe relies on

the transform coefficients to reconstruct the initial block.

3.3 Experimental Setup

We modified the VPx software available on the WebM website [16] for our prelim-

inary experiments. We used the VP9 encoding options [11], mainly “codec”, “good”,

“error-resilient”, “cpu-used”, “target-bitrate”, “kf-max-dist” to obtain different en-

coded bitstreams [237]. Details of these parameters are listed in Table 4.1.

The following are our encoding commands:

./vpxenc -w <Width> -h <Height> --i420 --verbose --psnr -o <out.webm>

--codec=vp9 --good --cpu-used =<0/1/2> --end-usage=cbr --fps=<fps>/1

--passes=1 --target-bitrate=<500-15000> --kf-min-dist=0 --kf-max-dist=

<15/25> --error-resilient=1 <in.yuv>

We assume one encoded frame is sent per packet. We also assume that the error

resilience packet is always loss-free. In our experiments we set “N” to --kf-max-dist.

We used a Gilbert model as a packet loss simulator [64]. When the packet loss rate

is small, burst length is large; and vice versa [235]. We used burst length of 5 for 5%

and 10% packet loss rate. The test sequences used for our experiments are listed in

Table 3.2.
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Parameter Description Value

-w, -h Spatial dimensions of a frame (width and

height) of the video sequence in .yuv format

832× 480 or

1280× 720

--fps Output frame rate, expressed as a fraction 30/1, 50/1

or 60/1

--i420 Input file uses 4:2:0 subsampling –

--good --good quality and --cpu-used=0 typically

gives quality that is usually very close to

and even sometimes better than that obtained

with --best with the encoder running approx-

imately twice as fast.

–

--cpu -used This sets target cpu utilization = 100 ×

(16−cpu-used)
16 %

0, 1 or 2

--codec Codec to use VP8 or VP9 vp9

--end -usage Rate control mode specifying constant bitrate,

variable bitrate or constrained quality

cbr

--target

-bitrate

Target bitrate in kbps 500− 15000

--error

-resilient

Specifies usage of video conferencing mode 1

--kf-min -dist Minimum keyframe interval (frames) 0

--kf-max -dist Maximum keyframe interval (frames) 15, 25 or 30

--passes Specifies one-pass or two-pass encoding 1

--psnr Shows PSNR in status line –

--verbose Shows encoder parameters –

Table 3.1: VPx encoding parameters used in our experiments
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Sequence Spatial Frame Number of --kf-max

Resolution Rate frames -dist

BasketBallDrill 832× 480 50 500 25

RaceHorses 832× 480 30 300 15

PartyScene 832× 480 50 500 25

KristenAndSara 1280× 720 60 600 30

Johney 1280× 720 60 600 30

Table 3.2: Test sequences used for our experiments

3.4 Results And Analysis

Figure 3.6 (a) - (e) show the packet loss performance of our proposed method

for test sequences. For each test sequence, PSNR vs. data rate is depicted for

lossless, 5% and 10% packet loss cases. “VP9-m” indicates our proposed method

using the encoding parameter --cpu-used, where “m” can take values “0”, “1” or

“2”. Encoded bitstreams for different data rates are obtained using the parameter

--target-bitrate. Note that, due to the error resilience packets, our bitstreams

have a higher data rate (as reported in Figure 3.6 (a) - (e)) than the actual value

specified using --target-bitrate for each data point. For example, for KristenAnd-

Sara, using --target-bitrate=2000 and --cpu-used=1 actually produced 2387.78

kbits/sec using our proposed method. The additional data rate accounts for an error

resilience packet sent after every N frames. Our reported data rate numbers obviously

include the additional data rate due to error resilience packets.

For each sequence, our method produces acceptable PSNR values in presence of

packet loss. As packet loss increases, our method shows a graceful degradation in per-

formance. When the --cpu-used parameter is increased, PSNR performance is also

slightly degraded. According to Table 4.1, --cpu-used=0 means the highest CPU

usage among the values we used (“0”, “1” and “2”). Therefore, as this number in-
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creases, PSNR typically decreases. This is because the amount of CPU used to encode

the bitstream becomes smaller as the value of --cpu-used is increased, indicating less

efforts taken for encoder-controlled operations such as motion estimation.

Figure 3.7 - 3.12 show visual performance of our proposed method using the

luma component of some example frames of the test sequences. Each figure contains

(a) original frame, (b) decoded frame without any packet loss and (c) decoded frame

when it was lost during transmission and concealed at the decoder using our proposed

method. As shown in examples from Figure 3.7 - 3.12, each lost frame is successfully

concealed in most parts of the frame. For BasketBallDrill example shown in Fig-

ure 3.7, the areas near moving parts (e.g. the ball, players’ hands and legs) contain

blocky artifacts. In the example shown in Figure 3.8, 3.9 and 3.10 using RaceHorses

sequence, the darker moving areas with relatively uniform pixel intensity (e.g. horse)

contains blockiness. Figure 3.11 contains small artifacts in the high-texture area (e.g.

the hair of the woman on the left) of KristenAndSara sequence. An example of Johney

sequence, as shown in Figure 3.12, contains a small artifact in the moving area (e.g.

man’s face) of the frame. This is because the decoder only has the mode and motion

information of that frame and lacks any pixel-wise residue information.

Figure 3.13 and 3.14 show examples of failure cases we encountered, when only

the prediction information is not sufficient to produce an acceptable image quality

at the decoder. However, sending pixelwise residue information means a significant

increase in the data rate, which can be forbidden considering the bandwidth limitation

imposed by the transmission media.

In general, our VPx bitstream-based error resilience method can generally produce

an acceptable concealment outcomes both in terms of PSNR and the visual quality

in the case of lost packets.
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Fig. 3.2.: Packet loss performance for BasketBallDrill

Fig. 3.3.: Packet loss performance for RaceHorses
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Fig. 3.4.: Packet loss performance for PartyScene

Fig. 3.5.: Packet loss performance for KristenAndSara
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Fig. 3.6.: Packet loss performance for Johney

(a) Original (b) No Loss (c) Loss Concealed

Fig. 3.7.: BasketBallDrill sequence (frame no. 284)

(a) Original (b) No Loss (c) Loss Concealed

Fig. 3.8.: RaceHorses sequence (frame no. 148)



79

(a) Original (b) No Loss (c) Loss Concealed

Fig. 3.9.: RaceHorses sequence (frame no. 177)

(a) Original (b) No Loss (c) Loss Concealed

Fig. 3.10.: RaceHorses sequence (frame no. 280)

(a) Original (b) No Loss (c) Loss Concealed

Fig. 3.11.: KristenAndSara sequence (frame no. 164)

(a) Original (b) No Loss (c) Loss Concealed

Fig. 3.12.: Johney sequence (frame no. 53)
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(a) Original (b) No Loss (c) Loss Concealed

Fig. 3.13.: RaceHorses sequence (frame no. 183)

(a) Original (b) No Loss (c) Loss Concealed

Fig. 3.14.: KristenAndSara sequence (frame no. 360)
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4. JELLY FILLING SEGMENTATION

OF BIOLOGICAL STRUCTURES

In this chapter, we describe an iterative 3D segmentation method that we call “jelly

filling” [238], for biological images containing “incomplete labeling,” a specific prob-

lem seen in fluorescent microscopy images. We first discuss our image analysis goal.

4.1 Image Analysis Goal

(a) (b) (c)

(d) (e) (f)

Fig. 4.1.: Examples of our image data containing incomplete labeling
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Figure 4.1 shows some examples of our image data. Figure 4.1 (a), (b) and (c) show

images taken from a rat kidney in an in-vivo experiment during which, images are

taken from several hundred focal planes (in the depth dimension) representing a live

3D kidney specimen. The specimen contains proximal tubules with their associated

brush borders (or “lumen”) such that each tubule connects to a single glomerulus.

A tubule and its attached glomerulus is called a nephron. Figure 4.1 (a) consists of

data collected using two color channels: red and blue. The separated red channel

is shown in Figure 4.1 (b) that represents a cross-section of proximal tubules. The

objective of this study is to morphologically characterize single nephron by locating

the proximal tubules and glomeruli. Figure 4.1 (c) is a sample red channel image

from another kidney specimen. As seen in Figure 4.1 (b) and (c), the fluorescent dye

that labeled the tubule boundaries also labeled the brush borders, resulting into a

single color channel (the red channel) that represented two biological entities. We

call this problem “incomplete labeling.” Our image analysis goal is to identify the

tubule boundaries separated from the brush borders in 3D, using the images from

subsequent focal planes.

Figure 4.1 (d) and (e) are the red color channels of images taken from a rat liver.

For these images, the fluorescence of the dye labels cell boundaries and endothelia.

Our segmentation goal for this data is to highlight blood vessels and cell-cell junctions,

in order to quantitatively characterize the vascular space and hepatocytes.

Figure 4.1 (f) shows an example of a DCE-MRI breast images taken using the

TWIST Dixon pulse sequence technique [239]. It is intended that breasts from the

images are highlighted and isolated from the body. Another goal is to quantify fat

versus fibroglandular tissue inside each breast for quantification purposes.

All of the above types of data, thus contains “incompleteness in labeling” of dif-

ferent biological entities that can be discriminated based on their 3D structural prop-

erties. Our proposed approach is designed to provide 3D segmentation of biological

images that consists of separable individual entities characterized by closed shapes

outlined by their boundaries. Note that, we call the outer encapsulations (i.e. tubule,
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cell or breast boundaries) simply “boundaries” and the inside remains (i.e. brush

borders, endothelia/vascular space or fibroglandular tissues) “lumen” throughout the

description of our method.

An overview of our approach followed by the detailed description is presented

next.

4.2 Overview Of Our Approach

Figure 6.3 shows our proposed approach.

Fig. 4.2.: Proposed approach: Flowchart

As indicated above, the microscopy images (acquired from rat kidneys and livers)

consist of two-channels (red and blue) that reflect the fluorescence of the two dyes

added to the tissue. We first separate the red color channel to obtain grayscale images

Izp,c1 , where c1 represents the red-channel data. Adaptive thresholding is effective in

dealing with radial intensity drop in an image because a local statistic is used as a

threshold to segment each pixel as foreground/background. So, we first use adaptive

thresholding on Izp,c1 to produce a binary images.To be able to separate boundaries
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and lumen, we use an iterative segmentation approach that aims to detect “floating”

elements inside the disjoint regions corresponding to a biological encapsulations (such

as tubules, a liver cells or breasts). Intuitively, our method is based on filling a disjoint

region of an image with a “jelly-like” fluid with a unique label. This helps in the

detection of components that are floating within a “labeled-jelly”. The “viscosity”

of the jelly can be controlled using simple morphological operations such as erosion,

dilation using a specific structural element [164,240].

The images generally have a lower sampling rate in the z-direction and lumen

cannot be typically separated as an entirely separate 3D component from the tubule

boundaries. Therefore, instead of using a 3D component analysis, we use a 2D compo-

nent analysis to detect a part of lumen as a floating component in an image and then

use it to “correct” the segmented images from the adjacent focal planes, consequently

improving the 3D segmentation. We also use a 2D neighborhood voting potential

to consider the effect of neighboring segmented pixels. This is conceptually based

on region-growing techniques such as the one mentioned in [182, 183]. Each pixel is

segmented/classified as either belonging to “boundary” or “lumen” using a potential

function that considers the influence of these factors. This process is repeated until

the relative change (expressed as a percentage) in pixel classification decreases below

a fixed level for each image.

Details of the proposed segmentation method are provided next.

4.3 Jelly Filling Segmentation

Recall that Izp,c1 denotes the pth original red channel image. In this chapter, we

use only the red channel, hence the grayscale images representing the red channel of

the original images will be called Izp after dropping the color suffix in the notation

throughout this chapter. So, Izp are grayscale input images for our segmentation

method. Let STh,zp denote the binary images after adaptive thresholding. The it-

erative segmentation process begins with an initial configuration of boundaries and
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lumen denoted by ψ(i)
B,zp and ψ(i)

L,zp , respectively. Let ψ(k)
B,zp and ψ(k)

L,zp denote respec-

tively, the configuration of “boundaries” and “lumen”, obtained from Izp , after the

kth (k = 1, 2, 3, ...) iteration. The final segmented configurations of Izp are denoted

by ψ(f)
B,zp and ψ(f)

L,zp . A pixel from an image is denoted by s. Now we describe each

step of our proposed jelly filling segmentation.

Adaptive Thresholding: Our method employs initially an adaptive thresholding

scheme that uses 3D neighborhood information. The main objective of this step is

to separate the foreground that represents the presence of a biological structure. In

particular, let the w1×w2×w3 3D window (ΩTh) centered at pixel s and let τzp(s) be

the mean pixel intensity of the neighborhood ΩTh. The local mean τzp(s) is then used

as the corresponding thresholding value for s as indicated by Eq. 5.1 below, where

Izp(s) is used to denote the intensity of the pixel at location s:

STh,zp(s) =











1 if Izp(s) ≥ τzp(s)

0 if Izp(s) < τzp(s)
(4.1)

The outcome of this step is used as an initial segmentation. In particular, for the

pth image we set ψ(0)
B,zp

= STh,zp and ψ(0)
L,zp

≡ 0, that is all pixels that exceed their

corresponding thresholds are initially labeled as belonging to boundaries. This also

contains the pixels belonging to lumen, which are separated from the boundaries in

subsequent steps of the iterative framework.

Background Labeling: This step separates the disjoint background regions from

the output of the adaptive thresholding and assigns them with different labels. Be-

cause of the underlying biological structure, the background is composed of regions

belonging to different biological compartments that can be separated into disjoint

sets of pixels. Intuitively, this can be viewed as filling these disjoint compartments

(or encapsulated regions) with a “jelly-like” fluid. The viscosity of this fluid reflects

into the pixel neighborhood used for finding disjoint regions of the background.
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Consider a boundary configuration ψ(k−1)
B,zp obtained during the (k− 1)th iteration

that is to be used in the kth iteration. Let Λ(k)
zp denote the background image at the

kth iteration, and which is defined as:

Λ(k)
zp = {s|ψ(k−1)

B,zp (s) = 0}. (4.2)

Assume that there exist M disjoint background regions in Λ(k)
zp . Each such disjoint

background region is labeled as λ(k)
m,zp such that

Λ(k)
zp =

⋃

m=1,2,...M

λ(k)
m,zp (4.3)

and each λ(k)
m,zp can be considered to identify a group of pixels belonging to the biolog-

ical entity enclosed by the boundary. Each λ(k)
m,zp is obtained by applying connected

component labeling using a 4-point neighborhood to Λ(k)
zp [156].

Segmentation Based on a Potential Function P (·): The goal is to separate

the pixels belonging to lumen from those of boundaries. We consider three factors

that influence this separation:

• A pixel belonging to a “floating” component is likely to be segmented as lumen.

• It is important to maintain structural consistency in the z-direction. A motion-

compensated segmentation correction in the z-direction is developed to model

this factor.

• The effect of segmentation of neighboring pixels of an image also needs to be

considered to determine whether a pixel belongs to boundaries or lumen.

We consider influence of these factors in terms of values assigned to each pixel, ob-

tained using potential functions each of which corresponds to a factor.The total po-

tential is the summation of these individual potentials such that the sign of this

summation determines whether a pixel is classified as boundary or lumen.

For each pth image Izp , ψ
(k)
B,zp and ψ(k)

L,zp are updated based on STh,zp and a potential

function P (·) as follows:
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Pixels classified as background pixels are not considered to be a part of either

boundaries or lumen. Thus,

ψ(k)
B,zp(s) = ψ(k)

L,zp(s) = 0 for all s ∈ Λ(k)
zp (4.4)

Next, P (k)
zp (s) is obtained for only the pixels s where STh,zp(s) = 1. Based on the

sign of P (s), each pixel s is assigned to be either a member of boundaries ψ(k)
B,zp or

lumen ψ(k)
L,zp according to:

ψ(k)
B,zp

(s) =











1 if s ∈ STh,zp and P (k)
zp (s) ≤ 0

0 otherwise
(4.5)

and

ψ(k)
L,zp(s) =











1 if s ∈ STh,zp and P (k)
zp (s) > 0

0 otherwise
(4.6)

Now, P (k)
zp (s) is the sum of three components, P (k)

F,zp(s)): floating component po-

tential, P (k)
M,zp

(s): motion compensated z-series consistency potential and P (k)
N,zp

(s):

neighborhood voting potential, that is:

P (k)
zp (s) = P (k)

F,zp(s) + P (k)
M,zp(s) + P (k)

N,zp(s) (4.7)

Note that, P (·), PF (·), PM(·), and PN(·) are defined only for all pixels s such that

STh,zp(s) = 1. Henceforth, we will assume STh,zp(s) = 1 for all future references to s,

unless specified otherwise.

Floating Component Potential PF (·): This potential represents identifying a

component that is “floating” in one background region and labeling it as lumen. A

floating component is defined as a connected component with only one label sur-

rounded by the background. To obtain the floating component potential during

iteration k we consider ψ(k−1)
B,zp , the configuration of boundaries from the (k − 1)th

iteration, and λ(k)
m,zp for m = 1, 2, ...M , the disjoint background regions, as described

earlier. Let C denote the set of all connected components in ψ(k−1)
B,zp obtained using
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4-pixel neighborhood connectivity. Each c ∈ C is a set of pixels belonging to a single

connected component. The outer boundary of each c, denoted by bc, is next found

by selecting the boundary pixels of the morphological dilation of c using the same

structural element used to account for the viscosity of the jelly. Also let CF (CF ⊆ C)

denote the set of all floating components, that is

Cf = {c|bc ⊆ λ(k)
l,zp

, for some l ∈ {1, 2, ...M}} (4.8)

Now, we assign floating point potential (PF ) to each pixel s as:

P (k)
F,zp(s) =











αf if s ∈ CF

−αf otherwise
(4.9)

where αf is a positive constant, whose value is chosen in such a way so as to influence

the labeling of “floating” components as lumen. The value of this constant is chosen

to be a small positive number (0 < αf ≤ 2) to indicate that the “floating” component

is indeed a part of lumen.

Motion-Compensated Z-Series Consistency Potential PM(·): While itera-

tively processing the images from successive focal planes, it is important to maintain

structural continuity in all directions. This can be accomplished if the segmentation

of neighboring images along the z-direction influence the segmentation of current im-

age. To do this, we use wZ boundary configurations in either direction along the

z-axis (total of 2 × wZ images) from the previous i.e. k − 1th iteration: ψ(k−1)
B,zp+n

,

n ∈ {−wZ , ...,−1, 1, ..., wZ}. Each of these configurations are first motion compen-

sated with respect to the pth image (ψ(k−1)
B,zp ) to counter any movement of the specimen

while imaging in-vivo or other imaging effects that vary from one focal plane to an-

other.

We do motion compensation for each ψ(k−1)
B,zp+n

individually, using only ψ(k−1)
B,zp

as the

reference image. Let ψ(k−1){MC}
B,zp+n

be the motion-compensated boundary configurations

derived from the corresponding original ψ(k−1)
B,zp+n

for n ∈ {−wZ , ...,−1, 1, ..., wZ} by
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selecting the minimum sum of absolute difference (SAD) translational motion among

the motion candidates from a square window ΩMC a (±wMC×±wMC) centered around

the origin.

First, (mx,my): the translational motion in the x-and the y-direction is obtained

using the minimum-SAD,

(mx,my) = argmin
(mc

x,m
c
y)∈ΩMC

∑

All Pixels

|ψ(k−1)
B,zp+n

(sx +mc
x, sy +mc

y)− ψ(k−1)
B,zp (sx, sy)| (4.10)

where (sx, sy) represents the x-y indices of pixel s.

Then, we compute the corresponding motion compensated boundary and lumen

configurations: ψ(k−1){MC}
B,zp+n

and ψ(k−1){MC}
L,zp+n

respectively.

ψ(k−1){MC}
B,zp+n

(sx, sy) = ψ(k−1)
B,zp+n

(sx +mx, sy +my) (4.11)

ψ(k−1){MC}
L,zp+n

(sx, sy) = ψ(k−1)
L,zp+n

(sx +mx, sy +my) (4.12)

Now, we employ a one dimensional (1D) Gaussian function of length (2wz + 1):

fz(n) = (1− δ(n)) · e−
|n|2

22 , n = −wz, .., 0, .., wz and define Pz(s) to be:

P (k)
M,zp(s) =

wz
∑

n=−wz

{ψ(k−1){MC}
L,zp+n

(s)− αz · ψ
(k−1){MC}
B,zp+n

(s)} · fz(n), (4.13)

where αz is a constant whose value is set to provide suitable z-series consistency for

boundary and lumen detection.

Note that the objective is to provide a stable final configuration that undergoes

practically negligible changes in boundary and lumen configurations after fulfilling

the stopping criterion. Recall that we chose the initial configuration “all boundary.”

Therefore, it is important to set αz < 1 to avoid incorrectly converging to an inter-

mediate configuration close to the initial one. Setting αz ≈ 0 may cause the method

to go to an undesired “all lumen” configuration. A desired range of αz was found

experimentally to be 0.1 ≤ αz ≤ 0.9. In general, a low value of αz in this range leads

to fast convergence.

Neighborhood Voting Potential Pn(·): To clearly define the separation between
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boundary and lumen segments, a 2D Gaussian voting function is used. It is con-

ceptually similar to the voting-based distributing function used in the active mask

framework [182]. We define Pn(s) to be:

P (k)
N,zp(s) = {(ψ(k−1)

L,zp − ψ(k−1)
B,zp ) ∗ fn}(s) (4.14)

where ∗ represents 2D convolution and fn is a truncated 2D Gaussian function of size

(2wn + 1)× (2wn + 1):

fn(x, y) =
1

Fw,n
· e−

(|x|2+|y|2)

22 , x, y = −wn, .., 0, .., wn (4.15)

where,

Fw,n =
wn
∑

in=−wn

wn
∑

jn=−wn

e−
(|in|2+|jn|2)

22 .

Morphological Opening: In order to adjust the viscousity of the jelly or the back-

ground (Λ(k)
zp ), we use morphological opening to the original background image using

a circular structuring element [240]. We use a circular disk of radius r = 1 pixel as

the strucural element for all of our images.

Clean-Up: Tiny clusters of pixels i.e. connected components can be safely removed

to preserve a high-level structural continuity. We call this operation clean-up, in

which the values of pixels belonging to components smaller than γ pixels are assigned

to 0. γ represents the number of connected pixels that can be safely eliminated from

the image and it is typically very small (10 ≤ γ ≤ 100) as compared to total number

of pixels in an image.

Stopping Criterion: As stated above we use percentage change in number of bound-

ary pixels as the stopping criterion. In particular, we define

∆(k)
zp =

Diff(ψ(k)
B,zp ,ψ

(k−1)
B,zp )

Total pixels
× 100 (4.16)
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where Diff indicates the number of changed pixels, that is Diff(A,B) =
∑

Allpixels (A

XOR B). The stopping criterion is then:

Υ : Is ∆(k)
zp < ε for every p? (4.17)

Typically, ε = 1 or 0.1 works well for our data with practically no change in segmented

pixels during iterations after the stopping criterion is met.
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The steps of our proposed segmentation method are outlined below.

Jelly Filling Segmentation

Require: Input images Izp , p = 1, 2, ...P

Do Adaptive Thresholding to Izp to obtain STh,zp for p = 1, 2, ...P

Initialize: ψ(i)
B,zp = ψ(0)

B,zp = STh,zp , ψ
(i)
L,zp = ψ(k)

L,zp ≡ 0 for p = 1, 2, ...P

Initialize k = 0 to begin the iterative process

while (All images are not done) do

for Each pth image do

Do Morphological Opening of the background Λ(k)
zp to account for the vis-

cosity of the “jelly”

Clean-up: Remove small components of Λ(k)
zp (< γ pixels)

Do Background Labeling using 4-pixel neighborhood

for Each pixel s such that STh,zp(s) = 1 do

Obtain Floating Component Potential P (k)
F,zp(s) using αf

Obtain Motion-Compensated Z-Series Consistency Potential

P (k)
M,zp(s) using αz, wz, wMC

Obtain Neighborhood Voting Potential P (k)
N,zp(s) using wn

Obtain Potential Function P (k)
zp (s) using P (k)

F,zp
(s), P (k)

M,zp
(s) and P (k)

N,zp
(s)

Do segmentation to get ψ(k)
B,zp(s) and ψ(k)

L,zp(s)

Clean-up: Remove small components of ψ(k)
B,zp (< γ pixels)

Compute the change in pixels ∆(k)
zp

if Stopping Criterion Υ is satisfied:∆(k)
zp < ε then

Declare pth image is done

Increment k to go to the next iteration

for Each pth image do

Assign ψ(f)
B,zp and ψ(f)

L,zp as boundary and lumen segmentation configurations ob-

tained in the last iteration
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4.4 Experimental Results

We implemented jelly filling segmentation using MATLAB. An ImageJ [192] plu-

gin is currently under development.

Image Data: For our experiments, we used three types of data: images from kidney

(K ) and liver (L), and mammograms (M ).

Data K-I, K-II, K-III and K-IV each contained 8-bit, 3 color channels, images

(512× 512 pixel dimensions) of rat kidney specimen obtained using fluorescence mi-

croscopy, containing 512, 23, 41 and 23 images respectively 1. Images from K-I were

labeled with TexasRed-phalloidin and that from K-II, K-III and K-IV were labeled

with Alexa488-phalloidin. The fluorescence of phalloidin (which labels filamentous

actin) labeled two structures in the tissue, the basement membrane of the tubules

and the brush border (or lumen) of the proximal tubules.

Data L-I, L-II, L-III, L-IV, L-V, L-VI and L-VII each contained 8-bit, 3 color

channels, images (512 × 512 pixel dimensions) of rat liver specimen obtained using

fluorescence microscopy. L-I consists of 36 images and L-II, L-III, L-IV, L-V, L-VI,

L-VII are single images 2. The liver samples are labeled with a fluorescent tomato

lectin, which labels cell boundaries and endothelia.

The third type of data is composed of DCE-MRI breast images that use the

TWIST Dixon pulse sequence technique [239]. This data consisted of 4 sets (M-I,

M-II, M-III, M-IV ) of 128 grayscale mammograms of 512× 512 pixel dimensions 3.

Parameter Selection: For an iterative process, it is important to address its con-

vergence. In particular, the parameters αf and αz should be selected such that a right

1K-I was provided by Malgorzata Kamocka of Indiana University and was collected at the Indiana
Center for Biological Microscopy. K-II, K-III and K-IV were provided by Tarek Ashkar of the
Indiana University Division of Nephrology.
2The liver data was provided by Sherry Clendenon and James Sluka of the Biocomplexity Institute,
Indiana University at Bloomington.
3The mammography data was provided by Yuan Le, Randall Kroeker, Hal Kipfer, and Chen Lin
and was collected at the Department of Radiology and Imaging Science, Indiana University.
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balance among the potentials is maintained. Although in our work, we do not discuss

theoretical convergence, our experiments indicated a stable convergence for a range

of parameter values without the need of fine-tuning which may give even a better

performance than reported in this work. We used the same set of parameters for our

experiments with all images, as summarized in Table 4.1 in which each parameter is

listed with its description, the value used in experiments and a suggested reference

range.

Parameter Description Value Ref. Range

w1, w2, w3 Thresholding window 15, 15, 3 –

αf Floating influence 1 0 < αf ≤ 2

wz Z-series window 2 1 ≤ wz ≤ 5

wMC Motion-search window 5 1 ≤ wz ≤ 10

αz Z-series influence 0.25 0.1 ≤ αz ≤ 0.9

wn Neighborhood window 2 1 ≤ wn ≤ 5

γ Clean-up threshold 50 10 ≤ γ ≤ 100

ε Stopping criterion 0.1 Typically 1/0.1

Table 4.1: Parameters used for our experiments

Illustration:

As illustrated in Figure 4.3 using K-I data, our iterative segmentation process

begins with initial configurations (k = 0) for the p = 112th image: ψ(i)
B,z112

= STh,z112 ,

ψ(i)
L,z112

≡ 0, where all pixels are segmented as boundaries. For subsequent iterations

k = 1, 2, ..., intermediate configurations ψ(k)
B,z112

, ψ(k)
L,z112

are generated using the three

potentials: P (k)
F,z112

, P (k)
M,z112

and P (k)
N,z112

, until the stopping criterion (Υ) is satisfied. In

the example shown, this occurs at k = 24, leading to the final segmentation results

ψ(f)
B,z112

=ψ(24)
B,z112

and ψ(f)
L,z112

=ψ(24)
L,z112

.
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(a) Original (b) k = 0 (c) k = 1

(d) k = 2 (e) k = 4 (f) k = 6

(g) k = 12 (h) k = 18 (i) k = 24

Fig. 4.3.: Illustration with iterations of our proposed method using K-I : starting from

k = 0 (Initialization) to 24 (Final) at which the stopping criterion is satisfied, red:

boundaries, green: lumen.
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Segmentation Results: Figure 4.4 shows the results of K-I. Most tubule bound-

aries with their associated lumen are successfully segmented with all necessary details

preserved. Note that, the result in Figure 4.4(f) also consists of a glomerulus, an-

other biological entity that is important for the morphological characterization of a

nephron of the kidney. The segmentation results obtained by our method significantly

enhance the ability to visually identify individual contiguous tubules. There are a few

missing tubules especially near the borders of the image and a few falsely detected

tubules that should have been segmented/classified as lumen. The main reasons are

significant blur and/or low illumination at those places.

(a) (b) (c)

(d) (e) (f)

Fig. 4.4.: Segmentation results (for K-I ): top row- original images, bottom row-

boundaries (red) and lumen (green)



97

Figure 4.5 (a) and (b) show images from K-II, K-III and their corresponding

segmentation results are shown in Figure 4.5 (d) and (e), respectively. At many places

in the original images, ring-like lumen can be observed near to the center of an image,

where the lumen shape closely resembles to the boundary of a circular tubule. Many

lumen regions are considerably brighter than the tubule boundaries enclosing them.

The segmentation results show most tubule boundaries with their lumen quantities

segmented successfully. Some tubules are observed to contain small biological mass

attached to their walls. This is segmented as a part of tubule boundary with most

details preserved. Some lumen areas are wrongly classified as tubules mainly due to

high relative pixel brightness as compared with their boundaries.

(a) (b) (c)

(d) (e) (f)

Fig. 4.5.: Segmentation results (for K-II, K-III and K-IV ): top row- original images,

bottom row- boundaries (red) and lumen (green)
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As shown with an example image in Figure 4.5 (c), K-IV is more challenging be-

cause of very low pixel intensities. Most tubule boundaries are not clearly observable

visually. As shown in Figure 4.5 (f), our method has still produced an acceptable

segmentation results that may be difficult to obtain even by a human observer.

Objective evaluation of our method proves to be difficult because of the lack of

ground truth data, for which the true shape and position of each object in the volume

is known [175]. In fact, ground truth is impossible to obtain in fluorescent microscopy,

since both the shape and position of an object are fluid in living animals, and are

inevitably altered in the process of isolating and fixing tissues. To obtain results

from an expert clinician even for a single 3D volume becomes significantly difficult

and tedious considering practical limitations in accurately rendering 3D data on 2D

displays and requesting the expert to manually segment them.

Yet, we hand-segmented a few images and have the segmentation verified by expert

clinician/biologists. We used the hand-segmentation for visual comparison and also

as the ground truth to get accuracy, Type-I and Type-II errors for each method in

the context of segmenting boundaries. To be fair to other methods that can segment

only one physical quantity in an image, we did not consider lumen as a segmented

quantity, but counted as a part of background. Accuracy is obtained as the ratio of

number of correctly segmented tubule boundaries and background pixels to the total

number of pixels. Type-I error is computed as the ratio of number of background

pixels falsely detected as tubule boundaries (false detection) to the total number of

pixels. Type-II error is computed as the ratio of number of tubule boundaries pixels

falsely detected as background (missed detection) to the total number of pixels.

Method Accuracy Type-I error Type-II error

Jelly filling (proposed method) 87.3% 7.1% 5.7%

Table 4.2: Average performance of our proposed method for images of K-I.
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Table 4.2 summarizes the performance of our method in terms of % accuracy,

Type-I and Type-II error numbers that represent the averages taken over 40 images.

We observe that the average accuracy is acceptable with low Type-I and Type-II

errors.

Next, we consider the boundary segmentation accuracy at various iterations of

our proposed method for the same 40 images. Figure 4.6 provides a plot of % accu-

racy of our proposed method at successive iterations as the method produces a final

segmentation outcome, for a set of K-I images.

Fig. 4.6.: Percent accuracy of our proposed method at various iterations

Each color represents a specific iteration of our jelly filling method. Itr 0 has

the lowest accuracy (60 − 70%), since it was the initial configuration of boundaries

same as the result of adaptive thresholding. Recall that it is an “all-boundary”

configuration without any pixel labeled as lumen. This configuration is similar to the
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results obtained using a typical segmentation method that can discern only biological

entity based on the pixel intensities. There is a significant increase in accuracy from

Itr 0 to Itr 1 because the first jelly filling iteration has detected many “floating”

components that are removed from boundary configuration in the 1st iteration. Is

can be observed that the accuracy further increases quite uniformly in the subsequent

iterations: Itr 2, Itr 3, Itr 4 and Itr 5. For later iterations, accuracy increases

in smaller steps (not shown in the Figure) to satisfy our stopping criterion in the

final iteration. The accuracy of the final results, shown in the blue line is in between

85− 90%. It is also interesting to note that the accuracy changes across images that

suggests that some images are “easy” for the method that may also help improve

the segmentation of the neighboring images, whereas some images are “difficult”

representing significant structural discontinuities or noise.

Figure 4.7 depicts a visual comparison of our results for K-I images and that

obtained using some popular segmentation methods. Active contour model from [173]

and JFilament 2D plugin from [174], both semi-automatic (SA) methods, were used to

obtain Figure 4.7 (h) and (e), with the initial contour configuration provided manually

as shown in Figure 4.7 (g) and (d) respectively. Among the automatic (A) methods,

we obtained a 2nd order response using SteerableJ plugin [187] and used mean pixel

intensity of the whole filtered image as segmentation threshold to produce 4.7 (f).

We used “Squassh” [186] from “Mosaic” toolkit to obtain Figure 4.7 (i). A GPU-

based 3D level set software [241] was used with minimal parameter tuning. All other

methods used default parameters unless specified.

As observed from Table 4.3, our proposed method clearly outperforms all other

methods in terms of accuracy. Our method also produced the lowest Type-II er-

rors indicating lowest missed tubule boundaries. Our Type-I errors are reasonably

low. Active contour with the lowest Type-I errors suffered from a considerably high

percentage of missed detections. As seen in Figure 4.7, our method successfully pro-

duced significantly better visual outcomes than every other method and is very close
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(a) Original (b) Hand-segmentation (c) Jelly filling (proposed)

(d) JFilament [174] init. (e) JFilament [174] final (f) SteerableJ [187]

(g) Active contour [173] init. (h) Active contour [173] final (i) Squassh [186]

Fig. 4.7.: Visual comparison of segmentation results overlaid on the original image

to the hand-segmented ground truth and the result obtained using the JFilament [174]

method which required a considerable user interaction and time.

Figure 4.8, 4.9, 4.10, 4.11 depicts a visual comparison of our results and that

obtained using other segmentation methods for L-I, L-II, L-III and L-IV respectively.
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Method Class Accuracy Type-I Type-II Time

Active contour [173] SA 86.3% 2% 11.7% 50 min

JFilament [174] SA 90.4% 6.1% 3.5% 40 min

SteerableJ [187] A 72.4% 22.3% 5.3% 10 sec

3D level set [241] A 80.2% 8.1% 11.7% 10 sec

Squassh [186] A 83.5% 5.6% 11% 20 sec

Jelly filling (proposed) A 91.2% 6.1% 2.7% 80 sec

Table 4.3: Performance comparison of our proposed method with other popular seg-

mentation approaches

Figure 4.8 (c), (d) and (e) are the results of our proposed method for L-I. Our method

is able to segment the cell boundaries and highlight the vascular space. Similar results

are obtained for L-II, L-III and L-IV. Figure 4.12 depicts more examples of results

obtained using our proposed method. The images are from L-V and L-VI and or

proposed method has produced an acceptable outcome.

Table 4.4, 4.5, 4.6 and 4.7 provides accuracy, Type-I and Type-II errors for L-I,

L-II, L-III, L-IV respectively. Among all other comparison methods, Squassh [186]

seems to perform the closest to our proposed method. As observed in Table 4.4,

Squassh [186] gives a better accuracy of segmenting boundaries than our proposed

method for data L-I. For L-II, (as indicated in Table 4.5), it has the same accuracy

as that of our proposed method. However, for L-III and L-IV, our proposed method

clearly outperforms other methods. It has also produced an acceptable Type-I and

Type-II errors.

Figure 4.13 depicts examples of segmentation results for M-I -M-IV mammogram

images. It is intended that breasts from the images are highlighted and isolated from

the body. Further, the fat tissue inside each breast should be isolated for quantifi-

cation purposes. The breast boundaries and body outline are segmented and shown

in red and the tissues inside breasts shown in green. Therefore, our method is also
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(a) Original (b) Hand-segmentation (c) Jelly filling (proposed)

(d) Jelly filling (proposed) (e) Jelly filling (proposed) (f) SteerableJ [187]

(g) Region Competition [183] (h) Active contour [173] final (i) Squassh [186]

Fig. 4.8.: Visual comparison of segmentation results (L-I )

effective in segmenting breasts regions and isolating fat tissues in MRI mammography

images.

As shown in Figure 4.14 using examples from K-I and L-VII, our proposed method

failed to produce desirable outcome. In the example shown as Figure 4.14 (d), our
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(a) Original (b) Hand-segmentation (c) Jelly filling (proposed)

(d) Jelly filling (proposed) (e) Jelly filling (proposed) (f) SteerableJ [187]

(g) Region Competition [183] (h) Active contour [173] final (i) Squassh [186]

Fig. 4.9.: Visual comparison of segmentation results (L-II )

method successfully highlighted the glomerulus in the image as a part of tubule, since

they are structurally connected. However, it falsely detected many tubule boundaries

while it was a part of brush border of the kidney. In the example shown in Figure 4.14

(e), much of the cell boundary part of the liver was missed and falsely classified as lu-
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(a) Original (b) Hand-segmentation

(c) Jelly filling (proposed) (d) Jelly filling (proposed) (e) Jelly filling (proposed)

(f) Region Competition [183] (g) Squassh [186]

Fig. 4.10.: Visual comparison of segmentation results (L-III )

men. Both of these images are from deeper focal planes of the tissues. Therefore, the

pixel intensities in the original images are low and the edges are not defined clearly.

The images in the z-direction neighborhood also suffer from these artifacts. Therefore

the z-direction correction is not considerably effective. Image from Figure 4.14 (f) is
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(a) Original (b) Hand-segmentation

(c) Jelly filling (proposed) (d) Jelly filling (proposed) (e) Jelly filling (proposed)

(f) Region Competition [183] (g) Squassh [186]

Fig. 4.11.: Visual comparison of segmentation results (L-IV )

the result of a single image L-VII. The reason of failure is again, low pixel intensity,

noise and blurriness in the original image.

3D Visualization: Figure 4.15 show a 3D visualization of the segmentation results
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(a) (b)

(c) (d)

Fig. 4.12.: Segmentation results (for L-V and L-VI ): top row- original images, bottom

row- boundaries (red) and lumen (green)

Method Class Accuracy Type-I Type-II Time

Active contour [173] SA 78.8% 0.6% 20.5% 50 min

SteerableJ [187] A 82.4% 4.2% 13.4% 10 sec

Squassh [186] A 87.6% 5.4% 7.1% 20 sec

Jelly filling (proposed) A 86.5% 4.2% 9.2% 80 sec

Table 4.4: Performance comparison: L-I

for K-I and L-I, obtained using the 3D visualization tool Voxx [195]. Figure 4.15 (a)

- Figure 4.15 (c) depict the structure of tubule boundaries (red) and lumen (green) in

the kidney. In Figure 4.15 (c), the glomeruli from the specimen connected to tubules
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Method Class Accuracy Type-I Type-II Time

Active contour [173] SA 82% 0.7% 17.3% 50 min

SteerableJ [187] A 84.7% 3.5% 11.8% 10 sec

Squassh [186] A 87.9% 6.7% 5.4% 20 sec

Jelly filling (proposed) A 87.9% 5.3% 6.8% 80 sec

Table 4.5: Performance comparison: L-II

Method Class Accuracy Type-I Type-II Time

SteerableJ [187] A 85.9% 9.2% 4.9% 10 sec

Squassh [186] A 86.7% 8% 5.3% 20 sec

Jelly filling (proposed) A 87.9% 6.7% 5.4% 80 sec

Table 4.6: Performance comparison: L-III

Method Class Accuracy Type-I Type-II Time

SteerableJ [187] A 83.9% 2.6% 13.5% 10 sec

Squassh [186] A 85.4% 6.9% 7.7% 20 sec

Jelly filling (proposed) A 87.5% 5.1% 7.5% 80 sec

Table 4.7: Performance comparison: L-IV

is visible and clearly identifiable. As seen in Figure 4.15 (d) and Figure 4.15 (e), a

3D visualization of the liver is presented.

This demonstrates that our proposed method can produce the desired 3D segmen-

tation that is useful for characterizing the structure and mechanisms of important

biological entities. Note that the nuclei shown in Figure 4.15 (d) and Figure 4.15 (e)

are segmented from the blue color channel using the method described in the next

Chapter.
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(a) (b) (c)

(d) (e) (f)

Fig. 4.13.: Segmentation results for M-I -M-IV, top row: original mammography

Images, bottom row: breast and fat tissue segmentation
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(a) (b) (c)

(d) (e) (f)

Fig. 4.14.: Segmentation results: failure cases (for K-I, L-I and L-VII ): top row-

original images, bottom row- boundaries (red) and lumen (green)
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(a) (b)

(c)

(d) (e)

Fig. 4.15.: 3D visualization of different cross-sections of the segmented results for K-I

and L-I.
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5. NUCLEI SEGMENTATION USING MIDPOINT

ANALYSIS AND MARKED POINT PROCESS

In this chapter, we describe a nuclei segmentation method that makes use of “midpoint

analysis” and a 2D marked point process simulation [242]. We first discuss our image

analysis goal.

5.1 Image Analysis Goal

Figure 5.1 shows some examples of our image data containing cell nuclei.

(a) (b) (c)

(d) (e) (f)

Fig. 5.1.: Examples of our nuclei image data
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Figure 5.1 (a), (b) and (c) show images taken from a rat kidney in an in-vivo

experiment. This data consists of images taken from several hundred focal planes

(in the depth dimension) representing a live 3D kidney specimen. Figure 5.1 (a)

shows a cross-section of the kidney using red and blue color channels. The blue color

channel representing the fluorescence of the dye attached to cell nuclei is shown in

Figure 5.1 (b). Another example of kidney images (blue channel) is shown in 5.1 (c).

Figure 5.1 (d), (e) and (f) show images taken from a rat liver. The original three

channel image is shown in Figure 5.1 (d) and the blue channel representing nuclei is

shown in Figure 5.1 (e). Another example of liver images (blue channel) is shown in

Figure 5.1 (f).

It is intended to obtain the number of nuclei per unit length, and per unit volume

of the specimen. It is also desired to quantify area/volume of each nucleus.

5.2 Overview Of Marked Point Process (MPP) For Image Segmentation

A marked point process (MPP) is a statistical point process in which a “mark”

is attached to each event [243–245]. A stochastic simulation of MPP was used as a

powerful image analysis approach in which geometric properties of an image are used

as the prior distribution and image data are considered at the object level.

Figure 5.2 shows a random configuration of elliptical objects specified by their

marks: centers and shape parameters. The parameters of the underlying probability

distribution function can be estimated using the application data such that the object

configurations are generated at each set of random trials [246]. There are many simu-

lation approaches for MPP. Metropolis-Hastings [247] is a classic one-step birth-death

approach in which an object is either born or killed or kept unchanged in each itera-

tion. Reversible jump Markov Chain Monte Carlo algorithm (RJMCMC) [248] is an-

other popular stochastic simulation approach. A subsequent investigation into MPP-

based methods has led to the development of a stochastic birth-death approach [249]

(along with theoretical analysis) that was effectively used for tree crown extraction
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Fig. 5.2.: An example of marked object configuration

from aerial images. A review by Descombes [245] discussed in detail various potential

applications of an MPP simulation framework.

Simulating stochastic processes requires a large number of iterations and demands

large computation resources [250, 251]. To assign a value that represents likelihood

of the object with a given configuration to each possible object orientation at each

pixel and search in that high dimensional space is also computationally intensive [252].

Many adaptive approaches have been developed to address these and other challenges.

A unified Markov random field (MRF) and MPP based method was developed for mi-

crograph analysis of materials in [253]. An application of MPP to detect small brain

lesions using a reversible jump Markov chain Monte Carlo (RJMCMC) algorithm was

described in [254]. Many methods have been developed for surveillance applications.

MPP based methods are increasingly used in complex image segmentation problems

and event simulations, yet its use in biomedical analysis is hardly investigated.

We describe a nuclei segmentation method in which we use adaptive thresholding

and midpoint analysis as pre-processing that classifies components such that the

computationally expensive MPP is used only for some components and a relatively

simpler shape-fitting method for the rest of the components [242]. Our MPP method
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is based on the one used in [249]. In our implementation, we use ellipse as the object

model and a modified energy function to account for non-uniform brightness typically

present in fluorescence microscopy images.

Our proposed approach is intended to provide automatic segmentation of mi-

croscopy images with non-uniform brightness, consisting of multiple overlapping ob-

jects that can be modeled using specific geometric shapes.

The details of our segmentation method are provided below.

5.3 Our Proposed Method

As indicated above, our images (Izp,cr) consists of multiple-channels that reflect

the fluorescence of dyes added to the tissue. As shown in Figure 5.3, we first separate

Fig. 5.3.: Our proposed segmentation method.

the blue color channel to obtain grayscale images Izp,c2 , where c2 represents the blue-

channel data and p ∈ {1, 2, ..., P} denotes the focal planes. We use only the blue color

channel throughout this chapter, hence we drop the subscript c2 to call the grayscale

images Izp , p ∈ {1, 2, ..., P}.

A 3D adaptive thresholding is then employed on Izp to get segmentation mask

STh,zp . For each pth image, midpoints analysis is subsequently used to produce two

distinct masks: ΛS,zp and ΛM,zp . A distance function optimization method is used

with the first mask and a MPP based method is used with the second mask. Seg-

mentation results of the two methods, ΩS,zp and ΩM,zp respectively, are combined to
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produce the final segmented image Ωzp .

Adaptive Thresholding: Our method employs initially an adaptive thresholding

scheme. The objective of this step is to separate the foreground that represents the

presence of a biological quantity in an image. This is done using two functions: a

thresholding function fTh,zp that uses a 3D neighborhood information to assign signed

and scaled value to each pixel and a voting function fv,zp that uses a Gaussian filter

to aggregate weighted votes, similar to the voting-based distributing function used

in [182].

Let Izp(s) ∈ [0, 1] be the pixel intensity at pixel s of the original images Izp ,

p ∈ {1, 2, ..., P}. Let (wTh,x × wTh,y × wTh,z) be the 3D window centered at pixel s

and let τzp(s) be the mean pixel intensity of this window. The thresholding function

fTh,zp : [0, 1] → [−1, 1] is used to assign to each pixel s of pth image a linearly scaled

value and a sign, based on its original intensity Izp(s) and the local mean τzp(s), as

indicated by Eq. 5.1.

fTh,zp(s) =











Izp (s)−(τzp (s)+τc)

1−(τzp (s)+τc)
if Izp ≥ (τzp(s) + τc)

−
(τzp (s)+τc)−Izp (s)

(τzp (s)+τc)
if Izp < (τzp(s) + τc)

(5.1)

where τc is a positive constant. Let gv(x, y, z) be a 3D truncated Gaussian function:

gv(x, y, z) = e−
|x|2+|y|2+|z|2

a2 , where x = −wv,x, .., 0, .., wv,x, y = −wv,y, .., 0, .., wv,y and

z = −wv,z, .., 0, .., wv,z. The voting function fv,zp : [−1, 1] → [−∞,∞] is used to

assign each pixel a value that is the summation of fTh,zp values from its neighborhood,

weighted using gv(x, y, z):

fv,zp(s) = (fTh,zp ∗ gv)(s) (5.2)

Now, based on the sign of fv,zp(s), pixel s is segmented as foreground mask: STh,zp =

{s : fv,zp(s) ≥ 0}, where STh,zp is the set of foreground pixels from images Izp ,

p ∈ {1, 2, ..., P}. The outcome of this step: initial segmentation mask STh,zp is used

in the subsequent steps to do nuclei segmentation.
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The constant threshold τc is selected empirically for a particular image stack based

on the desired brightness of a segmented nuclei. A higher τc reflects segmenting fewer

pixels with intensities being significantly above the local mean. τc ≥ 0 is necessary

to avoid assigning regions with pixel intensities ≈ 0 as foreground.

Object Model: In order to count the number of nuclei and quantify their size

in each pth image, we use an ellipse as the shape model for objects to be segmented.

The shape parameters for each elliptical object centered at (c) are the lengths of the

semi-major and semi-minor axes (a, b) and the orientation angle of the semi-major

axis with the horizontal (θ). Let ρ = (a, b, θ) be the parameter vector such that

ρ ∈ P , the parameter space. Based on the size of objects to be segmented, we limit

the parameter space with a ∈ (amin, amax) b ∈ (bmin, bmax). Also, ∆θ be the stepsize

considered for angular orientations θ of an object.

Midpoint Analysis: Let STh,zp be the segmentation mask for pth image. Let λ

be a connected component of STh,zp , using a 4-point neighborhood. Small compo-

nents can be safely removed to preserve a high-level structural continuity. Therefore,

λ in which the number of pixels is smaller than a threshold ν is not considered for

midpoint analysis. The goal of midpoint analysis is to classify λs in STh,zp into two

groups: single-object components (ΛS,zp) and multiple-objects components (ΛM,zp).

We first determine the potential midpoint locations/pixels by horizontally and ver-

tically scanning the rows and column respectively, as shown in Figure 5.4 (a), using

a process similar to the one described in [255]. This generates two sets of potential

midpoints {mc,x} and {mc,y} along the rows and columns of the connected compo-

nent λ, and which are depicted in blue and orange respectively, in Figure 5.4 (a). A

pixel that is detected in both {mc,x} and {mc,y} is called as a midpoint pixel mc as

indicated by the pixel colored in red.
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(a) (b)

Fig. 5.4.: Examples of midpoint analysis and selecting ellipse parameters for shape-

fitting.

We assume that the components with one or no midpoint pixel mc contain a

maximum of one object and hence belong to ΛS,zp . Components containing more

than one mc may contain multiple objects and belong to ΛM,zp . Thus,

ΛS,zp = {λ : λ contains at most one mc} (5.3)

ΛM,zp = {λ : λ contains more than one mc’s} (5.4)

where ΛS,zp ∩ ΛM,zp = φ. An example component shown in Figure 5.4 (a)(i) belongs

to ΛS,zp and that in Figure 5.4 (a)(ii) belongs to ΛM,zp .

Shape Fitting by Distance Function Optimization: We use a distance function

to determine the parameters of the elliptical object for a λ ∈ ΛS,zp in a pth image.

Let A1 be an elliptical disk centered at s with parameters ρ = (a, b, θ). Let A2 be the

outer elliptical ring with parameters (a+ 1, b+ 1, θ). Using the empirical means and

variances of the pixels belonging to A1 and A2 at pixel s with parameters ρ:

µ1(s, ρ) =

∑

u∈A1
Ij(u)

N1
, σ1

2(s, ρ) =

∑

u∈A1
Ij

2(u)

N1
− µ1

2(s, ρ) (5.5)

µ2(s, ρ) =

∑

u∈A2
Ij(u)

N2
, σ2

2(s, ρ) =

∑

u∈A2
Ij

2(u)

N2
− µ2

2(s, ρ) (5.6)
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we obtain B(s, ρ) the Bhattacharyya distance [249, 253] between the distributions of

the pixels contained A1 and those contained inA2:

B(s, ρ) =
1

4
(µ1(s, ρ)− µ2(s, ρ))

2
√

σ1
2(s, ρ) + σ2

2(s, ρ)

−
1

2
log(

2σ1(s, ρ)σ2(s, ρ)

σ1
2(s, ρ) + σ2

2(s, ρ)
)

(5.7)

Recall that ΛS,zp consists of components of STh,zp with at most one mc. For a λ

with no pixel determined as mc, the X and Y coordinates of mc are approximated by

rounding the means of the X-coordinates of the set of {mc,x} and the Y-coordinates

of the set of {mc,y}, respectively. Next, as shown in Figure 5.4 (b), a pixel sa ∈ λ

that is farthest (in Euclidean distance) from mc is obtained. The vector from mc

to sa is considered the semi-major axis, and a is considered to be the length of the

vector. The orientation θ is now the angle that the vector from mc to sa subtends with

the horizontal axis. A vector that is perpendicular to the semi-major axis is drawn

from mc within λ and b is determined to be the length to the farthest pixel along

that vector. Next, a rectangular pixel window Wc,λ of size (wc × wc) centered at mc

is further examined for other candidates for the object center, and a corresponding

parameter space, Pλ = [a± wa]× [b± wb]× [θ ± wθ] is formed by varying a, b and θ.

The center candidate and parameters from Wc× (Pλ ∩P) that maximize B(s, ρ), are

chosen as the ellipse center cλ with parameters ρλ for λ, that is

(cλ, ρλ) = argmax
s∈Wc,ρ∈Pλ∩P

B(s, ρ)

where P is the parameter space defined for our object model. An object centered at

cλ with parameters ρλ is thus generated.

Marked Point Process: We employ a marked point process approach based on

the spatial birth-death process described in [249]. In our method, an object can be

generated only when its center pixel belongs to ΛM,zp .

Objects of different parameters can be generated based on their relative probabil-

ities. We also incorporate two additional energy functions to account for non-uniform
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brightness and local behavior of the birth rate function. A detailed proof of the con-

vergence of this spatial birth-death process is presented in [249]. We do not provide a

theoretical proof of our method. We expect the outline of the proof to be very similar

to the base-method described in [249]. However, we would like to point out that our

proposed method reports convergence for all images that we used, with a broad range

of parameters without the need of fine-tuning.

Let Γ be the configuration of objects with their corresponding parameters. Γ =

(Γs,Γρ), where Γs is a set of pixels that are object centers and Γρ is a set of their

respective parameters. Let H(Γ) be the energy function for the Gibbs distribution

function for the configuration Γ during the spatial birth-death process simulation.

Let HObject(s, ρ) be the term representing how well the object centered at s with

parameters ρ fits the image data Ij:

HObject(s, ρ) =











1−B(s,ρ)
T if B(s, ρ) ≥ T

e−
B(s,ρ)−T
3B(s,ρ) − 1 if B(s, ρ) < T

where B(s, ρ) is distance measure described in Equation 5.7 and T is a threshold. Let

HBrightness(s) be the term accounting for the local brightness in the neighborhood of

s in an image. HBrightness(s) = τs, where τs is the local mean for pixel s and was used

in adaptive thresholding. We define birth energy HB(s, ρ) and birth rate b(s, ρ) at

pixel s for parameter set ρ as:

HB(s, ρ) = HObject(s, ρ) +HBrightness(s),

b(s, ρ) = 1 + 9
max(HB(s, ρ))−HB(s, ρ)

max(HB(s, ρ)−min(HB(s, ρ)

Let bc(s) be the cumulative birth rate and bn(s) be the normalized birth rate at pixel

s:

bc(s) =
∑

ρ∈P

b(s, ρ) , bn(s) =
bc(s)

maxs∈ΛM
bc(s)
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Let HInter(s1, s2) be the energy term corresponding to the object interaction model

that accounts for the closeness or overlap between the two objects centered at s1 and

s2. It is determined based on the Euclidean distance between the centers:

HOverlap(s1, s2) = max(0, 1−
‖s1, s2‖

2r
)

Let HPeak(s) be the energy term representing the local maxima of the cumulative

birth rate function. In case of object overlap, this term causes objects not centered

at the peaks of the birth rate function to be more prone to being eliminated than the

ones centered at the peaks. The local maxima pixels are also used for configuration

initialization.

HPeak(s) =











−hP if
∑

ρ∈P bc(s) has a local maxima at s.

0 Otherwise

where hP is a positive contant. Therefore the energy function is obtained as:

H(Γ) = α{
∑

(s,ρ)∈Γ

HObject(s, ρ) +
∑

s∈Γs

HBrightness(s)}

+
∑

s1,s2∈Γs

HOverlap(s1, s2) +
∑

s∈Γs

HPeak(s)

where α is a positive constant. Now, a multiple birth-death process is simulated to

optimize the energy function according to [249]:

• DetermineHObject(s, ρ), HBrightness(s), HB(s, ρ), b(s, ρ), bc(s), bn(s) andHPeak(s)

for all s ∈ ΛM and ρ ∈ P .

• Parameter Initialization: Set the inverse temperature β = β0 and the discretiza-

tion step δ = δ0.

• Configuration Initialization: Start with Γ = Γ0 such that Γs
0 contains objects

centered at s where bc(s) achieves local maxima and Γρ) contains their param-

eters argmaxρ∈Pb(s, ρ) for each s respectively.

• Birth Step: For each s ∈ ΛM , if s .∈ Γs add a point at s with probability δbn(s)

and give birth to an object of parameter ρ with probability = b(s,ρ)∑
ρ∈P b(s,ρ) .
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• Death Step: Sort the configuration of points Γ from highest to lowest values of

HB(s, ρ). For each sorted point s obtain death rate d(s, ρ) = δa(s)
1+δa(s) , where

a(s) = e−β(H(Γ/{s,ρ})−H(Γ)) and kill the object with probability d(s).

• Convergence Test: If all the objects born in the Birth Step are killed in the

Death Step, stop. Otherwise, increase β and decrease δ by a geometric scheme

using the common ratios ∆β and ∆δ respectively and go back to the Birth Step.

The proposed nuclei segmentation method is described next:

Our Proposed Nuclei Segmentation Method

Require: Original images Izp,cr

Extract blue color-channel from Izp,cr to obtain grayscale images Izp , p ∈

{1, 2, ..., P}

Do Adaptive Thresholding to Izp to get STh,zp

for Each pth image do

Obtain STh,zp as segmentation mask for the pth image from STh,zp

Use Object Model as ellipse with amin, amax, bmin, bmax and ∆θ

Do Midpoint Analysis to obtain ΛS,zp and ΛM,zp

for Each component λ ∈ ΛS,zp do

Shape-Fitting by Distance Function Optimization with mc,i’s, wc, wa,

wb, wθ to obtain (cλ, ρλ) and ΩS,zp

Do Marked Point Process using Izp , ΛM,zp , α, β0, δ0, ∆β, ∆δ, hP , r and T to

obtain ΩM,zp

Combine using OR operation ΩS,zp and ΩM,zp to obtain the final segmentation

result Ωzp
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5.4 Experimental Results

We tested our method using several images taken from rat kidney ( K-I, K-V

and K-VI ) 1 and liver (L-I, L-II, L-III, L-IV and L-V ) 2 samples using fluorescecne

microscopy. We used 32 images from each set of kidney images (K-I, K-V and K-VI ).

L-I contains 36 images. L-II, L-III, L-IV and L-IV are single images. Each image

had three 8-bit color-channels.

The values used for the various parameters were wTh,x = wTh,y = 15, wTh,z = 3,

wv,x = wv,y = 2, wv,z = 1 for adaptive thresholding, ν = 10 pixels for midpoint

analysis, and wa = wb = 2 and wθ = 30◦ for shape fitting, α = 0.5, β0 = 0.5, δ0 = 0.5,

∆β = 1.05, ∆δ = 0.95, hP = 2, r = 1
2(amin + amax) and T as 1 percentile of B(s, ρ),

for marked point process. All parameters were selected without fine-tuning and kept

unchanged for all images. It took between 70 and 110 MPP iterations for one image

to converge to the final configuration. The details of our image data with shape

parameters are listed in Table 5.1.

Table 5.1: Details of our image data with specific parameters

Image Data K-I K-V K-VI L-I, L-II, L-III, L-IV & L-V

Dimensions 512× 512 640× 640 512× 512 512× 512

τc 10/255 5/255 10/255 5/255

(amin, amax) (4, 8) (6, 14) (4, 14) (4, 14)

(bmin, bmax) (2, 6) (4, 12) (2, 12) (2, 12)

∆θ 30◦ 20◦ 30◦ 30◦

Figure 5.5 - Figure 5.10 show some examples of our segmentation results for the

kidney images. Each figure contains (a): the original blue channel image (Izp), (b):

1The kidney data was provided by Malgorzata Kamocka of Indiana University and was collected at
the Indiana Center for Biological Microscopy.
2The liver data was provided by Sherry Clendenon and James Sluka of the Biocomplexity Institute,
Indiana University at Bloomington.
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the result of our midpoint analysis, in which the single-object components (ΛS,zp)

are colored in green and multiple-object components (ΛM,zp) are colored in blue, (c):

the final segmentation result (Ωzp) and (d): the segmentation result overlaid on the

original image in (a). The value of n indicates the count of cell nuclei segmented

using elliptical disks from the original images.

(a) Original (b) Result of Midpoint Analysis

(c) Segmentation Result (n = 628) (d) Result Overlay

Fig. 5.5.: Segmentation results: K-I

It can be observed that the original images from kidney images possess non-

uniform brightness. K-V contains a large completely dark region, whereas K-VI has

smaller regions of darkness. Images, especially from K-I and K-V, contain labeling
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(a) Original (b) Result of Midpoint Analysis

(c) Segmentation Result (n = 594) (d) Result Overlay

Fig. 5.6.: Segmentation results: K-I

errors resulting in frequent appearances of bright regions not representing nuclei. In

all cases, our proposed method segments most nuclei present in the bright regions.

Also, many nuclei present in the darker regions of images are segmented successfully.

A few nuclei are missed as well as detected falsely as the shape parameters were

not correctly obtained in those cases. A few red components in Figure 5.7 (b) and

Figure 5.8 (b) indicate failure to classify those components into ΛS,zp or ΛM,zp because

of lack of intersection of vertical and horizontal midpoint loci. This happens because

it cannot be theoretically proved that these two midpoint loci would intersect. In
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(a) Original (b) Result of Midpoint Analysis

(c) Segmentation Result (n = 190) (d) Result Overlay

Fig. 5.7.: Segmentation results: K-V

fact, it is possible that an analysis may be able to prove that the midpoint loci, in

fact, do not necessarily intersect. For now, we consider these few components that

are not classified as either, as failure cases. This should be addressed in a future

investigation of midpoint analysis.

Figure 5.11 - Figure 5.15 show segmentation results for our liver images. Each

figure contains the original blue channel image at the left, the outcome of our proposed

segmentation method at the center and the results overlaid on the original image at
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(a) Original (b) Result of Midpoint Analysis

(c) Segmentation Result (n = 234) (d) Result Overlay

Fig. 5.8.: Segmentation results: K-V

the right. The images contains non-uniform brightness and noise, yet our method is

able to successfully segment most nuclei.

As discussed in Chapter 4, objective evaluation of our segmentation results proves

to be difficult due to the lack of ground truth data, for which the true shape and po-

sition of each object in the volume is known [175]. In fact, ground truth is impossible

to obtain in fluorescent microscopy, since both the shape and position of an object

are fluid in living animals, and are inevitably altered in the process of isolating and



128

(a) Original (b) Result of Midpoint Analysis

(c) Segmentation Result (n = 204) (d) Result Overlay

Fig. 5.9.: Segmentation results: K-VI

fixing tissues. Hand-segmentation for cell nuclei is extremely tidious in the first place

and shape characterization of each of the nuclei is practically impossible.

Figure 5.16 compares our method with the method described in [249] which we

denote as Mdes. We used the same object model and MPP parameters for Mdes as

that of our method. Note that Mdes is applied directly on the original image without

any preprocessing such as adaptive thresholding. Also, in Mdes the energy term (H)

consisted of the sum of only HObject and HInter. Segmentation results (highlighted in

red) from both methods are overlaid on the original images. Method Mdes segments
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(a) Original (b) Result of Midpoint Analysis

(c) Segmentation Result (n = 184) (d) Result Overlay

Fig. 5.10.: Segmentation results: K-VI

some nuclei at the center correctly. However, it failed to detect many nuclei from the

less brighter regions , especially near the boundaries of the image. It also segmented

many nuclei at places where there is no nucleus present visually. Our method provided

a better segmentation detecting more nuclei correctly. In terms of computational

time, our method takes on an average 20 times less than method Mdes on the same

machine. This is mainly because Mdes computes the energy functions at every pixel

of the image as against the selective MPP treatment performed in our method.
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(a) Original (b) Segmented Result (c) Result Overlay

Fig. 5.11.: Segmentation results: L-I

(a) Original (b) Segmented Result (c) Result Overlay

Fig. 5.12.: Segmentation results: L-II

In conclusion, our proposed method successfully segments nuclei, enabling their

counting and shape characterization.

Next, we show examples of the combined results of our jelly filling method from

Chapter 4 and the results of our nuclei segmentation method from this section. Fig-

ure 5.17 and Figure 5.18 are kidney images and Figure 5.19 - Figure 5.23 are liver

images that we used for jelly filling and nuclei segmentation. Each figure contains

(a): the original red channel image, (b): the result of our proposed jelly filling seg-

mentation method, (c): the original blue channel image, (d): the result of our nuclei
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(a) Original (b) Segmented Result (c) Result Overlay

Fig. 5.13.: Segmentation results: L-III

(a) Original (b) Segmented Result (c) Result Overlay

Fig. 5.14.: Segmentation results: L-IV

segmentation method, (e): the combined results of (b) and (d), (f): the red and blue

channels of (e) representing the boundaries and nuclei respectively.

The results indicate that our automatic image analysis methods can be used as

an effective tool in biomedical research.
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(a) Original (b) Segmented Result (c) Result Overlay

Fig. 5.15.: Segmentation results: L-V

(a) Method from [249] (n = 241) (b) Our Method (n = 628)

Fig. 5.16.: Comparison of the segmentation results. Outlines of segmented ellipse

marks are represented by red and overlaid on the original image.
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(a) Original Red Channel (b) Jelly Filling Segmentation Result

(c) Original Blue Channel (d) Nuclei Segmentation Result

(e) Combined Segmentation Result (f) Combined Segmentation Result

Fig. 5.17.: Segmentation results of our proposed methods: (K-I )



134

(a) Original Red Channel (b) Jelly Filling Segmentation Result

(c) Original Blue Channel (d) Nuclei Segmentation Result

(e) Combined Segmentation Result (f) Combined Segmentation Result

Fig. 5.18.: Segmentation results of our proposed methods: (K-I )
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(a) Original Red Channel (b) Jelly Filling Segmentation Result

(c) Original Blue Channel (d) Nuclei Segmentation Result

(e) Combined Segmentation Result (f) Combined Segmentation Result

Fig. 5.19.: Segmentation results of our proposed methods: (L-I )



136

(a) Original Red Channel (b) Jelly Filling Segmentation Result

(c) Original Blue Channel (d) Nuclei Segmentation Result

(e) Combined Segmentation Result (f) Combined Segmentation Result

Fig. 5.20.: Segmentation results of our proposed methods: (L-II )
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(a) Original Red Channel (b) Jelly Filling Segmentation Result

(c) Original Blue Channel (d) Nuclei Segmentation Result

(e) Combined Segmentation Result (f) Combined Segmentation Result

Fig. 5.21.: Segmentation results of our proposed methods: (L-III )
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(a) Original Red Channel (b) Jelly Filling Segmentation Result

(c) Original Blue Channel (d) Nuclei Segmentation Result

(e) Combined Segmentation Result (f) Combined Segmentation Result

Fig. 5.22.: Segmentation results of our proposed methods: (L-IV )
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(a) Original Red Channel (b) Jelly Filling Segmentation Result

(c) Original Blue Channel (d) Nuclei Segmentation Result

(e) Combined Segmentation Result (f) Combined Segmentation Result

Fig. 5.23.: Segmentation results of our proposed methods: (L-V )
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6. A WEB-BASED VIDEO ANNOTATION TOOL FOR

CROWDSOURCING SURVEILLANCE VIDEOS

Our goal is to provide law enforcement with a web-based video annotation system

capable of doing rapid analysis of surveillance video using crowdsourcing methods.

This analytic tool should aid in identifying potential threats and help investigate

crime. The same platform is also useful for future integration of machine learning

techniques where crowdsourced annotations can “help” automatic detection system

to improve their performance [256]. 1

We define a set of requirements to achieve our goal next.

6.1 System Requirements

The requirements are categorized into four main areas.

System Management and Data Security:

Because of the nature and ownership of the video for our law enforcement applica-

tion, there are requirements on the access and the management of the system. Data

and servers are not to be hosted on or integrated with commercial platforms. Ac-

cess to the system, training modules and tasks are managed by the designated law

enforcement entities. The crowd (annotators) must also be properly vetted by law

enforcement. Access for workers/annotators should be limited only to the assigned

tasks. Members of the crowd can annotate assigned videos with event labels that

are assigned to them. Interaction between different members of the crowd should be

1This work was jointly done with Mr. Khalid Tahboub, Video and Image Processing Laboratory
(VIPER), Purdue University. I also thank Prof. David Kirsh at UCSD for his discussions and
suggestions in the early part of this work [256].
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limited to the crowd model defined by law enforcement.

Video Annotation Tool:

Members of the crowd (annotators) should be able to identify time intervals in which

they detect an event. Each event should be categorized using the designated labels.

Spatial annotations can be done in the form of rectangular boxes capturing the ob-

ject(s) of interest. Comments can be added to each annotated event.

Activity Alerting and Result Aggregation:

Workers/annotators should be provided with real-time video streams for real-time

alerting or recorded video for “after the event” or forensic analysis. Results of the

annotations should be available for law enforcement to examine and track the per-

formance of the annotators. They can be sent to an individual worker or a group of

workers for validation, training or other purposes required by the task.

Worker Management:

Workers’ profile information should be kept private, protecting their passwords, iden-

tity and contact details. The system should be able to keep track of the amount of

work done by each worker with some type of performance measure. Their training

and actual annotation task status should be visible with the capability of sending

emails via the system to the appropriate law enforcement management. The system

should be easy-to navigate and organized in terms of the information available.

With this set of broad requirements, our web-based system is described below [256].

6.2 Our Approach

Our video annotation platform is based on a client-server approach where a central

authority consisting of designated law enforcement manages the entire system. This

ensures that it is the only entity to give access to surveillance video, assign annotation
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tasks and manage the workers. We define the two main entities as an essential part

of the process:

• Central authority: Full access to manage and architect the crowd (system man-

agement authority such as law enforcement)

• Members of the crowd: Similar to clients with limited access to the system

(Workers or Annotators)

Apart from the entities defined above, the management authorities can assign

members of the crowd various “roles.” This capability is essential in managing the

crowd and creating a hierarchical model. Roles are used to distinguish members of

the crowd into several levels and limit the set of event labels with which they can

annotate the video. The capabilities of our system and typical workflow is described

in detail below.

Our video annotation system is currently deployed on a server at Purdue Univer-

sity. The server is an Intel Xeon processor (3.20GHz) with 32 GB RAM and 8TB

of HDD storage. It runs the Linux operating system (Ubuntu server 12.04), Apache

HTTP server (current version: 2.2.22) and PostgreSQL database system(current ver-

sion: 9.1.11).

Figure 6.1 shows the system architecture. A popular open-source video tool, FFm-

peg is used to handle video processing functionalities. Java (with OpenCV library) is

used for the implementation of image processing and computer vision functionalities.

PHP is used for server scripting and creates dynamic web page content. Web pages

generated use HTML5 elements (currently supported by the Google Chrome browser)

such as <video> and <canvas>, both are very useful for handling embedded multi-

media objects. Embedded in the webpages are JavaScripts that are designed to run

on the client side and produce used-friendly interactive features. This enables the

crowd to add annotations in a seamless way.

System access is divided into two categories: First-time users and Non-first time

users. Administrators can invite users to join the system via an email invitation
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Fig. 6.1.: Our crowdsourcing system architecture

generated by the system. New users can be invited from administrator’s portal as

described in the Section 6.2.1. A unique 6-digit numeric identifier is generated for each

worker whereby they are sent an invitation email along with a one-time password.

New members can log in to the system using this identifier and the one-time password.

The users are prompted to fill out a form asking for their profile information including

new password, address, availability in number of hours/week and a profile picture.

Access to any other pages is denied until they fill out this information. Once they

submit the form, the new password is is generated and stored in the database.

Returning users can access their account with the unique 6-digit username and

password. Usernames (identifiers) and passwords are stored in a PostgreSQL database

table sequentially.

6.2.1 Administrator Portal

This portal consists of functionalities developed for law enforcement management

of the system.
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Users Administration: Administrators can invite new workers by sending an

email. They can view users’ profile information such as address, profile picture and

availability in number of hour/week. They can send emails to workers and block a

worker’s access to the platform.

Administrators can assign a “role” to a user. A role is useful in allowing or

denying access to certain types of annotations. A role is defined by a set of labels

corresponding to various events representing specific criminal activities or potential

threats such as battery, abandoned baggage, assault. Administrators can create a

new role based on a set of associated labels. They can also define a new label with

its description and training attributes (described below). When an Administrator

assigns a specific role to a set of workers, they can provide annotations only for the

labels associated to it. An example of a role is an “Baggage Expert” which consists

of labels: Abandoned baggage, suspicious swapping of a bag and visibly suspicious

baggage contents. This role allows workers to annotate a suspicious activity of that

type by using the associated labels.

Figure 6.2(a) and 6.2(b) represent snapshots of the system interface for managing

users and roles. Figure 6.4(b) displays the work flow associated with creating a label

or a role.

Training Management: Training is an important approach to improve the

quality of annotation [257]. A trained crowd has been shown to perform better than

an untrained crowd [258]. In our system, training is associated with an annotation

label. Creating training modules specific to an annotation label ensures that workers

are trained to annotate videos using that label. When the workers pass training for

a label, they are qualified to do actual annotations corresponding to that event.

At the time of creating a new label, Administrators can upload teaching (demo)

and training videos. They are prompted to provide their annotations as “ground truth

answers” so that the training done by workers can be assessed to make a pass/fail

decision. Training videos can be categorized using options such as “easy,” “medium”

and “hard” based on their level of difficulty. Administrators have a choice to make
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(a) User administration.

(b) Role administration.

Fig. 6.2.: Users and roles administration

the training optional or mandatory for a label. A teaching video includes explanation

and instructions on when to annotate a video with this specific label. Figure 6.4(a)
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displays the work flow associated with creating a training module and user manage-

ment.

Administrators can assign specific training modules to workers and review the

results. If the results are satisfactory, they are qualified for doing the actual tasks,

otherwise a new module is assigned to them. After many unsuccessful attempts, a

worker may be denied access to that label or the entire system. Creating training

modules for a specific label ensures that chosen members of the crowd possess the

required understanding of this type of events. It also helps in creating a hierarchal

model. The officer uploads a training video and annotates it to provide the ground

truth results. A teaching video can also be uploaded and includes explanation and in-

structions on when to annotate a video with this specific label. Figure 6.4(a) displays

the work flow associated with creating a training module and users management.

Task Management: Managing annotation tasks is the core of our system in

which administrators can assign real-time streams or recorded content to specific

workers. For real-time streams, administrators needs to specify the details of the cam-

era, such as its make, type and IP-address. Currently the system supports streaming

of unprotected streams, but in future more security features will be added. Adminis-

trators can assign a particular camera feed to a set of workers. For recorded content,

administrators first upload the video (.mp4 format) to the server via their task man-

agement portal. Then they have an option of editing the video by cutting it into

segments of smaller durations, adding a brief description of the contents and the goal

of overall analysis. Then these segments can be assigned to specific workers from a

list of available workers. A timestamp of the task assignment is recorded. A list of

videos is displayed along with their respective status such as: “Segments created,”

“Tasks assigned,” and “Tasks completed” with the timestamps of the corresponding

actions. A typical workflow of task management is illustrated in Figure 6.4(c).

Result Aggregation and Alert Reporting: When workers submit their anno-

tations, they appear as alerts on the administrator’s portal. Administrators can also

view all the results by checking completed tasks from a drop-down menu in the task
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management. The temporal annotations, corresponding to a suspicious event along

with specific textual comments, are aggregated in the form of the entire video with

annotations and also with cut segments of the actual annotation time duration. For

quick viewing, the administrator can only view the cut segments if desired to save

significant time by not watching the entire video.

6.2.2 Annotator Portal

The annotator portal is for workers to log in and do the annotation tasks. They

can view and modify their profile information. They can the check status of the

training tasks assigned to them. Status of each task is displayed e.g., “Assigned but

not started,” “Started but not complete,” “Complete and under review” and ”Pass”

or ”Fail.” Similarly, they can view the actual annotation tasks assigned to them

where the status can be: “Assigned but not started,” “Started but not complete” or

“Submitted.” Workers are not notified concerning how the results of their submitted

tasks are used by the administrators.

Our system is designed to provide easy-to-use tools with click-able interfaces for

doing annotation tasks. When workers start a new task, the corresponding video

content is displayed with usual video player functions such as play, pause, forward,

reverse and volume control. Displayed below the video contents is a list of sliders

representing specific labels corresponding to their roles. The workers can create a

new annotation by selecting a slider with a label and clicking on the video content.

This creates a highlighted time interval on the slider. Both ends of the interval can

be dragged to change the duration. Spatial annotations and textual comments can

be added by simple click functions. The workers have an option to either “Save and

continue later” or “Save and submit” a task. In the prior case, the annotations are

saved and displayed as they were the next time the worker resumes doing annotations.

In the later case, annotations are sent to system. Figure 6.3 shows an example of the

annotation interface for an annotator with 7 different labels.
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After doing annotations, a worker can specify number of hours spent on that

particular task. This is added to the total number of hours spent by that worker. A

typical annotator’s workflow is illustrated in Figure 6.4(d). Members of the crowd

can log in the system using their ID and check assigned tasks and training. For

both of those, the main component is the annotation platform using which they can

annotate videos with the labels defined in their corresponding role. For each label in

their role, a slider appears below the video player. Annotators can add highlighted

time intervals on sliders independently. Each highlighted time interval represents an

annotation using the corresponding label. Textual comments and spatial annotation

are also possible for each annotation.

Fig. 6.3.: The annotation interface
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(a) User management

(b) Labels and roles
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(c) Task management

(d) Annotator workflow

Fig. 6.3.: Typical system workflow
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6.3 Experimental Results

In this section, we present experimental results of our system implementation. For

our experiments we used the following publicly available surveillance video datasets:

BEHAVE [259], Lunds University traffic dataset2, UCR-VW [260], PETS 2006, PETS

2007 series datasets and i-Lids dataset for AVSS 2007. We transcoded the videos us-

ing FFmpeg into .mp4 format to make it compatible with HTML5.

6.3.1 System Performance

We first test the overall performance of the system, we present precision and recall

values for various event types. An “event” is a potential threat or a crime. In this

context, precision is the ratio of the number of detected events to the total number of

annotations. Recall is the ratio of the number of detected events to the total number

of events. Ideally, we would like precision and recall both to be 1. However, this

may not be always possible considering ambiguities, occlusions and other difficulties.

More importantly, we want recall to as close to 1 as possible, because it represents

the number of correctly detected events in the context of true events. Larger recall

means fewer missed detections. An event being undetected is worse than having a

false indication.

Our experiments used 15 annotators that were assigned surveillance videos con-

taining 41 events. Table 6.1 summarizes these results.

One primary observation is that the performance varies according to the labels.

Based on the table, for suspicious bag activity, both precision and recall performance

is very good. For intense arguments and battery, recall is 1. For traffic violation, pre-

cision and recall are close to 0.5. This indicates that traffic violation events are harder

to detect than other labels. Battery and intense arguments events seem more obvious

2Dataset available from the Video analysis in traffic research project, Lunds University, funded by
The Swedish Governmental Agency for Innovation Systems (VINNOVA).
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Table 6.1: Training video results

Event Type/Label Precision Recall

Suspicious bag activity 0.93 0.78

Traffic violation 0.45 0.56

Intense argument 0.67 1

Battery 1 1

to the crowd and hence more accurately detected. Overall, our system demonstrates a

good performance in terms of detecting events for. In the next section, we investigate

how training can improve the detection performance.

6.3.2 Trained Vs. Untrained Crowds

The basic intuition behind this comparison is to see the impact of the training

process on the annotation performance. A guided training process enhances one’s

ability to perform tasks. Another important aspect of this process is the ability to

identify low performing annotators and avoid assigning them tasks in the first place.

Our training module is based on actual surveillance video and it is very likely that

annotators who performed poorly would also perform poorly in the assigned tasks.

In [228], it has been shown that annotating video is one of the tasks that require high

cognitive demand, it was also recommended to identify high performing annotators,

which we believe our training module achieves.

We compare the performance of trained annotators against the untrained anno-

tators. Eight annotators are divided randomly into two groups, the training group:

the one to be trained first and then assigned tasks, and the non-training group: the

others to be assigned the same tasks without undergoing the training. The training

process is started by assigning a video to each annotator from the training group.
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The training video is accompanied by an audio track that contains a definition of the

event and an explanation on how to recognize it, without revealing the actual event.

Two labels are used for training purposes: Suspicious bag activity which includes

baggage swap and abandoned baggage, and traffic violation which includes a dan-

gerous turn. Two sets of training videos are created i.e. two for each label. First,

Set 1 was assigned to the training group. Administrators evaluated the annotation

results of the training videos submitted by the training group and compared them

to “ground truth.” They made a decision and passed or failed the workers. Only the

workers who failed the training with Set 1 were assigned Set 2. The results of that

training were recorded. The annotators who passed the training in either Set 1 or

Set 2 were assigned the actual tasks. The ones who failed both training sets were not

assigned any tasks for that particular label.

Table 6.2 summarizes the training results. All of the 4 annotators passed the

bag suspicious activity training module. Out of them, 3 passed the training in the

first attempt and 1 passed in the second. For traffic violation, 3 passed in the first

attempt, while 1 failed the training.

Table 6.2: Training performance

Label Attempt I (Set 1) Attempt II (Set 2) Total

Passed

Pass Per-

centage

Assigned Passed Assigned Passed

Suspicious

bag activity

4 3 1 1 4 100%

Traffic vio-

lation

4 3 1 0 3 75%

After the training process was completed, we assigned trained and untrained an-

notators to the actual tasks to detect events from three videos. Table 6.3 summarizes

the videos and events information.
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Table 6.3: Task performance

Video Duration

(seconds)

Label Event Description

Video 1 01:56 Suspicious bag activity Bag swap in a busy airport

hall

Video 2 02:59 Suspicious bag activity Abandoned bag in a busy

airport hall

Video 3 01:53 Traffic violation Failing to yield to other ve-

hicles when turning

Table 6.4: Final results

Event

type

Trained group Untrained group

# Annotators Precision Recall # Annotators Precision Recall

Suspicious

bag ac-

tivity

4 0.89 1 4 1 0.5

Traffic vi-

olation

3 0.5 0.67 4 0.2 0.25

Table 6.4 is a performance comparison between the two groups. For the trained

group, the recall for suspicious bag activity was 1, whereas for untrained crowd it was

0.5. In case of traffic violation, the trained group had a recall of 0.67, significantly

higher than that of untrained crowd (0.25). Precision for traffic violation is better

in case of trained group than that of untrained group. However, for bag suspicious

activity, trained group precision was slightly worse than untrained group.
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The results indicate that training process has significantly improved recall values.

In other words, the training process decreased the number of missed events (false

negatives). Members of the crowd having a better understanding of suspicious events

are better able to identify them. Missed events are possible threats to public safety

and it’s very important to minimize those as much as possible. We expect that when

our system is deployed on a larger scale, training will help avoid missed events to a

large extent.
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7. CONCLUSIONS

7.1 Summary

In this thesis, we developed new methods for error resilient video coding, mi-

croscopy image segmentation and an implementation of a video annotation platform.

The main contributions of the thesis are:

• Adaptive Error Concealment for Multiple Description Video Coding

We propose two adaptive error concealment methods for a temporal-spatial four

description multiple description video coding architecture. Our adaptive meth-

ods are motion vector analysis and error estimation using the H.264-coded MDC

bitstreams. We propose another adaptive concealment method for a spatial-

subsampling based MDC architecture. This method uses motion information

and prediction mode extracted from HEVC-coded MDC bitstreams. Experi-

mental results show that our proposed methods are effective under packet loss

conditions during video transmission.

• Error Resilient Video Coding using Duplicated Prediction Information for VPx

Bitstreams

We describe an error resilient coding method for VPx-coded bitstreams using

duplication of prediction information. Experiments indicate that our method

provides a graceful quality degradation under packet loss conditions.

• Jelly Filling Segmentation of Biological Images Containing Incomplete Labeling

We propose an iterative 3D segmentation method mainly for fluorescence mi-

croscopy images containing the incomplete labeling artifact. Intuitively, our

method is based on filling the disjoint background regions of an image with

“jelly-like” fluid such that the interactions between the “jellys” and the seg-
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mented foreground can be used to separate different biological entities in 3D.

Experiments with our images exhibit the effectiveness of our proposed method

as against some existing methods.

• Nuclei Segmentation of Microscopy Images using Midpoint Analysis and Marked

Point Process

We present a cell-nuclei segmentation method based on midpoint analysis and a

random process simulation. Midpoint analysis is used to classify the segmented

regions into single-/multi-centered objects based on their shape properties. A

2D spatial point process simulation is then used to quantify cell-nuclei by their

location and size.

• A Video Annotation Tool for Crowdsourcing Surveillance Videos

We describe our implementation of a web-based video annotation tool built

for the use of the law enforcement authorities for rapid analysis of surveillance

videos. The tool makes use of crowdsourcing in a controlled manner to distribute

annotation tasks to a set of trained “crowds” and aggregates the results for the

law enforcement authorities.

7.2 Future Work

Our methods can be improved and extended in the following ways:

• A Four Description MDC Architecture using HEVC/VPx Bitstreams:

We investigated a four description temporal-spatial four description MDC with

its adaptive concealment methods for H.264 bitstreams. In future, a compar-

ative study can be done by using these methods for HEVC/VPx bitstreams.

Error resilience capabilities of these methods can then be compared at the sys-

tem level.

• MDC using adaptive subsampling-based architectures:

In this thesis, we proposed error concealment methods only for fixed MDC ar-
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chitectures, where the number of descriptions and the partition methods were

hardwired. However, an MDC architecture could be selected adaptively from a

set of available architectures, based on current network conditions, desired pro-

cessing complexity and target latency requirements This will make the coded

bitstreams to contain a desired level of error resilience. Redundancy-rate distor-

tion analysis [54] can be useful in terms of quantifying the amount of redundancy

in an encoded bitstream.

• Error Resilience using Additional Keyframe Information in VPx

We investigated VPx error resilience using duplicated prediction information.

However, without error-free keyframes, the decoder can produce and propagate

errors. To provide resilience to keyframes, we could encode a downsampled

version of keyframes or original keyframes with a lower bitrate. This additional

keyframe information can then be sent as side information to assist the decoder

in error concealment. A part of this idea is currently under investigation that

can be further enriched using adaptive keyframe downsampling ratio that can

achieve a required amount of redundancy to provide error resilience.

• Improved Jelly Filling Segmentation using Differential Geometry

Our proposed jelly filling segmentation can provide acceptable results for most

of our image data. It can be improved by using the principles of differential ge-

ometry to discriminate objects based on mathematically modeled shape priors.

A statistical distance measure such as Bhattacharyya distance could be used

to provide likelihood of a particular object configuration. This likelihood can

then be used as an influence factor of our jelly filling framework. This will allow

segmenting a generic biological structure using the jelly filling concepts.

• 3D MPP for Nuclei Segmentation

In our work, we proposed a midpoint analysis and 2D MPP based nuclei seg-

mentation method that can be further improved using a 3D MPP simulation.

This could help quantification of nuclei in 3D that can also help visualization.
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• Segmentation using “Negative” Shape Priors

A typical MPP for image segmentation uses shape priors to estimate the likeli-

hood of a particular shape that needs to be segmented. Our general observation

with microscopy images indicate that due to various reasons, bright regions that

do not represent biological quantities appear in typical shapes. Detection and

estimation of such regions can be done using geometric shape priors for the

purpose of eliminating them from the segmentation outcome.

• A Generic Secure Crowdsourcing Platform with Hierarchical Crowd Model

We could generalize and improve our crowdsourcing platform to suit a specific

target application. An advanced tool offering more features for forensic analysis

is developed in [261]. A hierarchical crowd model has been under development

and has a potential to also investigate social behavior, mob mentality and other

features of crowdsourcing. Another web-based tool that crowdsources classifi-

cation and validation of food images with their labels, is developed using our

platform. A version of our platform is also developed to detect pharmaceutical

pills in images.
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