10 research outputs found

    Maurice Janet's algorithms on systems of linear partial differential equations

    Get PDF
    This article presents the emergence of formal methods in theory of partial differential equations (PDE) in the french school of mathematics through Janet's work in the period 1913-1930. In his thesis and in a series of articles published during this period, M. Janet introduced an original formal approach to deal with the solvability of the problem of initial conditions for finite linear PDE systems. His constructions implicitly used an interpretation of a monomial PDE system as a generating family of a multiplicative set of monomials. He introduced an algorithmic method on multiplicative sets to compute compatibility conditions, and to study the problem of the existence and the unicity of a solution to a linear PDE system with given initial conditions. The compatibility conditions are formulated using a refinement of the division operation on monomials defined with respect to a partition of the set of variables into multiplicative and non-multiplicative variables. M. Janet was a pioneer in the development of these algorithmic methods, and the completion procedure that he introduced on polynomials was the first one in a long and rich series of works on completion methods which appeared independently throughout the 20th century in various algebraic contexts

    Bach-flat manifolds and conformally Einstein structures

    Get PDF
    Einstein manifolds, being critical for the Hilbert-Einstein functional, are central in Riemannian Geometry and Mathematical Physics. A strategy to construct Einstein metrics consists on deforming a given metric by a conformal factor so that the resulting metric is Einstein. In the present Thesis we follow this approach with special emphasis in dimension four. This is the first non-trivial case where the conformally Einstein condition is not tensorial and there are topological obstructions to the existence of Einstein metrics. The conformally Einstein condition is given by a overdetermined PDE-system. Hence the consideration of necessary conditions to be conformally Einstein are of special relevance: the Bach-flat condition is central. In this Thesis we classify four-dimensional homogeneous conformally Einstein manifolds and provide a large family of strictly Bach-flat gradient Ricci solitons. We show the existence of Bach-flat structures given as deformations of Riemannian extensions by means of the Cauchy-Kovalevskaya theorem

    Mathematical Logic and Its Applications 2020

    Get PDF
    The issue "Mathematical Logic and Its Applications 2020" contains articles related to the following three directions: Descriptive Set Theory (3 articles). Solutions for long-standing problems, including those of A. Tarski and H. Friedman, are presented. Exact combinatorial optimization algorithms, in which the complexity relative to the source data is characterized by a low, or even first degree, polynomial (1 article). III. Applications of mathematical logic and the theory of algorithms (2 articles). The first article deals with the Jacobian and M. Kontsevich’s conjectures, and algorithmic undecidability; for these purposes, non-standard analysis is used. The second article provides a quantitative description of the balance and adaptive resource of a human. Submissions are invited for the next issue "Mathematical Logic and Its Applications 2021

    Structure Analysis of the Pohlmeyer-Rehren Lie Algebra and Adaptations of the Hall Algorithm to Non-Free Graded Lie Algebras

    Get PDF
    The Pohlmeyer-Rehren Lie algebra g\mathfrak{g} is an infinite-dimensional Z\mathbb{Z}-graded Lie algebra that was discovered in the context of string quantization in dd-dimensional spacetime by K. Pohlmeyer and his collaborators and has more recently been reformulated in terms of the Euler-idempotents of the shuffle Hopf algebra. This thesis is divided into two major parts. In the first part, the structure theory of g\mathfrak{g} is discussed. g0\mathfrak{g}_0, the stratum of degree zero, is isomorphic to the classical Lie algebra so(d,C)\mathfrak{so}(d,\mathbb{C}). Now, each stratum is considered as a g0\mathfrak{g}_0-module, and a formula for the number of irreducible g0\mathfrak{g}_0-modules of each highest weight that occur is given. It is also shown that g\mathfrak{g} is not a Kac-Moody algebra. Based on computer-aided calculations, g\mathfrak{g} is conjectured to be generated by the strata of degrees 00 and 11, but not freely. In an effort to classify the relations, in the second part, the Philip Hall algorithm that iteratively lists (linear) basis elements of a Lie algebra L(X)L(X) freely generated by a finite set of generators XX is modified. Any non-free finitely generated Lie algebra can be written as L(X)/IL(X)/I with an ideal II encoding the relations. Intended for cases where II is not explicitly known, a variant of the algorithm iteratively lists a basis of L(X)/IL(X)/I and a self-reduced basis of II. Further modifications that take advantage of restrictions enforced by a gradation on L(X)/IL(X)/I are also given.2021-06-2

    Magnus-based geometric integrators for dynamical systems with time-dependent potentials

    Full text link
    [ES] Esta tesis trata sobre la integración numérica de sistemas hamiltonianos con potenciales explícitamente dependientes del tiempo. Los problemas de este tipo son comunes en la física matemática, porque provienen de la mecánica cuántica, clásica y celestial. La meta de la tesis es construir integradores para unos problemas relevantes no autónomos: la ecuación de Schrödinger, que es el fundamento de la mecánica cuántica; las ecuaciones de Hill y de onda, que describen sistemas oscilatorios; el problema de Kepler con la masa variante en el tiempo. El Capítulo 1 describe la motivación y los objetivos de la obra en el contexto histórico de la integración numérica. En el Capítulo 2 se introducen los conceptos esenciales y unas herramientas fundamentales utilizadas a lo largo de la tesis. El diseño de los integradores propuestos se basa en los métodos de composición y escisión y en el desarrollo de Magnus. En el Capítulo 3 se describe el primero. Su idea principal consta de una recombinación de unos integradores sencillos para obtener la solución del problema. El concepto importante de las condiciones de orden se describe en ese capítulo. En el Capítulo 4 se hace un resumen de las álgebras de Lie y del desarrollo de Magnus que son las herramientas algebraicas que permiten expresar la solución de ecuaciones diferenciales dependientes del tiempo. La ecuación lineal de Schrödinger con potencial dependiente del tiempo está examinada en el Capítulo 5. Dado su estructura particular, nuevos métodos casi sin conmutadores, basados en el desarrollo de Magnus, son construidos. Su eficiencia es demostrada en unos experimentos numéricos con el modelo de Walker-Preston de una molécula dentro de un campo electromagnético. En el Capítulo 6, se diseñan los métodos de Magnus-escisión para las ecuaciones de onda y de Hill. Su eficiencia está demostrada en los experimentos numéricos con varios sistemas oscilatorios: con la ecuación de Mathieu, la ec. de Hill matricial, las ecuaciones de onda y de Klein-Gordon-Fock. El Capítulo 7 explica cómo el enfoque algebraico y el desarrollo de Magnus pueden generalizarse a los problemas no lineales. El ejemplo utilizado es el problema de Kepler con masa decreciente. El Capítulo 8 concluye la tesis, reseña los resultados y traza las posibles direcciones de la investigación futura.[CA] Aquesta tesi tracta de la integració numèrica de sistemes hamiltonians amb potencials explícitament dependents del temps. Els problemes d'aquest tipus són comuns en la física matemàtica, perquè provenen de la mecànica quàntica, clàssica i celest. L'objectiu de la tesi és construir integradors per a uns problemes rellevants no autònoms: l'equació de Schrödinger, que és el fonament de la mecànica quàntica; les equacions de Hill i d'ona, que descriuen sistemes oscil·latoris; el problema de Kepler amb la massa variant en el temps. El Capítol 1 descriu la motivació i els objectius de l'obra en el context històric de la integració numèrica. En Capítol 2 s'introdueixen els conceptes essencials i unes ferramentes fonamentals utilitzades al llarg de la tesi. El disseny dels integradors proposats es basa en els mètodes de composició i escissió i en el desenvolupament de Magnus. En el Capítol 3, es descriu el primer. La seua idea principal consta d'una recombinació d'uns integradors senzills per a obtenir la solució del problema. El concepte important de les condicions d'orde es descriu en eixe capítol. El Capítol 4 fa un resum de les àlgebres de Lie i del desenvolupament de Magnus que són les ferramentes algebraiques que permeten expressar la solució d'equacions diferencials dependents del temps. L'equació lineal de Schrödinger amb potencial dependent del temps està examinada en el Capítol 5. Donat la seua estructura particular, nous mètodes quasi sense commutadors, basats en el desenvolupament de Magnus, són construïts. La seua eficiència és demostrada en uns experiments numèrics amb el model de Walker-Preston d'una molècula dins d'un camp electromagnètic. En el Capítol 6 es dissenyen els mètodes de Magnus-escissió per a les equacions d'onda i de Hill. El seu rendiment està demostrat en els experiments numèrics amb diversos sistemes oscil·latoris: amb l'equació de Mathieu, l'ec. de Hill matricial, les equacions d'onda i de Klein-Gordon-Fock. El Capítol 7 explica com l'enfocament algebraic i el desenvolupament de Magnus poden generalitzar-se als problemes no lineals. L'exemple utilitzat és el problema de Kepler amb massa decreixent. El Capítol 8 conclou la tesi, ressenya els resultats i traça les possibles direccions de la investigació futura.[EN] The present thesis addresses the numerical integration of Hamiltonian systems with explicitly time-dependent potentials. These problems are common in mathematical physics because they come from quantum, classical and celestial mechanics. The goal of the thesis is to construct integrators for several import ant non-autonomous problems: the Schrödinger equation, which is the cornerstone of quantum mechanics; the Hill and the wave equations, that describe oscillating systems; the Kepler problem with time-variant mass. Chapter 1 describes the motivation and the aims of the work in the historical context of numerical integration. In Chapter 2 essential concepts and some fundamental tools used throughout the thesis are introduced. The design of the proposed integrators is based on the composition and splitting methods and the Magnus expansion. In Chapter 3, the former is described. Their main idea is to recombine some simpler integrators to obtain the solution. The salient concept of order conditions is described in that chapter. Chapter 4 summarises Lie algebras and the Magnus expansion ¿ algebraic tools that help to express the solution of time-dependent differential equations. The linear Schrödinger equation with time-dependent potential is considered in Chapter 5. Given its particular structure, new, Magnus-based quasi-commutator-free integrators are build. Their efficiency is shown in numerical experiments with the Walker-Preston model of a molecule in an electromagnetic field. In Chapter 6, Magnus-splitting methods for the wave and the Hill equations are designed. Their performance is demonstrated in numerical experiments with various oscillatory systems: the Mathieu equation, the matrix Hill eq., the wave and the Klein-Gordon-Fock eq. Chapter 7 shows how the algebraic approach and the Magnus expansion can be generalised to non-linear problems. The example used is the Kepler problem with decreasing mass. The thesis is concluded by Chapter 8, in which the results are reviewed and possible directions of future work are outlined.Kopylov, N. (2019). Magnus-based geometric integrators for dynamical systems with time-dependent potentials [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/118798TESI

    Iterated-integral signatures in machine learning

    Get PDF
    The iterated-integral signature, or rough-path signature, of a path has proved useful in several machine learning applications in the last few years. This work is extended in a number of ways. Algorithms for computing the signature and log signature efficiently are investigated and evaluated, which is useful for many applications of signatures when working with large datasets. Online Chinese character recognition using signature features with recurrent neural networks is investigated. A recurrent neural network cell which stores its memory as the signature of a path is suggested and demonstrated on a toy problem. There is an essentially unique element of the signature of a path in space which, under transformations of the space, scales with volume. That element is characterised geometrically. Given two features of curves, you can make a new one by taking the signed area of the 2d curve those two features make as a curve is traced out. A simple algebraic description of those features (which turn out to be signature elements) which can be formed from linear combinations of such combinations of total displacements is conjectured and worked towards. This is know as “areas of areas”
    corecore