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Abstract This article deals with some important compu-
tational aspects of the generalized von Mises distribution
in relation with parameter estimation, model selection and
simulation. The generalized von Mises distribution provides
a flexible model for circular data allowing for symmetry,
asymmetry, unimodality and bimodality. For this model, we
show the equivalence between the trigonometric method of
moments and the maximum likelihood estimators, we give
their asymptotic distribution, we provide bias-corrected esti-
mators of the entropy, the Akaike information criterion and
the measured entropy for model selection, and we imple-
ment the ratio-of-uniforms method of simulation.

Keywords Circular distribution · Akaike information
criterion · Efficient score · Entropy · Fisher information ·
Fourier series · Kullback-Leibler information · Maximum
likelihood estimator · Mixture distribution ·
Ratio-of-uniforms method · Trigonometric method
of moments estimator

1 Introduction

In various scientific fields observations are directions in two
or three dimensions and are referred to as “directional data”.
Two-dimensional directions are also called “circular data”.
Besides two-dimensional directions, any periodic phenom-
enon with a known period leads to circular data. There are
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many examples of circular data: wind directions, directions
of migratory birds, orientation of rock cores, daily arrival
times, etc. The circular distribution of a random angle θ

in radian measure is defined by F(x) = P[0 < θ ≤ x], if
x ∈ [0,2π), and F(x + 2π) − F(x) = 1, if x ∈ R. Thus
F(0) = 0, F(2π) = 1 and for x1 ≤ x2 ≤ x1 + 2π , P[x1 <

θ ≤ x2] = F(x2) − F(x1) = ∫ x2
x1

dF(x). When F is abso-
lutely continuous, then there exists a circular density f sat-
isfying F(x2) − F(x1) = ∫ x2

x1
f (x)dx. With circular data, it

is common practice to use the von Mises (vM) distribution
(also called circular normal) given by (2) below, although
it does not provide sufficient flexibility for many scientific
problems: it is always circularly symmetric, unimodal and
with density dropping exponentially on either side from the
center.

To overcome this problem while maintaining the im-
portant theoretical properties of the vM distribution, Gatto
and Jammalamadaka (2007) analyzed the generalized von
Mises (GvM) distribution which originates from Maksi-
mov (1967). The generalized von Mises density of order k

(GvMk) is defined as

f (ω | μ1, . . . ,μk, κ1, . . . , κk)

= 1

2πG
(k)
0 (δ1, . . . , δk−1, κ1, . . . , κk)

× exp

{ k∑

j=1

κj cos j (ω − μj )

}

, (1)

where κ1, . . . , κk ≥ 0, μ1 ∈ [0,2π),μ2 ∈ [0,π), . . . ,μk ∈
[0,2π/k), and where

G
(k)
0 (δ1, . . . , δk−1, κ1, . . . , κk)
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= 1

2π

∫ 2π

0
exp{κ1 cosω + κ2 cos 2(ω + δ1)

+ · · · + κk cosk(ω + δk−1)}dω

is a generalization of the Bessel function I0 (see below)
with δ1 = (μ1 −μ2)modπ , δ2 = (μ1 −μ3)mod(2π/3), . . . ,

δk−1 = (μ1 −μk)mod(2π/k). We denote as θ ∼ GvMk(μ1,

. . . ,μk, κ1, . . . , κk) that the circular random variable θ has
the density (1). We focus here on the important practical
case of k = 2, which gives the closest density amongst cir-
cular densities with fixed second trigonometric moment, see
(3) below, to the von Mises (vM) density (2), the closeness
being in the Kullback-Leibler sense (Gatto 2008, Corollary
2.2). GvM2 densities allow for asymmetry and bimodality,
see Gatto and Jammalamadaka (2007, Figs. 1 and 2) for
some typical graphs. Note that bimodality is an essential
property for modeling wind directions, where it is typical
to observe opposite directions, and the GvM2 model is im-
portant in this context, as illustrated in Sect. 4.

The well-known vM density is obtained by interrupting
the summation in the exponent of (1) at k = 1, giving

f (ω | μ,κ) = 1

2πI0(κ)
exp{κ cos(ω − μ)}, (2)

for μ ∈ [0,2π) and κ ≥ 0, where Ir (z) = (2π)−1
∫ 2π

0 cos rω

× exp{z cosω} dω, z ∈ C, is the modified Bessel function I
of integer order r (see Abramowitz and Stegun 1972, 9.6.19,
p. 376). GvM2 densities maintain most of the theoretical of
vM densities and allow for asymmetry and bimodality. The
burden for this is an increased complexity of the normal-
izing constant G

(2)
0 , which will be simply denoted by G0

and which can be easily evaluated by (16). Other important
circular distributions like the wrapped distributions can in
general be expressed as infinite sums only, thus they have
another kind of undesired complexity. Flexible circular dis-
tributions can also be obtained by finite mixtures of sim-
pler distributions, like mixtures of vM distributions (2). Here
again, the flexibility proposed by mixtures does not come
gratuitously: these mixtures bring more complicated compu-
tational procedures and other inferential complications due
to their lack of sufficiency, invariance, etc. Mixture models
are also a typical source of non-regular maximum likelihood
problems. Mixtures of vM distributions do not share the im-
portant theoretical properties inherent to the GvMk distribu-
tions, which can be summarized as follows.

• The GvMk distributions belong to the canonical exponen-
tial class (12) after applying the reparameterization (10).
Some of the facts given below are consequences of this.

• Once reparameterized, a GvMk distribution admits a min-
imal sufficient and complete statistic and it is given by
(11) below.

• For the GvM2 distribution, we show in Sect. 2.1 that the
maximum likelihood estimator (MLE) of the parameters
is equivalent to the trigonometric method of moments es-
timator (TMME). The computation of the MLE is con-
ceptually simpler with the GvM2 distribution than with a
mixture of vM distributions.

• In Gatto (2008) it is shown that GvMk distributions pos-
sess some interesting information theoretic properties. An
important result is that, under constraints on the trigono-
metric moments, the closest circular distribution to any
fixed circular distribution has the GvMk form. This close-
ness property is useful e.g. in Bayesian statistics, when-
ever the closest prior distribution to a given distribution
must be selected and information on some trigonometric
moments is available.

• A practical formula for the entropy of the GvM2 distribu-
tion is available and provided by (18).

Concerning mixtures of vM distributions, we should
be aware of the following facts.

• While the likelihood function of any GvMk distribu-
tion is bounded, the likelihood of the mixture of e.g.
the vM(μ1, κ1) and the vM(μ2, κ2) distributions is un-
bounded. To see this, consider e.g. κ1 → ∞, then the like-
lihood at μ1 equal to any of the sample values goes to
infinity. (For this, note that I0(κ) ∼ (2πκ)−1/2eκ as κ →
∞, see Abramowitz and Stegun (1972, 9.7.1, p. 377).)
A bounded likelihood is required in the proof of con-
sistency of the MLE, see e.g. Cox and Hinkley (1974,
p. 289). The overall supremum of the likelihood of a vM
mixture does not provide a sensible (i.e. consistent) esti-
mator, although some other local supremum do so. The
general problem of unbounded likelihood is reviewed by
Cheng and Traylor (1995, Sect. 3), who mention the mod-
ified likelihood approach by Cheng and Iles (1987) and
the spacings-based approach by Cheng and Amin (1983)
and Ranneby (1984) as being the “least subjective” solu-
tions to this problem. Alternative estimators for vM mix-
tures are also given by Spurr and Koutbeiy (1991).

• With the GvMk distributions, the likelihood ratio test
statistic has a simple form and it is asymptotically chi-
squared distributed. The likelihood ratio test for testing
the vM distribution against the GvM2 is described in the
last paragraph of Sect. 2.1. On the other side, when test-
ing for e.g. a mixture of two vM distributions against a
single vM, the likelihood ratio test is not asymptotically
chi-squared distributed, see Hartigan (1985) and Titter-
ington et al. (1985, Sect. 5.4).

• Given a model with unknown parameters η = (η1,

. . . , ηp)T, indeterminacy is the existence of a reparame-
terization ϕ = ϕ(η) and of two non-empty disjoint subsets
I and J of {1, . . . , p}, such that ϕi = 0 ∀i ∈ I implies that
the likelihood is independent of ϕj ∀j ∈ J , see Cheng and
Traylor (1995, p. 14). A consequence of indeterminacy is
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the unstable behavior of some parameter estimators. Let
us consider the five-parameter mixture of vM densities (2)
given by qf (ω|μ,κ) + (1 − q)f (ω|ν,ρ) and the repara-
meterization ν, ρ, δμ = (ν −μ)mod(2π) and δκ = ρ − κ .
We can observe the following: if q = 0 then δμ and δκ are
indeterminate, and if δμ = 0 and δκ = 0 then q is indeter-
minate. Thus estimators may be unstable whenever they
approach these critical values.

In the context of this last remark, we can note from (1)
that a GvMk distribution possesses the indeterminacy that
if κj = 0 then μj is indeterminate, j = 1, . . . , k. This type
of indeterminacy, which appears also in the mixture of vM
distributions, is however weaker than the previous indeter-
minacy involving the mixing parameter q of the vM dis-
tributions. Firstly because this last type of indeterminacy
can be removed by re-reparameterization, precisely by the
Cartesian re-parameterization (10), and secondly because
this indeterminacy is only one-directional, i.e. the implica-
tion from the null to the indeterminate parameters cannot
be reversed, as it happens with the indeterminacy involving
the mixing parameter q . This indeterminacy can also lead to
a problem in estimation, which is illustrated through a real
data example in Sect. 4, where the estimator of κ1 is almost
zero and the empirical Fisher information matrix is almost
singular, see (30).

This article deals with some important computational as-
pects of the GvM2 distribution: the estimation of the model
parameters, the inference for these parameters, the estima-
tion of the entropy, the problem of model selection and the
generation of pseudo-random numbers. In Sect. 2 we give
the TMME and we show that it is equivalent to the MLE.
We then provide asymptotically unbiased estimators of the
entropy and formulas for the Akaike information criterion
(AIC) and for the measured entropy (ME) of model selec-
tion. In Sect. 3, we present two types of acceptance-rejection
algorithms for generating GvM2 pseudo-random numbers.
We end the article in Sect. 4 with some numerical illustra-
tions.

2 Estimation and model selection

In Sect. 2.1 we first show the equivalence between the
TMME and the MLE under the GvM2 model and we provide
the estimating equations for these estimators. We also give
the empirical Fisher information matrix and hence the as-
ymptotic distribution of the estimators. In Sect. 2.2 we give
an analytical formula for the entropy of the GvM2 distribu-
tion and two bias-corrected estimators of it when the model
parameters are unknown. We then provide formulas for the
AIC and the ME of model selection.

2.1 Trigonometric method of moments and maximum
likelihood estimators

The TMME is the circular version of the method of moments
estimator of linear data. For r = 1,2, . . . , the r th trigono-
metric moment of any circular random variable θ is defined
as

ϕr = E[eιrθ ] = ρre
ινr = γr + ισr , (3)

where ρr = (E2[cos rθ ]+E2[sin rθ ])1/2, νr = arg{E[cos rθ ],
E[sin rθ ]}, γr = E[cos rθ ] is the r th cosine moment and
σr = E[sin rθ ] is the r th sine moment. Suppose θ1, . . . , θn

are independent replications of θ whose distribution has
p unknown parameters to estimate. For r = 1, . . . , k, k =
	(p + 1)/2
, 	x
 denoting the largest integer smaller than
or equal to x, we equate ρr and νr to their sample ver-
sions ρ̂r = n−1([∑n

i=1 cos rθi]2 + [∑n
i=1 sin rθi]2)1/2 and

ν̂r = arg{∑n
i=1 cos rθi,

∑n
i=1 sin rθi} respectively, and we

solve these equations for the p unknown parameters. Equiv-
alently, we can equate γr and σr to their sample ver-
sions γ̂r = n−1 ∑n

i=1 cos rθi and σ̂r = n−1 ∑n
i=1 sin rθi ,

r = 1, . . . , k, and solve for the p unknown parameters. For
both variants, the solution with respect to the p unknown pa-
rameters yields a TMME based on the k first trigonometric
moments. Note that we have a superfluous equation when-
ever p is odd. This method was suggested by Gatto and
Jammalamadaka (2003) for wrapped α-stable distributions.

Now we suppose that θ1, . . . , θn are n independent
GvM2(μ1,μ2, κ1, κ2) circular random variables with trigo-
nometric moments ϕr = ρre

ινr = γr + ισr , r = 1,2 . . . . Let
us define

Gr(δ, κ1, κ2) = 1

2π

∫ 2π

0
cos rω exp{κ1 cosω

+ κ2 cos 2(ω + δ)}dω, (4)

Hr(δ, κ1, κ2) = 1

2π

∫ 2π

0
sin rω exp{κ1 cosω

+ κ2 cos 2(ω + δ)}dω,

Ar(δ, κ1, κ2) = Gr(δ, κ1, κ2)

G0(δ, κ1, κ2)
(5)

and

Br(δ, κ1, κ2) = Hr(δ, κ1, κ2)

G0(δ, κ1, κ2)
, (6)

for r = 0,1, . . . , where δ ∈ [0,π) and κ1, κ2 ≥ 0. All these
functions can be evaluated with the help of the expansions
(16) and (17) below. With this, ϕr = eιrμ1{Ar(δ, κ1, κ2) +
ιBr(δ, κ1, κ2)}, or, equivalently,
(

γr

σr

)

= R(rμ1)

(
Ar(δ, κ1, κ2)

Br(δ, κ1, κ2)

)

, (7)
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where

R(rμ1) =
(

cos rμ1 − sin rμ1

sin rμ1 cos rμ1

)

,

r = 1,2, . . . , are rotation matrices and where δ = (μ1 −
μ2)modπ . Hence the TMME of δ,μ1, κ1 and κ2, denoted
δ̂ ∈ [0,π) μ̂1 ∈ [0,2π), κ̂1 and κ̂2, are obtained by replac-
ing γr and σr by γ̂r and σ̂r , r = 1,2, in (7). We define also
μ̂2 = (μ̂1 − δ̂)modπ . If we define the score function

ψ(ω; δ,μ1, κ1, κ2)

=

⎛

⎜
⎜
⎝

cosω − cosμ1 A1(δ, κ1, κ2) + sinμ1 B1(δ, κ1, κ2)

sinω − cosμ1 B1(δ, κ1, κ2) − sinμ1 A1(δ, κ1, κ2)

cos 2ω − cos 2μ1 A2(δ, κ1, κ2) + sin 2μ1 B2(δ, κ1, κ2)

sin 2ω − cos 2μ1 B2(δ, κ1, κ2) − sin 2μ1 A2(δ, κ1, κ2)

⎞

⎟
⎟
⎠ ,

(8)

then it follows from (7) that E[ψ(θ1; δ,μ1, κ1, κ2)] = 0,
the expectation being taken under δ,μ1, κ1, κ2, and

n∑

i=1

ψ(θi; δ̂, μ̂1, κ̂1, κ̂2) = 0, (9)

meaning that this TMME is a Fisher consistent M-estimator.
Consider now the whole GvMk class and the Cartesian

re-parameterization

λ1 = κ1 cosμ1, λ2 = κ1 sinμ1,

λ3 = κ2 cos 2μ2 and λ4 = κ2 sin 2μ2, . . . ,

λ2k−1 = κk coskμk, λ2k = κk sinkμk.

(10)

By defining λ = (λ1, . . . , λ2k)
T ∈ R2k and

T (ω) = ( cosω, sinω, cos 2ω, sin 2ω, . . . ,

coskω, sinkω)T, (11)

the GvMk density takes the 2k-parameters canonical expo-
nential form

f ∗(ω | λ) = exp{λTT (ω) − K(λ)}. (12)

Thus the logarithmic likelihood is l∗(λ | θ1, . . . , θn) =∑n
i=1 logf ∗(θi | λ) = λT ∑n

i=1 T (θi) − nK(λ), and the
MLE of λ, denoted λ̂, is solution in λ of E[T (θ1)] =
n−1 ∑n

i=1 T (θi), which is equivalent to solving (9) when
k = 2. From the transformation invariance of the MLE, the
MLE for k = 2 under the original polar parameterization
μ1,μ2, κ1 and κ2 must be the polar transformations of the
MLE λ̂, from where follows that the MLE is exactly the
TMME above. One can also see this equivalence between
MLE and TMME by comparing the first order derivatives
of the logarithmic likelihood under the polar parameteriza-
tion, i.e. the efficient score function (13) below, with (8).

(The identity κ1H1(δ, κ1, κ2) = −2κ2[sin 2δ G2(δ, κ1, κ2) +
cos 2δ H2(δ, κ1, κ2)] turns out to be helpful for this compar-
ison.)

Under standard regularity conditions, the MLE has many
important properties, which mainly are: strong consis-
tency, Fisher consistency, asymptotic sufficiency, asymp-
totic efficiency and asymptotic normality. The efficient score
function is defined as s(ω; t) = (∂/∂t) logf (ω|μ1,μ1 −
δ, κ1, κ2), where t = (δ,μ1, κ1, κ2)

T, and it is given by

s(ω; δ,μ1, κ1, κ2)

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

2κ2{sin 2δA2(δ, κ1, κ2) + cos 2δB2(δ, κ1, κ2)

− sin 2(ω − μ1 + δ)}
κ1 sin(ω − μ1) + 2κ2 sin 2(ω − μ1 + δ)

− A1(δ, κ1, κ2) + cos(ω − μ1)

− cos 2δA2(δ, κ1, κ2) + sin 2δB2(δ, κ1, κ2)

+ cos 2(ω − μ1 + δ)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

(13)

Then we have

√
n(T n − t)

D−→ N (0, I−1(t)), as n → ∞, (14)

where T n = (δ̂, μ̂1, κ̂1, κ̂2)
T is the MLE and I (t) =

E[s(θ1; t)sT(θ1; t)] is the Fisher information matrix in
which the expectation is taken under t . Because the com-
putation of the elements of I (t) requires too many algebraic
manipulations, we can rely on the empirical version given
by

Î (T n) = 1

n

n∑

i=1

s(θi;T n)s
T(θi;T n), (15)

in large sample inference at least. In Sect. 4 we use (15) to
compute some asymptotic variance-covariance matrices.

The following formulas are important for numerical eval-
uations. For δ ∈ [0,π), κ1, κ2 ≥ 0 and

Sr =
{

1, if r
2 ∈ N\{0},

0, otherwise,

the following expansions hold for r = 0,1, . . . ,

Gr(δ, κ1, κ2)

= I0(κ1)I r
2
(κ2) cos rδ Sr + I0(κ2)Ir (κ1)

+
∞∑

j=1

cos 2jδIj (κ2){I2j+r (κ1) + I|2j−r|(κ1)}, (16)

and

Hr(δ, κ1, κ2) = −I0(κ1)I r
2
(κ2) sin rδ Sr

+
∞∑

j=1

sin 2jδIj (κ2){I2j+r (κ1)

− I|2j−r|(κ1)}. (17)
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The proofs of these two useful expansions can be found in
Gatto (2008, Sect. 3). From the two above expansions we
can deduce that the functions Gr and Hr inherit the asymp-
totic behavior as r → ∞ of the Bessel function Ir . From
Abramowitz and Stegun (1972, 9.6.10, p. 375) it follows that
Ir(z) = (z/2)r [r�(r)]−1{1+O(r−1)}, as r → ∞, which to-
gether with the Stirling expansion yields Ir(z) = (2πr)−1/2

{ez/(2r)}r {1 + O(r−1)}, as r → ∞. Hence Ir decreases
rapidly to zero with the order r and the same holds for Gr

and Hr .
Maximum likelihood estimators are used in testing prob-

lems for computing likelihood ratio test statistics. Suppose
that we wish to test the null hypothesis that the independent
observations θ1, . . . , θn arise from a vM distribution, against
the alternative hypothesis that this sample arises from a
GvM2 distribution. This is the testing problem of H0 : κ2 = 0
against H1 : κ2 > 0. Both hypotheses can be equivalently re-
expressed according to the Cartesian re-reparameterization
(10) with k = 2 as H0 : λ3 = λ4 = 0 against H1 : λ3 = 0 or
λ4 = 0. Define �0 = R × R × {0} × {0}. Then the scaled
likelihood ratio test statistic for this problem is

Qn = 2
{
l∗(λ̂ | θ1, . . . , θn) − sup

λ∈�0

l∗(λ | θ1, . . . , θn)
}

= 2
{
l(μ̂1, μ̂2, κ̂1, κ̂2 | θ1, . . . , θn)

− l(θ̄1,0,A(−1)(n−1R1n),0 | θ1, . . . , θn)
}

D−→ χ2
2 , as n → ∞,

where C1n = ∑n
i=1 cos θi , S1n = ∑n

i=1 sin θi , R1n = (C2
1n +

S2
1n)

1/2, θ̄1 = arg{C1n, S1n}, l(μ1,μ2, κ1, κ2 | θ1, . . . , θn) =∑n
i=1 logf (θi | μ1,μ2, κ1, κ2) and where A(−1) is the in-

verse of the function A(κ) = I1(κ)/I0(κ), κ ≥ 0. The ac-
curate approximation to A(−1) given by Best and Fisher
(1981), see also Fisher (1993, p. 51), can be used here.

2.2 Entropy and model selection

Given f and g two circular densities, we define H(f |g) =
− ∫ 2π

0 logg(ω)f (ω)dω, where 0 log 0 = 0 and dom(f ) ⊂
dom(g) are assumed. We denote fη = f (·|μ1,μ2, κ1, κ2)

the GvM2(μ1,μ2, κ1, κ2) density, where η = (μ1, κ1,

μ2, κ2)
T. Then, the differential entropy of Shannon (1948)

of fη is

H(fη|fη) = −
∫ 2π

0
logfη(ω)fη(ω)dω = log

2πG0(δ, κ1, κ2)

exp{κ1A1(δ, κ1, κ2) + κ2[cos 2δA2(δ, κ1, κ2) − sin 2δB2(δ, κ1, κ2)]} , (18)

where δ = (μ1 − μ2)modπ and the functions A1,A2 and
B2 are defined in (5) and (6), and can be evaluated with

the expansions (16) and (17). H(δ, κ1, κ2)
def= H(fη|fη) is

location invariant in the sense that it depends on μ1 and
μ2 through δ = (μ1 − μ2)mod(2π) only. The entropy of
the GvMk distribution for a general k is given in Gatto
(2008, Sect. 2). Note that when κ2 = 0, the above entropy
reduces to the entropy of the vM distribution H(·, κ1,0) =
log(2πI0(κ1) exp{−κ1I1(κ1)/I0(κ1)}). Moreover, when δ =
κ1 = 0, H(0,0, κ2) = H(·, κ2,0), which confirms that the
entropy of the vM distribution is equal to the entropy of the
bimodal vM (vM2) distribution

f (ω | ·,μ2,0, κ2) = 1

2πI0(κ2)
exp{κ2 cos 2(ω − μ2)}, (19)

for μ2 ∈ [0,π) and κ2 ≥ 0. H(δ, κ1, κ2) is the maximal
entropy value among all circular distributions having fixed
trigonometric moments ϕ1 and ϕ2, where the relation be-
tween ϕ1, ϕ2 and δ, κ1, κ2 is given by (7) with r = 1,2, see
e.g. Gatto (2008, Corollary 2.1). The entropy provides a gen-
eral criterion for selecting a distribution given some partial
knowledge (often based on the observed sample), accord-
ing to which we should always choose distributions having

maximal entropy subject to existing constraints. This is of-
ten referred to as maximum entropy principle, and the so-
selected distribution is the least unsuitable one given the par-
tial knowledge. From this and from the equivalence between
TMME and MLE follows that the largest possible entropy
value having trigonometric moments ϕ̂1 and ϕ̂2 is exactly
H(δ̂, κ̂1, κ̂2), where δ̂, κ̂1 and κ̂2 are the TMME or MLE
of the GvM2(μ1,μ2, κ1, κ2) distribution. Two important re-
sults in this context state that both

Ĥn = H(δ̂, κ̂1, κ̂2) + 1

2

4

n

and

H̃n = −1

n

n∑

i=1

logf (θi |μ̂1, μ̂1 + δ̂, κ̂1, κ̂2) + 1

2

4

n

are bias-corrected estimators of H(δ, κ1, κ2), in the sense
that E[Ĥn] = H(δ, κ1, κ2) + o(n−1) and E[H̃n] =
H(δ, κ1, κ2) + o(n−1), as n → ∞, where both expectations
above are taken with respect to the unknown parameters, see
e.g. Zong (2006, Theorem 5.6) and Sakamoto et al. (1986,
Equation 4.34) respectively. The common idea of the proofs
of both results above is to consider Taylor expansions of or-
der two, for the entropy and for the logarithmic likelihood.
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In these expansions, the terms of order one vanish and the
terms of order two lead to the chi-squared random variable
with p degrees of freedom, where p is the number of un-
known parameters in the models; p = 4 in our case. The
bias-correction terms are directly related with the expecta-
tion of the chi-squared random variable, which is p.

The Kullback-Leibler (1951) differential information is
given by

I (f |g) =
∫ 2π

0
log

f (ω)

g(ω)
f (ω)dω

= H(f |g) − H(f |f ), (20)

under the previous assumptions. I (f |g) is the mean loga-
rithmic likelihood ratio or mean information per observation
of f for discriminating in favor of f against g. The Gibbs
inequality tells us that I (f |g) is positive semi-definite, i.e.
I (f |g) ≥ 0 for all assumed densities f and g, with equality
iff f = g a.e. I (f |g) is sometimes called relative entropy
or Kullback-Leibler distance, even though it is not a metric:
it violates the symmetry and the triangle rules. From this
Akaike (1973) derived the AIC for model selection, which
is as follows in our setting. From (20), we see that mini-
mizing I (f |g) with respect to g corresponds to minimiz-
ing H(f |g). Suppose that f † is the circular density of the
true model and that gν is the density of a candidate model,
having p unconstrained parameters ν = (ν1, . . . , νp)T. For
some k ≥ 0, we suppose that gν is the GvMk density and
that f † is either the GvMk density or any other density ob-
tained by either restricting or generalizing the GvMk den-
sity. The restricted density f † is obtained by setting some
parameters of the density gν equal to zero and the general-
ized density f † is so that gν results after setting some para-
meters of f † equal to zero. For example, f † is the GvMk

density, for some k ≥ 2, and gν = fη is the GvM2 den-

sity. The density gν provides a good approximation to f †

if H(f †|gν) is small. The goodness-of-fit of the maximum
likelihood model can be evaluated by the expected logarith-
mic likelihood −nH(f †|gν̂), where ν̂ is the MLE of ν based
on θ1, . . . , θn independent and with common unknown den-
sity f †. As this goodness-of-fit measure is random, we can
evaluate it by taking the expectation with respect to f †. We
hence obtain the mean expected logarithmic likelihood

λn(p) = −nE[H(f †|gν̂)] (21)

as criterion for model selection: a candidate gν with large
λn(p) should be preferred. In this context the AIC statistic
is defined as

AIC(p) = −2
n∑

i=1

loggν̂(θi) + 2p (22)

and −AIC(p)/2 provides a bias-corrected estimator of
λn(p), in the sense that E[−AIC(p)/2] = λn(p) + o(1),

as n → ∞, see e.g. Sakamoto et al. (1986, p. 74). When
gν = fη, i.e. when the candidate model is in the GvM2 class,
then we have

AIC(4) = −2κ̂1

n∑

i=1

cos(θi − μ̂1)

− 2κ̂2

n∑

i=1

cos 2(θi − μ̂1 + δ̂)

+ 2n log{2πG0(δ̂, κ̂1, κ̂2)} + 2 · 4.

A desirable side-effect of the bias-correction term −p of
−AIC(p)/2 is to privilege candidate models with few pa-
rameters, especially with small to moderate sample sizes.
Note also that only differences of AIC are meaningful, as
the entropy term in (20) has been omitted in this construc-
tion. For further justifications, refer e.g. to Sakamoto et al.
(1986, Chap. 4).

As mentioned, the AIC is based on the fact that gν is
a good approximation to f † when H(f †|gν) = I (f †|gν) +
H(f †|f †) is small. If we replace the first summand I (f †|gν)

by the symmetric Kullback-Leibler differential divergence
J (f †, gν) = I (f †|gν) + I (gν |f †), then we obtain an alter-
native measure called the total statistical entropy, namely the
sum of the uncertainty due to model misuse J (f †, gν) and
the uncertainty inherent in the model H(f †|f †), see Zong
(2006, p. 104). The ME is defined as

ME(p) = H(gν̂ | gν̂) + 3

2

p

n
(23)

and it is a bias-corrected estimator to the total statistical en-
tropy. Hence the model which minimizes ME(p) should be
selected, see Zong (2006, Theorems 5.10 and 5.12). As be-
fore, we suppose that the candidate gν is a GvMk density,
k ≥ 0, and that the true density f † is either the GvMk den-
sity or any other density obtained by restricting or by gener-
alizing the GvMk density. When this candidate is the GvM2

density, then gν = fη and we have ME(4) = H(δ̂, κ̂1, κ̂2) +
3 · 4/(2n), which can be evaluated by (18).

3 Simulation

In Sect. 3.1 we present two types of acceptance-rejection al-
gorithms for generating pseudo-random numbers from the
GvM2 distribution: the ratio-of-uniform method and the von
Neumann acceptance-rejection method. When κ1 or κ2 are
moderate to large, then the ratio-of-uniform method is the
most efficient. Otherwise, both algorithms show similar effi-
ciency. In Sect. 3.2 we discuss the numerical determination
of the sampling domains used in both algorithms. All the
generation algorithms presented here are exact.



Stat Comput (2008) 18: 321–331 327

3.1 Acceptance-rejection algorithms

The generation of pseudo-random numbers from the
GvM2(μ1,μ2, κ1, κ2) distribution can be done with the
ratio-of-uniforms method, which in this case yields the fol-
lowing algorithms: the first is a standard one and the second
is an optimized version by squeezing or pretesting.

Standard ratio-of-uniforms algorithm
Step 1 Define

g(ω) = κ1 cos(ω − μ1) + κ2 cos 2(ω − μ2) (24)

and determine numerically

a = sup
ω∈[0,2π)

{e 1
2 g(ω)} and b = sup

ω∈[0,2π)

{ωe
1
2 g(ω)}.

Step 2 Generate (U,V ) ∼ Uniform(Pa,b), where Pa,b de-
notes the body of the polygon with vertices (0,0), (a,0),
(a, b) and (b/(2π), b). Define W = g(V/U)/2.
Step 3 If U ≤ eW , then consider θ = V/U as a GvM2(μ1,

μ2, κ1, κ2) pseudo-random number and stop.
Else, reject (U,V ) and go to Step 2.

The computation of a can be re-expressed in terms of the
search for the roots of a fourth degree polynomial and the
computation of b must also be done numerically. These nu-
merical aspects are deferred to Sect. 3.2. There are however
two main advantages in redefining b = 2πa, which is an up-
per bound to the supremum b as given in Step 1. First, we
avoid a numerical search, see Sect. 3.2. Second, while Pa,b

is generally a quadrilateral, it becomes a triangle when we
set b = 2πa. The simulation over this triangle can be di-
rectly done as follows: we first generate U ∼ Uniform(0, a)
and V ∼ Uniform(0,2πa) and if V > 2πU , then we replace
U by a − U and V by 2πa − V . It would also be possi-
ble to replace a and b in Step 1 by the trivial upper bounds
a = e(κ1+κ2)/2 and b = 2πe(κ1+κ2)/2.

A well-known way of decreasing the number of eval-
uations of the cosine and the exponential functions is by
squeezing or pretesting. Under the restriction κ1 + κ2 < 2, a
squeezed algorithm is the following.

Squeezed ratio-of-uniforms algorithm
Condition κ1 + κ2 < 2
Steps 1’ and 2’ Similar to Steps 1 and 2.
Step 3’ If U > {1 − (κ1 + κ2)/2}−1, then reject (U,V ) and
go to Step 2’.
Else if U ≤ 1 − (κ1 + κ2)/2, then consider θ = V/U as a
GvM2(μ1,μ2, κ1, κ2) pseudo-random numbers and stop.
Else if U ≤ eW , then consider θ = V/U as a GvM2(μ1,μ2,

κ1, κ2) pseudo-random numbers and stop.
Else, reject (U,V ) and go to Step 2’.

The ratio-of-uniforms method is a general method for
generating random variables (see e.g. Ripley 1987) and
it is a consequence of the following results. Suppose in
general that h is an integrable function over a generally
unbounded domain A and that Ch = {(u, v) | 0 < u ≤√

h(v/u), v/u ∈ A}. Then Ch has a finite volume and if
(U,V ) is uniformly distributed over Ch, then V/U has a
density over A which is proportional to h. These results
can be easily shown and it is also possible to see that
Ch ⊂ [0, a] × [b−, b+], where a = √

supx∈A{h(x)},

b+ =
{√

supx∈A∩R+{x2h(x)}, if A ∩ R+ = ∅,

0, otherwise,
and

b− =
{

−
√

supx∈A∩R−{x2h(x)}, if A ∩ R− = ∅,

0, otherwise.

In our situation h(ω) = eg(ω), ω ∈ A = [0,2π).
As mentioned before, the scope of the squeezed version

is to minimize the number of evaluations of the cosine and
of the exponential functions. The inequality 1 + w ≤ ew ≤
(1 − w)−1 holds ∀w ∈ R. It follows that if u ≤ 1 + w, then
a fortiori u ≤ ew and we are in the acceptance region. If
u > (1 −w)−1, then a fortiori we are in the rejection region.
If however none of the above conditions are fulfilled, then
and only then we evaluate the exponential. If κ1 + κ2 < 2,
then we may also skip the evaluation of the cosines by
bounding them, which gives the squeezed version algorithm
above. Simulation studies have not given evidence that the
above squeezing reduces the computing time, when the op-
erations are implemented in a vectorial way, which is essen-
tial with interpreted programming languages such as Mat-
lab. In this situation, the two additional acceptances or rejec-
tions require some extra comparisons and re-indexing which
apparently need more computing time than what is used for
the vectorial evaluations of the cosines and of the exponen-
tials.

A standard alternative to the ratio-of-uniforms is the von
Neumann acceptance-rejection algorithm.

Von Neumann acceptance-rejection algorithm
Step 1” Define the function g as in (24) and determine, nu-
merically, m = supω∈[0,2π) g(ω).
Step 2” Generate U ∼ Uniform(0,2π) and V ∼
Uniform(0,m).
Step 3” If V ≤ g(U), then consider θ = U as a GvM2(μ1,

μ2, κ1, κ2) pseudo-random number and stop.
Else, reject U and V and go to Step 2”.

The only particular part of the above algorithm is the nu-
merical determination of the supremum m in Step 1”. This
is clearly similar to the determination of a in Step 1 of the
ratio-of-uniforms method and it is solved in Sect. 3.2. More
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efficient acceptance-rejection algorithms could be found by
replacing the constant function m by a smaller envelope, i.e.
by a function closer to g, while lying over g. However there
are no simple envelopes for GvM2 densities, i.e. there is not
a density which, after multiplication by a constant, can cover
a GvM2 density and which allows for simple sampling.

All these algorithms are simple and do not require eval-
uating the normalizing constant G0 by (16). In princi-
ple, the algorithms given here can be extended to other
GvMk distributions with k > 2, mainly by choosing g(ω) =∑k

j=1 κj cos j (ω − μj ). Alternative types of generation al-
gorithms from GvM2 distributions are not easy to find for
the following reasons: because of the complexity of the nor-
malizing constant, because a formula for the inverse of the
distribution is not available, as explained in the next para-
graph, and also because there are no invariance properties
which would allow to focus on the generation from a stan-
dardized version of the GvM2 distribution.

Note that a formula for the distribution function can be
obtained by Fourier series. By extending the trigonometric
moment ϕr , the cosine moment γr and the sine moment σr to
r = 0,−1, . . . and by noting that γ−r = γr and σ−r = −σr ,
r = 1,2, . . . , we have from (7)

f (ω|μ1,μ2, κ1, κ2) = 1

2π

∞∑

r=−∞
ϕr exp{−ιrω}

= γ0

2π
+ 1

π

∞∑

r=1

γr cos rω + σr sin rω

= 1

2π
+ 1

π

∞∑

r=1

(cos rω, sin rω)R(rμ1)

× (Ar(δ, κ1, κ2),Br(δ, κ1, κ2))
T,

where the equalities above are in the L2 sense. It is well
known that integrating term by term a Fourier series leads
to a convergent series. This can be intuitively understood by
the fact that integrating cos rξ and sin rξ yields r−1 sin rξ

and −r−1 cos rξ , meaning that the coefficients of the new
series are significantly reduced in magnitude. Moreover, the
new series obtained by term by term integration converges
uniformly to the integrated original function. For a proof of
this, refer e.g. to Pinkus and Zafrany (1997, p. 77). Thus, by
integrating the GvM2 density from 0 to ξ ∈ [0,2π), we have

F(ξ |μ1,μ2, κ1, κ2)

=
∫ ξ

0
f (ω|μ1,μ2, κ1, κ2)dω

= ξ

2π
+ 1

π

∞∑

r=1

1

r
(sin rξ,1 − cos rξ)R(rμ1)

× (Ar(δ, κ1, κ2),Br(δ, κ1, κ2))
T

= ξ

2π
+ 1

π

∞∑

r=1

1

r
[Ar(δ, κ1, κ2){sin r(ξ − μ1) + sin rμ1}

− Br(δ, κ1, κ2){cos r(ξ − μ1) − cos rμ1}], (25)

where the series on the right side converges uniformly to the
integrated density. Note that the series in (25) is no longer
a Fourier series, because ξ/(2π) is not a term of a Fourier
series. The summands of the series on the right side of (25)
decrease rapidly, as they are r times smaller than the terms
of a Fourier series and these are known to converge to zero
(from the Riemann-Lebesgue lemma). As mentioned at the
end of Sect. 2.1, the rate of decrease to zero of both functions
Ar and Br as r → ∞ is comparable to the rate of decrease
of the Bessel function Ir as r → ∞, which is a fast rate.
Consequently, only the first few summands of the series in
(25) are numerically relevant. Unfortunately, this series is
not practical for random variable generation, because it is
not easy to obtain the inverse distribution from it. However,
this new series allows e.g. to compute the probability inte-
gral transform, which is essential in many goodness-of-fit
tests.

Note finally that, from the characterization property that
if X is a bivariate normal vector with expectation ν =
(ν1, ν2)

T and covariance matrix �, then arg{X} | ‖X‖ = 1
has a GvM2(μ1,μ2, κ1, κ2) distribution, this algorithm
allows for the generation of these conditional binormal
pseudo-random numbers. For the proof of this conditional
representation and for the exact correspondence between
ν,� and μ1,μ2, κ1, κ2, we refer to Gatto and Jammala-
madaka (2007, Characterization 2).

3.2 Numerical determination of the sampling domain

The constant a in Step 1 can be determined by searching the
roots of a fourth degree polynomial. We search the solutions
in ω ∈ [0,2π) of the equation

(1 − 2 sin2 δ) sinω cosω − 2 sin δ cos δ sin2 ω

+ ρ sinω + sin δ cos δ = 0, (26)

where ρ = κ1/(4κ2) and δ = (μ1 − μ2)modπ . In terms of
x = sinω, these extrema can be obtained by the solutions in
x ∈ [−1,1] of the equations

±(1 − 2 sin2 δ)x
√

1 − x2 − 2 sin δ cos δx2

+ ρx + sin δ cos δ = 0. (27)

Alternatively, these extrema can be found by computing the
roots in x ∈ [−1,1] of the fourth degree polynomial

x4 − 4ρ sin δ cos δx3 + (ρ2 − 1)x2

+ 2ρ sin δ cos δx + (sin δ cos δ)2 = 0. (28)
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This reformulation of (27) in terms of the fourth degree
polynomial in (28) is justified as follows. We want to
solve for x ∈ [−1,1] the equations ±r(x) + p(x) = 0,
where r(x) = x

√
1 − x2 and p(x) = c2x

2 + c1x + c0. From
{x ∈ [−1,1]|p(x) + r(x) = 0 or p(x) − r(x) = 0} = {x ∈
[−1,1]|[p(x) + r(x)][p(x) − r(x)] = 0}, we solve [p(x) +
r(x)][p(x) − r(x)] = 0 ⇔

x4 + 2c2c1

1 + c2
2

x3 + −1 + c2
1 + 2c2c0

1 + c2
2

x2

+ 2c1c0

1 + c2
2

x + c2
0

1 + c2
2

= 0.

By inserting the values of c0, c1 and c2 implied by (27) in
the above polynomial, we obtain (28). The search for the
roots of (28) can be easily done with e.g. Matlab’s routine
roots, which re-expresses the problem into the search of
the eigenvalues of the companion matrix, or with the method
of Weierstrass summarized below. Then we transform these
roots back to ω = arcsinx, π − arcsinx and retain only the
values ω which satisfy (26). (As usually, arcsin : [−1,1] →
[−π/2,π/2].) We finally add modulo 2π the value of μ1 to
the values retained and evaluate eg(ω)/2 at these values. The
largest of these evaluations yields the value of a required by
Step 1.

The roots of the polynomial (28) can also be found with
the method of Weierstrass, also called method of Durand-
Kerner, which finds the roots of a polynomial of any degree.
Consider for example the fourth degree polynomial p(x) =
x4 + c3x

3 + c2x
2 + c1x + c0, x ∈ C. If x1, x2, x3, x4 ∈ C are

the roots of p, then p(x) = (x −x1)(x −x2)(x −x3)(x −x4)

and it follows that

x1 = x − p(x)

(x − x2)(x − x3)(x − x4)
, (29)

for all x = x2, x3, x4, i.e. x1 is determined after one itera-
tion. If one replaces the zeros x2, x3, x4 by the approxima-
tions x′

2, x
′
3, x

′
4 = x1, then x1 remains a fixed point of the

perturbed fixed point iteration, as x1 = x1 − p(x1)/[(x1 −
x′

2)(x1 − x′
3)(x1 − x′

4)] still holds. We have a contracting
mapping around x1 and the resulting algorithm consists of
iterating (29) for all four roots until their successive differ-
ences become sufficiently small yielding, for n = 1,2, . . . ,

x
(n)
1 = x

(n−1)
1

− p(x
(n−1)
1 )

(x
(n−1)
1 − x

(n−1)
2 )(x

(n−1)
1 − x

(n−1)
3 )(x

(n−1)
1 − x

(n−1)
4 )

,

x
(n)
2 = x

(n−1)
2

− p(x
(n−1)
2 )

(x
(n−1)
2 − x

(n)
1 )(x

(n−1)
2 − x

(n−1)
3 )(x

(n−1)
2 − x

(n−1)
4 )

,

x
(n)
3 = x

(n−1)
3

− p(x
(n−1)
3 )

(x
(n−1)
3 − x

(n)
1 )(x

(n−1)
3 − x

(n)
2 )(x

(n−1)
3 − x

(n−1)
4 )

and

x
(n)
4 = x

(n−1)
4

− p(x
(n−1)
4 )

(x
(n−1)
4 − x

(n)
1 )(x

(n−1)
4 − x

(n)
2 )(x

(n−1)
4 − x

(n)
3 )

.

Any four complex numbers x
(0)
1 , x

(0)
2 , x

(0)
3 , x

(0)
4 are good

starting points.
The determination of the constant b is more difficult as it

can unfortunately not be brought into the search of the roots
of a polynomial. We can apply Newton-Raphson algorithm
or Matlab’s function fzero to

− 1

2κ2
+ (ω + μ1){(1 − 2 sin2 δ) sinω cosω

− 2 sin δ cos δ sin2 ω + ρ sinω + sin δ cos δ} = 0

with several dispersed starting points over [0,2π). The ex-
trema are obtained by adding modulo 2π the value of μ1

to the solutions obtained. We then compare the evaluations
of ωeg(ω)/2 at these values and we select b as the largest on
these evaluations. Alternatively, one can directly maximize
ωeg(ω)/2 by Matlab’s function fminsearch with several
starting points. A non-optimal but simple solution to this
problem is to consider b = 2πa, once the value a numeri-
cally obtained.

4 Numerical study

This section provides some numerical illustrations of var-
ious results presented in Sects. 2 and 3. We consider re-
cent real data from meteorology for which we compute the
asymptotic variance-covariance matrix of the MLE under
the GvM2 model as well as the AIC and the ME for the
GvM2, vM and vM2 models. We finally show some three-
dimensional graphs of the entropy of various GvM2 distrib-
utions.

This illustration is based on data collected by Arcti-
cRIMS (A Regional, Integrated Hydrological Monitoring
System for the Pan Arctic Land Mass, http://rims.unh.edu)
and completes the study initiated by Gatto and Jammala-
madaka (2007). Wind directions were measured daily from
January to December 2005 on four different Pan Arctic sites
at continental level: the Pan Arctic, the Europe, the Green-
land and the North America basins. These four locations
lead to four data sets of n = 365 observations. The GvM2

distribution is fitted to these four data sets and the MLE

http://rims.unh.edu
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Table 1 AIC and ME for the
GvM2, vM and vM2 models Pan Arctic Europe Greenland North America

AIC GvM2 765.1776 1007.6086 1139.5667 944.5905

AIC vM 1099.3159 1311.4296 1338.5079 1313.3206

AIC vM2 905.0474 1024.8630 1135.5678 960.5595

ME GvM2 −0.2066 0.4027 0.9406 0.0481

ME vM 1.5086 1.7992 1.8363 1.8067

ME vM2 1.2425 1.4066 1.5583 1.3222

Fig. 1 Negative entropies of
various GvM2 distributions

T n = (δ̂, μ̂1, κ̂1, κ̂2)
T is computed with the help of Matlab’s

routine fminsearch.

The results for the four data sets are the following. For

the Pan Arctic basins we have

T n =

⎛

⎜
⎜
⎝

0.3818
4.5055
0.8110
1.9897

⎞

⎟
⎟
⎠ and

1

n
Î−1( T n) =

⎛

⎜
⎜
⎝

0.0314 0.0296 0.0073 0.0031
0.0296 0.0285 0.0067 0.0030
0.0073 0.0067 0.0075 −0.0001
0.0031 0.0030 −0.0001 0.0047

⎞

⎟
⎟
⎠ .

For the Europe basins we have

T n =

⎛

⎜
⎜
⎝

0.2384
4.2330
0.2781
1.6028

⎞

⎟
⎟
⎠ and

1

n
Î−1( T n)

=

⎛

⎜
⎜
⎝

0.1824 0.1811 0.0094 −0.0002
0.1811 0.1807 0.0092 −0.0001
0.0094 0.0092 0.0043 −0.0004

−0.0002 −0.0001 −0.0004 0.0042

⎞

⎟
⎟
⎠ .

For the Greenland basins we have
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T n =

⎛

⎜
⎜
⎝

0.6936
4.7875

3.7756 · 10−5

1.2119

⎞

⎟
⎟
⎠ and

1

n
Î ( T n)

=

⎛

⎜
⎜
⎝

2.0647 −2.0646 −0.0923 0.0240
−2.0646 2.0646 0.0923 −0.0240
−0.0923 0.0923 0.5471 −0.0591
0.0240 −0.0240 −0.0591 0.6486

⎞

⎟
⎟
⎠ . (30)

The condition number (the ratio of the largest singular value
to the smallest) of this matrix is 1.9442 · 1010, meaning that
this matrix is too close to singularity, hence not accurately
invertible and we cannot obtain the asymptotic variance-
covariance matrix. This is a consequence of indeterminacy
brought by the very small value of κ̂1: as already mentioned
near to end of Sect. 1, when κ1 = 0 then μ1 is indetermi-
nate and only one single location parameter remains rele-
vant. The two first rows or columns of the empirical Fisher
information matrix in (30) are indeed practically equal, up
to the sign. For the North America basins we have

T n =

⎛

⎜
⎜
⎝

0.8212
4.9710
0.3440
1.8601

⎞

⎟
⎟
⎠ and

1

n
Î−1( T n) =

⎛

⎜
⎜
⎝

0.0850 0.0836 0.0206 0.0025
0.0836 0.0830 0.0201 0.0024
0.0206 0.0201 0.0111 0.0005
0.0025 0.0024 0.0005 0.0038

⎞

⎟
⎟
⎠ .

In Table 1 we give the AIC and the ME for the GvM2 model,
see (22) and (23), and also for the vM and vM2 submod-
els. With respect to the AIC, the GvM2 model is alway the
best of the three, excepting for Greenland basin, where the
vM2 is slightly better. This result is in accordance with the
previous remark that κ̂1 is very close to zero and with the
histogram of the data in Gatto and Jammalamadaka (2007,
Fig. 3), which shows two identical modes. The GvM2 model
is always the best with respect to the ME, even though the
smallest difference in ME between the GvM2 and vM2 is
for the Greenland basin. The best values of AIC and ME in
Table 1 are given in italic.

We conclude this section with four graphical illustra-
tions of the entropy of the GvM2 distribution, which demon-
strate the effectiveness of the entropy formula (18) based
on the Fourier expansions (16) and (17). Figure 1 provides
the three-dimensional graphs of −H(δ, κ1, κ2) for δ = 0,
0.4, 0.8, 1.2 and for values of κ1 and κ2 in the interval
[0,5], μ1 being irrelevant for the entropy. We can recognize
the well-known result that the circular uniform distribution
(κ1 = κ2 = 0) maximizes the entropy.

The four samples and the Matlab’s programs used for this
article are available at http://www.stat.unibe.ch/~gatto.
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