6,942 research outputs found

    Some computational aspects of the generalized von Mises distribution

    Get PDF
    This article deals with some important computational aspects of the generalized von Mises distribution in relation with parameter estimation, model selection and simulation. The generalized von Mises distribution provides a flexible model for circular data allowing for symmetry, asymmetry, unimodality and bimodality. For this model, we show the equivalence between the trigonometric method of moments and the maximum likelihood estimators, we give their asymptotic distribution, we provide bias-corrected estimators of the entropy, the Akaike information criterion and the measured entropy for model selection, and we implement the ratio-of-uniforms method of simulatio

    Some computational aspects of the generalized von Mises distribution

    Get PDF

    On large deformations of thin elasto-plastic shells: Implementation of a finite rotation model for quadrilateral shell element

    Get PDF
    A large-deformation model for thin shells composed of elasto-plastic material is presented in this work, Formulation of the shell model, equivalent to the two-dimensional Cosserat continuum, is developed from the three-dimensional continuum by employing standard assumptions on the distribution of the displacement held in the shell body, A model for thin shells is obtained by an approximation of terms describing the shell geometry. Finite rotations of the director field are described by a rotation vector formulation. An elasto-plastic constitutive model is developed based on the von Mises yield criterion and isotropic hardening. In this work, attention is restricted to problems where strains remain small allowing for all aspects of material identification and associated computational treatment, developed for small-strain elastoplastic models, to be transferred easily to the present elasto-plastic thin-shell model. A finite element formulation is based on the four-noded isoparametric element. A particular attention is devoted to the consistent linearization of the shell kinematics and elasto-plastic material model, in order to achieve quadratic rate of asymptotic convergence typical for the Newton-Raphson-based solution procedures. To illustrate the main objective of the present approach-namely the simulation of failures of thin elastoplastic shells typically associated with buckling-type instabilities and/or bending-dominated shell problems resulting in formation of plastic hinges-several numerical examples are presented, Numerical results are compared with the available experimental results and representative numerical simulations

    Recent advances in directional statistics

    Get PDF
    Mainstream statistical methodology is generally applicable to data observed in Euclidean space. There are, however, numerous contexts of considerable scientific interest in which the natural supports for the data under consideration are Riemannian manifolds like the unit circle, torus, sphere and their extensions. Typically, such data can be represented using one or more directions, and directional statistics is the branch of statistics that deals with their analysis. In this paper we provide a review of the many recent developments in the field since the publication of Mardia and Jupp (1999), still the most comprehensive text on directional statistics. Many of those developments have been stimulated by interesting applications in fields as diverse as astronomy, medicine, genetics, neurology, aeronautics, acoustics, image analysis, text mining, environmetrics, and machine learning. We begin by considering developments for the exploratory analysis of directional data before progressing to distributional models, general approaches to inference, hypothesis testing, regression, nonparametric curve estimation, methods for dimension reduction, classification and clustering, and the modelling of time series, spatial and spatio-temporal data. An overview of currently available software for analysing directional data is also provided, and potential future developments discussed.Comment: 61 page

    Mechanical Properties and Fracture Dynamics of Silicene Membranes

    Get PDF
    As graphene became one of the most important materials today, there is a renewed interest on others similar structures. One example is silicene, the silicon analogue of graphene. It share some the remarkable graphene properties, such as the Dirac cone, but presents some distinct ones, such as a pronounced structural buckling. We have investigated, through density functional based tight-binding (DFTB), as well as reactive molecular dynamics (using ReaxFF), the mechanical properties of suspended single-layer silicene. We calculated the elastic constants, analyzed the fracture patterns and edge reconstructions. We also addressed the stress distributions, unbuckling mechanisms and the fracture dependence on the temperature. We analysed the differences due to distinct edge morphologies, namely zigzag and armchair
    corecore