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Abstract

The iterated-integral signature, or rough-path signature, of a path has proved useful

in several machine learning applications in the last few years. This work is extended

in a number of ways. Algorithms for computing the signature and log signature

efficiently are investigated and evaluated, which is useful for many applications of

signatures when working with large datasets. Online Chinese character recognition

using signature features with recurrent neural networks is investigated. A recurrent

neural network cell which stores its memory as the signature of a path is suggested

and demonstrated on a toy problem.

There is an essentially unique element of the signature of a path in space

which, under transformations of the space, scales with volume. That element is

characterised geometrically.

Given two features of curves, you can make a new one by taking the signed

area of the 2d curve those two features make as a curve is traced out. A simple alge-

braic description of those features (which turn out to be signature elements) which

can be formed from linear combinations of such combinations of total displacements

is conjectured and worked towards. This is know as “areas of areas”.
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and tests. Some associated tools etc. are in the examples subfolder. Several other
parts of this project have companion code in repositories of github.com/bottler,
for example at https://github.com/bottler/phd-code and https://github.com/
bottler/free-lie-algebra-py.
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The signature is an object which is crucial in the mathematical theory of
rough paths[Lyo98], and the calculations have proved to be useful in machine-
learning applications, particularly classification problems where the data itself is
a stream or a path in space, ranging from an application to online Chinese hand-
writing recognition in 2013 [Gra13] to skeleton-based human action recognition in
2017 [Yan+17]. Other domains where the data has this form include signals from
EEG and other medical monitors, sound and financial time series, where some set of
numbers is varying in time. Often the samples can be noisy, can have varying length
and both local and global structure can be important. A survey of such applications
is given in [CK16].

1.1 Plan

Figure 1.1 indicates contributions in subsequent chapters: sections which contain
mathematical results with ⇤, those which describe algorithms with � and those
containing the results of computer experiments with �. The remainder of this
introductory chapter introduces the signature in more detail.

2 Invariants
2.1 Signatures versus FKK expressions ⇤
2.2 A certain invariant ⇤
2.3 2D Rotational Invariants ⇤ �

3 Areas of Areas
3.1 Linear span of P : upper bound ⇤
3.2 Linear span of P : two-dimensional case ⇤

4 Calculation of signatures
4.2 Signatures �
4.3 Log Signatures directly �
4.4 Log Signatures from Signatures �
4.5 Implementation �
4.6 Indicative timings �
4.7 Indicative memory usage �
4.9 Backpropagation and derivatives �

5 Signatures in deep learning
5.6 Chinese handwriting recognition results � �
5.8 Signatures in LSTM � �

Figure 1.1: Plan of this document. Introductory sections to each chapter are omitted.
Arrows indicate significant dependencies, with the dotted arrows indicating that
although there is a logical dependency, the sections can be read independently. The
fact the arrows are so few should be helpful.
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1.2 What is the signature of a path?

The iterated-integral signature of a smooth path is an infinite sequence of numbers.
It is used in the mathematical theory of differential equations driven by paths. In
these problems, a path is the driving signal for a certain type of system. It turns out
that the signature is exactly the information about a path which you need to know in
order to predict how the output of the system will behave, using a generalisation of
Taylor’s theorem. It is natural that the signature would also be the right information
to extract from a path if we want a machine-learning algorithm to understand the
shape of the path.

A d-dimensional path is given by a function from an interval [a, b] ⇢ R to Rd.
We call Rd the ambient space of the curve. Its signature depends on the appearance
of the path and the direction it was created, but not the speed at which it was
created. If a path is modified by adding or removing a section which is exactly
backtracked over, then its signature does not change [HL10]. If the path has a time
dimension along which it always increases (for example it is the graph of a function
of time) then exact backtracking is impossible and so any two different paths will
have different signatures.1

The signature is divided into units called levels. We cannot store the whole
signature of a path on a computer, rather we calculate a certain number of levels of
it. The more levels of a signature are known, the more precisely the shape of the
path is determined. If a path changes very slightly, the first few levels of its signature
will also only change very slightly. If a path is moved (translated) but retains its
shape, its signature will not change.

The number of elements of level m of the signature of a d-dimensional path
is dm. They are the values of iterated integrals which consist of m nested integrals,
and they are labelled with m numbers each corresponding to one of the dimensions.
To distinguish these numbers which label the dimensions from other numbers, we
write them bold and in blue. For example, a two-dimensional path might be given
in coordinates as (�1(t), �2(t)) as t varies from a to b. Its signature is a function
denoted by X�

a,b from words made of the bold blue alphabet to real numbers. Level
three of its signature has eight elements, called X�

a,b(111), X
�
a,b(112) and so on. The

one indexed by the word 122 is

X�
a,b(122) =

Z b

t1=a

Z t1

t2=a

Z t2

t3=a
d�1(t3) d�2(t2) d�2(t1). (1.1)

1The signatures of two paths are the same iff they are tree-equivalent [HL10] which means that
they only differ in terms of adding or removing pieces which consist of exact backtracking.
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In general, the signature can be defined inductively on the length of the
word, as an element of one level of the signature of a path is an integral involving
the signature of a varying portion of the path. The signature of the empty word
is the single value in level 0, and it is defined to always be 1. If w is a word and
i 2 {1,2, . . . ,d} then X�

a,b(wi) is defined as the Stieltjes integral
R b
a X�

a,t(w) d�i(t).
In the simple case that �i is differentiable, this is equal to

R b
a X�

a,t(w) �
0
i(t) dt. We

also use the symbol S(�)a,b for X�
a,b. When the endpoints (a, b) of a path � are clear,

the signature X�
a,b may be denoted S(�).2

The information in the first level of the signature is the total displacement of
the path, i.e. the direction and distance from its starting point to its ending point.
The information which the second level of the signature adds is the signed area of the
path projected in each plane. Higher levels of the signature provide more detailed
information about the path’s shape.

1.2.1 Displacement

As mentioned, the first level of the signature of a path is just that path’s total
displacement vector. This is not a complicated thing, but in certain simple cases
it may contain enough information about a path, or about a section of a path, to
be used further. For example, it is enough information about handwritten digits
to make a significant guess as to what the digit is. The Pendigits dataset [AA98]
collected the traces of many people writing the digits 0 to 9. Figure 1.2 shows the
displacement of 18 of each digit on a scatterplot, we see that many like digits are
clustered together.

1.2.2 Signed area

For a two-dimensional path, the information carried by the first two levels of the
signature is the total displacement of the path (in the first level, which is two num-
bers) and the signed area between the path and the straight line from its beginning
to end. In higher dimensions, the second level of the signature gives the signed area
of the path projected into any plane. Figure 1.3 shows this information for two
straight lines in the plane and their combination, which contains area. For d = 1,
the signature does not contain any information beyond the total displacement of the
path, and is therefore not interesting. d should be considered as at least 2 in the

2Sometimes in analysis, the term signature is used in a slightly different sense: the signature of
a path � is the whole function (c, d) 7! X�

c,d, or something equivalent to it, not just that function’s
value on the path’s endpoints. This document does not use that sense of the word.

4
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Figure 1.2: Displacement (i.e. level 1 of the signature) of the first stroke of the first
18 of each handwritten digit 0 to 9 from the training data of [AA98]. The bounding
box of each digit is scaled to [�1, 1]2 so that the displacement lies in [�2, 2]2.

� 1
�1

�
,0

+

�1
1

�
,0

!
�2
0

�
,1

Figure 1.3: Concatenating paths and the corresponding total displacements and total
signed areas.

mathematical results of this thesis.3

The following is an intuitive definition of the signed area of a path in the
plane. For a smooth closed path, that is one which ends where it starts, the signed
area is the sum of the signed areas of the regions bounded by the path, which is the
area times the number of times the path goes round that region in an anticlockwise
manner minus the number of times the path goes round it clockwise (i.e. the winding
number). For example, in the path shown in Figure 1.4(a), regions whose areas count
positively are labelled with a +, and negatively with a �. One region’s area counts
twice negatively; it is labelled with ��. One enclosed region’s area does not count
at all, it is unlabelled. For a more general path, its signed area is the signed area of

3This is not to say that our methods are inapplicable to one-dimensional data. There are canon-
ical ways to produce higher-dimensional paths from a path, for example adding a time dimension
or a lead-lag transformation (e.g. [CK16]).
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the closed path you get by joining it with a straight line from its end to its start.

(a)

�

�

��
�

�

+

+

(b) �

+ +

+

�

(c)

Figure 1.4: (a) A complicated closed path showing the multiplicity of each region it
contains, (b) two idealised handwritten digit 0s showing the completion into a closed
curve and showing how the nature of the straight line completion has only a small
effect on the area, and (c) an illustration of an idealised handwritten digit 8 showing
why, although it is a large object, its area might be small due to cancellation of a
positive and negative part.

As an example of how the area can be useful in classifying the shape of the
path, consider classifying handwritten digits 0 and 8. Usually these are written with
a single stroke which ends near its beginning, so the displacement is insufficient for
distinguishing them. This is reflected in Figure 1.2 which shows the 0s and 8s near
the origin and intermingled. However, the signed areas are statistically different. The
figure 0 is typically formed from a single anticlockwise loop, generating a positive
signed area, while the figure 8 contains two regions with opposite sign, leading to
cancellation of signed area. The diagrams in Figure 1.4(b) and (c) illustrate this.
The histogram in Figure 1.5 shows how different the signed areas of the first (and
usually only) strokes of these digits are for the same Pendigits training data. This
clear separation is an illustration of the potential usefulness of the signature for
machine learning.
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Figure 1.5: Histogram of areas of the first stroke of each 0 and 8 in the training
portion of the Pendigits dataset.

I discuss later some extensions to the idea of signed area. In section 2.2 I
discuss a generalisation of this concept of signed area to more than two dimensions,
and in chapter 3 I discuss interpreting the whole signature, or large parts of it, as
signed areas calculated recursively.

1.3 Words

In this section I introduce some background algebraic structures which I refer to
repeatedly later. The main source for all this background is [Reu94]. An informal
introduction is given in [Rei15]. Consider a set ⌃ = {1,2, . . . ,d} of d “letters” which
has an ordering <. I use these blue bold numbers as labels for the dimensions. The
set of words with entries in ⌃ is called the Kleene Star of ⌃ and is denoted by ⌃⇤.
The length of a word u is denoted |u|. The empty word is denoted by ✏ and the
concatenation of words u and v is written uv. If a word w is equal to uv for some
words u and v, then u is said to be a prefix of w and v is said to be a suffix of w. If
u and v are both not empty then they are said to be a proper prefix and suffix of w.
For example 1 is a proper suffix of 3231, and a suffix but not a proper suffix of 1.
The ordering < on ⌃ can be extended to an ordering <L on ⌃⇤ called alphabetical
order or lexicographic order in the usual way. (Specifically: ✏ <L u if |u| > 0. For
letters a and b and words u and v, au <L bv if a < b or both a = b and u <L v.)

The free (real) vector space on the finite set ⌃ is the real vector space with

7



basis given by the elements of ⌃. We will just call it Rd. An element looks like
a11+ · · ·+ add for real numbers a1, . . . , ad.

The tensor algebra of the vector space Rd, T (Rd), is the set of finite sums
of real multiples of words, or equivalently the set of functions from ⌃⇤ to R which
are zero for all but finitely many words, or equivalently the free vector space on
⌃⇤, Rh⌃i. T ((Rd)) denotes the functions from ⌃⇤ to R, or formal power series on
⌃ considered as noncommuting, or equivalently the set of (possibly) infinite formal
sums of real multiples of words, Rhh⌃ii. The word u in ⌃⇤ is identified with the
function which takes u to 1 and all other words to 0, or the expression 1u. We
are only ever interested in finite restrictions of these in order to do calculations, in
particular we choose an integer m and ignore all words with length longer than m.
Tm(Rd) is the real vector space with basis given by words of length m or less4. The
concatenation of words is extended linearly to form bilinear5 associative operations
on T ((Rd)), T (Rd) and Tm(Rd) called the concatenation product. (On T ((Rd)) this
is well defined and doesn’t involve calculating infinite sums because each word is
only the concatenation of finitely many pairs of words.) For example, in T 4(R3),6

(9✏+ 7132)(21+ 421) = 181+ 3621+ 141321.

Level m of the signature can be thought of as taking values in (Rd)⌦m, which
is a dm-dimensional real vector space. In this form, the signature is seen to be an
element of T ((Rd)). If a 2 T (Rd) and b 2 T ((Rd)) we can form the inner product
ha, bi = hb, ai in the word basis because this is only a sum over the finitely many
terms in a. In this way T (Rd) is a set of linear maps T ((Rd)) ! R. If a 2 T (Rd)

and X is a signature then the notations X(a) and ha,Xi are equivalent for the value
of the signature on a.7

If p, q and r are real numbers with p < q < r and � is a bounded variation
path [p, r] ! Rd then the result (from [Che58]) known as Chen’s identity states
that

X�
p,r(i1i2 . . . in) =

nX

j=0

X�
p,q(i1i2 . . . ij)X

�
q,r(ij+1ij+2 . . . in). (1.2)

(The products indicated with ellipses can be empty, indicating the empty word, on
which any signature takes the value 1.)

4this is known as T (m)(Rd) in the notation of [LCL07]
5i.e. linear in each argument
6because the concatenation of 132 and 21 is ignored
7There is a slight confusion with the term “signature element”, as it is used for both the value

of a signature on an a 2 T (Rd) and also, sometimes, specifically for the value of a signature on a
word.
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Restricting up to level m, this means that

X�,m
p,r = X�,m

p,q X�,m
q,r , (1.3)

using the concatenation product in Tm(Rd), where X�,m
p,r means the signature of �

on [p, r] up to level m.
Given two words w1 and w2, their shuffle product w1 w2 is the multiset of

words which can be formed by interleaving them, including multiplicity, which we
write as a polynomial on words. For example

12 3 = 312+ 132+ 123

This is extended linearly to a commutative and associative operation on T (Rd).
The signature X of a bounded variation path obeys the following relation,

for any a, b 2 T (Rd), which is a consequence of integration by parts or the product
rule for differentiation. ([Ree58], see also [Reu94, Theorem 3.2])

X(a)X(b) = X(a b) (1.4)

In particular, therefore, not every element of T ((Rd)) is the signature of a bounded
variation path. For example, we see that X(✏) must be 1. Allowed elements are
those known as grouplike elements.8

1.4 What is the log signature of a path?

The log signature ([LS06], [LCL07], also logarithmic signature) is a compressed ver-
sion of the signature. It carries the same information, but in a more compact way.
It is also divided into levels. Up to level m, the log signature contains fewer numbers
than the signature. Any given set of values for these numbers actually gives the log
signature of some path up to that level, whereas this is not the case for signatures,
because there is some redundancy in the signature. For example the first two levels
of the signature of a two-dimensional path consists of 2+22 = 6 numbers but we saw
that this information is the path’s total displacement and signed area, which can be
stored in three numbers, which are exactly the first two levels of the log signature.
In applications, the log signature might be less susceptible to roundoff error. The
log signature is defined in terms of the signature, in a way analogous to logarithms
of numbers, but can be calculated via an independent algorithm.

8This is equivalent to the remark in section 3.5.2 of [Reu94].
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The space T ((Rd)), in which the signature of a d-dimensional path lives, has
a notion of logarithm ([Reu94], chapter 3), given by

log(✏+ T ) =
X

n�1

(�1)n�1Tn

n
, (1.5)

where T has no ✏ component, and a notion of exponential, given by

exp(T ) = ✏+
X

n�1

Tn

n!
. (1.6)

In particular, these are well-defined operations which are inverses

�
x 2 Tm(Rd) | hx, ✏i = 1

 exp
⌧
log

{x 2 Tm(Rd) | hx, ✏i = 0}. (1.7)

Let S be the set which consists of the signature of every path in Rd truncated up to
some level m. S is not the whole of the vector space Tm(Rd), although it does span
Tm(Rd) (see [Die13, Lemma 8]). In fact, S forms a lower-dimensional manifold. The
logarithm operation maps this manifold continuously one-to-one to a linear subspace
of T (Rd). The image of a signature under the logarithm or its representation in a
basis of this subspace is called the log signature. The logarithms of two signatures
which agree up to level m will agree up to level m, and so the phrase “log signature
of a path up to level m” is unambiguous.

The subspace in which the log signature of a path in Rd up to level m lives
is equivalent to the free m-nilpotent Lie algebra of type d, nd,m. The log signature
is a completely compressed version of the signature up to the same level – for every
value in nd,m, there is a path with that truncated log signature. It is a Lie algebra
under the bracketing operation defined by [a, b] = ab � ba. A clear presentation of
the background to this is found in [LR95].

nd,m is a finite dimensional real vector space, but there is no single obvious
basis for it. In order to use the log signature as an efficient representation of a path,
we need to choose a fixed basis. There are two commonly used bases. They are
both Hall bases[Hal50]. A Hall basis is made up of bracketed expressions, which
are expressions involving letters combined with Lie brackets like [1, [2,1]], and it is
determined by an ordering of all bracketed expressions.

• The Lyndon basis[Shi53]. Each basis element is labelled with a Lyndon word
on {1,2, . . . ,d}, which is a sequence which comes earlier in lexicographic order
than any of its rotations. (For example, the rotations of 2432 are 2243, 3224
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and 4322. 2243 and 1213 are Lyndon words but 31 and 3224 are not.)

• The standard/canonical Hall basis, which we implement in such a way as to
match CoRoPa[Lyo+10] exactly. The ordering of equal-length expressions
[A,B] and [C,D] is defined recursively: [A,B] < [C,D] if either A < C or
(A = C and B < D).

In these bases, each basis element is either a letter or a single bracketed
expression, whose left and right are basis elements. We always pick an order on
basis elements such that shorter bracketed expressions come before longer ones, and
single letters, which are the first level, are in their natural order 1 < 2 < · · · < d.

From each bracketed expression we can form a word by deleting the brackets,
which we call the expression’s foliage. For example the foliage of [1, [2,1]] is 121.
Elements of a Hall basis are labelled by their foliages, which are called Hall words.
In the Lyndon basis the Hall words are the Lyndon words.

In summary, the signature of a path is a special type of element of tensor
space, called a grouplike one. It is the tensor exponential of a Lie element. This
element is called the log signature of the path. Hall bases are practical bases for free
nilpotent Lie algebras, which is where truncated log signatures take their values. A
Hall basis is graded, its elements in each level provide a basis for that level. Its
elements in level m are labelled with words of length m called Hall words. The term
log signature of a path is also used for the numerical expression in terms of a Hall
basis. If h is a Hall word, we write Ph for the corresponding Lie element.

1.4.1 Extracting a single log signature element from the signature

Every polynomial function on signatures can be written uniquely as a linear combi-
nation of signature elements, i.e. as a linear function on the signature. In particular,
any element of the log signature can be written as an expression in terms of the
signature. Here I present a simple way to find this expression.

Considering everything up to level m, there is a unique linear map ⇡1 defined
on the truncated tensor algebra which agrees on truncated grouplike elements with
the logarithm function. This is explained on page 58 of [Reu94]. (This is an example
of the general principle that every polynomial function from grouplike elements /
signatures to the reals extends uniquely to a linear function from T ((Rd)) to the
reals. This reflects how much redundancy there is in the signature.).
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Denoting the non-empty words by ⌃+, ⇡1 of a word w is given by

⇡1(w) =
X

k�1

(�1)k�1

k

X

u1,...,uk2⌃+

hw, u1 · · · ukiu1 · · ·uk. (1.8)

Its adjoint ⇡>
1 , which [Reu94] introduces in section 6.2 as ⇡⇤

1, is given by the similar
expression, using the duality between shuffle and concatenation.

⇡>
1 (w) =

X

k�1

(�1)k�1

k

X

u1,...,uk2⌃+

hw, u1 · · ·ukiu1 · · · uk (1.9)

This is explained in section IV of [GK08], where ⇡>
1 is called ⇡0

1. ⇡>
1 is easier to

calculate than ⇡1 because its inner sum is simply over all decompositions of w into
k words without having to think about preimages of the shuffle product.

For example,

⇡>
1 (112) = 112� 1

2
(1 12+ 11 2) +

1

3
1 1 2

Fixing a Hall basis, there is a well known basis of each level of tensor space
called the Poincaré-Birkhoff-Witt basis or PBW basis, described around page 91 of
[Reu94]. Each basis element of level m is indexed by a word of length m, we use
the notation Pw for the element indexed by the word w. The PBW basis has the
property that when w is a Hall word then Pw is the corresponding Lie element. Thus
the notation here is consistent with our use of Pw above when w is a Hall word.

On page 108 of [Reu94] is given an explicit construction of a dual basis S for
the PBW basis. This is indexed by words, and if w is a word then both Sw and Pw

are elements of level |w| of the tensor algebra. In particular, for any words w and
w0 we have that hSw, Pw0i is 1 if w = w0 and zero otherwise.9

Let’s say we wish to find an expression for the log signature element corre-
sponding to the basis element labelled with Hall word h. If X is the signature, then
because its logarithm can be written as logX =

P
h0 Hall lh0Ph0 for constants l· and

we are looking for lh, our target is

hSh, logXi = hSh,⇡1(X)i = h⇡>
1 (Sh), Xi (1.10)

Thus ⇡>
1 (Sh) is exactly the expression we need. This is not used in any of this work

but is a possible alternative for obtaining the log signature whose performance could
be investigated.

9Angle brackets are always the inner product in the word basis described in section 1.3.
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1.4.2 An illustration

The log signature up to level 4 has 8 degrees of freedom. We can write it as tensors
in the Lyndon basis in the following general form.

aP1 + bP2 + cP12 + dP112 + eP122 + fP1112 + gP1122 + hP1222

( a
b ) +

�
0 c

�c 0

�
+

 ⇣
0 d

�2d e

⌘

⇣
d �2e
e 0

⌘

!
+

0

BBBB@

0

@

⇣
0 f

�3f g

⌘

⇣
3f �2g
0 h

⌘

1

A

0

B@

⇣�f 0
2g �3h

⌘

⇣ �g 3h
�h 0

⌘

1

CA

1

CCCCA

. (1.11)

When exponentiated using (1.6), this expresses the signature truncated up to level
4 in the following form

1 + ( a
b ) +

1
2

⇣
a2 ab+2c

ab�2c b2

⌘
+ 1

6

0

@

✓
a3 a2b+6d+3ac

a2b�12d ab2+6e+3bc

◆

✓
a2b+6d�3ac ab2�12e
ab2+6e�3bc b3

◆

1

A

+ 1
24

0

BBBBBB@

0

BB@

✓
a4 a3b+4a2c+12ad+24f

a3b�12ad�72f a2b2+4abc+12ae+12bd+24g

◆

✓
a3b�12ad+72f a2b2+4abc�24ae�24bd+12c2�48g

a2b2+24ae�12c2 ab3+4b2c+12be+24h

◆

1

CCA

0

BB@

✓
a3b�4a2c+12ad�24f a2b2+24bd�12c2

a2b2�4abc�24ae�24bd+12c2+48g ab3�12be�72h

◆

✓
a2b2�4abc+12ae+12bd�24g ab3�12be+72h

ab3�4b2c+12be�24h b4

◆

1

CCA

1

CCCCCCA
(1.12)

Writing this out in terms of words would look like

✏+ a1+ b2+
1

2

h
a211+ (ab+ 2c)12+ (ab� 2c)21+ b222

i
+ · · · (1.13)
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1.5 Tools

Here I describe a number of new software tools for examining the signature which I
have found useful, and which should help people in different ways trying to get to
know the signature and its behaviour. They are not all original ideas.

1.5.1 Five points in two dimensions

In the specific case d = 2, m = 4, the log signature has eight components, and a two
dimensional path with four segments has eight degrees of freedom. The file view.m
provides an interactive Mathematica 10 visualisation of the relationship between
a path made of four segments and its log signature. It depends on another file
bch.m, which has been generated by additional functionality in the original python
logsignature code [Rei15], which defines a single function returning the log signature
of a path defined by four displacements. The visualisation should appear when
view.m is run. The log signature appears as widgets on the right of the graph of
the path. Because level 1 and level 3 of the log signature are two dimensional, they
are represented by 2d controls. The other log signature components are controlled
separately. When ‘solve’ is ticked, you can gently move the widgets to change the
components of the log signature and see the path move. Note that the 12 component
controls the signed area enclosed by the path. The calculation of solutions is not
perfect, but is enough to get a general picture. It is relying on built-in nonlinear
optimisation routines in Mathematica to attempt to invert the signature in this
special case. When ‘solve’ is unticked, you can drag the locators to change the path,
and see the corresponding log signature elements move. For example, after drawing
3 paths the window might look as shown in Figure 1.6.

1.5.2 Freehand drawing

The simple tool freehand_draw.py lets you draw paths with your mouse in a blank
window. The signature of each path is printed on the console. This is one tool I
wanted to have in order to get a feel for the signature elements. Signed area and
its robustness on paths which are nearly closed is particularly easy to illustrate with
the tool.

For example, after drawing 3 paths the window might look as shown in Fig-
ure 1.7. The following would be printed on the console, indicating truncated log
signatures up to level 3 of each path. In particular, the three lines in order corre-
spond to (1) the letters of the word ‘hey’, (2) the vertical stroke of the exclamation
mark and (3) the dot.
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Figure 1.6: The view.m tool showing a path among five points. The widgets on the
right show its log signature up to level 8.

Figure 1.7: Appearance of freehand_draw.py after some mouse drags.
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[ 0.366492 -0.379581 0.020182 -0.007912 -0.003532]
[ -0.002618 -0.212042 0.001631 -0.000008 -0.000014]
[ 0.002618 0.005236 0.000154 0.000001 0.000001]

1.5.3 Arbitrary precision signature calculations

The iisignature project sources include a project arbprec which calculates signa-
tures of paths in arbitrary precision and compares them to those using floating point
arithmetic. Very often we see that these results do not differ by much for random
paths. There are cases where calculating the signature of a path naturally results in a
loss of floating point accuracy, for example the 1-dimensional path (0), (a), (b) where
a ⇡ 1 and b ⇡ 0, and so testing with arbitrary precision may be useful. Long paths
given by lots of points could create a unique problem, with this type of cancellation
happening in some dimensions.

1.5.4 Free lie algebra calculations

The file free_lie_algebra.py10 provides objects to do many of the calculations
described in [Reu94]. The main types are summarised in Table 1.1. It is useful for
getting intuition and testing out conjectures, and is generally hackable.

As an example, we could try to find the linear combination of signature
elements corresponding to the coefficient of 112 in the log signature in the Lyndon
basis. We might do that like this using the method of subsection 1.4.1.

from free_lie_algebra import *
d=2
m=3
H=HallBasis(d,m,lessExpressionLyndon)

with UseRationalContext ():
answer=pi1adjoint(S("112",H))

This sets answer to the Elt representing ⇡>
1 (S112) which is what we are looking for.

If we run print(answer.pretty()) we will be told

[1/6]112 -[1/3]121+[1/6]211

10github.com/bottler/free-lie-algebra-py
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name set
Word ⌃⇤

Elt tensor space, Kh⌃i
EltElt Kh⌃i⌦n, any n
tuple(int...) free magma, Mh⌃i
HallBasis a Hall basis for a given dimension and depth/level.
TensorSpaceBasis a basis of Kh⌃i, e.g. the PBW basis or its dual, up

to a given dimension and depth/level.

Table 1.1: Types in free_lie_algebra.h

which fits with what we would come up with by staring at (1.12) to find a (in fact,
the unique) linear combination of elements which adds up to d, namely that

d =
1

6

⇣a2b+ 6d+ 3ac

6

⌘
� 1

3

⇣a2b� 12d

6

⌘
+

1

6

⇣a2b+ 6d� 3ac

6

⌘
.

The library uses floating point numbers as coefficients by default. The use of
UseRationalContext makes it use rational numbers from sympy [Meu+17], which is
prettier in a case like this.

We can further verify this in the code. The arbitraryGrouplikeEltSympy
function returns an arbitrary truncated signature expression as an Elt in the style
of (1.12). The coefficients are sympy expressions. It is a tensor where each element
in terms of its corresponding log signature elements for a given Hall basis. Instead
of labelling the log signature elements with letters of the alphabet like the a, b, c, . . .

of (1.11), the element corresponding to a word is given a name x subscripted with
the number which looks like the word. For example c is x_12. We can perform the
verification like this

sig = arbitraryGrouplikeEltSympy(H)
print(dotprod(sig ,answer).expand ())

which prints x_112 as desired.

1.5.5 Mathematica signature tools

Mathematica has a highly regarded system for symbolic integration. If someone has
a curve given in mathematical form and wants to try to calculate its signature in
closed form or numerically, it would make sense to use Mathematica. Therefore I
created tools to make this easy.

parametricCurves.wl provides functions for manipulating parametric curves
(which are represented either as a list of functions or a list of expressions). Some
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simple manipulations are provided (shifting, concatenating, plotting, adding a time
dimension) which may be useful for experiments. The calculation of the signature,
with iterative calls to Mathematica’s integrator, is the main capability. For example,
a calculation of the signature of one revolution of a circle up to level 3 could be
requested with

SigFns [{Cos , Sin}, 2 Pi, 3]

which results in the following.

{{0, 0},
{{0, Pi}, {-Pi, 0}},
{{{0, -Pi}, {2*Pi, 0}},{{-Pi, 0}, {0, 0}}}}

bases.wl contains basic Hall basis calculations sufficient to map an expanded
log signature to a basis. This is expressed in a way close enough to the mathematical
presentation to be instructive. calcSignature.wl calculates signatures and log sig-
natures of piecewise linear curves using straight Mathematica code. This is like the
basic functionality of iisignature. This is again instructive rather than intended
to be used for high volume calculation. I similarly provided examples of the basic
calculation of the signature of a path through given points in R and matlab because
people ask.

1.6 A conjecture about figures of eight

One way I attempted to get a feel for signature elements is to think about paths which
are simple and whose signatures are zero up to a certain level. This is something
that has been considered for example in [GK14]. In section 7.5.2 of [FV10] it is
shown that among paths whose signature is a given truncated grouplike element,
equivalently among all the paths with a given truncated log signature, there is a
unique shortest path and it can be parameterised at constant speed. Finding it for
a given truncated signature, or indeed any path, is an open problem in general. For
level 1, this path is a straight line. For level 2 given, it is quite easy to find the path,
it will be a piece of circle or helix. This follows from the work in [BD93]. There is no
easy way to find the path for higher levels, although this would be quite informative.
For level 3, a numerical attempt has recently been announced in [PSS18]. Having
paths which are zero up to each level could be useful not only for gaining intuition
but also because they could be combined to produce paths which agree with a given
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(a) (b)

12

(c)

12

34

Figure 1.8: Closed paths are shown with their start and end marked with a solid
circle. (a) A circle, a path whose first nonzero signature entry is on level 2. (b) A
figure of eight made of two circles, a path whose first nonzero signature entry is on
level 3. (c) A path made of two traverses of the same figure of eight, whose first
nonzero signature entry is on level 5.

!
12

! 1 2

!
1 2

! 12

Figure 1.9: The transformation of each loop in the path to a figure of 8 which leads
from each path to the next.

signature. In this section, I present an interesting pattern which looks like a supply
of paths whose first non-zero signature level is arbitrarily high.

In electromagnetism, it is common to consider a dipole moment, the long-
range effect of two nearby particles of opposite charge. Magnetic poles come in pairs
in nature, and we often consider combinations of them in such a way that the total
dipole moment is zero, leading us to quadrupole moments. The process continues.
The fact that a figure of eight has nonzero values in level 3 of its signature but
zero values in level 1 and 2, which is seen because it is closed and the areas of
each loop (which have signed area but no displacement) come with opposite signs,
is reminiscent of this process.

By numerical experiment, I have found a pattern where traversing a figure
of eight several times (all starting from the central crossing point) I can get paths
whose signatures are zero up to many levels. There are four ways to traverse a given
figure of eight with zero area – just by choosing which direction to start.

• Two such figure-of-eight traverses can be concatenated to a path which makes a
total of four loops whose first nonzero signature elements are at level 5. These
paths are shown in Figure 1.8.

• Two such four-loop traverses can be concatenated (in exactly one way) to make
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a path which has 8 loops and whose first nonzero signature elements are at level
8.

• Two such 8 loop traverses can be concatenated (in exactly one way) to make
a path which has 16 loops and whose first nonzero signature elements are at
level 13.

• Two such traverses can be concatenated in exactly one way to make a path
whose signature is zero up to at least level 18.

The general process which goes from one of these paths to the next is that of replacing
each single loop by a figure of eight in the pattern shown in Figure 1.9. This pattern
is reminiscent of the way the Thue-Morse sequence is generated. For example, the
pattern of whether each loop is clockwise or anticlockwise in one of these paths
corresponds to the Thue-Morse sequence. Calculating signatures for these paths is
illustrated in the file figure8Fibonacci.py which uses iisignature to calculate
signatures. It is simple to conjecture that paths can be formed in this way whose
first nonzero signature elements are any given Fibonacci number.
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Chapter 2

Invariants
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In this chapter I discuss some new results about signature elements which are
invariant under certain transformations of the ambient space. Invariants to trans-
formations which are known to be irrelevant for the problem at hand are potentially
useful in machine learning as explained in subsection 5.3.4.

2.1 Signatures versus FKK expressions

There is a vast literature on invariants of curves, mostly in two dimensions. Among
the techniques used, the method of “integral invariants” of [FKK10], which has been
used for example in [GMW10] for character recognition, is close to our iterated-
integral signature method. Their method has not been explicitly compared with our
iterated-integral signature. In that work, for a curve X : [0, T ] ! Rd, d = 2, 3, the
building blocks for invariants are expressions of the form

Z T

0
(X1

r )
↵1 . . . (Xd

r )
↵ddXi

r, i = 1, .., d. (2.1)

for nonnegative integers ↵1 . . .↵d. This can be written using the shuffle identity (1.4)
in terms of the signature S(X)0,T as follows.1

Z T

0
(X1

r )
↵1 . . . (Xd

r )
↵ddXi

r

=

Z T

0
hS(X)0,r,1

↵1i . . . hS(X)0,r,d
↵di dXi

r

=

Z T

0
hS(X)0,r,1

↵1 · · · d ↵di dXi
r

= hS(X)0,T , (1
↵1 · · · d ↵d)ii (2.2)

= ↵1! . . .↵d!hS(X)0,T , (1
↵1 · · · d↵d)ii (2.3)

These building blocks, then, are the signature elements which are a shuffle of letters
concatenated with a single letter. These are exactly the signature elements which
show up when defining an integral of a one form along a path. We note that the build-
ing blocks are not enough to uniquely characterize a path, unlike iterated-integral
signatures. Indeed, the following lemma gives a counterexample to the conjecture
on p.906 in [FKK10] that “signatures of non-equivalent curves are different” (here,
the “signature” of a curve means the set of expressions of the form (2.1)). The idea
for the counterexample is that the the whole of the first two levels of the signature,

1I write a n for
n timesz }| {

a · · · a, which is well-defined because the shuffle product is associative.
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�1
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0.5

1

X+X�

Figure 2.1: The lemniscate of Gerono. Traversing it once from each of the two start-
ing points indicated gives two distinct closed curves with distinct iterated-integral
signatures, but which cannot be distinguished with the “signature” of [FKK10].

but not the third, is included in the form (2.1), so a good choice would be something
like a figure of eight, which has nothing on the first two levels, and it makes sense
to pick a curve which has a tractable form.

Lemma 1. Consider the two closed curves X+ and X� in R2, given for t in [0, 2⇡]

as

X±,1
t = ± cos t

X±,2
t = sin 2t.

Then all the expressions (2.1) coincide on X+ and X�.

These curves both trace a figure called the lemniscate of Gerono which is
illustrated in Figure 2.1, but in different ways.

Proof. Consider the function fm
n (t) := cosm t sinn t, where m and n are nonnegative

integers. If n is odd, then fm
n (t) = �fm

n (2⇡� t) so
R 2⇡
0 fm

n (t) dt is zero. If m is odd,
then

Z 2⇡

0
fm

n (t) dt = �
Z � 3⇡

2

⇡
2

fm
n (

⇡

2
� t) dt =

Z ⇡
2

� 3⇡
2

fn
m(t) dt =

Z 2⇡

0
fn

m(t) dt = 0.

Thus
R 2⇡
0 fm

n (t) dt can only be nonzero if m and n are both even.
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Any expression like (2.1) is either of the form

A±
m,n =

Z 2⇡

0

�
X±,1

t

�m�
X±,2

t

�n
dX±,1

t

=

Z 2⇡

0
(±1)m cosm t sinn 2t (⌥ sin t) dt

= ⌥2n(±1)m
Z 2⇡

0
cosm+n t sinn+1 t dt

=

8
<

:
0 n even or m even

�2n
R 2⇡
0 cosm+n t sinn+1 t dt otherwise

or of the form

B±
m,n =

Z 2⇡

0

�
X±,1

t

�m�
X±,2

t

�n
dX±,2

t

=

Z 2⇡

0
(±1)m cosm t sinn 2t (2 cos 2t) dt

= 2n+1(±1)m
Z 2⇡

0
cosm+n t sinn t (cos2 t� sin2 t) dt

=

8
<

:
0 n odd or m odd

2n+1
R 2⇡
0 cosm+n t sinn t (cos2 t� sin2 t) dt otherwise

.

Both these expressions are free from the symbols ± and ⌥. Therefore these two
curves have the same values on terms of the form (2.1). 2

2.2 A certain invariant

In [DR18] we report several facts relating to signature elements of a path � from [0, T ]

to Rd which are invariant under certain groups of transformations. In this section,
we report interesting results on the geometric interpretation of a certain invariant,
which generalises the concepts of signed area and winding number to curves in higher
dimensions.

Let

GL(Rd) = {A 2 Rd⇥d : det(A) 6= 0},

be the general linear group of Rd.
2 Note that X+ and X� are not tree-equivalent and therefore have different (iterated-integral)

signatures. The lowest level on which they differ is level 4.
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Definition 2. For a positive number w, we call � 2 T (Rd) a GL invariant of
weight w if

D
XA��

0,T ,�
E
= (detA)w

D
X�

0,T ,�
E

for all A 2 GL(Rd) and all bounded variation paths � : [0, T ]! Rd.

It turns out that such invariants only exist for integer w, and that invariants
of weight w live in level m = wd of the signature. In this section, I label the alphabet
of dimensions {1, . . . d} as {x1, . . . , xd}. Whatever the dimension d of the curve’s
ambient space, the space of invariants of weight 1 has dimension 1 and is spanned
by

Invd := Invd(x1, .., xd) :=
X

�2Sd

sign(�) x�(1)..x�(d) = det

0

B@
x1 .. xd

.. .. ..

x1 .. xd

1

CA . (2.4)

Here, for a matrix C of non-commuting variables, (compare [FW86, Definition 3.1])

detC :=
X

⌧

sign ⌧
Y

i

Ci⌧(i).

It is the fact that the multiplication is not commutative which makes the determinant
in (2.4) not trivially zero.

This invariant is of homogeneity d, meaning it is an element of level d of
tensor space, and is the subject of this section. It is well-known that the invariant
for d = 2, Inv2 is double the signed area of a curve, as discussed in subsection 1.2.2.
The invariant for d = 3, Inv3 is identified in [FKK10] who call it �J1.3 In section 3.4
of [FKK10] they interpret this invariant as an extension of the concept of signed area
and as the volume of a solid. Our line of research here began with trying to give a
more precise interpretation of this invariant, and with the observation from numerical
experiment that for many 3-dimensional curves with only a simple bend, Inv3 seems
up to sign to coincide with six times the volume of the convex hull of the curve.

The following lemma tells us that we can write Invd in terms of expressions on
lower levels. To state it, we first define the operation InsertAfter(xi, r) on monomials
of order n � r, as the insertion of the variable xi after position r, and extend it

3Using equations (18) through (21) of [FKK10] we have, in their notation, J1 = XY Z �
2XZ [0,1,0] + 2Y Z [1,0,0] � 2ZY [1,0,0]. In our notation, this expression as a signature element is
1 2 3�21 23+22 13�23 12, which expands to �123�231�312+132+213+321 = � Inv3.
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linearly. For example

InsertAfter(x1, 1) Inv2(x2, x3) = InsertAfter(x1, 1)
⇣
x2x3 � x3x2

⌘

= x2x1x3 � x3x1x2.

Lemma 3. In any dimension d and for any r = 0, 1, . . . , d� 1

Invd(x1, . . . , xd) = (�1)r
dX

j=1

(�1)j+1InsertAfter(xj , r) Invd�1(x1, . . . , bxj , . . . , xd),

where bxj denotes the omission of that argument.
For d odd, this simplifies to

Invd(x1, . . . , xd) =
dX

j=1

(�1)j+1xj Invd�1(x1, . . . , bxj , . . . , xd).

Proof. The first statement follows from expressing the determinant in (2.4) in terms
of minors with respect to the row r + 1 (since the xi are non-commuting, this does
not work with columns!).

Regarding the second statement, since d is odd and then using the first state-
ment

Invd =
d�1X

r=0

(�1)r Invd

=
d�1X

r=0

(�1)r(�1)r
dX

j=1

(�1)j+1InsertAfter(xj , r) Invd�1(x1, .., bxj .., xd)

=
dX

j=1

(�1)j+1
d�1X

r=0

InsertAfter(xj , r) Invd�1(x1, .., bxj .., xd)

=
dX

j=1

(�1)j+1xj Invd�1(x1, .., bxj .., xd),

as claimed.

An immediate consequence is the following lemma, where we are considering
a curve X : [0, T ]! Rd and its signature S(X) = S(X)0,T .

Lemma 4. If the ambient dimension d is odd and the curve X is closed (i.e. XT =
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X0) then
D
S(X)0,T , Invd

E
= 0.

Proof. By Lemma 3 and then by the shuffle identity (1.4)

D
S(X)0,T , Invd

E
=

dX

j=1

D
S(X)0,T , (�1)j+1xj Invd�1(x1, .., bxj .., xd)

E

=
dX

j=1

(�1)j+1
D
S(X)0,T , xj

ED
S(X)0,T , Invd�1(x1, .., bxj .., xd)

E

= 0,

since the increment
D
S(X)0,T , xj

E
= Xj

T �Xj
0 is zero for all j by assumption.

In even dimension we have the phenomenon that closing a curve does not
change the value of the invariant. We mentioned that this was true for Inv2 in
subsection 1.2.2.

Lemma 5. If the ambient dimension d is even, then for any curve X

D
S(X), Invd

E
=
D
S(X̄), Invd

E
,

where X̄ is X concatenated with the straight line connecting XT to X0.

Proof. Let X̄ be parametrized on [0, 2T ] as follows: X̄ = X on [0, T ] and it is
the linear path connecting XT to X0 on [T, 2T ]. By translation invariance we can
assume X0 = 0 and by GL(Rd)-invariance that XT lies on the x1 axis. Then the
only component of X̄ that is non-constant on [T, 2T ] is the first one, X̄1.

By Lemma 3

Invd = �
dX

j=1

(�1)j+1 Invd�1(x1, . . . , x̂j , . . . , xd)xj .

Letting the summands act on S(X̄)0,t we get ±1 times

Z t

0

D
S(X̄)0,r, Invd�1(x1, . . . , xd)

E
dX̄j

r .

For j 6= 1 these expressions are constant on [T, 2T ], since we arranged things so that
those X̄j do not move on [T, 2T ]. But also for j = 1 this expression is constant on
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[T, 2T ]. Indeed, the integrand
D
S(X̄)0,r, Invd�1(x2, x3, . . . , xd)

E
,

is zero on [T, 2T ], since X, projected on the x2 � · · · � xd hyperplane, is a closed
curve, and so Lemma 4 applies.

Lemma 6. Let X be the piecewise linear curve through p0, .., pd 2 Rd. Then

D
S(X)0,T , Invd

E
= det

"
1 1 .. 1

p0 p1 .. pd

#

Proof. First, for any v 2 Rd,

det

"
1 1 .. 1

p0 + v p1 + v .. pd + v

#
= det

"
1 1 .. 1

p0 p1 .. pd

#
.

Since the signature is also invariant to translation, we can therefore assume p0 = 0.
Now both sides of the statement transform the same way under the action of GL(Rd)

on the points p1, ..pd. It is then enough to prove this for

p0 = 0

p1 = e1

p2 = e1 + e2

..

pd = e1 + ..+ ed.

Now, for this particular choice of points the right hand side is clearly equal
to 1. For the left hand side, the only non-zero term is

D
S(X)0,T ,12..d

E
=

Z
dX1..dXd

= 1.

The modulus of the determinant

det

"
1 1 .. 1

0 p1 .. pd

#
= det

h
p1 .. pd

i

gives the Lebesgue measure of the parallelepiped which is spanned by the vectors
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p1� p0, .., pd� p0. The polytope spanned by the points p0, p1, .., pd fits d! times into
that parallelepiped. We hence have the relation to classical volume as follows.

Lemma 7. Let p0, .., pd 2 Rd, then

|Convex-Hull(p0, .., pd)| =
1

d!

�����det
"
1 1 .. 1

p0 p1 .. pd

#�����

We now proceed to piecewise linear curves with more than d vertices.

Lemma 8. Let X be the piecewise linear curve through, p0, .., pn 2 Rd, with n � d.
Then, for certain choices of i,

D
S(X)0,T , Invd

E
=
X

i

det

"
1 1 .. 1

pi0 pi1 .. pid

#
. (2.5)

For d even, the subsequences i are chosen as follows:

i0 = 0

and i1, .., id ranges over all possible increasing subsequences of 1, 2, .., n such that for
` odd: i` + 1 = i`+1.

For d odd, they are chosen as follows:

i0 = 0

id = n,

and i1, .., id�1 ranges over all possible increasing subsequences of 1, 2, .., n � 1 such
that for ` odd: i` + 1 = i`+1.

Remark 9. The number of indices is easily calculated. In the even case, we have
B := d/2 “groups of two” to place, A := n� d “fillers” in between. This gives

✓
A+B

B

◆
=

✓
n� d+ d/2

d/2

◆
=

✓bd2c+ n� d

bd2c

◆
,

where brc is the largest integer less than or equal to r.
In the odd case, we have B := (d� 1)/2 “groups of two” to place, with A :=

n� 1� (d� 1) “fillers” in between. This gives

✓
A+B

B

◆
=

✓
n� 1� d�1

2
d�1
2

◆
=

✓bd2c+ n� d

bd2c

◆
.
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Example 10. For d = 2, n = 5 we get the subsequences

[0, 1, 2]

[0, 2, 3]

[0, 3, 4]

For d = 4, n = 7 we get the subsequences

[0, 1, 2, 3, 4]

[0, 1, 2, 4, 5]

[0, 1, 2, 5, 6]

[0, 2, 3, 4, 5]

[0, 2, 3, 5, 6]

[0, 3, 4, 5, 6]

For d = 5, n = 8 we get the subsequences

[0, 1, 2, 3, 4, 7]

[0, 1, 2, 4, 5, 7]

[0, 1, 2, 5, 6, 7]

[0, 2, 3, 4, 5, 7]

[0, 2, 3, 5, 6, 7]

[0, 3, 4, 5, 6, 7]

Proof of Lemma 8. The case d = 2

Let X be the curve through the points p0, p1, .., pn. We can write it as concatenation
of the curves X(i), where X(i) is the curve through the points p0, pi, pi+1, p0. The
time-interval of definition for these curves (and all curves in this proof) do not matter,
so we omit the subscript of S(.). Then, by Chen’s formula (1.3)

D
S(X),12� 21

E
=
D
S(X(n�1)) · .. · S(X(1)),12� 21

E

=
n�1X

i=1

D
S(X(i)),12� 21

E
.
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For the last equality we used that
D
gh,12� 21

E
=
D
g,12� 21

E
+
D
h,12� 21

E
+
D
g,1
ED

h,2
E
�
D
g,2
ED

h,1
E
,

and that the increments of all curves X(i) are zero. Now by Lemma 5 we can omit
the last straight line in every X(i) and hence by Lemma 6

D
S(X(i)),12� 21

E
= det

"
1 1 1

p0 pi pi+1

#
,

which finishes the proof for d = 2.
Now assume the statement is true for all dimensions strictly smaller than

some d. We show it is true for d.
d is odd

As before we can assume p0 = 0 and that pn lies on the x1 axis. Every sequence
summed over on the right-hand side of (2.5) is of the form i = (0, ..., n). For each of
those, we calculate

det

"
1 1 .. 1 1

pi0 pi1 .. pid�1 pid

#
= det

"
1 1 .. 1 1

0 pi1 .. pid�1 � · e1

#

= � · det
"
1 1 .. 1

0 p̄i1 .. p̄id�1

#
.

Here p̄j 2 Rd�1 is obtained by deleting the first coordinate of pj , e1 is the first
canonical coordinate vector in Rd and � := (p0 � pn)1 = hS(X), x1i is the total
increment of X in the x1 direction. Here we used that d is odd (otherwise we would
get a prefactor �1).

The last determinant is the expression for the summands of the right-hand
side of (2.5), but with dimension d�1 and points 0 = p̄0, p̄1, .., p̄n�1. By assumption,
summing up all these determinants gives

� ·
D
S(X̄), Invd�1

E
=
D
S(X), x1

ED
S(X̄), Invd�1

E
,

where X̄ is the curve in Rd�1 through the points p̄0, ..p̄n�1. Since p̄n = p̄0 = 0, we
can attach the additional point p̄n to X̄ without changing the value here (Lemma 5).
Hence the sum of determinants is equal to

D
S(X), x1

ED
S(X), Invd�1(x2, .., xd)

E
.
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Since we arranged matters such that
D
S(X), xi

E
= 0 for i 6= 1, this is equal to

dX

i=1

D
S(X), xi

ED
S(X), Invd�1(x1, x2, .., x̂i, .., xd)

E

=
D
S(X),

dX

i=1

xi Invd�1(x1, x2, .., x̂i, .., xd)
E
,

where we used the shuffle identity. By the second part of Lemma 3 this is equal to
hS(X), Invdi, which finishes the proof for odd d.

d is even
We proceed by induction on n. For n = d the statement follows from

Lemma 6.
Let it be true for some n, we show it for a piecewise linear curve through

some points p0, .., pn+1. Write X = X 0 tX 00 where X 0 is the linear interpolation of
p0, .., pn, X 00 is the linear path from pn to pn+1, where t denotes concatenation of
paths. By assumption, (2.5) is true for the curve X 0. Adding an additional point
pn+1, the sum on the right hand side of (2.5) gets additional indices of the form

(pj0 , .., pjd�1 , pn+1),

where

j0 = 0

jd�1 = n,

and where j1, .., jd�2 ranges over all possible increasing subsequences of 1, 2, .., n� 1

such that for ` odd j` + 1 = j`+1.
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Assume pn+1 � pn = � · e1 lies on the x1-axis. Then, summing over those j,

LHS =
X

j

det

"
1 1 .. 1 1 1

0 pj1 .. pjd�2 pn pn+1

#

=
X

j

det

"
1 1 .. 1 1 1

�pn pj1 � pn .. pjd�2 � pn 0 pn+1 � pn

#

=
X

j

det

"
1 1 .. 1 1 1

�pn pj1 � pn .. pjd�2 � pn 0 � · e1

#

= �� ·
X

j

det

"
1 1 .. 1 1

�p̄n p̄j1 � p̄n .. p̄jd�2 � p̄n 0

#

= �� ·
X

j

det

"
1 1 .. 1 1

0 p̄j1 .. p̄jd�2 p̄n

#

= �� ·
D
S(X̄ 0), Invd�1

E

= �� ·
D
S(X 0), Invd�1(x2, .., xd)

E

Here X̄ 0 is the curve in Rd�1 through the points p̄0, ..p̄n, and we used the fact that
the indices j here range over the ones used for (2.5) in dimension d�1 on the points
p̄0, .., p̄n.

On the other hand, using Chen’s formula, (1.3),
D
S(X), Invd

E
=
D
S(X 00)S(X 0), Invd

E

=
D
S(X 0), Invd

E
�
D
S(X 0), Invd�1(x2, .., xd)

ED
S(X 00), x1

E
.

Here we used that S(X 00) = exp(� ·x1) = 1+� ·x1+O(x2
1) ([FV10, Example 7.21]),

the fact that each monomial in Invd has exactly one occurrence of x1 and Lemma 3.
This finishes the proof.

Definition 11. Let X : [0, T ]! Rd be any curve. Define its signed volume to be
the following limit, if it exists,

Signed-Volume(X) :=
1

d!
lim

|⇡|!0

X

i

det

"
1 1 .. 1

Xt⇡i0
Xt⇡i1

.. Xt⇡id

#
.

Here ⇡ = (0 = t⇡0 , .., t
⇡
n⇡ = T ) is a partition of the interval [0, T ] and |⇡| denotes its

mesh size. The indices i are chosen as in Lemma 8.

Theorem 12. Let X : [0, T ] ! Rd be a continuous curve of bounded variation.
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Then its signed volume exists and

Signed-Volume(X) =
1

d!

D
S(X)0,T , Invd

E

Proof. Fix some sequence {⇡n}n2N of partitions of [0, T ] with |⇡n| ! 0 and inter-
polate X linearly along each ⇡n to obtain a sequence of linearly interpolated curves
Xn. Then by Lemma 8

Signed-Volume(Xn) =
1

d!

D
S(Xn)0,T , Invd

E

By stability of the signature in the class of continuous curves of bounded variation
([FV10, Proposition 1.28, Proposition 2.7]), we get convergence

D
S(Xn)0,T , Invd

E
!
D
S(X)0,T , Invd

E

and this is independent of the particular sequence ⇡n chosen.

The previous theorem is almost a tautology, but there are relations to classical
objects in geometry. For d = 2, as we have seen

1

2

D
S(X)0,T , Inv2

E
,

is equal to the signed area of the curve X. In general dimension, the value of the
invariant is related to some kind of classical “volume” if the curve satisfies some kind
of monotonicity. This is in particular satisfied for the “moment curve”.

Lemma 13. Let X be the moment curve

Xt = (t, t2, ..., td) 2 Rd.

Then for any T > 0

1

d!

D
S(X)0,T , Invd

E
= |Convex-Hull(X[0,T ])|

Remark 14. It is easily verified that for integers n1..nd one has

1

n1 · .. · nd

Z T

0
dtn1

1 ..dtnd
d =

1

n1

1

n1 + n2
..

1

n1 + ..+ nd
Tn1+..+nd .
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We deduce that

|Convex-Hull(X[0,T ])| = T 1+2+..+d
X

�2Sd

sign�
1

�(1)

1

�(1) + �(2)
..

1

�(1) + ..+ �(d)
.

In [KS53, Section 15], the value of this volume is determined, for T = 1, as

dY

`=1

(`� 1)!(`� 1)!

(2`� 1)!
.

We hence get the combinatorial identity

dY

`=1

(`� 1)!(`� 1)!

(2`� 1)!
=
X

�2Sd

sign�
1

�(1)

1

�(1) + �(2)
..

1

�(1) + ..+ �(d)
.

Proof. For n � d let 0 = t0 < .. < tn  T be time-points, let pi := Xti be the
corresponding points on the moment curve and denote by Xn the piecewise linear
curve through those points. We will show

1

d!

D
S(Xn)0,T , Invd

E
= |Convex-Hull(Xn

[0,T ])|.

First note that for any 1  i0 < i1 < ..  id  n,

det

"
1 1 .. 1

pi0 pi1 .. pid

#
=

Y

0`<kn

(tik � ti`) > 0, (2.6)

since it is a Vandermonde determinant.
We will decompose P := {p0, .., pn} into (overlapping) sets S` with cardinality

d+ 1 and such that4

|Convex-Hull(p0, .., pn)| =
X

`

|Convex-Hull(S`)|.

A face of P is a subset F ⇢ P such that its convex hull Convex-Hull(F )

equals the intersection of Convex-Hull(P ) with some affine hyperspace. A face is
a facet, if its affine span has dimension d � 1. The following is a fact that is true
for any polytope spanned by some points P : up to a set of measure zero, for every
point x in Convex-Hull(P ), the line connecting p0 to x exits Convex-Hull(p0, .., pn)

4The following can be formulated in terms of pulling triangulations, compare [GOT17, Chapter
16], [Lee91]. For a proof that the pulling triangulation is in fact a triangulation, see [Stu96,
Proposition 8.6].
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through a unique facet of Convex-Hull(p0, .., pn) contained in {p1, .., pn}. Hence

|Convex-Hull(p0, .., pn)| =
X

F

|Convex-Hull(p0 [ F )|,

where the sum is over all such facets.
Our points pi lie on the moment curve. Then, by (2.6), any collection of

points pi0 , pi1 , .., pid is in general position. This means that every facet of P must
have exactly d points (and not more). Facets of Convex-Hull(P ) with d points are
characterized by Gale’s criterion ([Gal63, Theorem 3], [Zie13, Theorem 0.7]):

the points pi1 , .., pid , with distinct ij 2 {0, .., n} form a facet of P if and
only if any two elements of {0, .., n} \ {i1, .., id} are separated by an even number of
elements in {i1, .., id}.5

d odd
We are looking for such {ij} such that i1 � 1. Those are exactly the indices with

• i`+1 = i` + 1 for ` odd

• id = n.

Together with i0 := 0 these form the indices of Lemma 8.
d even

We are looking for such {ij} such that i1 � 1. Those are exactly the indices with

• i`+1 = i` + 1 for ` odd.

Together with i0 := 0 these form the indices of Lemma 8.
Hence

|Convex-Hull(Xn
[0,T ])| =

X

i

|Convex-Hull(pi0 , .., pid)|.

Now by Lemma 7

|Convex-Hull(pi0 , .., pid)| =
1

d!

�����det
"
1 1 .. 1

pi0 pi1 .. pid

#����� .

The determinant is in fact positive here, by (2.6). We can hence omit the modulus
5 For example, with n = 4 and dimension d = 3, the indices {0, 1, 2}, {0, 2, 3}, {0, 3, 4}, {0, 1, 4},

{1, 2, 4} and {2, 3, 4} lead to the facets, which in this dimension are triangles.
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and get

|Convex-Hull(Xn
[0,T ])| =

X

i

|Convex-Hull(pi0 , .., pid)|

=
X

i

1

d!
det

"
1 1 .. 1

pi0 pi1 .. pid

#

=
1

d!

D
S(Xn)0,T , Invd

E
,

by Lemma 8.
The statement of the lemma now follows by piecewise linear approximation

of X using continuity of the convex hull, which follows from [EN11, Lemma 3.2], and
of iterated integrals [FV10, Proposition 1.28, Proposition 2.7].

2.3 2D Rotational Invariants

Note: Unlike the rest of this thesis, there are parts of this section where we consider
vector spaces and tensor algebras over a field other than R.

If � is an element of T (R2) or T (C2) we say it is rotationally invariant, or
SO invariant (SO for the Special Orthogonal group), if h�, Xx

0,ti = h�, XA�x
0,t i for

all bounded variation paths x : [0, T ] ! R2 and all 2 ⇥ 2 rotation matrices A.6 A
spanning set for signature elements of a two-dimensional path which are invariant
under rotation is given by Theorems 2 and 3 of [Die13] as follows.

Theorem 15 (Theorem 2 of [Die13]). Let n � 2 and i1, . . . , in 2 {1, 2} be such that

#{k : ik = 1} = #{k : ik = 2}. (2.7)

Then

� := ci1...in (2.8)

is rotation invariant, where

ci1...in := zi1 · zi2 · . . . · zin

z1 := 1+ i2

z2 := 1� i2.

6The signature Xx
0,T lives in T ((R2)) but in the complex case of this definition I am identifying

it with its image under the obvious injection into T ((C2)).
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Theorem 16 (Theorem 3 of [Die13]). Let � 2 T (R2) be rotation invariant. Then
we can write � as a finite sum of multiples of the invariants given in Theorem 15.

We can tidy this up to get a basis.

Theorem 17. The invariants given in Equation (2.8) are a basis over C for the
space of SO invariants on level n in T (C2).

Proof. Let x1 = 1 and x2 = 2. Then the elements xj1 , . . . , xjn for sequences
j1, . . . , jn 2 {1, 2} form a basis of level n of T (C2) as a vector space over C. The
map (x1, x2) 7! (z1, z2) is an invertible linear map. Thus zj1 , . . . , zjn is also a basis
of level n of T (C2) as a vector space over C. The invariants in question are a subset
of this basis, so they are linearly independent.

Theorem 18. The real and imaginary parts of those invariants given in Equa-
tion (2.8) where z1 = 1 together form a basis for the space of SO invariants on level
n in T (R2).

Proof. By the previous theorem, the space of SO invariants on level n in T (C2) is
spanned freely by the set of

zj1 · .. · zjn with #{r : jr = 1} = #{r : jr = 2}.

Considering sums and differences of the pairs {zj1 · .. · zjn , z3�j1 · .. · z3�jn}, we get
that the space of SO invariants on level n in T (C2) is spanned freely by the set of

(zj1 · .. · zjn + z3�j1 · .. · z3�jn) and (zj1 · .. · zjn � z3�j1 · .. · z3�jn)

with #{r : jr = 1} = #{r : jr = 2} and j1 = 1.

Because z3�j1 · .. · z3�jn is the complex conjugate of zj1 · .. · zjn , this means that the
space of SO invariants on level n in T (C2) is spanned freely by the set of

Re(zj1 · .. · zjn) and Im(zj1 · .. · zjn)

with #{r : jr = 1} = #{r : jr = 2} and j1 = 1.

This is an expression for a basis of the SO invariants in terms of real combinations
of basis elements of the tensor space. They thus form a basis for the SO invariants
for the free real vector space on the same set, namely level n of T (R2).

I call the elements of this basis of real rotational invariants raw rotational
invariants. Note that they each take values in a single level of tensor space (level n)
and that that level is always even, due to (2.7).
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2.3.1 Numerical calculation of raw and reduced invariants

I have implemented the calculation of the invariants of a path efficiently from its
signature because of a deep learning research application where people wanted to do
this repeatedly. This is part of the iisignature library. Here I make an observation
which helped.

Consider the elements of level 2k of the signature as a zero-based array of
length 22k. Then the binary expansion of the index of an element indicates the word
which the signature element represents. For example the signature element for the
word 2122 will be element 10112 = 1110 of level 4.

The terms in the raw invariants which come from the imaginary part will be
each of the length-2k strings which have an odd number of 1s and an odd number of
2s in, each with a factor of 1 or �1. Such invariants will consist of signature elements
whose indices have an odd number of ones in their binary expansion, i.e. are odious
numbers in the terminology of [BCG82]. I call them odious invariants. The value of
an odious invariant on a path is negated when that path is reflected.

The terms in the raw invariants which come from the real part will be each of
the length-2k strings which have an even number of x1s and an even number of x2s in,
each with a factor of 1 or �1. Such invariants will consist of signature elements whose
indices have an even number of ones in their binary expansion, i.e. are evil numbers.
I call them evil invariants. The evil invariants are invariant under reflections as well
as rotation.

There are
�2k

k

�
raw invariants at level 2k, of which half are odious and half

are evil. For example, at level two there are two raw invariants: 12 � 21 which is
double the signed area and is odious, and 11 + 22 which is the squared length of
the total displacement and is evil. At level four there are six raw invariants, three
odious

�1112� 1121+ 1211� 1222+ 2111� 2122+ 2212+ 2221

�1112+ 1121� 1211� 1222+ 2111+ 2122� 2212+ 2221

1112� 1121� 1211� 1222+ 2111+ 2122+ 2212� 2221

and three evil

1111� 1122+ 1212+ 1221+ 2112+ 2121� 2211+ 2222

1111+ 1122� 1212+ 1221+ 2112� 2121+ 2211+ 2222

1111+ 1122+ 1212� 1221� 2112+ 2121+ 2211+ 2222.

As an aside, in deep learning applications, we care about the scaling of our repre-
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sentations as explained in subsection 5.4.6. Each raw invariant is a sum of 2m�1

elements in level m of the signature, with some negated. This may mean that the
appropriate scaling of these data as input to a machine learning algorithm may differ
by this factor from the appropriate scaling of the signature.

As described in [Die13], due to the shuffle-product property of signatures,
the values of some rotational invariants are known given the values of others at
lower levels. Just as the log signature is useful as a minimal set of features from
the signature, it may be useful to have a minimal representation of the rotational
invariants, that is, a minimal representation of the signature information assigned
to an equivalence class under rotation. We do not have a method to do this directly.
We can achieve it at each level by finding the known invariants as shuffle products of
lower raw invariants, and quotienting the span of the raw invariants by their span.

If A is the set of raw invariant vectors at level 2k, and B is the set of known
invariants at level 2k, we can find a basis for the quotient as follows. First find
a basis B0 for the known invariants using the singular value decomposition or QR
factorisation with pivoting. Then we project each element of a of A away from each
element b of B0 by replacing a by a� b · a. Finally, we get a basis for the projected
as using singular value decomposition or QR factorisation with pivoting again.

The shuffle product of two raw invariants is odious if exactly one of them
is odious, and evil otherwise. Thus, by keeping track of odious and evil invariants
everywhere, we can apply the procedure in the previous paragraph separately for
the two cases. This means that although at each level the procedure must happen
twice, the vectors concerned can be compressed to half as long, A is half the size,
and B is about half the size in each case, which is a major time saving.

Unlike the raw invariants, the reduced invariants as returned by iisignature
are unit vectors in (the dual of) each level of the signature, so it is plausible that
the same scaling used for a calculation with the signature could be used with the
reduced invariants.
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Chapter 3

Areas of Areas
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To signature elements � and  , we can associate paths t 7! h�, X�
0,ti and

t 7! h , X�
0,ti given a path � in Rd. Then we can consider the signed area of the 2D

path whose parametric coordinates are the values of these signature elements.

Area(f, g) :=

Z
dfdg �

Z
dgdf

ft = h�, X�
0,ti

gt = h , X�
0,ti.

We will shortly define an operation area with the following property, and consider
its properties.

Area(f, g)t = harea(�, ), X�
0,ti.

In particular, if we start with the single letters and apply area between the terms we
have, what elements of the signature can we span – alternatively, how much of the
tensor algebra T (Rd) = Rh⌃i can we span?

Definition 19. Given two words/monomials � and  , where  is not the empty
word, and where the letters in  are given by  =  1 . . . m, their right half shuffle
is

��  := (�  1.. m�1) m.

This is extended bilinearly to polynomials � and  , as long as h✏, i = 0. 1

For example, 12� 3 = 123, 3� 12 = 312+ 132 and 1� 1 = 11. Note that
the symmetrization of � gives the shuffle product

a� b+ b� a = a b,

which is why � is called half-shuffle.
Now for monomials �, , ⇠ of order n�, n , n⇠,

(��  )� ⇠ + ( � �)� ⇠ = �� ( � ⇠).

So nonempty words with � form a (left) Zinbiel algebra.In fact, they generate the
free Zinbiel algebra on Rd, see Theorem 1.8 of [Lod95] or section 7 of [Lod01]. This

1The special case of the empty word ✏ is a bit of a pain but not enlightening. We do not need
it here.
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is in fact shown around page 19 of [Sch58], where a > b is effectively our b � a, >
becomes the shuffle product, and all words are reversed.

It is clear that starting from single letters and using � every nonempty word
can be made, because concatenating a letter l onto the end of a word w is the same
as w � l.

We are interested in the anti-symmetrization of �.

Definition 20. Define

area(a, b) := a� b� b� a.

Remark 21. The operation area is anti-commutative but it is not a Lie product,
since it does not satisfy the Jacobi identity. Indeed,

area(1, area(2,3)) = area(1,23� 32)

= 123+ 213� 132� 312� 231+ 321,

but

area(area(1,2),3) + area(2, area(1,3)) = 2123� 2132.

Definition 22. Define

P (1) := ⌃ = {1, . . . ,d}

P (n+1) := {area(�, ) : �, 2
n[

i=1

P (i)}

P :=
1[

n=2

P (n).

This P is everything you can get with the area operation, the areas-of-areas,
and it is the subject of our interest.

3.1 Linear span of P : upper bound

Definition 23. Let Ad be those elements of T (Rd) which can be written as a con-
catenation of some element x 2 T (Rd) and (ij � ji) for i, j 2 {1, . . . ,d}.

For example, A2 contains (31�12)(12�21) = 3112� 3121+1221�1212

but it does not contain 1112. The order of the choice of i and j only affects sign,
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and to get a nonzero element i must not equal j. If m � 2 then level m is a dm-
dimensional space and the elements of Ad in level m form a dm�2

�d
2

�
-dimensional

subspace.

Conjecture 24. spanP = Ad.

Intuitively, spanP is subspace of tensor space constructed from letter building
blocks and a slightly weird nonassociative operation, whilst Ad is a simple algebraic
description of a subspace. This conjecture would explain the nature of the former
in a nice way. It is a bit like the way a Hall basis explains the nature of the free
Lie algebra, which is everything you can get from letter building blocks and the Lie
bracket operation, but the content of the answer is simpler. The result of this section
is one direction of Conjecture 24. In the next section we prove the conjecture for the
case d = 2.2

Lemma 25. Let i, j, k and l be letters. If X = x(ij � ji) and Y = y(kl� lk), then
area(X,Y ) 2 Ad.

Proof. We have

area(X,Y ) = X � y(kl � lk)� Y � x(ij � ji)

= (X yk)l � (X yl)k � (Y xi)j + (Y xj)i

= (X y)kl + (xi yk)jl � (xj yk)il

� (X y)lk � (xi yl)jk + (xj yl)ik

� (Y x)ij � (yk xi)lj + (yl xi)kj

+ (Y x)ji+ (yk xj)li� (yl xj)ki

= (X y)(kl � lk)� (Y x)(ij � ji)

+ (xi yk)(jl � lj)� (xi yl)(jk � kj)

+ (xj yl)(ik � ki)� (xj yk)(il � li)

2 Ad.

Lemma 26. If X,Y 2 Ad, then area(X,Y ) 2 Ad.

Proof. X and Y are linear combinations of expressions to which the previous lemma
can be applied.

The letters are not in Ad, but bracketing with them is also fine:
2The preprint [DIM18], which was submitted to ArXiv just before I submitted this thesis, appears

to prove this conjecture in general, using a different argument. I was not aware of it when working
on this.
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Lemma 27. If X 2 Ad and k 2 {1, . . . ,d}, then area(k,X) and area(X, k) are in
Ad.

Proof. X is the sum of terms like x(ij � ji) where i and j are letters. For such a
term

area(x(ij � ji), k) = (xij � xji)� k � k � (xij � xji)

= xijk � xjik � (k xi)j + (k xj)i

= xijk � xjik � xikj � (k x)ij + xjki+ (k x)ji

= xi(jk � kj) + xj(ki� ik) + (k x)(ji� ij) (3.1)

2 Ad

area(X, k) being in Ad follows because area is linear. area(k,X) is minus area(X, k)

and so is also in Ad which is a subspace.

Theorem 28. spanP ⇢ Ad

Proof. P (2) is exactly areas between pairs of letters, which are of the form ij � ji.
These are in level 2 of Ad. Other elements of P are formed either as the area between
two lower level elements of P or the area between a letter and a lower level element of
P . These are all in Ad by induction, using Lemma 26 and Lemma 27. Thus P ⇢ Ad,
and because Ad is a vector space, spanP ⇢ Ad.

We conjecture further that the span of left-bracketed areas of areas is the
same as all areas of areas, which we show to be the case for d = 2 in the next
section.

3.2 Linear span of P : two-dimensional case

We restrict attention in this section to the d = 2 case, and show that the linear span
of P is in fact the whole of A2. In fact, the linear span of just the area expressions
which are wholly nested is the whole of A2. Aside from swapping the order in the
innermost bracket, which must contain a 1 and a 2, such nested area expressions are
linearly independent.

I use the permutation convention under which “do (13) and then do (12)” is
(12)(13) = (132), and I denote the identity permutation by id. If b is an element of
the group algebra RSn and � 2 Sn then I denote the coefficient of � in b as b(�).
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Lemma 29. Let n be a positive integer, and consider the following element of RSn,
the group algebra of the symmetric group.

�n = 2id+ (21) + (321) + · · ·+ (n . . . 1) (3.2)

Then �n is a unit, i.e. there exists an element ��1
n such that �n��1

n = ��1
n �n = id.

In particular, if f is a function from permutations to a real vector space,

X

�02Sn

��1
n (�0)

X

�2Sn

�n(�)f(�
0�) = f(id). (3.3)

The proof of this was explained to me in detail by Darij Grinberg in [Gri18]. In fact,
all the values of ��1

n are rational and so the Lemma can be stated and proved just
the same for QSn instead of RSn, but we do not need this strengthening.3

Proof. The element  n := (�n�id) of RSn is considered in many places, being known
by such names as the top-to-random shuffle, or the (transition matrix of the) Tsetlin
library. The eigenvalues of  n (i.e. of the linear map from RSn to itself defined by
multiplication by  n) are known to be 0, 1, . . . , n�2, n; for example they are specified
in Theorem 2.2 of [Gar12]. This goes back to [DFP92]. Since these eigenvalues of  n

do not include �1, the eigenvalues of multiplication by �n = id+  n do not include
0, and so the multiplication is a linear endomorphism of RSn. This means that �n

must be a unit.

For example, ��1
2 = 1

3 [2e � (12)] and ��1
3 = 1

8 [5e + (23) � 3(12) � 3(132) +

(123) + (13)].

Definition 30. If w = l1 . . . lk is a word, we define area(w) to be the left-bracketing
expression

area(. . . area(area(area(l1, l2), l3), l4), . . . , lk). (3.4)

Theorem 31. For k a nonnegative integer, the linear span of the elements area(12w)
where w ranges over words in {1,2} of length k is the whole of level k + 2 of A2,
that is the span of elements v(12� 21) where v also ranges over words in {1,2} of
length k.

Proof. For k = 0, this is clear because area(12) = 12 � 21. Assume the statement
is true for all k  n.

3I used the GAP computer algebra system to test some of this out, where working with QSn is
the sensible way to proceed. That is why I asked the question in that setting.
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Let wj1 = jn+1jn..j2j1 be a word of length n+ 1. We see from (3.1) that

area(w(12� 21), j1) = �(wj1 + j1 w)(12� 21)

= �(2wj1 + j1 � w)(12� 21) (3.5)

In other words,

area(jn+1..j2(12� 21), j1) = �
�
2jn+1..j1 + j1 � jn+1..j2

�
(12� 21)

= �
� X

�2Sn+1

�n+1(�)j�(n+1) . . . j�(1)

�
(12� 21) (3.6)

Summing both sides with each jl replaced by j�0(l) where �0 varies over the weighted
permutations in ��1

n+1, and negating both sides, gives

�
X

�02Sn+1

��1
n+1(�

0)area(j�0(n+1) . . . j�0(2)(12� 21), j�0(1))

=
X

�02Sn+1

��1
n+1(�

0)
� X

�2Sn+1

�n+1(�)j�0(�(n+1)) . . . j�0(�(1))

�
(12� 21)

=
X

�02Sn+1

��1
n+1(�

0)
� X

�2Sn+1

�n+1(�)j(�0�)(n+1) . . . j(�0�)(1)

�
(12� 21)

(using (3.3))

= jn+1..j1(12� 21) = wj1(12� 21).

We have written the generic basis element wj1(12�21) of level n+3 of A2 as a linear
combination of elements area(v, j1) for v in level n + 2 of A2 and j1 2 {1,2}. By
hypothesis, any such v is in the span of left-bracketed areas. Thus our generic basis
element of level n+ 3 of A2 is in the span of left-bracketed areas and the statement
is true for k = n+ 1.

In summary, for the d = 2 case, within each level, we have the combined
inclusions

spanP

Theorem 28z}|{
⇢ A2 =|{z}

Theorem 31

span{area(12w) | w word}
trivialz}|{
⇢ spanP

so A2 is spanP , the span of all area expressions, and we have that these left-bracketed
area expressions form a basis.
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Chapter 4

Calculation of signatures
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4.1 Introduction

In this chapter we present algorithms for efficiently calculating the signatures and log
signatures of piecewise linear paths. We also talk about efficiently backpropagating
derivatives through these functions. This is useful for any machine learning task
where these calculations need to be performed repeatedly. This functionality is
implemented in the iisignature Python package.

The focus of the iisignature package is the calculation of the signature
for piecewise-linear paths in fixed-dimensional spaces. In these relatively low di-
mensional spaces, paths typically move in all their dimensions, so only rarely will
elements of the signature be zero. We call this the dense case. We study the mathe-
matical properties of the free Lie algebra to implement a range of algorithms. We also
benchmark the performance of these algorithms, and provide an efficient open-source
implementation.

An existing open-source library for calculating signatures is the esig package
from CoRoPa[Lyo+10]. However, this package is optimized to operate efficiently on
another type of path: ones that live in high dimensional spaces, but that only move
in certain combinations of input dimensions. Most of the elements of the signatures
are zero. We call this the sparse case.

4.2 Signatures

Calculating the signature of a path can be done inductively relying on the following
two rules.

• If � is a straight line defined on the interval [a, b] then its signature as a function
on words is

X�
a,b(i1i2 . . . im) =

1

m!

mY

j=1

(�ij (b)� �ij (a)). (4.1)

Grouped by levels, using x = �(b) � �(a) as the displacement, the signature
looks like ✓

1, x,
x⌦ x

2!
,
x⌦ x⌦ x

3!
, . . .

◆
(4.2)

where ⌦ is the tensor product. Alternatively, if each level is thought of as a
vector of numbers, this formula should be read with ⌦ denoting the Kronecker
product.

• If a < b < c then the result (from [Che58]) known as Chen’s identity states
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that

X�
a,c(i1i2 . . . im) =

mX

j=0

X�
a,b(i1i2 . . . ij�1)X

�
b,c(ijij+1 . . . im). (4.3)

Grouped by levels, this signature looks like
⇣
1, X(1)

a,c , X
(2)
a,c , . . .

⌘
=
⇣
1, X(1)

a,b +X(1)
b,c , X

(2)
a,b +X(1)

a,b ⌦X(1)
b,c +X(2)

b,c ,

(4.4)

X(3)
a,b +X(2)

a,b ⌦X(1)
b,c +X(1)

a,b ⌦X(2)
b,c +X(3)

b,c , . . .
⌘

When calculating the signature of a path given as a series of straight-line
displacements, we start with the signature of the first displacement (calculated from
(4.1)) and step-by-step concatenate on the signature of each succeeding displacement
using (4.3).

Level m of the signature contains dm values. Calculating it for a displacement
using (4.1) takes d+dm multiplications beyond what has already been calculated for
lower levels. However, in the signature of a straight line, each level is a symmetric
tensor and so level m only contains

�d+m�1
m

�
distinct values, using the formula for

unordered sampling with replacement. An alternative, more complicated, method
that takes account of this redundancy exists. Only d+

�d+m�1
m

�
multiplications are

required. Implementing it showed it to be slower, so iisignature does not use this
idea.

4.3 Log Signatures directly

The log signature of a straight line displacement is just the displacement itself in
level 1, and zero in every other level. The log signature of the concatenation of two
paths is the Baker-Campbell-Hausdorff (BCH) product of the log signatures of the
two paths. The direct method for calculating the log signature relies on being able
to transform the log signature of a path given in terms of one of the bases above
to the log signature of that path concatenated with a fixed line segment, achieved
using the BCH product.

The BCH product is an infinite series in bracketed expressions in two inde-
terminates, which has can be formulated in different equivalent ways. The most
straightforward ways express all brackets in the form of some Hall basis of the free
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Lie algebra of R2. For example, using the Lyndon basis:

bch(a, b) = a+ b+ 1
2 [a, b] +

1
12 [a, [a, b]] +

1
12 [[a, b], b] +

1
24 [a, [[a, b], b]] + . . . .

The coefficients in this expansion up to terms of depth twenty have been
calculated and distributed by Fernando Casas and Ander Murua at [CM], using
their method described in [CM09]. We distribute their file as part of iisignature,
and read it when necessary.

We can compute the Lie bracket of each pair of basis elements as a combina-
tion of other basis elements, and therefore, given two log signatures as combinations
of basis elements (the second known to be just a displacement) we can find the ex-
panded expression of their BCH product as a combination of basis elements. By
doing this with indeterminates, the library develops an internal representation.

As an example, in the case where the Lyndon basis is used, and we are
concerned with two dimensions up to level two, a log signature looks like

a01+ a12+ a212

The inductive step of the algorithm to accumulate log signatures by adding linear
segments for d = m = 2 is shown in Figure 4.1.

def F22(a, b):
# Construct monomials of log signature a

# and displacement b

t[0] = b[1] * a[0]
t[1] = b[0] * a[1]
# Extend log signature in-place

a[2] += t[0] / 2
a[2] -= t[1] / 2
a[0:2] += b[:]

Figure 4.1: Algorithm to accumulate a new displacement into a log signature in the
Lyndon basis with d = 2 and m = 2.

If we go up to level 3, a log signature looks like

a01+ a12+ a212+ a3112+ a4122,
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with the final algorithm being as shown in Figure 4.2.

def F23(a, b): # Log signature a and displacement b

# Calculate monomials of a and b

t[0] += b[1] * a[0] # Order 2 monomials

t[1] += b[1] * a[2]
t[2] += b[0] * a[1]
t[3] += b[0] * a[2]
t[4] += b[1] * t[0] # Order 3 monomials

t[5] += b[0] * t[0] # calculated from

t[6] += b[1] * t[2] # t[i], i<=4

t[7] += a[0] * t[0]
t[8] += a[1] * t[0]
t[9] += b[0] * t[2]
t[10] += a[0] * t[2]
t[11] += a[1] * t[2]
# Extend log signature in-place

a[2] += t[0]/2 - t[2]/2
a[3] += -t[3]/2 - t[5]/12 + t[7]/12 +

t[9]/12 - t[10]/12
a[4] += t[1]/2 + t[4]/12 - t[6]/12 -

t[8]/12 + t[11]/12
a[0:2] += b[:]

Figure 4.2: Algorithm to accumulate a new displacement into a log signature in the
Lyndon basis with d = 2 and m = 3.

These functions have a lot of common structure. First a sequence of mono-
mials in the input elements are constructed in the temporary array t. Higher order
monomials are calculated inductively from other elements of t to deduplicate the nec-
essary multiplications. Then some members of a are incremented by some multiples
of some of the temporary variables. Then the first d elements of a are incremented by
all elements of b. Exactly which is given by the FunctionData structure. In general
these functions are long and branching-free. The variable a is modified in-place to
produce the log signature of the extended path.

The basis (of the free Lie algebra on 2 symbols) used to express the BCH
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formula does not change the code we get, because the various equivalent bracketed
expressions come to the same thing when they have been multiplied out. We use the
Lyndon basis because it has slightly fewer terms, as [CM09] describes and partially
explains. This choice is independent of the choice of basis (of the free Lie algebra
on d symbols) in which the log signature is expressed. In general, we end up with
fewer terms and a slightly faster calculation when the Lyndon basis is used for the
log signature.

4.4 Log Signatures from Signatures

A simple method, which we call the "S" method for calculating the log signature of
a path is to calculate its signature first, and then convert to the log signature. The
first step in doing the conversion is taking the logarithm itself in tensor space. This
explicitly uses the formula (1.5) where n only needs to go as high as the required
level, and the power is in the concatenation product. This results in the log signature
as an element of tensor space (which means it is as long as a signature), which is
returned when logsig is called with the "X" (expanded) method. The exact order of
evaluation of formula (1.5) for best efficiency which we use is one which was suggested
by Mike Giles[Gil17].

To express this Lie element into a specified basis, we need to project it. We
calculate a projection explicitly. There are known explicit forms for projections, for
example the map given by the Dynkin-Specht-Wever lemma directly ([Wil12]), which
requires more operations. The prepare function calculates a projection upfront.

Given the bracketed expression of a basis element with m letters, we can easily
find its expression in expanded space, by multiplying out the brackets. For example,
[[1,3],3] is 133� 2313+ 331. This gives us the full matrix Mm to transform each
level of the log signature to its expanded version. Each column of Mm is labelled
with a basis element, and each row is labelled with one of the dm words of length d.
To compress level m a given expanded log signature xm to its value cm in terms of a
basis, we just need to solve a least squares problem Mmcm = xm. This problem is a
very overdetermined system which is known to have an exact answer, up to rounding
considerations. Mm is tall and skinny.

The words occurring in the terms of the expansion of such a bracketed ex-
pression are anagrams of the foliage of the expression. In the terminology of [Reu94],
these operations preserve the fine homogeneity. In that same example, for instance,
133, 313 and 331 are anagrams of 133. This leads to a lot of sparsity in the matrix
Mm. Permuting the rows and columns to gather anagrams makes Mm be a block
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letter
frequencies

number
of

classes

signature
elements
in each

log
signature
elements
in each

total log
signature
elements

{4, 3, 3} 3 4200 420 1260
{4, 4, 2} 3 3150 312 936
{5, 3, 2} 6 2520 252 1512
{5, 4, 1} 6 1260 126 756
{6, 2, 2} 3 1260 124 372

Table 4.1: The sizes of the largest anagram classes for level 10 of d = 3 in decreasing
order of number of log signature elements. Many more such statistics have been
tabulated in [Blü04].

diagonal matrix. We can save time doing the transformation by solving a separate
linear system for each equivalence class of anagrams of words of length m.

For the standard Hall basis, this is exactly the procedure which we follow.
In prepare, we determine all the mapping matrices between anagram classes of
the log signature and its expansion, and then we calculate all their Moore-Penrose
pseudoinverses, so that solving the systems is just a matrix multiplication. The
number of words in an anagram set containing m letters where the frequency of the
ith letter is ni is given by a multinomial coefficient m!

n1!...nd! . The number of Lie basis
elements in an anagram set is given by the second Witt formula of Satz 3 of [Wit37]
as

`m(n1, . . . , nd) =
1

m

X

�|ni

µ(�)(m
� )!

(n1
� )! . . . (

nd
� )!

, (4.5)

where � ranges over all common factors of the ni and µ is the Möbius function. In
the simple special case that the words have m distinct letters, there are m! words and
(m � 1)! basis elements. In the Lyndon case, this formula makes sense because the
Lyndon words in such a set of m! words are just all that begin with the lowest letter.
Typically the largest anagram sets are the ones with about the same number of each
letter. For them, (4.5) is just 1

m times the number of words in the set because 1 is
the only value of �. For example, looking at level 10 for a 3-dimensional path, the
signature has 59049 elements and the log signature 5880, and there are 63 anagram
classes.1 The 12 most balanced anagram classes account for 3708 elements of the log
signature, or 63.1% of it.

The big anagram classes account for most of the runtime when projecting to
1The count is 63 =

�
10+3�1

10

�
�3 using the formula for unordered sampling with replacement and

the fact that no basis element above level 1 has only one distinct letter in it.
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the log signature: multiplying a 420⇥ 4200 matrix by a 4200-vector takes 80% more
multiplications than multiplying a 312⇥ 3150 matrix by a 3150-vector and so on.

4.4.1 Lyndon case

If the Lyndon basis is required, then we have a more efficient implementation, which
depends on a special property it has. Recall the notation Pa (section 1.4 above and
pages 89–91 of [Reu94]) for the Lie polynomial corresponding to the Hall word a,
i.e. the polynomial you get by multiplying out the bracketed expression corresponding
to the unique basis element whose foliage is a. Recall also that in the Lyndon basis
the Lyndon words are the Hall words. We have

Theorem 32 (Theorem 5.1 of [Reu94]). The set of Lyndon words, ordered alpha-
betically, is a Hall set. The corresponding Hall basis has the following triangularity
property: for each word w = l1 . . . ln written as a decreasing product of Lyndon words,
the polynomial Pw = Pl1 . . . Pln is equal to w plus a Z-linear combination of greater
words.

The simplest case of the final statement, where w is itself a single Lyndon
word, gives the following useful fact. When the bracketed expression corresponding
to a Lyndon word is expanded and terms are collected and ordered in alphabetical
order of the word, the first term will be the Lyndon word itself, with coefficient 1.
(For an example, consider the Lyndon word 133; its bracketed expression is [[1,3],3]
and we saw earlier that this expands to 133 � 2313 + 331.) This means that the
tall skinny matrix Mm is lower triangular, as are its anagram blocks. If we take such
a block and remove all the rows corresponding to words which are not Lyndon, we
are left with the mapping from an anagram class in the compressed log signature
to same Lyndon word elements of the expanded signature. It is a square lower
triangular matrix with ones on the diagonal. We can now solve the system directly
in many fewer operations, with just addition and multiplication, just looking at the
Lyndon word elements of the expanded signature. prepare determines the necessary
indices and matrices, and logsig does the solving.

For example, in level 4 on 3 dimensions, the following are the three basis
elements which contain two 1s, a 2 and a 3:

[1, [1, [2,3]]] = 1123� 1132� 21231+ 21321+ 2311� 3211

[1, [[1,3],2]] = 1132� 1213+ 1231� 1312� 1321+ 2131� 2311+ 3121

[[1,2], [1,3]] = 1213� 1231� 1312+ 1321� 2113+ 2131+ 3112� 3121
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The matrix corresponding to these looks as follows

[1, [1, [2,3]]]

[1, [[1,3],2]]

[[1,2], [1,3]]
0

BBBBBBBBBBBBBBBBBBBBBBB@

1

CCCCCCCCCCCCCCCCCCCCCCCA

1 0 0 1123

�1 1 0 1132

0 �1 1 1213

�2 1 �1 1231

0 �1 �1 1312

2 �1 1 1321

0 0 �1 2113

0 1 0 2131

1 �1 0 2311

0 0 1 3112

0 1 �1 3121

�1 0 1 3211

and when we restrict to Lyndon words (which in general are not the first rows) we
get a matrix which has m = 4 times fewer rows, and is a lower triangular square
matrix with ones on the diagonal.

[1, [1, [2,3]]]

[1, [[1,3],2]]

[[1,2], [1,3]]0

B@

1

CA
1 0 0 1123

�1 1 0 1132

0 �1 1 1213

.

If this matrix is called M 0 we can solve the equation M 0c0 = x0 directly using

c0
1 = x0

1 c0
2 = x0

2 � (�1 c0
1) c0

3 = x0
3 � (0 c0

1 � 1 c0
2).

4.5 Implementation

iisignature is a Python package which is built on numpy[WCV11], which is ubiq-
uitous for dealing with numerical data in Python. The Python ecosystem is very
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commonly used for deep learning. It is implemented as a C++ extension.
There is a single .cpp file which defines the whole interface with Python.

The mathematical functionality resides in header files. This unity build structure
reduces the time to build the whole library, which matters to users, at the cost of
incremental build time.

4.5.1 Signatures

We store signatures during the calculation with each level in a contiguous block of
memory, which means that accesses are efficient. We start with the signature of the
first displacement and step-by-step concatenate on the signature of each succeeding
displacement. The concatenation is done in place, but in simple cases this doesn’t
seem to make a difference in performance.

We also wrote an implementation of the signature calculation using a template
metaprogramming style, where the dimension and level are template parameters,
there is no heap memory allocation and all loops are constant length. We compared
the methods and learnt that the performance is the same. Because we want to allow
arbitrary calculations easily for the user, it is convenient not to code in this way
inside iisignature.

4.5.2 Preparing the direct calculation of log signatures

The internal representation of the calculation required to convert the log signature of
a path into the log signature of that path with a line segment concatenated on the end
is stored in an instance of the FunctionData class. The calculation depends on the
following concepts. The class Input represents an indeterminate, and a Coefficient
is a polynomial in Inputs Elements of the basis of the free Lie algebra we are using
are represented by instances of the BasisElt class. These are created once for a
whole calculation, and they all live together in memory controlled by a BasisPool
which also remembers their order and those of their Lie products (Lie brackets)
which happen to be BasisElts. Elements of the free Lie algebra, Lie polynomials, are
represented by the class Polynomial. In a similar way as [Lyo+10], we store the data
of a Polynomial with each level separately, this speeds up the multiplication of two of
them very much, because it becomes trivial to avoid trying to multiply terms whose
combined level will exceed the level we are truncating at. The procedure calculates
the BCH product of an arbitrary polynomial (one with a separate indeterminate for
each basis element, representing an arbitrary log signature) and an arbitrary level-one
polynomial (one which is just a separate indeterminate for each letter, representing
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the log signature of a single displacement) to produce a Polynomial which is exactly
what the FunctionData needs to calculate.

type algebraic structure definition instance represents

double field (roughly) C++ builtin constant floating
point real

Input set indeterminate numeric input

Coefficient semigroup ring polynomial from
double[{Inputs}]

formula in terms of
the inputs

BasisElt set (fixed but
complicated)

element of the given
basis of the FLA

Polynomial free vector space
augmented with
Lie bracket

function from
BasisElt to
Coefficient

element of FLA

Table 4.2: Summary of the main object types for the Free Lie algebra (FLA) calcu-
lations

In the "O" (object) mode, the prepare function goes as far as computing this
FunctionData object, and the logsig function follows its instructions for dealing
with each displacement, using the function slowExplicitFunction.

4.5.3 On-the-fly machine code generation for the direct calculation

Code specifically compiled for the particular function is more efficient than following
instructions given by the FunctionData object. Before this library, we wrote some
code (described in [Rei15] and demonstrated at https://github.com/bottler/
LogSignatureDemo) to generate C++ code which can be compiled to give efficient
versions of this function. We learnt that while this method is very efficient, it is
impractical for many realistic d and m because the function can easily get so large
that compilers take unreasonably long times to compile it. Attempting to split them
up only helps a small amount. Manual machine code generation avoids this de-
lay. iisignature therefore provides the "C" method under which it compiles the
FunctionData itself on-the-fly to machine code internally in a buffer in memory dur-
ing prepare, and all logsig need do is run the compiled code for each displacement.
This is implemented for x86 and x86-64 architectures, for Windows, Linux and Mac.

58

https://github.com/bottler/LogSignatureDemo
https://github.com/bottler/LogSignatureDemo


The logic for the compilation is in makeCompiledFunction.hpp. The Mem
object represents a buffer for storing machine code, which is allocated in such a
way that execution is enabled. The FunctionRunner object is constructed from a
FunctionData and allocates a Mem and compiles the function into it, providing a
go() function to run the compiled code. The actual compilation is done by the
Maker class. The comments in that class explain what it is doing in terms of x86
and x86-64 machine code instructions. In the x86 case, we rely on SSE2 instructions
for floating point arithmetic which enables the logic to be roughly the same as in
the 64-bit case.

4.5.4 Projection from expanded log signature to a basis

The makeMappingMatrix function calculates the full matrix (in sparse form) to
project from tensor space to the desired basis. The identification of anagram classes is
performed in analyseMappingMatrixLevel. The makeSparseLogSigMatrices func-
tion identifies all the data needed to do the projection from this information. When,
as often happens, a basis element’s anagram class is a singleton, we can just read off
its value from the expanded log signature without solving a system. In the standard
Hall basis case, we need to calculate the Moore-Penrose pseudoinverses of the iden-
tified matrices, and we do this using numpy at the interface level. All the data to do
this is stored in the object which prepare generates, and is available to be simply
used by logsig.

4.6 Indicative timings

Using 64bit Python 3.5 on Ubuntu 16.04LTS with an AMD FX-8320, timings were
taken for calculating 100 signatures of randomly generated paths with 100 timesteps
in various different ways. We compare here a native python signature implementation
using numpy, the calculation with iisignature version 0.20, and the calculation in
the package esig.tosig of CoRoPa[Lyo+10], version 0.6.5. Both iisignature and
esig use 64-bit floating point internally, but iisignature is taking and returning
32-bit floating point values in this example, whereas esig uses 64 bit throughout. It
should be noted that esig was not specifically written to make this type of calculation
fast, but for other types of flexibility (e.g. the sparse signature case). The dramatic
difference shows the advantage of having code written specifically for the dense case.
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(d,m) (2,6) (2,10) (3,10) (5,5) (10,4)
Python native 10.56 78.66 2458.09 55.95 118.83
iisignature.sig 0.02 0.27 10.78 0.29 0.61
esig.tosig.stream2sig 1.98 55.51 3114.36 56.36 175.38

Table 4.3: Various signature calculation timings in seconds, for 100 random paths of
100 steps each in the given combinations of level and dimension

Calculating the log signature using the compiled method is quicker than cal-
culating the signature for small depths, but for larger depths the signature becomes
significantly faster. As the depth increases, the projection method therefore becomes
the best method to obtain the log signature. For two dimensions, performance is
shown in Table 4.4 and plotted in Figure 4.3, and for three dimensions performance
is shown in Table 4.5 and plotted in Figure 4.4.

level: 4 5 6 7 8 9 10 11
C Lyndon 0.02 0.03 0.05 0.14 0.52 1.64 4.90 29.21
C standard 0.02 0.03 0.05 0.15 0.55 1.74 5.31 32.34
O Lyndon 0.05 0.14 0.34 1.21 3.26 10.18 30.46 95.98
O standard 0.05 0.15 0.36 1.25 3.38 10.80 32.89 107.35
S Lyndon 0.06 0.12 0.20 0.37 0.70 1.41 2.87 6.01
S standard 0.06 0.11 0.21 0.37 0.70 1.43 2.92 6.15

esig standard 3.71 8.52 19.26 43.66 98.47 224.83 506.25 1132.24

Table 4.4: Various log signature calculation timings in seconds, for 1000 random
2-dimensional paths of 100 steps each for the given levels
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Figure 4.3: Various log signature calculation timings in seconds, for 1000 random
2-dimensional paths of 100 steps each for various levels. For iisignature, only the
Lyndon basis is shown.

level: 4 5 6 7 8 9 10
C Lyndon 0.01 0.02 0.08 0.45 4.35 40.80 221.41
C standard 0.01 0.02 0.09 0.50 5.36 47.11 255.75
O Lyndon 0.03 0.11 0.51 2.76 14.67 84.04 466.12
O standard 0.02 0.12 0.53 2.98 16.50 101.06 605.05
S Lyndon 0.03 0.05 0.15 0.46 1.52 5.38 19.25
S standard 0.03 0.05 0.15 0.51 1.92 8.36 41.06

esig standard 1.54 5.59 22.69 86.24 338.08 1310.86 5451.14

Table 4.5: Various log signature calculation timings in seconds, for 1000 random
3-dimensional paths of 10 steps each for the given levels
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Figure 4.4: Various log signature calculation timings in seconds, for 1000 random
3-dimensional paths of 10 steps each for various levels. For iisignature, only the
Lyndon basis is shown.

We expect the time taken to increase polynomially in dimension, so we plot
the time taken for various methods as d increases on a log-log plot in Figure 4.5 and
show the timings in Table 4.6. Ultimately the calculation time would be expected
to be quintic in d. For d in the high single figures, we observe much higher growth
in the runtime of the compiled code.

dimension: 4 5 6 7 8 9 10
C Lyndon 0.09 0.29 0.85 3.17 7.24 22.33 37.83
C standard 0.10 0.30 1.03 3.35 7.58 21.64 38.38
O Lyndon 0.51 1.63 4.18 9.34 20.76 39.39 63.67
O standard 0.52 1.69 4.38 9.84 19.72 38.44 64.92
S Lyndon 0.14 0.37 0.84 1.73 3.24 5.66 9.30
S standard 0.15 0.41 0.96 2.02 4.56 6.81 11.60

esig standard 22.75 73.17 190.47 437.35 931.58 1814.74

Table 4.6: Various level-5 log signature calculation timings in seconds, for 1000
random paths of 10 steps each of various dimensions.
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Figure 4.5: Various level-5 log signature calculation timings in seconds, for 1000
random paths of 10 steps each of various dimensions. For iisignature, only the
Lyndon basis is shown. The graphs look to have roughly reached a straight line for
d � 6. The least squares line of each is shown, with its gradient which indicates the
approximate degree of a polynomial relationship.

The preparation in iisignature is slow for the C method when d or m is large.
Timings for a single call are illustrated for various levels with d = 3 in Figure 4.6
and for various dimensions with m = 5 in Figure 4.7. There is an advantage in using
the Lyndon basis.
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Figure 4.6: Timings for a single preparation of the 3-dimensional log signature calcu-
lation for various levels. Smaller marks are used for the standard Hall basis, regular
marks for the Lyndon basis. Values for O and C are very similar, so the former are
omitted. Very small values are also omitted.
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Figure 4.7: Timings for a single preparation of the level-5 log signature calculation
for various dimensions. Only the Lyndon basis is shown. Smaller marks are used for
the standard Hall basis, regular marks for the Lyndon basis. Values for O and C are
very similar, so the former are omitted. Very small values are also omitted.
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While there is always more that can be done to speed software performance,
iisignature provides a significant speedup over other options easily available to
those using python for machine learning and doing lots of signature calculations.

4.7 Indicative memory usage

We used the Massif tool [NWF06] from Valgrind to profile memory usage calculating
a single log signature, in particular collecting the peak memory usage. The peak
memory usage is interesting because running out of memory is usually what makes
certain calculations impossible. There is a background memory cost independent
of the algorithm, which includes space to store the BCH coefficients. In order just
to measure the algorithm, we ran these calculations from within C++ without using
Python, and we subtract the memory usage calculating the same signature at level
1 from the observed memory usage.

The values are very consistent across repeated runs. Values for three-dimen-
sional paths are shown in Figure 4.8. We observe that memory usage is another
reason why the projection method becomes a better choice for higher levels.
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Figure 4.8: Memory usages in bytes for C and S calculations of a three-dimensional
path of 10 steps for various levels. Only the Lyndon basis is shown.
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4.8 Conclusions and future work on iisignature

We have presented and analysed efficient methods for computing signatures and log
signatures. We have implemented what we considered to be the most promising
algorithms.

We have focused on small-dimensional data in our design, because this en-
compasses many applications where the signature has been used in machine-learning.
For example handwriting recognition and EEG data. Calculating the log signature
in cases where d� m has not been a priority. For example d > 50 and m  4. Some
data is naturally a high-dimensional sequence, possibly discrete (making movements
of a fixed length in a single dimension at a time), like some representations of music
and text, so this is a possible use case. In these cases there is lots of repetition in the
calculations. There are potential changes to the code which would make prepare
use significantly less memory (and therefore be usable for larger d) in this regime,
at the cost of a little more calculation time in logsig.

We have shown that machine code generation directly from the algebra is
useful in this domain. The calculation is data-access heavy and the order of opera-
tions has a big effect, because of memory latency and data dependencies, and there
is scope to improve it. We find that adding extra operations to the code without
changing the data access does not slow it down, suggesting that it is the effect of
data-cache misses which is the main bottleneck. There are subsets of the calcula-
tion which are repeated on different parts of the data. Operating in parallel with
vector instructions might speed things up. There are avenues for working on these
possibilities, for example using the LLVM system, which brings the advantages of a
modern compiler to the code generation.
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4.9 Backpropagation and derivatives

When training neural networks, it is required to calculate the gradient of a scalar
function of many variables. The context for this will be fleshed out in subsec-
tion 5.3.2. This is done using the chain rule in a structured fashion, known as
reverse automatic differentiation or backpropagation. In order to be able to do sig-
nature calculations inside neural networks, we need to do backpropagation of deriva-
tives through the calculation. The key for this is that for each calculation which
takes a number of inputs to a number of outputs, we need to be able to take the
derivatives of some scalar function, say F , of the outputs to the derivatives of that
function of the inputs. Explicitly, if as a general component of a neural network we
wish to have a function2

f : Rn ! Rm

f : (x1, . . . , xn) 7! (f1, . . . , fm)

then we need to calculate a backpropagation operation
 �
f :

⇣ @F
@f1

, . . . ,
@F

@fm

⌘
7!
⇣ @F
@x1

, . . . ,
@F

@xn

⌘

=
⇣X

i

@F

@fi

@fi

@x1
, . . . ,

X

i

@F

@fi

@fi

@xn

⌘

where all partial derivatives are evaluated at a single set of inputs to the whole
function F , and these inputs and the corresponding (x1, . . . , xn) and (f1, . . . , fm) can
be made inputs to

 �
f . In this section I discuss ways I have done that efficiently for

some functions in iisignature. In particular, for many functions f in practice it is
not necessary to calculate or store every element @fi

@xj
of the Jacobian. iisignature

has a simple method sigjoin for concatenating a segment onto a signature, and
sigscale for transforming a given signature according to the path being scaled by
an enlargement in each of the coordinate directions. It is these and the core sig and
logsig functions which iisignature provides backpropagation for.

4.9.1 General thoughts

Having a backpropagation function along with a library function can often be more
efficient than defining the whole operation in the language of an autodifferentiation
facility like those in tensorflow, torch or theano. There are lots of steps in signa-

2A function may take scalar inputs or other inputs with respect to which we do not need
derivatives, in which case these extra inputs can be inputs to its backpropagation operation and no
special extra difficulty is caused.
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ture calculations which would each have to be analysed separately, and this process
would probably happen every time a program was run. Each calculation we pro-
vide together with its backprop counterpart can be thought of by the deep learning
library as a sealed unit. Often we can save memory this way – we don’t have to
store every single intermediate value, and at runtime we don’t need to work out
which intermediate values need to be stored. Our function can be provided to an
autodifferentiation facility as a sealed unit.

The most common style is for a backprop function to receive the original
function’s inputs. We have functions which have optional positional arguments.
Therefore it is most consistent to take the gradient as the first argument of backprop
functions followed by the original inputs. In practice, a backprop function could
additionally accept original function’s output and the autodifferentiation systems
would be able to provide it, but we don’t have a need to make use of this. Ideally
state which is internal to the calculation should not need to be remembered.

In some cases, by thinking carefully about the backpropagation operation
 �
f

we can find a more sensible way to calculate it than the obvious way. This means
that our own function can be more efficient than that which an autodifferentiation
system is likely to have come up with. In practice, it seems that our

 �
f pleasingly

take about the same time as the corresponding forwards operation f , and it would
be unlikely that the backpropagation operation would be much quicker in any case.

When we have a calculation structure which looks like Figure 4.9 to back-
propagate derivatives through, we need the value of the output of each calculation
of function f as we pass derivatives down the tree, in order to send the derivative
to the input which is a sibling of that f . There are basically two ways to make this
available. The standard way is that we evaluate the calculation forwards storing all
the intermediate f values. This may require extra memory and copying of data to
store them (unless we repeatedly do parts of the calculation). This is classic reverse-
mode automatic differentiation in action, and is what typical deep learning packages
do by default to implement backpropagation. Some of the storage can be omitted
in return for redoing parts of the calculation. In some cases, however, we might be
lucky, in that both f and (right multiplication by something fixed) are invertible,
and so we can find the output of each f down the tree starting from the output of
the calculation. By doing this in tandem with the backpropagation of derivatives,
we don’t need any storage for each level of the calculation graph. This idea works
for sig but not for converting a signature to a log signature using the series for log,
fundamentally because among group-like elements of tensor space, multiplication
by a given element is invertible, but among Lie elements, multiplication by a given
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element is not.

output⇥f⇥f⇥f⇥input

input input input input

Figure 4.9: A calculation dependency, where f is some function and ⇥ is something
like multiplication.

4.9.2 sig

There is nothing so new here, but it helps to write this function’s calculation out to
fix notation for when we come to the derivative.

sig(A,m) calculates the signature of a piecewise linear path by combining the
signatures of each straight-line-piece (which are the exponents of the displacement)
using Chen’s formula.

If the d-dimensional input was
�
(pjk)lj=0

�d
k=1

I could express the calculation
like this. The displacement vectors are given by

(qj)k = pjk � p(j�1),k (4.6)

and the signature of the j segment is

rj(i1 . . . in) =
1

n!

nY

h=1

(qj)ih (4.7)

and using Chen’s relation we find the signature of the path up to point j

s1(i1 . . . in) = r1(i1 . . . in)

sj(i1 . . . in) = sj�1(i1 . . . in) +

2

4
n�1X

p=1

sj�1(i1 . . . ip)rj(ip+1 . . . in)

3

5+ rj(i1 . . . in).

(4.8)
I adopt the convention that a nonsensical ellipsis like i1 . . . i0 means the empty word
✏. The value of a signature on the empty word is the scalar 1. This can therefore be
written simply

sj(i1 . . . in) =
nX

p=0

sj�1(i1 . . . ip)rj(ip+1 . . . in).

Each signature object is calculated all at once (i.e. its value for all words is calcu-
lated in one go, for all words up to length m), and stored in a vector (one for each
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level/length of word) of vectors (of words in alphabetical order). The output of the
function is all the values of sl. For example, for a path given as six points, the
calculation dependency looks like Figure 4.10, taking the displacement vectors and
signature objects as single entities and neglecting the actual calculation of the dis-
placements. The calculation order needn’t be like this, the tree could be constructed
differently, but the number of operations would be unchanged. A nested calculation
order like this requires only storing one sj at a time.

s5

s4

s3

s2

s1 = r1

q1

r2

q2

r3

q3

r4

q4

r5

q5

Figure 4.10: Sig calculation dependency

I use the ⌦ symbol for the Kronecker product of two column vectors as a
vector, which takes a vector of length x and a vector of length y to a vector of length
xy. If u has length x and v has length y then uv has elements (u⌦v)(i�1)y+j = uivj . If
a is a signature, then I write am for the vector of its elements at level m. To calculate
rj I use the procedure in Algorithm 1 and the algorithm for the full signature is
Algorithm 2.

Algorithm 1 Segment signature
1: r1

j  qj

2: for n 2,m do
3: rn

j  1
n(r

n�1
j ⌦qj)

4: end for

It feels wasteful to store each rn
j as a whole vector of dn numbers, because

they are really repeats. The signature of a straight line takes the same value on all
permutations of a word, so there are only ( d+n�1

n ) distinct values. But trying to
exploit this led me to slower, more complicated code.
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Algorithm 2 sig
1: Calculate r1

2: for n 1,m do
3: sn  rn

1

4: end for
5: for j  2, l do
6: Calculate rj

7: for n m, 1 do . make sn go from being sn
j�1 to sn

j
8: for n0  (n� 1), 1 do
9: sn  sn + sn0⌦rn�n0

j
10: end for
11: sn  sn + rn

j
12: end for
13: end for
14: sn is now sn

l for each n

4.9.3 sigbackprop

Naively, given a calculation tree to define an output in terms of simple calculations,
we can backpropagate derivatives through the tree using the chain rule. If we know
the value of every node in the tree (having stored them while calculating the output)
then we can pass a derivative though each leg of a multiplication node M by multi-
plying it by the stored values in the other inputs to M . We send a derivative both
ways through an addition unchanged. There is naturally a time/memory tradeoff in
such a calculation, because each value could just be recalculated from inputs when
it is needed, instead of having been remembered. We can in fact do much better
than storing all the intermediate values, or even just all the sj .

In general, if X is the signature of a path �, then the signature X 0 of the
reversed path ��1 is a permutation with some elements negated. It is the image of
X under ↵, the antipode of the concatenation algebra (page 19 of [Reu94]).

X 0(a1 . . . an) = (�1)nX(an . . . a1) (4.9)

If � is a straight line, then the component of the signature is the same on all permu-
tations of a word, and so we have the simpler

X 0(a1 . . . an) = (�1)nX(a1 . . . an) (4.10)

Because all the rj are easy to calculate as the difference of inputs, we can easily
use this to calculate sj�1 from sj . This we can perform at the same time as the
backpropagation of derivatives with respect to sj . Let the vector containing level n
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of rj be rn
j , with the derivatives with respect to its elements being Rn

j . Similarly sn
j

and Sn
j for sj .
It is convenient to define the corresponding backpropagation operations to ⌦.

If u has length x, v has length y, and w has length xy, then w⌦ �v has length x with
elements (w⌦ �v)i =

P
j w(i�1)y+jvj and u⌦�!w has length y with elements (u⌦�!w)j =P

i uiw(i�1)y+j . Then the algorithm, based in the function sigBackwards, proceeds
as shown in Algorithm 3. Some of the same logic is used for sigjoinbackprop.

Algorithm 3 sigBackwards
1: for n 1,m do
2: sn  sn

l , calculated using sig
3: Sn  Sn

l , an input
4: end for
5: for j  l, 1 do

(sn is now sn
j and Sn is now Sn

j for each n.)
6: Calculate rj .

7:
Use (4.10) to make sn

be sn
j�1 for each n.

8
>>>>>>><

>>>>>>>:

for n m, 1 do
for n0  (n� 1), 1 do

sn  sn + (�1)n�n0
sn0⌦rn�n0

j

end for
sn  sn + (�1)nrn

j

end for

8: Calculate Rj .

8
>>>>>>>>>>>><

>>>>>>>>>>>>:

for n 1,m do
Rn

j  Sn

end for
for n 1,m do

for n0  (n� 1), 1 do
Rn�n0

j  Rn�n0

j + sn0⌦�!Sn

end for
end for

9: Backpropagate Rn
j through (4.7).

10:
Make Sn be Sn

j�1,
doable in place.

8
>>>>><

>>>>>:

for n0  1, (m� 1) do
for n (n0 + 1,m) do

Sn0  Sn0
+ Sn⌦ �r

n�n0

end for
end for

11: end for
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4.9.4 sigscalebackprop

Here we present a general sensible idea to use when differentiating products of terms
sampled with replacement from a list: you keep the simple code you would have
written if replacement was not allowed.

Consider sigscalebackprop called in d dimensions up to level m, in partic-
ular its action for a single level l  m. Each level’s calculation produces derivatives
with respect to its part of the original signature, and contributes to derivatives with
respect to the scales. The data are a, the lth level of the original signature, b, the
scales, and E, the supplied derivatives with respect to the lth level of the output.
Denote the output of the expression by e and the to-be-calculated derivatives with
respect to a and b by A and B respectively. I denote subscripting of the inputs
and outputs with square brackets, and unlike earlier where I indexed a level of a
signature as a vector, here I am indexing it as a tensor.

The expression to be differentiated is as follows.

e[i1, . . . , il] =
⇣ lY

j=1

b[ij ]
⌘
a[i1, . . . , il] for (i1, . . . , il) 2 {1, . . . , d}l (4.11)

Using standard rules for differentiation, the derivative calculations are as follows.

A[i1, . . . , il] =
⇣ lY

j=1

b[ij ]
⌘
E[i1, . . . , il] for (i1, . . . , il) 2 {1, . . . , d}l (4.12)

B[k] =
X

(i1,...,il)2
{1,...,d}l

B[k; i1, . . . , il] for k 2 {1, . . . , d}, (4.13)

where the single contribution of a product is

B[k; i1, . . . , il] =
⇣ lY

j=1
ij 6=k

b[ij ]
⌘
a[i1, . . . , il]E[i1, . . . , il] C

k
i1...ilb[k]

Ck
i1...il

�1 (4.14)

and Ck
i1...il

is the number of j for which ij = k.

Evaluating e according to (4.11) will take time dll but evaluating B naively according
to this procedure takes at least dl+1d, because evaluating the d counts C ·

i1...il
requires

d time for every (i1 . . . il), even though most are zero. A couple of rearrangements:

B[k; i1, . . . , il] =
⇣ lY

j=1

b[ij ]
⌘
a[i1, . . . , il]E[i1, . . . , il] C

k
i1...ilb[k]

�1 (4.15)

B[k; i1, . . . , il] =
lX

h=1

1{ih=k}

⇣ lY

j=1

b[ij ]
⌘
a[i1, . . . , il]E[i1, . . . , il] b[ih]

�1 (4.16)
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Organising the terms differently by making k range among (i1, . . . , il) instead of
{1, . . . , d} means we split the C ·

· occurrences of each multiplication. This leads to
Algorithm 4, which only takes time dll.

Algorithm 4 single level of sigscalebackprop
1: for (i1, . . . , il) 2 {1, . . . , d}l do

2: prod 
lY

j=1

b[ij ]

3: A[i1, . . . , il] prod E[i1, . . . , il]
4: for h 2 {1, . . . , l} do
5: B[ih] B[ih] + prod a[i1, . . . , il]E[i1, . . . , il]/b[ih]
6: end for
7: end for
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Chapter 5

Signatures in deep learning
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5.1 Introduction

The Chinese and Japanese languages are very popular and have similar writing
systems. With the widespread use of smartphones and touch devices in the last
decade, automated recognition is relevant to allow text input via letter drawing
rather than by keyboard, which can be inefficient. The leading mobile operating
systems, Apple’s iOS and Google’s Android, provide built-in handwritten input,
and third-party apps are also available. Mobile devices have limited compute power
because of battery life. Therefore computationally efficient methods are important.

There is a long history of methods for handwritten Chinese character recogni-
tion. Much of the work has treated the case of recognising the input from an image,
for example of a paper manuscript. This is termed offline character recognition,
and is distinguished from online character recognition where the data is given as a
sequence of strokes with their points supplied in order. The order and directions
of the strokes is potentially useful, so better accuracy is potentially possible in the
online setting by exploiting the extra information available. The online problem is
the relevant one for handwriting interfaces on devices.

When I started looking at this problem in 2014, there were a number of
methods for performing online Chinese recognition, each with some pros and cons.
The first promising method used an 8x8 spatial grid of 8-directional histograms
[BH05]. The approach showed the importance of capturing both the location of the
pen, and the direction of the pen’s movements. The method is computationally fairly
cheap, but the accuracy was limited. Ad hoc pre-processing was needed to reshape
the characters to deal with the lack of awareness of translation invariance of human
handwriting. Given a circle, there is a large margin of error if you try to calculate
the radius from the 8x8x8 histogram due to the coarse resolution of the 8x8 spatial
grid.

From around 2010, the most successful methods were using large convolu-
tional neural networks. They capture the identity and shape of each stroke sepa-
rately, together with order. The winner of the Chinese Handwriting Recognition
Contest 2010 [Liu+10] with 92.39% accuracy (on the same data as we use) used
histogram features along with such a large network.

Schmidhuber and collaborators [CMS12] used a higher resolution convolu-
tional network which was therefore more computationally expensive, achieving greater
accuracy (94.39%). This was not using signatures

Combining convolutional networks with signatures boosted accuracy but the
computational cost was still rather high – 96.18% accuracy by Ben Graham in [Gra13]
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was the best in the ICDAR 2013 Chinese Handwriting Recognition Competition
[Yin+13].

One of the leading third-party apps is GPEN [Jin] from the South China
University of Technology, one of their papers from a bit later is [Yan+15]. They
use signature features as part of the representation, and also a large convolutional
network. In such apps reducing the required power for classification is always a
priority, although efficient training is also attractive.

Recurrent neural networks, such as LSTMs, offer an alternative way to learn
sequence data which can be fast compared with convolutional networks. Combining
LSTM with signatures was an attractive idea to us as the signatures would capture
local shape information potentially very cheaply, allowing the deep learning problem
of combining the partial signatures to be relatively small, and so we wanted to
investigate this possibility. We constrain ourselves to working with the raw data, as
we wish to develop algorithms that can generalise well, rather than needing human-
intensive problem specific work on feature engineering which requires much trial and
error. The test set only has 60 writers, and much of the test error is concentrated on
a few of them. There is a danger that feature engineering results in methods that
work well on the test set, but does not generalise well to writers outside the dataset.

An example of LSTM with feature engineering and customised data augmen-
tation is [Zha+18] which first appeared on ArXiv in June 2016 and then showed the
best accuracy yet, albeit using an enlarged training set. It shows LSTM is a good
fit for the problem domain, but powerful universal local shape characterisation is
desirable.

Here, I will introduce some background to the problem and deep learning
methods in general, and show a potential pipeline for using signatures in combination
with recurrent neural networks.

5.2 Description of data

The CASIA datasets [Liu+11] are large standard datasets for Chinese handwriting
recognition. The task we are attempting is the online character recognition problem.
We pick one of the standard databases for the task, namely the online handwritten
character database 1.1 (OLHWDB1.1).1 There are samples of 3755 different characters
(both symbols and Chinese characters) written by 300 different writers with a special
Anoto pen which records each stroke as a sequence of coordinates. This data is

1Another suggested procedure, for example used in [Zha+18], is to combine data from both the
1.0 and 1.1 datasets. This is actually recommended in [Liu+11].
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Figure 5.1: Three Chinese characters and their handwritten versions as provided by
each of the first four writers in the CASIA OLHWDB1.1 training set. Note that the
number of strokes in a single character can vary between writers. (These are Unicode
code points 0x997a, 0x7f34 and 0x7ede.)

directly comparable to data from a touch interface. We split them in the standard
recommended train-test split, so that the first 240 writers’ data is used for training
and the last 60 for testing. The data in total consists of 939,564 labelled sample
characters for training and 234,800 for testing. The order of writers is random, so
both the training set and the testing set should be representative of the pool of
writers. (This is not true in the 1.0 database). On average, a character has 5.6
strokes, with the maximum number in a character being 26. On average, a character
is described by a total of 60.9 points, with the maximum being 283. A stroke is
described by on average 10.9 points, with the maximum being 192. Figure 5.1 shows
some examples of three characters from the training set. A Chinese native described
the handwriting to me as bad but readable.

5.3 Generic supervised learning setup

The typical setup in supervised machine learning is that we want to learn an unknown
function f from training example space X to output space Y . We are given a training
set of examples from X for which f(X) is known.

5.3.1 Augmenting the output space

Often the output of a network needs to be a probability distribution rather than
discrete values, and we define a loss function to optimise. We define a possibly
augmented output space Ŷ which is continuous and for which there is a simple

78



deterministic function i : Ŷ ⇣ Y . We also define a cost function c : Y ⇥ Ŷ ! R+
0

where a high value of c(y, ŷ) indicates that the prediction ŷ 2 Ŷ is bad when the
right answer is y.

We make some form of a model, a function f̃ , which takes a sample x 2 X

and set of parameters � in parameter space ⇤ to the constructed output space Ŷ .
The aim of training is to come up with a � 2 ⇤ such that for a sample x, i(f̃(x,�))
is roughly f(x).

We pick Ŷ , i, and c in conjunction with the model so that changing � to
reduce c(f(x), f̃(x,�)) makes i(f̃(x,�)) a good approximation of f(x) and also so
that c(f(x), f̃(x,�)) is a differentiable function of �. In practice, f̃ is not only
differentiable but its derivative is also easy to calculate, via the chain rule, in the
form of autodifferentiation and the method of backpropagation of derivatives, as
mentioned in section 4.9. If our formalism didn’t allow for Ŷ 6= Y then we would have
a problem with allowing our cost to be differentiable with respect to the parameters
if Y was a discrete space.

For example, if you were training a model to distinguish pictures of cats from
pictures of dogs, Y would naturally be the set {dog, cat}. In this case a sensible
choice would be as follows.

Ŷ = [0, 1]

i(ŷ) =

8
<

:
dog ŷ  0.5

cat ŷ > 0.5

c(y, ŷ) =

8
<

:
� log ŷ y = dog

� log(1� ŷ) y = cat

The intuition here is that we make an element of augmented output space be a
probability that a picture is a cat. The amount by which we are wrong, our cost, is
the cross entropy between the true answer and the predicted answer.

If there are k > 2 categories, we might choose the following, a one-hot encod-
ing of the output:

Y = {1, . . . , k} say,

Ŷ = Rk

i(ŷ) = argmax
m2{1,...,k}

(ŷ)m

c(y, ŷ) = � log(softmax(ŷ)y)
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where softmax : Ŷ ! Ŷ given by

softmax(ŷ)m =
exp(ŷm)P

m02{1,...,k} exp(ŷm0)

is a smooth function which maps vectors to the standard simplex �k�1, i.e. discrete
probability distributions. c is the cross-entropy of this distribution, or the negative-
log likelihood of the model on the data.

As another example, we might be trying to learn a function whose image is
[0, 1]. In this case, we have no need for augmentation and a sensible choice might be
as follows:

Ŷ = Y = [0, 1]

i(ŷ) = ŷ

c(y, ŷ) = (ŷ � y)2

The cost function is the square of the L2 norm.

5.3.2 Minibatches and stochastic gradient descent

With this setup, we can formulate training as a problem of stochastic gradient de-
scent. On a subset of n of the training examples � 2 Xn, the badness of some set of
parameters � is given by

g�(�) =
X

x2�
c(f(x), f̃(x,�)). (5.1)

One way to find the best parameters would be to set � to the entire training
set and numerically minimise g�(�). We have first derivatives of g� so gradient
descent would be a possibility. But g� would be very slow to calculate, as it would
require passing over the whole dataset, and this would have to happen very many
times.

We can think of g�(�) as a random function as � is uniformly distributed over
some samples from the training data. It is much more efficient to try to minimize this
random function as a stochastic gradient descent. The typical procedure is to start
by picking once some initial random parameters �, then to repeat the following many
times: pick a random subset � of the training data, evaluate g�(�) and g0

�(�), and
update � using some “stochastic gradient descent” technique designed to minimise
g�(�).

The dimensionality of � can be large. Typically ⇤ = Rd for d in the millions
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or billions. It is generally not feasible to calculate or even store the second derivative
g00
�(�) because it has d2 elements. Thus we cannot use minimisation techniques like

Gauss-Newton or Levenberg-Marquardt which use the second derivative to determine
the length of a step. g0

�(�) can give us an idea of a direction to move �, but not
an amount. A simple minimisation technique which can work is to move a fixed
amount (called the learning rate) in a direction given by an exponentially weighted
moving average of recently seen values of �g0

�(�). This is called momentum. There
are a few other techniques which work well. They have in common that the memory
usage grows no more than linearly in d and not at all in the number of steps of
optimisation history available.

5.3.3 Inductive bias

When choosing a supervised machine learning model, we are choosing what kinds of
functions are relevant in trying to find one which agrees with our training data. The
inductive bias is the set of built-in assumptions about functions to be considered
which our choice implies.

5.3.4 Invariants

Across supervised machine learning having more training examples enables building
better models.

If there are known symmetries, or approximate symmetries, in the domain of
the function being learned, then it can make learning much more effective to take this
into account. Only certain functions have any chance of being useful approximations
of the target function f , those which are generally unaffected by the symmetry. If
we have a true group of symmetries, where we know f(s(x)) = f(x) for all s in some
group of transformations, then we want f to take a single value on each orbit. Often
the most effective way to take a symmetry into account is to restrict our model to a
form of function which has (approximately) the desired symmetry, or which makes
it easy to learn functions which have the desired symmetry. For example, when
learning a function on images we may use a convolutional neural network which
often will return similar values under small translations of the input. Similarly, when
using a 1D convolutional neural network to classify a time series which I thought
to be translation invariant (for example EEG voltage readings) I restricted the first
convolutional layer to have multiplicative weights which sum to 0. Significantly, the
fact that the signature is invariant under reparametrisations of a path leads to its
possible use as a source of features of paths in the common case that we know that
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reparametrisation should not matter.

5.3.5 Data augmentation

Often some symmetry or invariant in the domain cannot be built into the structure
of the model, because it would be too complicated. But the invariant still means
that a single piece of labelled training data can count as more than one example,
because some distortions of it is expected to be also a good training example. Data
augmentation in this way is an important part of making the most of a dataset.
For a given problem, we might establish a set of transforms under which our data
would still be good, including the identity transform. When generating each training
sample in each �, we put it through a randomly chosen transform.

For example, if you were training a simple convolutional neural network to
distinguish pictures of cats from pictures of dogs, you might exploit the fact that
a picture of an animal flipped along a vertical axis is a good synthetic example
of a picture of that type of animal. Each training sample might be flipped with
probability 1

2 before use in �.
There is ongoing research into good data augmentation transformations, for

example [Cub+18], and some Python libraries have been made available for images,
for example Augmentor and imgaug. Many of the same transformations used for
images can be translated into path data, for example small rotations, shears and
elastic distortions, although these libraries are not directly usable in our setting.

5.4 Neural networks

Neural networks (NNs), or artificial neural networks (ANNs), are a category of forms
for f̃ , our parameterised function which we want to find parameters for to make it
solve a supervised learning problem. The function is built from a series of layers,
and each layer is made from “cells” or “neurons” in a manner analogous to the brain.
Deep learning is basically machine learning using neural networks.

5.4.1 Fully connected

The simplest neural networks are fully connected neural networks (FCNNs) or multi-
layer perceptrons (MLPs). A fully connected neural network looks like the following.
The input space, X is Ru0 for some u0. The following must be given: a number of
layers m, a number of units in each layer (ui)mi=1, and a nonlinear function � : R! R
called the activation function. The output space is Ŷ = Rum . Then an element � of
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Figure 5.2: Some important activation functions

parameter space is a sequence (Wi, bi)mi=1 where each Wi is a real ui�1 ⇥ ui matrix
called the weights, and each bi 2 Rui is a vector called the biases. If x is a vector,
matrix or array, I write �(x) for the result of applying � to x elementwise.

The neural network is then the function f̃ = gn defined as follows:

g0(x,�) = x (5.2)

gi+1(x,�) = �(gi(x,�)Wi + bi) (5.3)

(There is a commonly encountered equivalent way to formulate this as follows.
We have parameters � = (W̃i)mi=1 where each W̃i is a real (ui�1 + 1) ⇥ ui matrix.
Then we define

gi+1(x,�) = �
⇣"gi(x,�)

1

#
W̃i

⌘
. ) (5.4)

There is lots of terminology. For i > 0, an element in gi(x,�) is said to be
a neuron, a feature, a feature detector, a cell or a unit or the activation of one. gi

is the ith layer. Anthropomorphically, these values are thought of as the results of
intermediate steps the network has learnt to calculate from the input on its way to
the output. The structure of a FCNN is unchanged if, as an extra first step, the
input is multiplied by a fixed nonsingular matrix or a incremented by a fixed vector.
We might say the network “sees” its input as an element of affine space.

The most popular choice for � is called the rectifier, �(x) = max(x, 0). We
say such a network has rectified linear units or ReLUs, and hence may call � itself
“ReLU”. This and some other activation functions which are relevant later are plotted
in Figure 5.2.
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5.4.2 Convolutional

Fully connected networks take their input to be X = Ru0 with no additional struc-
ture. They know of no particular structure of the input space. Often there is some
structure which we want to be taken into account. A common case is that we are
given data in say Ru0

0 for each point on a lattice of shape u1
0 ⇥ u2

0 ⇥ · · · ⇥ ud
0. Our

data lives in the space X = R
Qd

i=0 ui
0 . Convolutional neural networks (CNNs) are a

generalisation of fully connected neural networks which take this into account. For
example, if we are dealing with colour photographs of resolution 28 ⇥ 28 we would
have X = R3⇥28⇥28, where we have a value for the brightness of red, green and blue
at each pixel. We want functions which treat pixels similarly to each other, and
which treat neighbouring pixels similarly, to be favoured by the inductive bias of
our model. We want the model to be able to learn a function which doesn’t change
much if a picture is translated by about one pixel.

A convolutional network allows not just the input but other layers to have
a grid structure. The size of the array of values, or the number of units in layer i,
gi(x,�), is usually given by a sequence of numbers u0

i ⇥u1
i ⇥ · · ·⇥ud

i . u0
i is known as

the number of features in the layer – this is the number of values per point in space.
There are several common types of layers. Two of the simplest are the convolutional
and max pooling layers. If layer i + 1 is an (l1 ⇥ · · · ⇥ ld)-convolutional layer it
contributes a vector bi+1 2 Rui+1 and a (typically small) u0

i ⇥ui+1⇥ l1⇥ · · ·⇥ ld-array
Wi+1 to ⇤. Then, in a simple setup, the elements of the layer’s outputs gi+1(x,�)

are the values of

�
⇣ u0

iX

j0=0

l1X

j1=0

· · ·
ldX

jd=0

(gi(x,�))(j0,k1+j1,k2+j2,...,kd+jd)(Wi)(j0k0j1j2...jd) + (bi)k0

⌘
(5.5)

as k0 ranges from 0 to u0
i+1 and the other kp range from 0 to up

i+1 = 1+up
i �lp. There

are numerous variations on this theme, for example treating the boundary differently
or enforcing further sparsity on Wi+1. The idea is that the new units at a point in
space only depend on the values of the units in the previous layer near that point
in space, and the manner of the dependence is the same over all space. This layer
is seen as analogous to the V1 cells in a visual cortex. This is equivalent to a fully
connected layer where the matrix W is restricted to a very special sparsity pattern,
and also that its nonzero values are repeated in a certain way. A max pooling layer
takes the maxima of each feature over a each of a grid of small cuboids which either
cover each dimension or overlap in each dimension, thus preserving the number of
features (u0

i+1 = u0
i ) but reducing the other dimensions. It has no parameters. A
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typical such layer reduces the number of units in each spatial dimension by a factor
of two. The highest levels in a typical CNN typically take all the units to be a single
vector and thus are fully connected, and so the output of the network happens in
the same way as the FCNN.

5.4.3 Recurrent neural networks

The input being a sequence is an important case of a specially-structured input
which it is important for the network to take into account. A simple case is that
for each example we are given data in say Ru0

0 for each of u1
0 time points. Our data

lives in the space X = Ru0
0u1

0 . We could be use a 1-D convolutional network (i.e. one
with d = 1) in this case, but recurrent neural networks (RNNs) are an important
alternative type of architecture in this case. While convolutional and pooling layers
allow the local spatial structure to be taken into account in the learning, RNNs
force the temporal structure into the model, and explicitly globally, not just in a
“local” way. An RNN allows the network to allow earlier entries of the sequence to
be taken into account when processing later entries. Just like for fully connected
and convolutional networks, the network is built from a sequence of layers. The
simplest RNN layer could take input as a sequence of u1

i values in Ru0
i to output of

the same number (u1
i+1 = u1

i ) of values in Ru0
i+1 Its parameters would be a weight

matrix u0
i�1⇥ u0

i matrix Wi, a second (square) weight matrix u0
i ⇥ u0

i matrix W̄i for
the recurrence, and a u0

i -vector of biases bi.

(gi+1(x,�))1 = �((gi(x,�))1Wi + bi) (5.6)

(gi+1(x,�))t = �((gi(x,�))tWi + (gi+1(x,�))t�1W̄i + bi) for t > 1 (5.7)

(For a few paragraphs I am omitting the parameters x and � from g). Intuitively,
what is happening here is that a learned map is converting a hidden state (gi)t to a
new hidden state using one more piece of source data. The hidden state can store a
representation which knows about everything which has already been seen.

If we need to output one value for the whole sequence, the highest levels of
the RNN will be fully connected, initialised from just the final timestep of the last
recurrent layer, i.e. (gi)u1

i
.

5.4.4 LSTM

When trying to use RNNs when the sequence is long, it is hard for the early parts (low
t) of the sequence to influence the final state, and thus there is a limit to what the
network can learn. The state has to be remembered through many multiplications
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by the matrix W̄i. For most values of W̄i the derivative of (gi)u1
i

with respect to
an element in (gi�1)t for t ⌧ u1

u will be very large or very small. This is called the
problem of exploding or vanishing gradients.

Long-short term memory (LSTM, [HS97]) is a variation of a recurrent layer
which is designed to allow information to survive in the state across many timesteps.
There are two separate sets of units which operate in pairs. To each output element
�
(gi(x,�))t

�
j

is associated a memory cell (ct)j :=
�
(ci(x,�))t

�
j
. The layer needs

parameters2 ui�1 ⇥ ui matrices W f
i , W i

i , W o
i and W c

i , ui ⇥ ui matrices W̄ f
i , W̄ i

i ,
W̄ o

i and W̄ c
i , and ui-vectors bf

i , bii, bo
i and bc

i . The layer uses the sigmoid function,
�0(x) = 1

1+e�x which is monotone increasing from R to the interval (0, 1). The
normal activation function, �, is usually tanh. They are evaluated for t > 1 using
temporary variables ft, it, ot and c̃t as follows.

ft = �0((gi(x,�))tW
f
i + (gi+1(x,�))t�1W̄

f
i + bfi ) (5.8)

it = �0((gi(x,�))tW
i
i + (gi+1(x,�))t�1W̄

i
i + bi

i) (5.9)

ot = �0((gi(x,�))tW
o
i + (gi+1(x,�))t�1W̄

o
i + bo

i ) (5.10)

c̃t = �((gi(x,�))tW
c
i + (gi+1(x,�))t�1W̄

c
i + bc

i ) (5.11)

ct = ft � ct�1 + it � c̃t (5.12)

(gi+1)t = ot � �(ct) (5.13)

where � denotes the Hadamard/entrywise product. To interpret these formulae for
t = 1, we think of c0 and (gi+1)0 as being 0.

It is hard to know exactly why a neural network is working, but there are
aspects of the design of LSTM which make sense. The usual interpretation of this
is as follows. We think of values which have passed through �0 as being practically
boolean 0/1 values. The ct cells preserve information for many time steps. A cell
can be turned off, or made to ignore its existing value, by some timestep triggering
the “forget gate”, which means setting ft to 03, and can be given a new value, the
calculated c̃t by the “input gate” it being triggered. Whether the value in a cell is
actually used for output at a timestep is governed by the “output gate” ot. We can
see that it is easy for a value in xt to affect a cell in ct0 with t⌧ t0 because it could be
stored in some cell ct and then not be forgotten. This is how the vanishing gradient
problem is alleviated.

2Note that in this widely accepted notation, the superscripts i, o and f are decorations not
variables nor placeholders.

3A model where f is “whether to forget”, with ft replaced by (1� ft) in (5.12), would be totally
equivalent.
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The long term information stored in the cells is separate from the immediate
information stored in the outputs. Note that if f manages to stay 0 and o and
i manage to stay 1 then this is a vanilla RNN unit, albeit with the nonlinearity
tanh � tanh, see Figure 5.2.

The only link between (c·)j and (g·)j (which means that the cell and the
hidden state of a unit are linked, and we don’t just have a load of hidden states and
a load of cells) is the final equation.

It is not clear that tanh is needed in both places, and it could easily be
replaced with another activation function.

LSTM achieves impressive results in practice, though can take a long time to
train. There are many variations on LSTM which have been proposed. It requires
a very large amount of experimentation to be sure which modifications are real
improvements. There is also recent suggestion (e.g. [BKK18] and [MH18]) that for
many current applications recurrent networks are not needed at all, because for many
tasks their performance can be beaten by modern designs of 1D-CNNs, which are
more efficient to train.

5.4.5 Dropout and batch normalization

There are two very useful methods for improving the effectiveness of neural networks.
They have in common that although they do not change (or hardly change) the form
of f̃ , a variant of f̃ is actually used during training.

In dropout [Hin+12; Sri+14], we may pick a dropout probability p 2 (0, 1),
typically 0.5, for a weight matrix W somewhere in the definition of f̃ . Then, for each
training example x 2 X used in training we generate a matrix B of i.i.d. Bernoulli(p)
random variables and replace f̃(x,�) with its value where W has been replaced with
1
pW � B, where � denotes the elementwise or Hadamard product. (In [GRR15] we
suggest picking a single B for a whole minibatch, which is an additional optimization
to consider.) The effect of this tends to be that learning is slower but generalisation
is better. This is thought to be partly because two units cannot train together.

Applying batch normalisation [IS15] to a scalar value z somewhere in f̃ means
adding two scalars � and � to the set of parameters to learn, ⇤, and replacing z in
the definition of f̃ with � z�µBp

�2
B+"

+ � where " is a small fixed parameter. During

training, µB and �2
B are the mean and standard deviation of z across the minibatch

being used (which will depend on the current values of both � and �), and during
testing/inference they are estimates of z across the whole training set. Normally
this will be applied across all the activations in a layer, possibly for every layer. In
the case of convolutional and recurrent layers, the parameters � and � for all the
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units which share the same weight will usually be shared. For example the same
unit being calculated at different places in the input will share these values. That
way the symmetrical structure of the layer is not broken, and the same unit always
sees the same type of input.

In the experiments our focus is on the use of the signature, and I’ve kept the
network architectures very simple. In practical applications, these two techniques
are likely to be very important for getting the best results.

5.4.6 Initialisation

The algebraic formulae defining a neural network model are unchanged if they are
composed with an affine transform of the basic data: this is just equivalent to chang-
ing the weights and biases. In training the weights are initialised only one way,
however. As a consequence, if extreme translations of the data are necessary to find
meaningful patterns, these translations will take a long time to be found. In order
for all the units to have a chance to be useful, it makes sense to ensure that all
the inputs are about the same size (e.g. around [�1, 1] or [0, 1]) and to initialise the
random weight matrices to keep this approximate scale for all units. Much effort has
been put into making this work well, famously [GB10; He+15; MM15].

When classifying Chinese characters, which are all on the same scale, I might
want to use coordinates as features. We rescale the bounding box to [�1, 1]2 so that
these coordinates can all be in a sensible range.

Elements of the signature or log signature of a path at level m scale like
lengthm when the path is scaled. When using the signature as input to a neural
network the scaling has to be taken into account. Once a feature is chosen, an easy
approach is to find the mean and variance of that feature over a large random sample
of training data and then use the mean and variance to always scale the feature to
aim at a mean of 0 and a variance of 1. Others have had other approaches to this.
One suggested by [LJY17], around equation (5), is equivalent to enlarging the path
to a fixed length before taking the signature.

5.5 Symmetries for handwriting

In online character recognition each character is given as a sequence of strokes, each
stroke is given as a sequence of coordinate points. In our work, we regard these points
just as a 2D path. That means we are deliberately ignoring other facts about the
data which may come from the pen, for example the time of each coordinate point
and the force in the pen. For readers, and therefore potentially in the education of
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writers, the time spent on each part of the stroke is not important, so ignoring this is
a good idea. There are usually many more given points in a stroke in each important
turn. Given this as our approach, there is an approximate invariant, in that single
points can be added or removed along the path and the character will remain similar.
If the stroke’s signature is taken as the only representation of the stroke, then we
have a method which automatically works with this invariant. This is a consequence
of the fact that the signature of a path is independent of its parametrisation. The
other methods of representation I have attempted needed to explicitly bear in mind
this invariant.

Chinese characters stand alone enough that it is meaningful to want to classify
them individually. The absolute size of a character is generally not important for
distinguishing Chinese characters. (There could be scripts where this is not the
case.) We therefore scale the character, preserving aspect ratio, to occupy a standard
square, in particular [�1, 1]2. This means that we will have no trouble with writers
who chose to write in different sizes.

Small distortions in how a path looks are invariants for characters. Data
augmentation is needed to take advantage of this, and doing so is needed to get
good results on the CASIA data, but experimenting with augmentation is not my
aim. I stick with a single method of augmentation which performs the following
to each character, which works well, and which I inherited from Ben Graham. The
character is enlarged by a separate uniformly random factor in [0.7, 1.3] in the vertical
and horizontal directions. Then ↵ is picked uniformly random in [�0.3, 0.3] and one
of the following three things is picked to happen uniformly at random: (1) the
character is rotated by ↵ radians, (2) the character is horizontally sheered by ↵, (3)
the character is vertically sheered by ↵. Then the character is scaled to lie within a
fixed bounding box.

5.6 Chinese handwriting recognition results

Here I present some highlights of experiments attempting to learn the CASIA data
with signatures and RNNs. The aim is to do well at this complex path classification
task using a fast, smaller model. A character is not a single path, it is a series of
paths, one for each stroke. We come up with some way to use the signature to form
a representation of a character which we feed to a traditional classifier. Training
as we did on a single desktop with a single graphics processing unit (GPU,)4 it

4Originally designed for graphics, a piece of commodity hardware which is commonly and effec-
tively used for training neural networks in addition to the central processing unit(s) (CPU) in each
computer.

89



input

LSTM layer

forget all but last timestep

dense layer (3848875 parameters)

softmax

output

(feature length) ⇥ (number of strokes)

1024 ⇥ (number of strokes)

1024

3755

Figure 5.3: Schematic diagram of LSTM network architecture for signatures of each
stroke. The data shapes are indicated on the arrows.

is generally the case that the training time is dominated by the neural network
operations on the GPU. Calculating minibatches with these representations on CPU-
only background threads, for example using iisignature, was fast enough that the
GPU was continuously using the minibatches for training. This indicates that further
optimising the signature calculations would not significantly speed up this training.

5.6.1 Signatures of each stroke

The simplest method is to make a representation of each stroke and use the sequence
of these representations as the input to the RNN. The signature alone would not
make a good representation, as the network would not then have any indication
of the relative locations of the strokes, which is important. We therefore use the
starting point and the signature as the representation. We feed this to a simple
1-layer LSTM, with the architecture shown in Figure 5.3. We trained the network
with the common method Adam [KB15] with its default parameters.

Because all the strokes are not much longer than a line in the bounding box,
it was not necessary to normalise the signatures. In all these cases, the network
was fully trained after 5 epochs which took about an hour. The final test accuracies
are shown in Table 5.1. We see that the signature contains some useful information
about the stroke. The method does not reach anywhere near useful accuracy.
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Signature level representation length Total parameters test accuracy
none 2 8 055 467 0.267

1 4 8 063 659 0.493
2 8 8 080 043 0.576
3 16 8 112 811 0.630
4 32 8 178 347 0.658

Table 5.1: Results summary on CASIA1.1 of training LSTM on signatures of each
stroke

5.6.2 Signatures of local segments

This is a simple and more successful representation method of a character, which
first converts the character to a single 3-dimensional path. I discussed a few methods
for making a single 3-dimensional path from a character in [Rei14]. A basic method
is to add a “pen dimension” which is 0 on each stroke (pen down) and 1 on an added
straight line (pen up) between the endpoints of the strokes. These 3D paths vary in
their total length. A basic step is to chop the paths into segments of equal length.
This length includes the length expended in the pen direction, otherwise the inter-
polation can produce weird artefacts. This makes it a bit more likely that a split in a
path will happen at a pen lifting. We experimented with overlapping the segments,
but this was not clearly advantageous. We use this split of the character as the
time dimension of the RNN, picking some representation of each segment. Different
characters will have different lengths, but the LSTM requires a whole minibatch to
have the same time length, so we pad backwards in time with zeros.

A simple and effective representation is the starting point of the segment
concatenated with the signature of the 3-dimensional path which is that segment up
to some level. We considered adding the bounding box or centroid of that segment
but it did not obviously help.

In these comparisons, we split the characters into segments (after scaling)
of length 0.4. Different characters have different numbers of segments, with the
maximum being around 115. The architecture is just the same as for the signatures
of strokes case, except the time dimension is now “number of segments” note “number
of strokes”. Again, we used Adam with default parameters and we were able to do
these experiments without scaling the inputs. Beyond level 4 the representation of
a character is far too large to learn from efficiently. Level 4 is already rather large.
We observe that this method is promising.
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Signature level representation
length

Total
parameters

time (hr) test accuracy

none 3 8 059 563 14.9 0.909
1 6 8 071 851 15.6 0.933
2 15 8 108 715 15.6 0.945
3 42 8 219 307 15.8 0.951
4 123 8 551 083 18.5 0.947

Table 5.2: Results summary on CASIA1.1 of training LSTM on signatures of local
segments. Training was for 10 epochs.

5.7 Sketchnet

The Sketchnet dataset [EHA12] consists of hand-sketches of each of 250 classes of
objects, like ‘tomato’, ‘banana’ and ‘TV’ by 80 different writers. There is no standard
train/test split, I take the first 40 of each for training and the last 40 for testing.
This isn’t comparable with others. Each stroke in the Sketchnet data is not given
just as a series of points, but often includes a series of Bezier curves. The data thus
appears to have been coarsened. I interpolate each given curve with ample points
before doing anything else with the data, so that it is like the situation with CASIA
data.

Unlike characters of handwriting, a flip in a vertical axis is a reasonable
invariant for sketches and so I include such a flip with probability 1

2 in the data
augmentation.

There has been much work on this type of human sketch recognition, most
prominently Google’s “Quick, draw”5 which went viral in 2017. The methods used
were not released, but when I saw this work I knew they had much more data
and much more accuracy than I could hope for. Using a similar signatures of local
segments method as for the RNNs with CASIA, and with very little tweaking, I got
to a test error of 33%.

5.8 Signatures in LSTM

Making models which are more efficient than LSTMs is something many people
are trying. LSTMs can take a long time to train, and although they perform very
impressively they seem logically inefficient for a couple of reasons to my mind.6 First,
that they have to learn these operations of “whether to save” and “whether to forget”

5https://quickdraw.withgoogle.com
6The thinking here is my woolly intuition, and is suffused with the traditional, perhaps lazy,

anthropomorphism.
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individually, which is quite remote from the actual problem being solved. Second,
that if the thing they need to save is high dimensional they have to teach themselves
into a state which allows a group of cells to cooperate. We know that signatures
provide a good summary of the shape of a path, and the history of something can
sometimes be thought of as a path, and networks memory is just its choice of salient
features of its memory, so we wondered whether we could use signatures as this
memory. The signature would be an input to a cell of a RNN based on the history
of that cell. Note in particular that this effort is not trying to produce a network
which is specially designed to handle curves or which is taking signatures of data as
input, but rather we are trying to come up with something which solves the sort of
problems a vanilla LSTM is used for, and is potentially a drop-in replacement, but is
ultimately, hopefully, better in some way – faster to train or smaller or more robust.
The signatures are taken internally in the network; the user would not need to know
about them. In this effort the derivatives of the signature are necessary because there
are parameters in the calculation graph of the network which are affecting the input
of signature calculations. We tried several architectures to try to test out this type
of idea, for example where a cell was given a signature of the graph of its activation
through history as an input.

Only one type of architecture was successful in the most minimal way, namely
that we could train the network to solve a toy problem. This was suggested by Harald
Oberhauser, and involves following the structure of the LSTM as closely as possible.
For example, we want to separate the internal memory from the output of a layer,
and we want to separate the space where the memory lives from the spaces of our
layer’s inputs and outputs. The idea is that, for some K and m, the memory is a
signature of a K-dimensional path up to level m, i.e. a value in a truncated tensor
space Tm(RK). We are not defining it by specifying the path of which it is the
signature. We choose a configuration which will be the same as vanilla LSTM when
m = 1 but generalises it for m > 1.

The way we forget is to collapse the signature in a chosen direction, either
entirely or partially. The matrix of stretching by a factor � in the direction of the
unit vector î is (IK � (1� �)̂îiT ). If we were to generate î on its own in the network
by making a vector~i and normalising it there would be a nasty discontinuity around
small~i. It would be nicer to do something like using k~ik to get 1�� or (which looks
nicer)

p
1� � so that small values of~i don’t do anything. But we don’t want 1�� to

be bigger than 1. So we use tanh k~ik as
p
1� � to get the matrix

⇣
IK � tanh2 k~ik

k~ik2
~i~iT
⌘
.

To apply this transformation to the signature we premultiply each level m0 by the
matrix’s m0th Kronecker-product power. Call ~i the forget-vector, and this operation
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on signatures Forget~i(·).
7

To save information, we concatenate a new segment onto the path – i.e. Chen
product the stored signature with the signature of a chosen segment.8 We need to
pick the new segment in a sensible way to maintain the scaling of the signature, so
we always make the new segment be a unit vector. We let Add~f (S) be the signature
obtained as the Chen product of S and exp( 1

k~fk
~f)

We call one of these stored signatures a signature cell. There are clearly many
variations which could be tried, but for these experiments we have only one of them
in the whole layer. We call the number of hidden units in the layer u0

i+1.
We can’t have an equation like (5.12) for a signature cell because a linear

combination of signatures doesn’t produce a signature. A simple way to do some
forgetting and adding is to always do the forgetting and then always concatenate
something on.

How to generate output based on the signature – in analogy with (5.13) –
is not obvious. Having a parameter the shape of a signature and using it as a
linear functional is out solution to this, although it does involve adding many extra
parameters.

Putting things together, we have the following parameters for an input to our
layer i of shape u0

i ⇥ u1
i . K ⇥ u1

i weights matrices W f and W i, K ⇥ u0
i+1 weights

matrices W̄ f and W̄ i, and length-K biases bf and bi. u0
i+1 ⇥ u1

i weights matrix W o,
u0

i+1⇥u0
i+1 weights matrix W̄ o, and length-u0

i+1 biases bo and bh (if S doesn’t include

a fixed 1). Also u0
i+1 signature-shaped parameters V h each of size u0

i+1((u0
i+1)m�1)

u0
i+1�1

–
another big matrix. We used a common scheme for initialising the parameters – the
biases were initialised at zero, and each weight matrix was initialised in the “Glorot
Uniform” method built in to Keras – each element being uniformly distributed in
[�

p
6

g ,
p

6
g ] where g is the sum of the matrix’s last two dimensions. The following are

the complete defining equations, note that the variables p and p0 vary among the
7In practice, this uses the sigscale functionality of iisignature.
8In practice, this uses the sigjoin functionality of iisignature.
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Figure 5.4: Schematic of one cell of an LSTM layer with signature memory. Bold
arrows indicate that learned parameters are involved.

u0
i+1 output units.

ikt =
X

l

W i
kl((gi)t)l +

X

p0

W̄ i
kp0hp0,t�1 + bi

k

kth element of forget
vector ~it

(5.14)

fkt =
X

l

W f
kl((gi)t)l +

X

p0

W̄ f
kp0hp0,t�1 + bf

k

kth element of new
information vector ~ft

(5.15)

opt = �

0

@
X

l

W o
pl((gi)t)l +

X

p0

W̄ o
pp0hp0,t�1 + bo

p

1

A in [0,1], whether to
output anything

(5.16)

St = Add~ft(Forget~it(St�1)) (5.17)

h̃pt = V h
p · St + bh

p

dot product of
signatures as
potential output

(5.18)

hpt = ojt tanh(h̃pt) output (5.19)

The structure of a single timestep of one of these LSTM signature layers is sum-
marised in Figure 5.4.

5.8.1 Toy problem

We wanted a very simple example problem to see if our new design of network could
(a) learn anything and (b) have memory, i.e. learn something which depends only
on a long-term dependency in the data. We wanted the problem to be simple as
the calculation is quite slow despite using iisignature, because significantly it is
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forget all but last timestep
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ReLU
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20

40

1 K = u0
1 m †

10 1 580
10 2 1580
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30 1 4740
30 2 31740
30 3 841740

Figure 5.5: Schematic diagram of architecture used for training an LSTM signature
layer on a toy model. The data shapes are indicated on the arrows. Numbers of
parameters are indicated in circles.

happening on a CPU rather than a GPU. We came up with the following task,
which can also easily be solved with a traditional LSTM. The task is to distinguish
between (category A) a random binary string of i.i.d. Bernouilli(0.5) zeros and ones,
and (category B) a string which begins with a shorter length v binary string and
continues with the length v partial sums mod 2. For example, the following are such
strings with v = 4.

0010 1001001001

1011 1101111011

Distinguishing these requires remembering something for at least v steps. Also it is
not possible to distinguish the classes perfectly, because a random string may have
the form of the other strings by chance, but this is a small effect. For the experiments
I had a single one of my LSTM-signature layers, of which the value of the timestep
was passed to a dense layer with 40 ReLU units, which was connected to a single
sigmoid output. A summary of the network in use is shown in Figure 5.5.
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Figure 5.6: Accuracy of the classification of training the LSTM Signature network
on the toy problem after each epoch. The first 15 of the 20 characters are random.
Signature level: blue 1, red 2, yellow 3. 10 dimensions with 10 hidden units.

Because this was just a proof-of-concept and unlimited data could be gener-
ated, there was no need to have separate train and test sets. We just had a very large
training set, which is highly representative of the two classes. The general result was
that these networks were able to learn, but took a long time to start learning in
some cases. This seems to be because initialisation is hard to get right. The graphs
show the accuracy over the whole training set of 11000 samples after each epoch
(pass through the whole of the data). In the experiments which I plotted, v is 15
and so 15 of the u0 = 20 units are always random, so it is not easy to memorise the
members of category B and memory of length 15 steps is requires. In Figure 5.6
I show cases for m = 1, 2, 3 for K = u0

1 = 10, and in Figure 5.7 I show cases for
K = u0

1 = 30.
There is a lot of scope for playing with this model — many parameters to

tweak and various initialisations to try. If investing heavily into this, I would want
to move the calculations onto a GPU for much more efficiency, and then try to learn
a standard sequence modelling benchmark, such as the famous Penn Treebank. The
success of this experiment is in showing that something can be learnt by a layer with
a signature inside.
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Figure 5.7: Accuracy of the classification of training the LSTM Signature network
on the toy problem after each epoch. 15 of the 20 characters are random. Signature
level: blue 1, red 2, yellow 3. 30 dimensions with 30 hidden units.
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