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Abstract

The Pohlmeyer-Rehren Lie algebra g is an infinite-dimensional Z-graded Lie algebra that
was discovered in the context of string quantization in d-dimensional spacetime by K.
Pohlmeyer and his collaborators and has more recently been reformulated in terms of the
Euler-idempotents of the shuffle Hopf algebra.

This thesis is divided into two major parts. In the first part, the structure theory of g is
discussed. g0, the stratum of degree zero, is isomorphic to the classical Lie algebra so(d,C).
Now, each stratum is considered as a g0-module, and a formula for the number of irreducible
g0-modules of each highest weight that occur is given. It is also shown that g is not a
Kac-Moody algebra.

Based on computer-aided calculations, g is conjectured to be generated by the strata of
degrees 0 and 1, but not freely. In an effort to classify the relations, in the second part, the
Philip Hall algorithm that iteratively lists (linear) basis elements of a Lie algebra L(X) freely
generated by a finite set of generators X is modified. Any non-free finitely generated Lie
algebra can be written as L(X)/I with an ideal I encoding the relations. Intended for cases
where I is not explicitly known, a variant of the algorithm iteratively lists a basis of L(X)/I and
a self-reduced basis of I. Further modifications that take advantage of restrictions enforced
by a gradation on L(X)/I are also given.
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Introduction

Strings

A string is a one-dimensional object, modeled by a curve, open or closed, that moves through
spacetime. As such, it is a generalization of a classical particle, which is conceived of as
a zero-dimensional object, and many of the fundamental ideas can be transferred from the
description of the particle.

As a particle moves through spacetime, it traces out a worldline, a curve which maps
a parameter (usually the particle’s proper time) to the particle’s corresponding position in
spacetime. The particle’s dynamics can be described alternatively by its worldline being a so-
lution to the particle’s equations of motion, or equivalently, following Hamilton’s principle,
by the worldline being a stationary point of the action functional.

Analogously, the string moving through spacetime traces out a worldsheet, a two-dimen-
sional surface which similarly is distinguished by the property that the action functional
encapsulating the string’s dynamics becomes stationary. A free string is described by the
Nambu-Goto action, which is proportional to the worldsheet’s surface area. We will only
deal with closed strings, so their worldsheet can be described by a map

x : S1
×R→ Rd , (1)

where the codomain is d-dimensional spacetime, equipped with the Minkowski metric, such
that for each parameter τ, the map S1

→ Rd, σ 7→ x(σ, τ) is a spacelike closed curve.
Since the parametrization x of the worldsheet is thought of as having no physical signi-

ficance other than fixing its image, the worldsheet, the worldsheet must be invariant under
reparametrizations.

The usual approach to quantize the Nambu-Goto string that found its way into textbooks
such as [Zwi04] and [BBS07] is to use methods of conformal field theory. Unfortunately it
turns out that reparametrization invariance is broken when these methods are used. While
invariance can be restored, it was first shown by C. Lovelace [Lov71] that this is only possible
in spacetimes of a critical dimension of d = 26 (or d = 10 with supersymmetry) which leaves a
number of dimensions that have to be compactified to explain that, apparently, we live in a
spacetime with d = 4.

Pohlmeyer’s approach to string quantization

K. Pohlmeyer [Poh82] put forward a different approach to avoid these problems. In this
approach, the string’s worldsheet is described by a set of quantities that are defined in terms
of functionals on the worldsheet that are invariant under reparametrization and are hence
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Introduction

called the string’s invariant charges or more concisely its invariants. The invariant charges form
a Z-graded Poisson algebra designated by h. The elements of h encode the string’s physical
properties; Pohlmeyer and K.-H. Rehren proved [PR88, chapter III] that for a certain class
of worldsheets, the worldsheet can be recovered from h uniquely up to global translations in
spacetime.

Originally, the Poisson algebra of invariant charges hwas constructed the following way.
Using a Lax pair, a system of linear differential equations describing the string’s dynamics is
set up and solved. The power series expansion of the monodromy matrix of the differential
equations leads to coefficients in the form of path-ordered integrals of products of n factors
of the so-called left and right movers (each designated by one of the dimensions of spacetime
ai), and are known as the tensors R±a1...an

. Additionally, one can also perform a power series
expansion on the logarithm of the monodromy matrix and obtain the so-called homogeneous
tensors, in particular the truncated tensors R±t

a1...an
, or expand the trace of the logarithm of the

monodromy matrix and obtain the homogeneous invariants. The term “invariant” is justified
by the fact that they are in fact invariant under reparametrizations of the string’s worldsheet.
Due to the related construction of the aforementioned tensors and invariants, there are a
number of relations between them; for instance the homogeneous invariants are called that
way because they are homogeneous polynomials in the truncated tensors.

The homogeneous invariants generate the Poisson algebra of invariant charges h where the
multiplication is the regular multiplication of path-ordered integrals and the Poisson bracket
is induced by the Poisson bracket on the left and right movers. A consequence of this is that
the multiplication of the tensors R± can be written using a shuffle product of indices,

R
±

a1,...,an
R
±

b1,...,bm
:= R±a1, . . . , an

b1, . . . , bm

. (2)

Furthermore, the Poisson bracket of invariants can be understood as the derivative extension
(with respect to the multiplication mentioned above) of a Lie bracket1 on the truncated
tensors which turns the span of the truncated tensors into a Lie algebra called herein the
Pohlmeyer-Rehren Lie algebra g.

However, not all elements of the Poisson algebra (called i) constructed this way are
actually invariants. Instead, the Poisson algebra of invariants h is a subalgebra of i – to be
more precise, the kernel of a derivation. In addition to the homogeneity degree, h is equipped
with a gradation such that multiplication is of degree +1 and the Poisson bracket is of degree
0.

Rehren and Meusburger proposed an approach to quantization using the fact that h is
the kernel of a derivation. Based on the contained truncated tensors, they assign to each
invariant of homogeneity degree two (called quadratic invariant) a quantized invariant, an
element of the kernel of another derivation. The quantized invariants coincide with their
classical counterparts except for a quantum correction of lower degree.

If the so-called quadratic generation hypothesis is true, the quadratic invariants generate the
Poisson algebra of invariants, and we can therefore quantize non-quadratic invariants via
their decomposition into quadratic invariants.

Because of its immediate physical significance, most work has been centered on the
Poisson algebra of invariants h, while the Lie algebra gwas treated as a stepping stone in the

1Traditionally, this Lie bracket is called the modified Poisson bracket.
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construction, and while some interesting results on its structure were sought, found and used
in the description of the structure of h, it was itself of rather secondary concern of research.

This dissertation however has g and its structure as its primary focus. Not only is it
of value to the question of quantization of the Poisson algebra of invariant charges of the
Nambu-Goto string; as an infinite-dimensional graded Lie algebra it is interesting in its own
right.

Outline of this thesis

In chapter 1, the basic terminology of the Pohlmeyer-Rehren Lie algebra is introduced.
Instead of the original construction as an auxiliary Lie algebra used to construct the Poisson
algebra of invariants of the Nambu-Goto string, a more concise construction due to D. Bahns
and J. Meinecke as the image of the Eulerian idempotent in the shuffle Hopf algebra is used.

It is proved that the Pohlmeyer-Rehren Lie algebra is not a Kac-Moody algebra, a large
and well-researched class of infinite-dimensional Lie algebras that can be thought of as a
generalization of finite-dimensional semisimple Lie algebras. In the end of the chapter, some
related Lie algebras with the property that the sum of their Lie brackets is the Pohlmeyer-
Rehren Lie bracket are discussed.

Chapter 2 contains the main part of the structural analysis of the Pohlmeyer-Rehren Lie
algebra given in this thesis. In particular, we use the fact that any Z-graded Lie algebra (and
any stratum of such a Lie algebra) is a module of its 0-th stratum. It is proved that the 0-th
stratum g0 is isomorphic to the special orthogonal Lie algebra so(d,C).

Due to this fact, we can apply the method of weight space decomposition to g. After a brief
overview of the general theory of weight spaces, the different strata of g are decomposed
into the weight spaces relative to g0. By using counting arguments, a theorem (2.3.11) for the
multiplicities of all occurring weights is given. This result is then applied to obtain a result
(2.3.13) for the number of irreducible g0-modules of a given highest weight.

Regarding a graded Lie algebra as a module of its 0 stratum does not take account of
the Lie structure (except for the action of the stratum g0). Lie brackets of entire irreducible
g0-modules (called multiplets) can be written as a direct sum of other multiplets. A discussion
of this issue, which is known as the Clebsch-Gordan problem, concludes the chapter.

Chapter 3 provides a link to the original research that motivated this thesis. This chapter
contains a brief introduction to Pohlmeyer’s approach to the description of a string’s world-
sheet by the Poisson algebra h of its invariants and to the Meusburger-Rehren approach
to string quantization by constructing a quantized algebra ĥ of invariants as the kernel of
a derivation, analogous to the fact that h is the kernel of another derivation. The chapter
ends with some insights (3.4.3 and 3.4.2) into the generation of leading terms of exceptional
elements.

Chapter 4 discusses applications of Hall bases to the problem of computing relations in
non-free Lie algebras. Any Lie algebra can be viewed as the quotient of a free Lie algebra
modulo an ideal containing all relations. A linear basis of a free Lie algebra is given by the
Hall basis, which is a set of particular multiple Lie brackets of generators of the Lie algebra.
The chapter now discusses modifications of an algorithm that lists elements of a Hall basis
in order of their monomial degree to the non-free case, where it is used to find a generating
set of the ideal of relations, and further adapts the algorithm in several steps to the specific
situation of the Pohlmeyer-Rehren Lie algebra.

11
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Two appendices list Mathematica source code that was used for calculations in the con-
text of this thesis. Appendix A provides implementations of the variants of the algorithm
discussed in chapter 4 along with some examples.

Appendix B lists code related to the Pohlmeyer-Rehren Lie algebra, among them imple-
mentations of the shuffle product, Pohlmeyer’s algorithm for rewiting Euler words as Euler-
Lyndon words and the Lie bracket on g. Furthermore, wrappers of in-built Mathematica
linear algebra modules are given that are useful in the context of the thesis.

Appendix C serves to document some partial results obtained in the pursuit of a proof of a
conjecture (3.4.2) on the generation of leading terms of exceptional elements in the quantized
algebra of invariants ĥ.

Finally, appendix D lists a basis of the Pohlmeyer-Rehren Lie algebra for spacetime
dimension d = 3 and a generating set of the ideal of relations up to stratum l = 4, calculated
by the algorithm PHallSecondGrad described in chapter 4.
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Chapter 1

The Pohlmeyer-Rehren Lie Algebra

The Pohlmeyer-Rehren Lie algebra, the structure of which will be a main focus of this thesis,
was discovered in the context of string quantization by K. Pohlmeyer and K.-H. Rehren (an
account of the connection of this thesis to the work of Pohlmeyer and his collaborators can
be found in chapter 3).

Instead of following their research to establish a definition, a more straightforward defi-
nition based on the shuffle Hopf algebra that has been proved to be equivalent by D. Bahns and
J. Meinecke [BM11] will be given. While the proofs used in the newer formulation generally
follow the ideas from Pohlmeyer’s and Rehren’s work, they will frequently be cited here
because they introduce the notation used in this thesis and are therefore easier to compare
with it.

Before the Pohlmeyer-Rehren Lie algebra can be introduced, we need to establish some
prerequisites. The discussion of standard facts and notions up to section 1.4 mainly follows
Meinecke’s account ([Mei09, chapters 3 and 4]) from her Diplom thesis, the first part of
which is based on Kassel’s book on quantum groups [Kas95, Chapters I through III], and
the article [BM11]. Some notation used here is taken from deGraaf’s book on algorithms for
Lie algebras [dG00, section 6.1] to keep consistency with some similar concepts discussed in
chapter 4 of this dissertation.

1.1 The shuffle Hopf algebra

Definition 1.1.1 (alphabet, letter, word, concatenation, free monoid, word algebra). Let X be
a set. We call X the alphabet and its elements letters.1 The n-tuples of letters are called words
(of length n), and form the set Xn, where n ∈ N0. We call X∗ :=

⋃
n∈N0

Xn the set of words,
noting that it includes the empty word, denoted by 1∅ (which is the only element of X0), and
we define the concatenation of words,

X∗ × X∗ → X∗,
(x1 . . . xn) _ (y1 . . . ym) := (x1 . . . xny1 . . . ym), (1.1)

which equips X∗ with the structure of a monoid, called the free monoid on X. Its unit is the
empty word 1∅. Since the concatenation is associative, the parentheses delimiting the words

1In the literature, frequently only finite alphabets such as X = {0, . . . d − 1} are used.
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and the concatenation symbol _ are often omitted. We denote repetitions of letters or other
words by

xn := x . . . x︸  ︷︷  ︸
n

(1.2)

for x ∈ X∗ and n ∈N0.
Let furtherK be a field of characteristic 0, then theK-vector spaceK〈X〉 is defined by the

span of X∗ overK. The concatenation can be extended bilinearly to an associative linear map
K〈X〉 ×K〈X〉 → K〈X〉, which makes (K〈X〉, _, 1∅) an associative unital algebra, called the
free associative unital algebra or the word algebra overK. It is obviously graded by word length.

In addition to the concatenation, we can endow K〈X〉with a further multiplication.

Definition 1.1.2 (shuffle permutations, shuffle product). 1. Let n,m ∈N0. We call the set

Sn,m :=
{
ρ ∈ Sn+m

∣∣ρ−1(1) < . . . < ρ−1(n) and ρ−1(n + 1) < . . . < ρ−1(n + m)
}

(1.3)

(where Sn designates the set of permutations of n elements) the set of shuffle permutations.

2. The shuffle product is the map µ : K〈X〉 ⊗ K〈X〉 → K〈X〉 defined by extending the
following map µ : X∗ × X∗ → K〈X〉 bilinearly:
let x = x1 . . . xn ∈ Xn

⊂ X∗, y = xn+1 . . . xn+m ∈ Xm
⊂ X∗ be words. Then their shuffle

product is defined as

x#y := x
y := µ(x ⊗ y) :=

∑
π∈Sn,m

xπ(1) . . . xπ(n+m) ∈ K〈X〉n+m . (1.4)

3. Define the unity η : K→ K〈X〉 by

η(k) := k · 1∅ for all k ∈ K . (1.5)

Remark 1.1.3 (notation of the shuffle product). To understand the term “shuffle product”, it
is illustrative to imagine the words x, y above as decks of playing cards, and a single shuffle
permutation as one particular way to shuffle the two decks together; the shuffle product is
the sum over all possible shuffles. In the mathematical literature the notations x#y and xxy
(the latter from the cyrillic letter x, pronounced “sha”) are frequently used for the shuffle
product. The box notation x

y is due to Pohlmeyer, nicely conveys the image of two decks

of cards being shuffled into each other from above and below, and is very well suited to
situations where shuffles and concatenations are being used together, in particular when
individual letters are being considered. It does, however, become cumbersome when shuffle
products of many factors are used. Consider the examples of both notations

e
(

x1 . . . xi−1
xn . . . xi+1

y j−1 . . . y1
y j+1 . . . ym

)
= e
(
x1 . . . xi−1#xn . . . xi+1 _ y j−1 . . . y1#y j+1 . . . ym

)
,

w1# . . . #wk =

w1
...

wk

.

In the sequel, we will use both notations whereever they are more convenient.
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1.1. The shuffle Hopf algebra

There is also a widely known recursive identity for the shuffle product that provides an
equivalent, iterative, definition and is often convenient to use in proofs.

Lemma 1.1.4 (recursive formula for the shuffle product). Let x = x1 . . . xn ∈ Xn and
y = y1 . . . ym ∈ Xm be words. Then:

x1 . . . xn
y1 . . . ym

= x1 . . . xn
y1 . . . ym−1

ym + x1 . . . xn−1
y1 . . . ym

xn = x1
x2 . . . xn
y1 . . . ym

+ y1
x1 . . . xn
y2 . . . ym

. (1.6)

Example 1.1.5. We calculate the shuffle product of the two words ab and ac in the alphabet
X = {a, b, c}:

ab
ac = abac + 2aabc + 2aacb + acab.

For easy reference, we recapitulate some very basic definitions that will be used through-
out this thesis.

Definition 1.1.6. (algebra, associative, commutative, abelian, unital, homo-/epi-/mono-/isomorphism,
subalgebra, ideal, gradation, derivation (along a homomorphism))

1. Let A be a vector space over a field K and let µ : A × A → A be a K-bilinear map. We
write a · a′ for µ(a, a′). Then (A, µ) or (A, ·) is called an algebra over K.

2. An algebra (A, ·) that satisfies a · b = b · a for all a, b ∈ A is called commutative or abelian.

3. An algebra (A, ·) that satisfies a · (b · c) = (a · b) · c for all a, b, c ∈ A is called associative.

4. An algebra (A, ·) over a field K equipped with a K-linear map η : K → A (called the
unity) such that η(1K) · a = a = a · η(1K) for all a ∈ A is called unital.

5. Let (A, ·) and (B, ∗) be algebras over a field K. A homomorphism / epimorphism /
monomorphism / isomorphism of K-vector spaces ϕ : A→ B is called a homomorphism
/ epimorphism / monomorphism / isomorphism of (K-) algebras if

ϕ(a · a′) = ϕ(a) ∗ ϕ(a′) for all a, a′ ∈ A. (1.7)

If an isomorphism between two algebras exists, they are called isomorphic.

6. Let (A, ·) be an algebra and let B be a vector subspace of A. If B · B ⊂ B, we call B a
subalgebra of A, and if A · B ⊂ B and B · A ⊂ B (these conditions are the same if A is a
commutative or Lie algebra), we call B an ideal of A. The kernel kerϕ := ϕ−1(0) ⊂ A of
any homomorphism of algebras ϕ : A→ C is an ideal of A.

7. Let (A, ·) be an algebra over a field K with ideal B ⊂ A. We can then define the set
A/B := {a + B | a ∈ A}, obtain the canonical projection π : A→ A/B, a 7→ a + B and define
the multiplication

∗ : A/B × A/B → A/B ,
(a + B, a′ + B) 7→ a · a′ + B . (1.8)

Now (A/B, ∗) is an algebra over K called the quotient algebra A mod B and we have
B = kerπ.
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Chapter 1. The Pohlmeyer-Rehren Lie Algebra

8. Let (I,+) be a semigroup. An algebra A is called I-graded or equipped with a I-gradation if

A =
⊕
i∈I

Ai (1.9)

(direct sum of vector spaces; the summands Ai are called strata) and

Ai · Ai′ ⊂ Ai+i′ for all i, i′ ∈ I. (1.10)

9. Let (A, ·) be an algebra over a fieldK. An endomorphism ofK-vector spaces ∂ : A→ A
is called a derivation of A if

∂(a · a′) = a · ∂(a′) + ∂(a) · a′ for all a, a′ ∈ A. (1.11)

If (B, ∗) is another algebra over K and ϕ : A → B is a homomorphism, then a homo-
morphism of K-vector spaces ∂ : A→ B is called a derivation along the homomorphism ϕ
if

∂(a · a′) = ϕ(a) ∗ ∂(a′) + ∂(a) ∗ ϕ(a′) for all a, a′ ∈ A. (1.12)

Theorem 1.1.7. (K〈X〉, µ, η) is an associative, commutative, unital algebra, called the shuffle
algebra Sh(X). It is graded by word length.

Proof. This immediately follows from the definition. �

In addition to being an algebra, the shuffle algebra is equipped with more algebraic
stucture. We quickly recapitulate2 some further commonly found definitions.

Definition 1.1.8. (coassociative counital coalgebra, bialgebra, convolution product, antipode,
Hopf algebra, gradation, connectedness)

1. Let H be a vector space over a fieldK and let ∆ : H→ H⊗H and ε : H→ K beK-linear
maps with the property that the diagrams

H H ⊗H

H ⊗H H ⊗H ⊗H

∆

∆ id⊗∆

∆⊗id

(1.13)

(coassociativity) and

K⊗H H ⊗H H ⊗K

H

ε⊗id id⊗ε

�
∆

�
(1.14)

(counitality) commute. Then the triple (H,∆, ε) is called a coassociative counital coalgebra
with the coproduct ∆ and counit ε.

2. Let (H, µ, η) be an associative unital algebra and (H,∆, ε) be a coassociative counital
coalgebra. If ∆ and ε are morphisms of algebras, then (H, µ, η, ∆, ε) is called a bialgebra.

2 See [HGK10, Chapters 2 and 3] or [Kas95, Chapter III] for a comprehensive introduction to Hopf algebras.
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1.1. The shuffle Hopf algebra

3. Let (H, µ, η, ∆, ε) be a bialgebra. The convolution product is defined by

∗ : EndK(H) × EndK(H) → EndK(H) ,
f ∗ g := µ ◦ ( f ⊗ g) ◦ ∆ . (1.15)

It follows fom the definitions of (associative unital) algebra and (coassociative counital)
coalgebra that ∗ is associative and ηε is its identity element.

4. Let (H, µ, η, ∆, ε) be a bialgebra. An endomorphism S ∈ EndK(H) is called antipode if

S ∗ idH = idH ∗ S = η ◦ ε : H→ H . (1.16)

The tuple (H, µ, η, ∆, ε, S) is then called a Hopf algebra.

5. If I is a semigoup (usually written as an addition), a Hopf algebra H is called I-graded
if H =

⊕
i∈I Hi (i is called the degree) and both multiplication and comultiplication are

additive with respect to the degree:

µ(Hi ×H j) ⊂ Hi+ j , (1.17)

∆(Hk) ⊂
⊕
i+ j=k

Hi+ j . (1.18)

6. If M is a monoid, a M-graded Hopf algebra is called connected if its grade 0 component
is the ground field K.

For the shuffle Hopf algebra, these general objects can be defined as follows:

Definition 1.1.9 (deconcatenation coproduct, counit, antipode).

1. The deconcatenation coproduct is defined as the map

∆ : K〈X〉 → K〈X〉 ⊗K〈X〉 ,

x1 . . . xn 7→

n∑
k=0

x1 . . . xk ⊗ xk+1 . . . xn . (1.19)

2. The counit is defined as the map ε : K〈X〉 → K obtained by linear extension of the map
ε : X∗ → K,

ε(x) :=

{
1K if x = 1∅
0 if x ∈ X∗ \ X0 . (1.20)

3. Finally, the antipode is defined as the map

S : K〈X〉 → K〈X〉 ,
x1 . . . xn 7→ (−1)nxn . . . x1 . (1.21)

The names given to the objects we just defined are justified by the following theorem.
In fact, the shuffle Hopf algebra is an example of a Hopf algebra commonly encountered in
books about Hopf algebras, for instance [HGK10, Example 3.4.6].

Theorem 1.1.10 (shuffle algebra is a Hopf algebra). (K〈X〉, µ, η, ∆, ε, S) is a commutative, but
not cocommutative Hopf algebra. It is N0-graded by word length and connected.

Proof. A proof of this result can be found in [Lod94] or [HGK10]. �
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Chapter 1. The Pohlmeyer-Rehren Lie Algebra

1.2 The Eulerian idempotent

Definition 1.2.1 (Eulerian idempotent). Let (H =
⊕
∞

n=1 Hn, µ,∆, η, ε) be a commutative
graded connected Hopf algebra with convolution product ∗ over a field of characteristic
0. Let further f : H→ H be a K-linear map that satisfies f (1) = 0.

1. The first Eulerian idempotent eul(1) is defined by

eul(1)( f ) := ln∗( f + ηε) =

∞∑
i=1

(−1)i+1 f ∗i

i
. (1.22)

(where ln∗ means that the power series of the natural logarithm is applied to the
convolution product). Note that the above power series is actually finite because if
h ∈ H is an element of degree n, then f ∗k(h) = 0 for all k > n.

2. Higher Eulerian idempotents eul(k) are defined by

eul(k)( f ) :=
(eul(1)( f ))∗k

k!
. (1.23)

By substituting f := id − ηε, equation (1.22) immediately implies

eul(1)(id−ηε) =
∑
k≥1

(−1)k+1

k
(id−ηε)∗k . (1.24)

All subsequent mentions of the Eulerian idempotent will be with this particular f , and for
convenience, we introduce some shorter notation:

e(k) := eul(k)(id−ηε) ∈ EndK(H) and (1.25)

e := e(1) . (1.26)

The definition of the Eulerian idempotent implies some relations that hold for all Hopf
algebras for which it has been defined above. Among them are the following ones:

Theorem 1.2.2 (properties of the Eulerian idempotent). Let (H =
⊕
∞

n=1 Hn, µ,∆, η, ε) be a
commutative graded connected Hopf algebra with convolution product ∗ over a fieldK of characteristic
0. Also write · for the product µ. Then the following assertions hold:

1. Denote by e(i)
n the i-th Eulerian idempotent restricted to homogeneous elements of degree n.

Then:

id∗k |Hn =

n∑
i=1

kie(i)
n |Hn (1.27)

for all n ∈N+.

2.

e(i)
n e( j)

n = δi je
(i)
n (1.28)

for all n ∈N, justifying the term “idempotent”.
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1.2. The Eulerian idempotent

3. Let l, k ∈N+ and x1, . . . , xl ∈ H \H0. Then

e(k)(x1 · . . . · xl) :=

{
0 if k < l∑

k1...kl∈N+ with
∑

ki=k e(k1)(x1) · . . . · e(kl)(xl) if k ≥ l
. (1.29)

4. All relations are homogeneous in the following sense: the finite sum

kmax∑
k=0

∑
x1,...,xk∈H

cx1,...,xke(x1) · . . . · e(xk) (1.30)

with coefficients cx1,...,xk ∈ K vanishes if and only if all the inner sums vanish themselves.

5. In addition to the original gradation, H is also graded by homogeneity degree,

H =
⊕
k∈N0

H(k) , (1.31)

H(k) = spanK{e(x1) · . . . · e(xk) | xi ∈ H} . (1.32)

Proof. 1. follows from the definition using a relation between the power series of exp and
log (See [Mei09, p. 37] for details.).

2. See [Lod94, Proposition 4.5.3].

3. Follows from 2 (see [BM11, p. 4]).

4. Follows from 3 (see [BM11, p. 4]).

5. Direct consequence of 4.
�

We now leave the general theory of the Eulerian idempotent on Hopf algebra and con-
sider the particular case of the shuffle Hopf algebra and some consequences of the above
proposition. In the sequel, we will call the image of a word under the Eulerian idempotent
an Euler element. Evaluating the proposition in our particular case, we conclude that we can
re-write Euler elements in terms of words and vice versa.

Corollary 1.2.3. Let x ∈ Xn
⊂ X∗. Then (note that the xi used below are defined as words, not

necessarily single letters):

1.

x =

n∑
k=1

e(k)(x) =

n∑
k=1

1
k!

∑
x1,...,xk∈X∗\X0 s.t.

x1_..._xk=x

e(x1)# . . . #e(xk) (1.33)

2. and

e(x) =

n∑
k=1

(−1)k+1

k

∑
x1,...,xk∈X∗\X0 s.t.

x1_..._xk=x

x1# . . . #xk . (1.34)
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Chapter 1. The Pohlmeyer-Rehren Lie Algebra

Note that the factors of the shuffle products on the right hand side of the above equation
(1.34) are words whose lengths add up to n. Therefore, e(Xn) ⊂ K〈X〉n.

Since one special case of equation (1.29) is instrumental in the construction of a basis of
im e, it is worth stating explicitly in the context of the shuffle Hopf algebra.

Corollary 1.2.4. Let x, y ∈ X∗ \ X0. Then

e
(
x # y

)
= 0 . (1.35)

Proof. This is the special case of equation (1.29) for l = 2. In this form, the equation was
independently proved in [PR86, Proposition 5 f.]. �

There are also rules for reordering letters within Euler elements. The following theorem
allows us to draw any letter to the beginning or end of a word. Unlike the other identities in
this section, it does not hold in all Hopf algebras but seems to be specific to the shuffle Hopf
algebra. This is due to the fact that in addition to the generic Hopf algebra product, a second
product – the concatenation – is used. This situation is unusual in the conventional study
of Hopf algebras but has in recent times been formalized using the notion of quadri-algebras
introduced by M. Aguilar and J.-L. Loday [AL04].

Proposition 1.2.5 (“Proposition 7”). Let x = x1 . . . xn in X∗. Then:

e(x1 . . . xn) = (−1)i+1e
(

xi
xi−1 . . . x1
xi+1 . . . xn

)
= (−1)n+ je

(
x1 . . . x j−1
xn . . . x j+1

x j

)
= (−1)n+1e(xn . . . x1) . (1.36)

Proof. Originally proved in [PR86][Proposition 7.]. The assertion can be deduced from the
recursive formula for the shuffle product 1.1.4 and corollary 1.2.4. �

1.3 Lyndon words and Euler-Lyndon elements

Corollary 1.2.4 allowed Pohlmeyer and Rehren to formulate an algorithm to write any Euler
element e(x), x = x1 . . . xn ∈ X∗ as a linear combination of Euler-Lyndon elements, and as we
will see, the Euler-Lyndon elements are also linearly independent, hence a basis of the set of
Euler elements. To appreciate this, we need to recapitulate some basic definitions.

The following two total orders on X∗ are extremely well known, but since they will
show up in several places in this thesis, they deserve to be properly defined for the sake of
completeness.

Definition 1.3.1 (lexicographic and graded lexicographic orders on words). Let X be an
alphabet with a total order <X. Let x = x1 . . . xn, y = y1, . . . , ym ∈ X∗ be words.

1. The lexicographic order (also universally familiar as the dictionary order) <Lex on X∗ is
defined by

x <Lex y :⇔

{
∃k ∈ {1, . . . ,min(n,m)} such that xi = yi∀i ∈ {1, . . . , k − 1} and xk <X yk

xi = yi∀i ∈ 1, . . .n and n < m
.

(1.37)
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1.3. Lyndon words and Euler-Lyndon elements

2. The graded lexicographic order <DegLex on X∗ is defined by

x <DegLex y :⇔

{
n < m
n = m and x <Lex y

. (1.38)

Definition 1.3.2 (cyclic rotation, Lyndon word, Euler-Lyndon element).

1. Let x = x1, . . . , xn ∈ Xn be a word. Its cyclic rotations, also called shifts (to the left by i
positions), are the words

xi+1 . . . xnx1 . . . xi (1.39)

where i ∈ {0, . . . ,n − 1}.

2. Let X be a totally ordered alphabet. A word that is uniquely minimal among its cyclic
rotations is called a Lyndon word. The set of all Lyndon words over the alphabet X is
designated by Lyn(X), the set of all Lyndon words of length n by Lyn(X,n).

3. We call the image of a Lyndon word under the Eulerian idempotent an Euler-Lyndon
element.

In a slight misuse of notation, we sometimes call the Lyndon words occurring in Euler-
Lyndon elements Euler-Lyndon words.

Lyndon words were discovered by A. Shirshov (in 1953) and extensively studied by R.
C. Lyndon (in 1954) [Lyn54], which is why the term “Lyndon-Shirshov words” is frequently
used in the literature. They have a large number of applications in different areas of math-
ematics and computer science, and their theory is well developed. For instance, all words
have a unique factorization (with respect to concatenation) into a nonincreasing sequence
of Lyndon words (this is known as the Chen-Fox-Lyndon theorem), and there is an efficient
algorithm [Reu93, section 7.3] that finds the successor (in the set of all Lyndon words up to
a given length and with respect to the lexicographic order) of a given Lyndon word, which
can be used to enumerate the set of all Lyndon words up to a given length.

The requirement of unique minimality among the cyclic rotations implies that periodic
words cannot be Lyndon words. In the nomenclature used by Pohlmeyer, Lyndon words are
called cyclically minimal, a colloquialism for “uniquely cyclically minimal”, which is always
meant.

Now that the required definitions are in place, we can turn to Pohlmeyer’s and Rehren’s
algorithm, described in detail in [Poh89].

Remark 1.3.3 (Euler elements in terms of Euler-Lyndon elements). Let e(x) be an Euler
element and x = x1 . . . xn ∈ Xn the corresponding word. The following algorithm rewrites
e(x) as a linear combination of Euler-Lyndon elements.

If x already is a Lyndon word, we are finished. Otherwise, we begin by rearranging the
letters of x into words y1, . . . , yr ∈ X∗ the following way.

How these yi are chosen depends on whether x is periodic, i.e. if there exists a proper
divisor p of n such that xi = x j for all i, j ∈ {1, . . . ,n} with i = j mod p (the period of x is the
minimal such p).
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Chapter 1. The Pohlmeyer-Rehren Lie Algebra

1. In the case that x is nonperiodic, we can find a unique critical integer i ∈ {0, . . . ,n − 1}
such that the word xi+1 . . . xnx1 . . . xi is minimal among the cyclic rotations of x – i.e. a
Lyndon word.
If i = 0, then x itself is already a Lyndon word.
Otherwise, set y1 := x1 . . . xi as well as y2 := xi+1 . . . xn and c := 1.

2. In the case that x is periodic, we can similarly find a unique critical integer i ∈ {0, . . . , p−1}
such that the word xi+1 . . . xpx1 . . . xi is Lyndon.
Now, if i > 0, again set y1 := x1 . . . xi as well as y2 := xi+1 . . . xn and c := 1.
Otherwise, set c := (n/p)! and y1 := . . . := yn/p = x1 . . . xp.

Based on ideas by Rehren, Pohlmeyer showed ([Poh89]) that the words y1, . . . , yr and the
number c defined above now have the property that

lead e(y1# . . . #yr) = c · e(x) (1.40)

(leading with respect to the lexicographic order).
At the same time, by theorem 1.2.4, e(y1# . . . #yr) = 0, so

e(x) = e(x) −
1
c

e(y1# . . . #yr) =
∑
z∈Xn

cze(z) (1.41)

with coefficients cz ∈ Q. Now, cz , 0 is only possible for words z that are permutations of x
and that also satisfy z < x (w.r.t. lexicographic order) because of equation (1.40).

We then iterate this process for all Euler elements with nonzero coefficient occurring on
the right hand side until all occuring words are Lyndon words.

Since there are only finitely many permutations of x and the occurring words are de-
creased monotonously, the algorithm terminates. An implementation of this algorithm in
Mathematica is given in B.2.)

Theorem 1.3.4 (Euler-Lyndon basis). Let X be a totally ordered alphabet. Then the set e(Lyn(X))
is basis of im(e) ⊂ Sh(X).

Proof. This was proved by D. E. Radford in 1979 [Rad79] and formulated in terms of Lyndon
words by G. Melançon and C. Reutenauer [Mel89].

Pohlmeyer’s aproach yields another proof for finite alphabets, X = {0, . . . , d − 1}. By
remark 1.3.3, the Euler-Lyndon elements of length n span (im e)n. Pohlmeyer and Rehren
proved [PR86, lemma, p. 602f] around the same time as Reutenauer that (presented here
using the language established by Bahns and Meinecke)

dim(im e)n = NumLyndon(n, d) ,

which by theorem 1.3.6 is the number of Euler-Lyndon elements. Hence they form a basis.
Of course this alternative proof is not particularly elegant, but it shows how the different
approaches in the field can interrelate. �

Since we have now established the Euler-Lyndon elements as a basis of im e, the dimension
of a stratum of im e is given by the number of Lyndon words of a given length. Fortunately,
the formula for this number is known and widely disseminated in the literature.
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1.3. Lyndon words and Euler-Lyndon elements

Definition 1.3.5 (Möbius function). The Möbius function is defined as

µ : N+ → {−1, 0, 1} ,

n 7→


+1 if n is square free and the number of prime factors of n is even
−1 if n is square free and the number of prime factors of n is odd
0 if n is not square free

. (1.42)

Theorem 1.3.6 (number of Lyndon words).

1. The number of Lyndon words of length n from an finite alphabet of d letters is

NumLyndon(n, d) :=
1
n

∑
q|n

µ(q) dn/q . (1.43)

2. The number of Lyndon words where the letters ai occur exactly ni, i ∈ {1, . . . , p} times is

1
n

∑
q|ni∀i

µ(q)
(

n/q
n1/q, . . . ,np/q

)
, (1.44)

where n : =
∑

i ni, using the multinomial coefficient defined as(
n

k1, . . . , kp

)
:=

n!
k1! · . . . · kp!

. (1.45)

Proof. [Reu93][Theorem 7.1] gives these formulas for the number of primitive necklaces with
the same restriction on letters as given in the premise of this theorem.

Necklaces are words modulo the cyclic rotation, so the map that maps a necklace to the
word that is minimal among its cyclic rotations is a bijection. Primitivity of necklaces is the
same as nonperiodicity of words, so this bijection actually maps the set of primitive necklaces
bijectively to the set of Lyndon words. �

For easy reference, a table of NumLyndon(n, d) for low n and d is provided.

n
NumLyndon(n, d) 1 2 3 4 5 6 7 8 9 10

d

1 1 0 0 0 0 0 0 0 0 0
2 2 1 2 3 6 9 18 30 56 99
3 3 3 8 18 48 116 312 810 2184 5880
4 4 6 20 60 204 670 2340 8160 29120 104754
5 5 10 40 150 624 2580 11160 48750 217000 976248
6 6 15 70 315 1554 7735 39990 209790 1119720 6045837
7 7 21 112 588 3360 19544 117648 720300 4483696 28245840
8 8 28 168 1008 6552 43596 299592 2096640 14913024 107370900
9 9 36 240 1620 11808 88440 683280 5380020 43046640 348672528
10 10 45 330 2475 19998 166485 1428570 12498750 111111000 999989991

Table 1.1: NumLyndon(n, d) for low n and d.
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1.4 The Pohlmeyer-Rehren Lie algebra

Before we begin constructing the Pohlmeyer-Rehren Lie algebra, let us recall some very basic
definitions and facts for easy reference.

Definition 1.4.1. (Lie algebra, direct sum, simple, semisimple, Poisson algebra, derived
series, solvable, lower central series, nilpotent, Poisson algebra, generation)

1. Let G be vector space over a field K. A K-bilinear map [·, ·] : G×G→ G is called a Lie
bracket if

[x, x] = 0 (alternativity) and (1.46)
[x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0 (Jacobi identity) (1.47)

are satisfied for all x, y, z ∈ G. Then (G, [·, ·]) (or more concisely only G, if the Lie bracket
is unambiguous) is called a Lie algebra (over K). In particular, any Lie algebra is an
algebra and all terms defined for algebras such as the ones from definition 1.1.6 apply.
Because of equation (1.46), [x, y] = −[y, x] for all x, y ∈ G and abelian Lie algebras are
those with the trivial Lie bracket 0.

2. The direct sum of Lie algebras (G, [·, ·]G) and (H, [·, ·]H) is defined as the vector space
G ⊕H with the Lie bracket [·, ·] : G ⊕H × G ⊕H→ G ⊕H defined by

[(g, h), (g′, h′)] := ([g, g′]G, [h, h′]H) ∀g, g′ ∈ G, h, h′ ∈ H . (1.48)

3. A Lie algebra G that has no ideals except 0 and G itself is called simple. A Lie algebra
that is a direct sum of simple Lie algebras is called semisimple.

4. Let (G, [·, ·]) be a Lie algebra. Iteratively define two series of ideals, the derived series

G(0) := G, G(n+1) := [G(n), G(n)] ∀n ∈N0 (1.49)

of G and the lower central series

G0 := G, Gn+1 := [G, Gn] ∀n ∈N0 (1.50)

of G. If G(n) = 0 for some n ∈ N0, then G is called solvable. If Gn = 0 for some n ∈ N0,
then G is called nilpotent. From the definition, one concludes that nilpotent Lie algebras
are solvable.

5. Let (G, {·, ·}) be a Lie algebra and let (G, · ) be an associative algebra. If

{x · y, z} = x · {y, z} + {x, z} · y for all x, y, z ∈ G , (1.51)

then (G, {·, ·}, ·) is called a Poisson algebra and the Lie bracket {·, ·} is called a Poisson
bracket.

6. Let G be a (Lie) algebra / Poisson algebra / group / ideal with a subset X ⊂ G. Then G
is called generated (as a (Lie) algebra / Poisson algebra / group / ideal) by X if no subset
H $ G exists such that X ⊂ H and H is a (Lie) algebra / Poisson algebra / group / ideal.
If a finite set X exists such that X generates G, then G is called finitely generated.
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The Pohlmeyer-Rehren Lie algebra and its structure constitute a major focus of this thesis.
It can be constructed from the shuffle algebra Sh(X) by equipping it with some additional
structure. We begin by defining two closely related3 derivations of Sh(X) and then use them
to define a Lie bracket on im(e).

Theorem 1.4.2.

1. Let a ∈ X. The maps ∂R
a , ∂

L
a : Sh(X)→ Sh(X) defined (on X∗, and on Sh(X) by linear extension)

∂R
a (x1 . . . xn) := δa,x1x2 . . . xn ,

∂L
a (x1 . . . xn) := δa,xnx1 . . . xn−1 , (1.52)

∂R
a (1∅) := ∂L

b (1∅) := 0

are derivations of Sh(X).

2. Let X = {0, . . . , d − 1} and let g be a symmetric d × d-matrix (where rows and columns are
indexed by X). Then the map [·, ·] : im(e) × im(e)→ im(e),

[
e(x), e(y)

]
:=


∑
a,b∈X

ga,be
(
∂R

a ∗ S(x) _ S ∗ ∂L
b (y)

)
if n,m > 1

0 if n = 1 or m = 1
(1.53)

is a Lie bracket.

3. In terms of Euler elements, this Lie bracket can be written as

[
e(x1 . . . xn), e(y1 . . . ym)

]
=


n∑

i=1

m∑
j=1

(−1)n+i+ j+1gxi,y je
(

x1 . . . xi−1
xn . . . xi+1

y j−1 . . . y1
y j+1 . . . ym

)
if n,m > 1

0 if n = 1 or m = 1

.

(1.54)

4. The Lie algebra g := (im e, [ · , · ]) is graded by word length-2;

deg e(x1 . . . xn) := n − 2; (1.55)

g =
⊕
l≥−1

gl, (1.56)

[gl, gl′] ⊂ gl+l′ for all l, l′ ∈N0 ∪{−1} (1.57)

where gl := {g ∈ g | deg g = l}.

Proof. (mainly following [BM11]):

1. This follows directly from lemma 1.1.4.

3In fact, ∂R
a = −S ◦ ∂L

a ◦ S.
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2. This is can be demonstrated using 3: Alternativity then is a consequence of proposition
1.2.5, and the Jacobi identity can be proved by tracking the contributions of the cyclic
product in the Jacobi identity according to the ga,b occurring, observing that they cancel
for certain terms, and then using 1.2.5 to rewrite all other contributions into such terms
(see [BM11, Prop. 3] for details).

3. We evaluate the convolution product (notice the index shift for j):

[e(x), e(y)] =
∑
a,b∈X

ga,be
(
∂R

a ∗ S(x) _ S ∗ ∂L
b (y)

)
(1.15)
=

∑
a,b∈X

ga,be
(
µ ◦ (∂R

a ⊗ S) ◦ ∆(x) _ µ ◦ (S ⊗ ∂L
b ) ◦ ∆(y)

)
(1.19)
=

∑
a,b∈X

ga,b

n∑
i=0

m+1∑
j=1

e
(
∂R

a (x1 . . . xi)
S(xi+1 . . . xn)

S(y1 . . . y j−1)
∂L

b (y j . . . ym)

)

=
∑
a,b∈X

ga,b

n∑
i=1

m∑
j=1

δa,xiδb,y j(−1)n−i(−1) j−1e
(

x1 . . . xi−1
xn . . . xi+1

y j−1 . . . y1
y j+1 . . . ym

)

=

n∑
i=1

m∑
j=1

(−1)n+i+ j+1gxi,y je
(

x1 . . . xi−1
xn . . . xi+1

y j−1 . . . y1
y j+1 . . . ym

)
.

4. This is a simple counting argument: The word on the right hand side of equation (1.54)
has two fewer letters than the words on the words on the left hand side have combined.

�

Note that the Lie bracket can also be understood as a sum over all possibilities which
letters of x to move to the right and of y to move to the left using Pohlmeyer and Rehren’s
proposition 7 (1.2.5), then deleting the moved letters with the derivations ∂R

a and ∂L
a , weighing

the summand with the entry of g corresponding to the deleted letters and concatenating the
results.

Definition 1.4.3 (Pohlmeyer-Rehren Lie algebra). If g is proportional to the metric tensor η
of the Minkowski metric, i.e.

g = αη = αDiag(−1, 1, . . . , 1︸    ︷︷    ︸
d−1

) (1.58)

with α ∈ C \{0} (where Diag denotes a diagonal matrix, its arguments being the entries of the
diagonal), we call g : = (im(e), [·, ·]) the Pohlmeyer-Rehren Lie algebra.

For reasons that will be discussed later in remark 3.1.2 the cases d = 3 and d = 4 will be
of particular interest. We will later see (in section 1.8) how a decomposition of g can be used
to bring to bear some combinatorial arguments on the words involved.

Remark 1.4.4. Note that the lowest nonzero stratum of g is not l = 0 but l = −1. Since g−1 is
central by the defining equation of the Lie bracket (1.54), it is often not considered explicitly.
In this sense, g can be thought of as a N0-graded Lie algebra with added central elements
instead of a Z-graded Lie algebra in which all strata of degree less than −1 are zero.
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Remark 1.4.5. Since the Pohlmeyer-Rehren Lie algebra is the primary focus of this thesis, its
history warrants some attention. It was first described by Pohlmeyer and Rehren ([PR86]).
There, the Lie bracket was called the “modified Poisson bracket”, and Lie algebra was not
explicitly named, but its elements were called “truncated tensors”. The context in which
these notions were developed was Pohlmeyer’s approach to the quantization of the Nambu-
Goto string. The truncated tensors were defined by way of path-ordered integrals of the so
called left and right movers, which are tangent vectors on the string’s world surface. Many of
the facts used in this thesis were proved in that context.

The considerably simpler definition used here is taken from Bahns and Meinecke, who
proved it to be equivalent to Pohlmeyer’s and Rehren’s definition ([BM11, ]). Since it was not
the focus of their work, they simply call it the “auxiliary Lie algebra”, but since its structure
is the main subject of this thesis and the term “auxiliary Lie algebra” will be used for an
unrelated object in the context of Kac-Moody algebras later, it deserves its proper name, at
least within this scope.

A more detailed account of the backdrop of the quantization of the Nambu-Goto string
in which g was discovered and the subsequent constructions in which it is featured is given
in chapter 3.

Remark 1.4.6. Using any other diagonal matrix with complex nonzero entries instead of αη
in definition 1.4.3 of g leads to an isomorphic Lie algebra; in this case the basis vectors can
be multiplied with appropriate complex numbers to obtain the same structure constants. In
Pohlmeyer’s original work recounted in chapter 3, the Minkowski metric is inherited from
the physical problem of string quantization where it is the metric of d-dimensional spacetime
(with one time dimension). We continue this special treatment of the time dimension by using
the Minkowski metric in the definition of g as well as some other special considerations of
the letter 0 in our alphabet later.

In Pohlmeyer’s original work α = 2 is used due to the way the Lie bracket is constructed
there, but since multiplying the structure constants of a Lie algebra with a global nonzero
factor is an isomorphism of Lie algebras, this is not relevant to the structure of g.

1.5 Measures of growth of the Pohlmeyer-Rehren Lie algebra

Corollary 1.5.1. 1. The dimension of gl (the l-th stratum of g) is

dim gl =
1

l + 2

∑
q|l+2

µ(q) d(l+2)/q . (1.59)

2. The Hilbert series of the Lie algebra g≥1 =
⊕
∞

l+1 gl is

∞∑
l=1

dim gl tl =

∞∑
l=1

1
l + 2

tl
∑
q|l+2

µ(q) d(l+2)/q . (1.60)

3. The Hilbert series of the universal enveloping algebra of gl≥1 is

∞∏
l=1

1
(1 − tl)dim gl

=

∞∏
l=1

1

(1 − tl)
1

l+2
∑

q|l+2 µ(q) d(l+2)/q . (1.61)
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Chapter 1. The Pohlmeyer-Rehren Lie Algebra

Proof. 1. This follows immediately from theorem 1.3.6:1 and the definition of the gradation
on g.

2. The left hand side of the equation is the Hilbert series of a graded algebra. Then use 1.

3. Similarly, the left hand side gives the Hilbert series of the universal enveloping algebra
of a Lie algebra (see [Ufn98, S. 260 f.]).

�

Remark 1.5.2. Although we will not use the Hilbert series of g≥1 in the sequel, it is given
explicitly since there are many connections between the Hilbert series and other properties
of a graded algebra (see [Ufn98] and [Ani82]). For instance by a theorem due to Govorov,
the Hilbert series of any monomial finitely presented algebra is a rational function [Ani82,
Theorem 1.3]. Note that we have the following estimate of the Hilbert series of g:

Hg =

∞∑
l=1

1
l + 2

tl
∑
q|l+2

µ(q) d(l+2)/q

<
∞∑

l=1

1
l + 2

tl dl+2

=
1
t2

∞∑
l=1

1
l + 2

(td)l+2 (1.62)

=
1
t2

(
−td −

1
2

(td)2 +

∞∑
l=1

1
l

(td)l

)

=
1
t2

(
−td −

1
2

(td)2
− ln(1 − td)

)
.

We can use the growth of g for an observation about the exotic (cf. remark 3.1.2) case of
d = 2.

Proposition 1.5.3. In the case of d = 2, g1 does not generate g (as a Lie algebra).

Proof. Due to antisymmetry, dim[g1, g1] = 2·1
2 = 1, but dim g2 = 3. �

Note that for d > 2, this argument fails, since

dim g1 ·(dim g1 −1)
2

=
1
18

(d3
− d)(d3

− d − 3) >
1
4

(d4
− d2) = dim g2 . (1.63)

In fact, for d = 3, explicit calculation (cf. page 67) yields the fact that [g1, g1] ⊃ g2 (the other
inclusion is trivial since g is graded).
Since the (polynomial) degree of the left side is higher for increasing l, this approach will not
be fruitful for higher l as well.
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1.6. The spin basis

1.6 The spin basis

Definition 1.6.1 (spin basis). Let X = {0, . . . d − 1} and let g be the corresponding Pohlmeyer-
Rehren Lie algebra. We define the elements of the word algebra C〈X〉

±i :=
1
√

2

(
(2i − 1) ± i(2i)

)
(1.64)

(the terms in the inner parentheses are letters and i is the imaginary unit) for
i ∈ {1 . . . b(d − 1)/2c} and, if d is even, additionally

±0 :=
1
√

2

(
± (0) + (d − 1)

)
. (1.65)

Using linearity of concatenation, this can be extended first to C(X) and then, using equation
(1.34) and linearity of the shuffle product, to im e. For the sake of convenience, we now define
the index sets

Id :=

{
{1, . . . , (d − 1)/2} if d is odd
{0, . . . , (d − 2)/2} if d is even

. (1.66)

Further define the alphabet

X± := {0,±i | i ∈ Id} (1.67)

if d is odd and

X± := {±i | i ∈ Id} (1.68)

if d is even.
Since the above linear transformations are invertible, we can replace all letters of X by

letters of X± and obtain the same construction of the Pohlmeyer-Rehren Lie algebra. The
only difference is that the metric tensor g changes into

gx,y =


−α if x = ±i, y = ∓i for some i
α if x = y = 0 (note that this only occurs for odd d)
0 else.

(1.69)

under the above linear transformation. This, again, is a symmetric d × d matrix, so we can
continue with the construction of the Pohlmeyer-Rehren algebra unimpeded and find, using
the same arguments as in chapter 1, that a basis of g is given by the Euler-Lyndon elements
with respect to X±. This is known as the spin basis or ± basis of g. Unless stated otherwise,
the order

0 < −1 < +1 < −2 < . . . (1.70)

(for odd d) or

−0 < +0 < −1 < +1 < −2 < . . . (1.71)

(for even d) is used on X±.

29



Chapter 1. The Pohlmeyer-Rehren Lie Algebra

Remark 1.6.2. We could simply have chosen appropriate letters and defined our symmetric
bilinear form g to act this way in the first place. Due to the way the Euler elements (in
the language used there, “truncated tensors”) have been defined traditionally (connected to
the dimensions of Minkowski spacetime) and the suggestive nature of plusses and minuses
which will become apparent later on, we keep the traditional notation for the spin basis that
goes back at least until [Hap93].

Likewise, the special consideration the letter 0 received in the traditional notation is
not neccessary in light of the isomorphism from remark 1.4.6, but kept and built upon by
introducing Id to maintain consistency.

Using the spin basis has some advantages: since the Lie bracket eliminates corresponding
pairs of plusses and minusses, the differences between the numbers of plusses and corre-
sponding minusses is not changed by the Lie bracket. We capture this fact in a definition.

Definition 1.6.3 (magnetic quantum numbers). Let x = x1 . . . xn ∈ X∗±. Define its magnetic
quantum numbers

mi(x) :=
n∑

j=1

δ+ix j − δ−ix j (1.72)

for i ∈ Id. We designate the ordered tuple of all magnetic quantum numbers with the letter
m(x). Often, the argument is suppressed (and for d = 3, the index as well). Since the magnetic
quantum numbers are invariant under the shuffle product, concatenation and deconcatena-
tion (if the magnetic quantum number w.r.t. some i of such a product is understood as the
sum of all the occurring magnetic quantum numbers w.r.t. the same i), they can be extended
in a straightforward way to Euler elements: m(x) = m(e(x)).

Lemma 1.6.4 (magnetic quantum numbers as a gradation). Further define gm and gm
l as the

subsets of elements of g and gl respectively with magnetic number tuple m. Then the quadratic
quantum numbers can be understood as a gradation:

1.

gl =
⊕

m with
∑
|mi|≤l+2

gm
l , (1.73)

[gm
l , g

m′
l′ ] ⊂ gm+m′

l+l′ . (1.74)

2.

g =
⊕

m
gm , (1.75)

[gm, gm′] ⊂ gm+m′ . (1.76)

3. If l ≥ 0 and x ∈ gl, then for all i, we have |mi| ≤ l + 1.

4. If d is even and x ∈ gl, then
∑

i mi = l mod 2.
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1.6. The spin basis

Proof. The sum in the first equation is direct because the Euler-Lyndon elements are a basis
of g, each element of which has a defined tuple of magnetic quantum numbers. The rest of
1, as well as 2 and 4 follow from simple counting arguments related to definition 1.6.3 about
the numbers of plusses and minusses in a word. For 3, we additionally observe that a word
consisting of only a repetition of a single letter can be written as a shuffle product, more
precisely

xn =
1
n

x
xn−1 (1.77)

for all x ∈ X and n ∈N+, so by lemma 1.2.4, e(x . . . x) = 0. �

The magnetic quantum numbers can be obtained not only by counting letters, but they
also occur in eigenvalues in the diagonalization of the adjunctions of particular elements of
g0.

Lemma 1.6.5. The elements of the spin basis are eigenvectors of the adjunction of the elements

h̃i :=
1
α

e(−i+i) for i ∈ Id . (1.78)

The corresponding eigenvalue of the eigenvector e(x1 . . . xn) (of adh̃i
) is mi.

Proof.

adh̃i
e(x1 . . . xn) =

[
1
α

e(−i+i), e(x1 . . . xn)
]

(1.54)
=

1
α

n∑
j=1

(−1)2+1+ j+1g−ix j e
(

+i
x j−1 . . . x1
x j+1 . . . xn

)

+ (−1)2+2+ j+1g+ix j e
(
−i

x j−1 . . . x1
x j+1 . . . xn

)
=

n∑
j=1

(δ+ix j − δ−ix j)(−1) j+1 e
(

x j
x j−1 . . . x1
x j+1 . . . xn

)
1.2.5
=

n∑
j=1

(δx j+i − δx j−i) e (x1 . . . xN)

(1.72)
= mi · e(x1 . . . xn) .

�

While we have now proved these facts with combinatorial methods, they will be a step-
ping stone towards the representation theory that will be outlined in chapter 2. There, we will
see that the h̃i span a Cartan subalgebra of g0 and understand the magnetic quantum num-
bers in terms of the more standard notions of roots and weights that stem from representation
theory.
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1.7 The Pohlmeyer-Rehren Lie algebra is not Kac-Moody

Kac-Moody algebras are a class of algebras that have some similarities to the Pohlmeyer-Rehren
Lie algebra’s proven or conjectured properties.

• They are frequently infinite-dimensional.

• They have root space decompositions, similar to the one described in subsection 2.2.3.

• They are generated by a subalgebra (their Cartan subalgebra) and a finite number of
generators.

Kac-Moody algebras are also a widely researched topic, so a large body of results al-
ready exists that could serve as a toolkit facilitating the exploration and classification of the
Pohlmeyer-Rehren Lie algebra. Therefore, the question if the Pohlmeyer-Rehren Lie algebra
is Kac-Moody is of great interest in its study.

It could be proved (corollary 1.7.3) that the Pohlmeyer-Rehren Lie algebra is not a Kac-
Moody algebra. To provide some background as well as notation for the proof, we recapit-
ulate the definition of Kac-Moody algebras from Kac’s book about them [Kac82][chapter 1],
omitting a significant part of the theory that he intersperses but that will not be needed for
the proof.

Definition 1.7.1 (Kac-Moody algebra). 1. A matrix A = (ai j) ∈ Mat(n × n,C) of rank l is
called a generalized Cartan matrix if it satisfies

aii = 2 for all i ∈ {1, . . . ,n} , (1.79)
−ai j ∈N0 for i , j , (1.80)

ai j = 0 ⇔ a ji = 0 . (1.81)

2. A realization of A is a triple (h,Π,Π∨) of a C-vector space h and indexed subsets
Π = {α1, . . . αn} ⊂ h

∗ and Π∨ = {α∨1 , . . . α
∨
n } ⊂ h such that

Π and Π∨ are linearly independent, (1.82)
α j(α∨i ) = ai j , (1.83)

n − l = dim h−n . (1.84)

Π is called a root basis and Π∨ is called a coroot basis and their elements simple roots or
simple coroots respectively.

3. The auxiliary Lie algebra g̃(A) is defined as the Lie algebra freely generated by h and the
finite set of Chevalley generators4

{xi, yi | i ∈ {1, . . . ,n}}modulo the ideal generated by the
relations

[xi, y j] = δi jα
∨

i , (1.85)
[h, h′] = 0 , (1.86)
[h, xi] = αi(h)xi , (1.87)
[h, yi] = −αi(h)yi (1.88)

for all i, j ∈ {1, . . . ,n} and h, h′ ∈ h.
4This means that their structure constants are integers.
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4. Let r be the (unique) maximal ideal of g̃ intersecting h trivially. We define the quotient
Lie algebra

g(A) := g̃(A)/r , (1.89)

and call it a Kac-Moody algebra5. We identify h, xi, yi with their images under the
canonical projection.

In order to see that the Pohlmeyer-Rehren Lie algebra g is not Kac-Moody, we now use
this definition to prove and make use of a more general fact about Kac-Moody algebras that,
although alluded6 to in Kac’s book, is not spelled out there explicitly.

Theorem 1.7.2. A Lie algebra with a nontrivial gradation in which all elements of negative degree
are central is not a Kac-Moody algebra.

Proof. Proof by contradiction. Assume said Lie algebra is Kac-Moody and call it g(A).

1. Then g(A) is generated by the Cartan subalgebra h and Chevalley generators xi, yi. If
all these elements had degree zero, there could not be elements of g(A) with positive
degree. So there is an element of h∪{xi, yi|i = 1..n}with positive degree.

2. There is an element h ∈ h with deg(h) > 0. Suppose this were false. Then, at least one
of the Chevalley generators xp or yp has positive degree. Then

[xp, yp] = αp , 0, αp ∈ h (1.90)

and

deg([αp]) = deg(xp) + deg(yp) > 0 , (1.91)

contradicting the presupposition.

3. Since the auxiliary Lie algebra g̃(A) is defined via the relations given in 3, these relations
hold in its quotient Lie algebra g(A) := g̃(A)/r, as well. In particular, we have the
relations

[h, xi] = αi(h)︸ ︷︷ ︸
∈C

xi for all i ∈ {1, . . . ,n} (1.92)

with the linearly independent root basis Π = {α1, . . . , αn} ⊂ h
∗.

4. Let now h be an element of h of positive degree from the last part of the proof. Then,
the degree of the left hand side of equation (1.92) is strictly greater than that of the
right hand side, violating the gradation, unless αi(h) = 0. But since this is true for
all i ∈ {1, . . . ,n}, then the αi cannot be linearly independent. So g is not a Kac-Moody
algebra.

�

We immediately conclude

5Definitions 2 through 4 only require A to be a complex square matrix of rank l, but g(A) is only called a
Kac-Moody algebra if A is a generalized Cartan Matrix.

6See [Kac82][§1.5]
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Corollary 1.7.3. 1. g and all its infinite-dimensional subalgebras are not Kac-Moody, since they
contain elements of positive degree.

2. The only subalgebras of g that are Kac-Moody are finite-dimensional and subalgebras of g0

3. For d , 3 + 1, g0 � so(d) is simple, so in this case, it is the only Kac-Moody subalgebra of g.

4. For d = 3 + 1, g0 � so(4) � sl2 ⊕ sl2, so Kac-Moody subalgebras of g are either isomorphic to
so(4) or sl2

One interesting question that remains open to speculation is whether the Pohlmeyer-
Rehren Lie algebra can be extended to a Kac-Moody Lie algebra. For this, elements of
negative degree would have to be introduced, such that we can have 0 , [xi, yi] ∈ h (unlike
in part 2 of the proof of theorem 1.7.2) and the other axioms of Kac-Moody algebras can be
satisfied.
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1.8 Related Lie algebras

As we have seen in lemma 1.6.4, the Pohlmeyer-Rehren Lie bracket conserves the magnetic
quantum number. By considering alternative metric tensors, we can construct other Lie
brackets on the same underlying vector space that conserve further quantities.

Proposition 1.8.1. 1. For k ∈ Id (cf. equation (1.66)) substituting

g±k
i, j :=

{
−α if i = ±k, j = ∓k

0 else
(1.93)

for g into equation (1.54) yields a Lie bracket on im e (g as a vector space). Denote it as [·, ·]±k

and the Lie algebra as g
±k . For d = 3, the k can be suppressed in the notation.

2. Additionally, for d = 2n + 1, substituting

g0
i, j :=

{
−α if i = j = 0
0 else

(1.94)

for g into equation (1.54) yields another Lie bracket on im e. Denote it as [·, ·]0 and the Lie
algebra as g0 .

3. For all x, y ∈ g,

[x, y] =

n−1∑
k=0

[x, y]±k (1.95)

if d = 2n and

[x, y] = [x, y]0 +

n∑
k=1

[x, y]±k (1.96)

if d = 2n + 1.

4. For all k ∈ Id, the Lie algebras g
±k and g0 are graded by l = word length − 2 and magnetic

quantum numbers mk.

5. For all k ∈ Id, g
±k is graded by the number of +i (as well as the number of −i) for all i , k and

if d = 2n + 1 the number of zeroes.

6. If d = 2n + 1, g0 is graded by the number of +i (as well as the number of −i) for all i.

7. For all k ∈ Id, g
±k is graded by the (number of +k) − 1 (as well as the (number of −k) − 1) ).

8. If d = 2n + 1, g0 is graded by the (number of zeroes) − 2.

Proof. 1, 2, 4 can be proved exactly analogously to the equivalent statements regarding g. 3
follows directly from the fact that g =

∑n−1
k=0 g±k for d = 2n and g = g0 +

∑n
k=1 g±k for

d = 2n + 1.
The remaining statements are proved by considering that g±k and g0 are chosen so that all

respective coefficients of Euler elements that would violate the claim on the right hand side
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of equation (1.54) are zero: [·, ·]±k is constructed so that the summands on the right hand side
of (1.54) have the same letter content as both words on the left hand side combined except
for one +k and −k fewer each, proving 5 and 7. Similarly, for [·, ·]0, the letter content on the
right hand side is the same as that of both words on the left hand side combined except for
two zeroes fewer, which proves 6 and 8. �

As in every graded Lie algebra, the stratum defined by l = 0 is a subalgebra that acts
via the adjoint action on the entire Lie algebra (lemma 2.2.2). Therefore, it is interesting to
consider these subalgebras a bit more.

Proposition 1.8.2. 1. g
±k 0 is solvable but not nilpotent.

2. g0 0 is nilpotent.

Proof. 1. The Lie bracket [·, ·]±k reduces the numbers of +k and −k by one each. So
e(−k+k) < g

±k 0
(1) for all k ∈ Id. This implies [[w, x]±k , [y, z]±k]±k = 0 for all w, x, y, z ∈ g

±k 0,
because each of the inner brackets evaluates to zero or an Euler elements with at most
one of the letters +k, −k (adding the occurences). In other words, the derived series
stabilizes at g0 0

(2) = 0.

The fact that g
±k 0 is not nilpotent can be proved by showing that e(0±k) ∈ ±k

gi
0 by

induction over i along its lower central series, always choosing e(−k+k) as the element
of g0 to adjoin.

2. The Lie bracket [·, ·]0 reduces the number of zeroes by two. So, any [x, y]0 contains no
zeroes or vanishes ∀x, y ∈ g0 0. Therefore [[x, y]0, z]0 = 0 ∀x, y, z ∈ g0 0, in other words
the lower central series stabilizes at g0 0

2 = 0.
�

In particular, this means that the strata ±k
g0 and 0g0 are not isomorphic to the simple Lie

algebra g0 = so(d,C), which in turn implies that ±k
g and 0g are not so(d,C)-modules.

Therefore, the Lie algebras defined in this chapter are not interesting in the same way that g
is, but using their Lie brackets can be a handy notation for the technique of ignoring those
Euler-Lyndon words in the right hand side of a Lie bracket that have more zeroes or plusses
and minusses than the elements inside it which can be traced back at least to [PR86]. Example
of such applications can be found in the proof of proposition 3.4.3 and in the calculations
featured in appendix C.
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Chapter 2

Structure Theory of the
Pohlmeyer-Rehren Lie Algebra

2.1 Subalgebras and ideals

We begin our examination of the structure of the Pohlmeyer-Rehren Lie algebra with some
easy observations about subalgebras and ideals that also provide an opportunity to introduce
some notation to be used later.

Lemma 2.1.1 (subalgebras and ideals from gradations). The following subsets of g are subalge-
bras:

gl=0 , (2.1)⊕
l∈rN

gl with r ∈N , (2.2)⊕
mi∈rZ

gm with r ∈N0 i ∈ Id , (2.3)

⊕
mi≥r

gm with r ∈N0 i ∈ Id , (2.4)⊕
mi≤−r

gm with r ∈N0 i ∈ Id , (2.5)⊕
cl+
∑

i∈Id
cimi∈rZ

gm
l with r ∈N0, c, ci ∈ Z ∀i ∈ Id . (2.6)

The following subsets of g are not only subalgebras, but ideals:

g≥r :=
⊕
l≥r

gl with r ∈N . (2.7)

Proof. All these assertions follow from the facts that degree and magnetic quantum numbers
are additive and that the stratum g−1 is central. �

Using the fact that an intersection of any family of subalgebras of a Lie algebra is a
subalgebra, we can construct further subalgebras of g from the ones given in the above
lemma.
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An ideal that exists in any Lie algebra is its center.

Definition 2.1.2 (center). Let G be a Lie algebra. The center of G is the ideal defined as

Z(G) := {z ∈ G | [z, g] = 0 for all g ∈ G} . (2.8)

Recall that for one-letter words x ∈ X, we have [e(x), g] = 0 for all g ∈ g by the definition
of the Lie bracket (1.54). Are there other central elements?

Conjecture 2.1.3. The center of g is g−1 .

Using the Mathematica module CenterTest (B.6.8), it was verified that there are no
central elements in

⊕8
l=1 gl for d = 3 and d = 4. Note that there are some linearly independent

elements g, h ∈ g≥1 with [g, h] = 0. The set of all such elements g for a given h can be calculated
as ker adh using the Mathematica module Kernel.

Lemma 2.1.4 (subalgebras from restrictions of the alphabet). Let X′′ ⊂ X′ ⊂ X and r ∈ N0.
Then, the linear span of the elements

e(x1, . . . , xn)

with xi ∈ X′ for all i ∈ {1, . . . ,n}, all n ∈ N+ and x1, . . . , xr, xn−r+1, . . . , xn ∈ X′′ constitute a Lie
subalgebra of g.

Proof. Follows directly from formula (1.54) for the Lie bracket on g. Consider the Lie bracket
of two basis elements e(x1 . . . xn), e(y1 . . . ym). If n = 1 or m = 1, the statement is trivial.
Otherwise, the Lie bracket is

[
e(x1 . . . xn), e(y1 . . . ym)

]
=

n∑
i=1

m∑
j=1

(−1)n+i+ j+1gxi,y je
(

x1 . . . xi−1
xn . . . xi+1

y j−1 . . . y1
y j+1 . . . ym

)
.

Obviously, all words occurring on the right hand side are permutations of subwords of
x1 . . . xny1 . . . ym (each with two letters removed), so their letters are all in X′. By iteratively
using the recursive formula for the shuffle product (lemma 1.1.4) r times, we find that the
first r letters of the words occuring on the right hand side can only be elements of the set
{x1, . . . , xr, xn−r+1, . . . , xn} ⊂ X′′. Analogously, the last r letters of the words occurring on the
right hand side can only be elements of {yr, . . . , y1, ym−r+1, . . . , ym} ⊂ X′′ �

Remark 2.1.5. Note that the elements described above are not Euler-Lyndon elements in
general. The special case X′′ = X \ {0}, X′ = X, r = 1 was used in [PR86, p. 622] to prove the
fact (accounted of herein as proposition 3.2.7) that some elements of the Poisson algebra of
invariants of the Nambu-Goto string are exceptional (cf. chapter 3). An alternative way to
prove the fact that this is a subalgebra is that it can be written as

ker ∂R
0 ∩ ker ∂L

0 = span(x ∈ X∗ with x = 1∅ or x1 = xn = 0)

and kernels of derivations and the intersections of other subalgebras always produce subal-
gebras.

Remark 2.1.6. Note that the list of subalgebras and ideals given in this section is not exhaus-
tive. Some results regarding abelian subalgebras of g including infinite-dimensional abelian
subalgebras that are not Cartan subalgebras will be given in 2.3.18.
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2.2 Structure of the subalgebra g0

The remainder of this section will primarily use representation theory to obtain some infor-
mation on the Pohlmeyer-Rehren Lie algebra. We begin by recounting some basic definitions
establishing the closely related notions of modules and representations for easy reference:

Definition 2.2.1. (commutator, general linear Lie algebra, representation, module, action,
homo-/epi-/mono-/isomorphism of modules, adjoint representation, direct sum of modules
semidirect product, reducible, irreducible)

1. Let V be a vector space over a field K. Then the general linear group GL(V) together
with the commutator [·, ·] : GL(V) ×GL(V)→ GL(V),

[A, B] := AB − BA for all A, B ∈ GL(V) (2.9)

is a Lie algebra over K, designated as the general linear Lie algebra gl(V).

2. Let G be a Lie algebra over a fieldK and let V be aK−vector space. A homomorphism
of Lie algebras ρ : G→ gl(V) is then called a representation of G; equivalently V is called
a G-module. We call g.v := ρ(g)(v) for all g ∈ G, v ∈ V the action of G on V.

3. Let G be a Lie algebra and let V,W be G-modules via the representations ρ : G→ gl(V),
σ : G → gl(W). A homomorphism / epimorphism / monomorphism / isomorphism
of vector spaces φ : V → W is called a homomorphism / epimorphism / monomorphism /
isomorphism of G-modules if

φ(ρ(g)(v)) := σ(g)(φ(v)) for all g ∈ G, v ∈ V . (2.10)

If an isomorphism of G-modules between two G-modules V and W exists, then V and
W are called isomorphic and their representations are called equivalent.

4. Let G be a Lie algebra. Then G is a G-module via the adjoint representation ad : G→ gl(G),

adg(g′) := [g, g′] for all g, g′ ∈ G . (2.11)

5. Let G be a Lie algebra and let V,W be G-modules via the representations ρ : G→ gl(V),
σ : G→ gl(W). Then V ⊕W (direct sum of vector spaces) with the action

g.(v,w) := (ρ(g)(v), σ(g)(w)) for all g ∈ G, v ∈ V, w ∈W (2.12)

is a G-module called the direct sum V ⊕W.

6. Let (G, [·, ·]G) and (H, [·, ·]) be Lie algebras such that H is a G-module via the represen-
tation ρ : G → gl(H). Then H ⊕ G (direct sum of vector spaces) with the Lie bracket
[·, ·] : G ⊕H × G ⊕H→ G ⊕H defined by

[(h, g), (h′, g′)] := ([h, h′]H + ρ(g)(h′) − ρ(g′)(h), [g, g′]G) for all h, h′ ∈ H, g, g′ ∈ G
(2.13)

is a Lie algebra called the semidirect product H oρ G. Note that any vector space V that
is a G-module can be used as H in this construction since V is a Lie algebra with the
trivial Lie bracket 0.
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7. Let G be a Lie algebra and let V be a G-module via the representation ρ : G → gl(V).
Then V and ρ are called reducible if V can be written as a direct sum of nonzero G-
modules; otherwise, V and ρ are called irreducible.

The following simple general fact aboutZ-graded Lie algebras shows us the significance
of the stratum g0 for the Pohlmeyer-Rehren Lie algebra.

Lemma 2.2.2 (graded Lie algebra as a module of its 0-th stratum). Let G be a Z-graded Lie
algebra, i.e. G =

⊕
l∈Z Gl and [Gl, Gl′] ⊂ Gl+l′ . Then:

1. G0 is a subalgebra of G.

2. For all l ∈ Z, Gl is a G0-module (via the adjoint action).

3. G is a G0-module (via the adjoint action).

Proof. 1. Follows directly from the additivity of the gradation with l = l′ = 0.

2. Closedness directly follows from the additivity of the gradation using l′ = 0. Everything
else is a consequence of the fact that G is a Lie algebra.

3. A direct sum of G0-modules is a G0-module.
�

2.2.1 g0 is isomorphic to so(d,C)

Lemma 2.2.3. As a Lie algebra, g0 is isomorphic to a special orthogonal Lie algebra:

g0 � so(d,C) :=
{

M ∈Mat(d × d) |Mt + M = 0
}
. (2.14)

Proof. A basis of so(d,C) is given by bi j = Ei j − E ji, with 1 ≤ i < j ≤ d, where Ei j is the d × d
matrix with a 1 in position (i, j) and 0 everywhere else. The Lie bracket on these elements is

[bi j, bkl] = δ jkbil − δ jlbik − δikb jl + δilb jk . (2.15)

Define the linear map

ϕ : so(d,C) → g0, bi j 7→
1
α

iδi1 e(i − 1 j − 1) . (2.16)

Since it maps a basis to a basis,ϕ is an isomorphism of vector spaces. It is also an isomorphism
of Lie algebras:

ϕ
([

bi+1 j+1, bk+1 l+1
]
so(d,C)

)
= ϕ(δ jkbi+1 l+1 − δ jlbi+1 k+1 − δikb j+1 l+1 + δilb j+1 k+1)

=
1
α

(
δ jk iδi0 e(il) − δ jl iδi0 e(ik) − δik iδ j0 e( jl) + δil iδ j0 e( jk)

)
∗
=

1
α

(
iδi0+δk0+δ j0+δk0 δ jke(il) − iδi0+δk0+δ j0+δl0 δ jle(ik)

− iδi0+δk0+δ j0+δk0 δike( jl) + iδi0+δk0+δi0+δl0 δile( jk)
)

∗∗
=

1
α2 iδi0+δk0

(
g jke(il) − g jle(ik) − gike( jl) + gile( jk)

)
(1.54)
=

1
α2 iδi0+δk0

[
e(i j), e(kl)

]
g0

=
[
ϕ(bi+1 j+1), ϕ(bk+1 l+1)

]
g0
,
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2.2. Structure of the subalgebra g0

where in (∗) the fact that 0 ≤ i < j, 0 ≤ k < l ⇒ δ j0 = δk0 = 0 is used; in (∗∗) we use the
following alternative description of the Minkowski metric:

gab = α δab iδa0+δb0 . (2.17)

�

Remark 2.2.4. Note that the inverse isomorphism g0 → so(d,C) is given by

gi j 7→ α(− i)δi0bi+1 j+1 . (2.18)

The Lie algebras so(d,C) are among the classical Lie algebras whose structure and rep-
resentations are thoroughly explored, and the above isomorphism allows to immediately
transfer this information to g0

Corollary 2.2.5. 1. g0 is a semisimple Lie algebra.

2. For d , 4, g0 is a simple Lie algebra (i.e. it has no proper ideals).

Proof. The above statements hold for so(d,C). �

In the same vein, all the structure of g0 including the statements in the remainder of this
and the following section can be recovered using lemma 2.2.3 (see [Hei90][p. 229ff] for a
concise account of the root space decomposition of all the classical simple Lie algebras), but
since we have an opportunity to see directly how the structure theory arises from the way that
Lie brackets of Euler-Lyndon words are formed from contracting corresponding plusses and
minusses (equation (1.54)), it is instructive to develop the root space decomposition of finite-
dimensional semisimple Lie algebras directly, i.e. without making use of the isomorphism
from lemma 2.2.3. Having the root space decomposition in these concrete terms is also useful
for the subsequent task of decomposing the entire Lie algebra g by weight spaces in section
2.3. Throughout the remainder of this section, we will recount some standard theory, taking
definitions from the account of [Hei90][p 223f.] and develop the application to g0.

2.2.2 Cartan subalgebra of g0

Since Cartan subalgebras play a key role in the theory of Lie algebras, it is useful to ask if we
can identify them.

Definition 2.2.6 (Cartan subalgebra). Let G be a Lie algebra. A Cartan subalgebra of G is a
subalgebra H of G that is nilpotent and is its own normalizer in G, i.e. satisfies

[g, h] ∈ H for all h ∈ H⇒ g ∈ H . (2.19)

The Cartan subalgebras of the subalgebras g0 � so(d) are well known in the literature.

Proposition 2.2.7. The basis vectors

h̃i := e(−i+i) for i ∈ Id (2.20)

span a Cartan subalgebra of g0 that we will designate1 H.
1We use an uppercaseH to distinguish this Cartan subalgebra in notation from the Poisson algebra of invariant

charges h that will be introduced later in thm. 3.2.3.
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Proof. We obtain both nilpotency and self-normalization as a consequence of lemma 1.6.5: by
that lemma, all Euler-Lyndon elements in g0 (which form a basis of g0) satisfy the equation
with [h̃i, x] = mix. The right hand side is zero for all i if and only if all mi are zero, in other
words if all the words in x contain the same numbers of corresponding plusses and minusses
– since we only consider the case of l = 0, this is only possible for the h̃ j. �

Remark 2.2.8. The preceding proposition can alternatively be proved by considering the
root system to be introduced in remark 2.2.16 and applying Serre’s theorem [Hum72, section
18.3].

While H is a Cartan subalgebra of g0, H is not a Cartan subalgebra of the whole of g
because H no longer is self-normalizing (as subalgebras of g instead of g0). Consider the
example case d = 3. Here, H = C ·e(−+), and the entire subalgebra g0 commutes with this
element.

But is g0 (defined by m = 0, cf. 1.6.4), a subalgebra of which is H, a Cartan subalgebra of
g? No, because g0 is not nilpotent, as the following result shows.

Proposition 2.2.9. For d ≥ 3, every subalgebra of g0 that contains the elements of g0
1 is infinite-

dimensional and non-nilpotent.

Proof. 1. For every l ≥ 0, the Euler-Lyndon word e(−0l+) is an element of g0. Since they
are all of different degrees, these infinitely many elements are linearly independent, so
g0 is infinite-dimensional.

2. To show that g0 is not nilpotent, we will show that the element e(0−+) ∈ g0
1 is not ad-

nilpotent. With the abbreviation Zl := {words of l + 3 letters with fewer than l + 1 zeroes},
we calculate

ade(0−+) e(−0l+)

= − [e(−0l+), e(0−+)]

= −
(
(−1)l+2+l+2+2 α e

(
−0l 0

+

)
+ (−1)l+2+1+3 α e(+0l

−0)︸      ︷︷      ︸
1.2.5
= (−1)l+1e

(
−

0
0l+

)
)

+
∑
w∈Zl

cwe(w)

= − α
(

e(−0l+1+) + e(−0l+0) − e(−0l+0) − (l + 1)e(−0l+1+)
)

+
∑
w∈Zl

cwe(w)

= α le
(
−0l+1+)

)
+
∑
w∈Zl

cwe(w)

with some coefficients cw ∈ C∀w ∈ Zl. Because the words on the right hand side of the
defining equation (1.54) of the Lie bracket never contain more instances of a particular
letter than the words on the left hand side in total, this implies by induction:

adn
e(0−+) e(−0+) = αn n!e

(
−0n+1+)

)
+
∑
w∈Zn

dwe(w) , 0

with some coefficients dw ∈ C∀w ∈ Zn. Since the elements of g on the left-hand side of
the above equation are both elements of g0

1, the equation also shows that no subalgebra
of g containing g0

1 can be nilpotent or finite-dimensional.2

�
2In fact, these two elements actually span the two-dimensional vector space g1

0.
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2.2.3 General outline of the root space decomposition

Given a Cartan subalgebra, we can define roots and their corresponding root spaces.

Definition 2.2.10 (root, root space, base, simple root, positive root, negative root, �).

1. Let G be a finite-dimensional semisimple Lie algebra with Cartan subalgebra H and a
linear form α ∈ H∗. Define

Gα :=
{

g ∈ G
∣∣ [h, g] = α(h)g ∀ h ∈ H

}
. (2.21)

If Gα , 0 and α , 0, then α is called a root of G, and Gα is called its root space. We
designate the set of all roots by R.

2. A subset B ⊂ R is called a base of R if B is R-linearly independent and every root α ∈ R
can be written as

α = ±
∑
β∈B

mββ (2.22)

with coefficients mβ ∈ N0. The elements of B are called simple roots; those roots with
a plus (minus) sign on the right hand sign of the above equation are called positive
(negative) roots, and the sets of positive (negative) roots are designated by R±.

3. If B is a base, we finally define the partial order � on H∗ by

α � β :⇔ α − β =
∑
γ∈B

mγγ (2.23)

for α, β ∈ H∗ with coefficients mγ ∈N0.

Among the key results in the theory of finite-dimensional semisimple Lie algebras are
the fact that bases always exist and the so-called root space decomposition that can now be
formulated using the notions just introduced:

Theorem 2.2.11 (root space decomposition). Under the preconditions of the above definition
2.2.10, we can decompose the Lie algebra G into a direct sum:

G = H ⊕
⊕
α∈R

Gα . (2.24)

Proof. See [Hei90, p. 223f]. �

There are symmetries of the root system enforced by the Weyl group:

Definition 2.2.12 (Weyl group). The Weyl groupW is the subgroup of GL(H∗) generated by
the reflections σα, α ∈ R,

σα(β) := β −
2(β, α)
(α, α)

α (2.25)

for all β ∈ H∗.
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The scalar product (·, ·) of roots is defined the following way: since G is semisimple, the
restriction of the Killing form κ : G × G→ K,

κ(x, y) := trace(adx ◦ ady) for all x, y ∈ G (2.26)

to the Cartan subalgebra H is nondegenerate, so for any ϕ ∈ H∗ we can find a unique tϕ ∈ H
such thatϕ(h) = κ(tϕ, h) holds for all h ∈ H. Then define the scalar product (·, ·) : H∗×H∗ → C,

(α, β) := κ(tα, tβ) (2.27)

for α, β ∈ H∗.

Theorem 2.2.13 (properties of the Weyl group). Let B be a base of the root system R and letW
be the corresponding Weyl group.

1. If B′ is another base of R, then there is a σ ∈ W such that σ(B′) = B.

2. For any α ∈ R, there is a σ ∈ W such that σ(α) ∈ B.

3. W is generated by
{
σβ
∣∣ β ∈ B

}
.

Proof. See [Hum72, Thm. 10.3] �

2.2.4 Root space decomposition of g0

Let us now return from the general theory to the special case of the stratum g0 of the
Pohlmeyer-Rehren Lie algebra g. Since we are only considering the subalgebra g0, we are in
the finite-dimensional case, and a (linear) basis of the dual space H∗ is given by the dual basis
vectors γi, i ∈ Id of H characterized by

γi(h̃ j) = δi j .

With this basis in mind, we can immediately use lemma 1.6.5 to find the roots of g0.
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Theorem 2.2.14 (roots and root spaces of g0).

1. If d is even, the roots of g0 are

R =
{

aγi + bγ j
∣∣ a, b = ±1, i , j, i, j ∈ Id

}
. (2.28)

The corresponding root spaces are

g
γi+γ j
0 = 〈 e(+i+ j) 〉 , (2.29)

g
−γi+γ j
0 = 〈 e(−i+ j) 〉 , (2.30)

g
−γi−γ j
0 = 〈 e(−i− j) 〉 . (2.31)

A set of positive roots is given by

R+ =
{
±γi + γ j

∣∣ i < j, i, j ∈ Id
}

(2.32)

and a base by

α0 := γ0 + γ1 , (2.33)
αi := −γi−1 + γi for i ∈ Id \ {0} . (2.34)

2. If d is odd, the roots of g0 are

R =
{

aγi + bγ j
∣∣ a = ±1, b ∈ {0,±1}, i , j, i, j ∈ Id

}
. (2.35)

The corresponding root spaces are

g
γi
0 = 〈 e(0+i) 〉 , (2.36)

g
−γi
0 = 〈 e(0−i) 〉 , (2.37)

g
γi+γ j
0 = 〈 e(+i+ j) 〉 , (2.38)

g
−γi+γ j
0 = 〈 e(−i+ j) 〉 , (2.39)

g
−γi−γ j
0 = 〈 e(−i− j) 〉 . (2.40)

A set of positive roots is given by

R+ =
{
γi
∣∣ i ∈ Id

}
(2.41)

∪
{
±γi + γ j

∣∣ i < j, i, j ∈ Id
}
, (2.42)

and a base by

α1 := γ1 , (2.43)
αi := −γi−1 + γi for i ∈ Id \ {1} . (2.44)
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Proof. • We begin by showing that the linear forms given above are actually roots and
simultaneously calculating their root spaces. Since the h̃k with k ∈ Id defined in 1.6.5
are a basis of the Cartan subalgebraH and due to linearity, the condition defining a root
from equation (2.21) can be reformulated to

gα =
{

g ∈ g
∣∣ [h̃k, g] = α(h̃k) g ∀ k ∈ Id

}
. (2.45)

We can now make use of the fact that we already calculated the Lie brackets of the
elements of the Cartan basis and the other Euler-Lyndon elements in lemma 1.6.5.
Since all calculations are very similar, we only consider two examples, first for even d:

g
γi+γ j
0 =

{
g ∈ g0

∣∣ [h̃k, g] = (γi + γ j)(h̃k)] g ∀ k ∈ Id
}

(2.2.4)
=

{
g ∈ g0

∣∣ [h̃k, g] = (δik + δ jk) g ∀ k ∈ Id
}

1.6.5
=
{

c · e(x1x2)
∣∣ mk(e(x1x2)) = (δik + δ jk) ∀ k ∈ Id, c ∈ C, x1, x2 ∈ X±

}
1.6.3
= 〈 e(+i+ j) 〉 .

The calculations for the roots γi − γ j and −γi − γ j are analogous. If d is odd, we also
encounter the slightly different calculation

g
γi
0 = . . .

= {c · e(x1x2) | mk(e(x1x2)) = δik ∀ k ∈ Id, c ∈ C, x1, x2 ∈ X±}
1.6.3
= 〈 e(0+i) 〉 ,

and, analogously, gγi
0 = 〈 e(0+i) 〉. Calculations of this type show that the linear forms

are roots and their root spaces are as indicated. Since we can establish an obvious
bijection between the root spaces and the Euler-Lyndon elements, and the latter are a
linear basis of g0 by theorem 1.3.4, the direct sum of H and the root spaces is (all of) g0.
A consequence from this and theorem 2.2.11 is that there can be no other root.

• It is obvious that R = ±R+.

• To show that the linear forms αi, αi given are actually simple roots, we represent all
positive roots as sums of them. Recall i, j ∈ Id and i < j. If d is even,

−γi + γ j =

j∑
k=i+1

αk ,

γi + γ j = α0 +

i∑
k=1

αk +

j∑
k=1

αk .

If d is odd,

γi = α1 +

i∑
k=2

αk ,

γi + γ j = 2α1 +

i∑
k=2

αk +

j∑
k=2

αk ,

−γi + γ j =

j∑
k=i+1

αk .
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Remark 2.2.15. At the beginning of this section, we proved that g0 is isomorphic to so(d,C)
by directly giving an isomorphism. The same statement can alternatively be proved using
Dynkin’s celebrated classification of the finite-dimensional simple Lie algebras by their root
systems and the fact that theorem 2.2.14 describes the root system of g0. These root systems
are the following:

• For d = 2, g0 � so(2,C) is one-dimensional, hence abelian.

• For d = 3, g0 � so(3,C) � sl(2) has root system type A1.

• For d = 4, g0 � so(4,C) � sl(2) × sl(2) has root system type A1 × A1.

• For d = 2n + 1, n ≥ 2, g0 � so(d,C) has root system type Bn.

• For d = 2n, n ≥ 3, g0 � so(d,C) has root system type Dn.

Remark 2.2.16. For any semisimple finite-dimensional complex Lie algebra G with Cartan
subalgebra H and set of roots R, one can find elements hα ∈ H, xα ∈ Gα, such that

α(hα) = 2 , (2.46)
[xα, x−α] = hα (2.47)

for all α ∈ R. In particular, for a base (αi)i∈I, with index set I we can define

hi := hαi , xi := xαi , yi := x−αi (2.48)

(cf. [Hei90, p. 235]). In case of g0 , such hi, xi, yi are given by

1. if d is even,

h0 :=
1
α

(e(−0+0) + e(−1+1)) , (2.49)

hi :=
1
α

(−e(−i−1+i−1) + e(−i+i)) for i ∈ Id \ {0} , (2.50)

x0 :=
1
α

e(+0+1) , (2.51)

xi :=
1
α

e(−i−1+i) for i ∈ Id \ {0} , (2.52)

y0 := −
1
α

e(−0−1) , (2.53)

yi := −
1
α

e(+i−1−i) for i ∈ Id \ {0} , (2.54)
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2. if d is odd,

h1 :=
2
α

e(−1+1) , (2.55)

hi :=
1
α

(−e(−i−1+i−1) + e(−i+i)) for i ∈ Id \ {1} , (2.56)

x1 :=

√
2
α

e(0+1) , (2.57)

xi :=
1
α

e(−i−1+i) for i ∈ Id \ {1} , (2.58)

y1 :=

√
2
α

e(0−1) , (2.59)

yi := −
1
α

e(+i−1−i) for i ∈ Id \ {1} . (2.60)

The Weyl group can be given in a way well suited to the description of the spin basis:

Lemma 2.2.17. 1. For odd d, the Weyl groupW of g0 is the subgroup of GL(H∗) generated by
permutations of indices and sign changes of the spin basis.

2. For even d, the Weyl groupW of g0 is the subgroup of GL(H∗) generated by permutations of
indices and even numbers of sign changes of the spin basis.

Proof. Because of lemma 1.6.5, the scalar product onH∗ is (γi, γ j) = c ·δi, j with a constant c ∈ Z
that depends on d. Using this and formula (2.25) we calculate the value of the reflections σαi

that generate the Weyl group on the basis vectors γi of H∗ (only the results are given).

1. For odd d:

σα1(γ1) = −γ1 , (2.61)
σαi(γi−1) = γi , (2.62)
σαi(γi) = γi−1 , (2.63)
σαi(γ j) = γ j for |i − j| ≥ 2 . (2.64)

This means that σα1 corresponds to the linear operator replacing ±1 by ∓1 (”changing
the first sign”), and the σαi with i > 1 to the one replacing ±i by ±i−1 and vice versa.
Since such transpositions generate the symmetric group, all other permutations can be
written as compositions of several σαi , i > 1. Changing other signs can be written as a
composition of permutations and changing the first sign.

2. For even d:

σα0(γ0) = −γ1 , (2.65)
σα0(γ1) = −γ0 , (2.66)
σαi(γi−1) = γi , (2.67)
σαi(γi) = γi−1 , (2.68)
σαi(γ j) = γ j for |i − j| ≥ 2 . (2.69)

The rest of the argument is analogous to the odd case, with the exception that σα0σα1

changes of the 0th and 1st signs simultaneously.

�
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2.3. Weight space decomposition

These symmetries were known to Pohlmeyer (at least for the Poisson algebra of invariant
charges h constructed from g in 3.2.3) and his collaborators (for instance, cf. [Poh94, p. 632])
and can be seen as arising from sign changes in spacetime coordinates .

2.3 Weight space decomposition

2.3.1 Overview of the general theory

Since no Cartan subalgebra of g is known and the sitation is more complicated in the infinite-
dimensional case, we cannot use the same approach we took to the structure of g0 (in
subsection 2.2.4) to the entire Lie algebra g. However, by lemma 2.2.2, g, and indeed each
individual stratum gl, is a module of the subalgebra g0, and so we can make use of the
well-developed theory of representations of semisimple Lie algebras, in particular the weight
space decomposition, to better understand the structure of the Pohlmeyer-Rehren Lie algebra
g. Before we go into the specifics of the Pohlmeyer-Rehren Lie algebra, we begin with an
overview of some of the needed basic definitions and facts, mainly adapted from [Hei90, p.
235ff.].

Definition 2.3.1 (weight, highest weight, multiplicity). Let G be a semisimple finite-dimen-
sional complex Lie algebra, H a Cartan subalgebra of G and {α1, . . . , αn} a base of G. Let
further be V be a finite-dimensional G-module via the representation ρ : G→ gl(V).

1. A linear form λ ∈ H∗ is called a weight of V (with respect to H) if

Vλ :=
{

v ∈ V
∣∣ρ(h)(v) = λ(h)v∀h ∈ H

}
, {0} . (2.70)

We then call Vλ the weight space of λ. The set of all weights of a module is designated
by Γ.

2. A weight λ ∈ Γ is called a highest weight if

λ + α < Γ for all α ∈ R+ . (2.71)

Then, every v ∈ Vλ
\ {0} is called a highest weight vector3.

3. Let µ ∈ H∗. Define the multiplicity of µ (with respect to the G-module V) as

nV(µ) :=

{
dim Vµ if µ ∈ Γ

0 else
. (2.72)

If the G-module meant is unambiguous, the index V can be suppressed.

Not only is the defining equation (2.70) of weights and weight spaces similar to the
defining equation (2.21) of roots and root spaces; in fact, any Lie algebra is a module of itself
via the adjoint representation. A quick comparison of the definitions shows that the weights

3By replacing condition (2.71) by
λ + α < Γ for all α ∈ R− ,

one analogously obtains a definition of the lowest weight and lowest weight vectors. With this, the theory works
analogously when interchanging positive and negative roots in all other places as well.
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of this module are exactly the roots, with the exception that 0 is allowed as a weight, but not
as a root. Because of this, the weight space G0 is not a root space – instead it is the Cartan
subalgebra H. In this sense, the theory of weights is a natural extension of the theory of roots.
Let us now recount some details of the theory of weights that highlight their importance.

Theorem 2.3.2. Under the preconditions of definition 2.3.1,

1. we have the weight space decomposition

V =
⊕
λ∈Γ

Vλ . (2.73)

2. ρ(xα)(Vλ) ⊂ Vλ+α for all α ∈ R, λ ∈ H∗ .

3. a highest weight exists.

Proof. This is the lemma from [Hei90, p.236] �

Theorem 2.3.3. Let now in addition to the preconditions of definition 2.3.1 be the G-module V
irreducible, let v0 be a highest weight vector of weight σ, and let yi be as in remark 2.2.16. Then the
following statements hold.

1. V is spanned by the vectors

ρ(yi1) . . . ρ(yik)(v0), iν ∈ I, k ∈N0 . (2.74)

2. Every weight of ρ can be written as

σ −
n∑

i=1

kiαi (2.75)

with coefficients ki ∈N0 for all i ∈ 1, . . . ,n

3. n(σ) = 1.

4. σ is the only highest weight.

5. Let V′ be another irreducible G-module with highest weight σ′. Then V and V′ are equivalent
if and only if σ = σ′.

Proof. See [Hei90, p. 236f] or [Hum72, p.107ff]. �

Since weights can be thought of as a generalization of roots, it is not surprising that the
Weyl group also controls the symmetries of the weights.

Theorem 2.3.4. Let G be a semisimple finite-dimensional complex Lie algebra with Weyl groupW
and let V be a finite-dimensional G-module. Then the set of weights Γ of ρ is permuted byW and

nVσ(µ) = nV(σµ) (2.76)

for all σ ∈ W and all µ ∈ Γ.

Proof. See [Hum72, Thm. 21.2] �
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2.3. Weight space decomposition

In the context of the Pohlmeyer-Rehren Lie algebra and the Poisson algebra of invariants
constructed from it (cf. chapter 3), the parity operation of exchanging plusses and minusses
in the index words is known. The above theorem, along with lemma 2.2.17, put this in a
general context.

Remark 2.3.5. In light of theorem 2.3.3:5, we can write ρσ for a representation and σV for
its corresponding module with highest weight σ. This defines ρσ and σV uniquely up to
equivalence/isomorphism. We also write

nσ(µ) (2.77)

for the multiplicity of weight µ in a module of highest weight σ.

A way to calculate the multiplicities of certain weights is given by Freudenthal’s formula.

Theorem 2.3.6 (Freudenthal’s formula). Let G be a semisimple complex Lie algebra with Cartan
subalgebra H and set of roots R. Let further V be an irreducible G-module of highest weight σ. For all
weights µ ∈ Γ, the equation

((σ + δ, σ + δ) − (µ + δ, µ + δ)) n(µ) = 2
∑
α�0

∞∑
i=1

(
µ + iα, α

)
· n(µ + iα) (2.78)

holds with

δ :=
1
2

∑
α∈R+

α . (2.79)

Proof. See [Hum72, Section 22.3]. �

Remark 2.3.7. Freudenthal’s formula allows to calculate the multiplicities of the weights of
a module recursively, starting from the highest weight λ, for which (by theorem 2.3.3:3) we
already know the multiplicity n(λ) = 1. In particular4, for irreducible so(3,C)-modules and
so(4,C)-modules, we have

n(µ) =

{
1 if − λ � µ � λ
0 else

(2.80)

using the partial order � defined in equation (2.23).

We conclude this overview of some basic theory of weights with a very important and
well known result of representation theory that will have consequences in the next section.

Theorem 2.3.8 (Weyl’s theorem on complete reducibility). Let G be a semisimple Lie algebra
and let V be a finite-dimensional G-module. Then V is completely reducible, i.e. a finite direct sum of
irreducible G-modules.

Proof. See [Hum72, Section 6.3]. �
4This can alternatively be proved without using the Freudenthal formula using the fact that the multiplicities

are invariant under the Weyl group by theorem 2.3.4 and the fact that for d ∈ {3, 4}, the elements yi and with then
their adjoints commute. There also is a Mathematica application called LieART ([FK15]) that is able to calculate
multiplicities of all weights for all finite-dimensional irreducible modules of the classical Lie algebras.
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Chapter 2. Structure Theory of the Pohlmeyer-Rehren Lie Algebra

2.3.2 Application to the Pohlmeyer-Rehren Lie algebra

After the preceding outlined of the general theory of weights, it can be applied to the
Pohlmeyer-Rehren Lie algebra. We begin with some notations suited to the case at hand.

Remark 2.3.9 (notation). Due to their definition 2.3.1 as linear functionals on the Cartan
subalgebra H, weights can be described by their values on a basis (hi)i∈Id of H, and the
defining equation of the weight space becomes

gλl :=
{

x ∈ g
∣∣ adhi(x) = λ(hi)x∀i ∈ Id

}
. (2.81)

In other words, the weight space gλl is the common eigenspace of the adjunction of the basis
elements of H. Consequently, the weight tuple (µi)i∈Id of their eigenvalues

µi := λ(hi) (2.82)

can be used to describe the weight λ and the weight space gλl . Therefore, we also write g
(µi)i∈Id
l

instead of gλl .
Due to the form the basis of the Cartan subalgeba of g0 given in remark 2.2.16 and lemma

1.6.5, the values µi can be expressed as sums and differences of magnetic quantum numbers,
specifically, if d is even,

µ0 = m0 + m1 ,

µi = −mi−1 + mi for i ∈ Id \ {0} , (2.83)

and, if d is odd,

µ1 = 2m1 ,

µi = −mi−1 + mi for i ∈ Id \ {1} . (2.84)

Since the map between the tuples (µi)i∈Id and (mi)i∈Id is a bijection, we can also use

the magnetic quantum numbers to describe weights, writing g
(mi)i∈Id
l in a slight abuse of

notation. Consequently, the weight spaces are just the vector spaces of elements having a
particular tuple of magnetic quantum numbers. As magnetic quantum numbers can be read
off somewhat more easily than the corresponding weights (by their definition 1.6.3 just by
counting the differences of corresponding plusses and minusses), we will use them in the
next theorem to describe the weight spaces and give a formula for their dimensions.

We can calculate how adjoining the positive and negative roots given in remark 2.2.16
connect the weight spaces:

adx j g
(µi)i∈Id
l ⊂ g

(µi+2δi j)i∈Id
l ,

ady j g
(µi)i∈Id
l ⊂ g

(µi−2δi j)i∈Id
l . (2.85)

This notation for weights can be applied to highest weights of irreducible g0-modules as
well; define the highest weight tuple (σi)i∈Id of the highest weight σ of the irreducible g0-module.
Now, the highest weight σ determines (again, using 2.3.3:5) the irreducible g0-module up to
isomorphism.
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2.3. Weight space decomposition

Remark 2.3.10 (physicist’s notation for d = 3). In the special case d = 3, the situation is
particularly simple because m := m1 is the only magnetic quantum number and we have
µ1 = 2m, so it is convenient to use the magnetic quantum number directly instead of µ to
refer to weights. The theory of irreducible representations of sl2 (which is isomorphic to g0 for
d = 3) is familiar in physics, where irreducible sl2-modules (with highest weight of magnetic
quantum number s) are called multiplets (of spin s) and the adjunctions adx and ady are called
ladder operators. We will slightly generalize this terminology and call irreducible g0-modules
multiplets, regardless of the dimension d. Returning to d = 3, in this notation, remark 2.3.7
means that any multiplet of spin s has all integer weights m such that −s ≤ m ≤ s, each with
multiplicity 1. Expressed with magnetic quantum numbers, equations (2.85) become

adx g
m
l ⊂ g

m+1
l ,

ady g
m
l ⊂ g

m−1
l . (2.86)

Write (cf. definition 2.3.1:3) ns(m) for the multiplicity of the weight corresponding to the
magnetic quantum number m in an irreducible g0-module of highest weight s.

We can apply Weyl’s theorem on complete reducibility to the finite-dimensional module
gl of the semisimple Lie algebra g0 and write gl as a finite direct sum of irreducible g0-modules.
These are determined (up to isomorphism) by their highest weight (denoted by σ), so we can
pick any irreducible g0-module with highest weight σ, call it σV, and have an isomorphism
of g0-modules

gl �
⊕

(σi)i∈Id∈N
Id
0

νl(σ) · σV , (2.87)

using the notation

ν · V :=
ν⊕

i=1

V (2.88)

and allowing νl(σ) to be zero for g0-modules that do not occur in the direct sum. An obvious
question to ask is how many copies of each type of irreducible g0-module there are for a given
l, in other words what values the νl(σ) have. In this section, a theorem (2.3.13) answering
this question using the weight space decomposition of gl will be given (we will revisit the
motivation given above with a little more detail in the proof). We begin by treating the entire
stratum gl as a single, reducible, g0-module, considering the weight space decomposition (as
in 2.3.2)

gl =
⊕
µ∈N

Id
0

g
µ
l (2.89)

and applying the combinatorial theorem 1.3.6 on the number of Lyndon words with a specific
letter content on the dimensions of the weight spaces.
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Theorem 2.3.11 (dimension of weight spaces). Using the notation M :=
∑

i∈Id
|mi| and m±i := |mi|±mi

2
as well as for any x ∈N0,

partId
(x) :=

π ∈NId
0

∣∣∣∣∣∣
∑
i∈Id

πi = x

 (2.90)

the set of partitions of x into #Id = n nonnegative integers5, indexed by Id, the dimension of the weight
space gm

l can be expressed by the following formulas, using the following notation for multinomial
coefficients (

n
ki, ji

)
i∈I

:=
n!∏

i∈I ki! ji!
,

(
n

l, ki, ji

)
i∈I

:=
n!

l! ·
∏

i∈I ki! ji!
(2.91)

where I is a finite index set and n, l, ki, ji ∈N0 ∀i ∈ I.

1. For d = 2n, if M + l = 0 mod 2, then

dim gm
l =

1
l + 2

∑
π∈partId

( l+2−M
2 )

∑
q|mi, q|πi

µ(q)
(

(l + 2)/q
πi/q, (|mi| + πi)/q

)
i∈Id

. (2.92)

If M + l = 1 mod 2, then

dim gm
l = 0 . (2.93)

2. For d = 2n + 1,

dim gm
l =

1
l + 2

∑
r∈{0,...,b l+2−M

2 c}

∑
π∈partId

(r)

∑
q|l+2, q|mi, q|πi

µ(q)

·

(
(l + 2)/q

(l + 2 −M − 2r)/q, πi/q, (|mi| + πi)/q

)
i∈Id

. (2.94)

Proof. Since by definition 1.6.3 the magnetic quantum numbers mi are the differences of the
occurrences +i and −i, any word w of length l + 2 with e(w) of magnetic quantum number
tuple m = (mi)i∈Id must contain at least m+

i plusses and m−i minuses for all indices i ∈ Id. Since
this fixes M letters, the remaining l + 2 −M spaces must be filled by a combination of letters
that does not change the magnetic quantum numbers.

1. For d = 2n, if l+2−M is odd, there is no way to satisfy the requirement on the mi, proving
equation (2.93). Otherwise, we can only fill in (l + 2 −M)/2 pairs of corresponding
plusses and minuses. In other words, we can choose any partition π ∈ partId

( l+2−M
2 )

and have the number of plusses/minuses relating to i be m±i + πi. Theorem 1.3.6 on the
number of Lyndon words consisting of particular numbers of letters then yields

dim gm
l =

1
l + 2

∑
π∈partId

( l+2−M
2 )

∑
q|(m±i +πi)

µ(q)
(

(l + 2)/q
(m−i + πi)/q, (m+

i + πi)/q

)
i∈Id

. (2.95)

5For odd d, partId
(x) = part(x)n, the usual partition of x into n integers; for even d, the index is shifted by −1.

This is done solely to reflect the (unnecessary) special consideration of the letter 0 in the alphabet (cf. remark
1.4.6).
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Assertion 1 follows from two related facts. First, for all i ∈ Id, we have m+
i = 0 or

m−i = 0, so the condition on q in the last sum is equivalent to q|mi and q|πi. Second,
always one of the two corresponding values m−i + πi and m+

i + πi occurring in the
multinomial coefficients is |mi|+πi while the other is πi, and their order does not affect
the multinomial coefficient.

2. Similarly, for d = 2n + 1 we can begin filling the remaining l + 2 −M positions with r ∈{
0, . . . , b l+2−M

2 c
}

pairs of plusses and minuses as above; then the remaining l+2−M−2r
spaces must be filled with zeroes. Again, theorem 1.3.6 gives us the number of Lyndon
words that match this construction:

dim gm
l =

1
l + 2

∑
r∈{0,...,b l+2−M

2 c}

∑
π∈partId

(r)

∑
q|l+2−M−2r,q|(m±i +πi)

µ(q)

·

(
(l + 2)/q

(l + 2 −M − 2r)/q, (m−i + πi)/q, (m+
i + πi)/q

)
i∈Id

. (2.96)

The requirement q|l + 2 − M − 2r can be shortened to q|l + 2, since we also demand
q|mi + πi, which implies q|

∑
(m±i + πi) = M + 2r. Now, the same arguments from the

end of the proof of 1 also prove 2.

�

Corollary 2.3.12.

1. Let σ be a permutation of Id and (αi)i∈Id ∈ {−1, 1}Id . Define

m̃i := αimσ(i) , m̃ := (m̃i)i∈Id . (2.97)

Then

dim gm̃
l = dim gm

l . (2.98)

2. If M > l + 2, then

dim gm
l = 0 . (2.99)

3. If |mi| > l + 1 > 0 for any i ∈ Id, then

dim gm
l = 0 . (2.100)

Proof. 1. The dimension formulas only use the absolute values of the mi; the multinomial
coefficients are invariant under permutation of their lower arguments.

2. In this case, the sets partId
( l+2−M

2 ) and partId
(r) are empty.

3. If |m j| > l + 2 for any j ∈ Id, we are in case 2. If |m j| = l + 2, then πi = 0 for all i ∈ Id (in the
odd-dimensional case also r = 0) and all multinomial coefficients occurring are equal
to 1. We are left with the sum

dim gm
l =

1
l + 2

∑
q|m j

µ(q) . (2.101)
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The sum on the right hand side is zero due since |m j| > 1 and the identity∑
q|p

µ(q) = δp 1

for the Möbius function with the Kronecker delta δ holds.
�

The results of the somewhat unwieldy formulas of theorem 2.3.11 for low degree and
weights, already using the weight tuple notation, are tabulated on page 58 and 59 for d = 3
and d = 4 respectively.

We can now tackle the question how many multiplets of each highest weight there are
in each stratum. For d = 4, it is a bit more natural to use the weight tuples instead of the
magnetic quantum numbers there because they reflect the action of g0 in a somewhat more
straightforward way (by equations (2.85) and (2.86)).

Theorem 2.3.13 (numbers of multiplets per stratum and highest weight).

1. For all d, l ∈ N0 with d ≥ 3, the stratum gl can be decomposed into multiplets (irreducible
g0-modules):

gl =
⊕
j∈J

j gl �
⊕

s∈N
Id
0

νl(s) · sV (2.102)

with a finite index set J.

2. For all d, l ∈N0 with d ≥ 3,

dim gm
l =

∑
s∈N

Id
0

νl(s) ns(m) . (2.103)

3. For d = 3 and for all l ∈N0, no multiplet of highest weight s > l + 1 occurs in gl;

νl(s) = 0 for all s > l + 1 . (2.104)

4. For d = 3, the number of multiplets of highest weight s in gl is

νl(s) = dim gs
l −

l+1∑
k=s+1

νl(k)

= dim gs
l −dim gs+1

l (2.105)

=
1

l + 2

s+1∑
k=s

(−1)k−s
b

k+l+2
2 c∑

i=k

∑
q|i,q|k,q|l+2

µ(q)
(

l + 2/q
(l + 2 + k − 2i)/q, (i − k)/q, i/q

)

for all l ∈N0.

5. In particular, for d = 3 and for all l ∈N0,

νl(l + 1) = 1 . (2.106)
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6. For d = 4, if σi > l + 2 or σi + l = 1 mod 2 for any i ∈ {0, 1}, then

νl(σ0, σ1) = 0 . (2.107)

7. For d = 4, the number of multiplets of highest weight (σ0, σ1) in gl is

νl(σ0, σ1) = dim g(σ0,σ1)
l −dim g(σ0,σ1+2)

l −dim g(σ0+2,σ1)
l + dim g(σ0+2,σ1+2)

l . (2.108)

Proof. 1. We return to the motivating considerations given before theorem 2.3.11 in greater
detail. Recall that the individual strata gl are finite-dimensional modules of the semisim-
ple Lie algebra g0 by lemma 2.2.2. Therefore, using Weyl’s theorem on complete re-
ducibility 2.3.8, gl can be decomposed into a finite direct sum of irreducible g0-modules
gj l with j ∈ J, where J is a finite index set. By theorem 2.3.3, these gj l are only deter-

mined (up to isomorphism) by their highest weight (indicated by the spin tuples s j), so
we can write

gl =
⊕
j∈J

gj l =
⊕
σ∈N

Id
0

⊕
j∈J | σ j=σ

gj l �
⊕
σ∈N

Id
0

νl(σ) · σV (2.109)

with

νl(σ) := #{ j ∈ J | σ j = σ} . (2.110)

2. Both gl and σV are g0-modules. Apply a weight space decomposition to both sides of
equation (2.109), obtaining⊕

µ

g
µ
l = gl �

⊕
σ∈N

Id
0

νl(σ) · σV =
⊕
σ∈N

Id
0

νl(σ) ·
⊕
µ

σVµ =
⊕
µ

⊕
σ∈N

Id
0

νl(σ) · σVµ . (2.111)

Now compare the parts of equal weight and use the fact that dim σVµ =: nσ(µ) (cf.
remark 2.3.5 and definition 2.3.1:3).

3. Due to 2.3.7 (recall that µ = 2m),

ns(m) =

{
1 if − s ≤ m =≤ s
0 else

, (2.112)

so if s > l + 1,

0 2.3.12:3
= dim gs

l
(2.103)

=

∞∑
s′=0

νl(s′)ns′(s)
(2.112)

=

∞∑
s′=s

νl(s′) , (2.113)

and since the νl(s) are nonnegative, the assertion follows.

4. Similarly,

dim gm
l

(2.103)
=

∞∑
s=0

νl(s)ns(m)
(2.112)

=

∞∑
s=m

νl(s) 3
=

l+1∑
s=m

νl(s) , (2.114)

from which the rest follows using equation (2.94) for the value of the dimensions
occurring.
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5. Here, in equation (2.105), dim gl+1
l = 1 (because e(0+ . . .+) is the only Euler-Lyndon

word in gl with magnetic quantum number l + 1) and dim gl+2
l = 0 because of 3.

6. Analogous to 3, using corollary 2.3.12:2 and equation (2.93) respectively instead of
statement 3.

7. Analogous to 4.
�

Because the formulas for the number of multiplets are a bit unwieldy to calculate quickly
by hand, values for low l and d = 3 as well as d = 4 are tabulated below and on page 60 for
d = 3 and d = 4 respectively.

l dim gl d0
l d1

l d2
l d3

l d4
l d5

l d6
l d7

l d8
l d9

l d10
l d11

l
0 3 1 1
1 8 2 2 1
2 18 4 4 2 1
3 48 10 9 6 3 1
4 116 22 21 14 8 3 1
5 312 56 51 38 23 11 4 1
6 810 136 127 96 63 32 14 4 1
7 2184 348 323 256 172 98 46 17 5 1
8 5880 890 835 672 474 282 145 60 21 5 1
9 16104 2332 2188 1805 1305 822 447 207 80 25 6 1

10 44220 6136 5798 4846 3603 2352 1353 668 286 100 29 6 1

Table 2.1: Dimensions dm
l := dim gm

l of the weight space of the weight indicated by magnetic
quantum number m in stratum gl for low l and m for d = 3.

l dimgl νl(0) νl(1) νl(2) νl(3) νl(4) νl(5) νl(6) νl(7) νl(8) νl(9) νl(10) νl(11)
0 3 0 1
1 8 0 1 1
2 18 0 2 1 1
3 48 1 3 3 2 1
4 116 1 7 6 5 2 1
5 312 5 13 15 12 7 3 1
6 810 9 31 33 31 18 10 3 1
7 2184 25 67 84 74 52 29 12 4 1
8 5880 55 163 198 192 137 85 39 16 4 1
9 16104 144 383 500 483 375 240 127 55 19 5 1

10 44220 338 952 1243 1251 999 685 382 186 71 23 5 1

Table 2.2: Number νl(s) of multiplets of spin s in the stratum gl for d = 3.
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dim g(µ0,µ1)
0 µ0 = 0 µ0 = 2
µ1 = 0 2 1
µ1 = 2 1

dim g(µ0,µ1)
1 µ0 = 1 µ0 = 3
µ1 = 1 3 1
µ1 = 3 1

dim g(µ0,µ1)
2 µ0 = 0 µ0 = 2 µ0 = 4
µ1 = 0 8 6 1
µ1 = 2 6 4 1
µ1 = 4 1 1

dim g(µ0,µ1)
3 µ0 = 1 µ0 = 3 µ0 = 5
µ1 = 1 20 10 2
µ1 = 3 10 5 1
µ1 = 5 2 1

dim g(µ0,µ1)
4 µ0 = 0 µ0 = 2 µ0 = 4 µ0 = 6
µ1 = 0 66 50 20 3
µ1 = 2 50 36 15 2
µ1 = 4 20 15 6 1
µ1 = 6 3 2 1

dim g(µ0,µ1)
5 µ0 = 1 µ0 = 3 µ0 = 5 µ0 = 7
µ1 = 1 175 105 35 5
µ1 = 3 105 63 21 3
µ1 = 5 35 21 7 1
µ1 = 7 5 3 1

dim g(µ0,µ1)
6 µ0 = 0 µ0 = 2 µ0 = 4 µ0 = 6 µ0 = 8
µ1 = 0 608 490 242 70 8
µ1 = 2 490 392 196 56 7
µ1 = 4 242 196 96 28 3
µ1 = 6 70 56 28 8 1
µ1 = 8 8 7 3 1

dim g(µ0,µ1)
7 µ0 = 1 µ0 = 3 µ0 = 5 µ0 = 7 µ0 = 9
µ1 = 1 1764 1176 504 126 14
µ1 = 3 1176 783 336 84 9
µ1 = 5 504 336 144 36 4
µ1 = 7 126 84 36 9 1
µ1 = 9 14 9 4 1

dim g(µ0,µ1)
8 µ0 = 0 µ0 = 2 µ0 = 4 µ0 = 6 µ0 = 8 µ0 = 10
µ1 = 0 6350 5292 3024 1134 252 25
µ1 = 2 5292 4400 2520 940 210 20
µ1 = 4 3024 2520 1440 540 120 12
µ1 = 6 1134 940 540 200 45 4
µ1 = 8 252 210 120 45 10 1
µ1 = 10 25 20 12 4 1

dim g(µ0,µ1)
9 µ0 = 1 µ0 = 3 µ0 = 5 µ0 = 7 µ0 = 9 µ0 = 11
µ1 = 1 19404 13860 6930 2310 462 42
µ1 = 3 13860 9900 4950 1650 330 30
µ1 = 5 6930 4950 2475 825 165 15
µ1 = 7 2310 1650 825 275 55 5
µ1 = 9 462 330 165 55 11 1
µ1 = 11 42 30 15 5 1

Table 2.3: Dimensions dim g(µ0,µ1)
l of the weight space of the weight (µ0, µ1) in stratum gl for

low l and µ0, µ1 for d = 4.
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ν0(σ0, σ1) σ0 = 0 σ0 = 2
σ1 = 0 0 1
σ1 = 2 1

ν1(σ0, σ1) σ0 = 1 σ0 = 3
σ1 = 1 1 1
σ1 = 3 1

ν2(σ0, σ1) σ0 = 0 σ0 = 2 σ0 = 4
σ1 = 0 0 2 0
σ1 = 2 2 2 1
σ1 = 4 0 1

ν3(σ0, σ1) σ0 = 1 σ0 = 3 σ0 = 5
σ1 = 1 5 4 1
σ1 = 3 4 3 1
σ1 = 5 1 1

ν4(σ0, σ1) σ0 = 0 σ0 = 2 σ0 = 4 σ0 = 6
σ1 = 0 2 9 4 1
σ1 = 2 9 12 8 1
σ1 = 4 4 8 4 1
σ1 = 6 1 1 1

ν5(σ0, σ1) σ0 = 1 σ0 = 3 σ0 = 5 σ0 = 7
σ1 = 1 28 28 12 2
σ1 = 3 28 28 12 2
σ1 = 5 12 12 5 1
σ1 = 7 2 2 1

ν6(σ0, σ1) σ0 = 0 σ0 = 2 σ0 = 4 σ0 = 6 σ0 = 8
σ1 = 0 20 52 32 13 1
σ1 = 2 52 96 72 24 4
σ1 = 4 32 72 48 18 2
σ1 = 6 13 24 18 6 1
σ1 = 8 1 4 2 1

ν7(σ0, σ1) σ0 = 1 σ0 = 3 σ0 = 5 σ0 = 7 σ0 = 9
σ1 = 1 195 225 126 37 5
σ1 = 3 225 255 144 43 5
σ1 = 5 126 144 81 24 3
σ1 = 7 37 43 24 7 1
σ1 = 9 5 5 3 1

ν8(σ0, σ1) σ0 = 0 σ0 = 2 σ0 = 4 σ0 = 6 σ0 = 8 σ0 = 10
σ1 = 0 166 388 310 152 37 5
σ1 = 2 388 800 680 310 82 8
σ1 = 4 310 680 560 265 67 8
σ1 = 6 152 310 265 120 32 3
σ1 = 8 37 82 67 32 8 1
σ1 = 10 5 8 8 3 1

ν9(σ0, σ1) σ0 = 1 σ0 = 3 σ0 = 5 σ0 = 7 σ0 = 9 σ0 = 11
σ1 = 1 1584 1980 1320 528 120 12
σ1 = 3 1980 2475 1650 660 150 15
σ1 = 5 1320 1650 1100 440 100 10
σ1 = 7 528 660 440 176 40 4
σ1 = 9 120 150 100 40 9 1
σ1 = 11 12 15 10 4 1

Table 2.4: Number νl(σ0, σ1) of multiplets of a given highest weight indicated by σ0, σ1 in the
stratum gl for d = 4.
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2.3. Weight space decomposition

2.3.3 Explicit weight space decompositions of g0 and g1 for d = 3, 4

Remark 2.3.14. If G is a semisimple finite-dimensional Lie algebra, the theorems featured in
subsection 2.3.1 give rise to a method for decomposing a finite-dimensional G-module V (via
the representation ρ : G→ gl(V)) into irreducible G-modules:

1. First, decompose V into weight spaces

V =
⊕
λ∈Γ

Vλ (2.115)

by finding the eigenvectors in the defining equation of weight spaces (2.70). This is
always possible by theorem 2.3.2:1.

2. For each weight λ ∈ Γ, we now find the subspace of the weight space Vλ for which λ is
the highest weight. This can be done using definition 2.3.1:2 and 2.3.2:2 as⋂

α∈R+

kerρ(xα)|Vλ . (2.116)

Pick a basis of this vector space. Note that this is not necessarily unique.

3. Because of 2.3.3:3, each of the basis vectors now is the highest weight vector of an irre-
ducible G-module, and due to 2.3.3:1, we can reconstruct the entirety of each irreducible
G-module by iterative action of the negative roots.

Remark 2.3.15. For the Pohlmeyer-Rehren Lie algebra, step 1 is particularly easy because
the weight spaces are spanned by the Euler-Lyndon words of particular magnetic quantum
numbers. Mathematica code for step 2 can be found in example B.6.4.

Remark 2.3.16. The method given above is not the only way to explicitly decompose a
stratum gl of the Pohlmeyer-Rehren Lie algebra into irreducible g0-modules. For instance, it
is possible to find the direct sum of all multiplets of a given highest weight as the eigenspace
of the Casimir operator; the eigenvalue depends on the highest weight. This is implemented
in Mathematica in example B.6.3.

Remark 2.3.17. Note that for d = 3, 4 and l = 0, 1, the selection of a basis in step 2 is unique
up to scalars because (as can be deduced from theorem 2.3.13) in these cases, there is at most
one irreducible g0-module of any given highest weight. For l ≥ 2, this is not the case.

For l = 0, a canonical basis consisting of the Chevalley generators of g0 (as a subalgebra)
was already described for the root space decomposition in remark 2.2.16. Since they will later
feature as conjectured generators of g≥1 – in any case, they generate a significant subalgebra
– we take this opportunity to also define basis vectors svm of the weight spaces sgm

1 for d = 3
and basis vectors σ0,σ1vµ0,µ1 of the weight spaces σ0,σ1g

µ0,µ1
1 for d = 4, and plot them in the

diagrams below, arranged by their magnetic quantum numbers.
These basis vectors were calculated using the method given above (this is simplified by

the fact that for d = 3, there is only one negative root, and for d = 4, y0 and y1 commute, so
the right hand side of equation (2.74) only depends on the multiplicities of ady0 and ady1 , not
their order).

A point in the diagram represents a weight space in an irreducible g0-module, a line
between two weight spaces means that one can be obtained from the other by adjoining
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an appropriate xi or yi, so the connected components of the graphs in the diagrams can be
understood as the irreducible g0-modules. Highest weight vectors of each irreducible g0-
module are circled. Since we are only considering g0 as a g0-module instead of a subalgebra,
the x, y, h given below do not satisfy the canonical commutation relations of sl2 (a basis that
does is given in remark 2.2.16), but are scaled to allow for easy computations.

m

−1

0

1 e(0+) = x

e(−+) = h

e(0−) = y

Figure 2.1: The subalgebra g0 = 1g0 as the irreducible g0-module via adjunction and its root
spaces for d = 3 as explained in remark 2.3.17.

m

−2

−1

0

1

22v2 := e(0++)

2v1 := e(00+) − e(−++)

2v0 := e(0+−) − e(0−+)

2v−1 := e(00−) − e(−−+)

2v−2 := e(0−−)

1v1 := e(00+) + e(−++)

1v0 := e(0+−) + e(0−+)

1v−1 := e(00−) + e(−−+)

2g1
1g1

Figure 2.2: The two irreducible g0-modules in the direct sum 2g1 ⊕
1g1 = g1 and their weight

spaces sgm
1 (indicated by one of their respective basis vectors svm each) for d = 3 as explained

in remark 2.3.17.

−1 0 1 m0

m1

−1

0

1

−1 0 1

−1

0

1 e(+0+) = x0

e(−0+0) + e(−+) = h0

e(−0−) = y0

−1 0 1 m0

m1

−1

0

1

−1 0 1

−1

0

1e(−0+) = x1

e(−+) − e(−0+0) = h1

e(+0−) = y1

Figure 2.3: The subalgebra g0 = 2,0g0 ⊕
0,2g0 as the g0-module via adjunction and the root

spaces of its irreducible components for d = 4 as explained in remark 2.3.17.
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−2 −1 0 1 2 m0

m1

−2

−1

0

1

2

−2 −1 0 1 2

−2

−1

0

1

2
3,1v3,1 := e(+++0)

3,1v1,1 := e(−++) + e(++0−0)

3,1v−1,1 := e(−−0+) + e(−+−0)

3,1v−3,1 := e(−−0−0)

3,1v3,−1 := e(++0+0)

3,1v1,−1 := e(−++0) + e(−0+0+0)

3,1v−1,−1 := e(−−+) + e(−−0+0)

3,1v−3,−1 := e(−−−0)
3,1g1

−2 −1 0 1 2 m0

m1

−2

−1

0

1

2

−2 −1 0 1 2

−2

−1

0

1

2
1,3v1,3 := e(++−0)

1,3v1,1 := e(−++) + e(+−0+0)

1,3v1,−1 := e(−++0) + e(−+0+) − e(−0+0+0)

1,3v1,−3 := e(−+0+0)

1,3v−1,3 := e(+−0−0)

1,3v−1,1 := e(−+−0) + e(−0−0+0)

1,3v−1,−1 := e(−−+) + e(−+0−0)

1,3v−1,−3 := e(−−+0)
1,3g1

−2 −1 0 1 2 m0

m1

−2

−1

0

1

2

−2 −1 0 1 2

−2

−1

0

1

2
1,1v1,1 := −e(−++) + e(+−0+0) + e(++0−0)

1,1v1,−1 := e(−+0+) + e(−0+0+0)1,1v−1,−1 := e(−−0+) + e(−0−0+0)

1,1v−1,−1 := −e(−−+) + e(−−0+0) + e(−+0−0)

1,1g1

Figure 2.4: The three irreducible g0-modules in the direct sum 3,1g1⊕
1,3g1⊕

1,1g1 = g1 and their
weight spaces σ0,σ1g

µ0,µ1
1 (indicated by one of their respective basis vectors σ0,σ1vµ0,µ1 each) for

d = 4 as explained in remark 2.3.17.
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In 1988, Pohlmeyer and Rehren gave [PR88] a maximal abelian subalgebra of the algebra
of invariant charges h, the construction of which from the Pohlmeyer-Rehren Lie algebra gwill
be outlined in chapter 3. Unfortunately, no obvious sign of a similar structure in g presented
itself. Nevertheless, the question of large abelian subalgebras of g is interesting.

Can, in particular, the Cartan subalgebra of the stratum g0 (that acts upon g) be expanded
to an abelian subalgebra of the entire Lie algebra g? We begin to explore this question for
our toy model d = 3 where the Cartan subalgebra is spanned by the single element h. Other
abelian subalgebras of g of dimension greater than 1 exist.

Proposition 2.3.18 (Abelian subalgebras of g for d = 3). 1. g0 lies in the centralizer (cf. defin-
ing equation (4.27)) of h.

2. But g0 is not an abelian subalgebra of g.

3. It is not even possible to construct an infinite-dimensional abelian subalgebra of g by picking a
single element xl out of each g0

l such that all xl, l ∈N0 ∪{−1} commute.

4. The elements
e(0± . . .±)

(only plusses or only minusses) span infinite-dimensional abelian subalgebras of g.

Proof. 1. This is a direct consequence of lemma 1.6.5.

2. The Lie bracket of the two basis vectors 1v0, 2v0 of g0
1 given in remark 2.3.17 is

[1v0, 2v0] = 2α (e(00−+) + e(00+−) + e(0−0+) + 2e(−−++)) , 0 .

3. Consider l1 = 1 and l2 = 2. Bases for g0
1 and g0

2 are given in 2.3.17 and B.6.3 respectively.
Pick general elements of x1 and x2, and calculate their Lie bracket. This Lie bracket
vanishes if and only if all coefficients of the Euler-Lyndon-elements vanish. This leads
to a system of equations for the coefficients that is only solved by x1 = 0 or x2 = 0.

4. Obviously, these elements span an infinite-dimensional subvectorspace of g. It is in
fact an abelian subalgebra because of corollary 2.3.12:2.

�

While statements 1., 2. and 4. also hold (or can be extended) for arbitrary d and similar
calculations to the proof of 3. can be performed, we leave the context because these results
are negative or, in the case of 4., do not have an easy application.

For instance, the abelian subalgebras considered in 4. are not Cartan subalgebras because
they are not self-normalizing.

This follows from the decomposition of gl into irreducible g0-modules of which the
elements considered above are highest (or lowest) weight vectors – in fact, the highest (or
lowest) weight occurring in the entire stratum gl. Therefore, adjunction of either x or y does
not vanish.
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2.4 Lie brackets of multiplets from the viewpoint of tensor and
exterior products

So far we have decomposed the individual strata of the Pohlmeyer-Rehren Lie algebra into
irreducible g0-modules and further decomposed those into weight spaces. While this took
into account the action of g0, it fails to illuminate the structure of the Lie brackets of all other
elements. The following basic consideration of tensor products of irreducible modules of
subalgebras of a given Lie algebra provides a starting point for this. We begin with a lemma
highlighting the structural similarities between the tensor product and the Lie bracket.

Lemma 2.4.1. Let G be a Lie algebra with subalgebra H. Let V,V′ ⊂ G be H-modules via the
adjunction. Then:

1. [V, V′] is a H-module (using the adjunction).

2. The tensor product V ⊗ V′ is a H-module using the action

h.(v ⊗ v′) = h.v ⊗ v′ + v ⊗ h.v′ (2.117)

for all h ∈ H, v ∈ V and v′ ∈ V′.

3. The exterior product V ∧ V is a H-module using the action

h.(v ∧ v′) = h.v ∧ v′ + v ∧ h.v′ (2.118)

for all h ∈ H and v, v′ ∈ V.

4. Let further designate

ψ : V × V′ → V ⊗ V′ ,
(v, v′) 7→ v ⊗ v′ . (2.119)

Then the map

Ψ : V ⊗ V′ → [V, V′] ,
v ⊗ v′ 7→ [v, v′] (2.120)

is the unique linear map such that the diagram

V × V′ V ⊗ V′

[V, V’]

ψ

[·, ·]
Ψ (2.121)

commutes. Furthermore, Ψ is an epimorphism of H-modules.
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5. Let similarly designate

ϕ : V × V → V ∧ V ,
(v, v′) 7→ v ∧ v′ . (2.122)

Then the map

Φ : V ∧ V → [V, V] ,
v ∧ v′ 7→ [v, v′] (2.123)

is the unique linear map such that the diagram

V × V V ∧ V

[V, V]

ϕ

[·, ·]
Φ (2.124)

commutes. Φ is an epimorphism of H-modules as well.

Proof. 1. This can be proved with a simple calculation using the facts that (due to the
Jacobi identity), the adjunction is a derivation, equal terms with opposing signs can
be eliminated, V and V′ are H-modules by assumption, and finally, again, that the
adjunction is a derivation. Let v ∈ V, v′ ∈ V′ and h, h′ ∈ H and calculate

h.h′.[v, v′] − h′.h.[v, v′]
= h.([h′.v, v] + [v, h′.v′]) − h′.([h.v, v] + [v, h.v′])
= [h.h′.v, v′] + [h′.v, h.v′] + [h.v, h′.v′] + [v, h.h′.v′]
− [h′.h.v, v′] − [h.v, h′.v′] − [h′.v, h.v′] − [v, h′.h.v′]

= [[h, h′].v, v′] + [v, [h, h′].v′]
= [h, h′].[v, v′] .

2. A calculation very similar to the proof of 1.

3. Again, a very similar calculation.

4. Any Lie bracket is a bilinear map; in this situation the universal property of the tensor
product guarantees that there is exactly one linear map such that the diagram com-
mutes. It is just a matter of notation to check that Ψ satisfies this and (simply writing
out the respective actions of H) is an epimorphism of H-modules. Since v ⊗ v′ is a
preimage of [v, v′] for all v ∈ V, v′ ∈ V′, the map Ψ is surjective.

5. Analogous.
�

If V and V′ are finite-dimensional H-modules, then V⊗V′ is a finite-dimensional module
as well, and so is its image Ψ(V ⊗ V′) = [V,V′]. If furthermore H is semisimple, then we
can apply Weyl’s theorem on complete reducibility (2.3.8) on both V ⊗ V′ and [V,V′] and
decompose them into a direct sum of irreducible H-modules. For V ⊗ V′, this is known as
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the Clebsch-Gordan problem, and with the epimorphism of H-modules Ψ (or, if V = V′, the
epimorphism Φ) we can transfer some of the information to [V,V′]. For instance, we have
the estimate of dimensions

dim[V,V′] = dim Ψ(V ⊗ V′) ≤ dim V ⊗ V′ = dim V · dim V′ . (2.125)

Note that the maps Ψ and Φ are not necessarily injective, so we only have the inequality
dim[V,V′] ≤ dim V · dim V′. We only consider the simplest case of d = 3 to illustrate the
method and its limitations. In this case, the Clebsch-Gordan problem has an easy solution.

Theorem 2.4.2 (Clebsch-Gordan formulas for sl2). Let sV designate irreducible sl2-modules of
highest weight s. Let s1, s2 ∈N0 with s1 ≥ s2. Then there are isomorphisms of sl2-modules

s1V ⊗ s2V �

s1+s2⊕
s=s1−s2

sV (2.126)

and

sV ∧ sV �
s⊕

n=1

2n−1V . (2.127)

Proof. This is covered in many introductory texts on representations of Lie algebras, for
instance [Hal03, Theorem D.1, note different notations for the modules of a given highest
weight.] �

We can use the above theorem to consider the generation of g from certain multiplets,
simplifying notation by suppressing the unnamed isomorphisms from the theorem for the
remainder of this section. In subsection 2.3.3 we had seen that g1 = 2g1 ⊕

1g1 �
2V ⊕ 1V. So

we calculate (note that [2g1,
1g1] = [1g1,

2g1]) due to antisymmetry of the Lie bracket)

[g1, g1]

= [2g1 ⊕
1g1,

2g1 ⊕
1g1]

= [2g1,
2g1] + [2g1,

1g1] + [1g1,
2g1] + [1g1,

1g1] (2.128)

� Φ(2V ∧ 2V) + Ψ(2V ⊗ 1V) + Φ′(1V ∧ 1V)
2.4.2
� Φ(3V ⊕ 1V) + Ψ(3V ⊕ 2V ⊕ 1V) + Φ′(1V) .

Comparing this to the decompositon of g2 into multiplets, by theorem 2.3.13 (cf. table 2.2)

g2 � 3V ⊕ 2V ⊕ 2 · 1V , (2.129)

it becomes obvious that not all of the morphisms of sl2-modules Φ, Φ′ and Ψ are injective
or that (some of) the sums are not direct.6 In other words, there are relations between the

6By actually computing the decomposition of the Lie brackets of the pairs of irreducible modules in equation
(2.128), for instance [2g2,

2g2] � 3V⊕1V and comparing this to the results of the Clebsch-Gordan formulas (theorem
2.4.2), for instance 2V ∧ 2V � 3V ⊕ 1V, one can see that the morphisms Φ, Φ′ and Ψ are all injective in this case.
But the morphisms from lemma 2.4.1 are not neccessarily injective: take for example the multiplets 2g1 �

2V
and 3g2 �

3V (which are uniquely determied by their highest weight and degree due to theorem 2.3.13:3). The
decomposition of their Lie bracket is [2g1,

3g2] � 4V ⊕ 3V ⊕ 2V ⊕ 1V, while by Clebsch-Gordan formula (2.126),
2V ⊗ 3V � 5V ⊕ 4V ⊕ 3V ⊕ 2V ⊕ 1V. In this case, the difference exists because there can be no module of type 5V in
stratum l = 5 due to theorem 2.3.13:5.
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elements of [g1, g1] that do not follow from the axioms of the Lie algebra. So certain Lie
brackets of elements of g1 can be expressed as linear combinations of others. An obvious task
arises from this: find a basis of gl in terms of multiple brackets of g1 that exposes as much
structure as possible. We begin with an educated guess based on the observation that if the
summands originating from the term [2g1,

2g1] were missing, we would neatly be in line with
equation (2.129), with injective Φ′ and Ψ and direct sums.

Generalizing this to higher strata gl, we can ask the question if it is possible to obtain the
entirety of gl with injective morphisms and direct sums by iteratively adjoining l − 1 copies
of 1g1 to g1 = 2g1 ⊕

1g1. For l = 2, we unsurprisingly obtain the same number and types of
multiplets that make up the entirety of g2, but our conjecture fails for g3 (again, cf. table 2.2)
because

[1g1, g2]
(2.129)
� [1g1,

3V] + [1g1,
2V] + [1g1,

1V] + [1g1,
1V]

� Ψ(1V ⊗ 3V) + Ψ′(1V ⊗ 2V) + Ψ′′(1V ⊗ 1V) + Ψ′′′(1V ⊗ 1V) (2.130)
2.4.2
� Ψ(4V ⊕ 3V ⊕ 2V) + Ψ′(3V ⊕ 2V ⊕ 1V) + Ψ′′(2V ⊕ 1V ⊕ 0V) + Ψ′′′(2V ⊕ 1V ⊕ 0V) ,

but the decomposition of g3 into multiplets is

g3 � 4V ⊕ 2 · 3V ⊕ 3 · 2V ⊕ 3 · 1V ⊕ 0V , (2.131)

so again, there are relations. Additionally, we do not know a priori whether the morphisms of
sl2-modules Φ, Ψ, Ψ′ etc. are injective in the first place or if they cause relations themselves.
A way to approach this problem is needed, and chapter 4 provides a part of a solution.
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Chapter 3

Excursus: String Quantization and
Leading Terms of Exceptional
Elements of the Invariant Algebra

After some light has been shed on the structure of the Pohlmeyer-Rehren Lie algebra in
the previous chapter, in this excursion, a brief account will be given of some of the theory
developed with quantization of the algebra of invariant charges of the Nambu-Goto string
in mind. This serves a dual purpose: to give a motivation why the Pohlmeyer-Rehren
Lie algebra merits study, and to provide some context for a result (proposition 3.4.3) and
a conjecture (3.4.2) that will be introduced at the end of this chapter. The proof of this
result itself is very straightforward, but to understand the terminology and relevance some
explanation is required.

3.1 Pohlmeyer’s approach

Pohlmeyer’s approach to string quantization, which motivates this thesis, goes back to the
1980s, but the reformulation using the more mainstream mathematical language of the Shuffle
Hopf algebra and the Eulerian idempotent is a more recent development due to Bahns and
Meinecke. The following three sections serve the dual purpose to provide a brief overview
of the physical theory motivating this thesis as well as a point of connection to previous
works that use the original notions. They mostly summarize Bahns’ and Meinecke’s account
[BM11] as well as Meinecke’s Diplomarbeit (in German) [Mei09, Chapters 1 and 2] and the
original papers [Poh82], [Poh85], [PR86] [PR88], to which the reader is referred for more
detail.

In the setting of the closed bosonic string with the Nambu-Goto (i.e. proportional to the
worldsheet’s surface area) action outlined in the introduction (page 9), Pohlmeyer proposed
[Poh82] the following approach. Recall from the introduction that the map

x : S1
×R→ Rd

(such that for all τ the map S1
→ Rd, σ 7→ x(σ, τ) is a spacelike closed curve) parametrizes the

string’s worldsheet. Using a Lax pair, a system of linear differential equations describing the
string’s dynamics is set up and solved. The expansion of a power series (in the free parameters
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occurring in the monodromy matrix) of the monodromy matrix of the differential equations
leads to coefficients R±x1...xn

where the indices1 x1, . . . , xn ∈ {0, . . . , d − 1} correspond to the
dimensions of spacetime for n ∈ N+. These coefficients are tensors expressed by the path
ordered integrals

R
±

x1...xn
(σ, τ) :=

∫
σ≤σn≤...≤σ1≤σ+2π

u±x1
(σ1, τ) · . . . · u±xn

(σn, τ) dσ1 . . . dσn (3.1)

with fixed σ, τ, where the expressions u± := ∂σx ± ∂τx are the so-called left and right movers 2

that are known from ordinary string theory, and u±xi
is their xi-th component.

A consequence of definition (3.1) of the R± as path-ordered integrals is that they obey the
multiplication rule

R
±

x1...xn
· R
±

y1...ym
= R±x1 . . . xn

y1 . . . ym

. (3.2)

Since the algebraic relations between the mathematical objects introduced in this subsection
only depend on the tensors’ indices which are shuffled under multiplication, Bahns and
Meinecke interpreted [BM11] the tensors R± as words of their indices, the elements of the
shuffle Hopf algebra (definition 1.1.2), and reformulated the remaining constructions – that
will now be briefly introduced in their original forms – in these terms.

3.1.1 The Poisson algebra of invariant charges

The tensors R± depend3 on the parameters σ and τ, but their cyclic symmetrizations,

Z
±

x1...xn
(σ, τ) := R±x1...xn

(σ, τ) + R±xnx1...xn−1
(σ, τ) + . . . + R±x2...xnx1

(σ, τ) (3.3)

could be shown to be independent of σ and (if x actually parametrizes the worldsheet, so
that we are in the on-shell case also) τ. Therefore, theZ± are called the invariant charges (also
known as Pohlmeyer charges) of the Nambu-Goto string.

A Poisson bracket on the invariant charges can be defined as follows:

{
Z
±

x1...xn
,Z±y1...ym

}
:= ∓2

n∑
i=1

m∑
j=1

δ(xiy j)

Z±
xi+1

xi+2 . . . xnx1 . . . xi−1
y j+1 . . . ym y1 . . . y j−2

y j−1

−Z
±

y j+1
yi+1 . . . yn y1 . . . xi−2
y j+2 . . . ym y1 . . . y j−1

xi−1

 ,

{
Z
±

x1
,Z±y1...yn

}
:= 0 , (3.4){

Z
±

x1...xn
,Z∓y1...ym

}
:= 0

for n,m ≥ 2. Since the Poisson brackets of Z± and Z∓ vanish and those of only one type
differ only by a global sign, it has become customary to only focus onZ+ and suppress the
superscript + in the notation.

1Note that the indices xi are not components of the parametrization x. This somewhat confusing notation in
this section was chosen for the sake of consistency with the rest of this thesis, where no risk of such a confusion
exists.

2The left and right movers also have the property that their lightlikeness is equivalent to the constraints on
the canonical coordinates on the string.

3By choosing an appropriate gauge, ∂τR± = 0 can be achieved, cf. [MR03, p. 73].
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In [PR88, section III], Pohlmeyer and Rehren showed that the invariant charges are
complete in the sense that for a certain class of worldsheets, the string’s worldsheet can be
reconstructed uniquely up to global translations in spacetime from h.

If we expand the power series of the logarithm of the monodromy matrix instead of the
power series of the monodromy matrix itself, we obtain the so-called homogeneous tensors, in
particular those of homogeneity degree 1, which are called the truncated tensors4

R
t.

Since equations (3.5) and (3.6) mirror equation (1.33), and we had already identified the
tensorsRwith words, we can identify homogeneous tensors with (higher) Euler idempotents
of words and in particular the truncated tensors with Euler elements.

From the construction of the different types of tensors introduced in this section, several
relations between them can be deduced. The tensorsR can be written as a linear combination
of homogeneous tensors (of degrees k) with the same index word,

Rx1...xn =

n∑
k=1

R
(k)
x1...xn , (3.5)

while the homogeneous tensors of degree k > 1 are called that way because they are homo-
geneous polynomials of degree k in the truncated tensors:

R
(k)
x1...xn =

1
k!

∑
0<i1<...ik−1<n

R
t
x1...xi1

· R
t
xi1+1...xi2

· . . . · Rt
xik−1+1...xn

. (3.6)

Remark 3.1.1. Historically, the Poisson bracket (3.4) on the invariants originally was arrived
at as a Poisson bracket induced by the Poisson bracket on the space spanned by the left
and right movers. That Poisson bracket was in turn induced by the one on the canonical
coordinates of position and momentum. When extending the original bracket to the truncated
tensors (Euler elements), one obtains an antisymmetric bilinear map which does not satisfy
the Jacobi equation. Under cyclic summation however, the terms violating the Jacobi equation
cancel out. Removing those terms form the Poisson bracket yields what was originally called
the “modified Poisson bracket” and which is called the Pohlmeyer-Rehren Lie bracket (1.54)
here. Because the removed terms vanish under the cyclic summation, derivative extension
as discussed above (resulting in (3.4)) leads back to the original Poisson bracket.

Remark 3.1.2. We have now collected all the facts to give a list of reasons why d = 3 and
d = 4 receive special consideration in this thesis. Since dim gl = NumLyndon(l + 2, d), which
is monotonously increasing with d for a given l (and an upper bound of which is given dl+2),
cases with lower d are generally considerably more manageable.

• One major reason lies in the application to the quantization of the Nambu-Goto string.

– Since d is the dimension of the string’s surrounding spacetime and we appar-
ently live in a four-dimensional spacetime, the case of d = 4 is important to
describe strings in the actual physical universe. This is especially important since
the Pohlmeyer approach has the distinction of having no known obstruction to
quantization in this spacetime dimension, unlike the usual conformal field theory
methods of string quantization which require a critical dimension of d = 26 (or
d = 10 with supersymmetry).

4In [MR03], they are called “monodromy variables”.
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– d = 3 can serve as a simpler toy model.

– Even lower dimensions are less well suited for this; for d = 2, the preimage of
almost every point on any (spacelike) closed curve parametrizing the string for a
given parameter τ has at least two elements, in contrast to the usual picture of a
simple (i.e. injective except for the points on the boundary of the parametrizing
interval) curve, so degeneracy is to be expected.

– For d = 1, no linearly independent time and space dimensions exist.

• The structure of g itself, in particular as a g0 � so(d,C)-module (cf. remark 2.2.15) gives
further reasons:

– For d = 1, there are no Lyndon words of more than a single letter, therefore g is the
one-dimensional Lie algebra spanned by e(0) ∈ g−1, and g0 = 0.

– For d = 2, the stratum g0 � so(2,C) is one-dimensional, hence abelian, and all
irreducible g0-modules are one-dimensional as well. Additionally, it is known that
g1 does not generate g≥1 (cf. proposition 1.5.3), while the opposite is conjectured
for d ≥ 3 (conjecture 4.1.2).

– So d = 3 is the lowest dimension in which a rich representation theory (of
g0 � so(3,C) � sl2) develops.

– Regarding its representation theory, d = 4 is an unusual case since it is the only
dimension for which g0 � so(4,C) � sl2 × sl2 is nonsimple. Connected to this is
the fact that the ladder operators commute and for all weights, the multiplicity of
every weight µ ∈ Γ (cf. remark 2.3.7) is n(µ) = 1.

3.2 Poisson algebra of invariant charges in the shuffle Hopf lan-
guage

3.2.1 Induced Poisson structure i

In the sequel, we will use shuffle Hopf algebra language again. In order to do that, we have
to catch up in notation and translate the concept of invariant charges, mostly following the
accounts given in [Mei09] and [BM11] throughout this section again.

We have two multiplications on the shuffle algebra – the shuffle product (definition
1.1.2:2), which is commutative and associative, and the Pohlmeyer-Rehren Lie bracket (def-
inition 1.4.3). We can now extend the Lie bracket derivatively to shuffle products of Euler
elements, i.e. {

e(x), e(y)
}

:= [e(x), e(y)] , (3.7){
e(x)#e(y), e(z)

}
:= e(x)#{e(y), e(z)},+ {e(x), e(z)}#e(y) (3.8)

for x, y, z ∈ X∗. 5

5Cf. [Mei09, p. 50f]. There, it is not explicitly pointed out that this is well-defined because there are no
multiplicative relations by theorem 1.2.2:4 – otherwise, it would have to be proved that rewriting the left hand
side using such a relation could not lead to ambiguities.
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Remark 3.2.1. Relations (1.33) and (1.34) imply that

Sh(X) = spanK (e(x1)# . . . #e(xk) | k ∈N0, xi ∈ X∗∀i ∈ {1, . . . , k}) (3.9)

as sets, and they can be used to calculate the Poisson brackets of two words. To calculate
{x, y} for words x, y of lengths n and m respectively (cf. [Mei09, p. 51]),

1. rewrite x and y in terms of sums of shuffle products of Euler elements using equation
(1.33), and use linearity of the Poisson bracket, yielding

{x, y} =

n∑
k=1

m∑
l=1

1
k!

1
l!

∑
x1,...,xk∈X∗\X0 s.t.

x1_..._xk=x

∑
y1,...,yl∈X∗\X0 s.t.

y1_..._yl=y

{e(x1)# . . . #e(xk), e(y1)# . . . #e(yl)} ,

2. use Leibniz’s rule to move all shuffle products out of the brackets (since # is commuta-
tive, we can collect all factors on one side),

. . . =
n∑

k=1

m∑
l=1

1
k!

1
l!

∑
x1,...,xk∈X∗\X0 s.t.

x1_..._xk=x

∑
y1,...,yl∈X∗\X0 s.t.

y1_..._yl=y

k∑
i=1

l∑
j=1

{e(xi), e(y j)}

#e(x1)# . . . #e(xi−1)#e(xi+1)# . . . #e(xk)#e(y1)# . . . e(y j−1)#e(y j+1)# . . . #e(yl) ,

3. evaluate the remaining brackets of the form {e(v), e(w)}, leaving us with a linear combi-
nation of shuffles of Euler elements

4. re-write all the Euler elements in terms of words using equation (1.34), so we obtain a
linear combination of shuffles of words

5. and finally evaluate the shuffles, which leaves us with the desired linear combination
of words.

Theorem 3.2.2. 1. (Sh(X), #, {·, ·}) is a Poisson algebra, henceforth to be designated i.

2. i is graded by the combined degree defined as

deg
(
e(x1,1 . . . x1,n1)# . . . #e(xk,1 . . . xk,nk)

)
:= −k − 1 +

k∑
i=1

ni , (3.10)

and with il := {i ∈ i | deg i = l}, we have{
il, il

′
}
⊂ il+l′ , (3.11)

il#il
′

⊂ il+l′+1 . (3.12)

Proof. 1. (Sh(X), #, {·, ·}) inherits the axioms for the Poisson bracket from the Lie algebra
g; compatibility with the shuffle product is by construction (cf. [Mei09][p. 50]).

2. can easily be proved by counting letters (this is [Mei09][Satz 4.8]).
�
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3.2.2 Poisson algebra of invariant charges h

The Poisson algebra of invariant charges can be constructed in the shuffle Hopf algebra language
in an analogous way to equation (3.3).

Theorem 3.2.3 (Poisson algebra of invariant charges). Let Z : Sh(X) → Sh(X) be the cyclic
symmetrization map, i.e. for all words x1 . . . xn ∈ X∗

Z(x1 . . . xn) :=
n∑

i=1

xi . . . xnx1 . . . xi−1
(
= Zx1,...xn) in Pohlmeyer’s notation

)
. (3.13)

Then

h := im Z ⊂ i ( = Sh(X)) (3.14)

is a Poisson subalgebra of i (that inherits the gradation from i) and is called the Poisson algebra of
invariant charges.

Proof. This is [Mei09, Satz 4.9], based on [PR86, Proposition 12]. �

We have thus compiled a small dictionary of terms in Pohlmeyer’s original language and
their analogues in the shuffle Hopf algebra language.

original term symbol shuffle Hopf language term symbol
tensor Rx1,...,xn word x1 . . . xn ∈ Xn

... with cyclically minimal indices Lyndon word
truncated tensor R

t
x1,...,xn

Euler element e(x1 . . . xn)
invariant charge Zx1,...xn invariant charge Z(x1 . . . xn)
tensorial multiplication · (or omitted) shuffle product # (or omitted)
modified Poisson bracket [ · , · ] Pohlmeyer-Rehren Lie bracket [ · , · ]

Table 3.1: Corresponding terms in the languages used in Pohlmeyer’s original formulation
and the reformulation in terms of the shuffle Hopf algebra due to Bahns and Meinecke.

Remark 3.2.4. For the same reason (lemma 2.2.2) that g is a g0-module, the Poisson algebra
of invariant charges h is a h0-module, considering h0 as a Lie subalgebra6. It was shown that
h0 � so(d − 1,C). Therefore, many of the features familiar from g such as the decomposition
into irreducible modules (multiplets) also occur in h. Note however, that for a given d,
h0 � so(d − 1,C) � so(d,C) � g0.

3.2.3 The rest frame

A consequence [Poh99, p. 3] of definig equation (3.1) is that the Euler idempotents of single-
letter words are the components of the total d-dimensional momentum P of the string. In
fact, we can write

e(x) = x =

∫
u(σ1, τ)dσ1 =

∫
px(σ1, τ)dσ1 = Px ∀x ∈ X . (3.15)

6Note that h0 is not a Poisson subalgebra of h since the shuffle product is of degree +1 (cf. equation (3.12)).
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We can now distinguish two cases depending on the Lorentz square P2 := νxyPxPy of the
string. If P2 = 0, we are in the massless case. If m2 := P2 > 0, we are in the massive case and
call m the string’s invariant mass. Because the theory is much more developed for massive
strings, we will only deal with this case.

Since the Poincaré group acts on h, leaving the combined degree l invariant, we can use
a Lorentz transformation to the string’s relativistic rest frame, and in this situation, e(0) = m
is the string’s invariant mass while e(x) = 0 for all x ∈ X \ {0}. A useful consequence of this is
that in expressions of invariant charges as Euler-Lyndon words, many terms disappear, for
instance

Z(e(2)(012)) = 2me(1, 2) .

We designate the Poisson algebra of invariants for the string’s rest frame by hm. Having
this simplification at our disposal, we can now turn our attention to some statements about
the structure of hm.

3.2.4 Generation of hm as a Poisson algebra

Theorem 3.2.5 (standard invariants). The elements of hm

Z(e(2)(0ab)) ∈ h0
m ,

1
K

Z(e(2)(0a0K−1b))) ∈ hK−1
m ,

(K − 1)! Z(e(K)(0K−1ax1 . . . xK−1b)) ∈ hK−1
m

for K > 2, where a, b ∈ X \ {0} and xi ∈ X for all i as well as xi , 0 for at least one i, freely generate
hm as an algebra (using shuffle multiplication). These generators are called the standard invariants.

Proof. See [PR86, Proposition 17] �

Unlike for the shuffle multiplication, there are relations between (multiple) Poisson brack-
ets of the standard invariants. A large subalgebra of hm, denoted by U, is the subalgebra
generated – as a Poisson algebra – by the elements of h0

m and h1
m. But not all elements of hm

are contained in U.

Definition 3.2.6 (exceptional element). An element of hl
m with l ≥ 2 that is linearly inde-

pendent from all (multiple) Poisson brackets of standard invariants of degree < l is called
exceptional element.

The subspace spanned by the exceptional elements is infinite-dimensional:

Proposition 3.2.7. The invariants

L gl :=
∑
µ,ν

gµνZ(e(2)
0µ0lν

) (3.16)

with l = 2n + 1, n ∈N+ are exceptional elements.
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Proof. Pohlmeyer and Rehren’s proof (see [PR86, p. 622]) works by considering the leading
term, which is a multiple of

d−1∑
i=1

e(0)#e(i0 . . . 0i) ,

the right hand factor of which is an element of the Lie subalgebra

ker ∂R
0 ∩ ker ∂L

0 = span(x ∈ X∗ with x = 1∅ or x1 = xn = 0)

of g, and showing that this term cannot be produced as a linear combination of leading terms
of other invariants. �

All known exceptional elements could be modified by adding Poisson brackets of stan-
dard invariants such that the resulting modified exceptional elements commute with each other.
This has lead to the following conjecture (cf. [Poh99, p. 8ff]):

Conjecture 3.2.8.

hm = a n U , (3.17)

where a is an abelian Lie algebra spanned by modified exceptional elements.

Since all known exceptional elements as well as the generators of U have homogeneity
degree 2, an additional conjecture was reached.

Conjecture 3.2.9 (Quadratic generation hypothesis). As Poisson algebras, hm as well as h are
generated by their elements of homogeneity degree 2 (also called “quadratic elements”).

The quadratic generation hypothesis is not only interesting in its own right; it will be
of great importance to the Rehren-Meinecke approach to string quantization that will be
discussed in the next section.

Remark 3.2.10. For d = 3, all relations between elements of anU up to degree l = 5 have been
computed [Hap93] by K. M. Happle using computer algebra, applying Hall bases similar to
the ones given in chapter 4.

For d = 3, a basis of hm 0 is given by the element

Q :=
i

2m
Z

(2)
0−+ =

i
2

e(−+) , (3.18)

and a basis of hm 1 is given by the elements

L2 := Z
(2)
00++ = 2me (0++) − (e (0+))2 , (3.19)

L1 := −

√

2Z(2)
0−++ = −

√

2 (me (−++) − e (0+) e (−+)) , (3.20)

L0 := −Z
(2)
00−+ = −me

(
0+
−

)
+ e (0−) e (0+) , (3.21)

L−1 := −

√

2Z(2)
0+−− =

√

2 (me (−−+) − e (0−) e (−+)) , (3.22)

L−2 := Z
(2)
00−− = 2me (0−−) − (e (0−))2 (3.23)

(this is [Hap93, Korollar 7.2]).
More on Happle’swork and its relationship to the algorithms developed in chapter 4 can

be found in remark 4.3.14.
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Remark 3.2.11. The exceptional elements L gl given in equation (3.16) are not the only excep-
tional elements. Pohlmeyer also pointed out in his last publication [Poh06, p.3] (without a
proof) that an exceptional element with leading term

3∑
j=1

3∑
k=1

e
(

j0
k0000 0 j

0k

)
(3.24)

(for d = 3 + 1) exists and conjectured that it was “probably” the first in a new infinite series
of exceptional elements.

3.3 Quantization

3.3.1 Pohlmeyer’s original programme

Pohlmeyer’s original approach to quantization [Poh99, p. 19ff] was to quantize hm without
reference to other quantities. This is done by finding generators of hm and assigning to
each of them one of the free generators of a filtered associative (noncommutative) algebra.
The desired quantum algebra of invariants ĥ is then constructed by dividing out an ideal of
relations. The relations forming the ideal are constructed by deforming the classical relations

such that quantization conditions are met, i.e. hl
m � ĥ

l
m / ĥ

l−1
m as vector spaces and the Poisson

bracket is reproduced as a commutator except for quantum corrections of lower degree with
positive powers of a formal parameter h. Similarly, the relations of h are recovered in the
quasiclassical limit h→ 0. These deformations are calculated by adding a linear combination
of all possible (i.e. satisfying conditions such as on degree, spin, parity, degree in h) quantum
corrections to a given relation and calculating their coefficients by performing consistency
checks.

While this method has produced some valuable insights into the quantization of the
Poisson algebra of invariants, it is very laborious and in principle unable to actually prove the
existence of a quantization because it works stratum by stratum and therefore cannot rule
out the possibility of contradictions in strata not considered yet.

3.3.2 Meusburger-Rehren quantization

The approach to the quantization of the Poisson algebra of invariant charges h proposed
by Rehren to Pohlmeyer and fleshed out by Meusburger in her Diplomarbeit [Meu01] starts
from the fact that h can be understood as the kernel of a derivation7 ∂. We continue following
[BM11].

Theorem 3.3.1 (Poisson algebra of invariants as kernel of a derivation). 1. The linear map

∂ : i → i⊗ i ,

x1 . . . xn 7→

{
x1 ⊗ (x2 . . . xn) − xn ⊗ (x1 . . . xn−1) if n ≥ 2
0 else

(3.25)

for x1, . . . , xn ∈ X is a derivation along the morphism f : i→ i⊗ i, x 7→ 1 ⊗ x.
7Originally[Meu01, Kap. 6 Lemma 1], a variant of the restriction of ∂ to im e from statement 2 of theorem 3.3.1

was used. The principle is the same though, and the proofs are analogous.
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2. ∂ can be restricted to im e, obtaining

e(x1 . . . xn) 7→

{
e(x1) ⊗ (e(x2 . . . xn)) − e(xn) ⊗ (e(x1 . . . xn−1)) if n ≥ 2
0 else

(3.26)

for x1, . . . , xn ∈ X.

3.

h = ker ∂ ⊂ i . (3.27)

Proof. This is [Mei09, Satz 4.10 and Satz 4.12] (using the recursive formula for the shuffle
product 1.1.4). �

To quantize g, we first introduce a formal variable h and define gh as the Lie algebra
obtained by equipping g[[h]] (the ring of formal power series with coefficients in the Lie
algebra g in the variable h) with the Lie bracket defined like the Lie bracket on g, modified
by multiplying the structure constants by global factor h.

The idea is to then construct a quantized algebra of invariants ĥ in a similar fashion to
theorem 3.3.1 as the kernel of another derivation δ in the universal enveloping algebra U(gh),

ĥ = ker δ ⊂ U(gh) . (3.28)

This is done in such a way that in the quasiclassical limit, h→ 0, the classical Poisson algebra
of invariants is recovered. This concept reappears in the formalized notion of a deformation of
a Poisson algebra (definition 3.3.5). But first, we should recall the definition of the universal
enveloping algebra of a Lie algebra.

Definition 3.3.2 (universal enveloping algebra). Let G be a Lie algebra, U an unital associative
algebra (both over the fieldK) andφ : G→ U be homomorphism of Lie algebras (considering
U with the Lie bracket defined by the commutator

[x, y] := xy − yx ∀x, y ∈ U (3.29)

as a Lie algebra). Let further (U, φ) satisfy the following universal property: for any unital
associative K-algebra A and homomorphism of Lie algebras φ′ : G → A exists a unique
homomorphism of algebras ψ : U→ A such that the diagram

G U

A

φ

φ′
∃!ψ

commutes. Then U is called an universal enveloping algebra of G.

By the usual argument for universal objects, the universal enveloping algebra is unique
(up to isomorphisms), and since it can be constructed as a quotient algebra of the tensor
algebra T(G) modulo the ideal generated by elements of the form x⊗ y− y⊗ x− [x, y] (which
guarantees that the quotient satisfies equation (3.29)), it exists. This justifies calling U the
universal enveloping algebra of the Lie algebra G and writing U(G) for the universal enveloping
algebra of a Lie algebra G.
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If the Lie algebra G is graded, then U(G) inherits some of that structure:

U(G)l := span

{
x1 · . . . · xk

∣∣∣∣∣ xi ∈ G, 0 ≤
∑

i

deg(xi) + k − 1 ≤ l

}
(3.30)

is a filtration on U(G) with the degree

deg(u) := min (l |u ∈ U(G)l) for u ∈ U(G) . (3.31)

From this definition, one can infer that the multiplication in U(G) is of degree +1 and the
commutator is of degree 0:

U(G)l ·U(G)l′ ⊂ U(G)l+l′+1 , (3.32)
[U(G)l,U(G)l′] ⊂ U(G)l+l′ . (3.33)

The fact that the two sides of equation (3.29) now have different degrees explains why we
have only equipped U(G) with a filtration instead of a gradation.

When considering the universal enveloping algebra of gh, note that the multiplication
is no longer the (commutative) shuffle product, but the non-commutative multiplication in
U(gh) with the property that the Lie bracket of g is mapped to the commutator.

If a basis of a Lie algebra is known, a basis of its universal enveloping algebra is given by
the Poincaré-Birkhoff-Witt theorem.

Theorem 3.3.3 (Poincaré-Birkhoff-Witt theorem). Let G be a Lie algebra with basis {xi}i∈I, where
I is a totally ordered index set. Then the set{

φ(xi1) · . . . · φ(xin) | i1 ≤ . . . ≤ in
}

(3.34)

is a basis of U(G).

Proof. See for instance [Hum72, section 17.4]. �

In particular, all monomials in U(G) can be reordered using equation (3.29), and the result
is independent of the sequence in which the different factors of a monomial are reordered.

3.3.3 Quantization of Poisson algebras

This shift from commutative to non-commutative situations is typical of quantization in
physics and can be formalized using the following notions. We continue following [BM11],
which adapts definitions and methods from [ES09, chapter 1].

Definition 3.3.4 (h-adic topology, topologically free module). 1. Let K be a field. We de-
note by K := K[[h]] (the ring of formal power series with coefficients inK in the variable
h). In this situation K is equipped with the h-adic norm defined by

||anhn + an+1hn+1 + . . . || := C−n (an , 0) , (3.35)

where C > 1 is any fixed constant. K is complete with respect to the h-adic norm, and
the topology defined by the h-adic norm is called the h-adic topology.
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2. Let V be a vector space over a field K. Define

V[[h]] :=

{
∞∑

n=0

vnhn

∣∣∣∣∣ vn ∈ V

}
. (3.36)

Now, the h-adic norm and topology on V[[h]] can be defined analogously to 1.

3. A topological K-module (i.e. a K-module with a topology such that addition and scalar
multiplication are continuous) that is isomorphic to V[[h]] for some K-vector space V
is called a topologically free K-module.

Definition 3.3.5 (deformation algebra, deformation). 1. A topologically free K-algebra, i.e.
a topologically free K-module A with a K-bilinear map A×A→ A such that A with this
map is an associative algebra is called a deformation algebra.

2. Let Ac be an associative K-algebra. A deformation algebra A such that Ac = A/hA is
called deformation of Ac.

Definition 3.3.6 (quantization, quasiclassical limit). Let Ac be an associative commutative
K-algebra with deformation algebra A. Let f , g ∈ Ac with arbitrary liftings f̂ , ĝ ∈ A. Because
Ac is commutative, the commutator on Ac identically vanishes, but one can recover a similar
structure on Ac from A: define{

f , g
}

:=
1
h

(
f̂ · ĝ − ĝ · f̂

)
(mod h) ∈ Ac , (3.37)

where · is the (not necessarily commutative) multiplication on A. Then (Ac, { , }) is a Poisson
algebra, called the quasiclassical limit of A and A is called a quantization of Ac.

These definitions encode the physical concept that a formal parameter h is introduced in
such a way that in the quasiclassical limit (in the informal sense of) h→ 0, the commutators
(having h as a factor) vanish. Such a vanishing of commutators in the quasiclassical limit
is typical for the relationship between physical quantum observables and their classical
counterparts.

As the elements of U(g)l can be understood as the non-commutative polynomials of
degree l, the elements of S(g)l are the commutative polynomials of degree l, and because
the commutators are of lower degree with respect to the filtration, we obtain the quotient
U(g)l/U(g)l−1 � S(g)l. We will use Ac := S(g), with the same filtration. Ac not only carries the
multiplication from S(g), but also the derivative extension of the Lie bracket from g, making
Ac a Poisson algebra.

To construct a quantization of Ac, we consider the topologically free algebra

Ag :=
(⊕̂

l≥0
hlU(gh)l

)
[[h]]

:=

∑
i∈N0

hivi

∣∣∣∣∣∣vi ∈ U(gh) s.t. i ≥ deg(vi)∀i ∈N0, i − deg(vi)
i→∞
→ ∞

 (3.38)

and the map ϕ : Ag → Ac, ∑
hivi 7→

∞∑
j=0

p ◦ lead j(v j) , (3.39)
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where lead j(v j) is the leading order contribution of v j, i.e. the contribution with degree equal
to j, and p is the projection Ag → Ac. ϕ is well defined because the sum on the right hand
side is actually finite since deg(v j) < j for almost all j by defining equation (3.38). Now, as
desired,Ag is a quantization of Ac because by construction kerϕ = hAg.

Given an element X ∈ Al
c, a lifting inAg of the form

(hlX) + h(hl−1Yl−1) + . . . + hl−1(hY1) + hl(Y0)

with Yl′ ∈ U(gh)l′ is called a quantum counterpart for X while the summands from lower strata
are called the quantum corrections of X.

3.3.4 Construction of the Meusburger-Rehren quantization

To construct the derivation δ intended to have a quantized algebra of invariants as its kernel
(cf. p.78), we begin with an action.

Lemma 3.3.7.

The map

g× i−1 → i−1 ,

(e(x), c) 7→ e(x).c :=

{
gacb − gbca if x = ab with a, b ∈ X
0 if x < X2 (3.40)

defines an action of g on i−1 (by defining equation 3.10 the one-letter words in Sh(X)).

Proof. This is [MR03][Proposition 1 part 1]. �

This action now defines the semidirect product gh o i−1, the universal enveloping algebra
of which will be the codomain of the desired derivation δ.

Theorem 3.3.8. 1. The linear map

δ : gh → U(gh o i−1) ,

e(x1 . . . xn) 7→

{
[vx1 , e(x2 . . . xn)]+ − [vxn , e(x1 . . . xn−1)]+ if n ≥ 2
0 else

(3.41)

(where v0, . . . , vd−1 are basis vectors of i−1 and [x, y]+ := 1
2

(
xy + yx

)
is the anticommutator)

is a derivation of Lie algebras.

2. Its (unique) extension δ : U(gh) → U(gh o i−1) to the universal enveloping algebra U(gh) is a
derivation with the property that

im Z ◦ e(2)
⊂ ker δ ⊂ U(gh) . (3.42)

Proof. 1. See [BM11][Proposition 12]. This statement as well as the proof is based on
[MR03][Proposition 1 part 1] but uses a slightly different derivation.

2. This is covered by [BM11][Proposition 12] as well.
�
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Remark 3.3.9. Note that the above theorem 3.3.8 is weaker than its classical analogue 3.3.1
in that only the quadratic quantum invariants are contained in the kernel of the derivation δ
while all classical invariants are in the kernel of ∂, so that the postulate formulated in equation
(3.28) is not met in its generality. In fact, Meusburger [Meu01][p. 63] demonstrated that the
invariant (of homogeneity degree 3) Z(e(3)(001101)) does not lie in the kernel of δ.

Corollary 3.3.10 (quantization). We can assign to each quadratic invariant Z(e(2)(x1 . . . xn)) ∈ hn−3

a quantized invariant

Ẑ(2)(x1 . . . xn) := hn−3Z

(
1
2

n−1∑
i=1

e(x1 . . . xi)e(xi+1 . . . xn)

)
∈ hn−3U(hh)n−3 .

By theorem 3.3.8, Ẑ(2)(x) ∈ ker δ ⊂ Ag for any word x ∈ X∗. If the quadratic generation hypothesis
(conjecture 3.2.9) is true, then ϕ maps ker δ surjectively to h and

ĥ := ker δ (3.43)

is a quantization of h.

This is the main result (Proposition 4) of [MR03] as it was reformulated in [BM11]. Fur-
thermore, Meusburger proved some correspondences between ĥ and h: the subalgebraU and
the abelian subalgebra a have quantized analoga Û and â respectively, and like h, its quantum
analogon ĥ is equipped with an action of so(3,C) (for d = 4), the parity operation defined by
exchanging corresponding plusses and minusses and complex conjugation [Meu01, Section
6.4]. It was however demonstrated by G. Handrich, C. Paufler, J. B. Tausk and M. Walter
that the quantum analogon ĥ = â n Û of conjecture 3.2.8 is false [HPTW02, p. 4].

Example 3.3.11. We construct a quantized lifting [L̂2, L̂1] ∈ ĥ of the invariant {L2,L1} ∈ h. This
is done in detail because it serves as part of a motivation example of the upcoming conjecture
3.4.2. We begin by constructing quantized liftings of the invariants L1 and L2, arranging
products to be ascending with respect to the DegLex order with order of letters given by
equation (1.67):

L1 = −
√

2Z(2)
0−++

= −
√

2 (me (−++) − e (0+) e (−+))

7→ −

√

2 (me (−++) − [e (0+) , e (−+)]+)

= −
√

2
(

me (−++) − e (0+) e (−+) +
1
2

[e (0+) , e (−+)]
)

= −
√

2
(

me (−++) − e (0+) e (−+) −
α
2

he (0+)
)

=: L̂1 .

Since the quantum corrections arise from reordering factors of the non-commutative prod-
uct in U(gh), their value depends on the order on g that is imposed on products. In the
example, if the order of e(0+) and e(−+) is reversed, the quantum correction changes its sign.
Analogously, we calculate (here, the commutator vanishes)

L2 =Z
(2)
00++

= 2me (0++) − e (0+) e (0+)

7→ 2me (0++) − e (0+) e (0+) =: L̂2 .

82



3.4. Leading terms of exceptional elements

We can now calculate the commutator

[L̂2, L̂1] = −
√

2

(
[2me (0++) , me (−++)] + [2me (0++) , −e (0+) e (−+)]

+
[
2me (0++) , −

α
2

he (0+)
]

+ [−e (0+) e (0+) , me (−++)]

+ [−e (0+) e (0+) , −e (0+) e (−+)] +
[
−e (0+) e (0+) , −

α
2

he (0+)
])

= −
√

2
(
− 6αm2e (0+++) − 2α e (0+) e (0+) e (0+)

+ 5αme (0+)α e(0++) + αme(0++)e (0+)
)

= −
√

2α
(
− 6m2e (0+++) + 6me (0+) e(0++)

− h[e (0+) , e(0++)] − 2e (0+) e (0+) e (0+)
)

= 2
√

2α
(
3m2e (0+++) − 3me (0+) e(0++) + e (0+) e (0+) e (0+)

)
.

Note that the quantum correction is zero again because the underlined bracket vanishes.

3.4 Leading terms of exceptional elements

After the above review of the basic background of quantization, this section introduces some
new results on the leading terms of some exceptional elements. As it was mentioned before,
an exceptional element L gl in the Poisson algebra of invariants h cannot be generated from
invariants h, h′ of lower degree because if it could be generated that way, the leading term of
lead L gl could be written as a Lie bracket of leading terms of invariants h and h′, which leads
to a contradiction [PR86, p. 622]. While the argument itself does not exclude the possibility
that lead L gl could be written as a Lie bracket of any two Euler-Lyndon elements, it leaves
open the question whether this is possible. If the answer were no, then gwould not be finitely
generated because then there would be an infinite number of elements lead L gl that could
not be rewritten as Lie brackets.

Surprisingly, e(−000+) = lead L g3 , was found in quantum corrections in the stratum ĥ5
of the quantum algebra of invariants. A calculation indicating this was first performed by
Meusburger in the course of her Diplomarbeit and later verified in the Diplomarbeit [Han09].
Since the quantum correction was calculated using the Pohlmeyer-Rehren Lie algebra g, this
points towards a positive answer to the question given above.

Example 3.4.1. In order to understand the occurrence of lead L g3 better, we calculate the
contributions of the quantum lifting [[L̂2, L̂1], [L̂−2, L̂−1]]+ of the invariant {L2,L1}{L−2,L−1}

to lead L g3 . The term “contribution” to lead L g3 is a shorthand for the projection onto the
subspace of ĥ spanned by elements that have a factor of an Euler word with the same letter
content as lead L g3 , i.e. three zeroes and one plus and minus each. In example 3.3.11, we
calculated

[L̂2, L̂1] = 2
√

2α
(
3m2e (0+++) − 3me (0+) e(0++) + e (0+) e (0+) e (0+)

)
.
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Analogously, we calculate

[L̂−2, L̂−1] = 2
√

2α
(
3m2e (0−−−) − 3me (0−) e(0−−) + e (0−) e (0−) e (0−)

)
.

The anticommutator of these terms can be rewritten using linearity as a sum of nine anti-
commutators of the individual summands.

• The anticommutator 72α2 m4[e(0+++), e(0−−−)]+ has Euler elements with two zeroes
total, so its quantum correction cannot contribute to lead L g3 .

• First note that the Euler words in the anticommutator 72α2 m3[e(0+++), e(0−)e(0−−)]+

contain only three zeroes in total. So only the [·, ·]± part of the decomposition
[·, ·] = [·, ·]± + [·, ·]0 of the bracket obtained from reordering the noncommutative fac-
tors can contribute to lead L g3 and will henceforth be considered because [·, ·]0 reduces
the number of zeroes. Now, using Leibniz’s rule on the bracket, we obtain

36α2 m3[e(0+++), e(0−)e(0−−)]±
= 36α2 m3 ([e(0+++), e(0−)]±e(0−−) + e(0−)[e(0+++), e(0−−)]±) .

Observe that the bracket in the right hand summand contains only two zeroes and
therefore cannot contribute to lead L g3 . The remaining term is

36α2 m3[e(0+++), e(0−)]±e(0−−)

= − 36α3 m3he(00++)e(0−−)

= − 36α3 m3h (e(0−−)e(00++) + [e(0−−), e(00++)]) .

The first summand is in ascending order again, and the quantum correction stems from
the second summand. Because only three zeroes occur, its contribution to lead L g3 is
contained in

−36α3 m3h[e(0−−), e(00++)]± = 36α3 m3h2(e(000−+) + e(000+−) + e(00+0−)) .

• Analogously, the contribution of the quantum correction of the anticommutator
72α2 m3[e(0+)e(0++), e(0−−−)]+ to lead L g3 is

36α3 m3h2(e(000−+) + e(000+−) + e(00−0+)) .

• Applying Leibniz’s rule to brackets arising in the reordering of the remaining six anti-
commutators produces Euler elements that cannot contribute to lead L g3 ∈ g3, because
they are of degree l ≤ 2.

We have shown that the sum of the contributions to lead L g3 from all anticommutators is

36α3 m3h2(2e(000−+) + 2e(000+−) + e(00+0−) + e(00−0+)) = 36α3 m3h2e(−000+) ,

which actually is a multiple of lead L g3 .
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A question suggesting itself in the context of the discovery of lead L g3 in a quantum
correction is if leading terms of other exceptional elements can also be found in quantum
corrections of elements of higher degree. Being the only known obstacle, this would be a
necessary condition for finite generation of the quantum algebra of invariants ĥ.

While a general statement for all L gl could not be reached, we do have some tentative
results that lead to a general conjecture.

Conjecture 3.4.2. The quantum corrections of the following terms contain the leading term
of the exceptional elements L gl for all l = 2n + 3, n ∈N0:

{. . . {{L−2,L−1},L0}, . . . ,L0}︸         ︷︷         ︸
n

· {. . . {{L2,L1},L0}, . . . ,L0}︸         ︷︷         ︸
n

∈ h2n+5 . (3.44)

This conjecture is supported by two observations:

1. The conjecture has been verified in Mathematica up to l = 9. For higher l, the compu-
tation was not possible due to lack of RAM.

2. In the rest frame, the Li are sums of terms of the form me(abc) and e(ab)e(cd), where
a, b, c, d ∈ X and by linearity, the product above can be expanded into summands
that inherit only one of those terms from each Li. The sum can then be developed
into a linear combination of linearly independent vectors including lead L gl . Finding
the coefficient of lead L gl is a straightforward but laborious calculation (in essence a
generalized version of example 3.4.1) described in appendix C. A closed term for the
coefficient could be found, but being composed of a large number of summations,
binomial coefficients, powers of −1 and Kronecker delta functions all with arguments
depending on each other, it was so unwieldy that it resisted attempts to be proven to
be nonzero in the case of arbitrary l.

We now leave the question of finding leading terms of exceptional elements in quantum
corrections in ĥ and conclude the chapter with a positive answer to the question stated at the
beginning of this section if is possible to generate the leading term of each of the exceptional
elements L gl in g.

Proposition 3.4.3. The leading terms of the exceptional elements L gl with l = 2n + 1 and n ∈ N+

can be generated the following way:

lead L gl = e(−0l+2+) = −
1
2l

[e(0−0+), e(−0l+)] + z , (3.45)

where z is a linear combination of Euler-Lyndon elements with l zeroes.

Proof. Because of the construction of the Lie algebras [·, ·]± and [·, ·]0 in proposition 1.8.1,

[e(0−0+), e(−0l+)] = [e(0−0+), e(−0l+)]± + [e(0−0+), e(−0l+)]0 .

We begin by noting that the latter summand, which we call 2lz, is a linear combination of
Euler-Lyndon elements with l zeroes because the Lie bracket [·, ·]0 diminishes the number of
zeroes by two.
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Considering the fact that l is odd, we calculate

[e(0 − 0+), e(−0l+)]±

= − 2 ·
(

(−1)4+4+l+2e
(

0
+00l
−

)
+ (−1)4+4+1e(0 − 0l+1+)

)
= 2 ·

(
e
(

0 + 0l+1
−

)
+ 2e

(
+0l+2

−

)
+ (−1)l+2+2−2e

(
0

+0l+1−

))
= 2 · (e

(
0 + 0l+1

−

)
+ 2e

(
+0l+2

−

)
− e
(

0 + 0l+1
−

)
− (l + 2)e

(
+0l+2

−

)
)

= − 2l · e
(

+0l+2
−

)
= − 2l · e

(
−0l+2+

)
.

�

It should be noted that this result seems to point in the direction of finite generation of
g, but it does not prove it because neither are the elements considered the only exceptional
elements in h nor is it clear if another infinite series of elements of g exists the entries of which
cannot be written as a Lie bracket of elements of g of lower degree.
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Chapter 4

Computational Applications of
Hall-Bases in Non-Free Graded Lie
Algebras

4.1 Motivation

This chapter is motivated by two related problems that arise when studying the Pohlmeyer-
Rehren Lie algebra g: the search for generators and a systematic exploration of the relations
between the multiple Lie brackets of those generators. We know the structure of g and its
strata gl as vector spaces and can calculate the Lie bracket on a basis of g by using formula
(1.54). We don’t however have a way to calculate the relations between multiple Lie brackets
of some set of possible generators directly, i.e. without reference to this basis. Regarding
generators of g, we have the following conjectures1:

Conjecture 4.1.1. g is finitely generated.

More specifically, for d ≥ 3 (in contrast to proposition 1.5.3)

Conjecture 4.1.2. The subalgebra g≥1 of the Pohlmeyer-Rehren Lie algebra g is generated by
a basis of its first stratum, g1.

Since the entirety of g1 is the direct sum of its irreducible g0-modules that in turn are the
orbits of their respective highest weight vectors under the action of g0 (a direct application
of theorem 2.3.3:1), the following conjecture would imply 4.1.2 although the number of
generators is lower:

Conjecture 4.1.3. g≥0 is generated by generators of g0 and the highest weight vectors in g1.

Computer algebra can be a useful tool insofar as it can be used to falsify specific candidates
for sets of generators. Since the number of elements of g that can be checked by direct
computation for linear dependence from multiple brackets is necessarily finite (and this set
of elements trivially generates itself), we cannot hope to falsify conjecture 4.1.1 this way. It
could, however, be possible to find counterexamples to conjectures 4.1.2 and 4.1.3 this way.

1Note that the restriction to g≥1 or g≥0 is mostly cosmetic as the stratum g−1 is central.
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4.2 The Philip Hall algorithm for free Lie algebras

A naive way to approach the problems lined out above is to consider all possible multiple
brackets of elements of the set of generators X. We can identify them with elements of the
free magma M(X). Now we can catalogue all the relations between elements of M(X), which
is a basis of the free algebra A(X). This is quite easy to implement on a computer, but it is
inefficient because it does not take the Lie structure of g into account, as will be explained
in more detail at the beginning of the next section. So let us consider the Lie structure. In
order to establish the notation that will be used here, let us review some basic definitions and
facts. The following definitions are taken from [dG00, chapter 7], which this section largely
follows except for the applications to the Pohlmeyer-Rehren Lie algebra.

4.2.1 Basic definitions

Definition 4.2.1 (free magma). Let X be a set. Then the set M(X) defined inductively by

1. X ⊂M(X) ,

2. if m,n ∈M(X), then also the ordered pair (m,n) ∈M(X)

is called the free magma over X. Elements of M(X) are called monomials.
The map · : M(X) ×M(X)→ M(X), m · n := (m,n) is known as the free (non-associative and (if
#X > 1) non-commutative) binary operation.
We also define the degree degH by degH x = 1 for all x ∈ X and degH(m,n) = degH m + degH n.
degH is a gradation on M(X), and in order to distinguish it from other gradations that will
be introduced later, we call it the monomial degree.

Definition 4.2.2 (free algebra). LetK be a field. Then define A(X) as the vector space spanned
over K by M(X). Extending the operation · from M(X) bilinearly to A(X) equips A(X) with
the structure of a (non-associative) algebra; A(X) is called the free algebra over X.
The degree is extended to A(X) by considering each element of A(X) as a linear combination of
monomials; the degree of an element of A(X) is the maximum of the degrees of the monomials
that occur with nonzero coefficient.

Definition 4.2.3 (free Lie algebra). Let ILie be the ideal of A(X) generated by the elements

(m,m), (m, (n, p)) + (n, (p,m)) + (p, (m,n))

for m,n, p ∈M(X). Then L(X) := A(X)/ILie is a Lie algebra, called the free Lie algebra over X.

Note that the inclusions ιM, ιA and projection π give rise to the canonical map

X
ιM↪→M(X)

ιA↪→ A(X) π
� L(X) (4.1)

that allows us to identify elements of X,M(X),A(X) with elements of L(X) as a shorthand.

The following basic theorem shows that any free Lie algebra can be understood as a
quotient of a free Lie algebra2.

2But not as a subalgebra, since every subalgebra of a free Lie algebra is free itself by the Shirshov-Witt theorem.
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Theorem 4.2.4. Let G be a Lie algebra generated by a subset X ⊂ G. Then

1. there is a surjective morphism φ : L(X)� G and

2. G � L(X)/I with the ideal I = kerφ.

Proof. See [dG00, Proposition 7.1.5 f.]. �

Remark 4.2.5. If all relations in I are homogeneous with respect to the monomial degree,
then L(X)/I is graded by monomial degree as well. Due to theorem 1.2.2:4, this applies to the
Pohlmeyer-Rehren Lie algebra g.

The above theorem 4.2.4 tells us that we can learn more about G by studying I, which a
large part of the remainder of this chapter will be concerned with. But before we do that, let
us spend the rest of this section reviewing information about the free Lie algebra L(X).

4.2.2 Hall sets

By construction of the free algebra, M(X) is a (K-linear) basis of A(X). Since L(X) = A(X)/ILie,
M(X) spans L(X) as well, but due to the relations introduced by the ideal ILie, the set M(X) is
not linearly independent in L(X).

Fortunately, the concept of Hall sets provides us with a family of subsets of π(M(X)) each
of which is linearly independent but still spans L(X).

Definition 4.2.6 (Hall set, Hall order). Let X be a set and let < be a total order on M(X). We
define the set H ⊂M(X) by

1. X ⊂ H ,

2. if h1, h2 ∈M(X) then (h1, h2) ∈ H iff h1, h2 ∈ H and

(a) h1 < h2 ,

(b) h2 ∈ X or h2 = (a, b) with a ≤ h1 .

If the order < satisfies (h1, h2) > h2 for all h1, h2 ∈ H such that (h1, h2) ∈ H, the order < is called
a Hall order and H (which is uniquely determined by <) is called the Hall set corresponding
to <.3

In chapter 1 we had introduced the concept of the word algebra, which is just another
term for the free associative (but non-commutative) algebraK〈X〉 over an alphabet X, spanned
by the set of words X∗. It is not very surprising that there is a canonical connection4 to the
concept of the free non-associative algebra A(X) over the same alphabet spanned by the set of
monomials M(X).

3Note that the order > is inverted compared to the notation in [dG00], but consistent with the notation in
[Ser65, p. 22]. This is done to maintain notational consistency with the degree of the Pohlmeyer-Rehren Lie
algebra as well as the more intuitive convention of (h1, h2) > h2 instead of (h1, h2) < h2 as a condition for a Hall
order. Several conventions for Hall sets that switch h1 and h2 or a and b exist, and due to the anticommutativity
of the Lie bracket, they are all equivalent in the sense that theorem 4.2.12 holds.

4Equivalently to the following definition (and similar to the definition of the free Lie algebra 4.2.3), the free
associative algebraK〈X〉 can be defined as the quotient algebra A(X)/I where I is the ideal generated by elements
of the form (a, (b, c)) − ((a, b), c) for a, b, c ∈M(X), and the extension of φ as the canonical projection.
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Definition 4.2.7 (foliage, Hall word). Consider the map ϕ : M(X)→ X∗ ⊂ K〈X〉 called foliage
defined by

ϕ(x) :=

{
x if x ∈ X
ϕ(x′) _ ϕ(x”) if x = (x′, x”) ∈M(X) \ X

. (4.2)

Simply put, the foliage removes the non-associative order in which monomials are composed,
turning them into (associative) words.

If H is a Hall set relative to <H and h ∈ H, then ϕ(h) is called a Hall word (relative to <H).
The foliage ϕ can be linearly extended to a map A(X)→ K〈X〉.

We continue our general discussion of Hall sets with three basic examples of Hall orders.

Example 4.2.8 (some Hall orders). Let m,n ∈M(X).

1. The foliage ϕ can be used to extend any order defined on X∗ to M(X). Some of them are
Hall orders. It is straightforward to show (cf. [dG00, lemma 7.8.4]) that the lexicographic
order, defined by

m <Lex n :⇔ ϕ(m) <Lex ϕ(n) (4.3)

is a Hall order.

2. Analogously the graded lexicographic order is extended to M(X):

m <DegLex n :⇔ ϕ(m) <DegLex ϕ(n) . (4.4)

3. <DegLex is a special case of the following fact that is easy to demonstrate as well: Any
order > on M(X) that satisfies

degH m > degH n⇒ m > n (4.5)

for all m,n in M(X) is a Hall order.

It is a useful fact that the set of Lyndon words, introduced in section 1.3, can be considered
a particular Hall set.

Theorem 4.2.9 (Lyndon words as a Hall basis). The Hall words relative to <Lex are exactly the
Lyndon words. ϕ|H is injective.

Proof. See [dG00, Chapter 7]. De Graaf defines ϕ(H) as the set of Lyndon words and proves
lemma 7.8.5, which states that they can be characterized by the property used to define them
in definition 1.3.2. He also gives an algorithm to compute the corresponding Hall element to
a Hall word. �

Since ϕ|H is a bijection between elements of the Hall set and Hall words, we will use
the terms synonymously, as the literature also frequently does. Its inverse ϕ|−1

H is called
bracketing.
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Remark 4.2.10. The fact that ϕ|H is bijective gives rise to an interesting question for the
Pohlmeyer-Rehren Lie algebra: If the Euler-Lyndon words are Hall words, can we find
generators x1, . . . , xd ∈ g such that the Lyndon word (y1 . . . yn) in any Euler-Lyndon word
e(y1 . . . yn) corresponds to a way to generate that Euler-Lyndon word in the following way:

e(y1 . . . yn) = zϕ|−1
H (xy1 . . . xyn) with z ∈ C ? (4.6)

The right hand side of this equation is a multiple Lie bracket of the elements xy1 . . . xyn where
the order is controlled by the property that it is a Hall word.

We begin exploring this question for d = 3. We also postulate that xi are compatible with
the magnetic quantum numbers in the following way: x+ ∈ g

1, x0 ∈ g
0, x− ∈ g−1 . If this

is the case, the magnetic quantum numbers on both sides of equation (4.6) automatically
match due to additivity of the magnetic quantum numbers (lemma 1.6.4). Otherwise, for the
same reason, the multiple Lie brackets on the right hand side have summands with magnetic
quantum numbers different from the left hand side that all have to vanish for every Hall word
on the left hand side.

Note that for n = 2, satisfying equation (4.6) is possible with

x0 = e(−+) , x± = e(0±)

(a calculation that also shows that for d = 3, g0 is isomorphic to sl2 by giving us the structure
constants).

However, for n = 1; the xi are fixed by equation (4.6) to be (up to complex constants)

x0 = e(0) , x± = e(±) ,

but these elements do not satisfy equation (4.6) for any n > 1 because they are in the center
of g so the right hand side would be zero. So, the initial question can be answered in the
negative.

But what if we exclude the central subalgebra g−1, in other words also presuppose n ≥ 2?
In general, we can not satisfy equation (4.6) for all n with homogeneous xi (with respect to
the usual gradation deg on g, cf. thm. 1.4.2:4) because then

deg x0 + 2 deg x+ = deg e(0++) = 1 = deg e(00+) = 2 deg x0 + deg x+

which is impossible to satisfy with xi ∈ N0. But as the following proposition shows, even
inhomogeneous xi cannot satisfy equation (4.6) for all n ≥ 2.

Proposition 4.2.11. There are no x0 ∈ g
0, x± ∈ g±1 such that equation (4.6) holds for all n ≥ 2.

Proof. We write x0, x+ in terms of the basis of g0 and g1 lined out in subsection 2.3.3:

x+ = a e + b 1v1 + c 2v1 + u , (4.7)

x0 = i 2h + j 1v0 + k 2v0 + w (4.8)

with coeffcients a, b, c, i, j, k ∈ C and remaining terms u,w ∈ g≥2. Postulate (4.6) implies the
equations (the complex coefficients z can be absorbed into the a, b, c, i, j, k)

[x0, x+] = e(0+) , (4.9)
[x+, [x0, x+]] = e(0++) . (4.10)
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Substituting the values for x0 and x+ from equation (4.9) and comparing the coefficients of
the Euler-Lyndon basis for degrees 0 and 1 (noting that all terms with u or v are of degree ≥
2), we obtain a system of equations which has the unique solution

a = i = 1 and b = c = j = k = 0 . (4.11)

Analogously, from equation (4.10), we can deduce

ak2 = 1 , (4.12)

in contradiction to the solution 4.11 of equation (4.9). �

Now that we have established Hall sets, it is time to introduce a very important application
of Hall bases that is eminently useful in the theory of free Lie algebras and also is the
foundation of the entire chapter.

Theorem 4.2.12. Let H be a Hall set in M(X). Then H is a (K-linear) basis of the free Lie algebra
L(X).

Proof. This is [dG00, Corollary 7.7.7]. �

In this situation, we refer to H as a Hall basis of L(X). An intuitive way to think about
the Hall set in light of this theorem is that condition 2a (for the Hall set, definition 4.2.6)
eliminates elements of M(X) that are linerarly dependent because of the alternativity of the
Lie bracket and condition 2b eliminates elements of M(X) that are linearly dependent because
of its Jacobi relation.

Before an algorithm providing a way to list the elements of a Hall set for practical
computations is given, we apply the previous two theorems to prove a classical result from
the theory of free Lie algebras originally proved by Witt in 1937 [Wit37][p. 152f]. It allows
us to calculate the dimension of the strata (with respect to the monomial degree) of the free
Lie algebra in terms of theorem 1.3.6.

Corollary 4.2.13 (Witt’s formula). Let X be a finite set. Then

dim L(X)l = NumLyndon(l, #X) =
1
l

∑
q|l

µ(q) (#X)l/q . (4.13)

Proof. The dimension of L(X)l is independent of the choice of basis. The Hall set relative to<lex
is a basis by theorem 4.2.12, and by theorem 4.2.9, the Hall words of degree l can be identified
with the Lyndon words of length l, the number of which is given by NumLyndon(l, #X). �

4.2.3 Hall’s algorithms

In order to actually use theorem 4.2.12 in practical applications, it is very helpful to be able to
list the elements of a Hall set. The following two algorithms accomplish this, up to a given
degree. In the sequel, we will impose the condition that X be a finite set so we can represent
it in a computer as a list of elements.
The definition of the Hall set (see 4.2.6) gives rise to the algorithm IsHallElement that allows
us to compute whether any given monomial h ∈ M(X) is a Hall element by iteratively con-
sidering all monomials h is composed of. The input is h ∈ M(X), the output is the (boolean)
truth value of h ∈ H where H is the Hall set determined by the Hall order <.
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Algorithm 1 IsHallElement

1: if h ∈ X then return true
2: Write h = (h′, h′′)
3: if IsHallElement(h′) or IsHallElement(h′′) is false then return false
4: if h′ ≥ h′′ then return false
5: if h′′ ∈ X then return true
6: Write h′′ = (a, b)
7: if a > h′ then return false
8: return true

start

h ∈ X?

Write
h = (h′, h′′)

IsHallElement(h′)∧
IsHallElement(h′′)?

h′ ≥ h′′?

h′′ ∈ X?

Write
h′′ = (a, b)

a > h′?

return
true

return
false

no

yes

no

no

yes

no

yes

yes

yesno

Figure 4.1: Flow chart of algorithm IsHallElement

Note that the algorithm IsHallElement can determine if a monomial is contained in H
without prior knowledge of H. But we can use it as part of the algorithm Hall to find all
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elements of a Hall set up to a given degree. Also note that free Lie algebras have infinite
dimension, so Hall sets are infinite (except in the case of the free Lie algebra generated by
one generator, which is abelian and therefore one-dimensional), and this is the best that can
be expected from an algorithm that terminates.

Algorithm 2 Hall

1: H := X
2: for l = 2 . . . lmax do
3: S :=

{
(h, g) ∈ H ×H | degH h + degH g = l and IsHallElement(h, g) = True

}
4: H := H ∪ S
5: return H

The input of this algorithm is the finite set X, the Hall order < on M(X) and a natural
number lmax > 1. The output is the set

H = {h ∈ H | degH h ≤ lmax}.

start

H := X,
l := 2

l = lmax +1?

S :={
(h, g) | degH h + degH g = l and
IsHallElement(h, g) = True

}

H := H ∪ S,
l := l + 1

return H

no

yes

Figure 4.2: Flow chart of algorithm Hall

Summing up the key notions of this section, the algorithm Hall allows us to compute all
elements up to a given degree lmax of the Hall set H that is basis of the free Lie algebra L(X)
generated by a finite set X relative to a given Hall order <.

94



4.3. Extension to non-free Lie algebras

Example 4.2.14. We compute the elements of degree lmax ≤ 5 of the free Lie algebra generated
by the elements L1, L2 using Hall order <H = DegLex. Note that the algorithm does not
specify an order in which the elements s ∈ S are computed.

l s ∈ S
2 [L1,L2]
3 [L1, [L1,L2]]
3 [L2, [L1,L2]]
4 [L1, [L1, [L1,L2]]]
4 [L2, [L1, [L1,L2]]]
4 [L2, [L2, [L1,L2]]]
5 [L1, [L1, [L1, [L1,L2]]]]
5 [L2, [L1, [L1, [L1,L2]]]]
5 [L2, [L2, [L1, [L1,L2]]]]
5 [L2, [L2, [L2, [L1,L2]]]]
5 [[L1,L2], [L1, [L1,L2]]]
5 [[L1,L2], [L2, [L1,L2]]]

4.3 Extension to non-free Lie algebras

Throughout this section, let G be a (not necessarily free) Lie algebra generated by a finite,
linearly independent set X ⊂ G and let <H be a Hall order on M(X).

Theorem 4.2.4 told us that there is an ideal I such that G � L(X)/I. After the brief
discussion of L(X) given above, let us discuss the ideal I. The underlying idea of this chapter
is to find all relations between multiple Lie brackets of generators which were identified with
M(X), a basis of A(X). So if we can compute, recursively by degree, all the terms of the form

φ ◦ π(x) ∈ G � L(X)/I, x ∈M(X)

and find all the relations between them, these relations will generate the ideal π−1(I), a
subideal of which is ILie (because π−1(0 ∈ I) = ILie). If, as in the motivating case of the
Pohlmeyer-Rehren Lie algebra, the structure of G as a vector space is known, this is very easy
to do in practice because the images under φ ◦ π of the monomials are just all the different
multiple Lie brackets of the generators. Since the number of monomials of a given monomial
degree grows exponentially with monomial degree,

#{x ∈M(X) | degH x = l} = (#X)l , (4.14)

it is not very practical to do this by hand. However if we do this computation naively, i.e.
without being able to recognize them (for instance using computer algebra systems), we will
keep finding the elements of ILie, the minimal relations of a Lie algebra, over and over again.
Since we know both the number elements of M(X) and the dimension of the free Lie algebra
L(X) (which is the largest Lie algebra generated by X) within the l-th stratum, a lower bound
of the number of these relations in the l-th stratum is given by

(#X)l
− NumLyndon(l, #X) .
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This can be a significant number in practical computations, and it is helpful to suppress the
elements of ILie in our computations. This can be done by computing the relations between
images of the elements of a Hall set over X instead of the images of all the elements of M(X).

Modifying the algorithm generating a Hall set given in the last section the following way
achieves this: as opposed to the free case, the set S is not linearly independent, but we can
use it to iteratively extend to a basis of the stratum Gl. In order to do this deterministically,
we presuppose a total order <S, called sorting order on M(X) and treat H and B as tuples
instead of sets (sometimes, we will bend the notation and use ∈ to refer to entries of tuples).
Thus we arrive at the following algorithm:

Algorithm 3 PHall

1: H := Sort(X, >S)
2: B := ()
3: for l = 2, . . . , lmax do
4: S :=

{
(h, g) ∈ H ×H | degH h + degH g = l and IsHallElement(h, g) = True

}
5: S := Sort(S, >S) . such that s1 <S s2 <S . . . <S sr
6: for i = 1, ..., r do
7: if si is linearly dependent of H (in G) then
8: B := B _ {si +

∑
j ci jhi j}with ci j ∈ C, hi j ∈ H such that si +

∑
j ci jhi j = 0 in G

9: else
10: H := H _ {si}

11: return (H,B)

The input is a set X generating G and a maximal monomial degree lmax to compute up to.
The outputs are ordered tuples H and B. To prepare for later generalizations, we will speak
of a gradation deg on G instead of the more specific degH which is used in PHall. Define the
subtuples of H and B

Hl :=
(
hi ∈ H

∣∣ deg h = l
)

i , (4.15)

H̄l :=
(
hi ∈ H

∣∣ deg h ≤ l
)

i , (4.16)

Bl :=
(
bi ∈ B

∣∣ deg b = l
)

i , (4.17)

B̄l :=
(
bi ∈ B

∣∣ deg b ≤ l
)

i . (4.18)

Note that the construction of the algorithm implies that Hk and Bk consist exactly of those
elements that are added to H and B respectively during the iteration of the for loop where
l = k. Furthermore, for PHall H1 = X, sorted by <S, and B1 = B0 = H0 = ().

To be able to formulate some key properties of this algorithm, we give two connected
definitions.

Definition 4.3.1 (leading monomial). 5 Let g ∈ A(X) and < a total order on M(X). Then the
leading monomial (or leading term) LM(g) is the largest (with respect to <) monomial occurring
in g with a nonzero coefficient.

Definition 4.3.2 (self-reducedness). 6 A set S ⊂ A(X) is called self-reduced if LM(g) is no factor
of LM(h) for g, h ∈ S with g , h.

5cf. [dG00, p. 261]
6cf. [dG00, 7.3.4 (p. 262 f.)]

96



4.3. Extension to non-free Lie algebras

start

H := X,
B := (),
k := 2

k = lmax+1?

S :={
(h, g) ∈ H × H | degH h +

degH g = k and
IsHallElement(h, g) = True

}
Sort S by <S s.t.

s1 <S s2 <S . . . <S sr

i := 1

si lin. dep.
of H?

B := B _ {si +
∑

j ci jhi j}

with ci j ∈ C, hi j ∈ H
s.t. si +

∑
j ci jhi j = 0

H :=
H _ {si}

i := i + 1

i = r + 1?

k := k + 1

return
(H, B)

no

yes

noyes

noyes

Figure 4.3: Flow chart of algorithm PHall
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Theorem 4.3.3 (properties of PHall). Designate7 the ideals of L(X) generated by Bl as Il, as well
as the ideal generated by B̄l as Īl and define the vector spaces

Ll := {x ∈ L(X)/Īl|deg x = l}, L̄l :=
l⊕

i=0

Li. (4.19)

and

Ḡl :=
l⊕

i=0

Gi . (4.20)

Then:

1. We have the following commutative diagram of linear maps (in fact the maps ϕl are epimor-
phisms of Lie algebras):

L(X)
ϕ0
// // L(X)/Ī0

ϕ1
// // L(X)/Ī1

ϕ2
// // L(X)/Ī2

ϕ3
// // . . .

L̄0
� � ψ1

//

?�
∪

OO

L̄1
� � ψ2

//

?�
∪

OO

L̄2
� � ψ3

//

?�
∪

OO

. . .

Ḡ0
� � ⊂ //
?�

OOOO

Ḡ1
� � ⊂ //
?�

OOOO

Ḡ2
� � ⊂ //
?�

OOOO

. . .

.

(4.21)

Use the notation ϕ̄l : = ϕl ◦ ϕl−1 ◦ . . . ◦ ϕ1 ◦ ϕ0.

2. Hl and Bl are linearly independent tuples of elements of L(X).

3. ϕ̄lHl is a basis of Ll,

4. B is self-reduced (in the sense of 4.3.2).

5. Both H and B are in nondescenting order with respect to deg. Hl and Bl are in ascending order
with respect to <S. In particular, if <S satisfies

deg m > deg n⇒ m >S n , (4.22)

then H and B are in ascending order with respect to <S as well.

6. The algorithm terminates.

Proof. 1. ϕ0 is the canonical projection. For all l ∈ N+, because Il+1 = Īl+1/Īl, there is
equality in the middle of

L(X)/Īl
πl� (L(X)/Īl) / Il+1 = (L(X)/Īl) / (Īl+1/Īl)

νl↪→→ L(X)/Īl+1 ,

7Note that for PHall, as opposed to variations of this algorithm to be introduced later, B0 = {}, which implies
I0 = 0, L̄ = 0 and Ḡ0 = 0, so the first column of the commutative diagram is trivial.
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where πl are the canonical projections and νl are the natural isomorphisms arising from
the second isomorphism theorem for Lie algebras; their composition ϕl := νl ◦ πl is
the required epimorphism of Lie algebras.

Since deg Il+1 ≥ deg Bl+1 = l+1 and deg L̄l ≤ l, we conclude that the canonical projection
π̄l : L̄l � L̄l/Il+1 is actually an isomorphism, and for all l ∈N+ setψl := ῑl ◦ π̄

−1
l to be the

composition of their inverses and the inclusions ῑl : {x ∈ L(X)/Īl+1|deg x ≤ l} ↪→ L̄l+1.
By this construction, ψl = ϕl|L̄l

(except for different codomains) for all l ∈ N+, so the
upper squares of the diagram commute.

The algorithm maps the basis elements of Ḡl to all the basis elements of L̄l (achieving this
under different preconditions is the reason several variants of PHall will be introduced
in the sequel), so the maps τl are isomorphisms of vector spaces for all l ∈ N0, and the
lower squares of the diagrams commute because the degree is conserved.

2. This follows from the fact that in each step, Hl and Bl are disjunct subtuples of S, and S
is a basis of {g ∈ L(X) | deg g = l}.

3. Follows from that fact that the elements of H are selected by the if condition in step 7
so that their images under ϕ̄l are linearly independent.

4. Let b ∈ B. This implies LM(b) = si in some iteration of the loop over l. If we factor
si = [h, g], then h, g ∈ H. But leading monomials of elements of B are not contained in
H.

5. Sorting by deg follows from the fact that the algorithm uses the degree as its iteration
variable. Sorting by >S is implied by this and condition (4.22) (for elements of different
degrees) and the sorting of S by >S in step 5 (for elements of the same degree).

6. For each k, S is finite, so there are only finitely many steps to take.
�

Since these properties of the algorithm PHall and its variations are central to this chapter,
we introduce a corresponding definition:

Definition 4.3.4 (pseudo-Hall-basis). Let G be a graded Lie algebra generated by the set X. A
tuple (H,B) with H ⊂M(X) ⊂ L(X) and B ⊂ L(X) with properties 1) through 4) of the previous
theorem is called a pseudo-Hall-basis of L(X)/Īlmax , or, more colloquially, of G up to degree lmax.

Corollary 4.3.5. Obviously, PHall(X, lmax) is a pseudo-Hall-basis of G up to degree lmax, justifying
the algorithm’s name.

Remark 4.3.6. The order >S used in step 5 determines the choice of the bases Hl of Ll, and
therefore it also determines the elements that will be considered as basis elements in later
steps. An obvious possible choice for >S is the Hall order >H. An minor advantage of using
>S =>H is that elements (h′, h′′) ∈M(X) with h′ ≤ h′′ (that do not need to be considered for S
because they are exactly those that fail the test in step 3 of IsHallElement without changing
H) can be omitted in the computation of S, which means that step 3 of IsHallElement can be
omitted as well.
Note that any order > that satisfies degH m > degH n⇒ m > n is a Hall order (this is example
4.2.8:3). In other words, any sorting of S in each step of the algorithm can be produced by
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choosing a corresponding Hall order. But since the Hall order also determines which one
of the elements of M(X) whose images in G are linearly dependant due to alternativity and
Jacobi identity are suppressed, a user of this algorithm might have reasons to choose >S,>H
for certain applications.

Remark 4.3.7. Note that Bl is not a linear basis of Īl∩Gl. Such a basis could be found by using
a the intersection of Gl with a Hall set of L(X) instead of S in the algorithm. But by design of
the algorithm PHall, S is linearly independent in L(X)/B̄l−1, so it can contain fewer elements.

We can try to minimize the number of elements #S the following way. Depending on
<H, different Hall words can be subwords of different numbers of Hall words of a given –
higher – monomial degree. Therefore, for a given degree l, finding a basis of L(X)/Īl (which
is controlled by <S) consisting of Hall words that are subwords of few longer Hall words
means that more relations between the elements of L(X) are already contained in the ideal Īl
generated by B̄l. This in turn reduces #S, and with it size of the output of PHall as well as
the computational cost.

Of course, this reduction is not necessarily the most important objective one follows. It is
also possible to choose <S and <H in such a way that H and B have other desired properties.
An example for different choices of <S will be given below in example 4.4.5.

Remark 4.3.8. B is computed by the algorithm PHall, but it is not used as an input anywhere
within it. So if the relations in G are not of concern for our computation, solving the equation
in step 8 for coefficients ci j can be omitted. Since this calculation is more computationally
expensive than simply checking for linear independence, this can save a considerable amount
of time. One example of a computation where only H is important is a check if some finite
subset X ∈ G generates G when a formula for dim Gl is known. If dim Gl = #Hl for all
l = 1, . . . , lmax, then X generates G up to stratum lmax (more formally, X generates the Lie
algebra L(X)/Īlmax , whose linear subspace L̄lmax is isomorphic to Ḡlmax as a vector space).

Remark 4.3.9. In practice, a major part of the actual running time of the algorithm is spent
on the linear algebra operations in steps 7 and 8 because the dimensions of the vector spaces
spanned by H,B can be quite large (an upper limit is given by Witt’s formula 4.2.13, which
expresses the dimension in the free case). If it is known that no relations can exist between
certain elements of G, S can be split into smaller subsets on which the linear operations can,
depending on the problem, be significantly faster. In practice, it is useful to compute Bl in
a separate step after the corresponding Hl have been computed because this way, only a
single matrix has to be inverted, and all other matrix operations are just multiplications. See
appendix A.3.2 for a practical implementation.

Example 4.3.10. If all relations in G are homogeneous, in step 7 of the algorithm, only linear
independence of Si from Hl := {h ∈ H | deg h = l} (instead of H) has to be checked.

Example 4.3.11 (PHall in free Lie algebras). In the case of a free Lie algebra, the entire set S is
linearly independent by theorem 4.2.12, so the check in step 7 can be omitted. The output H
is the set of all Hall elements up to degree lmax, and B remains empty throughout the entire
algorithm. Removing the now reduntant parts of PHall, we obtain Hall, which in this sense
is a special case of PHall.

To conclude this section, we give an example of the results of PHall, which can be
generalized.
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Example 4.3.12 (PHall in sl2). Consider the Lie algebra sl2 with Chevalley generators x, y, h.
Let >H and >S be DegLex and lmax ≥ 2. In step l = 2, the algorithm produces
S = ([y, x], [h, x]) [h, y]), which are all linearly dependent of x, y, h, to be more precise

B2 = ([y, x] − h, [h, x] − 2x, [h, y] + 2y) .

Further, Hl = () for l > 1 and Bl = () for l > 2, so H = (x, y, h) and B = B2 for the following
general reason:

Remark 4.3.13 (PHall in finite dimensional Lie algebras). For any finite-dimensional Lie
algebra G, we can always find a lmax,0 large enough such that in the algorithm PHall, the
set H̄lmax,0 spans all of G (otherwise we would have infinitely many elements of H which are
linearly independent). This implies Hl = {} for l > lmax,0. Note that since elements of S are
Lie brackets of elements of H, the list S remains empty for any l > 2lmax,0, so we also have
Bl = {} for l > 2lmax,0.

This also means that in the case of a finite-dimensional Lie algebra of known dimension,
we can replace the exit condition of the loop over l of the algorithm PHall by a check if
#H = dim G, noting down lmax,0 := l, and continuing until l = min(lmax, 2lmax,0). An advan-
tage of this is that the computer will never go through more iterations of the loop in PHall
than necessary, at the cost of introducing another slightly altered variant of the Hall algorithm.

Remark 4.3.14 (Hall sets in Happle’swork on the Poisson algebra of invariant charges). The
idea of using Hall sets this way to find the relations in a non-free lie algebra suggests itself.
Hall sets have even been used in the narrow context of the Poisson algebra h of invariants of
the Nambu-Goto string (cf. 3.2.2). A major part of Happle’s doctoral dissertation about this
Poisson algebra [Hap93] consisted in using a method that contained a similar approach to
find all the relations in the Poisson algebra of invariant charges for d = 3 up to l = 5.

Following conjecture 3.2.8 that hm = anU, Happleuses as his generators a set of generators
of the Poisson subalgebra U (given in detail in remark 3.2.10, namely the element Q, which
is a basis of the one-dimensional stratum hm 0, and the basis elements Li, i = −2,−1, 0, 1, 2 of
hm 1) and the exceptional element L g3 ∈ h3, which is the only exceptional element that has
relations of degree ≤ 5.

Due to the Leibniz identity, all elements of a Poisson algebra can be written as sums of
products of Poisson brackets of the Poisson algebra’s generators.

Similarly to the algorithms in this section, Happle’s general idea is to use the fact that
the Hall words of these generators are a basis of all their multiple Poisson brackets (this is
theorem 4.2.12). One can then calculate all the different products of these Hall words; due to
commutativity of the product, one can write them down in a standard order (Happle uses
DegLex) and thus obtain a set spanning h.

Again similar to all the different versions of the Hall algorithm given in this thesis, one
can now choose a set of linearly independent products of Hall words and express all other
products of Hall words as linear combinations (Happle uses a modification of the Jordan
algorithm [Hap93, p. 160f]). The relations that are not contained in the ideal generated by
the relations of lower strata are called the “new relations”.

In comparison, Happle’s problem of finding all relations of generators in the Poisson
algebra is more complicated than the problem considered in this thesis of finding the relations
of generators of a Lie algebra (i.e. there is no product beyond the Lie bracket), which is why
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Chapter 4. Hall-Bases in Non-Free Graded Lie Algebras

the Hall basis is not given a particularly prominent role in Happle’s thesis. In particular, not
much consideration was given to the role the Hall order plays in that thesis, or which ones of
the linearly dependent elements of the Hall basis to choose for the continuing computations
(which is treated herein by the introduction of the sorting order <S).

In addition, the special case of the Poisson algebra of invariants for d = 3 considered
by Happle allows for some significant simplifications which only have an analogue for the
Pohlmeyer-Rehren Lie algebra for d = 2 that was not considered here:

• By construction, all multiple Lie brackets of the generators used by Happle are eigen-
vectors of adjunction of Q (the magnetic quantum number being the corresponding
eigenvalue), so a Hall word of the form [Q, H] where H is another Hall word of the
generators is linearly dependent of H. Happle presupposes these relations and does
not use Hall words containing Q other than Q itself (as a Hall word of length 1).

Happle can also consider exceptional elements separately (cf. [Hap93, p. 66]). With
these exceptions, all generators are of degree l = 1. In other words, their degree is equal
to their monomial degree, and Happle does not have a reason to consider any other
cases, as it is done in sections 4.4 and 4.5.

• Analogous to g, the Poisson algebra of invariants hm, taken as a Lie algebra, is graded
and can be decomposed into multiplets, which are irreducible modules of the stratum
hm 0, which in turn is isomorphic to so(d − 1,C) (note the difference to g0, which is
isomorphic to so(d,C)).

However, another consequence of Happle’s precondition of d = 3 is that h0 is one-
dimensional, and so are all its irreducible modules (there are no ladder operators). So
no interesting multiplet structure exists for d = 3, and Happle has no reason to give
special consideration to generators of degree 0 like the ladder operators, as it is done
in 4.5.

Furthermore, there is no clear concisive account known to the author of this thesis of
concrete algorithms in the general context of ideals in Lie algebras, which was a further
motivation for writing this chapter.

Remark 4.3.15 (self-reducedness and Gröbner bases). By theorem 4.3.3, the algorithm PHall
finds self-reduced sets B̄k generating the ideals Īk.

In the general situation of a subset G ∈ L(X) such that G generates an ideal I, we call G a
Gröbner basis of I if for all f ∈ I, there is a g ∈ G such that LM(g) is a factor of LM( f ).8 Gröbner
bases are an important tool in the field of computational algebra. For instance, they allow to
efficiently compute if two elements f , g ∈ L(X) are identical modulo to I (this is sometimes
called the word problem).

A theorem due to Shirshov (see [dG00, 7.10.2]) leads to an explicit criterion ([dG00,
7.10.4]) for the conditions under which a self-reduced set generating an ideal is a Gröbner
basis. However, in the case of infinite-dimensional Lie algebras such as the Pohlmeyer-
Rehren Lie algebra that this thesis is focused on, this criterion cannot be checked by explicit
computations (that could be done by computer algebra) in finite time.

8Definition taken from [dG00, 7.10], also see [Ufn98] for a discussion of Gröbner bases in noncommutative
algebras.
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4.3. Extension to non-free Lie algebras

De Graaf also gives an algorithm [dG00, GröbnerBasis, p. 297] that finds a Gröbner
basis of an ideal generated by a finite set.

Finally, in the case of the Pohlmeyer-Rehren Lie algebra, even if a generating set H̄l of
one of the ideals Īl could be shown to be a Gröbner basis, H̄l would not be a generating set
of Il+1, much less of Īl, because a comparison of dimensions using theorem 1.3.6 shows that
for each l, relations contained in Il+1 ⊂ Īl+1 but not contained in Īl must exist. Therefore, this
avenue of research has not been pursued further.

Before we apply the algorithm to the motivating Pohlmeyer-Rehren Lie algebra, we can
consider a much simpler infinite-dimensional Lie algebra, the Witt algebra, to provide some
intuitions.

Definition 4.3.16 (Witt algebra). The linear span of the elements Ln, n ∈ Z over C with the
bracket

[Lm, Ln] := (m − n)Lm+n (4.23)

is a Lie algebra, called the Witt algebra w. It is obviously Z-graded (by n), and its strata are
one-dimensional;

wn = C ·Ln . (4.24)

We can also consider subagebras of the Witt algebra that are generated by a finite set of
elements. For instance, one can easily show by induction over n (iteratively adjoining further
copies of L1 to L2) that the elements L1 and L2 generate the subalgebra of elements of positive
degree.

Example 4.3.17. We compute the first few steps of PHall for the subalgebra of w generated
by L1 and L2, using <H=<S= DegLex with L1 < L2 (cf. example 4.2.14).

k i si ∈ S (Hall element) si (standard basis) lin. dep. of H
2 1 [L1,L2] −L3 no
3 1 [L1, [L1,L2]] 2L4 no
3 2 [L2, [L1,L2]] L5 no
4 1 [L1, [L1, [L1,L2]]] −6L5 yes
4 2 [L2, [L1, [L1,L2]]] −4L6 no
4 3 [L2, [L2, [L1,L2]]] −3L7 no
5 1 [L2, [L1, [L1, [L1,L2]]]] 24L6 yes
5 2 [L2, [L2, [L1, [L1,L2]]]] 16L8 no
5 3 [L2, [L2, [L2, [L1,L2]]]] 15L9 no
5 4 [[L1,L2], [L1, [L1,L2]]] 2L7 yes
5 5 [[L1,L2], [L2, [L1,L2]]] 2L8 yes

Notice that in step k = 4, i = 1, we obtain the first relation, [L1, [L1, [L1,L2]]] + 6[L2, [L1,L2]] = 0.
A consequence of this is that the left summand is not an element of S. Since the right summand
has lower degree than the left one, this does not depend on <S. A further consequence of
this is that the word [L1, [L1, [L1, [L1,L2]]]] (while being a Hall word) is not an element of S.
Also notice that for k = 5, not only the order of the list S but also its contents depends on <S;
if we had used another order <S such that

[L2, [L2, [L1, [L1,L2]]]] >S [[L1,L2], [L2, [L1,L2]]] ,

then the element on the right hand side would have been included in S instead of the one on
the left hand side.
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4.3.1 Application to the Pohlmeyer-Rehren Lie algebra

Using the Mathematica module PHall given in appendix A.3.1, and setting

<H = <S = DegLex ,

the following results can be obtained.
For d = 3:

• Using as X the basis (of dimension 8) of g1 uniquely defined up to scalars by weight
and multiplet (cf. remark 2.3.17 for the concrete values used), the lists Hl and Bl show
the following growth up to the limit of computation within a few hours9:

l 2 3 4 5 6
#Hl 18 48 116 312 810
#Bl 10 66 216 571 1910
dim gl 18 48 116 312 810
tcomp[s] 0.032 0.99 21.0 547 21.7k
NumLyndon(l, 8) 28 168 1008 6552 43596

For reference dim gl, calculated by using theorem 1.3.6, as well as tcomp, the time to
compute the given iteration for l and NumLyndon(l, 8), the number of elements of a
Hall basis of degree l, are included.

• By comparing the lines giving #Hl and dim gl, we conclude that g1 generates g2, . . . , g6,
consistent with conjecture 4.1.2.

• The sets X \ {v} with v ∈ {2v2, 2v1, 2v−1, 2v−1
} do not generate g2, so a forteriori they do

not generate g.

• All other subsets of X containing seven elements generate g2.

For d = 4,

• Using as X the basis (of dimension 20) of g1 uniquely defined up to scalars by weight
and multiplet (cf. remark 2.3.17 for concrete values) , the algorithm performs as follows:

l 2 3 4 5
#Hl 60 204 670 2340
#Bl 130 757 2965 10014
dim gl 60 204 670 2340
tcomp[s] 0.84 42.6 18.1k 124k
NumLyndon(l, 20) 190 2660 39900 639996

• Again, the results are consistent with conjecture 4.1.2.

• Any subset of X containing at least 18 elements generates g2, but some subsets of X
containing 17 elements don’t.

9All runtime data taken on the same Intel Core i7-3770K (4 CPU cores with hyperthreading at 3.5 GHz) with
32 GiB of RAM running Linux.
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These findings illustrate why self-reducedness of B is an important property of the al-
gorithm: if we had begun by computing a Hall basis of L(X) and then found the relations
between them, NumLyndon(l, #X) elements would have had to be considered for extension
to a basis. In the case of d = 4, l = 5, this would have entailed more than 50 times as many
calculations as were needed using the algorithm PHall.

A similar consideration also indicates that we might be able to test the conjectures at
the beginning of this chapter for larger l if we use a smaller generating set than a basis of
g1. An obvious idea is to only use the highest (or lowest) weight vectors in g1 and enough
elements of g0 so that the entirety of g1 is generated. The rest of the chapter will deal with
modifications to the Philip Hall algorithm that are tailored to this objective.

4.4 Generation in order of an external, positive gradation

So far our algorithm has generated the elements of a pseudo-Hall-basis of a Lie algebra G
inductively with a loop using the monomial degree as its counter. This is straightforward
and convenient in some applications, but impractical in others:

• For instance, G might already be equipped with a different gradation, and we would
want our output to be exactly all elements of the Pseudo-Hall-basis up to a given
degree, sorted by degree (regarding that gradation).

• We might want to drop the restiction that #X, the number of generators, is finite. But
then, the number of brackets that have to be considered in the very first step (i.e. l = 2)
is infinite and the algorithm will never terminate. A strategy we could pursue here
would be to equip X with a gradation such that X is degreewise finite, so that there are
only finitely many generators of each degree that have to be considered within each
iteration of the loop corresponding to a degree.

Taking this into account, for this section let G be Lie algebra that is graded with a N+-
gradation dege and generated by a degreewise finite set X. We will call dege external gradation
in the sequel to distinguish it from the monomial degree degH. As before, let <S be a total
order on M(X) and <H be a Hall order on M(X).

Note that this implies that that G is degreewise finite dimensional, i.e. dim Gl < ∞ for all
l ∈ N+, because by theorem 4.2.4, G is a quotient algebra of the free Lie algebra L(X), which
has to be degreewise finite dimensional with respect to dege.

To modify the algorithm accordingly, two aspects have to be taken into consideration.

Remark 4.4.1. Since elements of X can have any degree now, instead of being considered
only once during the initialization (in step 1 of PHall), they need to be included in S in every
step of the iteration over l (which is done in step 4).

Remark 4.4.2. The requirement that dege is strictly positive implies

dege(m,n) = dege(m) + dege(n) > max(dege m + dege n) . (4.25)

This implies that in step l, the arguments of the Lie brackets considered for S are of strictly
lower degree than l, and, as can be shown by induction over l, are elements of H̄l−1. If this
condition is dropped, further modifications to the algorithm will have to be made as lined
out in the next section.
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Considering this, we obtain the following modified algorithm. The input are the set X
of generators of G and a maximal (external) degree lmax to compute up to. The output are
ordered tuples H and B.

start

H := (),
B := (),
l := 1

l = lmax +1?

S := {h ∈ X | dege(h) = l} ∪{
(h, g) ∈ H × H | dege(h) +

dege(g) = l and
IsHallElement(h, g) = True

}
Sort S by <S s.t.

s1 <S s2 <S . . . <S sr

i := 1

si lin. dep.
of H?

B := B _ {si +
∑

j ci jhi j}

with ci j ∈ C, hi j ∈ H
s.t. si +

∑
j ci jhi j = 0

H :=
H _ {si}

i := i + 1

i = r + 1?

l := l + 1

return
(H, B)

no

yes

noyes

noyes

Figure 4.4: Flow chart of algorithm PHallPosExtGrad
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Algorithm 4 PHallPosExtGrad

1: H := ()
2: B := ()
3: for l = 1, . . . , lmax do
4: S := {h ∈ X |dege(h) = l} ∪

{
(h, g) ∈ H × H | dege(h) + dege(g) = l and

IsHallElement(h, g) = True
}

5: S := Sort(S, >S) . such that s1 <S s2 <S . . . <S sr
6: for i = 1, ..., r do
7: if si is linearly dependent of H (in G) then
8: B := B _ {si +

∑
j ci jhi j}with ci j ∈ C, hi j ∈ H such that si +

∑
j ci jhi j = 0

9: else
10: H := H _ {si}

11: return (H, B)

Remark 4.4.3. Theorem 4.3.3 and its proof still hold (with deg = dege), so
(H, B) = PHallPosExtGrad(X, lmax) is a pseudo-Hall-basis of G up to external degree lmax.

Remark 4.4.4. If the external degree used is the monomial degree, then G0 = {}, and the
algorithm coincides with the algorithm PHall for l > 1.

Example 4.4.5. We compute the first few steps of PHallPosExtGrad for the (N+-graded)
subalgebra of the Witt algebra w (def. 4.3.16) that is generated by L1 and L2, using <H=<S
DegLex with L1 < L2 (cf. example 4.2.14 and 4.3.17).

l i si (Hall element) si (standard basis) lin. dep. of H
1 1 L1 L1 no
2 1 L2 L2 no
3 1 [L1,L2] −L3 no
4 1 [L1, [L1,L2]] 2L4 no
5 1 [L2, [L1,L2]] L5 no
5 2 [L1, [L1, [L1,L2]]] −6L5 yes
6 1 [L2, [L1, [L1,L2]]] −4L6 no
7 1 [L2, [L2, [L1,L2]]] −3L7 no
7 2 [[L1,L2], [L1, [L1,L2]]] 2L7 yes

For contrast, if we use another sorting order, <S= Lex, we find

l i si (Hall element) si (standard basis) lin. dep. of H
1 1 L1 L1 no
2 1 L2 L2 no
3 1 [L1,L2] −L3 no
4 1 [L1, [L1,L2]] 2L4 no
5 1 [L1, [L1, [L1,L2]]] −6L5 no
5 2 [L2, [L1,L2]] L5 yes
6 1 [L1, [L1, [L1, [L1,L2]]]] 24L6 no
6 2 [L2, [L1, [L1,L2]]] −4L6 yes
7 1 [L1, [L1, [L1, [L1, [L1,L2]]]]] −120L7 no
7 2 [[L1,L2], [L1, [L1,L2]]] 2L7 yes
7 3 [L2, [L1, [L1, [L1,L2]]]] 18L7 yes
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Comparing the two results, it is apparent that not only the output depends on <S, but
also the number of computations required (cf. remark 4.3.7).

Remark 4.4.6. If G is a degreewise finite dimensional graded Lie algebra, any basis bG of G
satisfies the requirements for X in this chapter. In conjunction with a slight modification of
the algorithm given above, this can be used the following way (that emphasizes the practical
importance of the choice of <S) to iteratively expand a tuple Y of elements of G so that it
generates Ḡl with increasing l:

Algorithm 5 PHallFindGenerators

1: X := bG
2: H := ()
3: Y := ()
4: B := ()
5: for l = 1, . . . , lmax do
6: S := {h ∈ X |dege(h) = l} ∪

{
(h, g) ∈ H × H | dege(h) + dege(g) = l and

IsHallElement(h, g) = True
}

7: S := Sort(S, >S) . such that s1 <S s2 <S . . . <S sr
8: for i = 1, ..., r do
9: if si is linearly dependent of H (in G) then

10: B := B _ {si +
∑

j ci jhi j}with ci j ∈ C, hi j ∈ H such that si +
∑

j ci jhi j = 0
11: else
12: H := H _ {si}

13: if degH si = 1 then
14: Y := Y _ {si}

15: return (H, Y, B)

By theorem 4.3.3, if we run the algorithm, we obtain a basis H of L̄lmax (the fact that bG
may be infinite is not a problem because the algorithm only ever considers one stratum at a
time which is finite dimensional). Because every element of H that has monomial degree 1
is added to Y, the tuple Y generates H, and with it L̄lmax .

Now H depends on the sorting order <S used in the algorithm. If <S satisfies g <S h for all
g, h ∈ G with degH g < degH h, then Y will be kept minimal in the sense that elements of bG
will only be added to Y if they are not in the subalgebra generated by the previous elements
of Y.

If, on the contrary, we choose a sorting order<S that reverses the inequalities given above,
H and Y will reproduce bG and B will be a list of the structure constants of G (both up to
degree lmax).

4.4.1 Application: Observations about the multiplet 1g1

In section 2.4, we had seen that the multiplet 1g1 might be of relevance to the structure of g
for d = 3. Therefore, giving a little attention to the subalgebra generated by 1g1 is warranted.
Call this subalgebra F. When we use the algorithm PHallPosExtGrad to explore the structure
of F, we find that for each l in {2, . . . , 8} – this is the limit of computation on the machine used
– Hl consists of one element of magnetic quantum numbers 0,±1 each, and because of lemma
2.4.1, they must form a multiplet of spin 1. This can be generalized to a conjecture:
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Conjecture 4.4.7. For all l ∈N,

F ∩ gl �
1V . (4.26)

We also find that Bl consists of monomials in the elements of 1g1 of a particular form, as
opposed to linear combinations of them, which is the general case. We can generalize this to
the “⊂” part of another conjecture, using the notion of the centralizer Z(S) of a subset S of a
Lie algebra G, defined as

Z(S) :=
{

g ∈ G
∣∣[g, s] = 0 for all s ∈ S

}
. (4.27)

Conjecture 4.4.8.

Z(1v1) ∩ gl =
{

c · adl−1
1v0

1v1
∣∣∣ c ∈ C} , (4.28)

Z(1v0) ∩ gl =
{

c · adl−2
1v0 [1v−1, 1v1]

∣∣∣ c ∈ C} , (4.29)

Z(1v−1) ∩ gl =
{

c · adl−1
1v0

1v−1
∣∣∣ c ∈ C} . (4.30)

These equalities have been verified using the Mathematica program CenterTest (cf.
B.6.8) up to l=6, the limit of computation.

Remark 4.4.9. While for all 3-dimensional sl2-modules 1V, we have [1V, 1V] � Φ1V with
the epimophism Φ as in lemma 2.4.1, the analogue to conjecture 4.4.7 is not necessarily
true for every 3-dimensional sl2-module, not even for every such sl2-module that occurs in
the weight space decomposition of g. Take for instance the multiplet W � 1V occurring in
[2g1,

1g1] � 3V ⊕ 2V ⊕ 1V. A basis of W is given by the elements

−7e(000+) + e(0−++) + 4e(0+−+) + 9e(0++−) ,
8e(00−+) + 2e(00+−) + 5e(0−0+) + 7e(−−++) ,
−7e(000−) + 9e(0−−+) + 4e(0−+−) + e(0+−−) .

Using PHallPosExtGrad, we can calculate that

dim[[W,W],W] = 8 , 3 = dim 1V .

Remark 4.4.10. If conjecture 4.4.7 is true, then the “⊃” part of the equations (4.28) and (4.30)
can be proven for arbitrary l:

Z(1v1) ∩ gl ⊃
{

c · adl−1
1v0

1v1
∣∣∣ c ∈ C} , (4.31)

Z(1v−1) ∩ gl ⊃
{

c · adl−1
1v0

1v−1
∣∣∣ c ∈ C} . (4.32)

Proof. • The fact that the right hand sides are subsets of gl follows from the fact that the
right hand sides are multiple brackets of l elements of g1.

• Both v := 1v1 and w := adl−1
1v0

1v1 have magnetic quantum number 1, so [v,w] ∈ g2
l . Since

conjecture 4.4.7 is supposed to be true, [v,w] is an element in a multiplet of spin 1. The
only way to satisfy these conditions is [v,w] = 0, which proves (4.31).

• Analogous for equation (4.32).
�
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4.5 Admitting generators of degree zero

Until now, we have considered Lie algebras with a stricly positive gradation, which had the
benefit that the computations that had to be performed for a given stratum Gl only depended
on results of lower strata. But if we allow elements gi ∈ G0 then if h ∈ Gl, also adg1 h ∈ Gl,
adg2 adg1 h ∈ Gl and so on, so running through a loop with the external degree l as the counter
variable only once for each l, like the algorithm PHallPosExtGrad does, will fail to produce
all these elements. This section will give two strategies to take these elements into account.

In this section, let G be a Lie algebra with a N0-gradation dege that is degreewise finite-
dimensional, i.e. dim Gl < ∞ for all l ∈N0.

4.5.1 Iterative extension to a basis

The first strategy consists in iterating the following way: if we find new linearly independent
elements of G, we need to consider all those elements that can be obtained by adjoining
elements of G0 to them for our extension to a basis in another step. We repeat this process
until no new linearly independent elements are found.

The following algorithm implements this idea, using the list H̃ of newly found basis
vectors of G:

Algorithm 6 PHallNonNegExtGrad

1: (H,B) := PHall(X0, lmax) with large enough lmax . see remark 4.3.13
2: for l = 1, . . . , lmax do
3: S := {h ∈ X |dege(h) = l} ∪

{
(h, g) ∈

H ×H | dege(h) + dege(g) = l and IsHallElement(h, g) = True
}

4: repeat
5: H̃ := {}
6: S := Sort(S, >S) . such that s1 <S s2 <S . . . <S sr
7: for i = 1, ..., r do
8: if si is linearly dependent of H _ H̃ (in G) then
9: B := B _ {si +

∑
j ci jhi j}with ci j ∈ C, hi j ∈ H _ H̃ such that si +

∑
j ci jhi j = 0

10: else
11: H̃ := H̃ _ {si}

12: H := H _ H̃
13: S :=

{
(h, g) ∈ H̃ × H | dege(g) = 0 and IsHallElement(h, g) = True

}
_
{

(g, h) ∈
H × H̃, | dege(g) = 0 and IsHallElement(g, h) = True

}
14: until #H̃ = 0
15: return (H, B)

Remark 4.5.1. Since elements of H are linearly independent by construction of the algorithm,
the fact that Gl is finite-dimensional guarantees that the added repeat ... until loop
terminates. The proof of theorem 4.3.3 still applies, so (H, B) = PHallNonNegExtGrad(X, lmax)
is a pseudo-Hall-basis of G up to degree lmax.
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start

(H, B) := PHall(X0, lmax)
with large enough lmax,

l := 1

l = lmax +1?

S := {h ∈ X | dege(h) = l} ∪{
(h, g) ∈ H × H | dege(h) +

dege(g) = l and
IsHallElement(h, g) = True

}

H̃ := {}

Sort S by <S s.t.
s1 <S s2 <S . . . <S sr

i := 1

si lin. dep.
of H _ H̃?

B := B _ {si +
∑

j ci jhi j}

with ci j ∈ C, hi j ∈ H _ H̃
s.t. si +

∑
j ci jhi j = 0

H̃ :=
H̃ _ {si}

i := i + 1

i = r + 1?

H := H _ H̃

H̃ = {}?

l := l + 1

return
(H, B)

no

yes

noyes

no

yes

yes no

Figure 4.5: Flow chart of algorithm PHallNonNegExtGrad
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Remark 4.5.2. By assumption, G0 is finite-dimensional, and as it is closed under the Lie
bracket due to the gradation, it is a finite dimensional Lie algebra, remark 4.3.13 applies.

Remark 4.5.3. For a given external degree k, several sets S of candidates for the exension to
a basis are computed, and sorting by >S only happens within these sets. So neither H nor B
are sorted by >S. For instance, for g ∈ Gk, h, h̃ ∈ G0, the multiple Lie bracket [[g, h], h̃] will
never be generated as an element of S before [g, h], regardless of <S. This can be thought of as
losing some control over the order in which elements are considered for the extension of B to
a basis. In the last subsection, a way to overcome this problem under stronger preconditions
will be discussed.

Using a second gradation

As it was pointed out in remark 4.3.9, it is useful to partition the vector spaces spanned by
the elements of S into subspaces among which no relations exist. Under some preconditions,
we have such an opportunity:

1. Let M be a monoid and let the free magma M(X) be equipped with an M-gradation
degM (in addition to the N+-gradation dege).

2. Let the gradation degM have the property that for each k ∈ Z, the set

Mk := {m ∈M | ∃g ∈M(X) such that dege g = k and degM g = m} (4.33)

is finite.

3. Let <M be a total order on M with the property that if g = [a, b] with dege a = 0, then
degM b <M degM g.

Now, because of condition 1, if g, h ∈ G with degM g , degM h, then g and h are linearly
independent, so we can benefit from partitioning the vector space. The other preconditions
allow us to iterate over M with the algorithm PHallSecondGrad found on the next page.

Remark 4.5.4. Condition 2 guarantees that each iteration over Mk terminates (and so the
entire algorithm does), and condition 3 ensures that each of the possible arguments of the
Lie brackets that are the elements of S has been computed and considered for our extension
to a basis in a previous step (in a similar way that the positivity of dege was used in remark
4.4.2).

112



4.5. Admitting generators of degree zero

Algorithm 7 PHallSecondGrad

1: (H,B) := PHall(X0, lmax) with large enough lmax . see remark 4.3.13
2: for k = 1, . . . , lmax do
3: for m ∈Mk do . in the order given by <M
4: S := {h ∈ X |dege(h) = k,degM = m} ∪

{
(h, g) ∈ H × H | dege(h) + dege(g) =

k, degM(h) + degM(g) = m and IsHallElement(h, g) = True
}

5: repeat
6: H̃ := ()
7: S := Sort(S, >S) . such that s1 <S s2 <S . . . <S sr
8: for i = 1, ..., r do
9: if si is linearly dependent of H _ H̃ (in G) then

10: B := B _ {si +
∑

j ci jhi j}with ci j ∈ C, hi j ∈ H _ H̃ s.t. si +
∑

j ci jhi j = 0
11: else
12: H̃ := H̃ _ {si}

13: H := H _ H̃
14: S :=

{
(h, g) ∈ H̃×H | dege(g) = 0 and IsHallElement(h, g) = True

}
_
{

(g, h) ∈
H × H̃, | dege(g) = 0 and IsHallElement(g, h) = True

}
15: until #H̃ = 0
16: return (H, B)

Application to the Pohlmeyer-Rehren Lie algebra

Remark 4.5.5. 1. In the case of the Pohlmeyer-Rehren Lie algebra, the magnetic quantum
numbers provide us with another Zb

d−1
2 c-gradation denoted by degM. The lexico-

graphic order <Lex on Zb
d−1

2 c satisfies condition 3 if we restrict the generating set X to
elements that have positive degree and elements of degree zero with a weight tuple
(µi)i∈Id satisfying

µi ≥ 0∀ i ∈ Id and ∃i ∈ Id : µi > 0 . (4.34)

2. We can restrict X further to a basis of g0 satisfying equations (4.34) and bases of the
(one-dimensional) lowest weight vectors of g1.

In both cases it is not apparent a priori how large the subalgebra thus generated is; one can
immediately conclude from additivity of quantum numbers that g−1 as well as the subspace
of g0 that does not satisfy equations (4.34) cannot be generated.

Remark 4.5.6 (choices for the Hall order). For the order <H to be a Hall order, it must satisfy
(h1, h2) >H h2 for all h1, h2 ∈ H. If we restrict g0 to only those elements g ∈ g0 with degM g >D 0,
a sufficient condition for this is

a <H b if dege a < dege b , (4.35)
a <H b if dege a = dege b and degM a <Lex degM b . (4.36)

The Mathematica-Module PHallPMAd3 given in appendix implements the strategy de-
scribed in this subsection. Its runtime behavior10 is the following:

10All measurements taken with the same Intel Core i7-3770 with 32GiB of RAM running Linux.
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• For d = 3 with X as described in remark 4.5.5:2 without computing the relations (as
lined out in remark 4.3.8):

l 1 2 3 4 5 6 7 8
#Hl 8 18 48 116 312 810 2184 5880
#Bl 2 10 62 186 587 1873 5713 16855
dim gl 8 18 48 116 312 810 2184 5880
tcomp[s] 0.0063 0.033 0.20 1.07 10.3 192 5.1k 186k

• For d = 4, treating g as a sl2-module instead of g0 � sl2 × sl2 (i.e. only using one rather
than two raising operators), without computing the relations:

l 1 2 3 4 5
#Hl 20 60 204 670 2340
#Bl 19 128 574 1998 8246
dim gl 20 60 204 670 2340
tcomp[s] 0.052 0.38 8.13 193 11.9k

Due to this unusual setup, the relations were not computed in a later step.

• For d = 3, with full computation of all occurring relations:

l 1 2 3 4 5 6 7 8
#Hl 8 18 48 116 312 810 2184 5880
#Bl 2 10 69 286 1061 3549 11496 35584
tcomp[s] 0.0078 0.044 0.19 1.0 25 355 9.4k 413 k

The computation was aborted after 11 days and 4 hours of CPU time (approximately
106s) due to memory limitations on a machine equipped with 32 GB of physical RAM.

Comparing the timing of the computation, one can see a considerable improvement
(using the adapted set of generators given above) in performance compared to the basic
version PHall of the algorithm.

• For instance, for d = 3, the computation up to l = 6 with PHall took more than six
hours, compared to less than six minutes.

• For d = 4, the computation up to l = 4 took more than 34 hours, while it could be
completed in less than a tenth of that time with PHallSecondGrad.

The dimension data confirm that the restricted generated sets described above in 4.5.5
actually generate g≥1 ⊕(g0 ∩X) up to the limit of computation. In particular, it follows that
g0 ⊕ g1 generate g≥0 up to the limit of computation, lending credence to conjecture 4.1.3.

Remark 4.5.7. The algorithm uses the facts that weights (here: magnetic quantum numbers)
are additive under the Lie bracket. The highest weights (here: spin tuples) that determine
(up to equivalence) the multiplets do not behave as simply however. Even if generators are
contained in a single multiplet, in general Hall words of these generators are not contained
in a single multiplet as well, but rather in a direct sum of several multiplets (determined by
Clebsch-Gordan formulas such as theorem 2.4.2).
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It is an interesting approach to find linear bases of the strata gl of elements that do not only
have well-defined weight (magnetic quantum number tuple), but highest weight (spin tuple)
as well by modifying the algorithm further such that instead of a Hall word h ∈ gm

l =
⊕ sgm

l
(where the values of s in the direct sum are controlled by the Clebsch-Gordan formula), a
projection of h on the space sgm

l for an appropriate highest weight s is used.
There are two problems with this approach. The first is to make sure that the selection of

projected Hall words have the same span as the Hall words in a given stratum. This can be
achieved by starting with the highest highest weights in the stratum. One can then iteratively
consider lower highest weights.

The second problem is: while we have a guarantee that the projections of the Hall words
mentioned above from the l-th stratum span that l-th stratum, no such guarantee exists for
higher (> l) strata because the projections are not Hall words. It is an interesting question
if the theory of Hall bases can be modified in such a way that projections of Hall words
onto irreducible g0-modules play a similar role as Hall words do in free Lie algebras while
simultaneously respecting the decompositions into irreducible g0-modules and weight spaces
as they were explored in chapter 2 of this thesis.

4.5.2 Iterative generation and subsequent extension to a basis

The approach given in 4.5.1 has the disadvantage that the sequence in which elements of S
were considered for extension to a basis of Gk could not be choosen freely. If we can iteratively
generate all candidates for extension to a basis first and only then extend to a basis, we can
avoid this problem. We will see that imposing the following additional conditions on the Lie
algebra G allows to avoid cases where the algorithm never terminates.

Definition 4.5.8 (pseudo-Hall-exhaustibility). A Lie algebra G equipped with aN0-gradation
dege with the properties

1. the dimensions dim Gl are finite for all l (G is degreewise finite dimensional),

2. for all l exists nl ∈N0 such that

adgnl
adgnl−1 . . . adg1 g = 0 ∀ gi ∈ G0, g ∈ Gl (4.37)

is called pseudo-Hall-exhaustible.

Remark 4.5.9. In particular, this obviously implies that G0 is a finite-dimensional subalgebra.

Example 4.5.10. The following Lie algebras are pseudo-Hall-exhaustible:

1. finite-dimensional nilpotent Lie algebras with the trivial gradation; here G = G0,

2. finitely generated Lie algebras that are graded by the monomial degree; here G0 = 0,
G1 is spanned by the generators,

3. 〈e(0+), gl>0〉 ⊂ g (the Pohlmeyer-Rehren Lie algebra in d = 3).

The last example is a special case of the following more general proposition.
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Proposition 4.5.11. Let G be a degreewise finite-dimensionalN0-graded Lie algebra with semisimple
stratum G0.

Recall that in this situation (cf. subsection 2.2.3) G0 has a root space decomposition with base
{α1, . . . , αb} and set of positive roots R+, and (cf. subsection 2.3.1) each stratum Gl can be decomposed
into weight spaces relative to G0.

Then the Lie subalgebra G̃ (of G) generated by

{x ∈ Gβ
0 | β ∈ R+

} ∪G≥1 (4.38)

is pseudo-Hall-exhaustible.

Proof. Consider that for l > 1, G̃l = Gl is a G0-module, so the same weight space decomposi-
tion applies. Without loss of generality (otherwise, decompose g and gi accordingly) g ∈ Gλ

l

for some weight λ ∈ Γ and gi ∈ gβi
0 for some positive root βi ∈ R+ for all i . By theorem 2.3.3:2,

there exist ki ∈N0, i ∈ {1, . . . , b} such that

λ = σl −

b∑
i=1

kiαi , (4.39)

where σl is the highest weight of Gl. In particular,

K :=
n∑

i=1

ki ≥ 0 . (4.40)

Similarly, by the definition of R+, there exist coefficients m j
i ∈N0 such that for all β j

∈ R+:

β j =

n∑
i=1

m j
iαi (4.41)

with
∑n

i=1 mi
j > 0 (otherwise, β j = 0 < R+). Now, because of theorem 2.3.2:2

adgp adgp−1 . . . adg1 g ∈ G̃
λp
l (4.42)

with

λp := λ −

=:k j
i︷               ︸︸               ︷ki −

p∑
j=1

m j
i

αi . (4.43)

But for p > K we have

Kp :=
n∑

i=1

kp
i < 0 , (4.44)

so G
λp
l = 0 (λp is not a weight) because otherwise, there would be a contradiction to the

analogue to equation (4.40) for λp (instead of λ) that would hold if λp were a weight. �
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Remark 4.5.12. Pseudo-Hall-exhaustibility is a stronger property for graded Lie algebras
than being degreewise finite dimensional. For instance, the Pohlmeyer-Rehren Lie algebra
for d = 3 is degreewise finite dimensional but not pseudo-Hall-exhaustible, because G can
be decomposed into eigenspaces of adh, an inner automorphism that is not identically zero.

Let now G be a pseudo-Hall-exhaustible Lie algebra generated by the degreewise finite
set X. In this context, we can formulate the following variation of PHall:

Algorithm 8 PHallExh

1: (H,B) := PHall(X0, lmax) with large enough lmax . see remark 4.3.13
2: for k = 1, . . . , lmax do
3: S̃ := {h ∈ X |dege(h) = k} ∪

{
(h, g) ∈ H × H | dege(h) + dege(g) = k and

IsHallElement(h, g) = True
}

4: while #S̃ > 0 do
5: Remove those si ∈ S̃ with vanishing image in G and append them to B
6: S := S _ S̃
7: S̃ :=

{
(h, g) ∈ S̃ × H | dege(g) = 0 and IsHallElement(h, g) = True

}
_
{

(g, h) ∈
H × S̃, | dege(g) = 0 and IsHallElement(g, h) = True

}
8: S := Sort(S, >S) . such that s1 <S s2 <S . . . <S sr
9: for i = 1, ..., r do

10: if si is linearly dependent of H (in G) then
11: B := B _ {si +

∑
j ci jhi j}with ci j ∈ C, hi j ∈ H such that si +

∑
j ci jhi j = 0

12: else
13: H := H _ {si}

14: return (H,B)

Remark 4.5.13. Since each iteration of the while loop in step 4 consists of adjoining elements
of external degree zero, condition 3 of pseudo-Hall-exhaustability implies that after the nk+1-
th iteration of the loop, S̃ = {}, so the exit condition of the while loop is met, the loop is finite
and the algorithm terminates.
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Chapter 5

Outlook

5.1 Interplay of the Hall algorithm and representation theory

Throughout the entire chapter 4, we have always used Hall orders <H and sorting orders <S
that were given a priori. It might be worthwhile to go the other way around and construct
Hall and sorting orders that are tailored to the problem at hand.

Of particular interest might be Hall and sorting orders that give us a shortest pseudo-
Hall-basis by minimizing #Hk.

In situations where some of the representation theory of the Lie subalgebra G0 is already
known (for instance, g0 � so(d,C) in the case of the Pohlmeyer-Rehren Lie algebra that will
be considered in the sequel), in the spirit of remark 4.5.5 we might want to find a set H that
consists – as far as possible given the constraints, for instance imposed by the axioms for Hall
sets – of lowest weight vectors of irreducible g0-modules (expressed in terms of brackets of
elements of lower degree) and their multiple adjoints of elements of g0 satisfying equation
(4.34). This would allow us to see the g0-modules more clearly in the pseudo-Hall-basis.

Unfortunately, it isn’t immediately clear how to approach this problem, and it also isn’t
clear how successful we can hope to be.

Example 5.1.1. Consider the situation of remark 4.5.6 for d = 3 and further suppose that
we have found some Hall element v0 = [a0, v1] ∈ gm

l . (v0 ∈ g
m
l with some m, l automatically

follows if the elements of X have definite degree and magnetic quantum number.) Now, the
condition

v ∈ H ⇒ adn
x v ∈ H for all n ∈N0 (5.1)

would be desirable because this aligns the Hall set neatly with the irreducible g0-modules.
But then, in particular [x, v0] ∈ H. By axiom 2 (b) of a Hall set (4.2.6), this implies v0 ∈ X or
a0 ≤H x. In the former case, v0 ∈ gl ∩X. We consider the latter case.

Now suppose the conditions from 4.5.6 on <H are met, then this implies a0 = x, and
therefore further v1 ∈ g

m−1
l ). Since we have a0 = x, we can inductively apply the reasoning

applied to v0 to v1 and inductively further to vi (that have the property v0 = adi
x vi). Because

we cannot continue the iteration more than m + l + 1 times before the latter case is excluded
due to corollary 2.3.12:3, it follows that

v0 = adr
x vr
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with some vr ∈ X with r ≤ m + l + 1 and dege vr = dege v0, in particular vr ∈ g
m−r
l .

We have shown that we can’t express the elements vr as brackets of elements of lower
degree, unlike our intention. Since this can be done for arbitrarily high l, the set X must be
infinite.

If we want to uphold condition (5.1), we therefore have to choose a Hall order <H that
violates the conditions from 4.5.6. But unfortunately, it is not obvious how to do this.

5.2 Open questions regarding the Pohlmeyer-Rehren Lie algebra

While we have found a way to understand the Pohlmeyer-Rehren Lie algebra in terms of its
multiplets, a clear understanding of its multiplicative structure is still a desideratum. The
application of the Hall algorithm to the problem has lead to some insights, but as we have
seen in the above example 5.1.1, the questions raised at the end of section 2.4 about the origin
of the relations in the context of the Clebsch-Gordan problem are not easily solved.

Furthermore, the conjectures about the (finite) generation of g in terms of its strata gl with
l ≤ 1 from section 4.1 are still lacking a proof or disproof. Of particular interest would be a
pseudo-Hall-basis with a closed expression for all the relations.

It is an interesting fact that Hall words play a dual role in the available description of the
Pohlmeyer-Rehren Lie algebra g. First, because it is a Lie algebra, and as such isomorphic to
a free Lie algebra modulo an ideal (theorem 4.2.4), a basis of which is given by the Hall words
of its generators (theorem 4.2.12). Second, and more specific to g, because the Euler-Lyndon
words that are a basis of g contain Hall words (theorem 4.2.9). The question if this can be
exploited in some form suggests itself. A negative partial result was found in proposition
4.2.11 (with the very simple assumption that the ideal be zero), but so far, no serious attempt
to leverage this in the general case has been made.
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Appendix A

Mathematica Code for
Pseudo-Hall-Bases

In this appendix, Mathematica code implementing the algorithms introduced in chapter 4
is given. All code is written for Mathematica 9.0.1.0, and all computations were performed
using that version of the software.

A.1 Orders

A.1.1 LettOrd

LettOrd implements the order of individual letters underlying both DegLex and Lex. Input
are two letters a, b ∈ X, output is, using the notation of the built-in function Order,

−1 if a < b ,
0 if a = b ,

+1 if a > b .

LettOrd[a_, b_] := Module[{i, j},
i = Position[LettOrdList , a];
j = Position[LettOrdList , b];
If[i == {},
If[j == {}, Order[a, b], -1],
If[j == {}, 1, Order[i, j]]]

]

LettOrd depends on a global variable LettOrdList to be set which is a list of letters in
ascending order, for instance
LettOrdList = {"x", "v", "w"}

encodes the order of letters x < v < w.

A.1.2 Lex

Lex implements the lexicographic order (definition 1.3.1:1) on M(X). Input is two elements
A, B ∈M(X), output uses the same notation as LettOrd. For the input, both elements of M(X)
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denoted by curly brackets and elements of L(X), the Lie bracket denoted by K[. . . , . . .] are
accepted.

Lex[A_, B_] := Module[{a, b, la, lb, i},
a = A //. K -> List;
b = B //. K -> List;
la = Length[Flatten[{a}]];
lb = Length[Flatten[{b}]];
Catch[
For[i = 1, i <= Min[la, lb],
If[LettOrd[a[[i]], b[[i]]] != 0,
Throw[LettOrd[a[[i]], b[[i]]]]];
Throw[Order[la, lb]]]

]
]

For the required comparisons of individual letters, the module LettOrd is called.

A.1.3 DegLex

DegLex implements the Hall order of the same name (definition 1.3.1:2) on M(X). Input is
two elements A, B ∈ M(X) as above, output uses the same notation as LettOrd again. For all
examples in the sequel, we will set HallOrd := DegLex.

DegLex[A_, B_] := Module[{a, b},
a = A //. K -> List;
b = B //. K -> List;
Which[
Length[Flatten[{a}]] < Length[Flatten[{b}]], 1,
Length[Flatten[{a}]] > Length[Flatten[{b}]], -1,
True, Lex[Flatten[{a}], Flatten[{b}]]]

]

If the lengths of the elements compared are equal, the lexicographic order Lex is called.

A.2 Hall’s original algorithm

A.2.1 IsHallElement

IsHallElement implements the homonymous algorithm from section 4.2. Input is a list h
of two (possibly nested) lists represending elements of M(X), output is a boolean. Note
that IsHallElement is only used for compositions of Hall elements, so the check if their
constituents are actually Hall elements is commented out.

A Hall set, and with it the output of IsHallElement, depends on the Hall order. Since
the Hall order does not change during a computation, this dependence is handled implicitly
(as opposed to explicitly by passing a Hall order as an argument) by calling the module
HallOrder.

IsHallElement[h_] := Module[{},
Which[
h[[0]] =!= K, True,(*rule 1*)
(* !(IsHallElement[h[[1]]]&& IsHallElement[h[[2]]]), False ,(*rule 2*) *)
HallOrd[h[[1]], h[[2]]] != 1, False,(*rule 3*)
h[[2, 0]] =!= K, True, (*rule 4*)
HallOrd[h[[2, 1]], h[[1]]] == -1, False,(*rule 5*)
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True, True (*rule 6*)
]

]

Example A.2.1. IsHallElement[{"2",{"1", "2"}}] yields True, while
IsHallElement[{"1", "1"}] yields False.

A.2.2 Hall

Hall implements Hall’s algorithm (see section 4.2). Input is a list of generators X and a
maximum degree to compute up to d, output is the List H of elements, each given in the form
{x∈M(X), degHx}.

Hall[X_, lmax_] := Module[{H, B, S, S1, l, l1},
(* initialization *)
H = Map[{#, 1} &, X]; (* degree =
1 for each generator *)
(* main loop *)
For[l = 2, l <= lmax, l++,
(* find S *)
S = {};
For[l1 = Quotient[0, 2](* since if l1<l1-l,
IsPHallElement will always be false *), l1 < l, l1++,
S1 = Tuples[{Select[H, #[[2]] == l1 &],
Select[H, #[[2]] == l - l1 &]}];

S1 = Select[S1, IsHallElement[K[#[[1, 1]], #[[2, 1]]]] &] ;
(* compute elements of S *)
S = Join[S, Map[{K[#[[1, 1]], #[[2, 1]]], l} &, S1]];

];
H = Join[H, S];

];
H

]

Example A.2.2. Hall[{"x", "y"}, 5] //.K->List// Grid

(the replacement //.K->List is just added to improve readability) yields

x 1
y 1
{x,y} 2
{x,{x,y}} 3
{y,{x,y}} 3
{x,{x,{x,y}}} 4
{y,{x,{x,y}}} 4
{y,{y,{x,y}}} 4
{x,{x,{x,{x,y}}}} 5
{y,{x,{x,{x,y}}}} 5
{y,{y,{x,{x,y}}}} 5
{y,{y,{y,{x,y}}}} 5
{{x,y},{x,{x,y}}} 5
{{x,y},{y,{x,y}}} 5
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A.3 Variants of the Hall algorithm

A.3.1 PHall

PHall implements the algorithm from section 4.3. Input is a list of generators X, each given as
a symbol x and a corresponding internal representation to be used in computations rep[x],
as well as a maximum degree to compute up to lmax.
Output is the pair {H,B} consisting of the list H of elements of H, each given in the form
{x∈ M(X), degHx, rep[x]}, and the list B of elements of the form {LM[x],x-LM[x],
degHLM[x]} (note that rep[b]= 0 for b ∈ B by construction). PHall uses the function
PHallDim, which gives the dimension of Gl. For instance, in the case of the Pohlmeyer-
Rehren Lie algebra for d = 3, we can use

PHallDim[l_] = NumLyndon[l + 2, 3]

If the dimension of Gl is not known, one can instead set

PHallDim[l_] = Infinity

To actually consider the elements of S for inclusion into the lists H and B, the module
AppendPHB (see A.3.2) is called. Note that if the argument PHallDim[l] is less than dim Gl,
the linear equations considered in the module AppendPHB have no solution, which will lead
to errors. In the computation of S, the module LB, calculating the Lie bracket of two elements
of G, is called, which has to be defined accordingly.

PHall[X_, lmax_] := Module[{H, Hl, B, Bl, S, S1, l, l1, t},
(*initialization*)t = AbsoluteTime[];
H = Map[{#[[1]], 1, #[[2]]} &, X];(* degree=1 for each generator ,
assume generators to be linearly independent *)
B = {};
(*main loop*)
For[l = 2, l <= lmax, l++,
(*find S*)
S = {};
For[l1 = 0, l1 < l, l1++,
S1 = Tuples[{Select[H, #[[2]] == l1 &],
Select[H, #[[2]] == l - l1 &]}];

S1 = Select[S1, IsHallElement[K[#[[1, 1]], #[[2, 1]]]] &];
(*compute elements of S*)
S = Join[S, Map[{K[#[[1, 1]], #[[2, 1]]], l, LB[#[[1, 3]], #[[2, 3]]]} &, S1

]];
];
S = Sort[S, SOrd];
(*Append elements of S to H or B respectively*)
(*{Hl,Bl}= AppendPHB[S,PHallDim[l]]; (* if no inhomogeneous relations exist*)

*)
{Hl, Bl} = AppendPHB[S, PHallDim[l], H];(*if inhomogeneous relations exist*)
H = Join[H, Hl];
B = Join[B, Bl];
Print["{#H,#B,l,dim,t}=", {Length[Hl], Length[Bl], l, PHallDim[l],

AbsoluteTime[] - t}];
t = AbsoluteTime[];];

{H, B}
]

Example A.3.1. Regardless if we choose not to use the known dimension by setting
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PHallDim[l_] = Infinity

or set the more specific

PHallDim[l_] = 3

if we use the code for existing inhomogeneous relations commented out in the listing above,
in accordance with example 4.3.12, the command

PHall[{{"x", r[{0, P}]}, {"y", r[{0, M}]}, {"h", r[{M, P}]}}, 10]//.K->List

yields as result for B

x 1 r[{0,P}]
y 1 r[{0,M}]
h 1 r[{M,P}]

and as result for H

{y,x} -2 h 2
{h,x} 2 x 2
{h,y} -2 y 2
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A.3.2 AppendPHB

AppendPHB implements the extension to a basis in the loop starting in step 6 of PHall (and
other versions of the Philip Hall algorithm for non-free Lie algebras), iteratively building a
list Hl of elements that are linearly independent among themselves and from the list SOld of
elements of M(X), and a list Bl of relations by iteratively checking the list entries of SNew for
linear independence.

AppendPHB[SNew_, dim_: Infinity , SOld_: {}] :=
Module[{S, Hl, vars, HlMat, InvMat, SiVec, Mat, Bl, i},
S = Join[SNew, SOld];
vars = Variables[Map[#[[3]] &, S]];
If[SOld == {}, HlMat = {},
HlMat = CoefficientArrays[Map[#[[3]] &, SOld], vars][[2]] //
Normal];

Hl = {};
Bl = {};
For[i = 1, i <= Length[SNew], i++,
If[S[[i, 3]] === 0 (* In this special case, the linear algebra
routines are incompatible with the formatting used here *) ,

Bl = Append[Bl, {S[[i, 1]], Table[0, {Length[vars]}], S[[i, 2]]}],
(* general case *)
SiVec = CoefficientArrays[SNew[[i, 3]], vars][[2]] // Normal;
If[Length[Hl] + Length[SOld] < Min[dim, Length[vars]],
Mat = Append[HlMat, SiVec];
If[MatrixRank[Mat] > Length[Hl] + Length[SOld] (*
if and only if H, S_i linearly independent *),
Hl = Append[Hl, SNew[[i]]]; HlMat = Mat ,
Bl = Append[Bl, {SNew[[i, 1]], SiVec, SNew[[i, 2]]}] ;
],

Bl = Append[Bl, {SNew[[i, 1]], SiVec, SNew[[i, 2]]}]
];

];
];
(* now actually compute relations in Bl *)
If[Length[vars] =!= 0,
If[Length[Hl] + Length[SOld] == dim && dim == Length[vars],
(* calculate the inverse matrix just once, saving computations *)
InvMat = Inverse[Transpose[HlMat]];
For[i = 1, i <= Length[Bl], i++,
Bl[[i]] = {Bl[[i,

1]], -InvMat.Bl[[i, 2]].Map[#[[1]] &, Join[SOld, Hl]],
Bl[[i, 3]]}

];
, (* no inverse matrix can be calculated *)
For[i = 1, i <= Length[Bl], i++,
Bl[[i]] = {Bl[[i,

1]], -LinearSolve[Transpose[HlMat],
Bl[[i, 2]]].Map[#[[1]] &, Join[SOld, Hl]], Bl[[i, 3]]};

]
],
For[i = 1, i <= Length[Bl], i++,

Bl[[i]] = {Bl[[i, 1]], 0, Bl[[i, 3]]};
];

];
{Hl, Bl}
]
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Note that if a formula for dim Gl is available (such as theorem 1.3.6 for the Pohlmeyer-
Rehren Lie algebra), a check if Length[Hl]>dim Gl is used to skip the calculation of linear
independence using MatrixRank[Mat]. This is why the argument dim is passed to AppendPHB.
Its default value is set to Infinity because at this value, the condition for skipping calculating
the matrix rank never applies.

A.3.3 PHallPosExtGrad

PHallPosExtGrad implements the algorithm from section 4.4. The input is a list of generators
X of the form {x, dege x, rep[x]}, and an integer lmax giving the degree to compute up
to. The output is, like for the module PHall, a list H of the form {x, dege x, rep[x]} and a
list B of the form {LM[x],x-LM[x], degeLM[x]}.

PHallPosExtGrad[X_, lmax_] := Module[{H, Hl, B, Bl, S, S1, l, l1, t},
(* initialization *)
t = AbsoluteTime[];
H = {};
B = {};
(* main loop *)
For[l = 1, l <= lmax, l++,
(* find S *)
S = Select[X, #[[2]] == l &];
For[l1 = 0, l1 < l, l1++,
S1 = Tuples[{Select[H, #[[2]] == l1 &],
Select[H, #[[2]] == l - l1 &]}];

S1 = Select[S1, IsHallElement[K[#[[1, 1]], #[[2, 1]]]] &] ;
(* compute elements of S *)
S = Join[S, Map[{K[#[[1,1]], #[[2,1]]], l, LB[#[[1,3]], #[[2,3]]]} &, S1]];

];
S = Sort[S, SOrd];
(* Append elements of S to H or B respectively*)
(* {Hl,Bl}= AppendPHB[S,PHallDim[l],H]; (* if inhomogeneous relations exist

*) *)
{Hl, Bl} = AppendPHB[S, PHallDim[l]]; (* if no inhomogeneous relations exist

*)
H = Join[H, Hl];
B = Join[B, Bl];
Print["{#H,#B,l,dim,t}=", {Length[Hl], Length[Bl], l, PHallDim[l],

AbsoluteTime[] - t}];
t = AbsoluteTime[];
];

{H, B}
]
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A.3.4 PHallSecondGrad

PHallSecondGrad is an implementation of the algorithm of the same name given in subsection
4.5.1. Here, the second gradation used is another Z-gradation denoted by m ∈ Z with the
additional property that −l − 1 ≤ m ≤ l + 1, such as the magnetic quantum number of the
Pohlmeyer-Rehren Lie algebra for d = 3. Input is a list X of generators of G of the form
{x, dege x, rep[x], degM [x]}, output are a list H of the same format and a list B of the
form {degeLM[x], degMLM[x], LM[x], x-LM[x]}.

PHallSecondGrad[X_, lmax_] := Module[{H,Hl,Hlm,B,Bl,Blm,S,S1,l,l1,m,m1,t},
(* An entry of H is of the form {x, dege(x), rep(x), degm(x)} *)
(* initialization *)
t = AbsoluteTime[];
H = {};
B = {};
(* special case l=0 *)
H = Select[X, #[[2]] == 0 &]; (* preconditions:
no relations in X_0, otherwise use PHall.*)
(* main loop *)
For[l = 1, l <= lmax, l++,
Hl = {};
Bl = {};
For[m = -2*l - 2, m <= 2*l + 2, m++, (* m=-l-1..l+1 can be used if relations

due to quantum number constraints are to be dismissed *)
(* find S *)
S = Select[X, #[[2]] == l && #[[4]] == m &];
For[l1 = 0, l1 <= l, l1++,
For[m1 = -l1 - 1, m1 <= l1 + 1, m1++,

S1 =
Tuples[{Select[H, #[[2]] == l1 && #[[4]] == m1 &],
Select[H, #[[2]] == l - l1 && #[[4]] == m - m1 &]}];

S1 = Select[S1, IsHallElement[K[#[[1, 1]], #[[2, 1]]]] &] ;
(* compute elements of S *)
S = Join[S, Map[{K[#[[1, 1]], #[[2, 1]]], l,

LB[#[[1, 3]], #[[2, 3]]], m} &, S1]];
];

];
S = Sort[S, SOrd];
{Hlm, Blm} = AppendPHB[S, PHallDim[l]];
Blm = Map[{#[[3]], m, #[[1]], #[[2]]} &, Blm];
Hl = Join[Hl, Hlm];
Bl = Join[Bl, Blm];
H = Join[H, Hlm];
B = Join[B, Blm];
];
Print["{#H,#B,l,dim,t}=", {Length[Hl], Length[Bl], l, PHallDim[l],
AbsoluteTime[] - t}];

];
{H, B}
]
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A.3.5 PHallNonNegExtGrad

The module PHallNonNegExtGrad implements the algorithm of the same name in 4.5.2. The
input and output conventions are the same as for PHallPosExtGrad.

PHallNonNegExtGrad[X_, lmax_, lmax0_: 20] :=
Module[{H, Hl, Hlnew, B, Bl, Blnew, S, S1, S0, l, l1, nH, nB, t},
(* initialization *)
t = AbsoluteTime[];
H = {};
B = {};
(* special case l=0 *)
H = PHall[Map[{#[[1]], #[[3]]} &, Select[X, #[[2]] == 0 &]],

lmax0][[1]] (* B0 isn’t computed *);
H = Map[{#[[1]], 0, #[[3]]} &, H]; (* set dege=0 for all elements in the

resulting list H, because we use dege instead of degh as in PHall *)
(* main loop *)
For[l = 1, l <= lmax, l++,
(* find S *)
S = Select[X, #[[2]] == l &];
For[l1 = 0, l1 < l, l1++,
S1 = Tuples[{Select[H, #[[2]] == l1 &], Select[H, #[[2]] == l - l1 &]}];
S1 = Select[S1, IsHallElement[K[#[[1, 1]], #[[2, 1]]]] &] ;
(* compute elements of S *)
S=Join[S, Map[{K[#[[1, 1]], #[[2, 1]]], l, LB[#[[1, 3]], #[[2, 3]]]}&, S1]];

];
S = Sort[S, SOrd];
(* Append elements of S to H or B respectively*)
{Hlnew, Bl} = AppendPHB[S, PHallDim[l]];
(* {Hl,Bl}=AppendPHB[S,PHallDim[l],H]; (*if inhomogeneous relations exist*) *)
(* loop within same degree *)
Hl = {};
While[Length[Hlnew] > 0,
Hl = Join[Hl, Hlnew];
S1 = Join[Tuples[{Select[H, #[[2]] == 0 &], Hlnew}],
Tuples[{Hlnew, Select[H, #[[2]] == 0 &]}]];

S1 = Select[S1, IsHallElement[K[#[[1, 1]], #[[2, 1]]]] &] ;
(* compute elements of S *)
S = Map[{K[#[[1, 1]], #[[2, 1]]], l, LB[#[[1, 3]], #[[2, 3]]]} &, S1];
S = Sort[S, SOrd];
(* {Hlnew,Blnew}=AppendPHB[S,l,PHallDim[l],Join[H,Hl]]; (* if inhomogeneous

relations exist *)*)
{Hlnew, Blnew} = AppendPHB[S, PHallDim[l], Hl]; (* if no inhomogeneous

relations exist, but relations exist between elements of different HlNew
during different iterations of the while loop *)

(* {Hlnew,Blnew}= AppendPHB[S,PHallDim[l]]; *) (* if no relations exist
between elements of different HlNew during different iterations *)

Bl = Join[Bl, Blnew];
];
Hl = Join[Hl, Hlnew];
Print["{#H,#B,l,dim,t}=", {Length[Hl], Length[Bl], l, PHallDim[l],
AbsoluteTime[] - t}];

t = AbsoluteTime[];
H = Join[H, Hl];
B = Join[B, Bl];

];
{H, B}

]
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Appendix B

Mathematica Code for the
Pohlmeyer-Rehren Lie algebra

This section documents a large part of the Mathematica code developed for calculations in
the Pohlmeyer-Rehren Lie algebra for this thesis. For most modules, examples are given that
can also serve as unit tests for reimplementation in other languages. Some of the code used
here had previously been developed by the author for his Diplomarbeit [Han09].

B.1 Shuffle product

The code used here to calculate the shuffle product is taken from user ciao at the Mathematica
forum at stackexchange.com1. This algorithm was chosen because it performs significantly
better than the one used in [Han09] which was based on the recursive formula for the shuffle
product 1.1.4.

fsh := Module[{idx},
Partition[Flatten[##]

[[Flatten[
Ordering[Ordering[#]] & /@
Permutations[
Flatten[MapIndexed[(idx = #2[[1]]; idx & /@ #1) &, ##]]

]
]

]],
Length[Flatten[##]]

] &
]

Since this source does not give an explanation how this implementation works, one is given
here. Let us consider the calculation of the shuffle product of the words ab and xyz, the list
of which is represented as

lists = {{a, b}, {x, y, z}}

First, generate a list of placeholders, denoted by the index of a word a letter is taken from
(in the list of words to be shuffled), for the letters of the words that are to be shuffled, in our
example

1URL: https://mathematica.stackexchange.com/questions/41614/shuffle-product-of-two-lists
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Flatten[MapIndexed[(idx = #2[[1]]; idx & /@ #1) &, ##]] &[lists]

yields {1,1,2,2,2}. Then generate all permutations of this list of placeholders. This is
the most computationally expensive part of the computation of the shuffle product, but it
is fast because it is done by the built-in function Permutations written in a lower level
programming language. In our example,

Permutations[Flatten[MapIndexed[(idx = #2[[1]]; idx & /@ #1) &, ##]]] &[lists]

yields

{{1,1,2,2,2}, {1,2,1,2,2}, {1,2,2,1,2}, {1,2,2,2,1}, {2,1,1,2,2},
{2,1,2,1,2}, {2,1,2,2,1}, {2,2,1,1,2}, {2,2,1,2,1}, {2,2,2,1,1}}

The rest of the code replaces the placeholders by the letters of the words to be shuffled, in
the correct order relative to the respective words. In our example, fsh[lists] yields

{{a,b,x,y,z}, {a,x,b,y,z}, {a,x,y,b,z}, {a,x,y,z,b}, {x,a,b,y,z},
{x,a,y,b,z}, {x,a,y,z,b}, {x,y,a,b,z}, {x,y,a,z,b}, {x,y,z,a,b}}

Note that the result is a list (of summands) because Mathematica treats a sum of lists of the
same length as a sum of vectors.

A generalization of fsh to concatenations of shuffle products of (an arbitrary number of)
words is the module rsh:

rsh[Li_] := Module[{idx},
Total[Map[r[Flatten[#1, 1]] &, Tuples[Map[
Partition[Flatten[##][[Flatten[Ordering[Ordering[#]] & /@
Permutations[Flatten[MapIndexed[(idx = #2[[1]]; idx & /@ #1) &,

##]]]]]], Length[Flatten[##]]
] &, Li]]]]

]

This is equivalent toTotal[Map[r[Flatten[#1,1]]&, Tuples[Map[fsh, Li]]]], but slightly
faster as it avoids function calls. Since in our application we actually want to obtain Eulerian
idempotents of such terms, i.e. terms of the form

e

 l1,1,1, . . . l1,1,w1,1

...
l1,v1 ,1 . . . l1,v1 ,w1,v1

_ . . . _
lu,1,1, . . . lu,1,wu,1

...
lu,vu ,1 . . . lu,vu ,wu,vu

 ,

we use the list header r for the Eulerian idempotent2, which also allows us to use the built-in
function Total to formally sum up the different summands of the shuffle product.

Example B.1.1. rsh[{p, q}, {{{a, b}, {c}}, {{x}, {y}}}] yields

r[{p,q,a,b,c,x,y}] + r[{p,q,a,b,c,y,x}]
+ r[{p,q,a,c,b,x,y}] + r[{p,q,a,c,b,y,x}]
+ r[{p,q,c,a,b,x,y}] + r[{p,q,c,a,b,y,x}]

Finally, a version with Euler-Lyndon elements as its output is introduced:

2The letter r was chosen corresponding for the old notation for the truncated tensors, cf. section 3.1 because
e was already in use by Mathematica for the built-in Eulerian constant.
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rlsh[Li_] := Module[{idx},
Total[Map[r[Flatten[#1, 1]] &, Tuples[Map[
Partition[Flatten[##][[Flatten[Ordering[Ordering[#]] & /@
Permutations[Flatten[MapIndexed[(idx = #2[[1]]; idx & /@ #1) &,

##]]]]]], Length[Flatten[##]]
] &, Li]]]]/.{r :> Rm}

]

B.2 Rewriting Euler elements in terms of Euler-Lyndon elements

B.2.1 Rm

Rm implements Pohlmeyer’s and Rehren’s algorithm (see remark 1.3.3). Its argument is a
word x, written as a list of letters Li, and it returns e(x) written as a linear combination of
Euler-Lyndon elements. Results are stored in RAM since (for long words) retrieval is several
orders of magnitude faster than calculation.

Rm[Li_] := Rm[Li] = Module[{L, PL, K}, L = Length[Li];
PL = PerL[Li];
K = CritInt[Li];
If[PL == L,
If[K == 0,
r[Li],
Expand[
r[Li] - rsh[{{Take[Li, {1, K}], Take[Li, {K + 1, L}]}}] /. {r[

L_] :> Rm[L]}]
],
If[K == 0,
Expand[
Expand[r[Li] - ((1/(L/PL)!))*

rsh[{Table[Take[Li, {1, PL}], {L/PL}]}]] /. {r[L_] :>
Rm[L]}],

Expand[
r[Li] - rsh[{{Take[Li, {1, K}], Take[Li, {K + 1, L}]}}] /. {r[

L_] :> Rm[L]}]
]

]
]

EulLynMem allows to apply this as a rule.

EulLynMem = {r[Li_] :> Rm[Li]}

Example B.2.1. r[{1,0,2}]/.EulLynMem is resolved to Rm[{1,0,2}], which yields

-r[{0,1,2}] - r[{0,2,1}]
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B.2.2 PerL

PerL takes as its input a a word, represented as a list Li, and returns its period length.

PerL[Li_] := Module[{L, A, PL, K, i, j},
Catch[
L = Length[Li];
For[PL = 1, PL <= L/2, PL++,
If[Mod[L, PL] == 0,
K = True;
For[j = 1, j <= PL, j++, A = Li[[j]];
For[i = j + PL, i <= L, i = i + PL,
If[Li[[i]] =!= A,
K = False;
Break

]
];

];
If[K, Throw[PL]]

]
];
Throw[L]

]
]

Example B.2.2. PerL[{0,1,0,1,0,1}] yields 2.

B.2.3 CritInt

CritInt takes as its input a a word, represented as a list Li, and returns its critical integer
(indicating how many positions Li has to be shifted (to the left) in order to be minimal among
all cyclic rotations) with respect to the order of letters LettOrd.

CritInt[Li_] := Module[{Res, L, i, j, a},
L = Length[Li];
If[L == 1, Return[0]];
Res = 1;
For[i = 2, i <= L, i++,
For[j = 0, j < L, j++,
a = LettOrd[Li[[Mod[i + j, L, 1]]], Li[[Mod[Res + j, L, 1]]]];
Which[
a == -1, Break[],
a == 1, Res = i; Break[]

]
]

];
Return[Res - 1]

]

Example B.2.3. CritInt[{2,0,1}] yields 1.
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B.2.4 LettOrd

LettOrd implements an order on an alphabet by taking the order explicitly given from the
list LettOrdList. Letters not on this list are considered greater than letters on it, and two
letters not on the list are compared using the built-in function Order. The output is in the
standard Mathematica format of Order (see A.1.3).
LettOrd[a_, b_] := LettOrd[a, b] = Module[{i, j},
i = Position[LettOrdList , a];
j = Position[LettOrdList , b];
If[i == {},
If[j == {}, Order[a, b], -1],
If[j == {}, 1, Order[i, j]]

]
]

LettOrdList = {0, M0, P0, 1, 2, M, P, 3}

Example B.2.4. LettOrd[M0,P] yields 1.

B.2.5 LyndonQ

LyndonQ takes as its input a word, represented as a list Li, and returns True if Li is a Lyndon
word with respect to the order of letters LettOrd, False otherwise. It uses CritInt to check
if Li is minimal among its cyclic rotations and PerL to check if it is nonperiodic (i.e. uniquely
minimal if it is minimal).
LyndonQ[Li_] := Module[{},
(CritInt[Li] == 0) && (PerL[Li] == Length[Li])

]

B.2.6 Lyndon

Lyndon accepts as input a list of letters Elements and integers nmin and (optionally) nmax.
The output is a list of all Lyndon words, written as lists, of length n such that nmin ≤ n ≤ nmax.
If no nmax is supplied, nmax:= nmin is used.
Lyndon[Elements_ , nmin_, nmax_: 0] := Module[{Res = {}, nMax, n},
If[nmax == 0, nMax = nmin, nMax = nmax];
For[n = nmin, n <= nMax, n++,
Res = Join[Res, Tuples[Elements, n]]
];
Select[Res, LyndonQ]
]

Example B.2.5. Lyndon[{0, 1, 2}, 3] with standard order of natural numbers yields
{{0,0,1}, {0,0,2}, {0,1,1}, {0,1,2}, {0,2,1}, {0,2,2}, {1,1,2}, {1,2,2}}

B.2.7 rLyndon

rLyndon applies the formal function r to the result of Lyndon to output all Euler-Lyndon
elements of desired length. Imput conventions are the same as for Lyndon above.
rLyndon[par___] := Map[r, Lyndon[par]]
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B.3 Dimension formulas

B.3.1 NumLyndon

NumLyndon is a straightforward implementation of the formula from theorem 1.3.6:1. It
accepts integers n and d and returns the number of Lyndon words of length n over an
alphabet of d letters.

NumLyndon[n_, d_] := 1/n*DivisorSum[n, MoebiusMu[#]*d^(n/#) &]

B.3.2 NumLyndonL

NumLyndonL is a corresponding implementation of the formula from theorem 1.3.6:2. It
accepts a list of integers L and returns the number of Lyndon words featuring exactly L[[i]]
occurrences of the i-th letter.

NumLyndonL[L_] := Module[{n, r, p},
If[Sum[Abs[L[[i]]], {i, 1, Length[L]}] == 0,
0,
n = Total[L];
r = Floor[Min[Select[L, # != 0 &]]];
1/n*Sum[ListDivisor[p, L]*MoebiusMu[p]*Apply[Multinomial , L/p], {p, 1, r}]

]
]

It uses the module ListDivisor which accepts an integer d and a list of integers L and
returns 1 if d is a divior of each of the entries of L, and returns 0 otherwise.

ListDivisor[d_, L_] := Module[{i, l},
l = Length[L];
Catch[
For[i = 1, i <= l, i++,
If[Divisible[L[[i]], d], , Throw[0]]

];
Throw[1]

]
]

Example B.3.1. NumLyndonL[{1,1,2}] returns 3 because (irrespective of the order) there are
3 different Lyndon words in which one letter appears twice and two other letters appear
once, for instance

(0012), (0021), (0102) .

B.3.3 Dimensions of weight spaces and numbers of multiplets for d = 3

WSDim3 implements formula (2.94) for the dimension of weight spaces for d = 3.

WSDim3[m_, l_] := Module[{r, p},
1/(l+2)*Sum[Sum[ListDivisor[p, {l+2, m, r}]*MoebiusMu[p]

*Multinomial[(l+2-Abs[m]-2*r)/p, r/p, (Abs[m]+r)/p],
{p,1,l+2}], {r,0,Floor[(l+2-Abs[m])/2]}]
]
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NumMults3 gives the number νl(s) of multiplets of highest weight s in stratum l for d = 3
according to corollary 2.3.13:4.
NumMults3[s_, l_] :=
WSDim3m[Abs[s], l] - WSDim3m[Abs[s] + 2, l]

B.3.4 Dimensions of weight spaces and numbers of multiplets for d = 4

WSDim4m implements formula (2.92) for the dimension of weight spaces denoted by magnetic
quantum numbers m0,m1 in stratum l for d = 4.
WSDim4m[m0_, m1_, l_] := Module[{r, p},

1/(l+2)*Sum[Sum[ListDivisor[p, {m0, m1, r, (l+2-Abs[m0]-Abs[m1])/2}]
*MoebiusMu[p]*Multinomial[r/p, (Abs[m0]+r)/p, ((l+2-Abs[m0]-Abs[m1])/2-r)/p,

((l+2-Abs[m0]+Abs[m1])/2-r)/p],
{p, 1, l+2}], {r,0, Floor[(l+2-Abs[m0]-Abs[m1])/2]}]

]

WSDim4my implements the same formula for weights denoted by weight tuples my0, my1.
WSDim4my[my0_, my1_, l_] := WSDim4m[(my0-my1)/2, (my0+my1)/2, l]

NumMults4 implements formula (2.108) for the number of multiplets of highest weight (σ0, σ1)
in stratum l for d = 4.
NumMults4[s0_, s1_, l_] :=
WSDim4my[Abs[s0], Abs[s1], l] - WSDim4my[Abs[s0] + 2, Abs[s1], l] -
WSDim4my[Abs[s0], Abs[s1] + 2, l] + WSDim4my[Abs[s0] + 2, Abs[s1] + 2, l]

B.4 Pohlmeyer-Rehren Lie bracket

B.4.1 g

g implements the Minkowski metric (cf. definition 1.4.3) with α = 1. A different (or symbolic)
α can be implemented easily by writing it as a factor before the Which statement. Note that
since + and − are operators in Mathematica that cannot be overloaded, we use M[i] and
P[i] for −i and +i respectively. To save typing for d = 3, 4, the abbreviations M=M1=M[1],
P=P1=P[1], M0=M[0], P0=P[0] can be used.
g[a_, b_] := Module[{},
Which[
{a, b} === {0, 0}, 1,
! (FreeQ[{a, b}, P | M] || FreeQ[{a, b}, 1 | 2, 1]),
Print["Error! Mix of 12 and +- bases."]; Abort[],
a === b && FreeQ[a, P | M | M0 | P0 | M1 | P1], -1,
{a, b} === {M, P}, -1,
{a, b} === {P, M}, -1,
{a, b} === {M0, P0}, -1,
{a, b} === {P0, M0}, -1,
{a, b} === {M1, P1}, -1,
{a, b} === {P1, M1}, -1,
Depth[a] == 2 && Depth[b] == 2 &&
a[[1]] ==
b[[1]] && ((a[[0]] === M && b[[0]] === P) || (a[[0]] === P &&

b[[0]] === M)), -1,
True, 0]

]
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B.4.2 Lm

Lm implements the Pohlmeyer-Rehren Lie bracket (1.54) of Euler elements. Note that the
result is written in terms of Euler-Lyndon elements using Pohlmeyer’s algorithm. After this
computation, results are stored in memory so that the repeated computations of the same
Lie bracket can be avoided.

Lm[r[L_], r[K_]] := Lm[r[L], r[K]] =
Expand[Sum[Sum[

If[g[L[[i]], K[[j]]] =!= 0,
g[L[[i]], K[[j]]]*(-1)^(Length[L]+i+j+1)*
rlsh[{{Take[L,{1,i-1}], Reverse[Take[L, {i+ 1,-1}]]}, {Reverse[Take[K,

{1,j-1}]], Take[K, {j+1,-1}]}}], 0],
{j,Length[K]}], {i, Length[L]}]]

B.4.3 LieRules

LieRules is a set of rules that encompasses linearity of the Lie bracket as well as the Lie bracket
of individual Euler elements. It can be used to calculate (multiple) arbitrary Pohlmeyer-
Rehren Lie brackets.

LieRules = {L[a_, b_] /; FreeQ[a, r] -> 0,
L[a_, b_] /; FreeQ[b, r] -> 0,
L[a_ + b_, c_] -> L[a, c] + L[b, c],
L[a_, b_ + c_] -> L[a, b] + L[a, c],
L[a_ b_, c_] /; FreeQ[a, r] -> a*L[b, c],
L[a_, b_ c_] /; FreeQ[b, r] -> b*L[a, c],
L[r[L_], r[K_]] :> Lm[r[L], r[K]]}

B.4.4 LB

LB uses the set of rules LieRules to calculate the Lie bracket of two elements of g.

LB[a_,b_]:=L[a,b]//.LieRules

Example B.4.1. LB[r[{0,P}],r[{M,P}]] yields 2r[{0,P}].

B.5 Linear operators

Linear operators that are of particular interest to the application to the Pohlmeyer-Rehren
Lie algebra for d = 3 are the angular momentum operator J = adh, the ladder operators
J+ = adx, J− = ady and the Casimir operator J2 = J+J− + J−J+ + JJ. The angular momentum
and Casimir operators commute and for x ∈ sgm the eigenvalue equations

J x = m · x , (B.1)

J2 x = s(s + 1) · x (B.2)

hold.
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B.5.1 Angular momentum operator J

J = Expand[LB[r[{M,P}], #]] &

B.5.2 Ladder operators J±

JP = Expand[LB[r[{0,P}], #]] &
JM = Expand[LB[r[{0,M}], #]] &

B.5.3 Casimir operator J2

J2 = JP[JM[#]] + JM[JP[#]] + J[J[#]] //. EulLynMem &

B.6 Linear algebra tools

The Mathematica modules presented in this section are mainly wrappers around built-in
functions that are geared towards improved usability for the Pohlmeyer-Rehren Lie algebra.

B.6.1 BaseVars

BaseVars takes as its input a list L of elements (that aren’t necessarily linearly independent)
of the Pohlmeyer-Rehren Lie algebra and returns a basis of the vector space spanned by L.

BaseVars[L_] := Module[{vars, LRed, Mat, MatR},
LRed = Select[Map[rInt, L], # =!= 0 &] // Sort;
vars = Variables[LRed];
Mat = CoefficientArrays[LRed, vars][[2]] // Normal;
MatR = RowReduce[Mat];
Select[MatR.vars, # =!= 0 &]

]

Example B.6.1. BaseVars[{r[{0,M,P}]+r[{0,P,M}], r[{0,M,P}]-r[{0,P,M}],
7*r[{0,M,P}]+2*r[{0,P,M}]}]

yields

{r[{0,M,P}], r[{0,P,M}]}

BaseVars uses the module rInt, which finds a multiple of a given element of g with
integer coefficients with respect to the Euler-Lyndon basis.

rInt[a_] := Module[{ax, N},
ax = Expand[a];
N = rGCD[ax];
If[N === 0, 0, Expand[ax/N]]

]
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rInt in turn uses the module rGCD to find the greatest common denominator of the
coefficients of a linear combination of Euler-Lyndon elements.
rGCD[a_] := Module[{b = a, NonRatGCD = 1, i},
If[b[[0]] === Plus, b[[0]] = List;
For[i = 1, i <= Length[b], i++,
NonRatGCD = NonRatGCD * Select[b[[i]]*NonRatGCD , #1[[0]] == Power &] //.

r[] -> 1;];
NonRatGCD * If[FreeQ[Expand[b/NonRatGCD], Power], GCD @@ (b/NonRatGCD //. r[x_

] -> 1), 1] *
If[a[[1, 0]] === Times && a[[1, 1]] < 0, -1, 1],

b //. r[x_] -> 1
]

]

B.6.2 LinCoeffs

LinCoeffs accepts as its input a basis, represented as a list B, and a vector v from the vector
space spanned by the basis and returns the list of linear coefficients of v relative to B.
LinCoeffs[B_, v_] := Module[{vars, Mat, vec},
If[v === 0,
Table[0, {Length[B]}],
vars = Variables[Append[B, v]];
Mat = CoefficientArrays[B, vars][[2]] // Normal;
vec = CoefficientArrays[v, vars][[2]] // Normal;
LinearSolve[Transpose[Mat], vec]

]
]

Example B.6.2. LinCoeffs[{r[{0,M}]+r[{0,P}], r[{0,P}]}, r[{0,M}]]

yields
{1, -1}

B.6.3 EigSps

EigSps accepts a list of basis vectors LIn spanning a vector space and an endomorphism f
of that space and returns a list of all eigenvalues and corresponding eigenspaces (given as a
list of basis vectors).
EigSps[LIn_, f_] :=
Module[{L, fL, Mat, NS, j, i, vars, VarMat, EigVals, EigVecs,

Positions}, L = BaseVars[LIn];
vars = Variables[L];
VarMat = CoefficientArrays[L, vars][[2]] // Normal;
fL = Map[f, L];
Mat = Transpose[Table[LinCoeffs[L, fL[[i]]], {i, 1, Length[L]}]];
NS = Eigensystem[Mat];
EigVals = Union[NS[[1]]];
Positions = Map[Position[NS[[1]], #] &, EigVals];
EigVecs = Map[Extract[NS[[2]].VarMat.vars, #] &, Positions];
EigVecs = Map[rInt, EigVecs, {2}];
{EigVals, EigVecs} // Transpose
]
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B.6.4 SimEigSps

SimEigSps is a generalization of EigSps in that it accepts a list Homs of endomorphisms in
addition to a vector space, given as a list Vecs of basis vectors, and calculates simultaneous
eigenvectors (and corresponding eigenvalues) with respect to all given endomorphisms.

SimEigSps[Vecs_, Homs_] := Module[{i, j, k, ES, ResOld, Res, Item},
Res = {{Select[Vecs, # =!= 0 &]}};
For[i = 1, i <= Length[Homs], i++,
ResOld = Res;
Res = {};
For[j = 1, j <= Length[ResOld], j++,
ES = EigSps[ResOld[[j, -1]], Homs[[i]]];
For[k = 1, k <= Length[ES], k++,
Item = Join[Drop[ResOld[[j]], -1], {ES[[k, 1]]}, {ES[[k, 2]]}];
Res = Join[Res, {Item}];

];
];

];
Res

]

Example B.6.3. We calculate the simultaneous eigenspaces of the of the Casimir operator J2

and the angular momentum operator J on a stratum gl for d = 3. Note that the eigenspaces
of the Casimir operator are the direct sums of all irreducible g0-modules of a given highest
weight vector and the eigenspaces of J are the weight spaces (cf. remark 2.3.9). Thus, we
obtain the decomposition

gl =

l+1⊕
s=0

s⊕
m=−s

sgm
l .

Note that this is only a decomposition into irreducible g0-modules if all multiplicities are 1, i.e.
if l ≤ 1. To obtain that, one would have to make a choice for a basis of a given weight space
(cf. remark 2.3.17) consistent with the action of the ladder operators. To calculate the above
decomposition for l = 2 in Mathematica we can use the command
SimEigSps[rLyndon[{0,M,P}, 4], {J2,J}]//Grid, which yields

2 -1 {3r[{0,M,M,P}]-r[{0,M,P,M}]-2r[{0,P,M,M}],
r[{0,0,0,M}]-r[{0,M,P,M}]-r[{0,P,M,M}]}

2 0 {2r[{0,0,P,M}]+r[{0,M,0,P}]-5r[{M,M,P,P}],
2r[{0,0,M,P}]+r[{0,M,0,P}]+3r[{M,M,P,P}]}

2 1 {2r[{0,M,P,P}]+r[{0,P,M,P}]-3r[{0,P,P,M}],
2r[{0,0,0,P}]-r[{0,P,M,P}]-3r[{0,P,P,M}]}

6 -2 {r[{0,0,M,M}]-2r[{M,M,M,P}]}
6 -1 {2r[{0,0,0,M}]+r[{0,M,M,P}]+r[{0,M,P,M}]+2r[{0,P,M,M}]}
6 0 {r[{0,0,M,P}]+r[{0,0,P,M}]}
6 1 {2r[{0,0,0,P}]+2r[{0,M,P,P}]+r[{0,P,M,P}]+r[{0,P,P,M}]}
6 2 {r[{0,0,P,P}]+2r[{M,P,P,P}]}

12 -3 {r[{0,M,M,M}]}
12 -2 {r[{0,0,M,M}]+r[{M,M,M,P}]}
12 -1 {2r[{0,0,0,M}]+r[{0,M,M,P}]+r[{0,M,P,M}]-r[{0,P,M,M}]}
12 0 {r[{0,0,M,P}]-r[{0,0,P,M}]-r[{M,M,P,P}]}
12 1 {2r[{0,0,0,P}]-r[{0,M,P,P}]+r[{0,P,M,P}]+r[{0,P,P,M}]}
12 2 {r[{0,0,P,P}]-r[{M,P,P,P}]}
12 3 {r[{0,P,P,P}]}
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B.6.5 dimension

dimension accepts as its input a vector space V given as a list L of the vectors that span V
and returns dim V.

dimension[L_] := Module[{vars, LRed, Mat, MatR},
If[L === {} || L === {0}, 0,
LRed = Select[Map[rEinf, L], # =!= 0 &] // Sort;
vars = Variables[LRed];
Mat = CoefficientArrays[LRed, vars][[2]] // Normal;
MatR = MatrixRank[Mat]
]

]

B.6.6 Kernel

Kernel accepts as its input a basis of a vector space V given as a list L and a linear function
f : V →W (for some vector space W and returns the Kernel ker f as a list of basis vectors.

Kernel[L_, f_] := Module[{fL, coeffs, NS},
fL = Map[f, L];
coeffs = Normal[CoefficientArrays[fL][[-1]]];
If[coeffs === Table[0, {Length[coeffs]}],
L,
NS = NullSpace[Transpose[coeffs]

];
If[NS == {}, 0, Expand[NS.L]]]

]

B.6.7 Kernels

Kernels accepts as its input a basis of a vector space V given as a list L and a list Lf of
linear functions V →W (for some vector space W and returns the intersection of the kernels⋂

f∈Lf ker f as a list of basis vectors.

Kernels[L_, Lf_] := If[Length[Lf] == 1,
Kernel[L, Lf[[1]]],
Kernels[Kernel[L, Lf[[1]]], Drop[Lf, 1]]
]

Example B.6.4. We calculate the highest weight vectors of g1 for d = 4, as in remark 2.3.15.
A linear basis of g1 in the spin basis is given by rLyndon[{M0,P0,M,P}],3] and elements
associated to positive roots are x0 = e(+0+), x1 = e(−0+), so (using anonymous functions for
adjunctions of the xi),

Kernels[rLyndon[{M0,P0,M,P}],3],{LB[r[{P0,P}],#]&,LB[r[{M0,P}],#]&}]

calculates the highest weight vectors, specifically

{-r[{M,P,P}] + r[{P,M0,P0}] + r[{P,P0,M0}], r[{P,P,M0}], r[{P,P,P0}]}
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B.6.8 CenterTest

CenterTest was used to test the conjecture 2.1.3 that the center of the Pohlmeyer-Rehren Lie
algebra is identical to g−1. It takes as its input a list of elements of the Pohlmeyer-Rehren Lie
algebra L and iteratively calculates the intersection of the kernels of the adjunctions of the
elements of L by iteratively calculating the kernel of the restriction of an adjunction to the
intersection of the kernels previously considered.

CenterTest[L_] := Module[{NS, i},
NS = L;
For[i = 1, i <= Length[L], i++,
NS = Kernel[NS, LB[#, L[[i]]] &];
If[NS == 0,
Print["No element commutes with all elements of the input set L"];
Abort[]

];
];
Print["The following elements commute with all elements of the \

input set L: ", NS]
]
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Appendix C

Calculations Regarding the
Generation of Leading Terms of
Exceptional Elements in ĥ

This appendix serves to outline the partial results obtained in the pursuit of a proof of
conjecture 3.4.2. While that attempt was not successful, the method deserves to be described.

Conjecture 3.4.2 states that the leading term of the exceptional element L gl with l = 2n + 3
can be found in the quantum correction of

{. . . {{L−2,L−1},L0}, . . . ,L0}︸         ︷︷         ︸
n

· {. . . {{L2,L1},L0}, . . . ,L0}︸         ︷︷         ︸
n

∈ h2n+5 . (C.1)

According to the quantization procedure laid out in chapter 3, a quantized lifting of the above
invariant is given by the anticommutator

1
2
(
[. . . [[L̂−2, L̂−1], L̂0], . . . , L̂0]︸         ︷︷         ︸

n

· [. . . [[L̂2, L̂1], L̂0], . . . , L̂0]︸         ︷︷         ︸
n

+[. . . [[L̂2, L̂1], L̂0], . . . , L̂0]︸         ︷︷         ︸
n

· [. . . [[L̂−2, L̂−1], L̂0], . . . , L̂0]︸         ︷︷         ︸
n

)
∈ ĥ2n+5 . (C.2)

In the rest frame, the L̂i are sums of terms of the form me(abc) and e(ab)e(cd) (with constant
coefficients) and a quantum correction, where a, b, c, d ∈ X. By linearity, each of the products
above can be expanded to a linear combination of summands that inherit only one of those
terms from each Li. We can now use the special form of lead L gl to identify a large number of
summands that cannot contribute to it. Note that the quantum corrections of the individual
L̂ are of sufficiently low degree that any summand of the expansion of the above equation
containing at least one of them cannot contribute to lead L gl . For reasons of degree, only
those summands where exactly one term in a multiple Lie bracket is of the form e(ab)e(cd)
and all the other terms are of the form m · e(abc) can contribute to the leading term of the
exceptional element. Combining the above considerations and ignoring the common factor
1/2 from the anticommutator, all summands that can possibly contribute to lead L gl are of
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the form
=:F−1︷                                     ︸︸                                     ︷

[. . . [[x−2, x−1]], x0,−1], . . . , x0,−n] ·

=:F+2︷                              ︸︸                              ︷
[. . . [[x2, x1], x0,1], . . . , x0,n]

+ [. . . [[x2, x1]], x0,1], . . . , x0,n]︸                               ︷︷                               ︸
=:F+1

· [. . . [[x−2, x−1], x0,−1], . . . , x0,−n]︸                                    ︷︷                                    ︸
=:F−2

, (C.3)

where exactly one of the x must be of the form e(ab)e(cd) while all the others are of the form
me(abc). To evaluate the sum of these terms, we need to look at each individual summand,
designated by which of the x is of the form e(ab)e(cd). The m are suppressed in the calculations
because they are central and can therefore be treated as constant factors, and we call the x of
the form e(ab)e(cd) the quadratic x.

We first prove a general lemma that is simply a formalization of the iterative application
of Leibniz’s rule to multiple Poisson brackets with a single product in them, just as in the
above situation.

Lemma C.0.1. Let (H, ·, { , }) be a Poisson algebra. Then the following equation for multiple brackets
holds: if zi, y j ∈ H for all i ∈ {1, 2}, j ∈ {1, . . . ,n}, then

{. . . {{z1 · z2, y1}, y2}, . . . , yn} =
∑

s∈{0,1}n+1

l(s) · r(s) (C.4)

with

l(()) = z1 ,

r(()) = z2 ,

l(s, 0) = l(s) ,
r(s, 0) = {r(s), yk} , (C.5)
l(s, 1) = {l(s), yk} ,

r(s, 1) = r(s)

for s ∈ {0, 1}k−1.

Proof. Induction over n. For n = 0, this is Leibniz’s rule. Now suppose the equation holds
up to n. Then,

{. . . {{z1 · z2, y1}, y2}, . . . , yn+1} ={. . . {z1 · {z2, y1}︸    ︷︷    ︸
=:z′2

, y2}, . . . , yn+1} + {. . . {{z1, y1}︸    ︷︷    ︸
=:z′1

·z2, y2}, . . . , yn+1}

ind. hyp.
=

∑
s∈{0,1}n+1

l′(s) · r′(s) + l′′(s) · r′′(s)

=
∑

s∈{0,1}n+1

l(1, s) · r(1, s) + l(0, s) · r(0, s)

=
∑

s∈{0,1}n+2

l(s) · r(s) ,

when the substitutions {z2, y1} =: z′2 and {z1, y1} =: z′1 to take advantage of Leibniz’s rule as
well as z′1 := z1, z′′2 := z2 and y′j := y′′j := y j+1 for i ∈ {1, . . . ,n} to arrange the indices into the
form of equation (C.4) are made. �
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Since universal enveloping algebras are Poisson algebras and ĥ = ker δ is a subalgebra
of U(gh), the lemma can be applied in our situation. Consider the form of the two products
F−1F+2 + F+1F−2 in equation (C.3). We can apply the above lemma C.0.1 to the two factors in
which the quadratic x occurs.

If this x occurs in the left hand factor F±1, then the degree of the right hand factor F∓2 is
n + 2, greater than the degrees of l(s) and r(s), as well as of [l(s), r(s)] ∈ gn+1 for all s. Therefore,
there is no contribution in h2 (at most one reordering in the quantization). However, due to
reasons of degree, lead L gl can only occur in a term quadratic in h.

Therefore only the products where the quadratic x occurs in the right hand factor F±2 can
contribute. In other words, if one of x−2, x−1, x0,−1, . . . , x0,−n is quadratic, only the product
F+1F−2 contributes, otherwise only F−1F+2 contributes.

Consider furthermore that since Li is obtained from L−i by changing the signs in the
occurring words (this is the action of one the single generator of the Weyl group from lemma
2.2.17 for d = 3), one can obtain the contribution to lead L gl where one of the x−2, x−1,
x0,−1, . . . , x0,−n is quadratic by calculating the corresponding contribution where one of the
x2, x1, x0,1, . . . , x0,n is quadratic and changing all signs in the words.

We continue in the latter case, calculating the only product contributing to the summand
in the expansion of (namely F−1F+2) that contributes to lead L gl . In the first equation, the fact
that F+2 can be expressed in the form of lemma C.0.1 is used (how exactly this is done for a
given quadratic x is listed below):

F−1 · F+2

C.0.1
=

∑
s∈{0,1}n+1

F−1 · l(s) · r(s)

=
∑

s∈{0,1}n+1

l(s) · F−1 · r(s) + h[l(s),F−1]r(s) (C.6)

=
∑

s∈{0,1}n+1

l(s) · r(s) · F−1 + hl(s)[F−1, r(s)] + hr(s)[l(s),F−1] + h2[[l(s),F−1], r(s)] .

Since the second and third summands on the right hand side of equation (C.6) are already in
ascending order and the first one produces at most one commutator (from the reordering of
l and r), the only contribution to a term in h2 can come from the last term. Because of this,
we will only consider the last summand above.

The fact that the term y := −e(0−+)−e(0+−) (= yi for all i ≥ 2) appears frequently allows
for a simplification:∑

s
[[l(s),F−1], r(s)]

=
∑

s,s1=0

[[l(s),F−1], r(s)] +
∑

s,s1=1

[[l(s),F−1], r(s)]

=
∑

s
[[ad#1 in s2,...sn+1

−y [x1, y1],F−1], ad#0 in s2...sn+1
−y x2] + [[ad#1 in s2,...sn+1

−y x1,F−1], ad#0 in s2...sn+1
−y [x2, y1]]

(C.7)

=

n∑
k=0

(
n
k

)
[[adn−k

−y [x1, y1],F−1], adk
−y x2] + [[adn−k

−y x1,F−1], adk
−y[x2, y1]] .
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Because both lead L gl and each remaining summand contain exactly 2n + 3 zeroes each,
all brackets where zeroes are contracted do not contribute to lead L gl . To calculate the
contribution, we can therefore replace the Pohlmeyer-Rehren Lie bracket by the Lie bracket
[·, ·]± defined in proposition 1.8.1.

To streamline the contiuation of calculation (C.7), some more notation is helpful. Define
the following symbols composed of binomial coefficients and Kronecker delta functions:

Definition C.0.2. Using the convention that
(n

k

)
= 0 if n < 0, define:

fi,n,m :=
(

m + n − i
n

)
+

(
m + n − i

m

)
− (−1)nδi,m − (−1)mδi,n

= hi,n,m + hi,m,n

=

(
p − i

n

)
+

(
p − i
p − n

)
− (−1)nδi,p−n − (−1)p+nδi,n (C.8)

=

(
p − i

n

)
+

(
p − i
n − i

)
− (−1)nδi,p−n − (−1)p+nδi,n ,

hi,n,m :=
(

m + n − i
n

)
− (−1)mδi,n , (C.9)

vi,n,p := (−1)n−phi,n,n−p

:= (−1)n−p
(

p − i
n

)
+ (−1)p+1δi,p−n , (C.10)

ui,n,p := (−1)n−p fi,n,n−p

:= (−1)n−p
(

p − i
n

)
+ (−1)n−p

(
p − i
p − n

)
+ (−1)p+1δi,p−n − δi,n , (C.11)

U0,i,n,p := δi,n , (C.12)

Uk,i,n,p :=
p∑

l=0

Uk−1,i,l,p+1ul,n,p , (C.13)

V0,i,n,p := δi,n , (C.14)

Vk,i,n,p :=
p∑

l=0

Uk−1,i,l,p+1vl,n,p . (C.15)

The above definitions imply the following statements:

• (−1)n+p
· vi,n,p ≥ 0 and vi,n,p = 0 only if i = p − n and n even.

• (−1)n+p
· ui,n,p ≥ 0 and ui,n,p = 0 only if i = p − n = n and n, p both even.

• ui,n,p = 0 if i > max(n, p − n) because all summands vanish in this case.

• ui,p−n,p = (−1)pui,n,p.

• vi,p−n,p = (−1)p(ui,n,p − vi,n,p).

• Uk,i,p−n,p = (−1)pUk,i,n,p.
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The notation just introduced allows to fully take advantage of the simpler Lie bracket
[·, ·]± and to concisely formulate the individual steps needed in the continuation of calculation
(C.7).

Lemma C.0.3. The following formulas for special terms hold in ±g:

1.

ad−y e(0m+) = −α · e(0m+1+) . (C.16)

2.

adp
−y e(0m+) = (−α)pe(0m+p+) . (C.17)

3.

ad−y e(−0n
−0p−n

−)

= α

p∑
i=0

ui,n,pe(−0i
−0p+1−i

−) (C.18)

= α

p∑
i=0

U1,i,n,pe(−0i
−0p+1−i

−) .

4.

adr
−y e(−0n

−0p−n
−) = αr

p+r∑
i=0

Ur,i,n,pe(−0i
−0p+r−i

−) . (C.19)

5.

[e(0r+), e(−0n
−0p−n

−)]±

= α

(−1)r+1
max(n,p−n)∑

i=0

ui,n,pe(−0i
−0p+r−i)

 . (C.20)

6.

[e(−0n
−0m), e(0++)]±

= α

(
(−1)m

m∑
i=0

((
n + m − i

n

)
− (−1)nδi,m

)
e(0i
−0m+n−i+1+)

)
. (C.21)

7. The above is a special case of

[e(−0n
−0p−n), e(+0m+0q−m)]±

= α(−1)q
p−n∑
i=0

q−m∑
j=0

vi,n,pv j,m,qe(0i
−0p+q−i− j+0 j) . (C.22)
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Appendix C. Generating Leading Terms of Exceptional Elements in ĥ

8.

e(0q
−0l−q−p+0p) = (−1)p

p∑
i=0

(
q + i

i

)(
l − q − i

p − i

)
e(0q+i

−0l−q−i+) . (C.23)

9.

e(0q+0l−q−p
−0p) = (−1)l+q+1

q∑
i=0

(
p + i

i

)(
l − p − i

q − i

)
e(0p+i

−0l−p−i+) . (C.24)

Proof. 1.

ad−y e(0m+) = −[e(0m+), e(0−+) + e(0+−)]±

= −α

(
(−1)m+1+m+1+2e(0m +

0 ) + (−1)m+1+m+1+3e(0m+0)
)

= −α · e(0m+1+) .

2. Induction over p using 1.

3.

ad−y e(−0n
−0p−n

−)
= − [e(−0n

−0p−n
−), e(0−+) + e(0+−)]±

= − α

(
(−1)pe(−0p−n

−0n+1
−) + (−1)p+n+1e( −0n

−0p−n 0−) + e(−0n
−0p−n+1

−)
)

= − α

(
(−1)pe(−0p−n

−0n+1
−) + (−1)p+n+1(e(− 0n

−0p−n 0−) + e(− −0n

0p−n 0−)) + e(−0n
−0p−n+1

−)
)

= − α

(
(−1)pe(−0p−n

−0n+1
−) + (−1)p+n+1

( n∑
i=0

(
p − i
n − i

)
e(−0i

−0p−i0−)

+

p−n∑
i=0

(
p − i

p − n − i

)
e(−0i

−0p−i0−)
)

+ e(−0n
−0p−n+1

−)

)

= α

p∑
i=0

(
(−1)p+1δi,p−n + (−1)p+n

((
p − i
n − i

)
+

(
p − i

n

))
− δi,n

)
e(−0i

−0p+1−i
−)

= α

p∑
i=0

ui,n,pe(−0i
−0p+1−i

−)

= α

p∑
i=0

U1,i,n,pe(−0i
−0p+1−i

−) .

4. Induction over r. Base case r = 0:

ad0
−y e(−0n

−0p−n
−) = e(−0n

−0p−n
−) =

p∑
i=0

δi,ne(−0i
−0p−i

−) = α0
p∑

i=0

U0,i,n,pe(−0i
−0p−i

−) .
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Inductive step:

adr+1
−y e(−0n

−0p−n
−)

3
= adr

−y α

p∑
j=0

u j,n,pe(−0 j
−0p+1− j

−)

ind.hyp.
= αr+1

p∑
j=0

(p+1)+r∑
i=0

Ur,i, j,p+1u j,n,pe(−0i
−0p+r+1−i

−)

= αr+1
p+(r+1)∑

i=0

p∑
j=0

Ur,i, j,p+1u j,n,p︸                ︷︷                ︸
)Ur+1,i,n,p

e(−0i
−0p+(r+1)−i

−) .

5.

[e(0r+), e(−0n
−0p−n

−)]±
= − [e(−0n

−0p−n
−), e(0r+)]±

= − α

(
(−1)p+r+1e(−0p−n

− 0n+r) + (−1)p+n+re( −0n

−0p−n 0r) + (−1)r+1e(−0n
−0p−n+r

)

= α

(−1)r+1
max(n,p−n)∑

i=0

ui,n,pe(−0i
−0p+r−i)

 .

6.

[e(−0n
−0m), e(0++)]±

= α

(
(−1)n+m+1e(0m

−0n+1+) + (−1)m+2e(−0n

0m 0+)
)

= α

(
(−1)n+m+1e(0m

−0n+1+) + (−1)m
m∑

i=0

(
n + m − i

n

)
e(0i
−0m+n−i+1+)

)

= α

(
(−1)m

m∑
i=0

((
n + m − i

n

)
− (−1)nδi,m

)
e(0i
−0m+n−i+1+)

)
.
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7.

[e(−0n
−0p−n), e(+0m+0q−m)]±

= α

(
(−1)pe(0p−n

−0n+m+0q−m) + (−1)p+m+1e(0p−n
−0n 0m+

0q−m )

+ (−1)p+n+1e( −0n

0p−n 0m+0q−m) + (−1)p+n+me( −0n

0p−n
0m+
0q−m

)

= α(−1)q

(
(−1)p+qe(0p−n

−0n+m+0q−m) + (−1)p+m+1+q
q−m∑
j=0

(
q − j

m

)
e(0p−n

−0p+q− j+0 j)

+ (−1)p+n+1+q
p−n∑
i=0

(
p − i

n

)
e(0i
−0p+q−i+0q)

− (−1)p+n+m+q
p−n∑
i=0

q−m∑
j=0

(
p − i

n

)(
q − j

m

)
e(0i
−0p+q−i− j+0 j)

)

= α(−1)q
p−n∑
i=0

q−m∑
j=0

(
(−1)p+qδi,p−nδ j,q−m

+ (−1)p+m+1+qδi,p−n

(
q − j

m

)
+ (−1)p+n+1+qδ j,q−m

(
p − i

n

)
− (−1)p+n+m+q

(
p − i

n

)(
q − j

m

))
e(0i
−0p+q−i− j+0 j)

= α(−1)q
p−n∑
i=0

q−m∑
j=0

(
(−1)pδi,p−n + (−1)p+n+1

(
p − i

n

))

·

(
(−1)qδ j,q−m + (−1)q+m+1

(
q − j

m

))
e(0i
−0p+q−i− j+0 j)

= α(−1)q
p−n∑
i=0

q−m∑
j=0

vi,n,pv j,m,qe(0i
−0p+q−i− j+0 j) .

8.

e(0q
−0l−q−p+0p) 1.2.5

= (−1)l+2−(l−p)e
(

0q
−0l−q−p

0p +

)
= (−1)p

p∑
i=0

(
q + i

i

)(
l − q − i

p − i

)
e(0q+i

−0l−q−i+) .

9.

e(0q+0l−q−p
−0p) 1.2.5

= (−1)l+3e(0p
−0l−q−p+0q) = (−1)l+q+1

q∑
i=0

(
p + i

i

)(
l − p − i

q − i

)
e(0p+i

−0l−p−i+) .

�
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The above lemma can be used to give a concrete formula for F−1 (recall that we are in the
case where no quadratic x occurs here):

F−1 = adn
−y[2e(0−−),−

√

2e(+−−)]±

= 2
√

2α adn
−y e(−−0−) (C.25)

(C.19)
= 2

√

2αn+1
n∑

i=0

Un,i,0,1e
(
−0i
−0n+1−i

−
)
.

We now continue the discussion of the summands, taking into consideration which one of
the x is quadratic.

• If x2 is quadratic, then use y1 = −
√

2e(−++), z1 = −e(0+), z2 = e(0+). Note that
[e(0+), e(−++)]± = −αe(0 + +). We continue calculation (C.7):

n∑
k=0

(
n
k

)[[adn−k
−y [x1, y1]±︸      ︷︷      ︸

=−
√

2αe(0++)

,F−1]±, adk
−y x2]± + [[adn−k

−y x1,F−1]±, adk
−y [x2, y1]±︸      ︷︷      ︸

=
√

2αe(0++)

]±


= −
√

2α
n∑

k=0

(
n
k

)(
[[adn−k

−y e(0++),F−1]±, adk
−y e(0+)]± + [[adn−k

−y e(0+),F−1]±, adk
−y e(0++)]±

)
Jacobi

= −

√

2α
n∑

k=0

(
n
k

)(
[[adk

−y e(0+),F−1]±, adn−k
−y e(0++)︸            ︷︷            ︸

=0 if n−k>0

]± + [F−1, [adn−k
−y e(0+), adk

−y e(0++)]±︸                               ︷︷                               ︸
=0

]±

+ [[adn−k
−y e(0+),F−1]=, adk

−y e(0++)︸           ︷︷           ︸
=0 if k>0

]±

)

= − 2
√

2α[[adn
−y e(0+),F−1]±, e(0++)]± (C.26)

(C.17)
= 2
√

2(−α)n+1[[e(0n+1+),F−1]±, e(0++)]±

(C.25)
= 8(−1)n+1α2n+2

n∑
i=0

Un,i,0,1[[e(0n+1+), e
(
−0i
−0n+1−i

−
)
]±, e(0++)]±

(C.20)
= 8(−1)2n+3α2n+3

n∑
i=0

n+1∑
j=0

Un,i,0,1u j,i,n+1[e(−0 j
−02n+2− j), e(0++)]±

(C.21)
= − 8α2n+4

n∑
i=0

n+1∑
j=0

2n+2− j∑
K=0

Un,i,0,1u j,i,n+1vK, j,2n+2e(0K
−02n+3−K+) .

• x−2 is quadratic. The contribution to lead L gl is the same as for the case of x2 being
quadratic, except of a sign change in the occurring words:

−8α2n+4
n∑

i=0

n+1∑
j=0

2n+2− j∑
K=0

Un,i,0,1u j,i,n+1vK, j,2n+2e(0K+02n+3−K
−) . (C.27)
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One can now use equation (C.24) to develop the term (C.27) into Euler elements whose
words end with a + and then merge the total contribution of the summands with
quadratic x±2 into the term

−8α2n+4
n∑

i=0

n+1∑
j=0

2n+2− j∑
K=0

2n+3∑
L=0

Un,i,0,1u j,i,n+1vK, j,2n+2vL,2n+3−K,2n+3e(0L
−02n+3−L+) . (C.28)

• x1 is quadratic. We can use antisymmetry to obtain the form of lemma C.0.1, acquiring
an additional sign for y1. Then, y1 = −2e(0++), and we have two summands, with
z11 = z22 = 1

√
2
e(0+), z21 = z12 = e(−+) respectively. Note [y1, e(0+)]± = 0.

n∑
k=0

(
n
k

)(
[[adn−k

−y [x11, y1]±︸       ︷︷       ︸
=0

,F−1]±, adk
−y x21]± + [[adn−k

−y x11,F−1]±, adk
−y [x21, y1]±︸       ︷︷       ︸

=−4αe(0++)

]±

+ [[adn−k
−y [x12, y1]±︸       ︷︷       ︸

=−4αe(0++)

,F−1]±, adk
−y x22]± + [[adn−k

−y x12,F−1]±, adk
−y [x22, y1]±︸       ︷︷       ︸

=0

]±

)
(C.29)

= − 2
√

2α
n∑

k=0

(
n
k

)(
[[adn−k

−y e(0+),F−1]±, adk
−y e(0++)]± + [[adn−k

−y e(0++),F−1]±, adk
−y e(0+)]±

)
.

From here on, we can use the above calculation (C.26) for the x2 case, noting that the
term on the right hand of (C.29) side occurs (with a factor of 2) in the second line of
calculation (C.26).

• For quadratic x−1, we can use the same sign change trick as for quadratic x−2.

• x0,±i is quadratic, i = 1, . . . ,n. Again, use antisymmetry to obtain the form of lemma
C.0.1, acquiring a sign for y1. Then,

y1 = adi−1
−y [e(0++),−

√

2e(−++)]±

= 3
√

2α adi−1
−y e(++0+)

and again we have two summands, with z1 = 1
2 e(0+), z2 = e(0−) and z1 = 1

2 e(0−),
z2 = e(0+) respectively. Further, y2 = . . . = yn−i = y. Again, [y1, e(0+)]± = 0. One can
now perform a similar calculation to the above cases which are omitted here because
they require even more arduous notation than calculation (C.26).

Note that the right hand side of equation (C.26) as well as the other summands are linear
combination of the Euler elements e(0L

−02n+3−L+) with L ∈ {0, . . . , 2n + 3}. Since these Euler
elements are linearly independent, to prove that lead L gl occurs in the quantum correction,
one only has to prove that the total coefficient (from all the summands of the expansion of
(C.2)) for L = 0 is nonzero.

This coefficient has been calculated using computer algebra for l = 3, 5, 7, 9 both by
explicitly calculating the full quantum correction of term (C.1) using the Meusburger-Rehren
approach with computer algebra and by using the simplifications discussed in this appendix.
For each l, the coefficients agree and are in fact nonzero.
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Given the construction of the symbols that make up the coefficient, the approach to a
general proof that the coefficient is nonzero suggesting itself is to exploit relations of binomial
coefficients and Kronecker deltas. Unfortunately, the problem has resisted this kind of attack
so far.
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Appendix D

A Pseudo-Hall-Basis up to l = 4 of g for
d = 3

This appendix gives a pseudo-Hall-basis of the Pohlmeyer-Rehren Lie algebra up to degree
l = 4 for d = 3, computed by using the algorithm PHallSecondGrad given in subsection 4.5.1
and implemented by Mathematica module PHallSecondGrad documented in section A.3.4.
We use the initial set

X :=
{
x = x = e(0+),

v = 2v−2 = e(0−−),

w = 1v−1 = e(00−) + e(−−+)
}

of elements from remark 2.3.17. To be precise, a pseudo-Hall-basis of the subalgebra gener-
ated by these elements is computed. The orders used are <H =<S = DegLex with x < v < w.
The specific code to generate this table is

PHallSecondGrad[{{"x", 0, r[{0,P}], 1},
{"v", 1, r[{0,M,M}], -2},
{"w", 1, r[{0,0,M}]+r[{M,M,P}], -1}}, 4]

The table was reformatted automatically into LATEX code with Mathematica, using the short-
hand xn.g := adn

x g for g ∈ g. In spite of being slightly misleading (no element xn operates on
g), this notation is used because it is easier to read than the correct notation (x.)ng. Fractions
occurring in B are automatically expanded so that all coefficients are integers.

By comparison of dimensions (the Mathematica module PHallSecondGrad automatically
outputs the dimension of each stratum), we can conclude that for l = 1, . . . , 9, the pseudo-
Hall-basis of the Lie algebra generated by x, v,w is also a pseudo-Hall-basis of 〈x〉 ⊕ g≥1 up to
l = 9.

Tuple H of basis vectors

l m h ∈ H in terms of X h ∈ H in terms of the Euler-Lyndon basis
0 1 x e(0+)
1 −2 v e(0−−)

continued
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l m h ∈ H in terms of X h ∈ H in terms of the Euler-Lyndon basis
1 −1 w e(00−) + e(−−+)
1 −1 x.v e(00−) − e(−−+)
1 0 x.w e(0−+) + e(0+−)
1 0 x2.v e(0−+) − e(0+−)
1 1 x2.w e(00+) + e(−++)
1 1 x3.v e(00+) − e(−++)
1 2 x4.v e(0++)
2 −3 v.w e(0−−−)
2 −2 v.x.w e(−−−+)
2 −2 v.x2.v e(00−−) + e(−−−+)
2 −1 v.x2.w e(000−) − 2e(0−−+) − e(0−+−) − e(0+−−)
2 −1 v.x3.v e(000−) + 2e(0−−+) + e(0−+−) − e(0+−−)
2 −1 w.x.w e(000−) − e(0−+−) − e(0+−−)
2 −1 w.x2.v 5e(000−) + e(0−+−) + e(0+−−)
2 0 v.x4.v e(00−+) + e(00+−) + e(0−0+) + e(−−++)
2 0 w.x2.w e(00−+) + e(00+−) + e(0−0+) − e(−−++)
2 0 w.x3.v 3e(00−+) + e(00+−) + e(0−0+) + e(−−++)
2 0 [x.v, x2.w] e(00−+) − e(00+−) + e(0−0+) + e(−−++)
2 1 w.x4.v e(000+) − e(0−++) − e(0+−+) − 2e(0++−)
2 1 [x.v, x4.v] e(000+) − e(0−++) + e(0+−+) + 2e(0++−)
2 1 [x.w, x2.w] e(000+) − e(0−++) − e(0+−+)
2 1 [x.w, x3.v] e(000+) + e(0−++) − e(0+−+) − 2e(0++−)
2 2 [x.w, x4.v] e(−+++)
2 2 [x2.v, x4.v] e(00++) − e(−+++)
2 3 [x2.w, x4.v] e(0+++)
3 −4 v.v.x.w e(0−−−−)
3 −3 v.v.x2.w 2e(00−−−) + e(0−0−−) + e(−−−−+)
3 −3 v.v.x3.v 4e(00−−−) + e(0−0−−) − 2e(−−−−+)
3 −3 w.v.x.w e(00−−−) − 2 e(−−−−+)
3 −2 v.v.x4.v 2e(000−−) + e(00−0−) − 2e(0−−−+) − 2e(0−−+−) − e(0−+−−) +

e(0+−−−)
3 −2 w.v.x2.w 3e(000−−) + e(00−0−) − 2e(0−−−+) − e(0−−+−)
3 −2 w.v.x3.v 3e(000−−) + 2 e(0−−−+) + e(0−−+−) + e(0−+−−)
3 −2 w.w.x2.v 4e(000−−) + e(00−0−)
3 −2 [x.v, v.x2.w] 2e(000−−) + e(00−0−) + 4e(0−−−+) + 2e(0−−+−) + e(0−+−−)
3 −2 [x.v,w.x.w] e(000−−) − e(0−−+−) − e(0−+−−)
3 −1 w.v.x4.v e(0000−) + 4 e(00−−+) + 3e(00−+−) + e(00+−−) + e(0−0−+) +

e(0−0+−) − 3e(−−−++) − e(−−+−+)
3 −1 w.w.x2.w e(0000−) + 2 e(00−−+) + e(00−+−) + e(00+−−) + e(0−0−+) +

e(0−0+−) + 3e(−−−++) + e(−−+−+)
3 −1 w.w.x3.v 11e(0000−) − 6 e(00−−+) − 3e(00−+−) − e(00+−−) − 3 e(0−0−+) −

e(0−0+−) + 3e(−−−++) + e(−−+−+)
3 −1 [x.v, v.x4.v] e(0000−) + 6 e(00−−+) + 3e(00−+−) − e(00+−−) + 3 e(0−0−+) +

e(0−0+−) + 2e(0−−0+) + 3 e(−−−++) + e(−−+−+)
3 −1 [x.v,w.x2.w] e(0000−) + 4 e(00−−+) + e(00−+−) − e(00+−−) + 3 e(0−0−+) +

e(0−0+−) + 2e(0−−0+) − 3 e(−−−++) − e(−−+−+)
3 −1 [x.v,w.x3.v] 11e(0000−) − 12 e(00−−+) − 3e(00−+−) + e(00+−−) − 5 e(0−0−+) −

e(0−0+−) − 2e(0−−0+) − 3 e(−−−++) − e(−−+−+)
3 −1 [x.v, [x.v, x2.w]] 5e(0000−) − 6 e(00−−+) + e(00−+−) − e(00+−−) − 3 e(0−0−+) +

e(0−0+−) − 2e(0−−0+) − 3 e(−−−++) − e(−−+−+)
3 −1 [x.w, v.x2.w] e(0000−) − 2 e(00−−+) − e(00−+−) + e(00+−−) − e(0−0−+) −

e(0−0+−) − 2e(0−−0+) − e(−−−++) − e(−−+−+)
3 −1 [x.w, v.x3.v] e(0000−) − 2 e(00−−+) + e(00−+−) + 5e(00+−−) + e(0−0−+) +

3e(0−0+−) + 2e(0−−0+) − 5 e(−−−++) + e(−−+−+)
3 0 w.w.x4.v 4e(000−+) + e(00−0+) −e(00+0−) − e(0−+−+) − 3e(0−++−) −

e(0+−−+) − 3e(0+−+−) − 6e(0++−−)
3 0 [x.v,w.x4.v] 4e(000−+) − 2 e(000+−) + e(00−0+) − e(00+0−) − 2 e(0−−++) −

e(0−+−+) − e(0−++−) + e(0+−−+) + 3e(0+−+−) + 6e(0++−−)
3 0 [x.v, [x.v, x4.v]] 2e(000−+) − 6 e(000+−) − e(00−0+) − e(00+0−) − 2 e(0−−++) +

e(0−+−+) + 3e(0−++−) − e(0+−−+) − 3e(0+−+−) − 6e(0++−−)
3 0 [x.w, v.x4.v] 2e(0−−++) + e(0−+−+) + e(0−++−) − e(0+−−+) − e(0+−+−) −

2e(0++−−)
3 0 [x.w,w.x3.v] e(000−+) + e(000+−) +e(00−0+) − e(0−+−+) − e(0−++−) −

e(0+−−+) − e(0+−+−) − 2e(0++−−)
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l m h ∈ H in terms of X h ∈ H in terms of the Euler-Lyndon basis
3 0 [x.w, [x.v, x2.w]] e(000−+) + e(000+−) + e(00+0−) − 2e(0−−++) − e(0−+−+) −

e(0−++−) − e(0+−−+) − e(0+−+−)
3 0 [x2.v, v.x4.v] 2e(000−+)+2 e(000+−)+e(00−0+)+e(00+0−)+ e(0−−++)+e(0++−−)
3 0 [x2.v,w.x2.w] 4e(000−+) + 4 e(000+−) + 2e(00−0+) + 2e(00+0−) − e(0−+−+) −

e(0−++−) − e(0+−−+) − e(0+−+−)
3 0 [x2.v,w.x3.v] 3e(000−+) + 3 e(000+−) + e(00−0+) + 2e(00+0−) + 2 e(0−++−) +

2e(0++−−)
3 0 [x2.v, [x.v, x2.w]] 3e(000−+) + 3 e(000+−) + 2e(00−0+) + e(00+0−) + 2 e(0−−++) +

2e(0+−−+)
3 1 [x.w,w.x4.v] e(0000+) + e(00−++) +e(00+−+) + 2e(00++−) − e(0−+0+) +

e(0+0+−) − e(−−+++) − e(−+−++)
3 1 [x.w, [x.v, x4.v]] e(0000+) − 3 e(00−++) − 5e(00+−+) − 6e(00++−) − 4 e(0−0++) −

e(0−+0+) − e(0+0+−) − 5 e(−−+++) + e(−+−++)
3 1 [x.w, [x.w, x2.w]] e(0000+) − 3 e(00−++) − e(00+−+) + 2e(00++−) − 2 e(0−0++) −

e(0−+0+) + e(0+0+−) + 3 e(−−+++) + e(−+−++)
3 1 [x.w, [x.w, x3.v]] e(0000+) + 3 e(00−++) + 3e(00+−+) + 4e(00++−) + 4 e(0−0++) +

e(0−+0+) + e(0+0+−) + 5 e(−−+++) − e(−+−++)
3 1 [x2.v,w.x4.v] 7e(0000+) − 7 e(00−++) − 3e(00+−+) − 6e(00++−) − 4 e(0−0++) −

e(0−+0+) + e(0+0+−) + 5 e(−−+++) + 5e(−+−++)
3 1 [x2.v, [x.v, x4.v]] 7e(0000+) − 3 e(00−++) + 3e(00+−+) + 2e(00++−) − e(0−+0+) −

e(0+0+−) + e(−−+++) − e(−+−++)
3 1 [x2.v, [x.w, x2.w]] 7e(0000+) − 3 e(00−++) − e(00+−+) + 2e(00++−) − 2 e(0−0++) −

e(0−+0+) + e(0+0+−) − 15 e(−−+++) − 5e(−+−++)
3 1 [x2.v, [x.w, x3.v]] 7e(0000+) + 3 e(00−++) − e(00+−+) − 4e(00++−) + e(0−+0+) +

e(0+0+−) − e(−−+++) + e(−+−++)
3 1 [x2.w,w.x3.v] 5e(0000+) − 3 e(00−++) − e(00+−+) − 4e(00++−) − 2 e(0−0++) −

e(0−+0+) − e(0+0+−) + 3 e(−−+++) + e(−+−++)
3 2 [x.w, [x.w, x4.v]] 2e(0−+++) − e(0++−+) − e(0+++−)
3 2 [x2.v, [x.w, x4.v]] 2e(0−+++) + e(0++−+) + e(0+++−)
3 2 [x2.v, [x2.v, x4.v]] 10e(000++) + e(00+0+) − 2e(0−+++) + 2e(0+−++) − e(0++−+) −

3e(0+++−)
3 2 [x2.w,w.x4.v] 3e(000++) + e(00+0+) − e(0++−+) − 2e(0+++−)
3 2 [x2.w, [x.v, x4.v]] 3e(000++) + e(0+−++) + e(0++−+) + 2e(0+++−)
3 2 [x2.w, [x.w, x3.v]] e(000++) + e(00+0+) − e(0+−++) − e(0++−+) − 2 e(0+++−)
3 3 [x2.w, [x.w, x4.v]] e(00+++) − 2 e(−++++)
3 3 [x2.w, [x2.v, x4.v]] 2e(00+++) − e(0+0++) − 2e(−++++)
3 3 [x3.v, [x.w, x4.v]] e(00+++) + 2 e(−++++)
3 4 [x2.w, [x2.w, x4.v]] e(0++++)
4 −5 v.v.v.x2.w e(0−−−−−)
4 −4 v.v.v.x4.v 4e(00−−−−) + e(0−0−−−) + 2e(−−−−−+)
4 −4 w.v.v.x2.w 5e(00−−−−) + 3 e(0−0−−−) − 5e(−−−−−+)
4 −4 w.v.v.x3.v 16e(00−−−−) + e(0−0−−−) + 10e(−−−−−+)
4 −3 w.v.v.x4.v 2e(000−−−) + 2 e(00−0−−) + e(00−−0−) − 5e(0−−−−+) −

4 e(0−−−+−) − 3e(0−−+−−) − 2e(0−+−−−) + e(0+−−−−)
4 −3 w.w.v.x2.w 15e(000−−−) + 5 e(00−0−−) + 2e(00−−0−) − 10e(0−−−−+) −

6 e(0−−−+−) − 3e(0−−+−−)
4 −3 w.w.v.x3.v 33e(000−−−) + 7 e(00−0−−) + 4e(00−−0−) + 10e(0−−−−+) +

6 e(0−−−+−) + 3e(0−−+−−) + 3e(0−+−−−)
4 −3 w.w.w.x2.v 7e(000−−−) + 2 e(00−0−−) + e(00−−0−)
4 −3 [x.v, v.v.x4.v] 4e(000−−−) + e(00−0−−) − 7e(0−−−−+) − 6e(0−−−+−) −

4 e(0−−+−−) − e(0−+−−−) + e(0+−−−−)
4 −3 [x.v,w.v.x2.w] 3e(000−−−)+ e(00−0−−)−14e(0−−−−+)−8e(0−−−+−)−3 e(0−−+−−)
4 −3 [x.v,w.v.x3.v] 15e(000−−−) + 7 e(00−0−−) + 4e(00−−0−) − 14e(0−−−−+) −

8 e(0−−−+−) − 5e(0−−+−−) − 3e(0−+−−−)
4 −3 [x.v,w.w.x2.v] 3e(000−−−) − e(00−−0−)
4 −2 w.w.v.x4.v 6e(0000−−) + e(00−−−+) − e(00−−+−) − e(0−0−−+) − e(0−0−+−)
4 −2 w.w.w.x3.v 4e(0000−−) + e(000−0−)
4 −2 [x.v,w.v.x4.v] 5e(0000−−) − 11 e(00−−−+) − 8e(00−−+−) − 3e(00−+−−) −

4 e(0−0−−+) − 3e(0−0−+−) − e(0−0+−−) − e(0−−0−+) − e(0−−0+−)
4 −2 [x.v,w.w.x2.w] e(0000−−) + 6 e(00−−−+) + 3e(00−−+−) + e(00−+−−) +

3 e(0−0−−+) + 2e(0−0−+−) + e(0−0+−−) + e(0−−0−+) + e(0−−0+−)
4 −2 [x.v,w.w.x3.v] 25e(0000−−) + 9 e(000−0−) + 18e(00−−−+) + 9e(00−−+−) +

3 e(00−+−−) + 9e(0−0−−+) + 4e(0−0−+−) + e(0−0+−−) +
3e(0−−0−+) + e(0−−0+−)

4 −2 [x.v, [x.v, v.x4.v]] e(000−0−) + 10 e(00−−−+) + 4e(00−−+−) + 5e(0−0−−+) +
2 e(0−0−+−) + 3e(0−−0−+) + e(0−−0+−) + 2 e(0−−−0+)
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Appendix D. A Pseudo-Hall basis of g for d = 3

l m h ∈ H in terms of X h ∈ H in terms of the Euler-Lyndon basis
4 −2 [x.v, [x.v,w.x2.w]] 6e(0000−−) + 2 e(000−0−) + 15e(00−−−+) + 5e(00−−+−) +

9 e(0−0−−+)+3e(0−0−+−)+6e(0−−0−+)+2 e(0−−0+−)+4e(0−−−0+)
4 −2 [x.v, [x.v,w.x3.v]] 30e(0000−−) + 11 e(000−0−) + 37e(00−−−+) + 11e(00−−+−) +

17 e(0−0−−+) + 5e(0−0−+−) + 8e(0−−0−+) + 2 e(0−−0+−) +
4e(0−−−0+)

4 −2 [x.v, [x.v, [x.v, x2.w]]] 28e(0000−−) + 7 e(000−0−) + 20e(00−−−+) + 10e(0−0−−+) +
6 e(0−−0−+) + 4e(0−−−0+)

4 −2 [x.w, v.v.x4.v] 5e(00−−−+) + 3 e(00−−+−) − 4e(00+−−−) + e(0−0−−+) −
2 e(0−0+−−)− e(0−−0−+)− e(0−−0+−)− e(0−−−0+)− 5e(−−−−++)

4 −2 [x.w,w.v.x2.w] 2e(0000−−) + e(000−0−) + e(00−−−+)− e(00−−+−)− 2 e(00−+−−)−
e(0−0−+−) − 2e(0−0+−−) − 2 e(0−−0−+) − 2e(0−−0+−) −

2e(0−−−0+) + 4 e(−−−−++) + 2e(−−−+−+)
4 −2 [x.w,w.v.x3.v] 6e(0000−−)+3 e(000−0−)−6e(00−−−+)−8e(00−−+−)−7 e(00−+−−)+

3e(00+−−−)+2e(0−0−−+)+ e(0−0−+−)+e(0−0+−−)+2e(0−−0−+)+
2 e(0−−0+−) + 2e(0−−−0+) + 2e(−−−−++) − 2 e(−−−+−+)

4 −2 [x.w,w.w.x2.v] 4e(0000−−) + 2 e(000−0−) − e(00−−−+) − e(00−−+−) −
2 e(00−+−−) + e(0−0−−+) + e(0−0−+−)

4 −2 [x.w, [x.v, v.x2.w]] 3e(00−−−+) + 3 e(00−−+−) + 3e(00−+−−) + 3e(00+−−−) +
4 e(0−0−−+) + 4e(0−0−+−) + 3e(0−0+−−) + 4 e(0−−0−+) +
4e(0−−0+−) + 4e(0−−−0+) − 2 e(−−−−++) − 4e(−−−+−+)

4 −1 w.w.w.x4.v 11e(00000−) + 6 e(000−−+) + 5e(000−+−) + 3e(000+−−) +
2 e(00−0−+) + 2e(00−0+−) − 2e(00−−0+) + 3 e(00−+0−) +

2e(00+0−−) + e(00+−0−) − e(0−0−0+) + e(0−+−+−) +
3e(0−++−−) + e(0+−−+−) + 3e(0+−+−−) + 6e(0++−−−)

4 −1 [x.v,w.w.x4.v] 33e(00000−) + 10 e(000−−+) + 15e(000−+−) + 9e(000+−−) +
4 e(00−0−+) + 6e(00−0+−) − 8e(00−−0+) + 9 e(00−+0−) +
4e(00+0−−) + e(00+−0−) − 3 e(0−0−0+) + 2e(0−−+−+) +

6e(0−−++−) + 2 e(0−+−−+) + 3e(0−+−+−) + 3e(0−++−−) −
3 e(0+−−+−) − 9e(0+−+−−) − 18e(0++−−−)

4 −1 [x.v, [x.v,w.x4.v]] 41e(00000−) + 18 e(000−−+) + 27e(000−+−) + 7e(000+−−) +
8 e(00−0−+) + 12e(00−0+−) − 6e(00−−0+) + 9 e(00−+0−) −
e(00+−0−) − 3e(0−0−0+) + 8 e(0−−−++) + 4e(0−−+−+) +

2e(0−−++−) − 3 e(0−+−+−) − 7e(0−++−−) + 3e(0+−−+−) +
9 e(0+−+−−) + 18e(0++−−−)

4 −1 [x.v, [x.v, [x.v, x4.v]]] 57e(00000−) + 30 e(000−−+) + 27e(000−+−) − 33e(000+−−) +
10 e(00−0−+) + 4e(00−0+−) − 2e(00−−0+) + 7 e(00−+0−) −
8e(00+0−−) − 5e(00+−0−) − e(0−0−0+) + 8e(0−−−++) −

6e(0−−++−) + 3 e(0−+−+−) + 9e(0−++−−) − 3e(0+−−+−) −
9 e(0+−+−−) − 18e(0++−−−)

4 −1 [x.w,w.v.x4.v] e(00000−)+10 e(000−−+)+9e(000−+−)+9e(000+−−)+6 e(00−0−+)+
6e(00−0+−) + 3e(00−+0−) + 2 e(00+0−−) + e(00+−0−)− e(0−0−0+)−

8 e(0−−−++) − 6e(0−−+−+) − 4e(0−−++−) − 6 e(0−+−−+) −
5e(0−+−+−)−5e(0−++−−)− e(0+−−+−)−3e(0+−+−−)−6e(0++−−−)

4 −1 [x.w,w.w.x2.w] e(00000−) + 6 e(000−−+) + 5e(000−+−) + 5e(000+−−) + 2 e(00−0−+) +
2e(00−0+−)− 2e(00−−0+) + e(00−+0−) + 2e(00+0−−) + e(00+−0−)−
e(0−0−0+) + e(0−+−+−) + e(0−++−−) + e(0+−−+−) + e(0+−+−−)

4 −1 [x.w,w.w.x3.v] 11e(00000−) − 18 e(000−−+) − 13e(000−+−) + 3e(000+−−) −
4 e(00−0−+) − 2e(00−0+−) − 2e(00−−0+) − e(00−+0−) +
2e(00+0−−) + e(00+−0−) − e(0−0−0+) + e(0−+−+−) +

5e(0−++−−) + e(0+−−+−) + 3e(0+−+−−) + 6e(0++−−−)
4 −1 [x.w, [x.v, v.x4.v]] e(00000−) − 2 e(000−−+) − 7e(000−+−) − 11e(000+−−) +

2 e(00−0−+) + 2e(00−−0+) + e(00−+0−) − 8 e(00+0−−) −
3e(00+−0−) + e(0−0−0+) − 4 e(0−−+−+) − 6e(0−−++−) −

4e(0−+−−+) − 5 e(0−+−+−) − 7e(0−++−−) + 4e(0+−−−+) +
5 e(0+−−+−) + 7e(0+−+−−) + 6e(0++−−−)

4 −1 [x.w, [x.v,w.x2.w]] e(00000−) − 6 e(000−−+) − 11e(000−+−) − 15e(000+−−) −
2 e(00−0−+) − 4e(00−0+−) − e(00−+0−) − 8 e(00+0−−) −
3e(00+−0−) + e(0−0−0+) + 8 e(0−−−++) + 6e(0−−+−+) +

6e(0−−++−) + 6 e(0−+−−+) + 5e(0−+−+−) + 3e(0−++−−) +
4 e(0+−−−+) + 3e(0+−−+−) + 3e(0+−+−−)

4 −1 [x.w, [x.v,w.x3.v]] 11e(00000−) − 14 e(000−−+) − e(000−+−) + 23e(000+−−) −
4 e(00−0−+) − 8e(00−−0+) + e(00−+0−) + 12 e(00+0−−) +

5e(00+−0−) − 3e(0−0−0+) + 8 e(0−−−++) + 10e(0−−+−+) +
10e(0−−++−) + 6 e(0−+−−+) + 5e(0−+−+−) + 7e(0−++−−) −

4 e(0+−−−+) − 5e(0+−−+−) − 7e(0+−+−−) − 6 e(0++−−−)
continued
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l m h ∈ H in terms of X h ∈ H in terms of the Euler-Lyndon basis
4 −1 [x.w, [x.v, [x.v, x2.w]]] 5e(00000−) + 6 e(000−−+) + 17e(000−+−) + 33e(000+−−) +

4 e(00−0−+)+8e(00−0+−)−10e(00−−0+)+5 e(00−+0−)+8e(00+0−−)+
3e(00+−0−) − 5 e(0−0−0+) + 4e(0−−+−+) + 6e(0−−++−) +

e(0−+−+−)+3e(0−++−−)+8e(0+−−−+)+7 e(0+−−+−)+3e(0+−+−−)
4 −1 [x.w, [x.w, v.x2.w]] e(00000−) + e(000−+−) + 3e(000+−−) + 2e(00−−0+) − e(00−+0−) +

4e(00+0−−)+e(00+−0−)+ e(0−0−0+)−4e(0−−−++)−2e(0−−+−+)−
2 e(0−−++−)−e(0−+−+−)−3e(0−++−−)− e(0+−−+−)−3e(0+−+−−)

4 −1 [x.w, [x.w, v.x3.v]] e(00000−) + 8 e(000−−+) + 13e(000−+−) + 19e(000+−−) −
2 e(00−0−+) − 14e(00−−0+) + 3e(00−+0−) + 12 e(00+0−−) +
7e(00+−0−) − 5e(0−0−0+) + 32 e(0−−−++) + 30e(0−−+−+) +

30e(0−−++−) + 18 e(0−+−−+) + 19e(0−+−+−) + 21e(0−++−−) −
24 e(0+−−−+) − 23e(0+−−+−) − 23e(0+−+−−) − 36 e(0++−−−)

4 −1 [x2.v,w.v.x4.v] 9e(00000−) + 26 e(000−−+) + 23e(000−+−) + 11e(000+−−) +
6 e(00−0−+) + 6e(00−0+−) − 8e(00−−0+) + 5 e(00−+0−) +
6e(00+0−−) + 3e(00+−0−) − 3 e(0−0−0+) − 8e(0−−−++) −

2e(0−−+−+) + 4 e(0−−++−) + 2e(0−+−−+) + 3e(0−+−+−) +
7 e(0−++−−) − e(0+−−+−) + e(0+−+−−) + 6 e(0++−−−)

4 −1 [x2.v,w.w.x2.w] 3e(00000−)+6 e(000−−+)+5e(000−+−)+5e(000+−−)+2 e(00−0−+)+
2e(00−0+−)− 2e(00−−0+) + e(00−+0−) + 2e(00+0−−) + e(00+−0−)−
e(0−0−0+) − e(0−+−+−) − e(0−++−−) − e(0+−−+−) − e(0+−+−−)

4 −1 [x2.v,w.w.x3.v] 99e(00000−) − 54 e(000−−+) − 19e(000−+−) − 23e(000+−−) −
16 e(00−0−+) − 10e(00−0+−) + 10e(00−−0+) − 7 e(00−+0−) −

10e(00+0−−) − 5e(00+−0−) + 5 e(0−0−0+) + e(0−+−+−) −
7e(0−++−−) + e(0+−−+−) − e(0+−+−−) − 6e(0++−−−)

4 −1 [x2.v, [x.v, v.x4.v]] 9e(00000−) + 34 e(000−−+) + 23e(000−+−) + 3e(000+−−) +
14 e(00−0−+) + 8e(00−0+−) + 6e(00−−0+) + 3 e(00−+0−) +

4e(00+0−−) − e(00+−0−) − e(0−0−0+) − 4e(0−−+−+) −
2e(0−−++−) − 4 e(0−+−−+) − e(0−+−+−) + 5e(0−++−−) +
4 e(0+−−−+) + e(0+−−+−) − 5e(0+−+−−) − 6 e(0++−−−)

4 −1 [x2.v, [x.v,w.x2.w]] 9e(00000−) + 26 e(000−−+) + 15e(000−+−) + 7e(000+−−) +
14 e(00−0−+) + 8e(00−0+−) + 8e(00−−0+) + e(00−+0−) +
4e(00+0−−) − e(00+−0−) − e(0−0−0+) + 8e(0−−−++) +

2e(0−−+−+) + 2 e(0−−++−) − 2e(0−+−−+) − 3e(0−+−+−) −
e(0−++−−) + 4e(0+−−−+) + 3e(0+−−+−) − e(0+−+−−)

4 −1 [x2.v, [x.v,w.x3.v]] 99e(00000−) − 78e(000−−+) − 15e(000−+−) − 15e(000+−−) −
20 e(00−0−+) − 8e(00−0+−) − 5e(00−+0−) − 8 e(00+0−−) −
e(00+−0−) + 3e(0−0−0+) + 8 e(0−−−++) + 6e(0−−+−+) −

2e(0−−++−) − 2 e(0−+−−+) + e(0−+−+−) − 5e(0−++−−) −
4 e(0+−−−+) − e(0+−−+−) + 5e(0+−+−−) + 6 e(0++−−−)

4 −1 [x2.v, [x.v, [x.v, x2.w]]] 45e(00000−) − 30e(000−−+) + 11e(000−+−) − 17e(000+−−) −
8 e(00−0−+) + 4e(00−0+−) − 14e(00−−0+) + 3 e(00−+0−) −

4e(00+0−−)+e(00+−0−)−3 e(0−0−0+)+4e(0−−+−+)+2e(0−−++−)+
e(0−+−+−)− e(0−++−−) + 8e(0+−−−+)− e(0+−−+−)− e(0+−+−−)

4 −1 [x2.v, [x.w, v.x2.w]] 9e(00000−) − 12 e(000−−+) − 5e(000−+−) + 5e(000+−−) −
4 e(00−0−+)−4e(00−0+−)−10e(00−−0+)+ e(00−+0−)+3e(00+−0−)−

e(0−0−0+) − 4 e(0−−−++) − 2e(0−−+−+) − 6e(0−−++−) −
e(0−+−+−)+e(0−++−−)−8e(0+−−−+)−5 e(0+−−+−)+e(0+−+−−)

4 0 [x.w,w.w.x4.v] 5e(0000−+) + 5 e(0000+−) + 4e(000−0+) + e(000+0−) + e(00−00+) +
8e(00−−++)+2e(00−+−+)+ e(00+−−+)+e(00+−+−)+2e(00++−−)+
4 e(0−0−++) + e(0−0+−+) − e(0−+0+−) − e(0−+−0+) + e(0+0+−−)

4 0 [x.w, [x.v,w.x4.v]] 4e(0000−+) + 4 e(0000+−) + 4e(000−0+) + e(00−00+) −
5 e(00−+−+) − 8e(00−++−) − 6e(00+−−+) − 7 e(00+−+−) −
10e(00++−−) − e(0−0−++) − 4 e(0−0+−+) − 6e(0−0++−) −
4e(0−−0++) − 2 e(0−−+0+) − e(0−+0+−) − e(0−+−0+) −

e(0+0+−−) + 15e(−−−+++) + 3e(−−+−++) + 2 e(−−++−+)
4 0 [x.w, [x.v, [x.v, x4.v]]] 2e(000−0+) − 2 e(000+0−) − 14e(00−−++) − 7e(00−+−+) −

3 e(00−++−) + 9e(00+−−+) + 11e(00+−+−) + 14 e(00++−−) −
3e(0−0−++) + e(0−0+−+) + 4 e(0−0++−) + e(0−+0+−) + e(0−+−0+) +

e(0+0+−−) − 30e(−−−+++) − 8e(−−+−++) − 4 e(−−++−+)
4 0 [x.w, [x.w, v.x4.v]] 2e(00−−++) − e(00−+−+) − 3e(00−++−) − 7e(00+−−+) −

7 e(00+−+−) − 10e(00++−−) − 2e(0−0−++) − 4 e(0−0+−+) −
5e(0−0++−) − 6e(0−−0++) − 3 e(0−−+0+) − e(0−+0+−) −
e(0−+−0+) − 2 e(0+0+−−) + 6e(−−−+++) − 2e(−−+−++)
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l m h ∈ H in terms of X h ∈ H in terms of the Euler-Lyndon basis
4 0 [x.w, [x.w,w.x3.v]] 3e(0000−+) + 3 e(0000+−) + 2e(000−0+) + e(000+0−) + e(00−00+) +

14e(00−−++)+6e(00−+−+)+2 e(00−++−)+e(00+−−+)+e(00+−+−)+
4 e(00++−−)+4e(0−0−++)+e(0−0+−+)− e(0−0++−)−2e(0−+0+−)−

2e(0−+−0+) + 2 e(0+0+−−) + 6e(−−−+++) + 2e(−−+−++)
4 0 [x.w, [x.w, [x.v, x2.w]]] 3e(0000−+) + 3 e(0000+−) + 2e(000−0+) + e(000+0−) + e(00−00+) +

4e(00−−++)+e(00−+−+)+3 e(00−++−)−4e(00+−−+)−4e(00+−+−)−
6 e(00++−−)+2e(0−0−++)+e(0−0+−+)+2 e(0−0++−)+6e(0−−0++)+
3e(0−−+0+)+ e(0−+0+−)+e(0−+−0+)+6e(−−−+++)+2 e(−−+−++)

4 0 [x2.v,w.w.x4.v] 6e(0000−+)+6 e(0000+−)+2e(000−0+)+4e(000+0−)+2 e(00−+−+)+
12e(00−++−) + e(00+−−+) + 5 e(00+−+−) + 10e(00++−−) +

e(0−0+−+) + 6 e(0−0++−) + e(0−+0+−) + e(0−+−0+) −
e(0+0+−−) − 27e(−−−+++) − 9e(−−+−++) − 6 e(−−++−+)

4 0 [x2.v, [x.v,w.x4.v]] 5e(0000−+)+5 e(0000+−)+2e(000−0+)+3e(000+0−)−4 e(00−−++)−
3e(00−+−+) + 4e(00−++−) − 2 e(00+−−+) − 3e(00+−+−) −

2e(00++−−)− e(0−0−++)−2e(0−0+−+)+e(0−+0+−)+ e(0−+−0+)+
e(0+0+−−) + 12e(−−−+++) + 4 e(−−+−++) + 2e(−−++−+)

4 0 [x2.v, [x.v, [x.v, x4.v]]] 5e(0000−+) + 5 e(0000+−) + 4e(000−0+) + e(000+0−) + 3 e(00−00+)−
2e(00−−++)+e(00−+−+)+3 e(00−++−)+5e(00+−−+)+e(00+−+−)−

2 e(00++−−) + 5e(0−0−++) + 3e(0−0+−+) + 2 e(0−0++−) +
4e(0−−0++) + 2e(0−−+0+) − e(0−+0+−) − e(0−+−0+) −

e(0+0+−−) + 21 e(−−−+++) + 11e(−−+−++) + 4e(−−++−+)
4 0 [x2.v, [x.w, v.x4.v]] 2e(00−−++) + e(00−+−+) + 3e(00−++−) + e(00+−−+) +

e(00+−+−) + 2e(00++−−) + 2e(0−0−++) + e(0−0++−) +
2e(0−−0++) + e(0−−+0+) + e(0−+0+−) + e(0−+−0+) + 2e(0+0+−−)

4 0 [x2.v, [x.w,w.x3.v]] e(0000−+) + e(0000+−) + 2e(000−0+) − e(000+0−) + 3 e(00−00+) +
2e(00−−++)−6e(00−++−)− e(00+−−+)−3e(00+−+−)−4e(00++−−)+
4 e(0−0−++)−e(0−0+−+)−5e(0−0++−)−2 e(0−+0+−)−2e(0−+−0+)+

2e(0+0+−−) + 24 e(−−−+++) + 8e(−−+−++) + 4e(−−++−+)
4 0 [x2.v, [x.w, [x.v, x2.w]]] 17e(0000−+) + 17e(0000+−) + 10e(000−0+) + 7e(000+0−) +

3 e(00−00+) + 4e(00−−++) − 3e(00−+−+) − 3 e(00−++−) −
4e(00+−−+) − 2e(00+−+−) + 6 e(00++−−) − 2e(0−0−++) −

3e(0−0+−+)−2 e(0−0++−)−2e(0−−0++)−e(0−−+0+)− e(0−+0+−)−
e(0−+−0+) − 12e(−−−+++) − 8 e(−−+−++) − 4e(−−++−+)

4 0 [x2.v, [x2.v, v.x4.v]] 18e(0000−+) +18e(0000+−) + 12e(000−0+) + 6e(000+0−) +
6 e(00−00+) + 12e(00−−++) + 4e(00−+−+) + 2 e(00−++−) +
4e(00++−−) + 9e(0−0−++) + 2 e(0−0+−+) + e(0−0++−) +
6e(0−−0++) + 3 e(0−−+0+) − e(0−+0+−) − e(0−+−0+) −

e(0+0+−−) + 12e(−−−+++) + 6e(−−+−++)
4 0 [x2.v, [x2.v,w.x2.w]] 12e(0000−+) +12e(0000+−) + 8e(000−0+) + 4e(000+0−) +

4 e(00−00+) + 6e(00−−++) + e(00−+−+)− e(00−++−)− e(00+−−+)−
e(00+−+−)+2 e(00++−−)+4e(0−0−++)−e(0−0++−)+2 e(0−−0++)+
e(0−−+0+)− e(0−+0+−)− e(0−+−0+) + 6e(−−−+++) + 2e(−−+−++)

4 0 [x2.v, [x2.v,w.x3.v]] 35e(0000−+) +35e(0000+−) + 22e(000−0+) + 13e(000+0−) +
9 e(00−00+) + 24e(00−−++) + 7e(00−+−+) + 9 e(00−++−) −

2e(00+−−+) + 2e(00+−+−) + 14 e(00++−−) + 12e(0−0−++) +
e(0−0+−+) + 4 e(0−0++−) + 6e(0−−0++) + 3e(0−−+0+) −
e(0−+0+−) − e(0−+−0+) − 2e(0+0+−−) − 12 e(−−−+++) −

4e(−−+−++) − 8e(−−++−+)
4 0 [x2.v, [x2.v, [x.v, x2.w]]] 19 e(0000−+) + 19e(0000+−) + 14e(000−0+) + 5 e(000+0−) +

9e(00−00+)+18e(00−−++)+8 e(00−+−+)−e(00+−−+)−5e(00+−+−)−
8 e(00++−−) + 18e(0−0−++) + 5e(0−0+−+) − e(0−0++−) +
12e(0−−0++) + 6e(0−−+0+) − 2 e(0−+0+−) − 2e(0−+−0+) −

4e(0+0+−−) + 60 e(−−−+++) + 28e(−−+−++) + 8e(−−++−+)
4 0 [x2.w,w.v.x4.v] 3e(0000−+) − 9 e(0000+−) − 2e(000−0+) − e(000+0−) − e(00−00+) −

4e(00−−++) − e(00−+−+) + 3 e(00−++−) − e(00+−−+) +
e(00+−+−) + 4 e(00++−−) + e(0−0−++) + e(0−0+−+) +

2 e(0−0++−) + 4e(0−−0++) + 2e(0−−+0+) + e(0−+0+−) +
e(0−+−0+) + e(0+0+−−) + 3 e(−−−+++) + e(−−+−++)

4 0 [x2.w,w.w.x3.v] 27e(0000−+)−7 e(0000+−) + 8e(000−0+)−3e(000+0−)− e(00−00+) +
2e(00−−++) + 3e(00−+−+) − 3 e(00−++−) + e(00+−−+) −

e(00+−+−)−4 e(00++−−)+e(0−0−++)+e(0−0+−+)−2 e(0−0++−)−
e(0−+0+−) + e(0−+−0+) − e(0+0+−−) − 3e(−−−+++) − e(−−+−++)
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l m h ∈ H in terms of X h ∈ H in terms of the Euler-Lyndon basis
4 0 [x2.w, [x.v, v.x4.v]] 17e(0000−+) + 3 e(0000+−) + 6e(000−0+) + 5e(000+0−) +

e(00−00+) − 6e(00−−++) − 3e(00−+−+) + 3 e(00−++−) +
e(00+−−+) − e(00+−+−) + 4 e(00++−−) − 3e(0−0−++) −

e(0−0+−+) + 2 e(0−0++−) − 4e(0−−0++) − 2e(0−−+0+) +
e(0−+0+−)− e(0−+−0+) + 3e(0+0+−−)− 3 e(−−−+++)− e(−−+−++)

4 0 [x2.w, [x.v,w.x2.w]] 11e(0000−+) + 9 e(0000+−) + 6e(000−0+) + 5e(000+0−) +
e(00−00+) − 3e(00−+−+) − 3e(00−++−) + e(00+−−+) +

e(00+−+−) + 6e(00++−−) − 3 e(0−0−++) − 3e(0−0+−+) −
2e(0−0++−) − 8 e(0−−0++) − 4e(0−−+0+) − e(0−+0+−) −
3 e(0−+−0+) + 3e(0+0+−−) + 3e(−−−+++) + e(−−+−++)

4 0 [x2.w, [x.v,w.x3.v]] 25e(0000−+) − 19 e(0000+−) + 12e(000−0+) − 9e(000+0−) +
e(00−00+) + e(00−+−+) − 3e(00−++−) − e(00+−−+) + e(00+−+−) −

4e(00++−−) − 3 e(0−0−++) − e(0−0+−+) − 2e(0−0++−) −
e(0−+0+−)+3e(0−+−0+)−3e(0+0+−−)+3 e(−−−+++)+e(−−+−++)

4 0 [x3.v, [x.v, v.x4.v]] 19e(0000−+) + 3 e(0000+−) + 6e(000−0+) + 5e(000+0−) +
e(00−00+) + 6e(00−−++) + 3e(00−+−+) + 9 e(00−++−) −

e(00+−−+)−e(00+−+−) + 6 e(00++−−) + 3e(0−0−++) + e(0−0+−+) +
4 e(0−0++−) + 8e(0−−0++) + 6e(0−−+0+) + 3 e(0−+0+−) +
3e(0−+−0+) + 3e(0+0+−−) + 3 e(−−−+++) + e(−−+−++)

4 1 [x.w, [x.w,w.x4.v]] e(00000+) + 3 e(000−++) + e(000+−+) + 4e(00−0++) + 3 e(00−+0+) +
e(00+−0+) − 2e(00++0−) + e(0−0+0+) − 3e(0−+−++) −

e(0−++−+) − 3 e(0+−−++) − e(0+−+−+) − 2e(0++−−+) −
2 e(0++−+−) − 4e(0+++−−)

4 1 [x.w, [x.w, [x.v, x4.v]]] e(00000+) + 19 e(000−++) + 13e(000+−+) + 8e(000++−) +
12 e(00−0++) − 3e(00−+0+) − 2e(00+0+−) − 7 e(00+−0+) +

6e(00++0−) − 5e(0−0+0+) − 36 e(0−−+++) − 23e(0−+−++) −
23e(0−++−+) − 24 e(0−+++−) + 21e(0+−−++) + 19e(0+−+−+) +
18 e(0+−++−) + 30e(0++−−+) + 30e(0++−+−) + 32 e(0+++−−)

4 1 [x.w, [x.w, [x.w, x2.w]]] e(00000+) + 5 e(000−++) + 5e(000+−+) + 6e(000++−) + 2 e(00−0++)−
e(00−+0+) + 2e(00+0−+) + 2 e(00+0+−)− e(00+−0+) + 2e(00++0−)−
e(0−0+0+) + e(0−+−++) + e(0−++−+) + e(0+−−++) + e(0+−+−+)

4 1 [x.w, [x.w, [x.w, x3.v]]] e(00000+) − 23 e(000−++) − 19e(000+−+) − 14e(000++−) −
12 e(00−0++)+3e(00−+0+)−4e(00+0−+)−2 e(00+0+−)+5e(00+−0+)−

8e(00++0−) + 5 e(0−0+0+) + 36e(0−−+++) + 23e(0−+−++) +
23 e(0−++−+) + 24e(0−+++−) − 13e(0+−−++) − 11 e(0+−+−+) −

10e(0+−++−) − 22e(0++−−+) − 22 e(0++−+−) − 24e(0+++−−)
4 1 [x2.v, [x.w,w.x4.v]] 9e(00000+)+5 e(000−++)−5e(000+−+)−12e(000++−)+ e(00−+0+)−

4e(00+0−+)− 4e(00+0+−)− e(00+−0+)− 6e(00++0−)− e(0−0+0+) +
e(0−+−++) − 5e(0−++−+) − 8e(0−+++−) + e(0+−−++) −
e(0+−+−+) − 6e(0++−−+) − 2 e(0++−+−) − 4e(0+++−−)

4 1 [x2.v, [x.w, [x.v, x4.v]]] 9e(00000+) + 45e(000−++) + 27e(000+−+) + 12e(000++−) +
16 e(00−0++) − e(00−+0+) + 16e(00+0−+) + 10 e(00+0+−) −
5e(00+−0+) + 18e(00++0−) − 3 e(0−0+0+) + 36e(0−−+++) +

13e(0−+−++) + 9 e(0−++−+) + 8e(0−+++−) − 7e(0+−−++) −
e(0+−+−+) + 2e(0+−++−) + 18e(0++−−+) + 22 e(0++−+−) +

32e(0+++−−)
4 1 [x2.v, [x.w, [x.w, x2.w]]] 3e(00000+)+5 e(000−++)+5e(000+−+)+6e(000++−)+2 e(00−0++)−

e(00−+0+) + 2e(00+0−+) + 2 e(00+0+−)− e(00+−0+) + 2e(00++0−)−
e(0−0+0+) − e(0−+−++) − e(0−++−+) − e(0+−−++) − e(0+−+−+)

4 1 [x2.v, [x.w, [x.w, x3.v]]] 9e(00000+) − 41e(000−++) − 33e(000+−+) − 22e(000++−) −
16 e(00−0++) + e(00−+0+) − 16e(00+0−+) − 10 e(00+0+−) +
3e(00+−0+) − 16e(00++0−) + 3 e(0−0+0+) − 36e(0−−+++) −
13e(0−+−++) − 9 e(0−++−+) − 8e(0−+++−) − e(0+−−++) −

3 e(0+−+−+) − 2e(0+−++−) − 18e(0++−−+) − 18 e(0++−+−) −
24e(0+++−−)

4 1 [x2.v, [x2.v,w.x4.v]] 63e(00000+) +25e(000−++) + 49e(000+−+) + 10e(000++−) +
12 e(00−0++) − 7e(00−+0+) + 24e(00+0−+) + 24 e(00+0+−) −
5e(00+−0+) + 26e(00++0−) − 5 e(0−0+0+) + 18e(0−−+++) +

5e(0−+−++) + 13 e(0−++−+) + 24e(0−+++−) − e(0+−−++) −
7 e(0+−+−+) − 10e(0+−++−) + 2e(0++−−+) + 24 e(0++−+−) +

52e(0+++−−)
4 1 [x2.v, [x2.v, [x.v, x4.v]]] 63 e(00000+) − 39e(000−++) − 3e(000+−+) − 30 e(000++−) −

12e(00−0++) − e(00−+0+) − 8 e(00+0−+) − 14e(00+0+−) +
3e(00+−0+) − 14 e(00++0−) + e(0−0+0+) − 18e(0−−+++) −

7 e(0−+−++) − 5e(0−++−+) + 7e(0+−−++) + 5 e(0+−+−+) −
6e(0++−−+) − 12e(0++−+−) − 24 e(0+++−−)
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Appendix D. A Pseudo-Hall basis of g for d = 3

l m h ∈ H in terms of X h ∈ H in terms of the Euler-Lyndon basis
4 1 [x2.v, [x2.v, [x.w, x2.w]]] 21 e(00000+) + 5e(000−++) + 7e(000+−+) + 4 e(000++−) +

2e(00−0++)− e(00−+0+) + 2 e(00+0−+) + 2e(00+0+−)− e(00+−0+) +
2 e(00++0−)−e(0−0+0+)+6e(0−−+++)+3 e(0−+−++)+e(0−++−+)+
e(0+−−++)+ e(0+−+−+)+2e(0+−++−)+4e(0++−−+)+2 e(0++−+−)

4 1 [x2.v, [x2.v, [x.w, x3.v]]] 63 e(00000+) + 35e(000−++) + 29e(000+−+) + 8 e(000++−) +
12e(00−0++) + e(00−+0+) + 12 e(00+0−+) + 18e(00+0+−) −
e(00+−0+) + 16 e(00++0−) − e(0−0+0+) + 18e(0−−+++) +

7 e(0−+−++) + 5e(0−++−+) + e(0+−−++) − 5 e(0+−+−+) −
8e(0+−++−) − 2e(0++−−+) + 12 e(0++−+−) + 32e(0+++−−)

4 1 [x2.w,w.w.x4.v] 9e(00000+) − 5 e(000−++) + 7e(000+−+) + 6e(000++−) −
2 e(00−0++) − 7e(00−+0+) + 2e(00+0−+) + 2 e(00+0+−) −

3e(00+−0+)+8e(00++0−)−3 e(0−0+0+)−e(0−+−++)−e(0−++−+)−
e(0+−−++) − e(0+−+−+) + 6e(0++−+−) + 12 e(0+++−−)

4 1 [x2.w, [x.v,w.x4.v]] 29e(00000+) − 3 e(000−++) + 19e(000+−+) + 18e(000++−) −
2 e(00−0++) − 7e(00−+0+) + 8e(00+0−+) + 10 e(00+0+−) +
e(00+−0+) + 8e(00++0−) − 3 e(0−0+0+) − 6e(0−−+++) −
3e(0−+−++) − e(0−++−+) − e(0+−−++) − e(0+−+−+) −

4 e(0+−++−) − 6e(0++−+−) − 12e(0+++−−)
4 1 [x2.w, [x.v, [x.v, x4.v]]] 55e(00000+) − 23e(000−++) + 17e(000+−+) + 18e(000++−) −

10 e(00−0++) − 3e(00−+0+) + 4e(00+0−+) + 3 e(00+−0+) +
e(0−0+0+)−6e(0−−+++)− e(0−+−++)+e(0−++−+)−3e(0+−−++)+

e(0+−+−+) + 6e(0+−++−) + 6e(0++−+−) + 12 e(0+++−−)
4 1 [x2.w, [x.w, v.x4.v]] 2e(000−++) + e(000+−+) + e(000++−) + 2e(00+0−+) + 2 e(00+0+−) +

e(00+−0+)+e(00++0−)−6 e(0−−+++)−3e(0−+−++)−e(0−++−+)−
e(0+−−++)−e(0+−+−+)−2e(0+−++−)−2 e(0++−+−)−4e(0+++−−)

4 1 [x2.w, [x.w,w.x3.v]] 3e(00000+) − 10 e(000−++) − 4e(000+−+) − 3e(000++−) −
4 e(00−0++) + 2e(00−+0+)− e(00+0−+)− e(00+0+−) + 2e(00+−0+)−

3e(00++0−) + 2 e(0−0+0+) + e(0−+−++) + e(0−++−+) +
e(0+−−++) + e(0+−+−+) − 2e(0++−+−) − 4 e(0+++−−)

4 1 [x2.w, [x.w, [x.v, x2.w]]] 4e(00000+) − 3 e(000−++) + 4e(000+−+) + 6e(000++−) −
2 e(00−0++) + e(00−+0+) + e(00+0−+) + e(00+0+−) + 2e(00+−0+) −

2e(00++0−) + e(0−0+0+) − 6e(0−−+++) − 3e(0−+−++) −
e(0−++−+) − 3e(0+−−++) − e(0+−+−+)

4 1 [x2.w, [x2.v, v.x4.v]] e(00000+) + 4 e(000−++) + 6e(000+−+) + 7e(000++−) + 2 e(00−0++)−
e(00−+0+) + 2e(00+0−+) + 2 e(00+0+−) + e(00+−0+) − e(0−0+0+) +
3 e(0−−+++)+e(0−+−++)+e(0+−−++)− e(0++−+−)−2e(0+++−−)

4 1 [x2.w, [x2.v,w.x3.v]] 5e(00000+)+ 9e(000+−+)+10e(000++−)+3e(00+0−+)+ e(00+0+−)+
3e(00+−0+)−4e(00++0−)+2 e(0+−++−)−2e(0++−+−)−4e(0+++−−)

4 1 [x2.w, [x2.v, [x.v, x2.w]]] 2e(00000+)−13e(000−++)−9e(000+−+)−9e(000++−)−6 e(00−0++)+
3e(00−+0+)−5e(00+0−+)−3 e(00+0+−)−e(00+−0+)−3e(00++0−)+

3 e(0−0+0+) − 6e(0−−+++) − 2e(0−+−++) − 4 e(0+−−++)
4 2 [x.w, [x.w, [x.w, x4.v]]] 10e(00−+++) + 4 e(00+−++) + 3e(00++−+) + 7e(00+++−) +

10 e(0−0+++) + 6e(0−+0++) + 3e(0−++0+) + 2 e(0+0++−) +
8e(−−++++)

4 2 [x2.v, [x.w, [x.w, x4.v]]] 10e(00−+++) − 3e(00++−+) + e(00+++−) + 2e(0−0+++) +
2 e(0−+0++) + e(0−++0+) + 2e(0+0++−)

4 2 [x2.v, [x2.v, [x.w, x4.v]]] 26 e(00−+++) + 4e(00+−++) + 7e(00++−+) + 3 e(00+++−) +
10e(0−0+++) + 6e(0−+0++) + 3 e(0−++0+) − 2e(0+0++−) −

16e(−−++++) − 8 e(−+−+++)
4 2 [x2.v, [x2.v, [x2.v, x4.v]]] 40 e(0000++) + 4e(000+0+) − 12e(00−+++) + 4 e(00+−++) −

6e(00++−+) − 10e(00+++−) − 4 e(0−0+++) − 2e(0−+0++) −
e(0−++0+)− e(0+0+−+)+e(0+0++−)+20e(−−++++)+8 e(−+−+++)

4 2 [x2.w, [x.w,w.x4.v]] 2e(0000++) − 10 e(00−+++) − e(00+−++) + e(00++−+) −
e(00+++−) − 5e(0−0+++) − 3e(0−+0++) − 2 e(0−++0+) +

e(0+0+−+) + e(0+−0++) + 2 e(−−++++) + e(−+−+++)
4 2 [x2.w, [x.w, [x.v, x4.v]]] 2e(0000++) + 3 e(000+0+) + 2e(00−+++) − 6e(00+−++) −

6 e(00++−+)−6e(00+++−)+e(0−0+++)+ e(0−+0++)+e(0+0+−+)+
2e(0+0++−) + e(0+−0++) + 8e(−−++++) + 4e(−+−+++)

4 2 [x2.w, [x.w, [x.w, x3.v]]] 3e(0000++) + 2 e(000+0+) + 2e(00−+++) − 5e(00+−++) −
6 e(00++−+) − 5e(00+++−) + e(0−0+++) + e(0−+0++) +
e(0+0++−) + e(0+−0++) + 8 e(−−++++) + 4e(−+−+++)

4 2 [x2.w, [x2.v,w.x4.v]] 17e(0000++) +3e(000+0+) − 10e(00−+++) − 4e(00+−++) −
6 e(00++−+) − 9e(00+++−) − 5e(0−0+++) − 3 e(0−+0++) −

2e(0−++0+) + e(0+0+−+) + 4 e(0+0++−) + e(0+−0++) +
10e(−−++++) + 5 e(−+−+++)
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l m h ∈ H in terms of X h ∈ H in terms of the Euler-Lyndon basis
4 2 [x2.w, [x2.v, [x.v, x4.v]]] 37 e(0000++) + 6e(000+0+) − 2e(00−+++) + 3 e(00+−++) −

e(00++−+) + 4e(00+++−)− e(0−0+++)−e(0−+0++)−3e(0+0+−+)−
2 e(0+0++−) − e(0+−0++) − 4e(−−++++) − 2 e(−+−+++)

4 2 [x2.w, [x2.v, [x.w, x2.w]]] 5e(0000++) +e(000+0+) − e(00+−++) − e(00++−+)
4 2 [x2.w, [x2.v, [x.w, x3.v]]] 4e(0000++) +e(000+0+) + 2e(00−+++)− 2e(00+−++)− e(00++−+)−

5e(00+++−) + e(0−0+++) + e(0−+0++) + 2e(0+0+−+) +
3e(0+0++−) + e(0+−0++) + 4e(−−++++) + 2e(−+−+++)

4 2 [x2.w, [x2.w,w.x3.v]] 22e(0000++) +5e(000+0+) − 3e(00++−+) − e(00+++−) −
e(0+0+−+) + e(0+0++−)

4 2 [x3.v, [x.w,w.x4.v]] 3e(0000++) − 4 e(00−+++) − e(00+++−) − 2e(0−0+++) −
2 e(0−+0++) − 2e(−−++++) − e(−+−+++)

4 2 [x3.v, [x.w, [x.v, x4.v]]] e(0000++) + 3 e(000+0+) + 8e(00−+++)− e(00+−++) + e(00++−+) +
6e(00+++−) + 4e(0−0+++) + 2 e(0+0++−) − 8e(−−++++) −

4e(−+−+++)
4 3 [x2.w, [x.w, [x.w, x4.v]]] 2e(000+++) + 2 e(00+0++) + e(00++0+) + 4e(0−++++) −

2 e(0+−+++) − 3e(0++−++) − 4e(0+++−+) − 5 e(0++++−)
4 3 [x2.w, [x2.v, [x.w, x4.v]]] 10 e(000+++) + 2e(00+0++) + e(00++0+) − 4 e(0−++++) +

2e(0+−+++) − 3e(0++−++) − 4 e(0+++−+) − 5e(0++++−)
4 3 [x2.w, [x2.v, [x2.v, x4.v]]] 97 e(000+++) + 22e(00+0++) + 10e(00++0+) − 4 e(0−++++) +

8e(0+−+++) − 3e(0++−++) − 8 e(0+++−+) − 15e(0++++−)
4 3 [x2.w, [x2.w,w.x4.v]] 15e(000+++) +5e(00+0++) + 2e(00++0+) − 3e(0++−++) −

6 e(0+++−+) − 10e(0++++−)
4 3 [x2.w, [x2.w, [x.v, x4.v]]] 33 e(000+++) + 7e(00+0++) + 4e(00++0+) + 3 e(0+−+++) +

3e(0++−++) + 6e(0+++−+) + 10 e(0++++−)
4 3 [x2.w, [x2.w, [x.w, x3.v]]] 12 e(000+++) + e(00+0++) + e(00++0+) + 3 e(0+−+++) +

3e(0++−++) + 6e(0+++−+) + 10 e(0++++−)
4 3 [x3.v, [x.w, [x.w, x4.v]]] 2e(000+++) + 2 e(00+0++) + e(00++0+) − 4e(0−++++) −

2 e(0+−+++) + 3e(0++−++) + 6e(0+++−+) + 7 e(0++++−)
4 3 [x3.v, [x2.v, [x2.v, x4.v]]] 37 e(000+++) + 16e(00+0++) + 8e(00++0+) + 4 e(0−++++) −

4e(0+−+++) − e(0++−++) + 10 e(0+++−+) + 21e(0++++−)
4 4 [x2.w, [x2.w, [x.w, x4.v]]] 6e(00++++) −e(0+0+++) − 10e(−+++++)
4 4 [x2.w, [x2.w, [x2.v, x4.v]]] 12 e(00++++) − 7e(0+0+++) − 10e(−+++++)
4 4 [x3.v, [x2.w, [x.w, x4.v]]] 6e(00++++) +e(0+0+++) − 10e(−+++++)
4 5 [x2.w, [x2.w, [x2.w, x4.v]]] e(0+++++)
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Appendix D. A Pseudo-Hall basis of g for d = 3

Tuple B of relations

l m LM(b) for b ∈ B b − LM(b)
1 2 x3.w 0
1 3 x5.v 0
2 −3 [v, x1.v] −4[v,w]
2 −2 4[w, x1.v] −4[v, x1.w] + [v, x2.v]
2 −1 6[x1.v, x1.w] −[v, x3.v] + 4[w, x1.w] − 2 [w, x2.v]
2 −1 3[x1.v, x2.v] −12[v, x2.w] − [v, x3.v] + 16[w, x1.w] + 4[w, x2.v]
2 0 [x1.v, x3.v] −[v, x4.v] + 12[w, x2.w] + 2 [w, x3.v] − 6[x1.v, x2.w]
2 0 4[x1.w, x2.v] [v, x4.v] − 8[w, x2.w]
2 1 4[x2.v, x2.w] −[x1.v, x4.v] + 8[x1.w, x2.w] − 4[x1.w, x3.v]
2 1 2[x2.v, x3.v] 4[w, x4.v] − 3[x1.v, x4.v] + 48[x1.w, x2.w] − 8[x1.w, x3.v]
2 2 8[x2.w, x3.v] 4[x1.w, x4.v] + [x2.v, x4.v]
2 3 [x3.v, x4.v] 12[x2.w, x4.v]
3 −5 [v, [v,w]] 0
3 −4 [v, [v, x2.v]] −7[v, [v, x1.w]]
3 −4 8[w, [v,w]] 5[v, [v, x1.w]]
3 −4 4[x1.v, [v,w]] 7[v, [v, x1.w]]
3 −3 6[w, [v, x2.v]] 48[v, [v, x2.w]] + 7[v, [v, x3.v]] + 240[w, [v, x1.w]]
3 −3 3[x1.v, [v, x1.w]] −6[v, [v, x2.w]] − [v, [v, x3.v]] − 42[w, [v, x1.w]]
3 −3 3[x1.v, [v, x2.v]] [v, [v, x3.v]]
3 −3 12[x1.w, [v,w]] −9[v, [v, x2.w]] − [v, [v, x3.v]] − 60[w, [v, x1.w]]
3 −3 2[x2.v, [v,w]] 7[v, [v, x2.w]] + [v, [v, x3.v]] + 28[w, [v, x1.w]]
3 −2 [w, [w, x1.w]] 0
3 −2 3[x1.v, [v, x3.v]] 48[w, [v, x2.w]] + 4[w, [v, x3.v]] + 8[w, [w, x2.v]] + 12[x1.v, [v, x2.w]]
3 −2 3[x1.v, [w, x2.v]] −6[w, [v, x2.w]] + [w, [v, x3.v]] + 2[w, [w, x2.v]] + 3[x1.v, [v, x2.w]] −

6[x1.v, [w, x1.w]]
3 −2 12[x1.w, [v, x1.w]] [v, [v, x4.v]] − 18[w, [v, x2.w]] + 2[w, [v, x3.v]] + 3[x1.v, [v, x2.w]] −

18 [x1.v, [w, x1.w]]
3 −2 3[x1.w, [v, x2.v]] [v, [v, x4.v]] − 18[w, [v, x2.w]] − 4[w, [w, x2.v]] + 3[x1.v, [v, x2.w]] −

6[x1.v, [w, x1.w]]
3 −2 18[x2.v, [v, x1.w]] 3[v, [v, x4.v]] − 138[w, [v, x2.w]] + 2[w, [v, x3.v]] − 32[w, [w, x2.v]] +

15[x1.v, [v, x2.w]] − 90[x1.v, [w, x1.w]]
3 −2 9[x2.v, [v, x2.v]] 6[v, [v, x4.v]] − 348[w, [v, x2.w]] − 20[w, [v, x3.v]] − 40[w, [w, x2.v]] −

6[x1.v, [v, x2.w]] − 108[x1.v, [w, x1.w]]
3 −2 72[x2.w, [v,w]] 3[v, [v, x4.v]] − 132[w, [v, x2.w]] + 4[w, [v, x3.v]] − 16[w, [w, x2.v]] −

6[x1.v, [v, x2.w]] − 108[x1.v, [w, x1.w]]
3 −2 4[x3.v, [v,w]] [v, [v, x4.v]] − 12[w, [v, x2.w]] + 6[x1.v, [v, x2.w]] − 12[x1.v, [w, x1.w]]
3 −1 [x1.w, [w, x1.w]] [w, [w, x2.w]]
3 −1 44[x1.w, [w, x2.v]] 5[w, [v, x4.v]] − 8[w, [w, x2.w]] + 12[w, [w, x3.v]] − 2[x1.v, [v, x4.v]] +

72 [x1.v, [w, x2.w]] + 4[x1.v, [w, x3.v]] + 6[x1.v, [x1.v, x2.w]] +
48[x1.w, [v, x2.w]] + 2[x1.w, [v, x3.v]]

3 −1 33[x2.v, [v, x2.w]] 17[w, [v, x4.v]] + 492 [w, [w, x2.w]] + 54[w, [w, x3.v]] + 13[x1.v, [v, x4.v]] −
72 [x1.v, [w, x2.w]] + 40[x1.v, [w, x3.v]] + 93[x1.v, [x1.v, x2.w]] +
414[x1.w, [v, x2.w]] + 31[x1.w, [v, x3.v]]

3 −1 11[x2.v, [v, x3.v]] −8[w, [v, x4.v]] + 48[w, [w, x2.w]] + 16[w, [w, x3.v]] + [x1.v, [v, x4.v]] −
36 [x1.v, [w, x2.w]] − 2[x1.v, [w, x3.v]] + 30[x1.v, [x1.v, x2.w]] −
24[x1.w, [v, x2.w]] − 12[x1.w, [v, x3.v]]

3 −1 22[x2.v, [w, x1.w]] −3[w, [v, x4.v]] + 40[w, [w, x2.w]] + 6[w, [w, x3.v]] − [x1.v, [v, x4.v]] +
36[x1.v, [w, x2.w]] + 2[x1.v, [w, x3.v]] + 3[x1.v, [x1.v, x2.w]] +
24[x1.w, [v, x2.w]] + [x1.w, [v, x3.v]]

3 −1 44[x2.v, [w, x2.v]] −16[w, [v, x4.v]] − 608 [w, [w, x2.w]] − 56[w, [w, x3.v]] −
31[x1.v, [v, x4.v]] + 192 [x1.v, [w, x2.w]] − 4[x1.v, [w, x3.v]] −
72[x1.v, [x1.v, x2.w]] − 576[x1.w, [v, x2.w]] − 24[x1.w, [v, x3.v]]

3 −1 528[x2.w, [v, x1.w]] 56[w, [v, x4.v]] + 3360 [w, [w, x2.w]] + 416[w, [w, x3.v]] +
37[x1.v, [v, x4.v]] − 408 [x1.v, [w, x2.w]] + 300[x1.v, [w, x3.v]] +
516[x1.v, [x1.v, x2.w]] + 2016[x1.w, [v, x2.w]] + 128[x1.w, [v, x3.v]]

3 −1 132[x2.w, [v, x2.v]] 64[w, [v, x4.v]] + 1728 [w, [w, x2.w]] + 224[w, [w, x3.v]] +
47[x1.v, [v, x4.v]] + 24 [x1.v, [w, x2.w]] + 148[x1.v, [w, x3.v]] +
420[x1.v, [x1.v, x2.w]] + 1248[x1.w, [v, x2.w]] + 96[x1.w, [v, x3.v]]

3 −1 88[x3.v, [v, x1.w]] −20[w, [v, x4.v]] − 1728 [w, [w, x2.w]] − 224[w, [w, x3.v]] −
25[x1.v, [v, x4.v]] + 504 [x1.v, [w, x2.w]] − 148[x1.v, [w, x3.v]] −
156[x1.v, [x1.v, x2.w]] − 1248[x1.w, [v, x2.w]] − 96[x1.w, [v, x3.v]]

continued
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l m LM(b) for b ∈ B b − LM(b)
3 −1 22[x3.v, [v, x2.v]] −100[w, [v, x4.v]] − 2304 [w, [w, x2.w]] − 240[w, [w, x3.v]] −

15[x1.v, [v, x4.v]] + 408 [x1.v, [w, x2.w]] − 212[x1.v, [w, x3.v]] −
252[x1.v, [x1.v, x2.w]] − 2016[x1.w, [v, x2.w]] − 128[x1.w, [v, x3.v]]

3 −1 22[x4.v, [v,w]] 9[w, [v, x4.v]] + 672[w, [w, x2.w]] + 92[w, [w, x3.v]] + 3[x1.v, [v, x4.v]] −
108[x1.v, [w, x2.w]] + 60[x1.v, [w, x3.v]] + 90[x1.v, [x1.v, x2.w]] +
456[x1.w, [v, x2.w]] + 8[x1.w, [v, x3.v]]

3 0 [x1.w, [w, x2.w]] 0
3 0 48[x2.w, [v, x2.w]] −8[w, [w, x4.v]] + 2 [x1.v, [x1.v, x4.v]] + 3[x2.v, [v, x4.v]] −

24[x2.v, [w, x2.w]] − 12[x2.v, [w, x3.v]] − 12[x2.v, [x1.v, x2.w]]
3 0 8[x2.w, [v, x3.v]] 4[x1.v, [w, x4.v]] + 3 [x1.v, [x1.v, x4.v]] + 12[x1.w, [v, x4.v]] −

16[x1.w, [w, x3.v]] + 48[x1.w, [x1.v, x2.w]] + 4[x2.v, [v, x4.v]] −
12[x2.v, [w, x2.w]] − 2[x2.v, [w, x3.v]] + 30[x2.v, [x1.v, x2.w]]

3 0 32[x2.w, [w, x1.w]] 8[x1.w, [w, x3.v]] + 24 [x1.w, [x1.v, x2.w]] − [x2.v, [v, x4.v]] +
40[x2.v, [w, x2.w]]

3 0 16[x2.w, [w, x2.v]] 8[w, [w, x4.v]] + 8 [x1.v, [w, x4.v]] + [x1.v, [x1.v, x4.v]] +
12[x1.w, [v, x4.v]] + 96[x1.w, [x1.v, x2.w]] + 4[x2.v, [v, x4.v]] −
20[x2.v, [w, x2.w]] + 2[x2.v, [w, x3.v]] + 42[x2.v, [x1.v, x2.w]]

3 0 8[x3.v, [v, x2.w]] −8[w, [w, x4.v]] − 4 [x1.v, [w, x4.v]] + [x1.v, [x1.v, x4.v]] −
16[x1.w, [w, x3.v]] − 48[x1.w, [x1.v, x2.w]] − [x2.v, [v, x4.v]] −
12 [x2.v, [w, x2.w]] − 2[x2.v, [w, x3.v]] − 18[x2.v, [x1.v, x2.w]]

3 0 2[x3.v, [v, x3.v]] 3[x1.v, [x1.v, x4.v]] + 9[x2.v, [v, x4.v]] − 72[x2.v, [w, x2.w]] −
12[x2.v, [w, x3.v]] + 36[x2.v, [x1.v, x2.w]]

3 0 16[x3.v, [w, x1.w]] 16[w, [w, x4.v]] + 12 [x1.v, [w, x4.v]] + 3[x1.v, [x1.v, x4.v]] +
24[x1.w, [v, x4.v]] − 8[x1.w, [w, x3.v]] + 216[x1.w, [x1.v, x2.w]] +
9[x2.v, [v, x4.v]] − 12[x2.v, [w, x2.w]] + 2[x2.v, [w, x3.v]] +
90[x2.v, [x1.v, x2.w]]

3 0 4[x3.v, [w, x2.v]] −4[w, [w, x4.v]] + 6 [x1.v, [w, x4.v]] + 6[x1.w, [v, x4.v]] −
16[x1.w, [w, x3.v]] + 3[x2.v, [v, x4.v]] − 60[x2.v, [w, x2.w]] −
2 [x2.v, [w, x3.v]] + 18[x2.v, [x1.v, x2.w]]

3 0 4[x4.v, [v, x1.w]] −2[x1.w, [v, x4.v]] − [x2.v, [v, x4.v]] + 24[x2.v, [w, x2.w]]
3 0 [x4.v, [v, x2.v]] 8[w, [w, x4.v]] + 8[x1.v, [w, x4.v]] + 2[x1.v, [x1.v, x4.v]] +

10[x1.w, [v, x4.v]] + 96[x1.w, [x1.v, x2.w]] + 5[x2.v, [v, x4.v]] −
24 [x2.v, [w, x2.w]] + 48[x2.v, [x1.v, x2.w]]

3 1 [x2.w, [v, x4.v]] −[x1.w, [x1.v, x4.v]] + 16[x1.w, [x1.w, x2.w]] − 4[x1.w, [x1.w, x3.v]] +
4 [x2.v, [x1.w, x2.w]]

3 1 [x2.w, [w, x2.w]] [x1.w, [x1.w, x2.w]]
3 1 24[x2.w, [x1.v, x2.w]] 2[x1.w, [w, x4.v]] + 6[x1.w, [x1.v, x4.v]] − 8[x1.w, [x1.w, x2.w]] +

16[x1.w, [x1.w, x3.v]] + [x2.v, [w, x4.v]] + 2 [x2.v, [x1.v, x4.v]] −
20[x2.v, [x1.w, x2.w]] + 4 [x2.v, [x1.w, x3.v]] − 8[x2.w, [w, x3.v]]

3 1 4[x3.v, [v, x4.v]] 46[x1.w, [w, x4.v]] − 30 [x1.w, [x1.v, x4.v]] + 408[x1.w, [x1.w, x2.w]] −
64 [x1.w, [x1.w, x3.v]] − [x2.v, [w, x4.v]] − 3[x2.v, [x1.v, x4.v]] +
60[x2.v, [x1.w, x2.w]] + 16[x2.v, [x1.w, x3.v]] + 16[x2.w, [w, x3.v]]

3 1 32[x3.v, [w, x2.w]] 14[x1.w, [w, x4.v]] − 6 [x1.w, [x1.v, x4.v]] + 24[x1.w, [x1.w, x2.w]] −
[x2.v, [w, x4.v]] − 3[x2.v, [x1.v, x4.v]] + 60[x2.v, [x1.w, x2.w]] +
16[x2.w, [w, x3.v]]

3 1 4[x3.v, [w, x3.v]] 6[x1.w, [w, x4.v]] + 72 [x1.w, [x1.w, x2.w]] + 3[x2.v, [w, x4.v]] −
36[x2.v, [x1.w, x2.w]] + 12[x2.v, [x1.w, x3.v]] − 24[x2.w, [w, x3.v]]

3 1 48[x3.v, [x1.v, x2.w]] −38[x1.w, [w, x4.v]] + 54[x1.w, [x1.v, x4.v]] − 696[x1.w, [x1.w, x2.w]] +
128[x1.w, [x1.w, x3.v]] + 5[x2.v, [w, x4.v]] + 15[x2.v, [x1.v, x4.v]] −
108[x2.v, [x1.w, x2.w]] + 16 [x2.v, [x1.w, x3.v]] + 16[x2.w, [w, x3.v]]

3 1 16[x4.v, [v, x2.w]] 18[x1.w, [w, x4.v]] − 26[x1.w, [x1.v, x4.v]] + 360[x1.w, [x1.w, x2.w]] −
96 [x1.w, [x1.w, x3.v]] + [x2.v, [w, x4.v]] − 5[x2.v, [x1.v, x4.v]] +
132[x2.v, [x1.w, x2.w]] + 48[x2.w, [w, x3.v]]

3 1 [x4.v, [v, x3.v]] −2[x1.w, [w, x4.v]] + 24 [x1.w, [x1.w, x2.w]] + 8[x1.w, [x1.w, x3.v]] −
[x2.v, [w, x4.v]] + 3[x2.v, [x1.v, x4.v]] − 36[x2.v, [x1.w, x2.w]] +
4[x2.v, [x1.w, x3.v]] − 32[x2.w, [w, x3.v]]

3 1 96[x4.v, [w, x1.w]] −94[x1.w, [w, x4.v]] + 30[x1.w, [x1.v, x4.v]] − 216[x1.w, [x1.w, x2.w]] +
64 [x1.w, [x1.w, x3.v]] − 23[x2.v, [w, x4.v]] + 15[x2.v, [x1.v, x4.v]] −
156[x2.v, [x1.w, x2.w]] − 16[x2.v, [x1.w, x3.v]] − 208[x2.w, [w, x3.v]]

3 1 24[x4.v, [w, x2.v]] −86[x1.w, [w, x4.v]] + 6[x1.w, [x1.v, x4.v]] + 72[x1.w, [x1.w, x2.w]] −
64 [x1.w, [x1.w, x3.v]] + 5[x2.v, [w, x4.v]] + 3[x2.v, [x1.v, x4.v]] −
204[x2.v, [x1.w, x2.w]] + 16[x2.v, [x1.w, x3.v]] − 80[x2.w, [w, x3.v]]

3 2 [x2.w, [x1.w, x2.w]] 0
3 2 8[x3.v, [w, x4.v]] −72[x1.w, [x1.w, x4.v]] + 9[x2.v, [x2.v, x4.v]] − 240[x2.w, [w, x4.v]] +

36[x2.w, [x1.v, x4.v]] − 240[x2.w, [x1.w, x3.v]]
3 2 2[x3.v, [x1.v, x4.v]] −24[x1.w, [x1.w, x4.v]] + 3[x2.v, [x2.v, x4.v]] − 48[x2.w, [w, x4.v]] +

12[x2.w, [x1.v, x4.v]] − 48[x2.w, [x1.w, x3.v]]
continued
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Appendix D. A Pseudo-Hall basis of g for d = 3

l m LM(b) for b ∈ B b − LM(b)
3 2 32[x3.v, [x1.w, x2.w]] 24[x1.w, [x1.w, x4.v]] + 8[x2.v, [x1.w, x4.v]] − [x2.v, [x2.v, x4.v]] +

64[x2.w, [w, x4.v]] + 12[x2.w, [x1.v, x4.v]] + 112 [x2.w, [x1.w, x3.v]]
3 2 16[x3.v, [x1.w, x3.v]] 72[x1.w, [x1.w, x4.v]] − 9[x2.v, [x2.v, x4.v]] + 192[x2.w, [w, x4.v]] −

36[x2.w, [x1.v, x4.v]] + 144[x2.w, [x1.w, x3.v]]
3 2 [x4.v, [v, x4.v]] 30[x1.w, [x1.w, x4.v]] + 9[x2.v, [x1.w, x4.v]] + 24[x2.w, [w, x4.v]] +

12 [x2.w, [x1.v, x4.v]] + 96[x2.w, [x1.w, x3.v]]
3 2 8[x4.v, [w, x2.w]] −10[x1.w, [x1.w, x4.v]] − 3[x2.v, [x1.w, x4.v]] + [x2.v, [x2.v, x4.v]] −

40[x2.w, [w, x4.v]] − 48[x2.w, [x1.w, x3.v]]
3 2 8[x4.v, [w, x3.v]] 48[x1.w, [x1.w, x4.v]] + 36[x2.v, [x1.w, x4.v]] − 3[x2.v, [x2.v, x4.v]] +

144[x2.w, [w, x4.v]] + 36[x2.w, [x1.v, x4.v]] + 336[x2.w, [x1.w, x3.v]]
3 2 8[x4.v, [x1.v, x2.w]] −20[x1.w, [x1.w, x4.v]] − 2[x2.v, [x1.w, x4.v]] + [x2.v, [x2.v, x4.v]] −

32[x2.w, [w, x4.v]] − 4[x2.w, [x1.v, x4.v]] − 48 [x2.w, [x1.w, x3.v]]
3 3 [x3.v, [x2.v, x4.v]] −96[x2.w, [x1.w, x4.v]] − 6[x2.w, [x2.v, x4.v]] − 8[x3.v, [x1.w, x4.v]]
3 3 [x4.v, [w, x4.v]] 54[x2.w, [x1.w, x4.v]] + 6[x2.w, [x2.v, x4.v]] + 7[x3.v, [x1.w, x4.v]]
3 3 [x4.v, [x1.v, x4.v]] 192[x2.w, [x1.w, x4.v]] + 12[x2.w, [x2.v, x4.v]] + 16[x3.v, [x1.w, x4.v]]
3 3 24[x4.v, [x1.w, x2.w]] 66[x2.w, [x1.w, x4.v]] + 6[x2.w, [x2.v, x4.v]] + 5[x3.v, [x1.w, x4.v]]
3 3 2[x4.v, [x1.w, x3.v]] −90[x2.w, [x1.w, x4.v]] − 6[x2.w, [x2.v, x4.v]] − 7[x3.v, [x1.w, x4.v]]
3 4 5[x3.v, [x2.w, x4.v]] 42[x2.w, [x2.w, x4.v]]
3 4 5[x4.v, [x1.w, x4.v]] −48[x2.w, [x2.w, x4.v]]
3 4 5[x4.v, [x2.v, x4.v]] 336[x2.w, [x2.w, x4.v]]
3 5 [x4.v, [x2.w, x4.v]] 0
4 −6 [v, [v, [v, x1.w]]] 0
4 −5 [v, [v, [v, x3.v]]] −21[v, [v, [v, x2.w]]]
4 −5 2[w, [v, [v, x1.w]]] 3[v, [v, [v, x2.w]]]
4 −5 3[x1.v, [v, [v, x1.w]]] 11[v, [v, [v, x2.w]]]
4 −5 6[[v,w], [v, x1.w]] −5[v, [v, [v, x2.w]]]
4 −5 3[[v,w], [v, x2.v]] −14[v, [v, [v, x2.w]]]
4 −4 3648[w, [w, [v, x1.w]]] −15[v, [v, [v, x4.v]]] + 768[w, [v, [v, x2.w]]] + 52[w, [v, [v, x3.v]]]
4 −4 1368[x1.v, [v, [v, x2.w]]] 35[v, [v, [v, x4.v]]] − 3312[w, [v, [v, x2.w]]] + 132[w, [v, [v, x3.v]]]
4 −4 6[x1.v, [v, [v, x3.v]]] 5[v, [v, [v, x4.v]]]
4 −4 5472[x1.v, [w, [v, x1.w]]] −175[v, [v, [v, x4.v]]] + 2880[w, [v, [v, x2.w]]] − 204[w, [v, [v, x3.v]]]
4 −4 456[x1.w, [v, [v, x1.w]]] 27[v, [v, [v, x4.v]]] − 288[w, [v, [v, x2.w]]] + 28[w, [v, [v, x3.v]]]
4 −4 114[x2.v, [v, [v, x1.w]]] −[v, [v, [v, x4.v]]] − 192[w, [v, [v, x2.w]]] − 32[w, [v, [v, x3.v]]]
4 −4 5472[[v,w], [v, x2.w]] −43[v, [v, [v, x4.v]]] + 3600[w, [v, [v, x2.w]]] − 84[w, [v, [v, x3.v]]]
4 −4 456[[v,w], [v, x3.v]] −71[v, [v, [v, x4.v]]] + 504[w, [v, [v, x2.w]]] + 84[w, [v, [v, x3.v]]]
4 −4 304[[v,w], [w, x1.w]] −5[v, [v, [v, x4.v]]] + 28[w, [v, [v, x2.w]]] − 8[w, [v, [v, x3.v]]]
4 −4 96[[v,w], [w, x2.v]] −5[v, [v, [v, x4.v]]] + 48 [w, [v, [v, x2.w]]] − 12[w, [v, [v, x3.v]]]
4 −4 342[[v, x1.w], [v, x2.v]] −35[v, [v, [v, x4.v]]] + 576[w, [v, [v, x2.w]]] − 132[w, [v, [v, x3.v]]]
4 −3 30[x1.v, [x1.v, [v, x2.w]]] 6[w, [v, [v, x4.v]]] + 672[w, [w, [v, x2.w]]] − 32[w, [w, [v, x3.v]]] −

80[w, [w, [w, x2.v]]] − 3[x1.v, [v, [v, x4.v]]] − 204[x1.v, [w, [v, x2.w]]] +
34[x1.v, [w, [v, x3.v]]] + 8[x1.v, [w, [w, x2.v]]]

4 −3 60[x1.v, [x1.v, [w, x1.w]]] 12[w, [v, [v, x4.v]]] + 204[w, [w, [v, x2.w]]] + 26[w, [w, [v, x3.v]]] +
80[w, [w, [w, x2.v]]] − 6[x1.v, [v, [v, x4.v]]] + 102[x1.v, [w, [v, x2.w]]] +
13[x1.v, [w, [v, x3.v]]] − 4[x1.v, [w, [w, x2.v]]]

4 −3 36[x1.w, [v, [v, x2.w]]] −15[w, [v, [v, x4.v]]] + 156[w, [w, [v, x2.w]]] − 46[w, [w, [v, x3.v]]] −
112 [w, [w, [w, x2.v]]] + 3[x1.v, [v, [v, x4.v]]] − 162[x1.v, [w, [v, x2.w]]] −
9[x1.v, [w, [v, x3.v]]] + 12[x1.v, [w, [w, x2.v]]]

4 −3 4[x1.w, [v, [v, x3.v]]] −18[w, [v, [v, x4.v]]] + 120[w, [w, [v, x2.w]]] − 52[w, [w, [v, x3.v]]] −
160 [w, [w, [w, x2.v]]] + 3[x1.v, [v, [v, x4.v]]] − 84[x1.v, [w, [v, x2.w]]] +
2[x1.v, [w, [v, x3.v]]] + 56[x1.v, [w, [w, x2.v]]]

4 −3 1440[x1.w, [w, [v, x1.w]]] 294[w, [v, [v, x4.v]]] − 1992[w, [w, [v, x2.w]]] + 892[w, [w, [v, x3.v]]] +
2560 [w, [w, [w, x2.v]]]− 57[x1.v, [v, [v, x4.v]]] + 2124[x1.v, [w, [v, x2.w]]] +
66[x1.v, [w, [v, x3.v]]] − 648[x1.v, [w, [w, x2.v]]]

4 −3 180[x2.v, [v, [v, x2.w]]] −156[w, [v, [v, x4.v]]] + 888[w, [w, [v, x2.w]]] − 188[w, [w, [v, x3.v]]] −
320 [w, [w, [w, x2.v]]] + 33[x1.v, [v, [v, x4.v]]] − 1476[x1.v, [w, [v, x2.w]]] −
234[x1.v, [w, [v, x3.v]]] + 312[x1.v, [w, [w, x2.v]]]

4 −3 5[x2.v, [v, [v, x3.v]]] −66[w, [v, [v, x4.v]]] + 468[w, [w, [v, x2.w]]] − 158[w, [w, [v, x3.v]]] −
480 [w, [w, [w, x2.v]]] + 18[x1.v, [v, [v, x4.v]]] − 366[x1.v, [w, [v, x2.w]]] −
9[x1.v, [w, [v, x3.v]]] + 132[x1.v, [w, [w, x2.v]]]

4 −3 360[x2.v, [w, [v, x1.w]]] 186[w, [v, [v, x4.v]]] − 1308[w, [w, [v, x2.w]]] + 418[w, [w, [v, x3.v]]] +
1120 [w, [w, [w, x2.v]]]− 48[x1.v, [v, [v, x4.v]]] + 1386[x1.v, [w, [v, x2.w]]] +
99[x1.v, [w, [v, x3.v]]] − 372[x1.v, [w, [w, x2.v]]]

4 −3 18[x2.w, [v, [v, x1.w]]] −9[w, [v, [v, x4.v]]] − 60[w, [w, [v, x2.w]]] − 22[w, [w, [v, x3.v]]] −
64[w, [w, [w, x2.v]]] + 3[x1.v, [v, [v, x4.v]]] − 54[x1.v, [w, [v, x2.w]]] −
9[x1.v, [w, [v, x3.v]]] + 12[x1.v, [w, [w, x2.v]]]

continued
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l m LM(b) for b ∈ B b − LM(b)
4 −3 30[x3.v, [v, [v, x1.w]]] −36[w, [v, [v, x4.v]]] + 648[w, [w, [v, x2.w]]] − 108[w, [w, [v, x3.v]]] −

320 [w, [w, [w, x2.v]]] + 3[x1.v, [v, [v, x4.v]]] − 396[x1.v, [w, [v, x2.w]]] +
6[x1.v, [w, [v, x3.v]]] + 72[x1.v, [w, [w, x2.v]]]

4 −3 60[[v,w], [v, x4.v]] 96[w, [v, [v, x4.v]]] − 48 [w, [w, [v, x2.w]]] + 208[w, [w, [v, x3.v]]] +
640[w, [w, [w, x2.v]]] − 3[x1.v, [v, [v, x4.v]]] + 216[x1.v, [w, [v, x2.w]]] +
24[x1.v, [w, [v, x3.v]]] − 192[x1.v, [w, [w, x2.v]]]

4 −3 1440[[v,w], [w, x2.w]] 276[w, [v, [v, x4.v]]] + 2832[w, [w, [v, x2.w]]] + 688[w, [w, [v, x3.v]]] +
2080[w, [w, [w, x2.v]]]− 93[x1.v, [v, [v, x4.v]]] + 1656[x1.v, [w, [v, x2.w]]] +
264[x1.v, [w, [v, x3.v]]] − 432[x1.v, [w, [w, x2.v]]]

4 −3 120[[v,w], [w, x3.v]] 51[w, [v, [v, x4.v]]] − 1008[w, [w, [v, x2.w]]] + 228[w, [w, [v, x3.v]]] +
560[w, [w, [w, x2.v]]] − 3[x1.v, [v, [v, x4.v]]] + 576[x1.v, [w, [v, x2.w]]] −
6[x1.v, [w, [v, x3.v]]] − 72[x1.v, [w, [w, x2.v]]]

4 −3 360[[v,w], [x1.v, x2.w]] 201[w, [v, [v, x4.v]]] − 408[w, [w, [v, x2.w]]] + 568[w, [w, [v, x3.v]]] +
1600 [w, [w, [w, x2.v]]]− 63[x1.v, [v, [v, x4.v]]] + 1836[x1.v, [w, [v, x2.w]]] +
144[x1.v, [w, [v, x3.v]]] − 312[x1.v, [w, [w, x2.v]]]

4 −3 240[[v, x1.w], [v, x2.w]] 14[w, [v, [v, x4.v]]] − 432[w, [w, [v, x2.w]]] + 32[w, [w, [v, x3.v]]] +
3 [x1.v, [v, [v, x4.v]]] + 264[x1.v, [w, [v, x2.w]]] + 16 [x1.v, [w, [v, x3.v]]] +
32[x1.v, [w, [w, x2.v]]]

4 −3 60[[v, x1.w], [v, x3.v]] 96[w, [v, [v, x4.v]]] − 408[w, [w, [v, x2.w]]] + 328[w, [w, [v, x3.v]]] +
960 [w, [w, [w, x2.v]]] − 33[x1.v, [v, [v, x4.v]]] + 756[x1.v, [w, [v, x2.w]]] +
24[x1.v, [w, [v, x3.v]]] − 312[x1.v, [w, [w, x2.v]]]

4 −3 360[[v, x1.w], [w, x1.w]] 21[w, [v, [v, x4.v]]] − 228[w, [w, [v, x2.w]]] + 88[w, [w, [v, x3.v]]] +
280 [w, [w, [w, x2.v]]] − 3[x1.v, [v, [v, x4.v]]] + 126[x1.v, [w, [v, x2.w]]] −
6[x1.v, [w, [v, x3.v]]] − 72[x1.v, [w, [w, x2.v]]]

4 −3 720[[v, x1.w], [w, x2.v]] 102[w, [v, [v, x4.v]]] + 1104[w, [w, [v, x2.w]]] + 256[w, [w, [v, x3.v]]] +
1120 [w, [w, [w, x2.v]]] − 21[x1.v, [v, [v, x4.v]]] + 72[x1.v, [w, [v, x2.w]]] +
48[x1.v, [w, [v, x3.v]]] − 144[x1.v, [w, [w, x2.v]]]

4 −3 60[[v, x2.v], [v, x2.w]] 2[w, [v, [v, x4.v]]] − 1296[w, [w, [v, x2.w]]] + 16[w, [w, [v, x3.v]]] +
9[x1.v, [v, [v, x4.v]]] + 312[x1.v, [w, [v, x2.w]]] − 32[x1.v, [w, [v, x3.v]]] −
64[x1.v, [w, [w, x2.v]]]

4 −3 15[[v, x2.v], [v, x3.v]] 108[w, [v, [v, x4.v]]] − 504[w, [w, [v, x2.w]]] + 264[w, [w, [v, x3.v]]] +
800 [w, [w, [w, x2.v]]] − 39[x1.v, [v, [v, x4.v]]] + 468[x1.v, [w, [v, x2.w]]] +
12[x1.v, [w, [v, x3.v]]] − 216[x1.v, [w, [w, x2.v]]]

4 −3 90[[v, x2.v], [w, x1.w]] 3[w, [v, [v, x4.v]]] − 624[w, [w, [v, x2.w]]] + 34[w, [w, [v, x3.v]]] +
40[w, [w, [w, x2.v]]] + 6[x1.v, [v, [v, x4.v]]] − 72[x1.v, [w, [v, x2.w]]] −
33[x1.v, [w, [v, x3.v]]] − 36[x1.v, [w, [w, x2.v]]]

4 −3 180[[v, x2.v], [w, x2.v]] 66[w, [v, [v, x4.v]]] + 3552[w, [w, [v, x2.w]]] − 152[w, [w, [v, x3.v]]] −
320 [w, [w, [w, x2.v]]] − 3[x1.v, [v, [v, x4.v]]] − 1584[x1.v, [w, [v, x2.w]]] +
84[x1.v, [w, [v, x3.v]]] − 432[x1.v, [w, [w, x2.v]]]

4 −2 [w, [w, [w, x2.w]]] 0
4 −2 216[x1.w, [x1.v, [w, x1.w]]] 90[w, [w, [v, x4.v]]] + 208[w, [w, [w, x3.v]]] + 45[x1.v, [w, [v, x4.v]]] −

1728[x1.v, [w, [w, x2.w]]] − 36[x1.v, [w, [w, x3.v]]] +
45 [x1.v, [x1.v, [v, x4.v]]] − 810[x1.v, [x1.v, [w, x2.w]]] −
63[x1.v, [x1.v, [w, x3.v]]] − 81[x1.v, [x1.v, [x1.v, x2.w]]] +
360[x1.w, [w, [v, x2.w]]] + 48[x1.w, [w, [v, x3.v]]] +
672[x1.w, [w, [w, x2.v]]] + 36[x1.w, [x1.v, [v, x2.w]]]

4 −2 27[x2.v, [v, [v, x4.v]]] 252[w, [w, [v, x4.v]]] − 224[w, [w, [w, x3.v]]] − 162[x1.v, [w, [v, x4.v]]] +
2592[x1.v, [w, [w, x2.w]]] + 792[x1.v, [w, [w, x3.v]]] −
234 [x1.v, [x1.v, [v, x4.v]]] + 3240[x1.v, [x1.v, [w, x2.w]]] +
540[x1.v, [x1.v, [w, x3.v]]] + 432[x1.v, [x1.v, [x1.v, x2.w]]] −
54[x1.w, [v, [v, x4.v]]]− 432[x1.w, [w, [v, x2.w]]]− 216[x1.w, [w, [v, x3.v]]]−
1440[x1.w, [w, [w, x2.v]]] − 216[x1.w, [x1.v, [v, x2.w]]]

4 −2 36[x2.v, [w, [v, x2.w]]] −36[w, [w, [v, x4.v]]] − 88[w, [w, [w, x3.v]]] − 27[x1.v, [w, [v, x4.v]]] +
864[x1.v, [w, [w, x2.w]]]+12[x1.v, [w, [w, x3.v]]]−24 [x1.v, [x1.v, [v, x4.v]]]+
432[x1.v, [x1.v, [w, x2.w]]] + 24[x1.v, [x1.v, [w, x3.v]]] +
18[x1.v, [x1.v, [x1.v, x2.w]]] − 156[x1.w, [w, [v, x2.w]]] −
10[x1.w, [w, [v, x3.v]]]−272[x1.w, [w, [w, x2.v]]]−30[x1.w, [x1.v, [v, x2.w]]]

4 −2 12[x2.v, [w, [v, x3.v]]] −42[w, [w, [v, x4.v]]] − 64[w, [w, [w, x3.v]]] − 9[x1.v, [w, [v, x4.v]]] +
432[x1.v, [w, [w, x2.w]]]+12[x1.v, [w, [w, x3.v]]]−24 [x1.v, [x1.v, [v, x4.v]]]+
432[x1.v, [x1.v, [w, x2.w]]] + 24[x1.v, [x1.v, [w, x3.v]]] +
18[x1.v, [x1.v, [x1.v, x2.w]]] + 24[x1.w, [w, [v, x2.w]]] −
52[x1.w, [w, [v, x3.v]]]−272[x1.w, [w, [w, x2.v]]]−84[x1.w, [x1.v, [v, x2.w]]]

4 −2 8[x2.v, [w, [w, x2.v]]] 8[w, [w, [v, x4.v]]] + 10[x1.v, [w, [v, x4.v]]] − 192[x1.v, [w, [w, x2.w]]] −
8 [x1.v, [w, [w, x3.v]]]+7[x1.v, [x1.v, [v, x4.v]]]−144 [x1.v, [x1.v, [w, x2.w]]]−
4[x1.v, [x1.v, [w, x3.v]]] + 48[x1.w, [w, [w, x2.v]]]

continued
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Appendix D. A Pseudo-Hall basis of g for d = 3

l m LM(b) for b ∈ B b − LM(b)
4 −2 36[x2.v, [x1.v, [v, x2.w]]] −126[w, [w, [v, x4.v]]] − 208[w, [w, [w, x3.v]]] − 57[x1.v, [w, [v, x4.v]]] +

1872[x1.v, [w, [w, x2.w]]] − 36[x1.v, [w, [w, x3.v]]] −
36 [x1.v, [x1.v, [v, x4.v]]] + 864[x1.v, [x1.v, [w, x2.w]]] +
18[x1.v, [x1.v, [x1.v, x2.w]]] − 48[x1.w, [w, [v, x2.w]]] −
16[x1.w, [w, [v, x3.v]]]−656[x1.w, [w, [w, x2.v]]]−120[x1.w, [x1.v, [v, x2.w]]]

4 −2 216[x2.v, [x1.v, [w, x1.w]]] 234[w, [w, [v, x4.v]]] + 608[w, [w, [w, x3.v]]] + 81[x1.v, [w, [v, x4.v]]] −
4752[x1.v, [w, [w, x2.w]]] + 36[x1.v, [w, [w, x3.v]]] +
90 [x1.v, [x1.v, [v, x4.v]]] − 1620[x1.v, [x1.v, [w, x2.w]]] −
126[x1.v, [x1.v, [w, x3.v]]] − 216[x1.v, [x1.v, [x1.v, x2.w]]] +
1224[x1.w, [w, [v, x2.w]]] + 84[x1.w, [w, [v, x3.v]]] +
1392[x1.w, [w, [w, x2.v]]] + 36[x1.w, [x1.v, [v, x2.w]]]

4 −2 216[x2.w, [v, [v, x2.w]]] −90[w, [w, [v, x4.v]]] − 352[w, [w, [w, x3.v]]] + 45[x1.v, [w, [v, x4.v]]] +
864[x1.v, [w, [w, x2.w]]] − 36[x1.v, [w, [w, x3.v]]] −
36 [x1.v, [x1.v, [v, x4.v]]] + 648[x1.v, [x1.v, [w, x2.w]]] +
108[x1.v, [x1.v, [w, x3.v]]] + 270[x1.v, [x1.v, [x1.v, x2.w]]] −
18[x1.w, [v, [v, x4.v]]]− 360[x1.w, [w, [v, x2.w]]]− 156[x1.w, [w, [v, x3.v]]]−
672[x1.w, [w, [w, x2.v]]] − 36[x1.w, [x1.v, [v, x2.w]]]

4 −2 36[x2.w, [v, [v, x3.v]]] −216[w, [w, [v, x4.v]]] − 704[w, [w, [w, x3.v]]] − 180[x1.v, [w, [v, x4.v]]] +
6912[x1.v, [w, [w, x2.w]]] + 432[x1.v, [w, [w, x3.v]]] −
207 [x1.v, [x1.v, [v, x4.v]]] + 3348[x1.v, [x1.v, [w, x2.w]]] +
414[x1.v, [x1.v, [w, x3.v]]] + 486[x1.v, [x1.v, [x1.v, x2.w]]] −
36[x1.w, [v, [v, x4.v]]]− 720[x1.w, [w, [v, x2.w]]]− 312[x1.w, [w, [v, x3.v]]]−
2496[x1.w, [w, [w, x2.v]]] − 72[x1.w, [x1.v, [v, x2.w]]]

4 −2 864[x2.w, [w, [v, x1.w]]] 144[w, [w, [v, x4.v]]] + 608[w, [w, [w, x3.v]]] + 72[x1.v, [w, [v, x4.v]]] −
4320[x1.v, [w, [w, x2.w]]] − 288[x1.v, [w, [w, x3.v]]] +
153 [x1.v, [x1.v, [v, x4.v]]] − 2484[x1.v, [x1.v, [w, x2.w]]] −
342[x1.v, [x1.v, [w, x3.v]]] − 486[x1.v, [x1.v, [x1.v, x2.w]]] +
36[x1.w, [v, [v, x4.v]]] + 720[x1.w, [w, [v, x2.w]]] + 312[x1.w, [w, [v, x3.v]]] +
1920[x1.w, [w, [w, x2.v]]] + 72[x1.w, [x1.v, [v, x2.w]]]

4 −2 324[x3.v, [v, [v, x2.w]]] −1638[w, [w, [v, x4.v]]]−3680[w, [w, [w, x3.v]]]−1593[x1.v, [w, [v, x4.v]]] +
41472[x1.v, [w, [w, x2.w]]] + 1764[x1.v, [w, [w, x3.v]]] −
1206[x1.v, [x1.v, [v, x4.v]]] + 20736[x1.v, [x1.v, [w, x2.w]]] +
1512[x1.v, [x1.v, [w, x3.v]]] + 1566[x1.v, [x1.v, [x1.v, x2.w]]] −
54[x1.w, [v, [v, x4.v]]]−2376 [x1.w, [w, [v, x2.w]]]−540[x1.w, [w, [v, x3.v]]]−
12672 [x1.w, [w, [w, x2.v]]] − 1188[x1.w, [x1.v, [v, x2.w]]]

4 −2 54[x3.v, [v, [v, x3.v]]] −8136[w, [w, [v, x4.v]]] − 15136[w, [w, [w, x3.v]]] −
2052[x1.v, [w, [v, x4.v]]] + 114048[x1.v, [w, [w, x2.w]]] −
3600[x1.v, [w, [w, x3.v]]] − 1683[x1.v, [x1.v, [v, x4.v]]] +
36612[x1.v, [x1.v, [w, x2.w]]] + 918[x1.v, [x1.v, [w, x3.v]]] +
2646 [x1.v, [x1.v, [x1.v, x2.w]]] − 108[x1.w, [v, [v, x4.v]]] −
4752[x1.w, [w, [v, x2.w]]] − 1080[x1.w, [w, [v, x3.v]]] −
35712[x1.w, [w, [w, x2.v]]] − 2376[x1.w, [x1.v, [v, x2.w]]]

4 −2 1296[x3.v, [w, [v, x1.w]]] 6192[w, [w, [v, x4.v]]] + 11680[w, [w, [w, x3.v]]] +
2376[x1.v, [w, [v, x4.v]]] − 98496[x1.v, [w, [w, x2.w]]] +
1008[x1.v, [w, [w, x3.v]]] + 1845[x1.v, [x1.v, [v, x4.v]]] −
36612[x1.v, [x1.v, [w, x2.w]]] − 1566[x1.v, [x1.v, [w, x3.v]]] −
2646 [x1.v, [x1.v, [x1.v, x2.w]]] + 108[x1.w, [v, [v, x4.v]]] +
4752[x1.w, [w, [v, x2.w]]] + 1080[x1.w, [w, [v, x3.v]]] +
30528[x1.w, [w, [w, x2.v]]] + 2376[x1.w, [x1.v, [v, x2.w]]]

4 −2 81[x4.v, [v, [v, x1.w]]] 1116[w, [w, [v, x4.v]]] + 1504[w, [w, [w, x3.v]]] + 270[x1.v, [w, [v, x4.v]]] −
12960[x1.v, [w, [w, x2.w]]] + 792[x1.v, [w, [w, x3.v]]] +
90 [x1.v, [x1.v, [v, x4.v]]] − 2592[x1.v, [x1.v, [w, x2.w]]] +
216[x1.v, [x1.v, [w, x3.v]]] + 108[x1.v, [x1.v, [x1.v, x2.w]]] −
54[x1.w, [v, [v, x4.v]]]− 432[x1.w, [w, [v, x2.w]]]− 216[x1.w, [w, [v, x3.v]]] +
2880[x1.w, [w, [w, x2.v]]] − 216[x1.w, [x1.v, [v, x2.w]]]

4 −2 648[[v,w], [w, x4.v]] −4122[w, [w, [v, x4.v]]] − 6080[w, [w, [w, x3.v]]] −
1107[x1.v, [w, [v, x4.v]]] + 57024 [x1.v, [w, [w, x2.w]]] −
2340[x1.v, [w, [w, x3.v]]] − 531 [x1.v, [x1.v, [v, x4.v]]] +
12960[x1.v, [x1.v, [w, x2.w]]] − 432[x1.v, [x1.v, [w, x3.v]]] −
54[x1.v, [x1.v, [x1.v, x2.w]]] + 270[x1.w, [v, [v, x4.v]]] −
1080[x1.w, [w, [v, x2.w]]] + 972[x1.w, [w, [v, x3.v]]] −
12672[x1.w, [w, [w, x2.v]]] + 756[x1.w, [x1.v, [v, x2.w]]]

continued
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l m LM(b) for b ∈ B b − LM(b)
4 −2 324[[v,w], [x1.v, x4.v]] −6354[w, [w, [v, x4.v]]] − 7936[w, [w, [w, x3.v]]] −

1323[x1.v, [w, [v, x4.v]]] + 67392[x1.v, [w, [w, x2.w]]] −
5220[x1.v, [w, [w, x3.v]]] − 225[x1.v, [x1.v, [v, x4.v]]] +
12312[x1.v, [x1.v, [w, x2.w]]] − 1836[x1.v, [x1.v, [w, x3.v]]] −
1242[x1.v, [x1.v, [x1.v, x2.w]]] + 378[x1.w, [v, [v, x4.v]]] +
1080 [x1.w, [w, [v, x2.w]]] + 1188[x1.w, [w, [v, x3.v]]] −
14976 [x1.w, [w, [w, x2.v]]] + 540[x1.w, [x1.v, [v, x2.w]]]

4 −2 288[[v,w], [x1.w, x2.w]] −174[w, [w, [v, x4.v]]] − 224[w, [w, [w, x3.v]]] − 45[x1.v, [w, [v, x4.v]]] +
1728[x1.v, [w, [w, x2.w]]] − 156[x1.v, [w, [w, x3.v]]] −
9 [x1.v, [x1.v, [v, x4.v]]] + 360[x1.v, [x1.v, [w, x2.w]]] −
60[x1.v, [x1.v, [w, x3.v]]] − 54[x1.v, [x1.v, [x1.v, x2.w]]] +
6[x1.w, [v, [v, x4.v]]] + 168[x1.w, [w, [v, x2.w]]] + 44[x1.w, [w, [v, x3.v]]] −
416[x1.w, [w, [w, x2.v]]] − 12[x1.w, [x1.v, [v, x2.w]]]

4 −2 432[[v,w], [x1.w, x3.v]] 2718[w, [w, [v, x4.v]]] + 4448[w, [w, [w, x3.v]]] + 729[x1.v, [w, [v, x4.v]]] −
36288[x1.v, [w, [w, x2.w]]] + 1260[x1.v, [w, [w, x3.v]]] +
477[x1.v, [x1.v, [v, x4.v]]] − 11016[x1.v, [x1.v, [w, x2.w]]] −
108[x1.v, [x1.v, [w, x3.v]]] − 594[x1.v, [x1.v, [x1.v, x2.w]]] −
54[x1.w, [v, [v, x4.v]]]+1512 [x1.w, [w, [v, x2.w]]]+252[x1.w, [w, [v, x3.v]]]+
10368 [x1.w, [w, [w, x2.v]]] + 324[x1.w, [x1.v, [v, x2.w]]]

4 −2 162[[v, x1.w], [v, x4.v]] 1638[w, [w, [v, x4.v]]] + 2672[w, [w, [w, x3.v]]] + 783[x1.v, [w, [v, x4.v]]] −
25920[x1.v, [w, [w, x2.w]]] + 180[x1.v, [w, [w, x3.v]]] +
477[x1.v, [x1.v, [v, x4.v]]] − 9558[x1.v, [x1.v, [w, x2.w]]] −
297[x1.v, [x1.v, [w, x3.v]]] − 351[x1.v, [x1.v, [x1.v, x2.w]]] +
54[x1.w, [v, [v, x4.v]]] + 432 [x1.w, [w, [v, x2.w]]] + 216[x1.w, [w, [v, x3.v]]] +
7488 [x1.w, [w, [w, x2.v]]] + 216[x1.w, [x1.v, [v, x2.w]]]

4 −2 144[[v, x1.w], [w, x2.w]] 90[w, [w, [v, x4.v]]] + 208[w, [w, [w, x3.v]]] + 45[x1.v, [w, [v, x4.v]]] −
1728[x1.v, [w, [w, x2.w]]] − 36[x1.v, [w, [w, x3.v]]] +
45 [x1.v, [x1.v, [v, x4.v]]] − 810[x1.v, [x1.v, [w, x2.w]]] −
63[x1.v, [x1.v, [w, x3.v]]] − 81[x1.v, [x1.v, [x1.v, x2.w]]] +
6[x1.w, [v, [v, x4.v]]] + 240[x1.w, [w, [v, x2.w]]] + 56[x1.w, [w, [v, x3.v]]] +
640[x1.w, [w, [w, x2.v]]] + 24[x1.w, [x1.v, [v, x2.w]]]

4 −2 648[[v, x1.w], [w, x3.v]] 666[w, [w, [v, x4.v]]] + 1808[w, [w, [w, x3.v]]] + 135[x1.v, [w, [v, x4.v]]] −
10368[x1.v, [w, [w, x2.w]]] + 180[x1.v, [w, [w, x3.v]]] +
234[x1.v, [x1.v, [v, x4.v]]] − 3726[x1.v, [x1.v, [w, x2.w]]] −
297[x1.v, [x1.v, [w, x3.v]]] − 351[x1.v, [x1.v, [x1.v, x2.w]]] +
54[x1.w, [v, [v, x4.v]]]− 864 [x1.w, [w, [v, x2.w]]] + 432[x1.w, [w, [v, x3.v]]] +
4032 [x1.w, [w, [w, x2.v]]] + 864[x1.w, [x1.v, [v, x2.w]]]

4 −2 216[[v, x1.w], [x1.v, x2.w]] 90[w, [w, [v, x4.v]]] + 368[w, [w, [w, x3.v]]] + 45[x1.v, [w, [v, x4.v]]] −
2592[x1.v, [w, [w, x2.w]]] − 180[x1.v, [w, [w, x3.v]]] +
99 [x1.v, [x1.v, [v, x4.v]]] − 1674[x1.v, [x1.v, [w, x2.w]]] −
207[x1.v, [x1.v, [w, x3.v]]] − 297[x1.v, [x1.v, [x1.v, x2.w]]] +
18[x1.w, [v, [v, x4.v]]] + 576[x1.w, [w, [v, x2.w]]] + 192[x1.w, [w, [v, x3.v]]] +
1248[x1.w, [w, [w, x2.v]]] + 144[x1.w, [x1.v, [v, x2.w]]]

4 −2 81[[v, x2.v], [v, x4.v]] 4572[w, [w, [v, x4.v]]] + 8800[w, [w, [w, x3.v]]] + 1242[x1.v, [w, [v, x4.v]]] −
67392[x1.v, [w, [w, x2.w]]] + 1656[x1.v, [w, [w, x3.v]]] +
1116[x1.v, [x1.v, [v, x4.v]]] − 21060[x1.v, [x1.v, [w, x2.w]]] −
918[x1.v, [x1.v, [w, x3.v]]] − 1674[x1.v, [x1.v, [x1.v, x2.w]]] +
108[x1.w, [v, [v, x4.v]]]+864 [x1.w, [w, [v, x2.w]]]+432[x1.w, [w, [v, x3.v]]]+
20160 [x1.w, [w, [w, x2.v]]] + 432[x1.w, [x1.v, [v, x2.w]]]

4 −2 36[[v, x2.v], [w, x2.w]] 126[w, [w, [v, x4.v]]] + 272[w, [w, [w, x3.v]]] + 51[x1.v, [w, [v, x4.v]]] −
2304[x1.v, [w, [w, x2.w]]] − 12[x1.v, [w, [w, x3.v]]] +
51 [x1.v, [x1.v, [v, x4.v]]] − 918[x1.v, [x1.v, [w, x2.w]]] −
69[x1.v, [x1.v, [w, x3.v]]] − 99[x1.v, [x1.v, [x1.v, x2.w]]] +
6[x1.w, [v, [v, x4.v]]] + 240[x1.w, [w, [v, x2.w]]] + 56[x1.w, [w, [v, x3.v]]] +
736[x1.w, [w, [w, x2.v]]] + 24[x1.w, [x1.v, [v, x2.w]]]

4 −2 162[[v, x2.v], [w, x3.v]] 990[w, [w, [v, x4.v]]] + 2240[w, [w, [w, x3.v]]] + 297[x1.v, [w, [v, x4.v]]] −
18144[x1.v, [w, [w, x2.w]]] − 468[x1.v, [w, [w, x3.v]]] +
558[x1.v, [x1.v, [v, x4.v]]] − 8586[x1.v, [x1.v, [w, x2.w]]] −
783[x1.v, [x1.v, [w, x3.v]]] − 837[x1.v, [x1.v, [x1.v, x2.w]]] +
54[x1.w, [v, [v, x4.v]]]− 864 [x1.w, [w, [v, x2.w]]] + 432[x1.w, [w, [v, x3.v]]] +
6624 [x1.w, [w, [w, x2.v]]] + 864[x1.w, [x1.v, [v, x2.w]]]
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Appendix D. A Pseudo-Hall basis of g for d = 3

l m LM(b) for b ∈ B b − LM(b)
4 −2 18[[v, x2.v], [x1.v, x2.w]] 78[w, [w, [v, x4.v]]] + 192[w, [w, [w, x3.v]]] + 39[x1.v, [w, [v, x4.v]]] −

1728[x1.v, [w, [w, x2.w]]] − 60[x1.v, [w, [w, x3.v]]] +
42 [x1.v, [x1.v, [v, x4.v]]] − 810[x1.v, [x1.v, [w, x2.w]]] −
75[x1.v, [x1.v, [w, x3.v]]] − 117[x1.v, [x1.v, [x1.v, x2.w]]] +
6[x1.w, [v, [v, x4.v]]] + 192[x1.w, [w, [v, x2.w]]] + 64[x1.w, [w, [v, x3.v]]] +
608[x1.w, [w, [w, x2.v]]] + 48[x1.w, [x1.v, [v, x2.w]]]

4 −2 72[[v, x2.w], [v, x3.v]] −198[w, [w, [v, x4.v]]] − 320[w, [w, [w, x3.v]]] − 117[x1.v, [w, [v, x4.v]]] +
2592[x1.v, [w, [w, x2.w]]] − 108[x1.v, [w, [w, x3.v]]] −
63 [x1.v, [x1.v, [v, x4.v]]] + 1296[x1.v, [x1.v, [w, x2.w]]] −
36[x1.v, [x1.v, [w, x3.v]]] − 54[x1.v, [x1.v, [x1.v, x2.w]]] +
72[x1.w, [w, [v, x2.w]]] + 60[x1.w, [w, [v, x3.v]]] −
816[x1.w, [w, [w, x2.v]]] − 252[x1.w, [x1.v, [v, x2.w]]]

4 −2 288[[v, x2.w], [w, x1.w]] −54[w, [w, [v, x4.v]]] − 96[w, [w, [w, x3.v]]] − 15[x1.v, [w, [v, x4.v]]] +
576[x1.v, [w, [w, x2.w]]] − 36[x1.v, [w, [w, x3.v]]] −
9 [x1.v, [x1.v, [v, x4.v]]] + 216[x1.v, [x1.v, [w, x2.w]]] +
18[x1.v, [x1.v, [x1.v, x2.w]]] − 168[x1.w, [w, [v, x2.w]]] +
4[x1.w, [w, [v, x3.v]]] − 160[x1.w, [w, [w, x2.v]]] + 12[x1.w, [x1.v, [v, x2.w]]]

4 −2 144[[v, x2.w], [w, x2.v]] 54[w, [w, [v, x4.v]]] + 64[w, [w, [w, x3.v]]] + 57[x1.v, [w, [v, x4.v]]] −
1152[x1.v, [w, [w, x2.w]]] − 36[x1.v, [w, [w, x3.v]]] +
27 [x1.v, [x1.v, [v, x4.v]]] − 648[x1.v, [x1.v, [w, x2.w]]] +
18[x1.v, [x1.v, [x1.v, x2.w]]] − 24[x1.w, [w, [v, x2.w]]] −
20[x1.w, [w, [v, x3.v]]]+368[x1.w, [w, [w, x2.v]]]−60[x1.w, [x1.v, [v, x2.w]]]

4 −2 36[[v, x3.v], [w, x1.w]] −81[w, [w, [v, x4.v]]] − 208[w, [w, [w, x3.v]]] − 45[x1.v, [w, [v, x4.v]]] +
1944[x1.v, [w, [w, x2.w]]] + 36[x1.v, [w, [w, x3.v]]] −
45 [x1.v, [x1.v, [v, x4.v]]] + 810[x1.v, [x1.v, [w, x2.w]]] +
63[x1.v, [x1.v, [w, x3.v]]] + 81[x1.v, [x1.v, [x1.v, x2.w]]] −
360[x1.w, [w, [v, x2.w]]] − 48[x1.w, [w, [v, x3.v]]] −
636[x1.w, [w, [w, x2.v]]] − 36[x1.w, [x1.v, [v, x2.w]]]

4 −2 36[[v, x3.v], [w, x2.v]] −216[w, [w, [v, x4.v]]] − 512[w, [w, [w, x3.v]]] − 90[x1.v, [w, [v, x4.v]]] +
3888[x1.v, [w, [w, x2.w]]] + 72[x1.v, [w, [w, x3.v]]] −
117 [x1.v, [x1.v, [v, x4.v]]] + 2268[x1.v, [x1.v, [w, x2.w]]] +
126[x1.v, [x1.v, [w, x3.v]]] + 162[x1.v, [x1.v, [x1.v, x2.w]]] −
288[x1.w, [w, [v, x2.w]]] − 168[x1.w, [w, [v, x3.v]]] −
1632[x1.w, [w, [w, x2.v]]] − 288[x1.w, [x1.v, [v, x2.w]]]

4 −2 8[[w, x1.w], [w, x2.v]] [w, [w, [v, x4.v]]] + 4[x1.w, [w, [w, x2.v]]]
4 −1 2052[x2.v, [x1.w, [v, x3.v]]] 1760[w, [w, [w, x4.v]]] + 3960[x1.v, [w, [w, x4.v]]] +

1980[x1.v, [x1.v, [w, x4.v]]] + 495[x1.v, [x1.v, [x1.v, x4.v]]] +
6072 [x1.w, [w, [v, x4.v]]] + 177408[x1.w, [w, [w, x2.w]]] +
28512 [x1.w, [w, [w, x3.v]]] + 2640[x1.w, [x1.v, [v, x4.v]]] −
42768[x1.w, [x1.v, [w, x2.w]]] + 20856[x1.w, [x1.v, [w, x3.v]]] +
26928[x1.w, [x1.v, [x1.v, x2.w]]] + 121968 [x1.w, [x1.w, [v, x2.w]]] +
5016[x1.w, [x1.w, [v, x3.v]]] + 2754[x2.v, [w, [v, x4.v]]] +
104256[x2.v, [w, [w, x2.w]]] + 14424[x2.v, [w, [w, x3.v]]] +
2205[x2.v, [x1.v, [v, x4.v]]] − 24336[x2.v, [x1.v, [w, x2.w]]] +
9252[x2.v, [x1.v, [w, x3.v]]] + 14076[x2.v, [x1.v, [x1.v, x2.w]]] +
64296 [x2.v, [x1.w, [v, x2.w]]]

4 −1 67716[x2.w, [v, [v, x4.v]]] 568832[w, [w, [w, x4.v]]] + 1009008[x1.v, [w, [w, x4.v]]] +
301356[x1.v, [x1.v, [w, x4.v]]] + 41481[x1.v, [x1.v, [x1.v, x4.v]]] +
1211028[x1.w, [w, [v, x4.v]]] + 28124352[x1.w, [w, [w, x2.w]]] +
5851440[x1.w, [w, [w, x3.v]]] + 235596[x1.w, [x1.v, [v, x4.v]]] −
9355824[x1.w, [x1.v, [w, x2.w]]] + 4373472[x1.w, [x1.v, [w, x3.v]]] +
3608424[x1.w, [x1.v, [x1.v, x2.w]]] + 20006496[x1.w, [x1.w, [v, x2.w]]] +
780672[x1.w, [x1.w, [v, x3.v]]] + 317790[x2.v, [w, [v, x4.v]]] +
9298080[x2.v, [w, [w, x2.w]]] + 1468104[x2.v, [w, [w, x3.v]]] +
242748[x2.v, [x1.v, [v, x4.v]]] − 3462624[x2.v, [x1.v, [w, x2.w]]] +
855756[x2.v, [x1.v, [w, x3.v]]] + 1205424[x2.v, [x1.v, [x1.v, x2.w]]] +
3942576[x2.v, [x1.w, [v, x2.w]]]

continued
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l m LM(b) for b ∈ B b − LM(b)
4 −1 180576[x2.w, [w, [v, x2.w]]] 14960[w, [w, [w, x4.v]]] + 26136[x1.v, [w, [w, x4.v]]] +

5544[x1.v, [x1.v, [w, x4.v]]] − 2376[x1.v, [x1.v, [x1.v, x4.v]]] +
68370 [x1.w, [w, [v, x4.v]]] + 2242584[x1.w, [w, [w, x2.w]]] +
359316 [x1.w, [w, [w, x3.v]]] + 29280[x1.w, [x1.v, [v, x4.v]]] −
587196[x1.w, [x1.v, [w, x2.w]]] + 265170[x1.w, [x1.v, [w, x3.v]]] +
343800[x1.w, [x1.v, [x1.v, x2.w]]] + 1730304 [x1.w, [x1.w, [v, x2.w]]] +
88464[x1.w, [x1.w, [v, x3.v]]] + 8019[x2.v, [w, [v, x4.v]]] +
30492[x2.v, [w, [w, x2.w]]] + 6666[x2.v, [w, [w, x3.v]]] −
495[x2.v, [x1.v, [v, x4.v]]] − 33462[x2.v, [x1.v, [w, x2.w]]] +
4257[x2.v, [x1.v, [w, x3.v]]] − 396[x2.v, [x1.v, [x1.v, x2.w]]] −
30096[x2.v, [x1.w, [v, x2.w]]]

4 −1 14256[x2.w, [w, [v, x3.v]]] 25520[w, [w, [w, x4.v]]] + 53856[x1.v, [w, [w, x4.v]]] +
16236[x1.v, [x1.v, [w, x4.v]]] + 2277[x1.v, [x1.v, [x1.v, x4.v]]] +
73896 [x1.w, [w, [v, x4.v]]] + 1417032[x1.w, [w, [w, x2.w]]] +
264708 [x1.w, [w, [w, x3.v]]] + 16140[x1.w, [x1.v, [v, x4.v]]] −
418284[x1.w, [x1.v, [w, x2.w]]] + 209478[x1.w, [x1.v, [w, x3.v]]] +
200268[x1.w, [x1.v, [x1.v, x2.w]]] + 981216 [x1.w, [x1.w, [v, x2.w]]] +
40224[x1.w, [x1.w, [v, x3.v]]] + 13068[x2.v, [w, [v, x4.v]]] +
569844[x2.v, [w, [w, x2.w]]] + 85866[x2.v, [w, [w, x3.v]]] +
12870[x2.v, [x1.v, [v, x4.v]]] − 157014[x2.v, [x1.v, [w, x2.w]]] +
47619[x2.v, [x1.v, [w, x3.v]]] + 70290[x2.v, [x1.v, [x1.v, x2.w]]] +
236016[x2.v, [x1.w, [v, x2.w]]]

4 −1 270864[x2.w, [w, [w, x2.v]]] −208648[w, [w, [w, x4.v]]] − 300168[x1.v, [w, [w, x4.v]]] −
116226[x1.v, [x1.v, [w, x4.v]]] − 20592[x1.v, [x1.v, [x1.v, x4.v]]] −
510942[x1.w, [w, [v, x4.v]]] − 14971752[x1.w, [w, [w, x2.w]]] −
2502252[x1.w, [w, [w, x3.v]]] − 238074[x1.w, [x1.v, [v, x4.v]]] +
4107348[x1.w, [x1.v, [w, x2.w]]] − 1755510[x1.w, [x1.v, [w, x3.v]]] −
2137176[x1.w, [x1.v, [x1.v, x2.w]]] − 10880208[x1.w, [x1.w, [v, x2.w]]] −
502512[x1.w, [x1.w, [v, x3.v]]] − 139293[x2.v, [w, [v, x4.v]]] −
3139092[x2.v, [w, [w, x2.w]]] − 514470[x2.v, [w, [w, x3.v]]] −
84546[x2.v, [x1.v, [v, x4.v]]] + 814770[x2.v, [x1.v, [w, x2.w]]] −
301059[x2.v, [x1.v, [w, x3.v]]] − 464904[x2.v, [x1.v, [x1.v, x2.w]]] −
1790712[x2.v, [x1.w, [v, x2.w]]]

4 −1 24624[x2.w, [x1.v, [v, x2.w]]] −54784[w, [w, [w, x4.v]]] − 102744[x1.v, [w, [w, x4.v]]] −
30852[x1.v, [x1.v, [w, x4.v]]] − 6687[x1.v, [x1.v, [x1.v, x4.v]]] −
109182[x1.w, [w, [v, x4.v]]] − 2473776[x1.w, [w, [w, x2.w]]] −
521424[x1.w, [w, [w, x3.v]]] − 12408[x1.w, [x1.v, [v, x4.v]]] +
646704[x1.w, [x1.v, [w, x2.w]]] − 398436[x1.w, [x1.v, [w, x3.v]]] −
319860[x1.w, [x1.v, [x1.v, x2.w]]] − 1659168[x1.w, [x1.w, [v, x2.w]]] −
59280[x1.w, [x1.w, [v, x3.v]]] − 29565[x2.v, [w, [v, x4.v]]] −
1090008[x2.v, [w, [w, x2.w]]] − 175728[x2.v, [w, [w, x3.v]]] −
30627[x2.v, [x1.v, [v, x4.v]]] + 402480[x2.v, [x1.v, [w, x2.w]]] −
100530 [x2.v, [x1.v, [w, x3.v]]] − 151110[x2.v, [x1.v, [x1.v, x2.w]]] −
497952[x2.v, [x1.w, [v, x2.w]]]

4 −1 180576[x2.w, [x1.v, [w, x1.w]]] 19888[w, [w, [w, x4.v]]] + 22176[x1.v, [w, [w, x4.v]]] +
11088[x1.v, [x1.v, [w, x4.v]]] + 2772[x1.v, [x1.v, [x1.v, x4.v]]] +
23880[x1.w, [w, [v, x4.v]]] + 196488[x1.w, [w, [w, x2.w]]] +
48996[x1.w, [w, [w, x3.v]]] + 13416[x1.w, [x1.v, [v, x4.v]]] −
248940[x1.w, [x1.v, [w, x2.w]]] + 22470[x1.w, [x1.v, [w, x3.v]]] −
12132[x1.w, [x1.v, [x1.v, x2.w]]] + 29664[x1.w, [x1.w, [v, x2.w]]] −
3648[x1.w, [x1.w, [v, x3.v]]] + 12276[x2.v, [w, [v, x4.v]]] +
414612[x2.v, [w, [w, x2.w]]] + 54714[x2.v, [w, [w, x3.v]]] +
6534[x2.v, [x1.v, [v, x4.v]]] − 10494[x2.v, [x1.v, [w, x2.w]]] +
32967[x2.v, [x1.v, [w, x3.v]]] + 55638[x2.v, [x1.v, [x1.v, x2.w]]] +
210672[x2.v, [x1.w, [v, x2.w]]]

4 −1 33858[x3.v, [v, [v, x4.v]]] 1313312[w, [w, [w, x4.v]]] + 2277792[x1.v, [w, [w, x4.v]]] +
800316[x1.v, [x1.v, [w, x4.v]]] + 166221[x1.v, [x1.v, [x1.v, x4.v]]] +
3344460[x1.w, [w, [v, x4.v]]] + 88442784[x1.w, [w, [w, x2.w]]] +
16163712[x1.w, [w, [w, x3.v]]] + 876252[x1.w, [x1.v, [v, x4.v]]] −
24393312[x1.w, [x1.v, [w, x2.w]]] + 11980776 [x1.w, [x1.v, [w, x3.v]]] +
11822472[x1.w, [x1.v, [x1.v, x2.w]]] + 62167968[x1.w, [x1.w, [v, x2.w]]] +
2881920[x1.w, [x1.w, [v, x3.v]]] + 870210[x2.v, [w, [v, x4.v]]] +
27617040 [x2.v, [w, [w, x2.w]]] + 4122096[x2.v, [w, [w, x3.v]]] +
773784 [x2.v, [x1.v, [v, x4.v]]] − 9115128[x2.v, [x1.v, [w, x2.w]]] +
2491632[x2.v, [x1.v, [w, x3.v]]] + 3742992[x2.v, [x1.v, [x1.v, x2.w]]] +
14235408[x2.v, [x1.w, [v, x2.w]]]

continued
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Appendix D. A Pseudo-Hall basis of g for d = 3

l m LM(b) for b ∈ B b − LM(b)
4 −1 270864[x3.v, [w, [v, x2.w]]] 738320[w, [w, [w, x4.v]]] + 1187208[x1.v, [w, [w, x4.v]]] +

390456[x1.v, [x1.v, [w, x4.v]]] + 63756[x1.v, [x1.v, [x1.v, x4.v]]] +
1981878[x1.w, [w, [v, x4.v]]] + 50254200[x1.w, [w, [w, x2.w]]] +
9073620[x1.w, [w, [w, x3.v]]] + 663222[x1.w, [x1.v, [v, x4.v]]] −
14881644[x1.w, [x1.v, [w, x2.w]]] + 6556530[x1.w, [x1.v, [w, x3.v]]] +
7381080[x1.w, [x1.v, [x1.v, x2.w]]] + 35960256[x1.w, [x1.w, [v, x2.w]]] +
1724592[x1.w, [x1.w, [v, x3.v]]] + 397089[x2.v, [w, [v, x4.v]]] +
12666060[x2.v, [w, [w, x2.w]]] + 1867866[x2.v, [w, [w, x3.v]]] +
315810[x2.v, [x1.v, [v, x4.v]]] − 3785166[x2.v, [x1.v, [w, x2.w]]] +
1104345[x2.v, [x1.v, [w, x3.v]]] + 1629540[x2.v, [x1.v, [x1.v, x2.w]]] +
6109488[x2.v, [x1.w, [v, x2.w]]]

4 −1 45144[x3.v, [w, [v, x3.v]]] −917488[w, [w, [w, x4.v]]] − 1590336[x1.v, [w, [w, x4.v]]] −
456588[x1.v, [x1.v, [w, x4.v]]] − 148005[x1.v, [x1.v, [x1.v, x4.v]]] −
1556976[x1.w, [w, [v, x4.v]]] − 36042120[x1.w, [w, [w, x2.w]]] −
8297316[x1.w, [w, [w, x3.v]]] + 41700[x1.w, [x1.v, [v, x4.v]]] +
10159020[x1.w, [x1.v, [w, x2.w]]] − 6374454[x1.w, [x1.v, [w, x3.v]]] −
4585644[x1.w, [x1.v, [x1.v, x2.w]]] − 22555872[x1.w, [x1.w, [v, x2.w]]] −
773376[x1.w, [x1.w, [v, x3.v]]] − 485892[x2.v, [w, [v, x4.v]]] −
18706644[x2.v, [w, [w, x2.w]]] − 2787114[x2.v, [w, [w, x3.v]]] −
567468[x2.v, [x1.v, [v, x4.v]]] + 6984054[x2.v, [x1.v, [w, x2.w]]] −
1612611[x2.v, [x1.v, [w, x3.v]]] − 2672802[x2.v, [x1.v, [x1.v, x2.w]]] −
8697744[x2.v, [x1.w, [v, x2.w]]]

4 −1 2376[x3.v, [w, [w, x2.v]]] −9416[w, [w, [w, x4.v]]] − 8712[x1.v, [w, [w, x4.v]]] −
2574[x1.v, [x1.v, [w, x4.v]]] − 198[x1.v, [x1.v, [x1.v, x4.v]]] −
14298 [x1.w, [w, [v, x4.v]]] − 309816[x1.w, [w, [w, x2.w]]] −
65124 [x1.w, [w, [w, x3.v]]] − 5646[x1.w, [x1.v, [v, x4.v]]] +
104652[x1.w, [x1.v, [w, x2.w]]] − 38010[x1.w, [x1.v, [w, x3.v]]] −
42264[x1.w, [x1.v, [x1.v, x2.w]]] − 235152 [x1.w, [x1.w, [v, x2.w]]] −
10128[x1.w, [x1.w, [v, x3.v]]] − 3267[x2.v, [w, [v, x4.v]]] −
59004[x2.v, [w, [w, x2.w]]] − 13794[x2.v, [w, [w, x3.v]]] −
1584[x2.v, [x1.v, [v, x4.v]]] + 16830[x2.v, [x1.v, [w, x2.w]]] −
7821[x2.v, [x1.v, [w, x3.v]]] − 10296[x2.v, [x1.v, [x1.v, x2.w]]] −
38808[x2.v, [x1.w, [v, x2.w]]]

4 −1 135432[x3.v, [x1.v, [v, x2.w]]] −50336[w, [w, [w, x4.v]]] − 113256[x1.v, [w, [w, x4.v]]] −
56628[x1.v, [x1.v, [w, x4.v]]] + 19701[x1.v, [x1.v, [x1.v, x4.v]]] +
66630[x1.w, [w, [v, x4.v]]] + 594576[x1.w, [w, [w, x2.w]]] −
352512[x1.w, [w, [w, x3.v]]] + 97890[x1.w, [x1.v, [v, x4.v]]] +
208656[x1.w, [x1.v, [w, x2.w]]] − 293196[x1.w, [x1.v, [w, x3.v]]] +
152028[x1.w, [x1.v, [x1.v, x2.w]]] + 1342944[x1.w, [x1.w, [v, x2.w]]] +
141360[x1.w, [x1.w, [v, x3.v]]] − 46035[x2.v, [w, [v, x4.v]]] −
29304[x2.v, [w, [w, x2.w]]] + 20856[x2.v, [w, [w, x3.v]]] −
990[x2.v, [x1.v, [v, x4.v]]] + 316800[x2.v, [x1.v, [w, x2.w]]] −
36630[x2.v, [x1.v, [w, x3.v]]] + 78210[x2.v, [x1.v, [x1.v, x2.w]]] +
300960[x2.v, [x1.w, [v, x2.w]]]

4 −1 24624[x3.v, [x1.v, [w, x1.w]]] −43376[w, [w, [w, x4.v]]] − 66816[x1.v, [w, [w, x4.v]]] −
21096[x1.v, [x1.v, [w, x4.v]]] − 5274[x1.v, [x1.v, [x1.v, x4.v]]] −
95064[x1.w, [w, [v, x4.v]]] − 2360520[x1.w, [w, [w, x2.w]]] −
479844[x1.w, [w, [w, x3.v]]] − 26076[x1.w, [x1.v, [v, x4.v]]] +
796716[x1.w, [x1.v, [w, x2.w]]] − 345126[x1.w, [x1.v, [w, x3.v]]] −
357084[x1.w, [x1.v, [x1.v, x2.w]]] − 1634400[x1.w, [x1.w, [v, x2.w]]] −
74784[x1.w, [x1.w, [v, x3.v]]] − 23112[x2.v, [w, [v, x4.v]]] −
735732[x2.v, [w, [w, x2.w]]] − 103146[x2.v, [w, [w, x3.v]]] −
20322[x2.v, [x1.v, [v, x4.v]]] + 239310[x2.v, [x1.v, [w, x2.w]]] −
60903[x2.v, [x1.v, [w, x3.v]]] − 99774[x2.v, [x1.v, [x1.v, x2.w]]] −
347472[x2.v, [x1.w, [v, x2.w]]]

4 −1 203148[x4.v, [v, [v, x2.w]]] 2015552[w, [w, [w, x4.v]]] + 3451536[x1.v, [w, [w, x4.v]]] +
980892[x1.v, [x1.v, [w, x4.v]]] + 109791[x1.v, [x1.v, [x1.v, x4.v]]] +
5717940[x1.w, [w, [v, x4.v]]] + 161149248[x1.w, [w, [w, x2.w]]] +
27909360[x1.w, [w, [w, x3.v]]] + 1868052[x1.w, [x1.v, [v, x4.v]]] −
42491952[x1.w, [x1.v, [w, x2.w]]] + 20425440[x1.w, [x1.v, [w, x3.v]]] +
22345128[x1.w, [x1.v, [x1.v, x2.w]]] + 113123232[x1.w, [x1.w, [v, x2.w]]] +
5486592[x1.w, [x1.w, [v, x3.v]]] + 1005642[x2.v, [w, [v, x4.v]]] +
29693664[x2.v, [w, [w, x2.w]]] + 4558488[x2.v, [w, [w, x3.v]]] +
728640[x2.v, [x1.v, [v, x4.v]]] − 10514592 [x2.v, [x1.v, [w, x2.w]]] +
2649636[x2.v, [x1.v, [w, x3.v]]] + 3652704[x2.v, [x1.v, [x1.v, x2.w]]] +
13332528 [x2.v, [x1.w, [v, x2.w]]]

continued
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l m LM(b) for b ∈ B b − LM(b)
4 −1 33858[x4.v, [v, [v, x3.v]]] −2236256[w, [w, [w, x4.v]]] − 3541824[x1.v, [w, [w, x4.v]]] −

1026036[x1.v, [x1.v, [w, x4.v]]] − 222651[x1.v, [x1.v, [x1.v, x4.v]]] −
3987420[x1.w, [w, [v, x4.v]]] − 117088704[x1.w, [w, [w, x2.w]]] −
23033808[x1.w, [w, [w, x3.v]]] − 709356[x1.w, [x1.v, [v, x4.v]]] +
27865296[x1.w, [x1.v, [w, x2.w]]] − 16512960[x1.w, [x1.v, [w, x3.v]]] −
14670648[x1.w, [x1.v, [x1.v, x2.w]]] − 75924576[x1.w, [x1.w, [v, x2.w]]] −
2838144 [x1.w, [x1.w, [v, x3.v]]] − 1141074[x2.v, [w, [v, x4.v]]] −
36916704[x2.v, [w, [w, x2.w]]] − 6123480[x2.v, [w, [w, x3.v]]] −
1022076[x2.v, [x1.v, [v, x4.v]]] + 13403808[x2.v, [x1.v, [w, x2.w]]] −
3552516[x2.v, [x1.v, [w, x3.v]]] − 5458464 [x2.v, [x1.v, [x1.v, x2.w]]] −
18388656[x2.v, [x1.w, [v, x2.w]]]

4 −1 812592[x4.v, [w, [v, x1.w]]] 70400[w, [w, [w, x4.v]]] − 112464[x1.v, [w, [w, x4.v]]] +
11484[x1.v, [x1.v, [w, x4.v]]] + 70587[x1.v, [x1.v, [x1.v, x4.v]]] −
1125804 [x1.w, [w, [v, x4.v]]] − 29248704[x1.w, [w, [w, x2.w]]] −
3661200[x1.w, [w, [w, x3.v]]] − 606444[x1.w, [x1.v, [v, x4.v]]] +
9296208[x1.w, [x1.v, [w, x2.w]]] − 3023520[x1.w, [x1.v, [w, x3.v]]] −
4844952[x1.w, [x1.v, [x1.v, x2.w]]] − 23537376[x1.w, [x1.w, [v, x2.w]]] −
1637952[x1.w, [x1.w, [v, x3.v]]] + 96822[x2.v, [w, [v, x4.v]]] +
3234528[x2.v, [w, [w, x2.w]]] + 761640[x2.v, [w, [w, x3.v]]] +
147708[x2.v, [x1.v, [v, x4.v]]] − 948816[x2.v, [x1.v, [w, x2.w]]] +
454212[x2.v, [x1.v, [w, x3.v]]] + 993960[x2.v, [x1.v, [x1.v, x2.w]]] +
3039696[x2.v, [x1.w, [v, x2.w]]]

4 −1 2376[[v,w], [x1.w, x4.v]] 5632[w, [w, [w, x4.v]]] + 7920[x1.v, [w, [w, x4.v]]] +
2772[x1.v, [x1.v, [w, x4.v]]] + 693[x1.v, [x1.v, [x1.v, x4.v]]] +
9408 [x1.w, [w, [v, x4.v]]] + 228672[x1.w, [w, [w, x2.w]]] +
46656 [x1.w, [w, [w, x3.v]]] + 3048[x1.w, [x1.v, [v, x4.v]]] −
62208[x1.w, [x1.v, [w, x2.w]]] + 31920[x1.w, [x1.v, [w, x3.v]]] +
29664[x1.w, [x1.v, [x1.v, x2.w]]] + 154944 [x1.w, [x1.w, [v, x2.w]]] +
6720[x1.w, [x1.w, [v, x3.v]]] + 3564[x2.v, [w, [v, x4.v]]] +
91872[x2.v, [w, [w, x2.w]]] + 15312[x2.v, [w, [w, x3.v]]] +
2574[x2.v, [x1.v, [v, x4.v]]] − 27720[x2.v, [x1.v, [w, x2.w]]] +
9108[x2.v, [x1.v, [w, x3.v]]] + 14652[x2.v, [x1.v, [x1.v, x2.w]]] +
53856 [x2.v, [x1.w, [v, x2.w]]]

4 −1 9234[[v,w], [x2.v, x4.v]] −24032[w, [w, [w, x4.v]]] − 41760[x1.v, [w, [w, x4.v]]] −
14724[x1.v, [x1.v, [w, x4.v]]] + 2475[x1.v, [x1.v, [x1.v, x4.v]]] −
176892 [x1.w, [w, [v, x4.v]]] − 4727232[x1.w, [w, [w, x2.w]]] −
670032 [x1.w, [w, [w, x3.v]]] − 99660[x1.w, [x1.v, [v, x4.v]]] +
1411344[x1.w, [x1.v, [w, x2.w]]] − 482592[x1.w, [x1.v, [w, x3.v]]] −
739512[x1.w, [x1.v, [x1.v, x2.w]]] − 3699360 [x1.w, [x1.w, [v, x2.w]]] −
217056[x1.w, [x1.w, [v, x3.v]]] − 19062[x2.v, [w, [v, x4.v]]] −
315936[x2.v, [w, [w, x2.w]]] − 26376[x2.v, [w, [w, x3.v]]] +
2304[x2.v, [x1.v, [v, x4.v]]] + 1440[x2.v, [x1.v, [w, x2.w]]] −
19404[x2.v, [x1.v, [w, x3.v]]] − 9648[x2.v, [x1.v, [x1.v, x2.w]]] −
183312[x2.v, [x1.w, [v, x2.w]]]

4 −1 812592[[v, x1.w], [w, x4.v]] −37312[w, [w, [w, x4.v]]] − 354816[x1.v, [w, [w, x4.v]]] −
109692[x1.v, [x1.v, [w, x4.v]]] + 40293[x1.v, [x1.v, [x1.v, x4.v]]] −
817788[x1.w, [w, [v, x4.v]]] − 39308256[x1.w, [w, [w, x2.w]]] −
4652640[x1.w, [w, [w, x3.v]]] − 527928[x1.w, [x1.v, [v, x4.v]]] +
9121248[x1.w, [x1.v, [w, x2.w]]] − 4292520[x1.w, [x1.v, [w, x3.v]]] −
6359976[x1.w, [x1.v, [x1.v, x2.w]]] − 27987840[x1.w, [x1.w, [v, x2.w]]] −
1900608[x1.w, [x1.w, [v, x3.v]]] + 160974[x2.v, [w, [v, x4.v]]] −
2510640[x2.v, [w, [w, x2.w]]] + 388608[x2.v, [w, [w, x3.v]]] +
49698[x2.v, [x1.v, [v, x4.v]]] − 57816[x2.v, [x1.v, [w, x2.w]]] +
179784 [x2.v, [x1.v, [w, x3.v]]] + 509256[x2.v, [x1.v, [x1.v, x2.w]]] +
1143648[x2.v, [x1.w, [v, x2.w]]]

4 −1 21384[[v, x1.w], [x1.v, x4.v]] −147136[w, [w, [w, x4.v]]] − 259776[x1.v, [w, [w, x4.v]]] −
62172[x1.v, [x1.v, [w, x4.v]]] − 11979[x1.v, [x1.v, [x1.v, x4.v]]] −
248916[x1.w, [w, [v, x4.v]]] − 5641632[x1.w, [w, [w, x2.w]]] −
1293408[x1.w, [w, [w, x3.v]]] + 5556[x1.w, [x1.v, [v, x4.v]]] +
1648512[x1.w, [x1.v, [w, x2.w]]] − 990024[x1.w, [x1.v, [w, x3.v]]] −
698184[x1.w, [x1.v, [x1.v, x2.w]]] − 3583296[x1.w, [x1.w, [v, x2.w]]] −
136896[x1.w, [x1.w, [v, x3.v]]] − 49302[x2.v, [w, [v, x4.v]]] −
2178000[x2.v, [w, [w, x2.w]]] − 359040[x2.v, [w, [w, x3.v]]] −
63756[x2.v, [x1.v, [v, x4.v]]] + 963864[x2.v, [x1.v, [w, x2.w]]] −
195624 [x2.v, [x1.v, [w, x3.v]]] − 284328[x2.v, [x1.v, [x1.v, x2.w]]] −
804672[x2.v, [x1.w, [v, x2.w]]]

continued
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Appendix D. A Pseudo-Hall basis of g for d = 3

l m LM(b) for b ∈ B b − LM(b)
4 −1 1083456[[v, x1.w], [x1.w, x2.w]] −165440[w, [w, [w, x4.v]]] − 462528[x1.v, [w, [w, x4.v]]] −

118404[x1.v, [x1.v, [w, x4.v]]] − 7029[x1.v, [x1.v, [x1.v, x4.v]]] −
634380[x1.w, [w, [v, x4.v]]] − 13179744[x1.w, [w, [w, x2.w]]] −
2598048[x1.w, [w, [w, x3.v]]] − 73740[x1.w, [x1.v, [v, x4.v]]] +
3970944[x1.w, [x1.v, [w, x2.w]]] − 2128728[x1.w, [x1.v, [w, x3.v]]] −
1903320[x1.w, [x1.v, [x1.v, x2.w]]] − 9150336[x1.w, [x1.w, [v, x2.w]]] −
397632[x1.w, [x1.w, [v, x3.v]]] − 81378[x2.v, [w, [v, x4.v]]] −
3619440[x2.v, [w, [w, x2.w]]] − 559680[x2.v, [w, [w, x3.v]]] −
95436[x2.v, [x1.v, [v, x4.v]]] + 1782792[x2.v, [x1.v, [w, x2.w]]] −
303336[x2.v, [x1.v, [w, x3.v]]] − 338184[x2.v, [x1.v, [x1.v, x2.w]]] −
1143648[x2.v, [x1.w, [v, x2.w]]]

4 −1 1625184[[v, x1.w], [x1.w, x3.v]] 2753344[w, [w, [w, x4.v]]] + 4840704[x1.v, [w, [w, x4.v]]] +
1133748 [x1.v, [x1.v, [w, x4.v]]] + 215721[x1.v, [x1.v, [x1.v, x4.v]]] +
4559052[x1.w, [w, [v, x4.v]]] + 111206880[x1.w, [w, [w, x2.w]]] +
24481440[x1.w, [w, [w, x3.v]]] − 199704[x1.w, [x1.v, [v, x4.v]]] −
28374624[x1.w, [x1.v, [w, x2.w]]] + 18777768[x1.w, [x1.v, [w, x3.v]]] +
13727304[x1.w, [x1.v, [x1.v, x2.w]]] + 67519296[x1.w, [x1.w, [v, x2.w]]] +
2579136 [x1.w, [x1.w, [v, x3.v]]] + 858330[x2.v, [w, [v, x4.v]]] +
43016688[x2.v, [w, [w, x2.w]]] + 6771072[x2.v, [w, [w, x3.v]]] +
1143054[x2.v, [x1.v, [v, x4.v]]] − 16769016[x2.v, [x1.v, [w, x2.w]]] +
3728736[x2.v, [x1.v, [w, x3.v]]] + 5618448 [x2.v, [x1.v, [x1.v, x2.w]]] +
14927616[x2.v, [x1.w, [v, x2.w]]]

4 −1 203148[[v, x2.v], [w, x4.v]] 2232032[w, [w, [w, x4.v]]] + 3532320[x1.v, [w, [w, x4.v]]] +
1021284[x1.v, [x1.v, [w, x4.v]]] + 424611[x1.v, [x1.v, [x1.v, x4.v]]] +
1490748[x1.w, [w, [v, x4.v]]] + 32419296[x1.w, [w, [w, x2.w]]] +
13465440[x1.w, [w, [w, x3.v]]] − 1383864[x1.w, [x1.v, [v, x4.v]]] −
7566048[x1.w, [x1.v, [w, x2.w]]] + 10235496[x1.w, [x1.v, [w, x3.v]]] +
1648872[x1.w, [x1.v, [x1.v, x2.w]]] + 10003968[x1.w, [x1.w, [v, x2.w]]] −
1222080[x1.w, [x1.w, [v, x3.v]]] + 1255122[x2.v, [w, [v, x4.v]]] +
47318832[x2.v, [w, [w, x2.w]]] + 7662336[x2.v, [w, [w, x3.v]]] +
1573902 [x2.v, [x1.v, [v, x4.v]]] − 18937512[x2.v, [x1.v, [w, x2.w]]] +
4366296[x2.v, [x1.v, [w, x3.v]]] + 7470936[x2.v, [x1.v, [x1.v, x2.w]]] +
22090464[x2.v, [x1.w, [v, x2.w]]]

4 −1 5346[[v, x2.v], [x1.v, x4.v]] 39776[w, [w, [w, x4.v]]] + 53856[x1.v, [w, [w, x4.v]]] +
9108[x1.v, [x1.v, [w, x4.v]]] + 495[x1.v, [x1.v, [x1.v, x4.v]]] +
72060[x1.w, [w, [v, x4.v]]] + 2440224[x1.w, [w, [w, x2.w]]] +
440640[x1.w, [w, [w, x3.v]]] + 25428[x1.w, [x1.v, [v, x4.v]]] −
520992[x1.w, [x1.v, [w, x2.w]]] + 296040[x1.w, [x1.v, [w, x3.v]]] +
325656[x1.w, [x1.v, [x1.v, x2.w]]] + 1585152[x1.w, [x1.w, [v, x2.w]]] +
61824[x1.w, [x1.w, [v, x3.v]]] + 14850[x2.v, [w, [v, x4.v]]] +
758736[x2.v, [w, [w, x2.w]]] + 130416[x2.v, [w, [w, x3.v]]] +
14652[x2.v, [x1.v, [v, x4.v]]] − 176616[x2.v, [x1.v, [w, x2.w]]] +
75240[x2.v, [x1.v, [w, x3.v]]] + 107712[x2.v, [x1.v, [x1.v, x2.w]]] +
421344[x2.v, [x1.w, [v, x2.w]]]

4 −1 90288[[v, x2.v], [x1.w, x2.w]] −79904[w, [w, [w, x4.v]]] − 104544[x1.v, [w, [w, x4.v]]] −
44748[x1.v, [x1.v, [w, x4.v]]] − 7425[x1.v, [x1.v, [x1.v, x4.v]]] −
179772[x1.w, [w, [v, x4.v]]] − 4341024[x1.w, [w, [w, x2.w]]] −
827136[x1.w, [w, [w, x3.v]]] − 95916[x1.w, [x1.v, [v, x4.v]]] +
1585440[x1.w, [x1.v, [w, x2.w]]] − 546312[x1.w, [x1.v, [w, x3.v]]] −
648792[x1.w, [x1.v, [x1.v, x2.w]]] − 3276864[x1.w, [x1.w, [v, x2.w]]] −
156864[x1.w, [x1.w, [v, x3.v]]] − 58410[x2.v, [w, [v, x4.v]]] −
1024848[x2.v, [w, [w, x2.w]]] − 162096[x2.v, [w, [w, x3.v]]] −
28116[x2.v, [x1.v, [v, x4.v]]] + 314424[x2.v, [x1.v, [w, x2.w]]] −
99792[x2.v, [x1.v, [w, x3.v]]] − 133848[x2.v, [x1.v, [x1.v, x2.w]]] −
601920[x2.v, [x1.w, [v, x2.w]]]

4 −1 406296[[v, x2.v], [x1.w, x3.v]] −2035616[w, [w, [w, x4.v]]] − 2277792[x1.v, [w, [w, x4.v]]] −
800316[x1.v, [x1.v, [w, x4.v]]] − 369369[x1.v, [x1.v, [x1.v, x4.v]]] −
291084[x1.w, [w, [v, x4.v]]] − 9252000[x1.w, [w, [w, x2.w]]] −
8185536[x1.w, [w, [w, x3.v]]] + 299544[x1.w, [x1.v, [v, x4.v]]] +
5629824[x1.w, [x1.v, [w, x2.w]]] − 4174968[x1.w, [x1.v, [w, x3.v]]] +
1917720[x1.w, [x1.v, [x1.v, x2.w]]] + 623232[x1.w, [x1.w, [v, x2.w]]] +
1156416[x1.w, [x1.w, [v, x3.v]]] − 1276506[x2.v, [w, [v, x4.v]]] −
34117776[x2.v, [w, [w, x2.w]]] − 6289008[x2.v, [w, [w, x3.v]]] −
1281654 [x2.v, [x1.v, [v, x4.v]]] + 13178088[x2.v, [x1.v, [w, x2.w]]] −
3710520[x2.v, [x1.v, [w, x3.v]]] − 6180768[x2.v, [x1.v, [x1.v, x2.w]]] −
23173920[x2.v, [x1.w, [v, x2.w]]]

continued
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l m LM(b) for b ∈ B b − LM(b)
4 −1 22572[[v, x2.w], [v, x4.v]] −75680[w, [w, [w, x4.v]]] − 125136[x1.v, [w, [w, x4.v]]] −

39996[x1.v, [x1.v, [w, x4.v]]] − 9999[x1.v, [x1.v, [x1.v, x4.v]]] −
64788 [x1.w, [w, [v, x4.v]]] − 996480[x1.w, [w, [w, x2.w]]] −
429840 [x1.w, [w, [w, x3.v]]] + 24648[x1.w, [x1.v, [v, x4.v]]] +
476496[x1.w, [x1.v, [w, x2.w]]] − 315408[x1.w, [x1.v, [w, x3.v]]] −
37512[x1.w, [x1.v, [x1.v, x2.w]]] − 525024 [x1.w, [x1.w, [v, x2.w]]] +
37392[x1.w, [x1.w, [v, x3.v]]] − 44550[x2.v, [w, [v, x4.v]]] −
1314720[x2.v, [w, [w, x2.w]]] − 226248[x2.v, [w, [w, x3.v]]] −
41976[x2.v, [x1.v, [v, x4.v]]] + 521136[x2.v, [x1.v, [w, x2.w]]] −
131076 [x2.v, [x1.v, [w, x3.v]]] − 205128[x2.v, [x1.v, [x1.v, x2.w]]] −
601920[x2.v, [x1.w, [v, x2.w]]]

4 −1 180576[[v, x2.w], [w, x2.w]] −75680[w, [w, [w, x4.v]]] − 125136[x1.v, [w, [w, x4.v]]] −
39996[x1.v, [x1.v, [w, x4.v]]] − 9999[x1.v, [x1.v, [x1.v, x4.v]]] −
111300 [x1.w, [w, [v, x4.v]]] − 2342592[x1.w, [w, [w, x2.w]]] −
577584 [x1.w, [w, [w, x3.v]]] − 10920[x1.w, [x1.v, [v, x4.v]]] +
673488[x1.w, [x1.v, [w, x2.w]]] − 424848[x1.w, [x1.v, [w, x3.v]]] −
291960[x1.w, [x1.v, [x1.v, x2.w]]] − 1657728 [x1.w, [x1.w, [v, x2.w]]] −
47424[x1.w, [x1.w, [v, x3.v]]] − 44550[x2.v, [w, [v, x4.v]]] −
1314720[x2.v, [w, [w, x2.w]]] − 226248[x2.v, [w, [w, x3.v]]] −
41976[x2.v, [x1.v, [v, x4.v]]] + 521136[x2.v, [x1.v, [w, x2.w]]] −
131076 [x2.v, [x1.v, [w, x3.v]]] − 205128[x2.v, [x1.v, [x1.v, x2.w]]] −
692208[x2.v, [x1.w, [v, x2.w]]]

4 −1 270864[[v, x2.w], [w, x3.v]] −282656[w, [w, [w, x4.v]]] − 635976[x1.v, [w, [w, x4.v]]] −
182556[x1.v, [x1.v, [w, x4.v]]] − 45639[x1.v, [x1.v, [x1.v, x4.v]]] −
450672[x1.w, [w, [v, x4.v]]] − 6583752[x1.w, [w, [w, x2.w]]] −
2066148[x1.w, [w, [w, x3.v]]] + 163914[x1.w, [x1.v, [v, x4.v]]] +
1969596[x1.w, [x1.v, [w, x2.w]]] − 1742142[x1.w, [x1.v, [w, x3.v]]] −
447588[x1.w, [x1.v, [x1.v, x2.w]]] − 3035808[x1.w, [x1.w, [v, x2.w]]] +
103056[x1.w, [x1.w, [v, x3.v]]] − 155628[x2.v, [w, [v, x4.v]]] −
6680916[x2.v, [w, [w, x2.w]]] − 1104378[x2.v, [w, [w, x3.v]]] −
207405[x2.v, [x1.v, [v, x4.v]]] + 2682702[x2.v, [x1.v, [w, x2.w]]] −
597663[x2.v, [x1.v, [w, x3.v]]] − 967230[x2.v, [x1.v, [x1.v, x2.w]]] −
2768832[x2.v, [x1.w, [v, x2.w]]]

4 −1 270864[[v, x2.w], [x1.v, x2.w]] −123200[w, [w, [w, x4.v]]] − 232056[x1.v, [w, [w, x4.v]]] −
70884[x1.v, [x1.v, [w, x4.v]]] − 17721[x1.v, [x1.v, [x1.v, x4.v]]] −
219156[x1.w, [w, [v, x4.v]]] − 4263912[x1.w, [w, [w, x2.w]]] −
1045764[x1.w, [w, [w, x3.v]]] − 12090[x1.w, [x1.v, [v, x4.v]]] +
1087452[x1.w, [x1.v, [w, x2.w]]] − 800886[x1.w, [x1.v, [w, x3.v]]] −
586044[x1.w, [x1.v, [x1.v, x2.w]]] − 2841408[x1.w, [x1.w, [v, x2.w]]] −
91200[x1.w, [x1.w, [v, x3.v]]] − 70686[x2.v, [w, [v, x4.v]]] −
2342340[x2.v, [w, [w, x2.w]]] − 407418[x2.v, [w, [w, x3.v]]] −
77913[x2.v, [x1.v, [v, x4.v]]] + 1062270[x2.v, [x1.v, [w, x2.w]]] −
230571 [x2.v, [x1.v, [w, x3.v]]] − 317394[x2.v, [x1.v, [x1.v, x2.w]]] −
1233936[x2.v, [x1.w, [v, x2.w]]]

4 −1 5643[[v, x3.v], [v, x4.v]] −17248[w, [w, [w, x4.v]]] − 38808[x1.v, [w, [w, x4.v]]] −
19404[x1.v, [x1.v, [w, x4.v]]] − 4851[x1.v, [x1.v, [x1.v, x4.v]]] −
69150 [x1.w, [w, [v, x4.v]]] − 1342152[x1.w, [w, [w, x2.w]]] −
251100 [x1.w, [w, [w, x3.v]]] − 12534[x1.w, [x1.v, [v, x4.v]]] +
521316[x1.w, [x1.v, [w, x2.w]]] − 210750[x1.w, [x1.v, [w, x3.v]]] −
175248[x1.w, [x1.v, [x1.v, x2.w]]] − 1082016 [x1.w, [x1.w, [v, x2.w]]] −
64752[x1.w, [x1.w, [v, x3.v]]] − 25245[x2.v, [w, [v, x4.v]]] −
1133748[x2.v, [w, [w, x2.w]]] − 149358[x2.v, [w, [w, x3.v]]] −
23661[x2.v, [x1.v, [v, x4.v]]] + 292050[x2.v, [x1.v, [w, x2.w]]] −
96723[x2.v, [x1.v, [w, x3.v]]] − 145332[x2.v, [x1.v, [x1.v, x2.w]]] −
662112[x2.v, [x1.w, [v, x2.w]]]

4 −1 1368[[v, x3.v], [w, x2.w]] 64[w, [w, [w, x4.v]]] + 144[x1.v, [w, [w, x4.v]]] + 72[x1.v, [x1.v, [w, x4.v]]] +
18[x1.v, [x1.v, [x1.v, x4.v]]] + 426[x1.w, [w, [v, x4.v]]] +
15480[x1.w, [w, [w, x2.w]]] + 900[x1.w, [w, [w, x3.v]]] +
438[x1.w, [x1.v, [v, x4.v]]] + 3780[x1.w, [x1.v, [w, x2.w]]] +
690[x1.w, [x1.v, [w, x3.v]]] + 1800 [x1.w, [x1.v, [x1.v, x2.w]]] +
9360[x1.w, [x1.w, [v, x2.w]]] + 456[x1.w, [x1.w, [v, x3.v]]] +
153[x2.v, [w, [v, x4.v]]] + 396[x2.v, [w, [w, x2.w]]] +
282[x2.v, [w, [w, x3.v]]] + 18[x2.v, [x1.v, [v, x4.v]]] +
738[x2.v, [x1.v, [w, x2.w]]] + 153[x2.v, [x1.v, [w, x3.v]]] +
288[x2.v, [x1.v, [x1.v, x2.w]]] + 1368[x2.v, [x1.w, [v, x2.w]]]

continued
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Appendix D. A Pseudo-Hall basis of g for d = 3

l m LM(b) for b ∈ B b − LM(b)
4 −1 45144[[v, x3.v], [w, x3.v]] 504416[w, [w, [w, x4.v]]] + 864072[x1.v, [w, [w, x4.v]]] +

228888[x1.v, [x1.v, [w, x4.v]]] + 57222[x1.v, [x1.v, [x1.v, x4.v]]] +
881268[x1.w, [w, [v, x4.v]]] + 22140936[x1.w, [w, [w, x2.w]]] +
4747572[x1.w, [w, [w, x3.v]]] + 106140[x1.w, [x1.v, [v, x4.v]]] −
6324156[x1.w, [x1.v, [w, x2.w]]] + 3479430[x1.w, [x1.v, [w, x3.v]]] +
2978676[x1.w, [x1.v, [x1.v, x2.w]]] + 14217696[x1.w, [x1.w, [v, x2.w]]] +
512544[x1.w, [x1.w, [v, x3.v]]] + 228690[x2.v, [w, [v, x4.v]]] +
7849908[x2.v, [w, [w, x2.w]]] + 1235058[x2.v, [w, [w, x3.v]]] +
252846[x2.v, [x1.v, [v, x4.v]]] − 3003462[x2.v, [x1.v, [w, x2.w]]] +
704583[x2.v, [x1.v, [w, x3.v]]] + 1084842[x2.v, [x1.v, [x1.v, x2.w]]] +
3581424[x2.v, [x1.w, [v, x2.w]]]

4 −1 135432[[v, x3.v], [x1.v, x2.w]] 244640[w, [w, [w, x4.v]]] + 550440[x1.v, [w, [w, x4.v]]] +
207504[x1.v, [x1.v, [w, x4.v]]] + 51876[x1.v, [x1.v, [x1.v, x4.v]]] +
273552[x1.w, [w, [v, x4.v]]] + 3840120[x1.w, [w, [w, x2.w]]] +
1334556[x1.w, [w, [w, x3.v]]] − 109104[x1.w, [x1.v, [v, x4.v]]] −
250452[x1.w, [x1.v, [w, x2.w]]] + 1176330[x1.w, [x1.v, [w, x3.v]]] +
363348[x1.w, [x1.v, [x1.v, x2.w]]] + 1021824[x1.w, [x1.w, [v, x2.w]]] −
135888[x1.w, [x1.w, [v, x3.v]]] + 166320[x2.v, [w, [v, x4.v]]] +
7800012[x2.v, [w, [w, x2.w]]] + 1207734[x2.v, [w, [w, x3.v]]] +
213642[x2.v, [x1.v, [v, x4.v]]] − 2579346[x2.v, [x1.v, [w, x2.w]]] +
709929[x2.v, [x1.v, [w, x3.v]]] + 1134738[x2.v, [x1.v, [x1.v, x2.w]]] +
3852288[x2.v, [x1.w, [v, x2.w]]]

4 −1 11[[v, x4.v], [w, x1.w]] 6[x1.w, [w, [v, x4.v]]]− 168[x1.w, [w, [w, x2.w]]]− 12[x1.w, [w, [w, x3.v]]] +
2[x1.w, [x1.v, [v, x4.v]]] − 72[x1.w, [x1.v, [w, x2.w]]] −
4[x1.w, [x1.v, [w, x3.v]]] − 6[x1.w, [x1.v, [x1.v, x2.w]]] −
48[x1.w, [x1.w, [v, x2.w]]]−2 [x1.w, [x1.w, [v, x3.v]]]+44[x2.v, [w, [w, x2.w]]]

4 −1 11286[[v, x4.v], [w, x2.v]] 352[w, [w, [w, x4.v]]]+792[x1.v, [w, [w, x4.v]]]+396[x1.v, [x1.v, [w, x4.v]]]+
99[x1.v, [x1.v, [x1.v, x4.v]]] + 24402[x1.w, [w, [v, x4.v]]] +
776664[x1.w, [w, [w, x2.w]]] + 58644[x1.w, [w, [w, x3.v]]] +
43620[x1.w, [x1.v, [v, x4.v]]] − 300348 [x1.w, [x1.v, [w, x2.w]]] +
6018[x1.w, [x1.v, [w, x3.v]]] + 106344[x1.w, [x1.v, [x1.v, x2.w]]] +
777888[x1.w, [x1.w, [v, x2.w]]] + 34656[x1.w, [x1.w, [v, x3.v]]] +
7425 [x2.v, [w, [v, x4.v]]] − 99396[x2.v, [w, [w, x2.w]]] +
7194 [x2.v, [w, [w, x3.v]]] − 3663[x2.v, [x1.v, [v, x4.v]]] +
122562[x2.v, [x1.v, [w, x2.w]]] − 99[x2.v, [x1.v, [w, x3.v]]] +
1584[x2.v, [x1.v, [x1.v, x2.w]]] + 30096[x2.v, [x1.w, [v, x2.w]]]

4 −1 [[w, x1.w], [w, x2.w]] [x1.w, [w, [w, x2.w]]]
4 −1 60192[[w, x1.w], [w, x3.v]] 75328[w, [w, [w, x4.v]]] + 124344[x1.v, [w, [w, x4.v]]] +

39600[x1.v, [x1.v, [w, x4.v]]] + 9900[x1.v, [x1.v, [x1.v, x4.v]]] +
140592 [x1.w, [w, [v, x4.v]]] + 4200696[x1.w, [w, [w, x2.w]]] +
825372 [x1.w, [w, [w, x3.v]]] + 31596[x1.w, [x1.v, [v, x4.v]]] −
1062612[x1.w, [x1.v, [w, x2.w]]] + 583674[x1.w, [x1.v, [w, x3.v]]] +
557028[x1.w, [x1.v, [x1.v, x2.w]]] + 2767680 [x1.w, [x1.w, [v, x2.w]]] +
114000[x1.w, [x1.w, [v, x3.v]]] + 42768[x2.v, [w, [v, x4.v]]] +
1368972[x2.v, [w, [w, x2.w]]] + 204006[x2.v, [w, [w, x3.v]]] +
39996[x2.v, [x1.v, [v, x4.v]]] − 463122[x2.v, [x1.v, [w, x2.w]]] +
119889 [x2.v, [x1.v, [w, x3.v]]] + 192258[x2.v, [x1.v, [x1.v, x2.w]]] +
662112[x2.v, [x1.w, [v, x2.w]]]

4 −1 541728[[w, x1.w], [x1.v, x2.w]] −205568[w, [w, [w, x4.v]]] − 327096[x1.v, [w, [w, x4.v]]] −
95832[x1.v, [x1.v, [w, x4.v]]] − 23958[x1.v, [x1.v, [x1.v, x4.v]]] −
338208[x1.w, [w, [v, x4.v]]] − 8456040[x1.w, [w, [w, x2.w]]] −
1918836[x1.w, [w, [w, x3.v]]] − 47748[x1.w, [x1.v, [v, x4.v]]] +
2425788[x1.w, [x1.v, [w, x2.w]]] − 1379406[x1.w, [x1.v, [w, x3.v]]] −
1191276[x1.w, [x1.v, [x1.v, x2.w]]] − 5982048[x1.w, [x1.w, [v, x2.w]]] −
228000[x1.w, [x1.w, [v, x3.v]]] − 115236[x2.v, [w, [v, x4.v]]] −
2874564[x2.v, [w, [w, x2.w]]] − 533346[x2.v, [w, [w, x3.v]]] −
106722[x2.v, [x1.v, [v, x4.v]]] + 1387782[x2.v, [x1.v, [w, x2.w]]] −
308979[x2.v, [x1.v, [w, x3.v]]] − 484902[x2.v, [x1.v, [x1.v, x2.w]]] −
1595088[x2.v, [x1.w, [v, x2.w]]]

continued
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l m LM(b) for b ∈ B b − LM(b)
4 −1 2736[[w, x2.v], [w, x2.w]] −64[w, [w, [w, x4.v]]]−144[x1.v, [w, [w, x4.v]]]−72[x1.v, [x1.v, [w, x4.v]]]−

18[x1.v, [x1.v, [x1.v, x4.v]]] − 426[x1.w, [w, [v, x4.v]]] −
10008[x1.w, [w, [w, x2.w]]] − 900[x1.w, [w, [w, x3.v]]] −
438[x1.w, [x1.v, [v, x4.v]]] + 4428[x1.w, [x1.v, [w, x2.w]]] −
690[x1.w, [x1.v, [w, x3.v]]] − 1800 [x1.w, [x1.v, [x1.v, x2.w]]] −
9360[x1.w, [x1.w, [v, x2.w]]] − 456[x1.w, [x1.w, [v, x3.v]]] −
153[x2.v, [w, [v, x4.v]]] − 396[x2.v, [w, [w, x2.w]]] −
282[x2.v, [w, [w, x3.v]]] − 18[x2.v, [x1.v, [v, x4.v]]] −
738[x2.v, [x1.v, [w, x2.w]]] − 153[x2.v, [x1.v, [w, x3.v]]] −
288[x2.v, [x1.v, [x1.v, x2.w]]] − 1368[x2.v, [x1.w, [v, x2.w]]]

4 −1 90288[[w, x2.v], [w, x3.v]] −118624[w, [w, [w, x4.v]]] − 266904[x1.v, [w, [w, x4.v]]] −
65736[x1.v, [x1.v, [w, x4.v]]] − 16434[x1.v, [x1.v, [x1.v, x4.v]]] −
266844 [x1.w, [w, [v, x4.v]]] − 6040152[x1.w, [w, [w, x2.w]]] −
1299132[x1.w, [w, [w, x3.v]]] − 50712[x1.w, [x1.v, [v, x4.v]]] +
1945620[x1.w, [x1.v, [w, x2.w]]] − 854322[x1.w, [x1.v, [w, x3.v]]] −
693324[x1.w, [x1.v, [x1.v, x2.w]]] − 3744000[x1.w, [x1.w, [v, x2.w]]] −
122208[x1.w, [x1.w, [v, x3.v]]] − 81378[x2.v, [w, [v, x4.v]]] −
2438172[x2.v, [w, [w, x2.w]]] − 370326[x2.v, [w, [w, x3.v]]] −
69102[x2.v, [x1.v, [v, x4.v]]] + 748242[x2.v, [x1.v, [w, x2.w]]] −
237501 [x2.v, [x1.v, [w, x3.v]]] − 364518[x2.v, [x1.v, [x1.v, x2.w]]] −
1203840[x2.v, [x1.w, [v, x2.w]]]

4 −1 270864[[w, x2.v], [x1.v, x2.w]] 579392[w, [w, [w, x4.v]]] + 897336[x1.v, [w, [w, x4.v]]] +
245520[x1.v, [x1.v, [w, x4.v]]] + 61380[x1.v, [x1.v, [x1.v, x4.v]]] +
962232[x1.w, [w, [v, x4.v]]] + 23586840[x1.w, [w, [w, x2.w]]] +
5035500[x1.w, [w, [w, x3.v]]] + 148836[x1.w, [x1.v, [v, x4.v]]] −
6799140[x1.w, [x1.v, [w, x2.w]]] + 3654210[x1.w, [x1.v, [w, x3.v]]] +
3062052[x1.w, [x1.v, [x1.v, x2.w]]] + 16158240[x1.w, [x1.w, [v, x2.w]]] +
597360[x1.w, [x1.w, [v, x3.v]]] + 292248[x2.v, [w, [v, x4.v]]] +
9002268[x2.v, [w, [w, x2.w]]] + 1492062[x2.v, [w, [w, x3.v]]] +
257004[x2.v, [x1.v, [v, x4.v]]] − 3137706[x2.v, [x1.v, [w, x2.w]]] +
858429[x2.v, [x1.v, [w, x3.v]]] + 1286802[x2.v, [x1.v, [x1.v, x2.w]]] +
4303728[x2.v, [x1.w, [v, x2.w]]]

4 0 384[x2.w, [w, [w, x2.w]]] 192[x1.w, [w, [w, x4.v]]] + 192[x1.w, [x1.v, [w, x4.v]]] +
48[x1.w, [x1.v, [x1.v, x4.v]]] + 136[x1.w, [x1.w, [v, x4.v]]] −
56[x1.w, [x1.w, [w, x3.v]]] + 600[x1.w, [x1.w, [x1.v, x2.w]]] −
69 [x2.v, [x1.w, [v, x4.v]]] + 64[x2.v, [x1.w, [w, x3.v]]] −
960[x2.v, [x1.w, [x1.v, x2.w]]] − 72[x2.v, [x2.v, [v, x4.v]]] +
440[x2.v, [x2.v, [w, x2.w]]] + 28[x2.v, [x2.v, [w, x3.v]]] −
660[x2.v, [x2.v, [x1.v, x2.w]]]

4 0 720[x2.w, [x1.v, [x1.v, x2.w]]] −1568 [x1.w, [w, [w, x4.v]]] − 2816[x1.w, [x1.v, [w, x4.v]]] −
1048[x1.w, [x1.v, [x1.v, x4.v]]] − 2904[x1.w, [x1.w, [v, x4.v]]] +
4408[x1.w, [x1.w, [w, x3.v]]] − 11736[x1.w, [x1.w, [x1.v, x2.w]]] −
448[x2.v, [w, [w, x4.v]]] − 736 [x2.v, [x1.v, [w, x4.v]]] −
248[x2.v, [x1.v, [x1.v, x4.v]]] − 115[x2.v, [x1.w, [v, x4.v]]] −
624[x2.v, [x1.w, [w, x3.v]]] + 5136[x2.v, [x1.w, [x1.v, x2.w]]] +
344[x2.v, [x2.v, [v, x4.v]]] − 2088[x2.v, [x2.v, [w, x2.w]]] +
292[x2.v, [x2.v, [w, x3.v]]] + 5508[x2.v, [x2.v, [x1.v, x2.w]]] +
480[x2.w, [w, [v, x4.v]]] + 1408 [x2.w, [w, [w, x3.v]]] +
164[x2.w, [x1.v, [v, x4.v]]] − 5856 [x2.w, [x1.v, [w, x2.w]]] +
752[x2.w, [x1.v, [w, x3.v]]]

4 0 11520[x2.w, [x1.w, [v, x2.w]]] −2176[x1.w, [w, [w, x4.v]]] + 1328[x1.w, [x1.v, [w, x4.v]]] +
1264 [x1.w, [x1.v, [x1.v, x4.v]]] + 3552[x1.w, [x1.w, [v, x4.v]]] −
10264[x1.w, [x1.w, [w, x3.v]]] + 14328[x1.w, [x1.w, [x1.v, x2.w]]] +
1264[x2.v, [w, [w, x4.v]]] + 2008 [x2.v, [x1.v, [w, x4.v]]] +
674[x2.v, [x1.v, [x1.v, x4.v]]] + 2575[x2.v, [x1.w, [v, x4.v]]] +
672[x2.v, [x1.w, [w, x3.v]]] + 20352[x2.v, [x1.w, [x1.v, x2.w]]] +
1438[x2.v, [x2.v, [v, x4.v]]] − 6456[x2.v, [x2.v, [w, x2.w]]] −
1876[x2.v, [x2.v, [w, x3.v]]] + 6876[x2.v, [x2.v, [x1.v, x2.w]]] −
960[x2.w, [w, [v, x4.v]]] − 1984 [x2.w, [w, [w, x3.v]]] −
392[x2.w, [x1.v, [v, x4.v]]] + 14208[x2.w, [x1.v, [w, x2.w]]] −
896[x2.w, [x1.v, [w, x3.v]]]

continued
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Appendix D. A Pseudo-Hall basis of g for d = 3

l m LM(b) for b ∈ B b − LM(b)
4 0 128[x2.w, [x1.w, [v, x3.v]]] −64[x1.w, [w, [w, x4.v]]] − 16[x1.w, [x1.v, [w, x4.v]]] +

16[x1.w, [x1.v, [x1.v, x4.v]]] + 32[x1.w, [x1.w, [v, x4.v]]] −
152 [x1.w, [x1.w, [w, x3.v]]] − 264[x1.w, [x1.w, [x1.v, x2.w]]] −
16[x2.v, [w, [w, x4.v]]] − 8[x2.v, [x1.v, [w, x4.v]]] −
2[x2.v, [x1.v, [x1.v, x4.v]]] − 17[x2.v, [x1.w, [v, x4.v]]] −
160[x2.v, [x1.w, [w, x3.v]]] − 576 [x2.v, [x1.w, [x1.v, x2.w]]] +
22[x2.v, [x2.v, [v, x4.v]]] − 632[x2.v, [x2.v, [w, x2.w]]] −
20[x2.v, [x2.v, [w, x3.v]]] + 60[x2.v, [x2.v, [x1.v, x2.w]]] −
32[x2.w, [w, [v, x4.v]]] − 64[x2.w, [w, [w, x3.v]]] + 24[x2.w, [x1.v, [v, x4.v]]]

4 0 240[x3.v, [w, [v, x4.v]]] 448[x1.w, [w, [w, x4.v]]] − 4064[x1.w, [x1.v, [w, x4.v]]] −
1912[x1.w, [x1.v, [x1.v, x4.v]]] − 6096[x1.w, [x1.w, [v, x4.v]]] +
13912[x1.w, [x1.w, [w, x3.v]]] − 17784[x1.w, [x1.w, [x1.v, x2.w]]] −
832[x2.v, [w, [w, x4.v]]] − 784[x2.v, [x1.v, [w, x4.v]]] −
512[x2.v, [x1.v, [x1.v, x4.v]]] + 665[x2.v, [x1.w, [v, x4.v]]] −
4656[x2.v, [x1.w, [w, x3.v]]] + 3984[x2.v, [x1.w, [x1.v, x2.w]]] +
56[x2.v, [x2.v, [v, x4.v]]] − 3312[x2.v, [x2.v, [w, x2.w]]] +
1888 [x2.v, [x2.v, [w, x3.v]]] + 7632[x2.v, [x2.v, [x1.v, x2.w]]] +
1792[x2.w, [w, [w, x3.v]]] + 1136[x2.w, [x1.v, [v, x4.v]]] −
17664[x2.w, [x1.v, [w, x2.w]]] + 1088[x2.w, [x1.v, [w, x3.v]]]

4 0 1920[x3.v, [w, [w, x2.w]]] −1088[x1.w, [w, [w, x4.v]]] − 1616[x1.w, [x1.v, [w, x4.v]]] −
688[x1.w, [x1.v, [x1.v, x4.v]]] − 1824[x1.w, [x1.w, [v, x4.v]]] +
3448[x1.w, [x1.w, [w, x3.v]]] − 5976[x1.w, [x1.w, [x1.v, x2.w]]] −
208[x2.v, [w, [w, x4.v]]] − 136[x2.v, [x1.v, [w, x4.v]]] −
98[x2.v, [x1.v, [x1.v, x4.v]]] + 485[x2.v, [x1.w, [v, x4.v]]] −
864[x2.v, [x1.w, [w, x3.v]]] + 7296 [x2.v, [x1.w, [x1.v, x2.w]]] +
434[x2.v, [x2.v, [v, x4.v]]] − 1608[x2.v, [x2.v, [w, x2.w]]] +
52[x2.v, [x2.v, [w, x3.v]]] + 5508[x2.v, [x2.v, [x1.v, x2.w]]] +
448[x2.w, [w, [w, x3.v]]] + 344[x2.w, [x1.v, [v, x4.v]]] −
7296[x2.w, [x1.v, [w, x2.w]]] + 512[x2.w, [x1.v, [w, x3.v]]]

4 0 320[x3.v, [w, [w, x3.v]]] 5696[x1.w, [w, [w, x4.v]]] + 8432[x1.w, [x1.v, [w, x4.v]]] +
2656[x1.w, [x1.v, [x1.v, x4.v]]] + 6768[x1.w, [x1.w, [v, x4.v]]] −
10216[x1.w, [x1.w, [w, x3.v]]] + 25992[x1.w, [x1.w, [x1.v, x2.w]]] +
3376[x2.v, [w, [w, x4.v]]] + 2392[x2.v, [x1.v, [w, x4.v]]] +
446[x2.v, [x1.v, [x1.v, x4.v]]] + 1105[x2.v, [x1.w, [v, x4.v]]] +
4608[x2.v, [x1.w, [w, x3.v]]] − 672[x2.v, [x1.w, [x1.v, x2.w]]] −
2438[x2.v, [x2.v, [v, x4.v]]] + 28296[x2.v, [x2.v, [w, x2.w]]] +
2636 [x2.v, [x2.v, [w, x3.v]]] − 17316[x2.v, [x2.v, [x1.v, x2.w]]] +
1920[x2.w, [w, [v, x4.v]]] − 5056[x2.w, [w, [w, x3.v]]] −
8[x2.w, [x1.v, [v, x4.v]]] + 16512[x2.w, [x1.v, [w, x2.w]]] −
1664[x2.w, [x1.v, [w, x3.v]]]

4 0 1440[x3.v, [x1.v, [w, x2.w]]] −1024[x1.w, [w, [w, x4.v]]] − 2488[x1.w, [x1.v, [w, x4.v]]] −
644[x1.w, [x1.v, [x1.v, x4.v]]] − 2112[x1.w, [x1.w, [v, x4.v]]] +
2624[x1.w, [x1.w, [w, x3.v]]] − 8928[x1.w, [x1.w, [x1.v, x2.w]]] −
104[x2.v, [w, [w, x4.v]]] − 188[x2.v, [x1.v, [w, x4.v]]] −
109[x2.v, [x1.v, [x1.v, x4.v]]] + 640[x2.v, [x1.w, [v, x4.v]]] −
72[x2.v, [x1.w, [w, x3.v]]] + 11208 [x2.v, [x1.w, [x1.v, x2.w]]] +
397[x2.v, [x2.v, [v, x4.v]]] + 876[x2.v, [x2.v, [w, x2.w]]] +
206[x2.v, [x2.v, [w, x3.v]]] + 6174[x2.v, [x2.v, [x1.v, x2.w]]] +
720[x2.w, [w, [v, x4.v]]] + 224[x2.w, [w, [w, x3.v]]] +
412 [x2.w, [x1.v, [v, x4.v]]] − 6528[x2.w, [x1.v, [w, x2.w]]] −
224[x2.w, [x1.v, [w, x3.v]]] − 60[x3.v, [x1.v, [v, x4.v]]]

4 0 240[x3.v, [x1.v, [w, x3.v]]] −6016[x1.w, [w, [w, x4.v]]] − 10792[x1.w, [x1.v, [w, x4.v]]] −
3716 [x1.w, [x1.v, [x1.v, x4.v]]] − 9888[x1.w, [x1.w, [v, x4.v]]] +
14696[x1.w, [x1.w, [w, x3.v]]] − 38952[x1.w, [x1.w, [x1.v, x2.w]]] −
2456[x2.v, [w, [w, x4.v]]] − 2612 [x2.v, [x1.v, [w, x4.v]]] −
691[x2.v, [x1.v, [x1.v, x4.v]]] − 425[x2.v, [x1.w, [v, x4.v]]] −
3528[x2.v, [x1.w, [w, x3.v]]] + 14952[x2.v, [x1.w, [x1.v, x2.w]]] +
2383[x2.v, [x2.v, [v, x4.v]]] − 22236[x2.v, [x2.v, [w, x2.w]]] −
1006[x2.v, [x2.v, [w, x3.v]]] + 23346[x2.v, [x2.v, [x1.v, x2.w]]] −
720[x2.w, [w, [v, x4.v]]] + 6176 [x2.w, [w, [w, x3.v]]] +
868[x2.w, [x1.v, [v, x4.v]]] − 23232[x2.w, [x1.v, [w, x2.w]]] +
1024[x2.w, [x1.v, [w, x3.v]]] − 60[x3.v, [x1.v, [v, x4.v]]]

continued
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l m LM(b) for b ∈ B b − LM(b)
4 0 72[x3.v, [x1.v, [x1.v, x2.w]]] −448 [x1.w, [w, [w, x4.v]]] − 616[x1.w, [x1.v, [w, x4.v]]] −

212 [x1.w, [x1.v, [x1.v, x4.v]]] − 552[x1.w, [x1.w, [v, x4.v]]] +
800[x1.w, [x1.w, [w, x3.v]]] − 2304[x1.w, [x1.w, [x1.v, x2.w]]] −
344[x2.v, [w, [w, x4.v]]] − 260 [x2.v, [x1.v, [w, x4.v]]] −
31[x2.v, [x1.v, [x1.v, x4.v]]] − 188[x2.v, [x1.w, [v, x4.v]]] −
456[x2.v, [x1.w, [w, x3.v]]] − 1176[x2.v, [x1.w, [x1.v, x2.w]]] +
145[x2.v, [x2.v, [v, x4.v]]] − 2268[x2.v, [x2.v, [w, x2.w]]] −
214[x2.v, [x2.v, [w, x3.v]]] + 810[x2.v, [x2.v, [x1.v, x2.w]]] −
48[x2.w, [w, [v, x4.v]]] + 416 [x2.w, [w, [w, x3.v]]] −
116[x2.w, [x1.v, [v, x4.v]]] − 480 [x2.w, [x1.v, [w, x2.w]]] +
304[x2.w, [x1.v, [w, x3.v]]] + 6[x3.v, [x1.v, [v, x4.v]]]

4 0 1920[x3.v, [x1.w, [v, x2.w]]] 2944[x1.w, [w, [w, x4.v]]] + 6448[x1.w, [x1.v, [w, x4.v]]] +
2624 [x1.w, [x1.v, [x1.v, x4.v]]] + 7712[x1.w, [x1.w, [v, x4.v]]] −
12904[x1.w, [x1.w, [w, x3.v]]] + 29448[x1.w, [x1.w, [x1.v, x2.w]]] +
1264[x2.v, [w, [w, x4.v]]] + 1688 [x2.v, [x1.v, [w, x4.v]]] +
554[x2.v, [x1.v, [x1.v, x4.v]]] + 65[x2.v, [x1.w, [v, x4.v]]] +
3072[x2.v, [x1.w, [w, x3.v]]] − 7968[x2.v, [x1.w, [x1.v, x2.w]]] −
722[x2.v, [x2.v, [v, x4.v]]] + 6984[x2.v, [x2.v, [w, x2.w]]] −
836[x2.v, [x2.v, [w, x3.v]]] − 12084[x2.v, [x2.v, [x1.v, x2.w]]] −
320[x2.w, [w, [v, x4.v]]] − 3264 [x2.w, [w, [w, x3.v]]] −
872[x2.w, [x1.v, [v, x4.v]]] + 18048[x2.w, [x1.v, [w, x2.w]]] −
1536[x2.w, [x1.v, [w, x3.v]]] + 80[x3.v, [x1.v, [v, x4.v]]]

4 0 192[x3.v, [x1.w, [v, x3.v]]] 64[x1.w, [w, [w, x4.v]]] + 1456[x1.w, [x1.v, [w, x4.v]]] +
992[x1.w, [x1.v, [x1.v, x4.v]]] + 1920[x1.w, [x1.w, [v, x4.v]]] −
5096[x1.w, [x1.w, [w, x3.v]]] + 4104[x1.w, [x1.w, [x1.v, x2.w]]] +
368[x2.v, [w, [w, x4.v]]] + 536[x2.v, [x1.v, [w, x4.v]]] +
142[x2.v, [x1.v, [x1.v, x4.v]]] − 31[x2.v, [x1.w, [v, x4.v]]] +
768[x2.v, [x1.w, [w, x3.v]]] − 4512 [x2.v, [x1.w, [x1.v, x2.w]]] −
298[x2.v, [x2.v, [v, x4.v]]] + 1128[x2.v, [x2.v, [w, x2.w]]] −
308[x2.v, [x2.v, [w, x3.v]]] − 4932[x2.v, [x2.v, [x1.v, x2.w]]] −
672[x2.w, [w, [v, x4.v]]] − 1088[x2.w, [w, [w, x3.v]]] −
40 [x2.w, [x1.v, [v, x4.v]]] + 5376[x2.w, [x1.v, [w, x2.w]]] −
640[x2.w, [x1.v, [w, x3.v]]] − 48[x3.v, [x1.v, [v, x4.v]]]

4 0 [x4.v, [v, [v, x4.v]]] −12[x2.v, [x2.v, [v, x4.v]]] + 120[x2.v, [x2.v, [w, x2.w]]] +
20[x2.v, [x2.v, [w, x3.v]]] − 60[x2.v, [x2.v, [x1.v, x2.w]]]

4 0 576[x4.v, [w, [v, x2.w]]] 640[x1.w, [w, [w, x4.v]]] + 1168[x1.w, [x1.v, [w, x4.v]]] +
560[x1.w, [x1.v, [x1.v, x4.v]]] + 1344[x1.w, [x1.w, [v, x4.v]]] −
1832[x1.w, [x1.w, [w, x3.v]]] + 4680[x1.w, [x1.w, [x1.v, x2.w]]] +
80[x2.v, [w, [w, x4.v]]] + 392[x2.v, [x1.v, [w, x4.v]]] +
142[x2.v, [x1.v, [x1.v, x4.v]]] + 329[x2.v, [x1.w, [v, x4.v]]] −
480[x2.v, [x1.w, [w, x3.v]]] − 1344 [x2.v, [x1.w, [x1.v, x2.w]]] −
238[x2.v, [x2.v, [v, x4.v]]] + 1368[x2.v, [x2.v, [w, x2.w]]] +
100[x2.v, [x2.v, [w, x3.v]]] − 2700[x2.v, [x2.v, [x1.v, x2.w]]] −
672[x2.w, [w, [v, x4.v]]] + 64[x2.w, [w, [w, x3.v]]] −
40 [x2.w, [x1.v, [v, x4.v]]] + 1920[x2.w, [x1.v, [w, x2.w]]] −
64[x2.w, [x1.v, [w, x3.v]]] − 48[x3.v, [x1.v, [v, x4.v]]]

4 0 160[x4.v, [w, [v, x3.v]]] 256[x1.w, [w, [w, x4.v]]] − 848[x1.w, [x1.v, [w, x4.v]]] −
304[x1.w, [x1.v, [x1.v, x4.v]]] − 1072[x1.w, [x1.w, [v, x4.v]]] +
3384[x1.w, [x1.w, [w, x3.v]]] − 408[x1.w, [x1.w, [x1.v, x2.w]]] −
1424[x2.v, [w, [w, x4.v]]] − 808[x2.v, [x1.v, [w, x4.v]]] −
94[x2.v, [x1.v, [x1.v, x4.v]]] − 1795[x2.v, [x1.w, [v, x4.v]]] −
1312[x2.v, [x1.w, [w, x3.v]]] − 19392 [x2.v, [x1.w, [x1.v, x2.w]]] +
422[x2.v, [x2.v, [v, x4.v]]] − 12824[x2.v, [x2.v, [w, x2.w]]] −
1524[x2.v, [x2.v, [w, x3.v]]] − 1956[x2.v, [x2.v, [x1.v, x2.w]]] −
800[x2.w, [w, [v, x4.v]]] − 576[x2.w, [w, [w, x3.v]]] −
248 [x2.w, [x1.v, [v, x4.v]]] − 2688[x2.w, [x1.v, [w, x2.w]]] +
576[x2.w, [x1.v, [w, x3.v]]] + 80[x3.v, [x1.v, [v, x4.v]]]

continued
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Appendix D. A Pseudo-Hall basis of g for d = 3

l m LM(b) for b ∈ B b − LM(b)
4 0 480[x4.v, [w, [w, x2.v]]] −2048[x1.w, [w, [w, x4.v]]] − 656[x1.w, [x1.v, [w, x4.v]]] −

208[x1.w, [x1.v, [x1.v, x4.v]]] − 624[x1.w, [x1.w, [v, x4.v]]] −
2312[x1.w, [x1.w, [w, x3.v]]] − 5976[x1.w, [x1.w, [x1.v, x2.w]]] +
1232[x2.v, [w, [w, x4.v]]] + 344[x2.v, [x1.v, [w, x4.v]]] −
38[x2.v, [x1.v, [x1.v, x4.v]]] + 965[x2.v, [x1.w, [v, x4.v]]] +
2016[x2.v, [x1.w, [w, x3.v]]] + 15936 [x2.v, [x1.w, [x1.v, x2.w]]] −
106[x2.v, [x2.v, [v, x4.v]]] + 8232[x2.v, [x2.v, [w, x2.w]]] +
1132[x2.v, [x2.v, [w, x3.v]]] + 3708[x2.v, [x2.v, [x1.v, x2.w]]] +
1440[x2.w, [w, [v, x4.v]]] + 448[x2.w, [w, [w, x3.v]]] +
104 [x2.w, [x1.v, [v, x4.v]]] + 4224[x2.w, [x1.v, [w, x2.w]]] −
448[x2.w, [x1.v, [w, x3.v]]]

4 0 120[x4.v, [x1.v, [v, x2.w]]] −896[x1.w, [w, [w, x4.v]]] − 632[x1.w, [x1.v, [w, x4.v]]] −
16[x1.w, [x1.v, [x1.v, x4.v]]] − 148[x1.w, [x1.w, [v, x4.v]]] −
624[x1.w, [x1.w, [w, x3.v]]] − 912[x1.w, [x1.w, [x1.v, x2.w]]] +
184[x2.v, [w, [w, x4.v]]] + 308[x2.v, [x1.v, [w, x4.v]]] +
89[x2.v, [x1.v, [x1.v, x4.v]]] + 1010[x2.v, [x1.w, [v, x4.v]]] −
1168[x2.v, [x1.w, [w, x3.v]]] + 7392 [x2.v, [x1.w, [x1.v, x2.w]]] +
413[x2.v, [x2.v, [v, x4.v]]] − 3116[x2.v, [x2.v, [w, x2.w]]] −
6[x2.v, [x2.v, [w, x3.v]]] + 3786[x2.v, [x2.v, [x1.v, x2.w]]] −
320 [x2.w, [w, [v, x4.v]]] + 96[x2.w, [w, [w, x3.v]]] +
28 [x2.w, [x1.v, [v, x4.v]]] + 768[x2.w, [x1.v, [w, x2.w]]] −
96[x2.w, [x1.v, [w, x3.v]]] − 40[x3.v, [x1.v, [v, x4.v]]]

4 0 2880[x4.v, [x1.v, [w, x1.w]]] −6272[x1.w, [w, [w, x4.v]]] − 10064[x1.w, [x1.v, [w, x4.v]]] −
3472 [x1.w, [x1.v, [x1.v, x4.v]]] − 9456[x1.w, [x1.w, [v, x4.v]]] +
11512[x1.w, [x1.w, [w, x3.v]]] − 33624[x1.w, [x1.w, [x1.v, x2.w]]] −
2512[x2.v, [w, [w, x4.v]]] − 2344 [x2.v, [x1.v, [w, x4.v]]] −
542[x2.v, [x1.v, [x1.v, x4.v]]] − 1435[x2.v, [x1.w, [v, x4.v]]] −
4896[x2.v, [x1.w, [w, x3.v]]] − 2496[x2.v, [x1.w, [x1.v, x2.w]]] +
2486[x2.v, [x2.v, [v, x4.v]]] − 31512[x2.v, [x2.v, [w, x2.w]]] −
1652[x2.v, [x2.v, [w, x3.v]]] + 18972[x2.v, [x2.v, [x1.v, x2.w]]] +
480[x2.w, [w, [v, x4.v]]] − 1088 [x2.w, [w, [w, x3.v]]] −
184[x2.w, [x1.v, [v, x4.v]]] − 11904[x2.w, [x1.v, [w, x2.w]]] +
1088[x2.w, [x1.v, [w, x3.v]]] + 240[x3.v, [x1.v, [v, x4.v]]]

4 0 360[[v,w], [x2.w, x4.v]] −224[x1.w, [w, [w, x4.v]]] − 128[x1.w, [x1.v, [w, x4.v]]] +
56[x1.w, [x1.v, [x1.v, x4.v]]] + 48[x1.w, [x1.w, [v, x4.v]]] −
296[x1.w, [x1.w, [w, x3.v]]] + 72[x1.w, [x1.w, [x1.v, x2.w]]] −
64 [x2.v, [w, [w, x4.v]]] + 32[x2.v, [x1.v, [w, x4.v]]] +
16 [x2.v, [x1.v, [x1.v, x4.v]]] + 185[x2.v, [x1.w, [v, x4.v]]] −
432[x2.v, [x1.w, [w, x3.v]]] + 528[x2.v, [x1.w, [x1.v, x2.w]]] +
2[x2.v, [x2.v, [v, x4.v]]] − 444 [x2.v, [x2.v, [w, x2.w]]] +
46[x2.v, [x2.v, [w, x3.v]]] + 54[x2.v, [x2.v, [x1.v, x2.w]]] −
240[x2.w, [w, [v, x4.v]]] + 64[x2.w, [w, [w, x3.v]]] +
32[x2.w, [x1.v, [v, x4.v]]] + 192[x2.w, [x1.v, [w, x2.w]]] −
64[x2.w, [x1.v, [w, x3.v]]] − 30[x3.v, [x1.v, [v, x4.v]]]

4 0 24[[v, x1.w], [x1.w, x4.v]] 12[x1.w, [x1.w, [v, x4.v]]] + 9[x2.v, [x2.v, [v, x4.v]]] −
72 [x2.v, [x2.v, [w, x2.w]]] − 16[x2.v, [x2.v, [w, x3.v]]] +
48[x2.v, [x2.v, [x1.v, x2.w]]]

4 0 180[[v, x1.w], [x2.v, x4.v]] −704[x1.w, [w, [w, x4.v]]] + 112[x1.w, [x1.v, [w, x4.v]]] +
176[x1.w, [x1.v, [x1.v, x4.v]]] + 168[x1.w, [x1.w, [v, x4.v]]] −
1976[x1.w, [x1.w, [w, x3.v]]] − 2088[x1.w, [x1.w, [x1.v, x2.w]]] +
176[x2.v, [w, [w, x4.v]]] + 152[x2.v, [x1.v, [w, x4.v]]] +
46[x2.v, [x1.v, [x1.v, x4.v]]] + 35[x2.v, [x1.w, [v, x4.v]]] +
288[x2.v, [x1.w, [w, x3.v]]] − 192 [x2.v, [x1.w, [x1.v, x2.w]]] −
28[x2.v, [x2.v, [v, x4.v]]] − 264[x2.v, [x2.v, [w, x2.w]]] +
76[x2.v, [x2.v, [w, x3.v]]] − 756[x2.v, [x2.v, [x1.v, x2.w]]] +
64[x2.w, [w, [w, x3.v]]] − 88[x2.w, [x1.v, [v, x4.v]]] +
3072[x2.w, [x1.v, [w, x2.w]]] − 64[x2.w, [x1.v, [w, x3.v]]]

continued
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l m LM(b) for b ∈ B b − LM(b)
4 0 180[[v, x2.v], [x1.w, x4.v]] −704[x1.w, [w, [w, x4.v]]] + 112[x1.w, [x1.v, [w, x4.v]]] +

176[x1.w, [x1.v, [x1.v, x4.v]]] + 888[x1.w, [x1.w, [v, x4.v]]] −
2936[x1.w, [x1.w, [w, x3.v]]] + 792[x1.w, [x1.w, [x1.v, x2.w]]] +
176[x2.v, [w, [w, x4.v]]] + 152[x2.v, [x1.v, [w, x4.v]]] +
46[x2.v, [x1.v, [x1.v, x4.v]]] + 35[x2.v, [x1.w, [v, x4.v]]] +
1248[x2.v, [x1.w, [w, x3.v]]] + 2688 [x2.v, [x1.w, [x1.v, x2.w]]] +
272[x2.v, [x2.v, [v, x4.v]]] + 216[x2.v, [x2.v, [w, x2.w]]] −
644[x2.v, [x2.v, [w, x3.v]]] + 1404[x2.v, [x2.v, [x1.v, x2.w]]] +
64[x2.w, [w, [w, x3.v]]] − 88[x2.w, [x1.v, [v, x4.v]]] +
3072[x2.w, [x1.v, [w, x2.w]]] − 64[x2.w, [x1.v, [w, x3.v]]]

4 0 18[[v, x2.v], [x2.v, x4.v]] −64[x1.w, [w, [w, x4.v]]] + 272[x1.w, [x1.v, [w, x4.v]]] +
304[x1.w, [x1.v, [x1.v, x4.v]]] + 528[x1.w, [x1.w, [v, x4.v]]] −
952[x1.w, [x1.w, [w, x3.v]]] + 1944[x1.w, [x1.w, [x1.v, x2.w]]] −
368[x2.v, [w, [w, x4.v]]] + 40[x2.v, [x1.v, [w, x4.v]]] +
74[x2.v, [x1.v, [x1.v, x4.v]]] − 77[x2.v, [x1.w, [v, x4.v]]] −
1056[x2.v, [x1.w, [w, x3.v]]] − 4992 [x2.v, [x1.w, [x1.v, x2.w]]] +
82[x2.v, [x2.v, [v, x4.v]]] − 3864[x2.v, [x2.v, [w, x2.w]]] −
436[x2.v, [x2.v, [w, x3.v]]] − 1476[x2.v, [x2.v, [x1.v, x2.w]]] −
768[x2.w, [w, [v, x4.v]]] − 64[x2.w, [w, [w, x3.v]]] −
104 [x2.w, [x1.v, [v, x4.v]]] + 1536[x2.w, [x1.v, [w, x2.w]]] +
64[x2.w, [x1.v, [w, x3.v]]] − 24[x3.v, [x1.v, [v, x4.v]]]

4 0 2880[[v, x2.w], [w, x4.v]] −1216[x1.w, [w, [w, x4.v]]] + 848[x1.w, [x1.v, [w, x4.v]]] +
1744[x1.w, [x1.v, [x1.v, x4.v]]] + 2832[x1.w, [x1.w, [v, x4.v]]] −
7384[x1.w, [x1.w, [w, x3.v]]] + 5688[x1.w, [x1.w, [x1.v, x2.w]]] −
2096[x2.v, [w, [w, x4.v]]] + 328[x2.v, [x1.v, [w, x4.v]]] +
434[x2.v, [x1.v, [x1.v, x4.v]]] + 535[x2.v, [x1.w, [v, x4.v]]] −
7008[x2.v, [x1.w, [w, x3.v]]] − 22848 [x2.v, [x1.w, [x1.v, x2.w]]] −
302[x2.v, [x2.v, [v, x4.v]]] − 12456[x2.v, [x2.v, [w, x2.w]]] −
1036[x2.v, [x2.v, [w, x3.v]]] − 10044[x2.v, [x2.v, [x1.v, x2.w]]] −
1920[x2.w, [w, [v, x4.v]]] − 64[x2.w, [w, [w, x3.v]]] −
392 [x2.w, [x1.v, [v, x4.v]]] + 8448[x2.w, [x1.v, [w, x2.w]]] +
64[x2.w, [x1.v, [w, x3.v]]] − 240[x3.v, [x1.v, [v, x4.v]]]

4 0 72[[v, x2.w], [x1.v, x4.v]] −304[x1.w, [w, [w, x4.v]]] − 400[x1.w, [x1.v, [w, x4.v]]] −
104[x1.w, [x1.v, [x1.v, x4.v]]] − 360[x1.w, [x1.w, [v, x4.v]]] +
248[x1.w, [x1.w, [w, x3.v]]] − 1656[x1.w, [x1.w, [x1.v, x2.w]]] +
64[x2.v, [w, [w, x4.v]]] + 64[x2.v, [x1.v, [w, x4.v]]] +
11[x2.v, [x1.v, [x1.v, x4.v]]] + 289[x2.v, [x1.w, [v, x4.v]]] −
384[x2.v, [x1.w, [w, x3.v]]] + 2496 [x2.v, [x1.w, [x1.v, x2.w]]] +
94[x2.v, [x2.v, [v, x4.v]]] − 432[x2.v, [x2.v, [w, x2.w]]] +
128[x2.v, [x2.v, [w, x3.v]]] + 1368[x2.v, [x2.v, [x1.v, x2.w]]] −
24[x2.w, [w, [v, x4.v]]] + 32[x2.w, [w, [w, x3.v]]] +
112 [x2.w, [x1.v, [v, x4.v]]] − 480[x2.w, [x1.v, [w, x2.w]]] −
32[x2.w, [x1.v, [w, x3.v]]] − 12[x3.v, [x1.v, [v, x4.v]]]

4 0 11520[[v, x2.w], [x1.w, x2.w]] −256[x1.w, [w, [w, x4.v]]] + 1328[x1.w, [x1.v, [w, x4.v]]] +
784[x1.w, [x1.v, [x1.v, x4.v]]] + 1632[x1.w, [x1.w, [v, x4.v]]] −
5464[x1.w, [x1.w, [w, x3.v]]] + 5688[x1.w, [x1.w, [x1.v, x2.w]]] +
1264[x2.v, [w, [w, x4.v]]] + 2008[x2.v, [x1.v, [w, x4.v]]] +
674[x2.v, [x1.v, [x1.v, x4.v]]] + 2935 [x2.v, [x1.w, [v, x4.v]]] −
2208[x2.v, [x1.w, [w, x3.v]]] + 17472[x2.v, [x1.w, [x1.v, x2.w]]] +
958[x2.v, [x2.v, [v, x4.v]]] − 6456[x2.v, [x2.v, [w, x2.w]]] −
436[x2.v, [x2.v, [w, x3.v]]] + 5436[x2.v, [x2.v, [x1.v, x2.w]]] −
960[x2.w, [w, [v, x4.v]]] − 1984[x2.w, [w, [w, x3.v]]] −
392 [x2.w, [x1.v, [v, x4.v]]] + 14208[x2.w, [x1.v, [w, x2.w]]] −
896[x2.w, [x1.v, [w, x3.v]]]

4 0 1920[[v, x2.w], [x1.w, x3.v]] 4864[x1.w, [w, [w, x4.v]]] + 7408[x1.w, [x1.v, [w, x4.v]]] +
2384 [x1.w, [x1.v, [x1.v, x4.v]]] + 6752[x1.w, [x1.w, [v, x4.v]]] −
8824[x1.w, [x1.w, [w, x3.v]]] + 30168[x1.w, [x1.w, [x1.v, x2.w]]] +
1264[x2.v, [w, [w, x4.v]]] + 1688 [x2.v, [x1.v, [w, x4.v]]] +
554[x2.v, [x1.v, [x1.v, x4.v]]] − 85[x2.v, [x1.w, [v, x4.v]]] +
2592[x2.v, [x1.w, [w, x3.v]]] − 12288[x2.v, [x1.w, [x1.v, x2.w]]] −
962[x2.v, [x2.v, [v, x4.v]]] + 6984[x2.v, [x2.v, [w, x2.w]]] −
596[x2.v, [x2.v, [w, x3.v]]] − 14244[x2.v, [x2.v, [x1.v, x2.w]]] −
320[x2.w, [w, [v, x4.v]]] − 3264 [x2.w, [w, [w, x3.v]]] −
872[x2.w, [x1.v, [v, x4.v]]] + 18048[x2.w, [x1.v, [w, x2.w]]] −
1536[x2.w, [x1.v, [w, x3.v]]] + 80[x3.v, [x1.v, [v, x4.v]]]

continued
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Appendix D. A Pseudo-Hall basis of g for d = 3

l m LM(b) for b ∈ B b − LM(b)
4 0 160[[v, x3.v], [w, x4.v]] 2432[x1.w, [w, [w, x4.v]]] + 5264[x1.w, [x1.v, [w, x4.v]]] +

1792[x1.w, [x1.v, [x1.v, x4.v]]] + 5456[x1.w, [x1.w, [v, x4.v]]] −
9032[x1.w, [x1.w, [w, x3.v]]] + 18024[x1.w, [x1.w, [x1.v, x2.w]]] +
912[x2.v, [w, [w, x4.v]]] + 904[x2.v, [x1.v, [w, x4.v]]] +
462[x2.v, [x1.v, [x1.v, x4.v]]] − 755[x2.v, [x1.w, [v, x4.v]]] +
3776[x2.v, [x1.w, [w, x3.v]]] − 9504[x2.v, [x1.w, [x1.v, x2.w]]] −
326[x2.v, [x2.v, [v, x4.v]]] + 3832[x2.v, [x2.v, [w, x2.w]]] −
1388 [x2.v, [x2.v, [w, x3.v]]] − 9372[x2.v, [x2.v, [x1.v, x2.w]]] +
160[x2.w, [w, [v, x4.v]]] − 1472[x2.w, [w, [w, x3.v]]] −
936[x2.w, [x1.v, [v, x4.v]]] + 11904[x2.w, [x1.v, [w, x2.w]]] −
448[x2.w, [x1.v, [w, x3.v]]] + 80 [x3.v, [x1.v, [v, x4.v]]]

4 0 120[[v, x3.v], [x1.v, x4.v]] 704[x1.w, [w, [w, x4.v]]] − 112[x1.w, [x1.v, [w, x4.v]]] −
176[x1.w, [x1.v, [x1.v, x4.v]]] − 528[x1.w, [x1.w, [v, x4.v]]] +
1736[x1.w, [x1.w, [w, x3.v]]] − 1512[x1.w, [x1.w, [x1.v, x2.w]]] −
176[x2.v, [w, [w, x4.v]]] − 152[x2.v, [x1.v, [w, x4.v]]] −
46[x2.v, [x1.v, [x1.v, x4.v]]] − 845[x2.v, [x1.w, [v, x4.v]]] +
672[x2.v, [x1.w, [w, x3.v]]] − 5568 [x2.v, [x1.w, [x1.v, x2.w]]] +
778[x2.v, [x2.v, [v, x4.v]]] − 8616[x2.v, [x2.v, [w, x2.w]]] −
1516[x2.v, [x2.v, [w, x3.v]]] + 2916[x2.v, [x2.v, [x1.v, x2.w]]] −
64[x2.w, [w, [w, x3.v]]] + 88[x2.w, [x1.v, [v, x4.v]]] −
3072[x2.w, [x1.v, [w, x2.w]]] + 64[x2.w, [x1.v, [w, x3.v]]] +
120[x3.v, [x1.v, [v, x4.v]]]

4 0 128[[v, x3.v], [x1.w, x2.w]] −64[x1.w, [w, [w, x4.v]]] − 80[x1.w, [x1.v, [w, x4.v]]] −
32[x1.w, [x1.v, [x1.v, x4.v]]] − 96[x1.w, [x1.w, [v, x4.v]]] +
152 [x1.w, [x1.w, [w, x3.v]]] − 120[x1.w, [x1.w, [x1.v, x2.w]]] −
16[x2.v, [w, [w, x4.v]]] − 8[x2.v, [x1.v, [w, x4.v]]] −
2[x2.v, [x1.v, [x1.v, x4.v]]] + 17[x2.v, [x1.w, [v, x4.v]]] −
192[x2.v, [x1.w, [w, x3.v]]] − 96 [x2.v, [x1.w, [x1.v, x2.w]]] +
38[x2.v, [x2.v, [v, x4.v]]] − 632[x2.v, [x2.v, [w, x2.w]]] −
4[x2.v, [x2.v, [w, x3.v]]] + 300[x2.v, [x2.v, [x1.v, x2.w]]] −
32[x2.w, [w, [v, x4.v]]] − 64[x2.w, [w, [w, x3.v]]] + 24[x2.w, [x1.v, [v, x4.v]]]

4 0 192[[v, x3.v], [x1.w, x3.v]] 64[x1.w, [w, [w, x4.v]]] + 1456[x1.w, [x1.v, [w, x4.v]]] +
704[x1.w, [x1.v, [x1.v, x4.v]]] + 1920[x1.w, [x1.w, [v, x4.v]]] −
3944[x1.w, [x1.w, [w, x3.v]]] + 7560[x1.w, [x1.w, [x1.v, x2.w]]] +
368[x2.v, [w, [w, x4.v]]] + 536[x2.v, [x1.v, [w, x4.v]]] +
142[x2.v, [x1.v, [x1.v, x4.v]]] + 401[x2.v, [x1.w, [v, x4.v]]] −
384[x2.v, [x1.w, [w, x3.v]]] − 1056 [x2.v, [x1.w, [x1.v, x2.w]]] −
298[x2.v, [x2.v, [v, x4.v]]] + 1128[x2.v, [x2.v, [w, x2.w]]] +
268[x2.v, [x2.v, [w, x3.v]]] − 3204[x2.v, [x2.v, [x1.v, x2.w]]] −
672[x2.w, [w, [v, x4.v]]] − 1088[x2.w, [w, [w, x3.v]]] −
40 [x2.w, [x1.v, [v, x4.v]]] + 5376[x2.w, [x1.v, [w, x2.w]]] −
640[x2.w, [x1.v, [w, x3.v]]] − 48[x3.v, [x1.v, [v, x4.v]]]

4 0 8[[v, x4.v], [w, x2.w]] −8[x1.w, [x1.w, [w, x3.v]]] − 24[x1.w, [x1.w, [x1.v, x2.w]]] +
[x2.v, [x1.w, [v, x4.v]]]

4 0 240[[v, x4.v], [w, x3.v]] −704[x1.w, [w, [w, x4.v]]] + 112[x1.w, [x1.v, [w, x4.v]]] +
176[x1.w, [x1.v, [x1.v, x4.v]]] − 192[x1.w, [x1.w, [v, x4.v]]] −
56 [x1.w, [x1.w, [w, x3.v]]] + 792[x1.w, [x1.w, [x1.v, x2.w]]] +
176[x2.v, [w, [w, x4.v]]] + 152[x2.v, [x1.v, [w, x4.v]]] +
46[x2.v, [x1.v, [x1.v, x4.v]]] + 755[x2.v, [x1.w, [v, x4.v]]] −
1632[x2.v, [x1.w, [w, x3.v]]] + 2688 [x2.v, [x1.w, [x1.v, x2.w]]] −
178[x2.v, [x2.v, [v, x4.v]]] + 2376[x2.v, [x2.v, [w, x2.w]]] +
556[x2.v, [x2.v, [w, x3.v]]] − 36[x2.v, [x2.v, [x1.v, x2.w]]] +
64 [x2.w, [w, [w, x3.v]]] − 88[x2.w, [x1.v, [v, x4.v]]] +
3072 [x2.w, [x1.v, [w, x2.w]]] − 64[x2.w, [x1.v, [w, x3.v]]]

4 0 720[[v, x4.v], [x1.v, x2.w]] 704[x1.w, [w, [w, x4.v]]] − 112[x1.w, [x1.v, [w, x4.v]]] −
176[x1.w, [x1.v, [x1.v, x4.v]]] − 1248[x1.w, [x1.w, [v, x4.v]]] +
1976[x1.w, [x1.w, [w, x3.v]]] − 6552[x1.w, [x1.w, [x1.v, x2.w]]] −
176[x2.v, [w, [w, x4.v]]] − 152[x2.v, [x1.v, [w, x4.v]]] −
46[x2.v, [x1.v, [x1.v, x4.v]]] − 755[x2.v, [x1.w, [v, x4.v]]] −
288[x2.v, [x1.w, [w, x3.v]]] − 8448 [x2.v, [x1.w, [x1.v, x2.w]]] −
422[x2.v, [x2.v, [v, x4.v]]] + 2424[x2.v, [x2.v, [w, x2.w]]] +
404[x2.v, [x2.v, [w, x3.v]]] − 2844[x2.v, [x2.v, [x1.v, x2.w]]] −
64[x2.w, [w, [w, x3.v]]] + 88[x2.w, [x1.v, [v, x4.v]]] −
3072[x2.w, [x1.v, [w, x2.w]]] + 64[x2.w, [x1.v, [w, x3.v]]]

continued
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l m LM(b) for b ∈ B b − LM(b)
4 0 480[[w, x1.w], [w, x4.v]] 1328[x1.w, [w, [w, x4.v]]] + 1616[x1.w, [x1.v, [w, x4.v]]] +

508[x1.w, [x1.v, [x1.v, x4.v]]] + 1404[x1.w, [x1.w, [v, x4.v]]] −
1888[x1.w, [x1.w, [w, x3.v]]] + 4896[x1.w, [x1.w, [x1.v, x2.w]]] +
688[x2.v, [w, [w, x4.v]]] + 496[x2.v, [x1.v, [w, x4.v]]] +
113[x2.v, [x1.v, [x1.v, x4.v]]] + 280[x2.v, [x1.w, [v, x4.v]]] +
744[x2.v, [x1.w, [w, x3.v]]] + 264 [x2.v, [x1.w, [x1.v, x2.w]]] −
314[x2.v, [x2.v, [v, x4.v]]] + 3768[x2.v, [x2.v, [w, x2.w]]] +
308[x2.v, [x2.v, [w, x3.v]]] − 2628[x2.v, [x2.v, [x1.v, x2.w]]] +
240[x2.w, [w, [v, x4.v]]] − 448[x2.w, [w, [w, x3.v]]] −
44 [x2.w, [x1.v, [v, x4.v]]] + 2976[x2.w, [x1.v, [w, x2.w]]] −
272[x2.w, [x1.v, [w, x3.v]]]

4 0 320[[w, x1.w], [x1.v, x4.v]] −1216[x1.w, [w, [w, x4.v]]] − 2032[x1.w, [x1.v, [w, x4.v]]] −
736[x1.w, [x1.v, [x1.v, x4.v]]] − 2048[x1.w, [x1.w, [v, x4.v]]] +
2856[x1.w, [x1.w, [w, x3.v]]] − 7752[x1.w, [x1.w, [x1.v, x2.w]]] −
176[x2.v, [w, [w, x4.v]]] − 152[x2.v, [x1.v, [w, x4.v]]] −
86[x2.v, [x1.v, [x1.v, x4.v]]] + 535[x2.v, [x1.w, [v, x4.v]]] −
1728[x2.v, [x1.w, [w, x3.v]]] + 5472 [x2.v, [x1.w, [x1.v, x2.w]]] +
658[x2.v, [x2.v, [v, x4.v]]] − 6696[x2.v, [x2.v, [w, x2.w]]] −
76[x2.v, [x2.v, [w, x3.v]]] + 6276[x2.v, [x2.v, [x1.v, x2.w]]] −
160[x2.w, [w, [v, x4.v]]] + 576[x2.w, [w, [w, x3.v]]] +
168 [x2.w, [x1.v, [v, x4.v]]] − 3072[x2.w, [x1.v, [w, x2.w]]] +
384[x2.w, [x1.v, [w, x3.v]]]

4 0 384[[w, x1.w], [x1.w, x2.w]] −192[x1.w, [w, [w, x4.v]]] − 192[x1.w, [x1.v, [w, x4.v]]] −
48[x1.w, [x1.v, [x1.v, x4.v]]] − 136[x1.w, [x1.w, [v, x4.v]]] +
56 [x1.w, [x1.w, [w, x3.v]]] − 600[x1.w, [x1.w, [x1.v, x2.w]]] +
69[x2.v, [x1.w, [v, x4.v]]] − 64[x2.v, [x1.w, [w, x3.v]]] +
960[x2.v, [x1.w, [x1.v, x2.w]]] + 72[x2.v, [x2.v, [v, x4.v]]] −
440[x2.v, [x2.v, [w, x2.w]]] − 28 [x2.v, [x2.v, [w, x3.v]]] +
660[x2.v, [x2.v, [x1.v, x2.w]]]

4 0 960[[w, x1.w], [x1.w, x3.v]] −416[x1.w, [w, [w, x4.v]]] + 88[x1.w, [x1.v, [w, x4.v]]] +
164[x1.w, [x1.v, [x1.v, x4.v]]] + 432[x1.w, [x1.w, [v, x4.v]]] −
1424[x1.w, [x1.w, [w, x3.v]]] + 1008[x1.w, [x1.w, [x1.v, x2.w]]] +
104[x2.v, [w, [w, x4.v]]] + 68[x2.v, [x1.v, [w, x4.v]]] +
49[x2.v, [x1.v, [x1.v, x4.v]]] + 50[x2.v, [x1.w, [v, x4.v]]] +
552[x2.v, [x1.w, [w, x3.v]]] + 1752 [x2.v, [x1.w, [x1.v, x2.w]]] +
23[x2.v, [x2.v, [v, x4.v]]] + 804[x2.v, [x2.v, [w, x2.w]]] −
86[x2.v, [x2.v, [w, x3.v]]] − 54[x2.v, [x2.v, [x1.v, x2.w]]] −
224[x2.w, [w, [w, x3.v]]] − 172[x2.w, [x1.v, [v, x4.v]]] +
3648[x2.w, [x1.v, [w, x2.w]]] − 256[x2.w, [x1.v, [w, x3.v]]]

4 0 960[[w, x2.v], [w, x4.v]] −10112[x1.w, [w, [w, x4.v]]] − 17264[x1.w, [x1.v, [w, x4.v]]] −
6352[x1.w, [x1.v, [x1.v, x4.v]]] − 16656[x1.w, [x1.w, [v, x4.v]]] +
25672[x1.w, [x1.w, [w, x3.v]]] − 66024[x1.w, [x1.w, [x1.v, x2.w]]] −
4912[x2.v, [w, [w, x4.v]]] − 4504[x2.v, [x1.v, [w, x4.v]]] −
1322[x2.v, [x1.v, [x1.v, x4.v]]] − 1165[x2.v, [x1.w, [v, x4.v]]] −
6816[x2.v, [x1.w, [w, x3.v]]] + 17664[x2.v, [x1.w, [x1.v, x2.w]]] +
3506[x2.v, [x2.v, [v, x4.v]]] − 34632[x2.v, [x2.v, [w, x2.w]]] −
1532 [x2.v, [x2.v, [w, x3.v]]] + 35892[x2.v, [x2.v, [x1.v, x2.w]]] −
480[x2.w, [w, [v, x4.v]]] + 8512[x2.w, [w, [w, x3.v]]] +
1496[x2.w, [x1.v, [v, x4.v]]] − 46464[x2.w, [x1.v, [w, x2.w]]] +
3008[x2.w, [x1.v, [w, x3.v]]]

4 0 80[[w, x2.v], [x1.v, x4.v]] 768[x1.w, [w, [w, x4.v]]] + 1536[x1.w, [x1.v, [w, x4.v]]] +
488[x1.w, [x1.v, [x1.v, x4.v]]] + 1344[x1.w, [x1.w, [v, x4.v]]] −
2408[x1.w, [x1.w, [w, x3.v]]] + 4296[x1.w, [x1.w, [x1.v, x2.w]]] +
448[x2.v, [w, [w, x4.v]]] + 336[x2.v, [x1.v, [w, x4.v]]] +
48[x2.v, [x1.v, [x1.v, x4.v]]] − 15[x2.v, [x1.w, [v, x4.v]]] +
1104[x2.v, [x1.w, [w, x3.v]]] − 816 [x2.v, [x1.w, [x1.v, x2.w]]] −
524[x2.v, [x2.v, [v, x4.v]]] + 6528[x2.v, [x2.v, [w, x2.w]]] +
408[x2.v, [x2.v, [w, x3.v]]] − 3768[x2.v, [x2.v, [x1.v, x2.w]]] +
480[x2.w, [w, [v, x4.v]]] − 768[x2.w, [w, [w, x3.v]]] −
64 [x2.w, [x1.v, [v, x4.v]]] + 3456[x2.w, [x1.v, [w, x2.w]]] −
192[x2.w, [x1.v, [w, x3.v]]]

continued
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Appendix D. A Pseudo-Hall basis of g for d = 3

l m LM(b) for b ∈ B b − LM(b)
4 0 3840[[w, x2.v], [x1.w, x2.w]] 448[x1.w, [w, [w, x4.v]]] + 16[x1.w, [x1.v, [w, x4.v]]] +

128[x1.w, [x1.v, [x1.v, x4.v]]] + 64[x1.w, [x1.w, [v, x4.v]]] −
1048[x1.w, [x1.w, [w, x3.v]]] − 264[x1.w, [x1.w, [x1.v, x2.w]]] −
112[x2.v, [w, [w, x4.v]]] − 184[x2.v, [x1.v, [w, x4.v]]] −
62[x2.v, [x1.v, [x1.v, x4.v]]] − 385[x2.v, [x1.w, [v, x4.v]]] +
1024[x2.v, [x1.w, [w, x3.v]]] − 2016 [x2.v, [x1.w, [x1.v, x2.w]]] −
454[x2.v, [x2.v, [v, x4.v]]] + 5528[x2.v, [x2.v, [w, x2.w]]] +
308[x2.v, [x2.v, [w, x3.v]]] − 2748[x2.v, [x2.v, [x1.v, x2.w]]] +
480[x2.w, [w, [v, x4.v]]] + 832[x2.w, [w, [w, x3.v]]] −
184 [x2.w, [x1.v, [v, x4.v]]] + 5376[x2.w, [x1.v, [w, x2.w]]] +
128[x2.w, [x1.v, [w, x3.v]]]

4 0 1920[[w, x2.v], [x1.w, x3.v]] −3008[x1.w, [w, [w, x4.v]]] − 5456[x1.w, [x1.v, [w, x4.v]]] −
1168 [x1.w, [x1.v, [x1.v, x4.v]]] − 3264[x1.w, [x1.w, [v, x4.v]]] +
5128[x1.w, [x1.w, [w, x3.v]]] − 6696[x1.w, [x1.w, [x1.v, x2.w]]] −
3088[x2.v, [w, [w, x4.v]]] − 2056 [x2.v, [x1.v, [w, x4.v]]] −
98[x2.v, [x1.v, [x1.v, x4.v]]] − 1525[x2.v, [x1.w, [v, x4.v]]] −
3744[x2.v, [x1.w, [w, x3.v]]] − 12864[x2.v, [x1.w, [x1.v, x2.w]]] +
2054[x2.v, [x2.v, [v, x4.v]]] − 29208[x2.v, [x2.v, [w, x2.w]]] −
3428[x2.v, [x2.v, [w, x3.v]]] + 8748[x2.v, [x2.v, [x1.v, x2.w]]] −
3360[x2.w, [w, [v, x4.v]]] + 4288 [x2.w, [w, [w, x3.v]]] −
1096[x2.w, [x1.v, [v, x4.v]]] − 1536[x2.w, [x1.v, [w, x2.w]]] +
2432[x2.w, [x1.v, [w, x3.v]]]

4 0 1920[[w, x2.w], [w, x3.v]] −704[x1.w, [w, [w, x4.v]]] + 112[x1.w, [x1.v, [w, x4.v]]] +
176[x1.w, [x1.v, [x1.v, x4.v]]] + 288[x1.w, [x1.w, [v, x4.v]]] −
1496[x1.w, [x1.w, [w, x3.v]]] + 2232[x1.w, [x1.w, [x1.v, x2.w]]] +
176[x2.v, [w, [w, x4.v]]] + 152[x2.v, [x1.v, [w, x4.v]]] +
46[x2.v, [x1.v, [x1.v, x4.v]]] + 215[x2.v, [x1.w, [v, x4.v]]] +
288[x2.v, [x1.w, [w, x3.v]]] + 2688 [x2.v, [x1.w, [x1.v, x2.w]]] −
58[x2.v, [x2.v, [v, x4.v]]] + 2376[x2.v, [x2.v, [w, x2.w]]] +
76[x2.v, [x2.v, [w, x3.v]]] − 36[x2.v, [x2.v, [x1.v, x2.w]]] +
64 [x2.w, [w, [w, x3.v]]] − 88[x2.w, [x1.v, [v, x4.v]]] +
3072 [x2.w, [x1.v, [w, x2.w]]] − 64[x2.w, [x1.v, [w, x3.v]]]

4 0 5760[[w, x2.w], [x1.v, x2.w]] 704[x1.w, [w, [w, x4.v]]] − 112[x1.w, [x1.v, [w, x4.v]]] −
176[x1.w, [x1.v, [x1.v, x4.v]]] − 768[x1.w, [x1.w, [v, x4.v]]] +
1496[x1.w, [x1.w, [w, x3.v]]] − 2232[x1.w, [x1.w, [x1.v, x2.w]]] −
176[x2.v, [w, [w, x4.v]]] − 152[x2.v, [x1.v, [w, x4.v]]] −
46[x2.v, [x1.v, [x1.v, x4.v]]] − 215[x2.v, [x1.w, [v, x4.v]]] −
288[x2.v, [x1.w, [w, x3.v]]] − 2688 [x2.v, [x1.w, [x1.v, x2.w]]] −
302[x2.v, [x2.v, [v, x4.v]]] + 2424[x2.v, [x2.v, [w, x2.w]]] +
404[x2.v, [x2.v, [w, x3.v]]] − 1404[x2.v, [x2.v, [x1.v, x2.w]]] −
64[x2.w, [w, [w, x3.v]]] + 88[x2.w, [x1.v, [v, x4.v]]] −
3072[x2.w, [x1.v, [w, x2.w]]] + 64[x2.w, [x1.v, [w, x3.v]]]

4 0 480[[w, x3.v], [x1.v, x2.w]] 256[x1.w, [w, [w, x4.v]]] + 1072[x1.w, [x1.v, [w, x4.v]]] +
416[x1.w, [x1.v, [x1.v, x4.v]]] + 1168[x1.w, [x1.w, [v, x4.v]]] −
1816[x1.w, [x1.w, [w, x3.v]]] + 4152[x1.w, [x1.w, [x1.v, x2.w]]] −
144[x2.v, [w, [w, x4.v]]] + 152[x2.v, [x1.v, [w, x4.v]]] +
126[x2.v, [x1.v, [x1.v, x4.v]]] − 145[x2.v, [x1.w, [v, x4.v]]] −
512[x2.v, [x1.w, [w, x3.v]]] − 5472 [x2.v, [x1.w, [x1.v, x2.w]]] +
2[x2.v, [x2.v, [v, x4.v]]] − 2584[x2.v, [x2.v, [w, x2.w]]] −
484[x2.v, [x2.v, [w, x3.v]]] − 2436[x2.v, [x2.v, [x1.v, x2.w]]] −
400[x2.w, [w, [v, x4.v]]] − 256[x2.w, [w, [w, x3.v]]] −
288 [x2.w, [x1.v, [v, x4.v]]] + 3072[x2.w, [x1.v, [w, x2.w]]] −
224[x2.w, [x1.v, [w, x3.v]]]

4 1 40[x2.w, [x2.v, [w, x2.w]]] 32[x1.w, [x1.w, [x1.w, x2.w]]] + 8[x2.w, [x1.w, [w, x3.v]]] +
24 [x2.w, [x1.w, [x1.v, x2.w]]] − [x2.w, [x2.v, [v, x4.v]]]

4 1 1200[x3.v, [w, [w, x4.v]]] −3600[x1.w, [x1.w, [w, x4.v]]] − 900[x1.w, [x1.w, [x1.v, x4.v]]] +
598944[x1.w, [x1.w, [x1.w, x2.w]]] + 3600[x1.w, [x1.w, [x1.w, x3.v]]] +
5250[x2.v, [x1.w, [w, x4.v]]] + 450 [x2.v, [x1.w, [x1.v, x4.v]]] +
55800[x2.v, [x1.w, [x1.w, x2.w]]] + 2400[x2.v, [x1.w, [x1.w, x3.v]]] +
1725 [x2.v, [x2.v, [w, x4.v]]] + 1225[x2.v, [x2.v, [x1.v, x4.v]]] +
30100[x2.v, [x2.v, [x1.w, x2.w]]] + 3400[x2.v, [x2.v, [x1.w, x3.v]]] −
42640[x2.w, [w, [w, x4.v]]] + 2760 [x2.w, [x1.v, [w, x4.v]]] +
10240[x2.w, [x1.v, [x1.v, x4.v]]] + 19620[x2.w, [x1.w, [v, x4.v]]] −
60384[x2.w, [x1.w, [w, x3.v]]] + 348768[x2.w, [x1.w, [x1.v, x2.w]]] +
10608[x2.w, [x2.v, [v, x4.v]]] − 11120[x2.w, [x2.v, [w, x3.v]]] +
103200[x2.w, [x2.v, [x1.v, x2.w]]]

continued
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l m LM(b) for b ∈ B b − LM(b)
4 1 600[x3.v, [x1.v, [w, x4.v]]] −1200[x1.w, [x1.w, [w, x4.v]]] − 3300[x1.w, [x1.w, [x1.v, x4.v]]] −

440544[x1.w, [x1.w, [x1.w, x2.w]]] − 15600[x1.w, [x1.w, [x1.w, x3.v]]] −
3450[x2.v, [x1.w, [w, x4.v]]] − 4650 [x2.v, [x1.w, [x1.v, x4.v]]] −
41400[x2.v, [x1.w, [x1.w, x2.w]]] − 19200[x2.v, [x1.w, [x1.w, x3.v]]] −
825 [x2.v, [x2.v, [w, x4.v]]] − 825[x2.v, [x2.v, [x1.v, x4.v]]] −
3300[x2.v, [x2.v, [x1.w, x2.w]]] − 3000[x2.v, [x2.v, [x1.w, x3.v]]] +
17840[x2.w, [w, [w, x4.v]]] − 18360 [x2.w, [x1.v, [w, x4.v]]] −
11840[x2.w, [x1.v, [x1.v, x4.v]]] − 47820[x2.w, [x1.w, [v, x4.v]]] +
69984[x2.w, [x1.w, [w, x3.v]]] − 550368[x2.w, [x1.w, [x1.v, x2.w]]] −
15408[x2.w, [x2.v, [v, x4.v]]] + 7920[x2.w, [x2.v, [w, x3.v]]] −
175200[x2.w, [x2.v, [x1.v, x2.w]]]

4 1 6[x3.v, [x1.v, [x1.v, x4.v]]] −48[x1.w, [x1.w, [w, x4.v]]] − 84[x1.w, [x1.w, [x1.v, x4.v]]] −
7968[x1.w, [x1.w, [x1.w, x2.w]]] − 432[x1.w, [x1.w, [x1.w, x3.v]]] −
54[x2.v, [x1.w, [w, x4.v]]] − 30[x2.v, [x1.w, [x1.v, x4.v]]] −
168[x2.v, [x1.w, [x1.w, x2.w]]] − 192[x2.v, [x1.w, [x1.w, x3.v]]] −
15[x2.v, [x2.v, [w, x4.v]]] − 5[x2.v, [x2.v, [x1.v, x4.v]]] −
284 [x2.v, [x2.v, [x1.w, x2.w]]] − 56[x2.v, [x2.v, [x1.w, x3.v]]] +
336[x2.w, [w, [w, x4.v]]] − 120[x2.w, [x1.v, [w, x4.v]]] −
180[x2.w, [x1.v, [x1.v, x4.v]]] − 492[x2.w, [x1.w, [v, x4.v]]] +
624[x2.w, [x1.w, [w, x3.v]]] − 7920 [x2.w, [x1.w, [x1.v, x2.w]]] −
210[x2.w, [x2.v, [v, x4.v]]] + 88[x2.w, [x2.v, [w, x3.v]]] −
2328[x2.w, [x2.v, [x1.v, x2.w]]]

4 1 75[x3.v, [x1.w, [v, x4.v]]] 600[x1.w, [x1.w, [w, x4.v]]] − 150[x1.w, [x1.w, [x1.v, x4.v]]] −
23808[x1.w, [x1.w, [x1.w, x2.w]]] − 1200[x1.w, [x1.w, [x1.w, x3.v]]] −
150[x2.v, [x1.w, [w, x4.v]]] + 300 [x2.v, [x1.w, [x1.v, x4.v]]] −
4200[x2.v, [x1.w, [x1.w, x2.w]]] + 900[x2.v, [x1.w, [x1.w, x3.v]]] −
75 [x2.v, [x2.v, [w, x4.v]]] − 50[x2.v, [x2.v, [x1.v, x4.v]]] −
2300[x2.v, [x2.v, [x1.w, x2.w]]] − 200[x2.v, [x2.v, [x1.w, x3.v]]] +
1680[x2.w, [w, [w, x4.v]]] − 120 [x2.w, [x1.v, [w, x4.v]]] −
480[x2.w, [x1.v, [x1.v, x4.v]]] − 840[x2.w, [x1.w, [v, x4.v]]] +
1488[x2.w, [x1.w, [w, x3.v]]] − 18576[x2.w, [x1.w, [x1.v, x2.w]]] −
756[x2.w, [x2.v, [v, x4.v]]] + 640[x2.w, [x2.v, [w, x3.v]]] −
6000[x2.w, [x2.v, [x1.v, x2.w]]]

4 1 2400[x3.v, [x1.w, [w, x3.v]]] 3600[x1.w, [x1.w, [w, x4.v]]] − 7200[x1.w, [x1.w, [x1.v, x4.v]]] −
1382208[x1.w, [x1.w, [x1.w, x2.w]]] − 50400[x1.w, [x1.w, [x1.w, x3.v]]] −
10050[x2.v, [x1.w, [w, x4.v]]] − 3150 [x2.v, [x1.w, [x1.v, x4.v]]] −
167400[x2.v, [x1.w, [x1.w, x2.w]]] − 15600[x2.v, [x1.w, [x1.w, x3.v]]] −
4125 [x2.v, [x2.v, [w, x4.v]]] − 2675[x2.v, [x2.v, [x1.v, x4.v]]] −
59300[x2.v, [x2.v, [x1.w, x2.w]]] − 10400 [x2.v, [x2.v, [x1.w, x3.v]]] +
64880[x2.w, [w, [w, x4.v]]] − 32520[x2.w, [x1.v, [w, x4.v]]] −
32480[x2.w, [x1.v, [x1.v, x4.v]]] − 100440[x2.w, [x1.w, [v, x4.v]]] +
153888[x2.w, [x1.w, [w, x3.v]]] − 1418976[x2.w, [x1.w, [x1.v, x2.w]]] −
43356[x2.w, [x2.v, [v, x4.v]]] + 22240 [x2.w, [x2.v, [w, x3.v]]] −
447600[x2.w, [x2.v, [x1.v, x2.w]]]

4 1 3600[x3.v, [x1.w, [x1.v, x2.w]]] −2400 [x1.w, [x1.w, [w, x4.v]]] + 1500[x1.w, [x1.w, [x1.v, x4.v]]] +
155232[x1.w, [x1.w, [x1.w, x2.w]]] + 8400 [x1.w, [x1.w, [x1.w, x3.v]]] +
750[x2.v, [x1.w, [w, x4.v]]] + 150[x2.v, [x1.w, [x1.v, x4.v]]] +
6600[x2.v, [x1.w, [x1.w, x2.w]]] + 1200[x2.v, [x1.w, [x1.w, x3.v]]] +
375[x2.v, [x2.v, [w, x4.v]]] + 275[x2.v, [x2.v, [x1.v, x4.v]]] +
10700[x2.v, [x2.v, [x1.w, x2.w]]] + 800[x2.v, [x2.v, [x1.w, x3.v]]] −
9520[x2.w, [w, [w, x4.v]]] + 2280[x2.w, [x1.v, [w, x4.v]]] +
3520 [x2.w, [x1.v, [x1.v, x4.v]]] + 7860[x2.w, [x1.w, [v, x4.v]]] −
10752[x2.w, [x1.w, [w, x3.v]]] + 139104[x2.w, [x1.w, [x1.v, x2.w]]] +
5124[x2.w, [x2.v, [v, x4.v]]] − 4960[x2.w, [x2.v, [w, x3.v]]] +
46800[x2.w, [x2.v, [x1.v, x2.w]]]

4 1 100[x3.v, [x2.v, [v, x4.v]]] 2000[x1.w, [x1.w, [w, x4.v]]] + 3000[x1.w, [x1.w, [x1.v, x4.v]]] +
363264[x1.w, [x1.w, [x1.w, x2.w]]] + 16000[x1.w, [x1.w, [x1.w, x3.v]]] +
4250[x2.v, [x1.w, [w, x4.v]]] + 1950 [x2.v, [x1.w, [x1.v, x4.v]]] +
45800[x2.v, [x1.w, [x1.w, x2.w]]] + 10000[x2.v, [x1.w, [x1.w, x3.v]]] +
1025 [x2.v, [x2.v, [w, x4.v]]] + 675[x2.v, [x2.v, [x1.v, x4.v]]] +
8500[x2.v, [x2.v, [x1.w, x2.w]]] + 3200[x2.v, [x2.v, [x1.w, x3.v]]] −
13040[x2.w, [w, [w, x4.v]]] + 12360 [x2.w, [x1.v, [w, x4.v]]] +
9440[x2.w, [x1.v, [x1.v, x4.v]]] + 34320[x2.w, [x1.w, [v, x4.v]]] −
46304[x2.w, [x1.w, [w, x3.v]]] + 439008[x2.w, [x1.w, [x1.v, x2.w]]] +
12348[x2.w, [x2.v, [v, x4.v]]] − 5120[x2.w, [x2.v, [w, x3.v]]] +
138000[x2.w, [x2.v, [x1.v, x2.w]]]

continued
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Appendix D. A Pseudo-Hall basis of g for d = 3

l m LM(b) for b ∈ B b − LM(b)
4 1 480[x3.v, [x2.v, [w, x2.w]]] 240[x1.w, [x1.w, [w, x4.v]]] + 720[x1.w, [x1.w, [x1.v, x4.v]]] +

105408[x1.w, [x1.w, [x1.w, x2.w]]] + 4320[x1.w, [x1.w, [x1.w, x3.v]]] +
990[x2.v, [x1.w, [w, x4.v]]] + 450 [x2.v, [x1.w, [x1.v, x4.v]]] +
15000[x2.v, [x1.w, [x1.w, x2.w]]] + 2160[x2.v, [x1.w, [x1.w, x3.v]]] +
315 [x2.v, [x2.v, [w, x4.v]]] + 205[x2.v, [x2.v, [x1.v, x4.v]]] +
3100[x2.v, [x2.v, [x1.w, x2.w]]] + 880[x2.v, [x2.v, [x1.w, x3.v]]] −
3920[x2.w, [w, [w, x4.v]]] + 3480 [x2.w, [x1.v, [w, x4.v]]] +
2720[x2.w, [x1.v, [x1.v, x4.v]]] + 9720[x2.w, [x1.w, [v, x4.v]]] −
13728[x2.w, [x1.w, [w, x3.v]]] + 125856[x2.w, [x1.w, [x1.v, x2.w]]] +
3636[x2.w, [x2.v, [v, x4.v]]] − 1280[x2.w, [x2.v, [w, x3.v]]] +
39600[x2.w, [x2.v, [x1.v, x2.w]]]

4 1 150[x3.v, [x2.v, [w, x3.v]]] 900[x1.w, [x1.w, [w, x4.v]]] + 450[x1.w, [x1.w, [x1.v, x4.v]]] +
20544[x1.w, [x1.w, [x1.w, x2.w]]] + 1800[x1.w, [x1.w, [x1.w, x3.v]]] +
600[x2.v, [x1.w, [w, x4.v]]] + 450 [x2.v, [x1.w, [x1.v, x4.v]]] +
7200[x2.v, [x1.w, [x1.w, x2.w]]] + 2100[x2.v, [x1.w, [x1.w, x3.v]]] +
75 [x2.v, [x2.v, [w, x4.v]]] + 50[x2.v, [x2.v, [x1.v, x4.v]]] −
1600[x2.v, [x2.v, [x1.w, x2.w]]] + 350[x2.v, [x2.v, [x1.w, x3.v]]] +
760[x2.w, [w, [w, x4.v]]] + 2460 [x2.w, [x1.v, [w, x4.v]]] +
1040[x2.w, [x1.v, [x1.v, x4.v]]] + 5670[x2.w, [x1.w, [v, x4.v]]] −
5784[x2.w, [x1.w, [w, x3.v]]] + 55368[x2.w, [x1.w, [x1.v, x2.w]]] +
1533[x2.w, [x2.v, [v, x4.v]]] − 520[x2.w, [x2.v, [w, x3.v]]] +
18300[x2.w, [x2.v, [x1.v, x2.w]]]

4 1 3600[x3.v, [x2.v, [x1.v, x2.w]]] −6000 [x1.w, [x1.w, [w, x4.v]]] − 7200[x1.w, [x1.w, [x1.v, x4.v]]] −
1107264[x1.w, [x1.w, [x1.w, x2.w]]] − 40800 [x1.w, [x1.w, [x1.w, x3.v]]] −
13650[x2.v, [x1.w, [w, x4.v]]] − 6750[x2.v, [x1.w, [x1.v, x4.v]]] −
114600 [x2.v, [x1.w, [x1.w, x2.w]]] − 30000[x2.v, [x1.w, [x1.w, x3.v]]] −
3525[x2.v, [x2.v, [w, x4.v]]] − 2275 [x2.v, [x2.v, [x1.v, x4.v]]] −
31300[x2.v, [x2.v, [x1.w, x2.w]]] − 8800[x2.v, [x2.v, [x1.w, x3.v]]] +
45040 [x2.w, [w, [w, x4.v]]] − 31560[x2.w, [x1.v, [w, x4.v]]] −
27040[x2.w, [x1.v, [x1.v, x4.v]]] − 88920[x2.w, [x1.w, [v, x4.v]]] +
124704[x2.w, [x1.w, [w, x3.v]]] − 1192608 [x2.w, [x1.w, [x1.v, x2.w]]] −
34548[x2.w, [x2.v, [v, x4.v]]] + 19520[x2.w, [x2.v, [w, x3.v]]] −
380400[x2.w, [x2.v, [x1.v, x2.w]]]

4 1 150[x4.v, [w, [v, x4.v]]] −140064[x1.w, [x1.w, [x1.w, x2.w]]] − 2100[x2.v, [x1.w, [w, x4.v]]] −
900[x2.v, [x1.w, [x1.v, x4.v]]] − 34800[x2.v, [x1.w, [x1.w, x2.w]]] −
4200[x2.v, [x1.w, [x1.w, x3.v]]] − 450 [x2.v, [x2.v, [w, x4.v]]] −
425[x2.v, [x2.v, [x1.v, x4.v]]] − 2000[x2.v, [x2.v, [x1.w, x2.w]]] −
1400[x2.v, [x2.v, [x1.w, x3.v]]] + 2240[x2.w, [w, [w, x4.v]]] −
5160 [x2.w, [x1.v, [w, x4.v]]] − 4040[x2.w, [x1.v, [x1.v, x4.v]]] −
16020[x2.w, [x1.w, [v, x4.v]]] + 22704[x2.w, [x1.w, [w, x3.v]]] −
184608[x2.w, [x1.w, [x1.v, x2.w]]] − 5448[x2.w, [x2.v, [v, x4.v]]] +
1120[x2.w, [x2.v, [w, x3.v]]] − 60600[x2.w, [x2.v, [x1.v, x2.w]]]

4 1 28800[x4.v, [w, [w, x2.w]]] 3600[x1.w, [x1.w, [w, x4.v]]] − 30000[x1.w, [x1.w, [x1.v, x4.v]]] −
3681984[x1.w, [x1.w, [x1.w, x2.w]]] − 170400[x1.w, [x1.w, [x1.w, x3.v]]] −
28350[x2.v, [x1.w, [w, x4.v]]] − 19650[x2.v, [x1.w, [x1.v, x4.v]]] −
567000[x2.v, [x1.w, [x1.w, x2.w]]] − 87600[x2.v, [x1.w, [x1.w, x3.v]]] −
9675 [x2.v, [x2.v, [w, x4.v]]] − 7825[x2.v, [x2.v, [x1.v, x4.v]]] −
115900[x2.v, [x2.v, [x1.w, x2.w]]] − 26800 [x2.v, [x2.v, [x1.w, x3.v]]] +
85840[x2.w, [w, [w, x4.v]]] − 157560[x2.w, [x1.v, [w, x4.v]]] −
107440[x2.w, [x1.v, [x1.v, x4.v]]] − 418920[x2.w, [x1.w, [v, x4.v]]] +
544224[x2.w, [x1.w, [w, x3.v]]] − 5190048[x2.w, [x1.w, [x1.v, x2.w]]] −
157188[x2.w, [x2.v, [v, x4.v]]] + 36320 [x2.w, [x2.v, [w, x3.v]]] −
1690800[x2.w, [x2.v, [x1.v, x2.w]]]

4 1 2400[x4.v, [w, [w, x3.v]]] −18000[x1.w, [x1.w, [w, x4.v]]] − 4200[x1.w, [x1.w, [x1.v, x4.v]]] −
378624[x1.w, [x1.w, [x1.w, x2.w]]] − 24000[x1.w, [x1.w, [x1.w, x3.v]]] −
2850[x2.v, [x1.w, [w, x4.v]]] − 3750 [x2.v, [x1.w, [x1.v, x4.v]]] −
131400[x2.v, [x1.w, [x1.w, x2.w]]] − 10800[x2.v, [x1.w, [x1.w, x3.v]]] −
2325 [x2.v, [x2.v, [w, x4.v]]] − 1675[x2.v, [x2.v, [x1.v, x4.v]]] +
9500[x2.v, [x2.v, [x1.w, x2.w]]] − 6400[x2.v, [x2.v, [x1.w, x3.v]]] +
6640[x2.w, [w, [w, x4.v]]] − 17160 [x2.w, [x1.v, [w, x4.v]]] −
13840[x2.w, [x1.v, [x1.v, x4.v]]] − 48720[x2.w, [x1.w, [v, x4.v]]] +
63264[x2.w, [x1.w, [w, x3.v]]] − 613728[x2.w, [x1.w, [x1.v, x2.w]]] −
18468[x2.w, [x2.v, [v, x4.v]]] + 9920[x2.w, [x2.v, [w, x3.v]]] −
193200[x2.w, [x2.v, [x1.v, x2.w]]]

continued
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l m LM(b) for b ∈ B b − LM(b)
4 1 900[x4.v, [x1.v, [v, x4.v]]] −6000[x1.w, [x1.w, [w, x4.v]]] + 2400[x1.w, [x1.w, [x1.v, x4.v]]] −

178752[x1.w, [x1.w, [x1.w, x2.w]]] − 2400[x1.w, [x1.w, [x1.w, x3.v]]] −
4350[x2.v, [x1.w, [w, x4.v]]] + 5550 [x2.v, [x1.w, [x1.v, x4.v]]] −
63000[x2.v, [x1.w, [x1.w, x2.w]]] + 18000[x2.v, [x1.w, [x1.w, x3.v]]] −
75 [x2.v, [x2.v, [w, x4.v]]] + 775[x2.v, [x2.v, [x1.v, x4.v]]] −
16700[x2.v, [x2.v, [x1.w, x2.w]]] − 2000[x2.v, [x2.v, [x1.w, x3.v]]] −
8880[x2.w, [w, [w, x4.v]]] − 20280 [x2.w, [x1.v, [w, x4.v]]] −
4320[x2.w, [x1.v, [x1.v, x4.v]]] − 20760[x2.w, [x1.w, [v, x4.v]]] −
28128[x2.w, [x1.w, [w, x3.v]]] − 219744[x2.w, [x1.w, [x1.v, x2.w]]] −
11964[x2.w, [x2.v, [v, x4.v]]] + 7360[x2.w, [x2.v, [w, x3.v]]] −
99600[x2.w, [x2.v, [x1.v, x2.w]]]

4 1 8640[x4.v, [x1.v, [w, x2.w]]] 14160[x1.w, [x1.w, [w, x4.v]]] − 4800[x1.w, [x1.w, [x1.v, x4.v]]] −
593472[x1.w, [x1.w, [x1.w, x2.w]]] − 25440[x1.w, [x1.w, [x1.w, x3.v]]] −
2550[x2.v, [x1.w, [w, x4.v]]] − 570 [x2.v, [x1.w, [x1.v, x4.v]]] −
113400[x2.v, [x1.w, [x1.w, x2.w]]] − 5040[x2.v, [x1.w, [x1.w, x3.v]]] −
1335 [x2.v, [x2.v, [w, x4.v]]] − 605[x2.v, [x2.v, [x1.v, x4.v]]] −
23660[x2.v, [x2.v, [x1.w, x2.w]]] − 3920[x2.v, [x2.v, [x1.w, x3.v]]] −
2160[x2.w, [w, [w, x4.v]]] − 44760 [x2.w, [x1.v, [w, x4.v]]] −
20400[x2.w, [x1.v, [x1.v, x4.v]]] − 95640[x2.w, [x1.w, [v, x4.v]]] +
84192[x2.w, [x1.w, [w, x3.v]]] − 1109664[x2.w, [x1.w, [x1.v, x2.w]]] −
36084[x2.w, [x2.v, [v, x4.v]]] + 1120[x2.w, [x2.v, [w, x3.v]]] −
380400[x2.w, [x2.v, [x1.v, x2.w]]]

4 1 900[x4.v, [x1.v, [w, x3.v]]] 4800[x1.w, [x1.w, [w, x4.v]]] + 19950[x1.w, [x1.w, [x1.v, x4.v]]] +
2394384[x1.w, [x1.w, [x1.w, x2.w]]] + 111000[x1.w, [x1.w, [x1.w, x3.v]]] +
19950[x2.v, [x1.w, [w, x4.v]]] + 15000[x2.v, [x1.w, [x1.v, x4.v]]] +
360000[x2.v, [x1.w, [x1.w, x2.w]]] + 61200[x2.v, [x1.w, [x1.w, x3.v]]] +
7575 [x2.v, [x2.v, [w, x4.v]]] + 6025[x2.v, [x2.v, [x1.v, x4.v]]] +
61900[x2.v, [x2.v, [x1.w, x2.w]]] + 19900 [x2.v, [x2.v, [x1.w, x3.v]]] −
73440[x2.w, [w, [w, x4.v]]] + 87360[x2.w, [x1.v, [w, x4.v]]] +
68340[x2.w, [x1.v, [x1.v, x4.v]]] + 248970[x2.w, [x1.w, [v, x4.v]]] −
335424[x2.w, [x1.w, [w, x3.v]]] + 3184848[x2.w, [x1.w, [x1.v, x2.w]]] +
94488[x2.w, [x2.v, [v, x4.v]]] − 30320 [x2.w, [x2.v, [w, x3.v]]] +
1014600[x2.w, [x2.v, [x1.v, x2.w]]]

4 1 21600[x4.v, [x1.v, [x1.v, x2.w]]] −13200 [x1.w, [x1.w, [w, x4.v]]] − 22800[x1.w, [x1.w, [x1.v, x4.v]]] −
3146304[x1.w, [x1.w, [x1.w, x2.w]]] − 117600 [x1.w, [x1.w, [x1.w, x3.v]]] −
19650[x2.v, [x1.w, [w, x4.v]]] − 54750[x2.v, [x1.w, [x1.v, x4.v]]] +
163800 [x2.v, [x1.w, [x1.w, x2.w]]] − 205200[x2.v, [x1.w, [x1.w, x3.v]]] −
9525[x2.v, [x2.v, [w, x4.v]]] − 9575 [x2.v, [x2.v, [x1.v, x4.v]]] −
4100[x2.v, [x2.v, [x1.w, x2.w]]] − 16400[x2.v, [x2.v, [x1.w, x3.v]]] +
149040[x2.w, [w, [w, x4.v]]] − 69960[x2.w, [x1.v, [w, x4.v]]] −
79440[x2.w, [x1.v, [x1.v, x4.v]]] − 235320 [x2.w, [x1.w, [v, x4.v]]] +
416544[x2.w, [x1.w, [w, x3.v]]] − 3326688[x2.w, [x1.w, [x1.v, x2.w]]] −
81228 [x2.w, [x2.v, [v, x4.v]]] + 49120[x2.w, [x2.v, [w, x3.v]]] −
1035600[x2.w, [x2.v, [x1.v, x2.w]]]

4 1 43200[x4.v, [x1.w, [v, x2.w]]] 37200[x1.w, [x1.w, [w, x4.v]]] − 44400[x1.w, [x1.w, [x1.v, x4.v]]] −
5128896[x1.w, [x1.w, [x1.w, x2.w]]] − 276000[x1.w, [x1.w, [x1.w, x3.v]]] −
45750[x2.v, [x1.w, [w, x4.v]]] − 25050[x2.v, [x1.w, [x1.v, x4.v]]] −
761400[x2.v, [x1.w, [x1.w, x2.w]]] − 111600[x2.v, [x1.w, [x1.w, x3.v]]] −
17175[x2.v, [x2.v, [w, x4.v]]] − 12725[x2.v, [x2.v, [x1.v, x4.v]]] −
171500[x2.v, [x2.v, [x1.w, x2.w]]] − 45200[x2.v, [x2.v, [x1.w, x3.v]]] +
220560[x2.w, [w, [w, x4.v]]] − 162840[x2.w, [x1.v, [w, x4.v]]] −
143760[x2.w, [x1.v, [x1.v, x4.v]]] − 496680[x2.w, [x1.w, [v, x4.v]]] +
725856[x2.w, [x1.w, [w, x3.v]]] − 6666912[x2.w, [x1.w, [x1.v, x2.w]]] −
198372[x2.w, [x2.v, [v, x4.v]]] + 69280 [x2.w, [x2.v, [w, x3.v]]] −
2079600[x2.w, [x2.v, [x1.v, x2.w]]]

4 1 1440[x4.v, [x1.w, [v, x3.v]]] −240[x1.w, [x1.w, [w, x4.v]]] − 480[x1.w, [x1.w, [x1.v, x4.v]]] +
1071168[x1.w, [x1.w, [x1.w, x2.w]]] + 32160[x1.w, [x1.w, [x1.w, x3.v]]] +
9330[x2.v, [x1.w, [w, x4.v]]] + 6990 [x2.v, [x1.w, [x1.v, x4.v]]] +
204840[x2.v, [x1.w, [x1.w, x2.w]]] + 33840[x2.v, [x1.w, [x1.w, x3.v]]] +
3165 [x2.v, [x2.v, [w, x4.v]]] + 2395[x2.v, [x2.v, [x1.v, x4.v]]] +
17860[x2.v, [x2.v, [x1.w, x2.w]]] + 9520[x2.v, [x2.v, [x1.w, x3.v]]] −
30000[x2.w, [w, [w, x4.v]]] + 44520 [x2.w, [x1.v, [w, x4.v]]] +
31200[x2.w, [x1.v, [x1.v, x4.v]]] + 118200[x2.w, [x1.w, [v, x4.v]]] −
175008[x2.w, [x1.w, [w, x3.v]]] + 1456416[x2.w, [x1.w, [x1.v, x2.w]]] +
45636[x2.w, [x2.v, [v, x4.v]]] − 15680[x2.w, [x2.v, [w, x3.v]]] +
486480[x2.w, [x2.v, [x1.v, x2.w]]]

continued
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Appendix D. A Pseudo-Hall basis of g for d = 3

l m LM(b) for b ∈ B b − LM(b)
4 1 1440[[v, x1.w], [x2.w, x4.v]] 1680[x1.w, [x1.w, [w, x4.v]]] − 240[x1.w, [x1.w, [x1.v, x4.v]]] −

134976[x1.w, [x1.w, [x1.w, x2.w]]] − 3360[x1.w, [x1.w, [x1.w, x3.v]]] −
630[x2.v, [x1.w, [w, x4.v]]] − 330 [x2.v, [x1.w, [x1.v, x4.v]]] −
20280[x2.v, [x1.w, [x1.w, x2.w]]] − 1680[x2.v, [x1.w, [x1.w, x3.v]]] −
375 [x2.v, [x2.v, [w, x4.v]]] − 265[x2.v, [x2.v, [x1.v, x4.v]]] −
5260[x2.v, [x2.v, [x1.w, x2.w]]] − 880[x2.v, [x2.v, [x1.w, x3.v]]] +
4240[x2.w, [w, [w, x4.v]]] − 4920 [x2.w, [x1.v, [w, x4.v]]] −
3520[x2.w, [x1.v, [x1.v, x4.v]]] − 13080[x2.w, [x1.w, [v, x4.v]]] +
17376[x2.w, [x1.w, [w, x3.v]]] − 166752[x2.w, [x1.w, [x1.v, x2.w]]] −
5292[x2.w, [x2.v, [v, x4.v]]] + 1280[x2.w, [x2.v, [w, x3.v]]] −
54960[x2.w, [x2.v, [x1.v, x2.w]]]

4 1 5400[[v, x2.v], [x2.w, x4.v]] 6000[x1.w, [x1.w, [w, x4.v]]] + 22800[x1.w, [x1.w, [x1.v, x4.v]]] +
2808768[x1.w, [x1.w, [x1.w, x2.w]]] + 103200[x1.w, [x1.w, [x1.w, x3.v]]] +
36750[x2.v, [x1.w, [w, x4.v]]] + 19650[x2.v, [x1.w, [x1.v, x4.v]]] +
437400[x2.v, [x1.w, [x1.w, x2.w]]] + 82800[x2.v, [x1.w, [x1.w, x3.v]]] +
9075 [x2.v, [x2.v, [w, x4.v]]] + 7025[x2.v, [x2.v, [x1.v, x4.v]]] +
62300[x2.v, [x2.v, [x1.w, x2.w]]] + 26000 [x2.v, [x2.v, [x1.w, x3.v]]] −
102480[x2.w, [w, [w, x4.v]]] + 86520[x2.w, [x1.v, [w, x4.v]]] +
76080[x2.w, [x1.v, [x1.v, x4.v]]] + 272040[x2.w, [x1.w, [v, x4.v]]] −
404448[x2.w, [x1.w, [w, x3.v]]] + 3432096[x2.w, [x1.w, [x1.v, x2.w]]] +
96276[x2.w, [x2.v, [v, x4.v]]] − 36640 [x2.w, [x2.v, [w, x3.v]]] +
1071600[x2.w, [x2.v, [x1.v, x2.w]]]

4 1 1728[[v, x2.w], [x1.w, x4.v]] −240[x1.w, [x1.w, [w, x4.v]]] − 912[x1.w, [x1.w, [x1.v, x4.v]]] −
130368[x1.w, [x1.w, [x1.w, x2.w]]] − 4128[x1.w, [x1.w, [x1.w, x3.v]]] −
1182[x2.v, [x1.w, [w, x4.v]]] − 786 [x2.v, [x1.w, [x1.v, x4.v]]] −
17496[x2.v, [x1.w, [x1.w, x2.w]]] − 3600[x2.v, [x1.w, [x1.w, x3.v]]] −
363 [x2.v, [x2.v, [w, x4.v]]] − 293[x2.v, [x2.v, [x1.v, x4.v]]] −
2972[x2.v, [x2.v, [x1.w, x2.w]]] − 944[x2.v, [x2.v, [x1.w, x3.v]]] +
3408[x2.w, [w, [w, x4.v]]] − 4440 [x2.w, [x1.v, [w, x4.v]]] −
3360[x2.w, [x1.v, [x1.v, x4.v]]] − 11832[x2.w, [x1.w, [v, x4.v]]] +
15072[x2.w, [x1.w, [w, x3.v]]] − 164448[x2.w, [x1.w, [x1.v, x2.w]]] −
4764[x2.w, [x2.v, [v, x4.v]]] + 1216[x2.w, [x2.v, [w, x3.v]]] −
50352[x2.w, [x2.v, [x1.v, x2.w]]]

4 1 10800[[v, x2.w], [x2.v, x4.v]] 13200[x1.w, [x1.w, [w, x4.v]]] + 58800[x1.w, [x1.w, [x1.v, x4.v]]] +
5209536[x1.w, [x1.w, [x1.w, x2.w]]] + 261600[x1.w, [x1.w, [x1.w, x3.v]]] +
70050[x2.v, [x1.w, [w, x4.v]]] + 36750[x2.v, [x1.w, [x1.v, x4.v]]] +
441000[x2.v, [x1.w, [x1.w, x2.w]]] + 169200[x2.v, [x1.w, [x1.w, x3.v]]] +
16725[x2.v, [x2.v, [w, x4.v]]] + 14075[x2.v, [x2.v, [x1.v, x4.v]]] +
140900[x2.v, [x2.v, [x1.w, x2.w]]] + 45200[x2.v, [x2.v, [x1.w, x3.v]]] −
189360[x2.w, [w, [w, x4.v]]] + 152040[x2.w, [x1.v, [w, x4.v]]] +
141360[x2.w, [x1.v, [x1.v, x4.v]]] + 460680[x2.w, [x1.w, [v, x4.v]]] −
604896[x2.w, [x1.w, [w, x3.v]]] + 6295392[x2.w, [x1.w, [x1.v, x2.w]]] +
177852[x2.w, [x2.v, [v, x4.v]]] − 69280 [x2.w, [x2.v, [w, x3.v]]] +
1964400[x2.w, [x2.v, [x1.v, x2.w]]]

4 1 7200[[v, x3.v], [x1.w, x4.v]] −1200[x1.w, [x1.w, [w, x4.v]]] + 12000[x1.w, [x1.w, [x1.v, x4.v]]] +
2019648[x1.w, [x1.w, [x1.w, x2.w]]] + 45600[x1.w, [x1.w, [x1.w, x3.v]]] +
25050[x2.v, [x1.w, [w, x4.v]]] + 6150 [x2.v, [x1.w, [x1.v, x4.v]]] +
477000[x2.v, [x1.w, [x1.w, x2.w]]] + 54000[x2.v, [x1.w, [x1.w, x3.v]]] +
5025 [x2.v, [x2.v, [w, x4.v]]] + 4775[x2.v, [x2.v, [x1.v, x4.v]]] +
46100[x2.v, [x2.v, [x1.w, x2.w]]] + 18800 [x2.v, [x2.v, [x1.w, x3.v]]] −
4080[x2.w, [w, [w, x4.v]]] + 118920[x2.w, [x1.v, [w, x4.v]]] +
67680[x2.w, [x1.v, [x1.v, x4.v]]] + 282840[x2.w, [x1.w, [v, x4.v]]] −
292128 [x2.w, [x1.w, [w, x3.v]]] + 3293856[x2.w, [x1.w, [x1.v, x2.w]]] +
116436[x2.w, [x2.v, [v, x4.v]]] − 43840[x2.w, [x2.v, [w, x3.v]]] +
1165200[x2.w, [x2.v, [x1.v, x2.w]]]

4 1 1800[[v, x3.v], [x2.v, x4.v]] 37200[x1.w, [x1.w, [w, x4.v]]] + 16800[x1.w, [x1.w, [x1.v, x4.v]]] +
3702336[x1.w, [x1.w, [x1.w, x2.w]]] + 141600[x1.w, [x1.w, [x1.w, x3.v]]] +
22650[x2.v, [x1.w, [w, x4.v]]] + 46950[x2.v, [x1.w, [x1.v, x4.v]]] +
563400[x2.v, [x1.w, [x1.w, x2.w]]] + 140400[x2.v, [x1.w, [x1.w, x3.v]]] +
13425[x2.v, [x2.v, [w, x4.v]]] + 9175[x2.v, [x2.v, [x1.v, x4.v]]] +
6100[x2.v, [x2.v, [x1.w, x2.w]]] + 31600 [x2.v, [x2.v, [x1.w, x3.v]]] −
107760[x2.w, [w, [w, x4.v]]] + 164040[x2.w, [x1.v, [w, x4.v]]] +
112560[x2.w, [x1.v, [x1.v, x4.v]]] + 416280[x2.w, [x1.w, [v, x4.v]]] −
585696[x2.w, [x1.w, [w, x3.v]]] + 5028192[x2.w, [x1.w, [x1.v, x2.w]]] +
157452[x2.w, [x2.v, [v, x4.v]]] − 75680 [x2.w, [x2.v, [w, x3.v]]] +
1671600[x2.w, [x2.v, [x1.v, x2.w]]]

continued
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l m LM(b) for b ∈ B b − LM(b)
4 1 600[[v, x4.v], [w, x4.v]] −3600[x1.w, [x1.w, [w, x4.v]]] − 10800[x1.w, [x1.w, [x1.v, x4.v]]] −

949056[x1.w, [x1.w, [x1.w, x2.w]]] − 50400[x1.w, [x1.w, [x1.w, x3.v]]] −
8850[x2.v, [x1.w, [w, x4.v]]] − 6750 [x2.v, [x1.w, [x1.v, x4.v]]] −
109800[x2.v, [x1.w, [x1.w, x2.w]]] − 27600[x2.v, [x1.w, [x1.w, x3.v]]] −
2925 [x2.v, [x2.v, [w, x4.v]]] − 1975[x2.v, [x2.v, [x1.v, x4.v]]] −
24100[x2.v, [x2.v, [x1.w, x2.w]]] − 7600[x2.v, [x2.v, [x1.w, x3.v]]] +
35760[x2.w, [w, [w, x4.v]]] − 34440 [x2.w, [x1.v, [w, x4.v]]] −
26160[x2.w, [x1.v, [x1.v, x4.v]]] − 94680[x2.w, [x1.w, [v, x4.v]]] +
131616[x2.w, [x1.w, [w, x3.v]]] − 1220832[x2.w, [x1.w, [x1.v, x2.w]]] −
35292[x2.w, [x2.v, [v, x4.v]]] + 13280[x2.w, [x2.v, [w, x3.v]]] −
382800[x2.w, [x2.v, [x1.v, x2.w]]]

4 1 75[[v, x4.v], [x1.v, x4.v]] 1200[x1.w, [x1.w, [w, x4.v]]] + 300[x1.w, [x1.w, [x1.v, x4.v]]] +
28032[x1.w, [x1.w, [x1.w, x2.w]]] + 3600[x1.w, [x1.w, [x1.w, x3.v]]] +
150[x2.v, [x1.w, [w, x4.v]]] − 150 [x2.v, [x1.w, [x1.v, x4.v]]] −
600[x2.v, [x1.w, [x1.w, x2.w]]] + 600[x2.v, [x1.w, [x1.w, x3.v]]] +
75[x2.v, [x2.v, [w, x4.v]]] + 50[x2.v, [x2.v, [x1.v, x4.v]]] +
1700[x2.v, [x2.v, [x1.w, x2.w]]] + 200[x2.v, [x2.v, [x1.w, x3.v]]] −
1520[x2.w, [w, [w, x4.v]]] + 480[x2.w, [x1.v, [w, x4.v]]] +
620[x2.w, [x1.v, [x1.v, x4.v]]] + 960[x2.w, [x1.w, [v, x4.v]]] −
1152[x2.w, [x1.w, [w, x3.v]]] + 27504[x2.w, [x1.w, [x1.v, x2.w]]] +
774[x2.w, [x2.v, [v, x4.v]]] − 760[x2.w, [x2.v, [w, x3.v]]] +
8400 [x2.w, [x2.v, [x1.v, x2.w]]]

4 1 2[[v, x4.v], [x1.w, x2.w]] [x1.w, [x1.w, [x1.v, x4.v]]] − 24[x1.w, [x1.w, [x1.w, x2.w]]] +
4 [x1.w, [x1.w, [x1.w, x3.v]]] − 4[x2.v, [x1.w, [x1.w, x2.w]]] −
[x2.w, [x1.w, [v, x4.v]]]

4 1 300[[v, x4.v], [x1.w, x3.v]] −1200[x1.w, [x1.w, [w, x4.v]]] − 35232[x1.w, [x1.w, [x1.w, x2.w]]] −
2400[x1.w, [x1.w, [x1.w, x3.v]]] − 150[x2.v, [x1.w, [w, x4.v]]] +
450[x2.v, [x1.w, [x1.v, x4.v]]] − 5400[x2.v, [x1.w, [x1.w, x2.w]]] +
600[x2.v, [x1.w, [x1.w, x3.v]]] − 75[x2.v, [x2.v, [w, x4.v]]] −
50[x2.v, [x2.v, [x1.v, x4.v]]] − 2900[x2.v, [x2.v, [x1.w, x2.w]]] −
200 [x2.v, [x2.v, [x1.w, x3.v]]] + 1520[x2.w, [w, [w, x4.v]]] −
480[x2.w, [x1.v, [w, x4.v]]] − 620[x2.w, [x1.v, [x1.v, x4.v]]] −
1260[x2.w, [x1.w, [v, x4.v]]] + 1152[x2.w, [x1.w, [w, x3.v]]] −
27504[x2.w, [x1.w, [x1.v, x2.w]]] − 1074[x2.w, [x2.v, [v, x4.v]]] +
760[x2.w, [x2.v, [w, x3.v]]] − 8400[x2.w, [x2.v, [x1.v, x2.w]]]

4 1 28800[[w, x1.w], [x1.w, x4.v]] 10800[x1.w, [x1.w, [w, x4.v]]] + 9600[x1.w, [x1.w, [x1.v, x4.v]]] +
1622976[x1.w, [x1.w, [x1.w, x2.w]]] + 60000[x1.w, [x1.w, [x1.w, x3.v]]] +
15750[x2.v, [x1.w, [w, x4.v]]] + 8250 [x2.v, [x1.w, [x1.v, x4.v]]] +
291000[x2.v, [x1.w, [x1.w, x2.w]]] + 42000[x2.v, [x1.w, [x1.w, x3.v]]] +
3375 [x2.v, [x2.v, [w, x4.v]]] + 3625[x2.v, [x2.v, [x1.v, x4.v]]] +
54700[x2.v, [x2.v, [x1.w, x2.w]]] + 10000 [x2.v, [x2.v, [x1.w, x3.v]]] +
240[x2.w, [w, [w, x4.v]]] + 88440[x2.w, [x1.v, [w, x4.v]]] +
51360[x2.w, [x1.v, [x1.v, x4.v]]] + 225480[x2.w, [x1.w, [v, x4.v]]] −
243936 [x2.w, [x1.w, [w, x3.v]]] + 2597472[x2.w, [x1.w, [x1.v, x2.w]]] +
81132[x2.w, [x2.v, [v, x4.v]]] − 6080[x2.w, [x2.v, [w, x3.v]]] +
879600[x2.w, [x2.v, [x1.v, x2.w]]]

4 1 7200[[w, x1.w], [x2.v, x4.v]] −18000[x1.w, [x1.w, [w, x4.v]]] + 19200[x1.w, [x1.w, [x1.v, x4.v]]] +
1253568[x1.w, [x1.w, [x1.w, x2.w]]] + 98400[x1.w, [x1.w, [x1.w, x3.v]]] +
4950[x2.v, [x1.w, [w, x4.v]]] + 7050 [x2.v, [x1.w, [x1.v, x4.v]]] +
209400[x2.v, [x1.w, [x1.w, x2.w]]] + 22800[x2.v, [x1.w, [x1.w, x3.v]]] +
5175 [x2.v, [x2.v, [w, x4.v]]] + 2225[x2.v, [x2.v, [x1.v, x4.v]]] +
29900[x2.v, [x2.v, [x1.w, x2.w]]] + 11600 [x2.v, [x2.v, [x1.w, x3.v]]] −
20880[x2.w, [w, [w, x4.v]]] + 86520[x2.w, [x1.v, [w, x4.v]]] +
44880[x2.w, [x1.v, [x1.v, x4.v]]] + 192840[x2.w, [x1.w, [v, x4.v]]] −
207648[x2.w, [x1.w, [w, x3.v]]] + 2337696[x2.w, [x1.w, [x1.v, x2.w]]] +
74676[x2.w, [x2.v, [v, x4.v]]] − 12640 [x2.w, [x2.v, [w, x3.v]]] +
776400[x2.w, [x2.v, [x1.v, x2.w]]]

continued
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Appendix D. A Pseudo-Hall basis of g for d = 3

l m LM(b) for b ∈ B b − LM(b)
4 1 14400[[w, x2.v], [x1.w, x4.v]] 25200[x1.w, [x1.w, [w, x4.v]]] + 27600[x1.w, [x1.w, [x1.v, x4.v]]] +

2234688[x1.w, [x1.w, [x1.w, x2.w]]] + 160800[x1.w, [x1.w, [x1.w, x3.v]]] +
17550[x2.v, [x1.w, [w, x4.v]]] + 10050[x2.v, [x1.w, [x1.v, x4.v]]] +
485400[x2.v, [x1.w, [x1.w, x2.w]]] + 42000[x2.v, [x1.w, [x1.w, x3.v]]] +
7875 [x2.v, [x2.v, [w, x4.v]]] + 5725[x2.v, [x2.v, [x1.v, x4.v]]] +
63100[x2.v, [x2.v, [x1.w, x2.w]]] + 22000 [x2.v, [x2.v, [x1.w, x3.v]]] −
35280[x2.w, [w, [w, x4.v]]] + 112920[x2.w, [x1.v, [w, x4.v]]] +
72480[x2.w, [x1.v, [x1.v, x4.v]]] + 285240[x2.w, [x1.w, [v, x4.v]]] −
319968[x2.w, [x1.w, [w, x3.v]]] + 3613536[x2.w, [x1.w, [x1.v, x2.w]]] +
111516[x2.w, [x2.v, [v, x4.v]]] − 21440 [x2.w, [x2.v, [w, x3.v]]] +
1182000[x2.w, [x2.v, [x1.v, x2.w]]]

4 1 3600[[w, x2.v], [x2.v, x4.v]] −32400[x1.w, [x1.w, [w, x4.v]]] − 92400[x1.w, [x1.w, [x1.v, x4.v]]] −
11580864[x1.w, [x1.w, [x1.w, x2.w]]] − 549600[x1.w, [x1.w, [x1.w, x3.v]]] −
101250[x2.v, [x1.w, [w, x4.v]]] − 55950[x2.v, [x1.w, [x1.v, x4.v]]] −
1813800[x2.v, [x1.w, [x1.w, x2.w]]] − 236400[x2.v, [x1.w, [x1.w, x3.v]]] −
37125[x2.v, [x2.v, [w, x4.v]]] − 26875[x2.v, [x2.v, [x1.v, x4.v]]] −
331300[x2.v, [x2.v, [x1.w, x2.w]]] − 101200[x2.v, [x2.v, [x1.w, x3.v]]] +
369840[x2.w, [w, [w, x4.v]]] − 413160[x2.w, [x1.v, [w, x4.v]]] −
324240[x2.w, [x1.v, [x1.v, x4.v]]] − 1155720[x2.w, [x1.w, [v, x4.v]]] +
1521504[x2.w, [x1.w, [w, x3.v]]] − 14973408[x2.w, [x1.w, [x1.v, x2.w]]] −
450348[x2.w, [x2.v, [v, x4.v]]] + 161120 [x2.w, [x2.v, [w, x3.v]]] −
4782000[x2.w, [x2.v, [x1.v, x2.w]]]

4 1 4800[[w, x2.w], [w, x4.v]] 1200[x1.w, [x1.w, [w, x4.v]]] − 2400[x1.w, [x1.w, [x1.v, x4.v]]] −
513216[x1.w, [x1.w, [x1.w, x2.w]]] − 16800[x1.w, [x1.w, [x1.w, x3.v]]] −
4050[x2.v, [x1.w, [w, x4.v]]] − 1950 [x2.v, [x1.w, [x1.v, x4.v]]] −
85800[x2.v, [x1.w, [x1.w, x2.w]]] − 8400[x2.v, [x1.w, [x1.w, x3.v]]] −
1725 [x2.v, [x2.v, [w, x4.v]]] − 1175[x2.v, [x2.v, [x1.v, x4.v]]] −
16100[x2.v, [x2.v, [x1.w, x2.w]]] − 4400[x2.v, [x2.v, [x1.w, x3.v]]] +
22960[x2.w, [w, [w, x4.v]]] − 15240 [x2.w, [x1.v, [w, x4.v]]] −
13360[x2.w, [x1.v, [x1.v, x4.v]]] − 45480[x2.w, [x1.w, [v, x4.v]]] +
70176[x2.w, [x1.w, [w, x3.v]]] − 598752[x2.w, [x1.w, [x1.v, x2.w]]] −
18012[x2.w, [x2.v, [v, x4.v]]] + 6880[x2.w, [x2.v, [w, x3.v]]] −
190800[x2.w, [x2.v, [x1.v, x2.w]]]

4 1 600[[w, x2.w], [x1.v, x4.v]] 1200[x1.w, [x1.w, [w, x4.v]]] + 600[x1.w, [x1.w, [x1.v, x4.v]]] −
29664[x1.w, [x1.w, [x1.w, x2.w]]] + 2400[x1.w, [x1.w, [x1.w, x3.v]]] −
150[x2.v, [x1.w, [w, x4.v]]] + 150 [x2.v, [x1.w, [x1.v, x4.v]]] −
5400[x2.v, [x1.w, [x1.w, x2.w]]] + 600[x2.v, [x1.w, [x1.w, x3.v]]] −
75 [x2.v, [x2.v, [w, x4.v]]] − 50[x2.v, [x2.v, [x1.v, x4.v]]] −
1700[x2.v, [x2.v, [x1.w, x2.w]]] − 200[x2.v, [x2.v, [x1.w, x3.v]]] +
1840[x2.w, [w, [w, x4.v]]] + 240 [x2.w, [x1.v, [w, x4.v]]] −
340[x2.w, [x1.v, [x1.v, x4.v]]] − 420[x2.w, [x1.w, [v, x4.v]]] +
2304[x2.w, [x1.w, [w, x3.v]]] − 8208[x2.w, [x1.w, [x1.v, x2.w]]] −
498[x2.w, [x2.v, [v, x4.v]]] + 520[x2.w, [x2.v, [w, x3.v]]] −
3600[x2.w, [x2.v, [x1.v, x2.w]]]

4 1 [[w, x2.w], [x1.w, x2.w]] −[x1.w, [x1.w, [x1.w, x2.w]]]
4 1 2400[[w, x2.w], [x1.w, x3.v]] −1200[x1.w, [x1.w, [w, x4.v]]] − 600[x1.w, [x1.w, [x1.v, x4.v]]] +

26784[x1.w, [x1.w, [x1.w, x2.w]]] − 2400[x1.w, [x1.w, [x1.w, x3.v]]] +
150[x2.v, [x1.w, [w, x4.v]]] − 150 [x2.v, [x1.w, [x1.v, x4.v]]] +
3000[x2.v, [x1.w, [x1.w, x2.w]]] − 600[x2.v, [x1.w, [x1.w, x3.v]]] +
75 [x2.v, [x2.v, [w, x4.v]]] + 50[x2.v, [x2.v, [x1.v, x4.v]]] +
1700[x2.v, [x2.v, [x1.w, x2.w]]] + 200[x2.v, [x2.v, [x1.w, x3.v]]] −
1840[x2.w, [w, [w, x4.v]]] − 240 [x2.w, [x1.v, [w, x4.v]]] +
340[x2.w, [x1.v, [x1.v, x4.v]]] + 420[x2.w, [x1.w, [v, x4.v]]] −
1824[x2.w, [x1.w, [w, x3.v]]] + 9648[x2.w, [x1.w, [x1.v, x2.w]]] +
438[x2.w, [x2.v, [v, x4.v]]] − 520[x2.w, [x2.v, [w, x3.v]]] +
3600[x2.w, [x2.v, [x1.v, x2.w]]]

4 1 2400[[w, x3.v], [w, x4.v]] −10800[x1.w, [x1.w, [w, x4.v]]] − 1800[x1.w, [x1.w, [x1.v, x4.v]]] +
450048[x1.w, [x1.w, [x1.w, x2.w]]] + 3450[x2.v, [x1.w, [w, x4.v]]] −
450[x2.v, [x1.w, [x1.v, x4.v]]] + 109800 [x2.v, [x1.w, [x1.w, x2.w]]] −
1200[x2.v, [x1.w, [x1.w, x3.v]]] + 2625[x2.v, [x2.v, [w, x4.v]]] +
1075 [x2.v, [x2.v, [x1.v, x4.v]]] + 13300[x2.v, [x2.v, [x1.w, x2.w]]] +
6400[x2.v, [x2.v, [x1.w, x3.v]]] − 34480 [x2.w, [w, [w, x4.v]]] +
1320[x2.w, [x1.v, [w, x4.v]]] + 9280[x2.w, [x1.v, [x1.v, x4.v]]] +
19440[x2.w, [x1.w, [v, x4.v]]] − 56928[x2.w, [x1.w, [w, x3.v]]] +
341856[x2.w, [x1.w, [x1.v, x2.w]]] + 9636[x2.w, [x2.v, [v, x4.v]]] −
7040[x2.w, [x2.v, [w, x3.v]]] + 99600[x2.w, [x2.v, [x1.v, x2.w]]]

continued
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l m LM(b) for b ∈ B b − LM(b)
4 1 600[[w, x3.v], [x1.v, x4.v]] −3600[x1.w, [x1.w, [w, x4.v]]] + 1800[x1.w, [x1.w, [x1.v, x4.v]]] +

757632[x1.w, [x1.w, [x1.w, x2.w]]] + 14400[x1.w, [x1.w, [x1.w, x3.v]]] +
6750[x2.v, [x1.w, [w, x4.v]]] + 4050 [x2.v, [x1.w, [x1.v, x4.v]]] +
123000[x2.v, [x1.w, [x1.w, x2.w]]] + 18000[x2.v, [x1.w, [x1.w, x3.v]]] +
2475 [x2.v, [x2.v, [w, x4.v]]] + 1825[x2.v, [x2.v, [x1.v, x4.v]]] +
17500[x2.v, [x2.v, [x1.w, x2.w]]] + 6400[x2.v, [x2.v, [x1.w, x3.v]]] −
33520[x2.w, [w, [w, x4.v]]] + 21480 [x2.w, [x1.v, [w, x4.v]]] +
19120[x2.w, [x1.v, [x1.v, x4.v]]] + 66960[x2.w, [x1.w, [v, x4.v]]] −
113952[x2.w, [x1.w, [w, x3.v]]] + 830304[x2.w, [x1.w, [x1.v, x2.w]]] +
24324[x2.w, [x2.v, [v, x4.v]]] − 11360[x2.w, [x2.v, [w, x3.v]]] +
265200[x2.w, [x2.v, [x1.v, x2.w]]]

4 1 300[[w, x3.v], [x1.w, x2.w]] 1392[x1.w, [x1.w, [x1.w, x2.w]]] − 600[x2.v, [x1.w, [x1.w, x2.w]]] +
150[x2.v, [x2.v, [x1.w, x2.w]]] − 70[x2.w, [w, [w, x4.v]]] −
45[x2.w, [x1.v, [w, x4.v]]] − 5[x2.w, [x1.v, [x1.v, x4.v]]] −
90[x2.w, [x1.w, [v, x4.v]]] − 12 [x2.w, [x1.w, [w, x3.v]]] −
576[x2.w, [x1.w, [x1.v, x2.w]]] − 6[x2.w, [x2.v, [v, x4.v]]] −
60[x2.w, [x2.v, [w, x3.v]]] − 150[x2.w, [x2.v, [x1.v, x2.w]]]

4 1 2400[[w, x3.v], [x1.w, x3.v]] 3600[x1.w, [x1.w, [w, x4.v]]] − 1800[x1.w, [x1.w, [x1.v, x4.v]]] −
681216[x1.w, [x1.w, [x1.w, x2.w]]] − 14400[x1.w, [x1.w, [x1.w, x3.v]]] −
6450[x2.v, [x1.w, [w, x4.v]]] − 3150 [x2.v, [x1.w, [x1.v, x4.v]]] −
117000[x2.v, [x1.w, [x1.w, x2.w]]] − 15600[x2.v, [x1.w, [x1.w, x3.v]]] −
2325 [x2.v, [x2.v, [w, x4.v]]] − 1475[x2.v, [x2.v, [x1.v, x4.v]]] −
18500[x2.v, [x2.v, [x1.w, x2.w]]] − 5600[x2.v, [x2.v, [x1.w, x3.v]]] +
31760[x2.w, [w, [w, x4.v]]] − 18840 [x2.w, [x1.v, [w, x4.v]]] −
17360[x2.w, [x1.v, [x1.v, x4.v]]] − 60480[x2.w, [x1.w, [v, x4.v]]] +
103776[x2.w, [x1.w, [w, x3.v]]] − 757152[x2.w, [x1.w, [x1.v, x2.w]]] −
21612[x2.w, [x2.v, [v, x4.v]]] + 6880[x2.w, [x2.v, [w, x3.v]]] −
238800[x2.w, [x2.v, [x1.v, x2.w]]]

4 1 7200[[w, x4.v], [x1.v, x2.w]] −3600[x1.w, [x1.w, [w, x4.v]]] − 6600[x1.w, [x1.w, [x1.v, x4.v]]] −
1029888[x1.w, [x1.w, [x1.w, x2.w]]] − 33600[x1.w, [x1.w, [x1.w, x3.v]]] −
9450[x2.v, [x1.w, [w, x4.v]]] − 7950 [x2.v, [x1.w, [x1.v, x4.v]]] −
109800[x2.v, [x1.w, [x1.w, x2.w]]] − 30000[x2.v, [x1.w, [x1.w, x3.v]]] −
3225 [x2.v, [x2.v, [w, x4.v]]] − 2575[x2.v, [x2.v, [x1.v, x4.v]]] −
22900[x2.v, [x2.v, [x1.w, x2.w]]] − 8800[x2.v, [x2.v, [x1.w, x3.v]]] +
50480[x2.w, [w, [w, x4.v]]] − 22920 [x2.w, [x1.v, [w, x4.v]]] −
24080[x2.w, [x1.v, [x1.v, x4.v]]] − 72240[x2.w, [x1.w, [v, x4.v]]] +
127968[x2.w, [x1.w, [w, x3.v]]] − 1007136[x2.w, [x1.w, [x1.v, x2.w]]] −
28716[x2.w, [x2.v, [v, x4.v]]] + 19040[x2.w, [x2.v, [w, x3.v]]] −
306000[x2.w, [x2.v, [x1.v, x2.w]]]

4 1 900[[x1.v, x2.w], [x1.v, x4.v]] −1200 [x1.w, [x1.w, [w, x4.v]]] − 300[x1.w, [x1.w, [x1.v, x4.v]]] −
71808[x1.w, [x1.w, [x1.w, x2.w]]] − 3600[x1.w, [x1.w, [x1.w, x3.v]]] −
450[x2.v, [x1.w, [w, x4.v]]] − 750[x2.v, [x1.w, [x1.v, x4.v]]] +
1800[x2.v, [x1.w, [x1.w, x2.w]]] − 3000[x2.v, [x1.w, [x1.w, x3.v]]] −
225 [x2.v, [x2.v, [w, x4.v]]] − 250[x2.v, [x2.v, [x1.v, x4.v]]] −
1900[x2.v, [x2.v, [x1.w, x2.w]]] − 400[x2.v, [x2.v, [x1.w, x3.v]]] +
2880[x2.w, [w, [w, x4.v]]] − 1320 [x2.w, [x1.v, [w, x4.v]]] −
1380[x2.w, [x1.v, [x1.v, x4.v]]] − 3840[x2.w, [x1.w, [v, x4.v]]] +
5088[x2.w, [x1.w, [w, x3.v]]] − 68976[x2.w, [x1.w, [x1.v, x2.w]]] −
2106[x2.w, [x2.v, [v, x4.v]]] + 1640[x2.w, [x2.v, [w, x3.v]]] −
22800[x2.w, [x2.v, [x1.v, x2.w]]]

4 1 60[[x1.v, x2.w], [x1.w, x2.w]] 72[x1.w, [x1.w, [x1.w, x2.w]]] + 10[x2.w, [w, [w, x4.v]]] +
15 [x2.w, [x1.v, [w, x4.v]]] + 5[x2.w, [x1.v, [x1.v, x4.v]]] +
30[x2.w, [x1.w, [v, x4.v]]] − 12[x2.w, [x1.w, [w, x3.v]]] +
264[x2.w, [x1.w, [x1.v, x2.w]]] + 9[x2.w, [x2.v, [v, x4.v]]] +
90[x2.w, [x2.v, [x1.v, x2.w]]]

continued
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Appendix D. A Pseudo-Hall basis of g for d = 3

l m LM(b) for b ∈ B b − LM(b)
4 1 720[[x1.v, x2.w], [x1.w, x3.v]] 240 [x1.w, [x1.w, [w, x4.v]]] + 60[x1.w, [x1.w, [x1.v, x4.v]]] +

21504[x1.w, [x1.w, [x1.w, x2.w]]] + 720[x1.w, [x1.w, [x1.w, x3.v]]] +
60[x2.v, [x1.w, [w, x4.v]]] + 60 [x2.v, [x1.w, [x1.v, x4.v]]] +
1440[x2.v, [x1.w, [x1.w, x2.w]]] + 360[x2.v, [x1.w, [x1.w, x3.v]]] +
30 [x2.v, [x2.v, [w, x4.v]]] + 25[x2.v, [x2.v, [x1.v, x4.v]]] +
640[x2.v, [x2.v, [x1.w, x2.w]]] + 40[x2.v, [x2.v, [x1.w, x3.v]]] −
400[x2.w, [w, [w, x4.v]]] + 960 [x2.w, [x1.v, [w, x4.v]]] +
580[x2.w, [x1.v, [x1.v, x4.v]]] + 2280[x2.w, [x1.w, [v, x4.v]]] −
2304[x2.w, [x1.w, [w, x3.v]]] + 28368[x2.w, [x1.w, [x1.v, x2.w]]] +
918[x2.w, [x2.v, [v, x4.v]]] − 440[x2.w, [x2.v, [w, x3.v]]] +
8880[x2.w, [x2.v, [x1.v, x2.w]]]

4 2 [x2.w, [x1.w, [x1.w, x2.w]]] 0
4 2 7776[x3.v, [x1.w, [x1.w, x2.w]]] 648 [x1.w, [x1.w, [x1.w, x4.v]]] + 180[x2.v, [x1.w, [x1.w, x4.v]]] +

36[x2.v, [x2.v, [x1.w, x4.v]]] + 27[x2.v, [x2.v, [x2.v, x4.v]]] −
3920[x2.w, [x1.w, [w, x4.v]]] + 48[x2.w, [x1.w, [x1.v, x4.v]]] +
1184[x2.w, [x1.w, [x1.w, x3.v]]] − 808[x2.w, [x2.v, [w, x4.v]]] +
16[x2.w, [x2.v, [x1.v, x4.v]]] + 10208[x2.w, [x2.v, [x1.w, x2.w]]] −
1024[x2.w, [x2.v, [x1.w, x3.v]]] + 1472[x2.w, [x2.w, [w, x3.v]]] −
192[x3.v, [x1.w, [x1.v, x4.v]]]

4 2 1296[x3.v, [x1.w, [x1.w, x3.v]]] −648 [x1.w, [x1.w, [x1.w, x4.v]]] − 828[x2.v, [x1.w, [x1.w, x4.v]]] −
360[x2.v, [x2.v, [x1.w, x4.v]]] − 27[x2.v, [x2.v, [x2.v, x4.v]]] −
1732[x2.w, [x1.w, [w, x4.v]]] − 4692[x2.w, [x1.w, [x1.v, x4.v]]] −
12704[x2.w, [x1.w, [x1.w, x3.v]]] − 722[x2.w, [x2.v, [w, x4.v]]] −
2050 [x2.w, [x2.v, [x1.v, x4.v]]] + 36376[x2.w, [x2.v, [x1.w, x2.w]]] −
4880[x2.w, [x2.v, [x1.w, x3.v]]] + 15520 [x2.w, [x2.w, [w, x3.v]]] +
300[x3.v, [x1.w, [x1.v, x4.v]]]

4 2 162[x3.v, [x2.v, [w, x4.v]]] 648[x1.w, [x1.w, [x1.w, x4.v]]] + 828[x2.v, [x1.w, [x1.w, x4.v]]] +
360[x2.v, [x2.v, [x1.w, x4.v]]] + 27[x2.v, [x2.v, [x2.v, x4.v]]] +
4972[x2.w, [x1.w, [w, x4.v]]] − 168[x2.w, [x1.w, [x1.v, x4.v]]] −
256[x2.w, [x1.w, [x1.w, x3.v]]] + 398[x2.w, [x2.v, [w, x4.v]]] +
916 [x2.w, [x2.v, [x1.v, x4.v]]] − 10456[x2.w, [x2.v, [x1.w, x2.w]]] +
3584[x2.w, [x2.v, [x1.w, x3.v]]] − 5152 [x2.w, [x2.w, [w, x3.v]]] +
324[x3.v, [x1.w, [w, x4.v]]] + 186[x3.v, [x1.w, [x1.v, x4.v]]]

4 2 81[x3.v, [x2.v, [x1.v, x4.v]]] 648[x1.w, [x1.w, [x1.w, x4.v]]] + 828[x2.v, [x1.w, [x1.w, x4.v]]] +
360[x2.v, [x2.v, [x1.w, x4.v]]] + 27[x2.v, [x2.v, [x2.v, x4.v]]] +
3028[x2.w, [x1.w, [w, x4.v]]] + 804[x2.w, [x1.w, [x1.v, x4.v]]] −
256[x2.w, [x1.w, [x1.w, x3.v]]] + 1370[x2.w, [x2.v, [w, x4.v]]] +
1078 [x2.w, [x2.v, [x1.v, x4.v]]] − 20824[x2.w, [x2.v, [x1.w, x2.w]]] +
6176[x2.w, [x2.v, [x1.w, x3.v]]] − 10336 [x2.w, [x2.w, [w, x3.v]]] +
648[x3.v, [x1.w, [w, x4.v]]] + 24[x3.v, [x1.w, [x1.v, x4.v]]]

4 2 3888[x3.v, [x2.v, [x1.w, x2.w]]] 648 [x1.w, [x1.w, [x1.w, x4.v]]] + 180[x2.v, [x1.w, [x1.w, x4.v]]] +
36[x2.v, [x2.v, [x1.w, x4.v]]] + 27[x2.v, [x2.v, [x2.v, x4.v]]] −
4244[x2.w, [x1.w, [w, x4.v]]] − 924[x2.w, [x1.w, [x1.v, x4.v]]] −
1408[x2.w, [x1.w, [x1.w, x3.v]]] − 970[x2.w, [x2.v, [w, x4.v]]] +
178 [x2.w, [x2.v, [x1.v, x4.v]]] − 5992[x2.w, [x2.v, [x1.w, x2.w]]] +
272[x2.w, [x2.v, [x1.w, x3.v]]] − 1120 [x2.w, [x2.w, [w, x3.v]]] −
192[x3.v, [x1.w, [x1.v, x4.v]]]

4 2 216[x3.v, [x2.v, [x1.w, x3.v]]] −648 [x1.w, [x1.w, [x1.w, x4.v]]] − 828[x2.v, [x1.w, [x1.w, x4.v]]] −
360[x2.v, [x2.v, [x1.w, x4.v]]] − 27[x2.v, [x2.v, [x2.v, x4.v]]] −
2596[x2.w, [x1.w, [w, x4.v]]] − 1452[x2.w, [x1.w, [x1.v, x4.v]]] −
1472[x2.w, [x1.w, [x1.w, x3.v]]] − 1154[x2.w, [x2.v, [w, x4.v]]] −
1294 [x2.w, [x2.v, [x1.v, x4.v]]] + 19096[x2.w, [x2.v, [x1.w, x2.w]]] −
5312[x2.w, [x2.v, [x1.w, x3.v]]] + 8608 [x2.w, [x2.w, [w, x3.v]]] −
432[x3.v, [x1.w, [w, x4.v]]] − 24[x3.v, [x1.w, [x1.v, x4.v]]]

4 2 288[x3.v, [x2.w, [w, x3.v]]] −72[x2.v, [x1.w, [x1.w, x4.v]]] − 36[x2.v, [x2.v, [x1.w, x4.v]]] +
398[x2.w, [x1.w, [w, x4.v]]] − 354[x2.w, [x1.w, [x1.v, x4.v]]] −
848[x2.w, [x1.w, [x1.w, x3.v]]] + 127[x2.w, [x2.v, [w, x4.v]]] −
253[x2.w, [x2.v, [x1.v, x4.v]]] + 3340[x2.w, [x2.v, [x1.w, x2.w]]] −
8[x2.w, [x2.v, [x1.w, x3.v]]] + 1456[x2.w, [x2.w, [w, x3.v]]] +
144 [x3.v, [x1.w, [w, x4.v]]] − 42[x3.v, [x1.w, [x1.v, x4.v]]]

continued
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l m LM(b) for b ∈ B b − LM(b)
4 2 324[x4.v, [w, [w, x4.v]]] −324[x1.w, [x1.w, [x1.w, x4.v]]] − 1980[x2.v, [x1.w, [x1.w, x4.v]]] −

1611 [x2.v, [x2.v, [x1.w, x4.v]]] − 54[x2.v, [x2.v, [x2.v, x4.v]]] −
7910[x2.w, [x1.w, [w, x4.v]]] − 1986[x2.w, [x1.w, [x1.v, x4.v]]] −
5248[x2.w, [x1.w, [x1.w, x3.v]]] − 3019[x2.w, [x2.v, [w, x4.v]]] −
3821[x2.w, [x2.v, [x1.v, x4.v]]] + 53924[x2.w, [x2.v, [x1.w, x2.w]]] −
19840[x2.w, [x2.v, [x1.w, x3.v]]] + 26576 [x2.w, [x2.w, [w, x3.v]]] −
318[x3.v, [x1.w, [x1.v, x4.v]]]

4 2 54[x4.v, [x1.v, [w, x4.v]]] −1296[x1.w, [x1.w, [x1.w, x4.v]]] − 1278[x2.v, [x1.w, [x1.w, x4.v]]] −
369[x2.v, [x2.v, [x1.w, x4.v]]] − 27[x2.v, [x2.v, [x2.v, x4.v]]] −
3416[x2.w, [x1.w, [w, x4.v]]] − 2328[x2.w, [x1.w, [x1.v, x4.v]]] −
5152[x2.w, [x1.w, [x1.w, x3.v]]] − 556[x2.w, [x2.v, [w, x4.v]]] −
1856 [x2.w, [x2.v, [x1.v, x4.v]]] + 30224[x2.w, [x2.v, [x1.w, x2.w]]] −
5632[x2.w, [x2.v, [x1.w, x3.v]]] + 15872 [x2.w, [x2.w, [w, x3.v]]] −
216[x3.v, [x1.w, [w, x4.v]]] − 84[x3.v, [x1.w, [x1.v, x4.v]]]

4 2 81[x4.v, [x1.v, [x1.v, x4.v]]] −7128 [x1.w, [x1.w, [x1.w, x4.v]]] − 4248[x2.v, [x1.w, [x1.w, x4.v]]] −
1530[x2.v, [x2.v, [x1.w, x4.v]]] − 216 [x2.v, [x2.v, [x2.v, x4.v]]] −
12032[x2.w, [x1.w, [w, x4.v]]] − 4308[x2.w, [x1.w, [x1.v, x4.v]]] −
17488[x2.w, [x1.w, [x1.w, x3.v]]] − 544[x2.w, [x2.v, [w, x4.v]]] −
5486[x2.w, [x2.v, [x1.v, x4.v]]] + 68144[x2.w, [x2.v, [x1.w, x2.w]]] −
18904[x2.w, [x2.v, [x1.w, x3.v]]] + 27296[x2.w, [x2.w, [w, x3.v]]] −
1296[x3.v, [x1.w, [w, x4.v]]] + 546[x3.v, [x1.w, [x1.v, x4.v]]]

4 2 27[x4.v, [x1.w, [v, x4.v]]] 648[x1.w, [x1.w, [x1.w, x4.v]]] + 360[x2.v, [x1.w, [x1.w, x4.v]]] +
72[x2.v, [x2.v, [x1.w, x4.v]]] + 728[x2.w, [x1.w, [w, x4.v]]] +
1176[x2.w, [x1.w, [x1.v, x4.v]]] + 3520[x2.w, [x1.w, [x1.w, x3.v]]] +
76[x2.w, [x2.v, [w, x4.v]]] + 608[x2.w, [x2.v, [x1.v, x4.v]]] −
9968[x2.w, [x2.v, [x1.w, x2.w]]] + 1264[x2.w, [x2.v, [x1.w, x3.v]]] −
6272[x2.w, [x2.w, [w, x3.v]]] + 48[x3.v, [x1.w, [x1.v, x4.v]]]

4 2 144[x4.v, [x1.w, [w, x3.v]]] −432[x1.w, [x1.w, [x1.w, x4.v]]] + 468[x2.v, [x1.w, [x1.w, x4.v]]] +
234[x2.v, [x2.v, [x1.w, x4.v]]] + 350[x2.w, [x1.w, [w, x4.v]]] +
798[x2.w, [x1.w, [x1.v, x4.v]]] + 2224[x2.w, [x1.w, [x1.w, x3.v]]] +
535[x2.w, [x2.v, [w, x4.v]]] + 707[x2.w, [x2.v, [x1.v, x4.v]]] −
10580[x2.w, [x2.v, [x1.w, x2.w]]] + 3064[x2.w, [x2.v, [x1.w, x3.v]]] −
6416[x2.w, [x2.w, [w, x3.v]]] + 102[x3.v, [x1.w, [x1.v, x4.v]]]

4 2 3888[x4.v, [x1.w, [x1.v, x2.w]]] −648 [x1.w, [x1.w, [x1.w, x4.v]]] + 252[x2.v, [x1.w, [x1.w, x4.v]]] −
144[x2.v, [x2.v, [x1.w, x4.v]]] + 54[x2.v, [x2.v, [x2.v, x4.v]]] +
2882[x2.w, [x1.w, [w, x4.v]]] + 3210[x2.w, [x1.w, [x1.v, x4.v]]] +
9520[x2.w, [x1.w, [x1.w, x3.v]]] − 1223[x2.w, [x2.v, [w, x4.v]]] +
1961 [x2.w, [x2.v, [x1.v, x4.v]]] − 39212[x2.w, [x2.v, [x1.w, x2.w]]] +
856[x2.w, [x2.v, [x1.w, x3.v]]] − 14960 [x2.w, [x2.w, [w, x3.v]]] −
366[x3.v, [x1.w, [x1.v, x4.v]]]

4 2 81[x4.v, [x2.v, [v, x4.v]]] 3564[x1.w, [x1.w, [x1.w, x4.v]]] + 3096[x2.v, [x1.w, [x1.w, x4.v]]] +
1251[x2.v, [x2.v, [x1.w, x4.v]]] + 189[x2.v, [x2.v, [x2.v, x4.v]]] +
238[x2.w, [x1.w, [w, x4.v]]] + 2802[x2.w, [x1.w, [x1.v, x4.v]]] +
15008[x2.w, [x1.w, [x1.w, x3.v]]] − 673[x2.w, [x2.v, [w, x4.v]]] +
3121 [x2.w, [x2.v, [x1.v, x4.v]]] − 32020[x2.w, [x2.v, [x1.w, x2.w]]] +
12800[x2.w, [x2.v, [x1.w, x3.v]]] − 6736 [x2.w, [x2.w, [w, x3.v]]] −
678[x3.v, [x1.w, [x1.v, x4.v]]]

4 2 648[x4.v, [x2.v, [w, x2.w]]] 972[x1.w, [x1.w, [x1.w, x4.v]]] + 72[x2.v, [x1.w, [x1.w, x4.v]]] +
63[x2.v, [x2.v, [x1.w, x4.v]]] + 27[x2.v, [x2.v, [x2.v, x4.v]]] −
650[x2.w, [x1.w, [w, x4.v]]] − 726 [x2.w, [x1.w, [x1.v, x4.v]]] −
736[x2.w, [x1.w, [x1.w, x3.v]]] − 253[x2.w, [x2.v, [w, x4.v]]] −
323[x2.w, [x2.v, [x1.v, x4.v]]] + 8252[x2.w, [x2.v, [x1.w, x2.w]]] −
64[x2.w, [x2.v, [x1.w, x3.v]]] + 6896[x2.w, [x2.w, [w, x3.v]]] −
174[x3.v, [x1.w, [x1.v, x4.v]]]

4 2 324[x4.v, [x2.v, [w, x3.v]]] −324[x1.w, [x1.w, [x1.w, x4.v]]] + 1638[x2.v, [x1.w, [x1.w, x4.v]]] +
1008[x2.v, [x2.v, [x1.w, x4.v]]] + 27[x2.v, [x2.v, [x2.v, x4.v]]] −
1436[x2.w, [x1.w, [w, x4.v]]] + 2640[x2.w, [x1.w, [x1.v, x4.v]]] +
9392[x2.w, [x1.w, [x1.w, x3.v]]] + 434[x2.w, [x2.v, [w, x4.v]]] +
2500 [x2.w, [x2.v, [x1.v, x4.v]]] − 34072[x2.w, [x2.v, [x1.w, x2.w]]] +
11720[x2.w, [x2.v, [x1.w, x3.v]]] − 20128[x2.w, [x2.w, [w, x3.v]]] −
1296[x3.v, [x1.w, [w, x4.v]]] + 132[x3.v, [x1.w, [x1.v, x4.v]]]
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Appendix D. A Pseudo-Hall basis of g for d = 3

l m LM(b) for b ∈ B b − LM(b)
4 2 972[x4.v, [x2.v, [x1.v, x2.w]]] −3240 [x1.w, [x1.w, [x1.w, x4.v]]] − 738[x2.v, [x1.w, [x1.w, x4.v]]] +

387[x2.v, [x2.v, [x1.w, x4.v]]] − 54[x2.v, [x2.v, [x2.v, x4.v]]] +
10726[x2.w, [x1.w, [w, x4.v]]] − 7098[x2.w, [x1.w, [x1.v, x4.v]]] −
32848[x2.w, [x1.w, [x1.w, x3.v]]] + 4139[x2.w, [x2.v, [w, x4.v]]] −
1313 [x2.w, [x2.v, [x1.v, x4.v]]] + 17180[x2.w, [x2.v, [x1.w, x2.w]]] +
5624[x2.w, [x2.v, [x1.w, x3.v]]] + 9776 [x2.w, [x2.w, [w, x3.v]]] +
1296[x3.v, [x1.w, [w, x4.v]]] + 690[x3.v, [x1.w, [x1.v, x4.v]]]

4 2 3888[[v, x2.w], [x2.w, x4.v]] 1620[x1.w, [x1.w, [x1.w, x4.v]]] − 360[x2.v, [x1.w, [x1.w, x4.v]]] −
315[x2.v, [x2.v, [x1.w, x4.v]]] − 135[x2.v, [x2.v, [x2.v, x4.v]]] +
7624[x2.w, [x1.w, [w, x4.v]]] + 1200[x2.w, [x1.w, [x1.v, x4.v]]] −
4096[x2.w, [x1.w, [x1.w, x3.v]]] + 1508[x2.w, [x2.v, [w, x4.v]]] +
400 [x2.w, [x2.v, [x1.v, x4.v]]] − 24736[x2.w, [x2.v, [x1.w, x2.w]]] +
320[x2.w, [x2.v, [x1.w, x3.v]]] − 22816 [x2.w, [x2.w, [w, x3.v]]] +
870[x3.v, [x1.w, [x1.v, x4.v]]]

4 2 648[[v, x3.v], [x2.w, x4.v]] −2268[x1.w, [x1.w, [x1.w, x4.v]]] + 1800[x2.v, [x1.w, [x1.w, x4.v]]] +
1089[x2.v, [x2.v, [x1.w, x4.v]]] + 189[x2.v, [x2.v, [x2.v, x4.v]]] +
2488[x2.w, [x1.w, [w, x4.v]]] − 4704[x2.w, [x1.w, [x1.v, x4.v]]] −
12352[x2.w, [x1.w, [x1.w, x3.v]]] + 1100[x2.w, [x2.v, [w, x4.v]]] −
272 [x2.w, [x2.v, [x1.v, x4.v]]] + 20864[x2.w, [x2.v, [x1.w, x2.w]]] +
9632[x2.w, [x2.v, [x1.w, x3.v]]] + 29408 [x2.w, [x2.w, [w, x3.v]]] +
1296[x3.v, [x1.w, [w, x4.v]]] − 786[x3.v, [x1.w, [x1.v, x4.v]]]

4 2 54[[v, x4.v], [x1.w, x4.v]] −324[x1.w, [x1.w, [x1.w, x4.v]]] + 72[x2.v, [x1.w, [x1.w, x4.v]]] +
63[x2.v, [x2.v, [x1.w, x4.v]]] + 70[x2.w, [x1.w, [w, x4.v]]] +
138[x2.w, [x1.w, [x1.v, x4.v]]] − 160[x2.w, [x1.w, [x1.w, x3.v]]] +
107[x2.w, [x2.v, [w, x4.v]]] + 289[x2.w, [x2.v, [x1.v, x4.v]]] −
4996[x2.w, [x2.v, [x1.w, x2.w]]] + 944[x2.w, [x2.v, [x1.w, x3.v]]] −
2896 [x2.w, [x2.w, [w, x3.v]]] + 42[x3.v, [x1.w, [x1.v, x4.v]]]

4 2 81[[v, x4.v], [x2.v, x4.v]] 4536[x1.w, [x1.w, [x1.w, x4.v]]] + 1584[x2.v, [x1.w, [x1.w, x4.v]]] +
414[x2.v, [x2.v, [x1.w, x4.v]]] + 108[x2.v, [x2.v, [x2.v, x4.v]]] +
2440[x2.w, [x1.w, [w, x4.v]]] + 3144[x2.w, [x1.w, [x1.v, x4.v]]] +
16640[x2.w, [x1.w, [x1.w, x3.v]]] − 1084[x2.w, [x2.v, [w, x4.v]]] +
2020 [x2.w, [x2.v, [x1.v, x4.v]]] − 23440[x2.w, [x2.v, [x1.w, x2.w]]] +
5504[x2.w, [x2.v, [x1.w, x3.v]]] − 9856 [x2.w, [x2.w, [w, x3.v]]] −
588[x3.v, [x1.w, [x1.v, x4.v]]]

4 2 2592[[w, x1.w], [x2.w, x4.v]] 972[x1.w, [x1.w, [x1.w, x4.v]]] + 504[x2.v, [x1.w, [x1.w, x4.v]]] −
45[x2.v, [x2.v, [x1.w, x4.v]]] + 27[x2.v, [x2.v, [x2.v, x4.v]]] +
3010[x2.w, [x1.w, [w, x4.v]]] + 426[x2.w, [x1.w, [x1.v, x4.v]]] +
2192[x2.w, [x1.w, [x1.w, x3.v]]] − 583[x2.w, [x2.v, [w, x4.v]]] +
169 [x2.w, [x2.v, [x1.v, x4.v]]] − 1852[x2.w, [x2.v, [x1.w, x2.w]]] −
664[x2.w, [x2.v, [x1.w, x3.v]]] + 752 [x2.w, [x2.w, [w, x3.v]]] −
84[x3.v, [x1.w, [x1.v, x4.v]]]

4 2 1296[[w, x2.v], [x2.w, x4.v]] 972[x1.w, [x1.w, [x1.w, x4.v]]] − 360[x2.v, [x1.w, [x1.w, x4.v]]] +
171[x2.v, [x2.v, [x1.w, x4.v]]] + 27[x2.v, [x2.v, [x2.v, x4.v]]] +
2116[x2.w, [x1.w, [w, x4.v]]] − 2364[x2.w, [x1.w, [x1.v, x4.v]]] −
4096[x2.w, [x1.w, [x1.w, x3.v]]] + 50[x2.w, [x2.v, [w, x4.v]]] −
518[x2.w, [x2.v, [x1.v, x4.v]]] + 15224[x2.w, [x2.v, [x1.w, x2.w]]] +
1184[x2.w, [x2.v, [x1.w, x3.v]]] + 9152[x2.w, [x2.w, [w, x3.v]]] −
102[x3.v, [x1.w, [x1.v, x4.v]]]

4 2 432[[w, x2.w], [x1.w, x4.v]] 108[x1.w, [x1.w, [x1.w, x4.v]]] + 72[x2.v, [x1.w, [x1.w, x4.v]]] −
45[x2.v, [x2.v, [x1.w, x4.v]]] + 226[x2.w, [x1.w, [w, x4.v]]] +
390[x2.w, [x1.w, [x1.v, x4.v]]] + 1088[x2.w, [x1.w, [x1.w, x3.v]]] −
247[x2.w, [x2.v, [w, x4.v]]] + 103[x2.w, [x2.v, [x1.v, x4.v]]] −
1516[x2.w, [x2.v, [x1.w, x2.w]]] − 544[x2.w, [x2.v, [x1.w, x3.v]]] −
1648 [x2.w, [x2.w, [w, x3.v]]] + 6[x3.v, [x1.w, [x1.v, x4.v]]]

4 2 972[[w, x2.w], [x2.v, x4.v]] −324[x1.w, [x1.w, [x1.w, x4.v]]] − 468[x2.v, [x1.w, [x1.w, x4.v]]] +
441[x2.v, [x2.v, [x1.w, x4.v]]] + 27[x2.v, [x2.v, [x2.v, x4.v]]] −
2552[x2.w, [x1.w, [w, x4.v]]] − 4920[x2.w, [x1.w, [x1.v, x4.v]]] −
8608[x2.w, [x1.w, [x1.w, x3.v]]] + 1172[x2.w, [x2.v, [w, x4.v]]] −
1640 [x2.w, [x2.v, [x1.v, x4.v]]] + 38432[x2.w, [x2.v, [x1.w, x2.w]]] +
3872[x2.w, [x2.v, [x1.w, x3.v]]] + 20192 [x2.w, [x2.w, [w, x3.v]]] −
246[x3.v, [x1.w, [x1.v, x4.v]]]

continued
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l m LM(b) for b ∈ B b − LM(b)
4 2 72[[w, x3.v], [x1.w, x4.v]] −108[x1.w, [x1.w, [x1.w, x4.v]]] − 72[x2.v, [x1.w, [x1.w, x4.v]]] +

45[x2.v, [x2.v, [x1.w, x4.v]]] − 52[x2.w, [x1.w, [w, x4.v]]] −
192[x2.w, [x1.w, [x1.v, x4.v]]] − 560[x2.w, [x1.w, [x1.w, x3.v]]] +
118[x2.w, [x2.v, [w, x4.v]]] + 8 [x2.w, [x2.v, [x1.v, x4.v]]] −
296[x2.w, [x2.v, [x1.w, x2.w]]] + 424[x2.w, [x2.v, [x1.w, x3.v]]] +
160[x2.w, [x2.w, [w, x3.v]]] + 12[x3.v, [x1.w, [x1.v, x4.v]]]

4 2 12[[w, x3.v], [x2.v, x4.v]] 72[x1.w, [x1.w, [x1.w, x4.v]]] + 72[x2.v, [x1.w, [x1.w, x4.v]]] −
18[x2.v, [x2.v, [x1.w, x4.v]]] + 46[x2.w, [x1.w, [w, x4.v]]] +
246[x2.w, [x1.w, [x1.v, x4.v]]] + 656[x2.w, [x1.w, [x1.w, x3.v]]] −
49[x2.w, [x2.v, [w, x4.v]]] + 79 [x2.w, [x2.v, [x1.v, x4.v]]] −
1780[x2.w, [x2.v, [x1.w, x2.w]]] + 8[x2.w, [x2.v, [x1.w, x3.v]]] −
1168 [x2.w, [x2.w, [w, x3.v]]] − 48[x3.v, [x1.w, [w, x4.v]]] +
6[x3.v, [x1.w, [x1.v, x4.v]]]

4 2 162[[w, x4.v], [x1.v, x4.v]] −2268[x1.w, [x1.w, [x1.w, x4.v]]] + 18[x2.v, [x1.w, [x1.w, x4.v]]] +
684[x2.v, [x2.v, [x1.w, x4.v]]] + 27[x2.v, [x2.v, [x2.v, x4.v]]] −
4442[x2.w, [x1.w, [w, x4.v]]] − 2814 [x2.w, [x1.w, [x1.v, x4.v]]] −
12064[x2.w, [x1.w, [x1.w, x3.v]]] + 2171[x2.w, [x2.v, [w, x4.v]]] −
47 [x2.w, [x2.v, [x1.v, x4.v]]] + 3548[x2.w, [x2.v, [x1.w, x2.w]]] +
8192[x2.w, [x2.v, [x1.w, x3.v]]] + 7664 [x2.w, [x2.w, [w, x3.v]]] +
648[x3.v, [x1.w, [w, x4.v]]] − 246[x3.v, [x1.w, [x1.v, x4.v]]]

4 2 7776[[w, x4.v], [x1.w, x2.w]] 648[x1.w, [x1.w, [x1.w, x4.v]]] − 1116[x2.v, [x1.w, [x1.w, x4.v]]] −
612[x2.v, [x2.v, [x1.w, x4.v]]] + 27[x2.v, [x2.v, [x2.v, x4.v]]] −
9230[x2.w, [x1.w, [w, x4.v]]] − 6 [x2.w, [x1.w, [x1.v, x4.v]]] −
5008[x2.w, [x1.w, [x1.w, x3.v]]] − 2815[x2.w, [x2.v, [w, x4.v]]] −
731 [x2.w, [x2.v, [x1.v, x4.v]]] + 10388[x2.w, [x2.v, [x1.w, x2.w]]] −
9592[x2.w, [x2.v, [x1.w, x3.v]]] + 5648 [x2.w, [x2.w, [w, x3.v]]] −
462[x3.v, [x1.w, [x1.v, x4.v]]]

4 2 1296[[w, x4.v], [x1.w, x3.v]] 4536[x1.w, [x1.w, [x1.w, x4.v]]] − 684[x2.v, [x1.w, [x1.w, x4.v]]] −
1692[x2.v, [x2.v, [x1.w, x4.v]]] − 54[x2.v, [x2.v, [x2.v, x4.v]]] +
6958[x2.w, [x1.w, [w, x4.v]]] + 3414[x2.w, [x1.w, [x1.v, x4.v]]] +
19088[x2.w, [x1.w, [x1.w, x3.v]]] − 5953[x2.w, [x2.v, [w, x4.v]]] −
1049 [x2.w, [x2.v, [x1.v, x4.v]]] + 14540[x2.w, [x2.v, [x1.w, x2.w]]] −
20344[x2.w, [x2.v, [x1.w, x3.v]]] − 10000[x2.w, [x2.w, [w, x3.v]]] −
1296[x3.v, [x1.w, [w, x4.v]]] + 438[x3.v, [x1.w, [x1.v, x4.v]]]

4 2 1944[[x1.v, x2.w], [x1.w, x4.v]] 1620 [x1.w, [x1.w, [x1.w, x4.v]]] − 36[x2.v, [x1.w, [x1.w, x4.v]]] −
153[x2.v, [x2.v, [x1.w, x4.v]]] + 27[x2.v, [x2.v, [x2.v, x4.v]]] +
28[x2.w, [x1.w, [w, x4.v]]] + 1416[x2.w, [x1.w, [x1.v, x4.v]]] +
3824[x2.w, [x1.w, [x1.w, x3.v]]] − 994[x2.w, [x2.v, [w, x4.v]]] +
472 [x2.w, [x2.v, [x1.v, x4.v]]] − 4072[x2.w, [x2.v, [x1.w, x2.w]]] −
1048[x2.w, [x2.v, [x1.w, x3.v]]] − 3232 [x2.w, [x2.w, [w, x3.v]]] −
156[x3.v, [x1.w, [x1.v, x4.v]]]

4 2 972[[x1.v, x2.w], [x2.v, x4.v]] −4536 [x1.w, [x1.w, [x1.w, x4.v]]] + 360[x2.v, [x1.w, [x1.w, x4.v]]] +
558[x2.v, [x2.v, [x1.w, x4.v]]] − 108[x2.v, [x2.v, [x2.v, x4.v]]] +
10250[x2.w, [x1.w, [w, x4.v]]] − 10758[x2.w, [x1.w, [x1.v, x4.v]]] −
39536[x2.w, [x1.w, [x1.w, x3.v]]] + 5485[x2.w, [x2.v, [w, x4.v]]] −
2047 [x2.w, [x2.v, [x1.v, x4.v]]] + 39748[x2.w, [x2.v, [x1.w, x2.w]]] +
9832[x2.w, [x2.v, [x1.w, x3.v]]] + 18064 [x2.w, [x2.w, [w, x3.v]]] +
1296[x3.v, [x1.w, [w, x4.v]]] + 750[x3.v, [x1.w, [x1.v, x4.v]]]

4 2 3888[[x1.v, x4.v], [x1.w, x2.w]] −5184 [x1.w, [x1.w, [x1.w, x4.v]]] − 2088[x2.v, [x1.w, [x1.w, x4.v]]] +
360[x2.v, [x2.v, [x1.w, x4.v]]] + 27 [x2.v, [x2.v, [x2.v, x4.v]]] −
11876[x2.w, [x1.w, [w, x4.v]]] − 12804[x2.w, [x1.w, [x1.v, x4.v]]] −
33952 [x2.w, [x1.w, [x1.w, x3.v]]] + 1694[x2.w, [x2.v, [w, x4.v]]] −
3782[x2.w, [x2.v, [x1.v, x4.v]]] + 84152[x2.w, [x2.v, [x1.w, x2.w]]] +
992[x2.w, [x2.v, [x1.w, x3.v]]] + 46688[x2.w, [x2.w, [w, x3.v]]] −
300[x3.v, [x1.w, [x1.v, x4.v]]]

4 2 324[[x1.v, x4.v], [x1.w, x3.v]] −648 [x1.w, [x1.w, [x1.w, x4.v]]] − 180[x2.v, [x1.w, [x1.w, x4.v]]] −
36[x2.v, [x2.v, [x1.w, x4.v]]] − 27[x2.v, [x2.v, [x2.v, x4.v]]] −
670[x2.w, [x1.w, [w, x4.v]]] − 3126[x2.w, [x1.w, [x1.v, x4.v]]] −
6800[x2.w, [x1.w, [x1.w, x3.v]]] + 457[x2.w, [x2.v, [w, x4.v]]] −
1123 [x2.w, [x2.v, [x1.v, x4.v]]] + 20788[x2.w, [x2.v, [x1.w, x2.w]]] −
56[x2.w, [x2.v, [x1.w, x3.v]]] + 8464 [x2.w, [x2.w, [w, x3.v]]] +
30[x3.v, [x1.w, [x1.v, x4.v]]]

continued
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Appendix D. A Pseudo-Hall basis of g for d = 3

l m LM(b) for b ∈ B b − LM(b)
4 2 15552[[x1.w, x2.w], [x1.w, x3.v]] −5184 [x1.w, [x1.w, [x1.w, x4.v]]] − 2088[x2.v, [x1.w, [x1.w, x4.v]]] +

360[x2.v, [x2.v, [x1.w, x4.v]]] + 27 [x2.v, [x2.v, [x2.v, x4.v]]] −
11876[x2.w, [x1.w, [w, x4.v]]] − 12804[x2.w, [x1.w, [x1.v, x4.v]]] −
33952 [x2.w, [x1.w, [x1.w, x3.v]]] + 1694[x2.w, [x2.v, [w, x4.v]]] −
3782[x2.w, [x2.v, [x1.v, x4.v]]] + 68600[x2.w, [x2.v, [x1.w, x2.w]]] +
992[x2.w, [x2.v, [x1.w, x3.v]]] + 46688[x2.w, [x2.w, [w, x3.v]]] −
300[x3.v, [x1.w, [x1.v, x4.v]]]

4 3 [x3.v, [x2.v, [x1.w, x4.v]]] −12[x2.w, [x1.w, [x1.w, x4.v]]] + 6[x2.w, [x2.v, [x1.w, x4.v]]] +
32[x2.w, [x2.w, [w, x4.v]]] + 16[x2.w, [x2.w, [x1.v, x4.v]]] +
128[x2.w, [x2.w, [x1.w, x3.v]]] − 2[x3.v, [x1.w, [x1.w, x4.v]]]

4 3 272[x3.v, [x2.w, [w, x4.v]]] −216[x2.w, [x1.w, [x1.w, x4.v]]] + 48[x2.w, [x2.v, [x1.w, x4.v]]] +
3[x2.w, [x2.v, [x2.v, x4.v]]] + 1344[x2.w, [x2.w, [w, x4.v]]] +
84[x2.w, [x2.w, [x1.v, x4.v]]] − 144[x2.w, [x2.w, [x1.w, x3.v]]] −
6[x3.v, [x2.v, [x2.v, x4.v]]]

4 3 136[x3.v, [x2.w, [x1.v, x4.v]]] −4872 [x2.w, [x1.w, [x1.w, x4.v]]] − 912[x2.w, [x2.v, [x1.w, x4.v]]] −
159[x2.w, [x2.v, [x2.v, x4.v]]] + 5472[x2.w, [x2.w, [w, x4.v]]] −
372[x2.w, [x2.w, [x1.v, x4.v]]] + 7632[x2.w, [x2.w, [x1.w, x3.v]]] −
544[x3.v, [x1.w, [x1.w, x4.v]]] − 22[x3.v, [x2.v, [x2.v, x4.v]]]

4 3 544[x3.v, [x2.w, [x1.w, x3.v]]] 3000 [x2.w, [x1.w, [x1.w, x4.v]]] + 240[x2.w, [x2.v, [x1.w, x4.v]]] −
87[x2.w, [x2.v, [x2.v, x4.v]]] + 736[x2.w, [x2.w, [w, x4.v]]] −
532[x2.w, [x2.w, [x1.v, x4.v]]] − 176[x2.w, [x2.w, [x1.w, x3.v]]] +
272[x3.v, [x1.w, [x1.w, x4.v]]] + 4[x3.v, [x2.v, [x2.v, x4.v]]]

4 3 16[x4.v, [x1.w, [w, x4.v]]] −264[x2.w, [x1.w, [x1.w, x4.v]]] − 27[x2.w, [x2.v, [x2.v, x4.v]]] +
864[x2.w, [x2.w, [w, x4.v]]] + 12[x2.w, [x2.w, [x1.v, x4.v]]] +
1680[x2.w, [x2.w, [x1.w, x3.v]]] − 32[x3.v, [x1.w, [x1.w, x4.v]]] −
2[x3.v, [x2.v, [x2.v, x4.v]]]

4 3 136[x4.v, [x1.w, [x1.v, x4.v]]] 17064 [x2.w, [x1.w, [x1.w, x4.v]]] + 2328[x2.w, [x2.v, [x1.w, x4.v]]] −
1359[x2.w, [x2.v, [x2.v, x4.v]]] + 47776 [x2.w, [x2.w, [w, x4.v]]] −
2148[x2.w, [x2.w, [x1.v, x4.v]]] + 56528[x2.w, [x2.w, [x1.w, x3.v]]] −
544[x3.v, [x1.w, [x1.w, x4.v]]] − 70[x3.v, [x2.v, [x2.v, x4.v]]]

4 3 3264[x4.v, [x1.w, [x1.w, x2.w]]] −2400 [x2.w, [x1.w, [x1.w, x4.v]]] − 1212[x2.w, [x2.v, [x1.w, x4.v]]] +
39[x2.w, [x2.v, [x2.v, x4.v]]] − 6464 [x2.w, [x2.w, [w, x4.v]]] −
1900[x2.w, [x2.w, [x1.v, x4.v]]] − 12752[x2.w, [x2.w, [x1.w, x3.v]]] −
10[x3.v, [x2.v, [x2.v, x4.v]]]

4 3 136[x4.v, [x1.w, [x1.w, x3.v]]] −3708 [x2.w, [x1.w, [x1.w, x4.v]]] − 366[x2.w, [x2.v, [x1.w, x4.v]]] +
315[x2.w, [x2.v, [x2.v, x4.v]]] − 10384[x2.w, [x2.w, [w, x4.v]]] +
796[x2.w, [x2.w, [x1.v, x4.v]]] − 10768[x2.w, [x2.w, [x1.w, x3.v]]] +
136[x3.v, [x1.w, [x1.w, x4.v]]] + 16[x3.v, [x2.v, [x2.v, x4.v]]]

4 3 68[x4.v, [x2.v, [w, x4.v]]] −16896[x2.w, [x1.w, [x1.w, x4.v]]] − 3612[x2.w, [x2.v, [x1.w, x4.v]]] +
195[x2.w, [x2.v, [x2.v, x4.v]]] − 10560[x2.w, [x2.w, [w, x4.v]]] −
252[x2.w, [x2.w, [x1.v, x4.v]]] − 2832[x2.w, [x2.w, [x1.w, x3.v]]] −
1088[x3.v, [x1.w, [x1.w, x4.v]]] − 50[x3.v, [x2.v, [x2.v, x4.v]]]

4 3 17[x4.v, [x2.v, [x1.v, x4.v]]] −2784 [x2.w, [x1.w, [x1.w, x4.v]]] − 288[x2.w, [x2.v, [x1.w, x4.v]]] +
84[x2.w, [x2.v, [x2.v, x4.v]]] − 3712[x2.w, [x2.w, [w, x4.v]]] +
176[x2.w, [x2.w, [x1.v, x4.v]]] − 4032[x2.w, [x2.w, [x1.w, x3.v]]] +
2[x3.v, [x2.v, [x2.v, x4.v]]]

4 3 816[x4.v, [x2.v, [x1.w, x2.w]]] 2292 [x2.w, [x1.w, [x1.w, x4.v]]] + 1338[x2.w, [x2.v, [x1.w, x4.v]]] −
777[x2.w, [x2.v, [x2.v, x4.v]]] + 32432 [x2.w, [x2.w, [w, x4.v]]] +
1228[x2.w, [x2.w, [x1.v, x4.v]]] + 48176[x2.w, [x2.w, [x1.w, x3.v]]] −
816[x3.v, [x1.w, [x1.w, x4.v]]] − 44[x3.v, [x2.v, [x2.v, x4.v]]]

4 3 272[x4.v, [x2.v, [x1.w, x3.v]]] 23208 [x2.w, [x1.w, [x1.w, x4.v]]] + 3456[x2.w, [x2.v, [x1.w, x4.v]]] +
63[x2.w, [x2.v, [x2.v, x4.v]]] + 5920 [x2.w, [x2.w, [w, x4.v]]] +
1220[x2.w, [x2.w, [x1.v, x4.v]]] − 7376[x2.w, [x2.w, [x1.w, x3.v]]] +
1088[x3.v, [x1.w, [x1.w, x4.v]]] + 78[x3.v, [x2.v, [x2.v, x4.v]]]

4 3 544[x4.v, [x2.w, [w, x3.v]]] 2304[x2.w, [x1.w, [x1.w, x4.v]]] + 372[x2.w, [x2.v, [x1.w, x4.v]]] +
495[x2.w, [x2.v, [x2.v, x4.v]]] − 18688[x2.w, [x2.w, [w, x4.v]]] +
532[x2.w, [x2.w, [x1.v, x4.v]]] − 25936[x2.w, [x2.w, [x1.w, x3.v]]] +
544[x3.v, [x1.w, [x1.w, x4.v]]] + 30[x3.v, [x2.v, [x2.v, x4.v]]]

4 3 136[[v, x4.v], [x2.w, x4.v]] −1776[x2.w, [x1.w, [x1.w, x4.v]]] − 444[x2.w, [x2.v, [x1.w, x4.v]]] +
393[x2.w, [x2.v, [x2.v, x4.v]]] − 14336[x2.w, [x2.w, [w, x4.v]]] −
148[x2.w, [x2.w, [x1.v, x4.v]]] − 23216[x2.w, [x2.w, [x1.w, x3.v]]] +
544[x3.v, [x1.w, [x1.w, x4.v]]] + 30[x3.v, [x2.v, [x2.v, x4.v]]]

4 3 3264[[w, x2.w], [x2.w, x4.v]] 6480[x2.w, [x1.w, [x1.w, x4.v]]] + 2436[x2.w, [x2.v, [x1.w, x4.v]]] −
447[x2.w, [x2.v, [x2.v, x4.v]]] + 22784[x2.w, [x2.w, [w, x4.v]]] +
1900[x2.w, [x2.w, [x1.v, x4.v]]] + 32336[x2.w, [x2.w, [x1.w, x3.v]]] +
10[x3.v, [x2.v, [x2.v, x4.v]]]

continued
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l m LM(b) for b ∈ B b − LM(b)
4 3 544[[w, x3.v], [x2.w, x4.v]] −960[x2.w, [x1.w, [x1.w, x4.v]]] − 2076[x2.w, [x2.v, [x1.w, x4.v]]] +

699[x2.w, [x2.v, [x2.v, x4.v]]] − 28480[x2.w, [x2.w, [w, x4.v]]] −
1916[x2.w, [x2.w, [x1.v, x4.v]]] − 48784[x2.w, [x2.w, [x1.w, x3.v]]] +
544[x3.v, [x1.w, [x1.w, x4.v]]] + 30[x3.v, [x2.v, [x2.v, x4.v]]]

4 3 272[[w, x4.v], [x1.w, x4.v]] 744[x2.w, [x1.w, [x1.w, x4.v]]] + 696[x2.w, [x2.v, [x1.w, x4.v]]] −
135[x2.w, [x2.v, [x2.v, x4.v]]] + 8608[x2.w, [x2.w, [w, x4.v]]] +
2204[x2.w, [x2.w, [x1.v, x4.v]]] + 21712[x2.w, [x2.w, [x1.w, x3.v]]] −
544[x3.v, [x1.w, [x1.w, x4.v]]] − 2[x3.v, [x2.v, [x2.v, x4.v]]]

4 3 68[[w, x4.v], [x2.v, x4.v]] −5208[x2.w, [x1.w, [x1.w, x4.v]]] − 792[x2.w, [x2.v, [x1.w, x4.v]]] +
741[x2.w, [x2.v, [x2.v, x4.v]]] − 27616[x2.w, [x2.w, [w, x4.v]]] +
76[x2.w, [x2.w, [x1.v, x4.v]]] − 37744[x2.w, [x2.w, [x1.w, x3.v]]] +
544[x3.v, [x1.w, [x1.w, x4.v]]] + 14[x3.v, [x2.v, [x2.v, x4.v]]]

4 3 1632[[x1.v, x2.w], [x2.w, x4.v]] 6480 [x2.w, [x1.w, [x1.w, x4.v]]] + 1212[x2.w, [x2.v, [x1.w, x4.v]]] −
141[x2.w, [x2.v, [x2.v, x4.v]]] + 7552 [x2.w, [x2.w, [w, x4.v]]] +
676[x2.w, [x2.w, [x1.v, x4.v]]] + 6768[x2.w, [x2.w, [x1.w, x3.v]]] +
10[x3.v, [x2.v, [x2.v, x4.v]]]

4 3 136[[x1.v, x4.v], [x1.w, x4.v]] −1704 [x2.w, [x1.w, [x1.w, x4.v]]] + 1512[x2.w, [x2.v, [x1.w, x4.v]]] −
33[x2.w, [x2.v, [x2.v, x4.v]]] + 7520 [x2.w, [x2.w, [w, x4.v]]] +
3428[x2.w, [x2.w, [x1.v, x4.v]]] + 27696[x2.w, [x2.w, [x1.w, x3.v]]] −
544[x3.v, [x1.w, [x1.w, x4.v]]] − 2[x3.v, [x2.v, [x2.v, x4.v]]]

4 3 34[[x1.v, x4.v], [x2.v, x4.v]] 8184 [x2.w, [x1.w, [x1.w, x4.v]]] + 312[x2.w, [x2.v, [x1.w, x4.v]]] +
759[x2.w, [x2.v, [x2.v, x4.v]]] − 24992[x2.w, [x2.w, [w, x4.v]]] −
1052[x2.w, [x2.w, [x1.v, x4.v]]] − 49488[x2.w, [x2.w, [x1.w, x3.v]]] +
1632[x3.v, [x1.w, [x1.w, x4.v]]] + 46[x3.v, [x2.v, [x2.v, x4.v]]]

4 3 3264[[x1.w, x2.w], [x1.w, x4.v]] −3720 [x2.w, [x1.w, [x1.w, x4.v]]] − 216[x2.w, [x2.v, [x1.w, x4.v]]] +
267[x2.w, [x2.v, [x2.v, x4.v]]] − 8224[x2.w, [x2.w, [w, x4.v]]] +
1492[x2.w, [x2.w, [x1.v, x4.v]]] − 1936[x2.w, [x2.w, [x1.w, x3.v]]] +
10[x3.v, [x2.v, [x2.v, x4.v]]]

4 3 816[[x1.w, x2.w], [x2.v, x4.v]] 8616 [x2.w, [x1.w, [x1.w, x4.v]]] + 1848[x2.w, [x2.v, [x1.w, x4.v]]] −
471[x2.w, [x2.v, [x2.v, x4.v]]] + 21280 [x2.w, [x2.w, [w, x4.v]]] +
956[x2.w, [x2.w, [x1.v, x4.v]]] + 24784[x2.w, [x2.w, [x1.w, x3.v]]] −
10[x3.v, [x2.v, [x2.v, x4.v]]]

4 3 544[[x1.w, x3.v], [x1.w, x4.v]] 888 [x2.w, [x1.w, [x1.w, x4.v]]] − 1512[x2.w, [x2.v, [x1.w, x4.v]]] +
135[x2.w, [x2.v, [x2.v, x4.v]]] − 10784 [x2.w, [x2.w, [w, x4.v]]] −
3292[x2.w, [x2.w, [x1.v, x4.v]]] − 30416[x2.w, [x2.w, [x1.w, x3.v]]] +
544[x3.v, [x1.w, [x1.w, x4.v]]] + 2[x3.v, [x2.v, [x2.v, x4.v]]]

4 3 136[[x1.w, x3.v], [x2.v, x4.v]] −1992 [x2.w, [x1.w, [x1.w, x4.v]]] + 1032[x2.w, [x2.v, [x1.w, x4.v]]] −
573[x2.w, [x2.v, [x2.v, x4.v]]] + 22368 [x2.w, [x2.w, [w, x4.v]]] +
1908[x2.w, [x2.w, [x1.v, x4.v]]] + 40560[x2.w, [x2.w, [x1.w, x3.v]]] −
1088[x3.v, [x1.w, [x1.w, x4.v]]] − 10[x3.v, [x2.v, [x2.v, x4.v]]]

4 4 [x3.v, [x2.w, [x2.v, x4.v]]] 288[x2.w, [x2.w, [x1.w, x4.v]]] + 18[x2.w, [x2.w, [x2.v, x4.v]]] +
40[x3.v, [x2.w, [x1.w, x4.v]]]

4 4 [x3.v, [x3.v, [x1.w, x4.v]]] −420[x2.w, [x2.w, [x1.w, x4.v]]] − 24[x2.w, [x2.w, [x2.v, x4.v]]] −
48[x3.v, [x2.w, [x1.w, x4.v]]]

4 4 5[x4.v, [x1.w, [x1.w, x4.v]]] 328[x2.w, [x2.w, [x1.w, x4.v]]] + 16[x2.w, [x2.w, [x2.v, x4.v]]] +
60[x3.v, [x2.w, [x1.w, x4.v]]]

4 4 5[x4.v, [x2.v, [x1.w, x4.v]]] 1536[x2.w, [x2.w, [x1.w, x4.v]]] + 72[x2.w, [x2.w, [x2.v, x4.v]]] +
160[x3.v, [x2.w, [x1.w, x4.v]]]

4 4 5[x4.v, [x2.v, [x2.v, x4.v]]] −1792 [x2.w, [x2.w, [x1.w, x4.v]]] + 56[x2.w, [x2.w, [x2.v, x4.v]]]
4 4 10[x4.v, [x2.w, [w, x4.v]]] −742[x2.w, [x2.w, [x1.w, x4.v]]] − 34[x2.w, [x2.w, [x2.v, x4.v]]] −

95[x3.v, [x2.w, [x1.w, x4.v]]]
4 4 5[x4.v, [x2.w, [x1.v, x4.v]]] −602[x2.w, [x2.w, [x1.w, x4.v]]] − 44[x2.w, [x2.w, [x2.v, x4.v]]] −

85[x3.v, [x2.w, [x1.w, x4.v]]]
4 4 20[x4.v, [x2.w, [x1.w, x3.v]]] 502[x2.w, [x2.w, [x1.w, x4.v]]] + 34[x2.w, [x2.w, [x2.v, x4.v]]] +

75[x3.v, [x2.w, [x1.w, x4.v]]]
4 4 10[[w, x4.v], [x2.w, x4.v]] 958[x2.w, [x2.w, [x1.w, x4.v]]] + 46[x2.w, [x2.w, [x2.v, x4.v]]] +

115[x3.v, [x2.w, [x1.w, x4.v]]]
4 4 5[[x1.v, x4.v], [x2.w, x4.v]] 998[x2.w, [x2.w, [x1.w, x4.v]]] + 56[x2.w, [x2.w, [x2.v, x4.v]]] +

155[x3.v, [x2.w, [x1.w, x4.v]]]
4 4 24[[x1.w, x2.w], [x2.w, x4.v]] 94[x2.w, [x2.w, [x1.w, x4.v]]] + 4[x2.w, [x2.w, [x2.v, x4.v]]] +

15[x3.v, [x2.w, [x1.w, x4.v]]]
4 4 20[[x1.w, x3.v], [x2.w, x4.v]] −838 [x2.w, [x2.w, [x1.w, x4.v]]] − 46[x2.w, [x2.w, [x2.v, x4.v]]] −

135[x3.v, [x2.w, [x1.w, x4.v]]]
4 4 [[x1.w, x4.v], [x2.v, x4.v]] 256[x2.w, [x2.w, [x1.w, x4.v]]] + 16[x2.w, [x2.w, [x2.v, x4.v]]] +

32[x3.v, [x2.w, [x1.w, x4.v]]]
4 5 3[x3.v, [x2.w, [x2.w, x4.v]]] 22[x2.w, [x2.w, [x2.w, x4.v]]]
4 5 15[x4.v, [x2.w, [x1.w, x4.v]]] −64[x2.w, [x2.w, [x2.w, x4.v]]]

continued
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Appendix D. A Pseudo-Hall basis of g for d = 3

l m LM(b) for b ∈ B b − LM(b)
4 5 3[x4.v, [x2.w, [x2.v, x4.v]]] 112[x2.w, [x2.w, [x2.w, x4.v]]]
4 5 5[x4.v, [x3.v, [x1.w, x4.v]]] 32[x2.w, [x2.w, [x2.w, x4.v]]]
4 5 3[[x1.w, x4.v], [x2.w, x4.v]] 16[x2.w, [x2.w, [x2.w, x4.v]]]
4 5 15[[x2.v, x4.v], [x2.w, x4.v]] −448 [x2.w, [x2.w, [x2.w, x4.v]]]
4 6 [x4.v, [x2.w, [x2.w, x4.v]]] 0
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