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SUMMARY
A large-deformation model for thin  shells composed  of elasto-plastic  material  is presented  in this 
work. Formulation of the shell model, equivalent to the two-dimensional Cosserat  continuum,  is 
developed from the three-dimensional continuum by employing standard assumptions  on the 
distribution of the displace- ment field in the shell body. A model for thin shells is obtained  by an 
approximation of terms describing the shell geometry. Finite  rotations of the director  field are described  
by a rotation vector  formulation.  An elasto-plastic   constitutive   model  is  developed  based  on  the  
von  Mises  yield  criterion  and  isotropic hardening.  In  this work,  attention is restricted  to problems  
where strains  remain  small allowing for all aspects of material identification and associated 
computational treatment, developed for small-strain elasto- plastic  models,  to  be  transferred  easily to  
the  present  elasto-plastic  thin-shell  model.  A finite element formulation is based  on the  four-noded  
isoparametric element. A particular attention is devoted  to  the consistent  linearization   of the  shell  
kinematics  and  elasto-plastic  material  model,  in  order  to  achieve quadratic rate of asymptotic  
convergence typical for the Newton—Raphson-based solution  procedures.  To illustrate  the main 
objective of the present  approach — namely the simulation  of failures of thin  elasto- plastic shells 
typically associated with buckling-type instabilities and / or bending-dominated shell problems resulting in 
formation  of plastic hinges — several numerical examples are presented. Numerical  results are compared  
with the available experimental  results and representative numerical  simulations. 

KEY WORDS:  shells; large deformations;  finite rotations; elasto-plasticity;  finite elements 

1. INTRODUCTION 

This work is concerned with formulation and computational aspects of the elasto-plastic  model 
for  thin  shells. A  simple  von  Mises  yield  criterion  with  isotropic  hardening   is adopted   in 
constitutive  description  of elasto-plastic  material.  Attention is restricted  to  situations  where 
strains  remain  infinitesimal,  although   continuum rotations  are  not  restricted.   Details  and 



motivation for the present constitutive description may be found in Reference 1 while numerical

treatment follows References 2 and 3.

In problems where finite rotations may be present but strains are restricted to be small, the

adopted von Mises model for large deformations of elasto-plastic shells is equivalent to the

small-strain von Mises elasto-plastic model. Accordingly, all aspects of material identification

and associated computational procedures known for small-strain elasto-plastic models transfer

easily to the present elasto-plastic thin-shell model. For situations arising during failures of

elasto-plastic thin shells typically associated with buckling-type instabilities and/or bending-

dominated shell problems resulting in the formation of plastic hinges, this model is expected to

provide accurate description of the physical phenomena.

Modern finite element formulations incorporating non-linear shell kinematics arise from the

shell theories, which are based either on the direct approach� or derived from the three-

dimensional continuum theory and the use of either Green—Lagrange��� or Biot��� strain

measures. The strain measures are typically restricted to be small.

A strong analogy of the formulations based on the degenerated continuum approach (see e.g.

Reference 6) and those based on shell theories can be noticed (see Reference 9), if a certain version

of an explicit integration or a numerical integration through the shell thickness are performed in

the former. For instance, Büchter and Ramm� showed that the numerical integration across the

thickness in the degenerated continuum model leads to the strain tensor, which is consistent with

the geometrically non-linear shell theory for small strains including transverse shear deforma-

tions.	


Finite element formulation described in this work relies on the four-node shell element based

on isoparametric interpolation scheme that has been commonly used for the finite element

implementation of different shell theories of the Mindlin—Reissner type. In the recent works of

Parisch,� Sansour and Bufler,� Simo et al.��		�	� and Wriggers and Gruttmann� the four-node

elements take part in non-linear formulations capable of describing large displacements and finite

rotations of shells. In this work, the formulation described in Reference 13 is extended to account

for large displacements and finite rotations of thin elasto-plastic shells. Large rotations of the

director field are described by a rotation vector formulation, while the formulation in Reference

13 is based on two Euler angles.

The displacement-based formulations suffer from the so-called transverse shear locking,

a phenomena which is closely connected with the underlying assumptions typical for the shell

theories of the Mindlin—Reissner type. It is therefore essential that the solutions are based on

mixed variational formulations. A current ‘standard’ to avoid transverse shear locking is the

so-called Assumed Natural Strain (ANS) approach, first suggested by Dvorkin and Bathe.	� An

important computational aspect of the isoparametric shell elements is also a treatment of

membrane locking — a phenomena which is associated with a parasitic membrane strains under

pure bending conditions. Since elements with bilinear interpolation do not show a particular

sensitivity to this defect, a displacement formulation is used for the membrane and bending parts

of a variational formulation.

Local Cartesian frames are defined at numerical integration points in order to simplify the

expressions. A computational procedure is provided to include the through-thickness variable

material characteristics typically encountered in evolving properties of elasto-plastic materials.

This is considered important if accurate simulation of elasto-plastic shells is required.

From the computational point of view, a robust and efficient algorithm with high rate of

convergence is required. Consistent linearization of the shell kinematics and elasto-plastic

material model leading to the Newton—Raphson numerical procedure is therefore performed.

Robustness and efficiency of the proposed approach are illustrated on a range of numerical



examples. A comparison is made with available experimental results and a representative set of

numerical examples.

2. SHELL KINEMATICS

2.1. Preliminaries

Let a bounded open setBL�� with a regular boundary �B define a reference placement of the

three-dimensional shell-like body. A configuration of a body is a mapping � :BP��. A collec-

tion of all configurations of a body forms the so-called configuration space C(B). A motion is

a curve in C. For fixed t3[0, ¹]L�� mapping t >� (• , t) defines the configuration. We often

use the notation �
�
(X)"� (X, t). Points X will be identified with its co-ordinate X and x in the

reference B and spatial configuration SU�
�
(B ), respectively. Thus BUXPx"�

�
(X).

Shell is a special type of the three-dimensional body whose one dimension (referred to as

thickness) is small compared to some characteristic length of the body (for precise meaning of

these terms we refer to Reference 10). In the present work the single director approach is adopted

in which the shell-like body is described in terms of a shell (reference) surfaceMLBL�� and an

independent director field in the thickness direction of the shell body. The director field is not

constrained to be normal to the middle surface. Let A be a bounded open set in �� with a regular

boundary �A. Mid-surface then may be parameterized by employing a set of convected co-

ordinates (�	, �� )3A. Mappings �


(�	, ��) and �

�
(�	, �� ) define the middle surface of the shell at

its reference and current configuration, respectively. For each point (�	, ��)3A unit vectors

T(�	, �� ) and t(�	, ��) at X� :"�


(�	, �� ) and x� :"�

�
(�	, ��) define the corresponding directors. If

h



denotes the shell thickness in the reference configuration, the reference configuration of the

shell body may be represented as

B :"�X"�


(�	,�� )#�T (�	, ��) � (�	, �� )3A, �3[h




, h�



]� (1a)

Analogously, the spatial configuration of the shell may be written as

S :"�x"�
�
(�	, ��)#�t (�	, �� ) � (�	,�� )3A, �3[h




, h�



]� (1b)

In what follows it is convenient to employ the compact notation �


(A�[h




, h�



])"B and

�
�
(A�[h




, h�



])"S. Clearly,

�
�
"�

� °
�
	



(2)

Illustration of these concepts is provided in Figure 1.

Remark 1. A standard (fixed) basis in �� is denoted �e
�
�
��	����

. In the following, the vectors X,

T, x and t will often be resolved in that basis:

X"X�e
�
, x"x�e

�
(3)

T"¹�e
�
, t"t�e

�

This is a practice which makes shell theories well suited for the numerical treatment. The

displacement at a point X(�	, ��,� ) then may be introduced as (see Figure 2)

U(�	, ��, �)"u(�	, �� )#� (t(�	,�� )!T(�	, ��) ) (4)



Figure 1. Geometric description of the shell middle surface in reference and current configuration

Figure 2. Basic kinematic variables of the shell in reference and current configuration

where

u(�	, ��)"x� (�	, �� )!X� (�	,�� ) (5)

is the displacement of the middle surface point X� "�


(�	, ��). It can be observed that the

displacement field U varies linearly over the shell thickness.

2.2. The deformation gradient

Let ¹XBL�� and ¹xSL�� denote the tangent spaces to B and S at the points X3B and

x3S. In a standard manner linearly independent vectors

G
�
"�X

�� �
, G

�
3¹XB and g

�
"�x

���
, g

�
3¹xS , for i"1, 2, 3 (6)



define a basis for the tangent spaces ¹B and ¹S. Deformation gradient is defined as a tangent of

the map �
�

¹�
�
: ¹BP¹S, ¹�

�
"F :G

�
Pg

�
(7)

and is given by a tensor product

F"g
�
�G� (8)

The contravariant base vector G� is defined by a standard relation G
�
·G�"	�

�
(	�

�
is a Kronecker

delta symbol). The basic shell kinematic assumption defines the tangent vectors (6) to be

G�"
�X�
���

#�
�T

���
"A�#�T

�� , g�"
�x�
���

#�
�t

���
"a�#�t

�� , (
"1, 2)

G
�
"a

�
"T, g

�
"a

�
"t (9)

Vectors A�"G� ���

define a basis for the tangent space to the middle surface at the point

X� (�	, �� )3M and a�"g� ���

are their images at the actual configuration at the point

x� (�	, �� )3�
�
(M). The covariant components of the shell body and middle surface metric tensors

at the reference configuration are defined by G
��
"G

�
· G

�
and A��"A� · A� , respectively. Their

images at the actual configuration are defined by g
��
"g

�
· g

�
and a��"a� · a� . Similarly, their

contravariant parts are denoted as G ��"G� ·G �, A��"A� · A�, g��"g � · g � and a��"a� · a�. In

the present work the director is always chosen to the orthogonal to the middle surface in the

reference configuration. Therefore some components of the metric tensor become zero, i.e.

A� · T"0, A� · T"0, while, in general, a� · tO0, a� · tO0.

At the reference configuration a mapping Z can be determined, Z :A
�
PG

�
, which relates

metric of the shell body with metric of the middle surface. It may be expressed in the form

Z"G
�
�A�"(A��!�B�� )A��A�#T �T (10)

where A��A��A� is a symmetric tensor of the first fundamental form and B��A��A� is

a symmetric tensor of the second fundamental form of the reference surface. The components

B�� are defined as

B��"!A� · T�� (11)

From the definition (8) and equation (9) deformation gradient F is obtained as

F"(a��G�#t�T )#�t
���G� (12)

By employing inverse of the tensor Z, Z
	 : G
�
PA

�
and the relation G�"Z
�A�, the deforma-

tion gradient may be expressed as

F"[(a� �A�#t�T)#�t
���A�]Z
	 (13)

It can be observed, from (12) and (13), that the part of deformation gradient related to the middle

surface, can be additively split into constant and linear parts.

2.3. The rotation tensor

In this section, basic properties of the rotation tensor are described. For further details we refer

to References 4, 7, 9, 11, 15 and 16 references therein.



2.3.1. Basic relations. Any rotation tensor R3SO(3), (R
	"R� and det [R]"1) can be

associated with the skew-symmetric tensor S3so(3) (S"!S�) by the exponential mapping

R"exp [S]" �
�
��


(S)�

k !
"1#S#S�

2!
#S�

3!
#· · · (14)

Recall that SO(3) is the group of proper orthogonal transformations (rotations) in �� (or the Lie

group) and so(3) is its associated algebra (or the Lie algebra). Any S further posseses a so-called

axial vector s3��, such that Ss"0 and

Sb"s�b, ∀b3�� (15)

Note that the relation (15) defines an isomorphism between so (3) and ��, so (3) >�� : S >s. By

observing that Rs"s, it follows that the axial vector s is also an eigenvector of R with eigenvalue

1; that is, R defines rotation about s.
Many possibilities exist for an explicit representation of the exponential mapping. Here we

consider a representation in terms of an eigenvector s, also known as the Rodrigues formula,

R"cos (�s� )1#sin (�s� )

�s�
S#1!cos (�s� )

�s��
s� s (16)

where the norm �s� defines the magnitude of the rotation.

2.3.2. The motion of the director. Motion of the inextensible director may be described as

t"RT (17)

where the length of t is set to be 1. Clearly, in this case the eigenvector s is perpendicular to T and

t (see Figure 3)

s · T"0, s · t"0 (18a, b)

and is an element of the tangent space to the middle surface, s3¹M. By recalling that

(s� s)T"(s · T )s"0, from (16) it follows that

t"RT"cos (�s� )T#sin (�s� )

�s�
s�T (19)

Let the components of t, s and T be defined relative to the standard basis �e
�
�, so that

s"s�e
�
"s	e

	
#s�e

�
#s�e

�
and �s�"�s�s� . The components of t with respect to this basis are

t"t�e
�
"cos (�s�)

⎧
⎪
⎨
⎪
⎩

¹	

¹�

¹�

⎫
⎪
⎬
⎪
⎭

#sin (�s� )

�s�

⎧
⎪
⎨
⎪
⎩

!s�¹�#s�¹�

s�¹	!s	¹�

!s�¹	#s	¹�

⎫
⎪
⎬
⎪
⎭

(20)

The three components of the vector s, resolved in the fixed basis e
�
, are not independent because

of the constraints (18). It is therefore suitable to choose a different basis, which renders only two

independent components. For simplicity, we take such basis to be orthonormal and denote it by

�E
�
�
��	����

. It is defined at each point of the middle surface M with the relations: E
�
"T,

E
	
�E

�
, E

�
"E

�
�E

	
. Thus E

	
and E

�
are elements of ¹M. The components of s, resolved in



Figure 3. (a) Rotation of the director. (b) Geometric description of the director rotation

that basis, are s"sL 	E
	
#sL �E

�
while the components of T are T"¹K �E

�
"E

�
. The component

form of t with respect to the same basis may be expressed as

t"tL �E
�
"cos (�s� )

⎧
⎪
⎨
⎪
⎩

0

0

1

⎫
⎪
⎬
⎪
⎭

#sin (�s� )

�s�

⎧
⎪
⎨
⎪
⎩

sL �
!sL 	

0

⎫
⎪
⎬
⎪
⎭

(21)

The transformation between middle surface basis �E
�
� and standard basis �e

�
� takes a standard

form

E
�
"�
e

�
, with �
"[E

	
,E

�
, E

�
], �
3SO(3) (22)

The director, resolved in the fixed basis �e
�
�, can now be equivalently written in the form

t"t�e
�
"

�

		

�

	�

�

	�

�

�	

�

��

�

��

�

�	

�

��

�

��

⎧
⎪
⎨
⎪
⎩

cos (�s� )

⎧
⎪
⎨
⎪
⎩

0

0

1

⎫
⎪
⎬
⎪
⎭

#sin (�s�)

�s�

⎧
⎪
⎨
⎪
⎩

sL �
!sL 	

0

⎫
⎪
⎬
⎪
⎭

⎫
⎪
⎬
⎪
⎭

(23)

Note, that equations (20) and (23) give the same components of t in the fixed basis �e
�
�. In the

following, the form (23) will be used, since it leads to two unknown rotational kinematic fields in

contrast to the form (20) which gives three rotational kinematic fields with the components being

constrained by (18).



3. THE CONFIGURATION AND THE TANGENT SPACE

3.1. The configuration space

By employing (17) in (3)—(5) the rotation tensor explicitly appears in the construction of the

shell theory and its finite element computational models. Since T and t describe the inextensional

director field, the collection of all possible configurations, i.e. the configuration space of the shell,

may be defined in the following form:

C"��"(�, t) �AL��P���S�� (24)

where S�"�t3�� � �t�"1� denotes a unit sphere, i.e. space of all vectors in �� satisfying the

constraint (18b). The relation between the vector field t and the primary kinematic variable

s :AP��, which defines the rotation field, is given by equation (19).

3.2. The tangent space

Consider C as a family of one parameter configurations such that a curve � : [0, ¹]PC
defined by (� (t), t (t) )3C, t3[0,¹]L��, and let further (�(t

�
), t (t

�
) )3C describe the configura-

tion at time instant t"t
�
. For sufficiently regular motion, the tangent to the curve (�(t), t(t) ) at

t
�

exists and may be defined by

D(�, t)[	u, 	t]" d

d
 ���


(�� , t� )"
d

d
 � ��


(�#
	u, t(s#
	s))": (	u, 	t) (25)

This, by definition, introduces the space of all admissible variations at the configuration

(�(t
�
), t (t

�
) ) as a tangent space to C that is explicitly given as

¹�C"�(	u, 	t) � 	u :AP��, 	t :APTS�, 	u"0 �M
�
, 	t"0 �M

�
� (26)

where M
�

and M
�
are parts of the middle surface M where u and t are prescribed.

Remark 2. The above-defined configuration and tangent space allow for an additive update of

all kinematic variables in the finite element computational process.

3.3. Variations of kinematic variables

Linearization of kinematic variables at a given configuration �"(�, t) is performed by

a systematic application of the directional derivative to a one-parameter family of configurations

described by ��"(�� , t� ). The variations and/or incremental quantities are then obtained by an

ordinary differentiation with respect to 
 as

(	�,	t) :" d

d
 � ��


(�� , t�) (27)

Linear structure of �� provides a simple expression for the curve ��
��"�#
	u (28)

while the one-parameter curve t� is obtained as

S�Ut�"R�T"R(s#
	s)T (29)



It then follows, trivially, that

	�" d

d
 ���


��"	u (30)

By employing (29) and the expression (19) for t the differentiation of the one-parameter curve

t� results in

	t"sin (�s� )

�s�
[!(s · 	s)T#	s�T]#�s� cos (�s� )!sin (�s�)

�s��
(s · 	s) (s�T ) (31)

Recalling the connections (see Reference 17) (s · 	s)T"(T � s)	s, (s · 	s)(s�T)"!T�
[(s � s)	s], (	s�T)"!(T�	s) and resolving t in the middle surface basis �E

�
�, it follows that

	t"	tL �E
�
" !sin (�s� )

�s�

0 !1

1 0

sL 	 sL �

#�
sin (�s� )

�s��
!cos (�s� )

�s�� �
!sL �sL 	 !(sL �)�

(sL 	)� sL 	sL �
0 0

�
	sL 	
	sL �� (32)

As already mentioned, all vectors in the computational process are defined relative to the

standard basis e
�
. The transformation of the components 	tL � is given by

⎧
⎪
⎨
⎪
⎩

	t	

	t�

	t�

⎫
⎪
⎬
⎪
⎭

"
�


		
�


	�
�


	�
�


�	
�


��
�


��
�


�	
�


��
�


��

⎧
⎪
⎨
⎪
⎩

	tL 	
	tL �
	tL �

⎫
⎪
⎬
⎪
⎭

(33)

4. STRAIN MEASURES

The Green—Lagrange strain tensor is given by standard expression

E"	
�
(F�F!1) (34)

Relative to the reference configuration contravariant basis, �G��
��	����

, the components of E are

given by

E"	
�
(g

�
· g

�
!G

�
· G

�
)G��G �"E

��
G� �G � (35)

Using the definition of covariant base vectors, (6), and observing that G�"T, the

Green—Lagrangian strain tensor of the shell body may be obtained as

E"E��G�� G�#E��G�� T#E
��T �G�#E

��
T� T , (
"1, 2) (36)

or equivalently

E"Z
�(E��A� �A�#E��A��T#E
��T �A�#E

��
T� T )Z
	 (37)

The components E
��

may be written as functions of the through-thickness co-ordinate �

E
��
"E �
�

��
#�E �	�

��
#(�)�E ���

��
(38)



where

E �
�
��

"	
�
(a

�
· a

�
!A

�
· A

�
)

E �	�
�� "	

�
(t
�� · a� #t

�� · a�!T
�� · A�!T

�� · A�)

E �	�
��"E �	�

��"0

E �	�
��

"0 (39)

E ���
�� "	

�
(t
�� · t��!T

�� · T��)

E ���
��"E ���

��"0

E ���
��

"0

The base vectors of the tangent space to the deformed middle surface, a� , may be decomposed

as a�"A�#u
�� (u

�� denotes partial derivative of u with respect to �� ). Consequently, the strain

tensor components (39) may be rewritten in terms of the vector fields u and t. The non-zero strain

components are

E �
�
�� "	

�
(A� · u��#A� · u��#u

�� · u��)

E �
�
��"E�
�

��"	
�
(A� · (t!T )#u

�� · t)
(40)

E �	�
�� "	

�
(A� · (t��!T

�� )#A� · (t��!T
�� )#u

�� · t��#u
�� · t�� )

E ���
�� "	

�
(t
�� · t��!T

�� · T��)

The above-defined strains and related numerical models have the following features:

(i) The linear variation of displacements through the shell thickness, (4), leads to quadratic

distribution of the strain components E�� through the shell thickness. The through-

thickness distribution of the transverse shear strain E�� is constant.

(ii) The director field is, in this work, assumed to be inextensible. Computational models,

based on Green—Lagrange strains, which explicitly include the through-thickness stretch

were introduced by Simo et al.� and Büchter and Ramm.	� In particular, Simo et al.
consider uniform distribution in �-direction of the through-thickness stretch while Büchter

and Ramm have recently included linear deformation of the director field via the so-called

‘Enhanced Assumed Natural Strain’ (EANS) formulation.

(iii) Within the inextensional director formulations the effect of change in the shell thickness

due to the normal strains E
��

is usually obtained by enforcing the conditions of the zero

through-thickness stress. This causes the condensation of the material law and gives

quadratic deformation in the direction of the director for the St. Venant—Kirchhoff

materials.

(iv) The three components of the axial vector relative to the standard basis �e
�
�, s"s�e

�
, are

not independent, according to the constraints (18). It is therefore preferable to retain s in

the local middle surface (Cartesian) basis s"sL 	E
	
#sL �E

�
, and obtain components of t in

the standard basis, t"t�e
�
, by employing (23). Such an approach results in five unknown

kinematic components, namely three components of u relative to the standard basis �e
�
�

and two components of s relative to the middle surface basis �E
�
�.

(v) The membrane strains, E �
�
�� , are not a function of rotational parameters, since the rotation

about the middle surface normal T (also called a drill rotation) does not enter the



formulation. When describing t, (19), the rotation about the middle surface normal T is set

to zero, which enables five kinematic fields to be retained. However, it is well-known that

the analysis of non-smooth shells demands six kinematic fields. A computational approach

which uses the above-defined strains is therefore restricted to the analysis of smooth shells.

For a modification that enables the analysis of shells with intersections without changing

the structure of the above equations see Reference 19.

(vi) Alternatively, one may, by resolving s in the standard basis, s"s�e
�
, define six kinematic

variables (see Reference 5). Equation (20) may be used to obtain the components of

t relative to �e
�
�. As already discussed such rotational components are not independent.

Consequently, the rank deficiency in the element stiffness matrix is obtained, which equals

the number of element nodes. For the shells with geometry approximated in a faceted form

this does not create problems. However, stiffness matrix of a shell structure becomes

singular if two neighbouring finite elements are coplanar.

4.1. Variation of the strain measures

Strain measure variations are obtained by taking the directional derivative in the direction of

the virtual displacements, 	u, and virtual ‘rotations’, 	t, i.e. (	u, 	t) :" �
�� ���


(�� , t� ) which may be

formally written as

	E(u, t; 	u, 	t) :" d

d
 ���


E(�� , t� ) (41)

The resulting variations of strain measures may be expressed in the component form as (�
��"a� ,

see (9))

	E �
�
�� :"D(E �
�

�� ) [	u,	t]"	
�
(�

�� · 	u
��#�

�� · 	u
��)

	E �
�
�� :"D(E �
�

�� ) [	u,	t]"	
�
(�

�� · 	t#	u
�� · t)

(42)
	E �	�

�� :"D(E �	�
�� ) [	u,	t]"	

�
(�

�� · 	t
��#�

�� · 	t
��#	u

�� · t��#	u
�� · t�� )

	E ���
�� :"D(E ���

�� ) [	u,	t]"	
�
(	t

�� · t��#t
�� · 	t

��)

5. PRINCIPLE OF VIRTUAL WORK

The second Piola—Kirchhoff stress tensor of the three-dimensional shell body is defined as

S"S��G
�
�G

�
(43)

By employing the definition of covariant base vectors (6), the stress tensor may be written as

S"S��G��G�#S��G��T#S��T� G�#S��T� T (44)

or equivalently,

S"Z(S��A��A�#S��A�� T#S��T �A�#S��T�T )Z� (45)

The weak form of the equilibrium equations for the three-dimensional shell body takes the

standard form

G(�; 	�)"G
���

(�; 	�)!G
���

(	�)"�
B

S : 	E(�; 	�) d»!�
B

f · 	�d»!��B

t� · 	�dS"0

(46)



where G
���

(�; 	�) and G
���

(	�) are commonly known as the internal and external virtual work,

while f and t� denote the body and surface forces. The volume element, d», and the middle surface

element, dA, can be, in the convected co-ordinates, expressed by

d»"�Gd�	 d��d�, dA"�Ad�	 d�� (47)

where A"det [A��] and G"det [G��]. Furthermore, the following important relations are valid

d»"�G/A d� dA"�N d�dA, where �N "�G/A"det [Z].

By taking variations of the strain components, (39) and (40), the following expressions for the

internal virtual work may be obtained:

G
���

(�; 	�)"�
M ��

	�

	

S�� (	E �
�

��
#�	E �	�

��
#(� )�	E ���

��
)�N d�� dA , (48)

where h
 and h� denote co-ordinates of the bottom and top surfaces of the shell, respectively. The

above expression motivates definition of the second Piola—Kirchhoff stress resultant tensors

n� "n��G
�
� G

�
, n��"�

	�

	

S���N d� (49)

m� �	�"m���	�G
�
�G

�
, m���	�"�

	�

	

S����N d� (50)

m� ���"m�����G
�
�G

�
, m�����"�

	�

	

S��(� )��N d� (51)

The stress resultant tensors (49)—(51) are symmetric, opposite to their physical counterparts (see

References 11 and 20). Since they take part in the weak form of the equations of equilibrium, they

are also called the effective stress resultant tensors. Inserting the definition of the second

Piola—Kirchhoff stress resultants into (48) the two-dimensional expression for the internal virtual

work may be obtained. A similar procedure which leads to the two-dimensional external virtual

work will not be discussed here (see e.g. Reference 7).

The resulting two-dimensional expression for the principle of virutal work

G (�; 	�)"�
M

(n��	E �
�
��

#m���	�	E �	�
��

#m�����	E ���
��

) dA!G
���

(	�) (52)

is a governing equation for the displacement-based finite element formulation.

6. ELASTO-PLASTIC CONSTITUTIVE MODEL

In this section, formulation and computational aspects of the elasto-plastic model for thin shells

are described. A simple von Mises yield criterion is adopted with isotropic hardening. Attention is

restricted to situations where strains remain infinitesimal, although rotations are not restricted.

Details and motivation for the present constitutive description may be found in Reference 1, while

numerical treatment follows References 2 and 3.

6.1. Hyperelastic stress response

6.1.1. Three-dimensional hyperelastic model. Assume that the constitutive response is governed

by a stored-energy function ¼ (E, X). The simplest among the non-linear hyperelastic, homogene-



ous, isotropic material models is the so-called St. »enant—Kirchhoff material. For this material the

stored-energy function takes the form

¼(E )"�
2

(tr [E])�#� tr [E�] (53)

where � and � are Lamé material parameters expressed with Young’s modulus E and Poisson’s

coefficient � as

�" E�
(1#�) (1!2�)

, �" E

2(1#�)
(54)

The stresses in the shell body are given by

S"�¼(E )

�E
"� tr [E]1#2�E"H[E] (55)

where H is the fourth-order isotropic tensor. Equation (55) may be written in the component form

(by employing (35) and (43)) as

S��"(�G��G�
#� (G��G�
#G�
G��))E
�
 (56)

"H���
E
�

"H���
 (E �
�

�

#�E �	�

�

#(�)�E ���

�

)

6.1.2. Thin-shell hyperelastic model. A thin-shell hyperelastic constitutive model follows from

(56) by enforcing the zero through-thickness stress, i.e.

S��"H���
(E �
�
�


#�E �	�
�


#(�)�E ���
�


)#H����E
��

"0, klO33 (57)

Accordingly, the constitutive law may be condensed resulting in

C ���
"H���
! H���


H����
, ijO33, klO33 (58)

This leads to

n��"�
	�

	

C ���
(E �
�

�

#�E �	�

�

#(�)�E ���

�

)�N d�, ijO33, klO33 (59a)

m���	�"�
	�

	

C ���
(E �
�

�

#�E �	�

�

#(�)�E ���

�

)��N d�, ijO33, klO33 (59b)

m�����"�
	�

	

C ���
(E �
�

�

#�E �	�

�

#(�)�E ���

�

) (� )��� d�, ijO33, klO33 (59c)

The above expressions can be equivalently written in the form

⎧
⎪
⎨
⎪
⎩

n��

m���	�

m�����

⎫
⎪
⎬
⎪
⎭

"
C ���




C ���

	

C ���

�

C ���

	

C ���

�

C ���

�

C ���

�

C ���

�

C ���

�

⎧
⎪
⎨
⎪
⎩

E �
�
�


E �	�
�


E ���
�


⎫
⎪
⎬
⎪
⎭

, ijO33, klO33 (60a)

where

C ���

�

"�
	�

	

C ���
 (�)��N d�, J"0, 1, 2, 3, 4 , ijO33, klO33 (60b)



From equation (57) it follows that, for the St. Venant—Kirchhoff material, the strain E�� becomes

a quadratic function of �.

6.2. Three-dimensional elasto-plastic constitutive model

6.2.1. Kinematic description of elasto-plastic deformations. In the description of the present

three-dimensional elasto-plastic constitutive model, attention is restricted to situations where

strain tensor remains small. In this case, the total strain tensor may be additively decomposed*
into elastic and plastic part, i.e.

E"E�#E� (61)

6.2.2. Thermodynamical basis. A broad framework for analysis of three-dimensional elasto-

plastic solids is provided by the thermodynamic theory with internal variables.	 In this work,

attention is restricted to isothermal processes, while, for the present purpose, it suffices to assume

that the plastic process is described by a single scalar variable representing the isotropic

hardening. Then, a thermodynamic state at a point under consideration is fully described by a set

�E�,R�, where E� is the elastic part of the Green—Lagrange strain tensor, while R is a scalar which

describes the isotropic hardening.

By assuming that the elastic response of the material and plastic hardening are decoupled, the

specific free energy (which, for isothermal processes, equals the specific deformation energy

¼"¼(E�,R) may be represented in the additive form as

¼(E�,R)"¼�(E� )#¼�(R) (62)

Recall that the second Piola—Kirchhoff stress tensor S is energy conjugate to the

Green—Lagrange strain tensor E. The second law of thermodynamics in the form of

Clausius—Duhem inequality requires	

S :
dE

dt
!d¼

dt
*0 (63a)

By employing the specific deformation energy (62), the additive decomposition (61) and assuming

that the elastic behaviour is isotropic it follows that

�S!�¼�

�E� � : E� �#S :E� �!KRQ *0 (63b)

where

K"�¼�

�R
(63c)

is a thermodynamic force conjugate to R, and (•R ) denotes d(• )/dt. For purely elastic process it

follows that E� �"0 and RQ "0. Since the Clausius—Duhem inequality is valid for any E� �, from

(63b) it follows that

S"�¼�

�E�
(64)

* For large deformations of elasto-plastic solids at finite strains an alternative, and recently very popular, formulation is

possible based on the multiplicative decomposition of the total deformation gradient F into elastic and plastic parts,

F"F�F� (see Reference 21)



The elastic part of the specific energy is assumed to be fully described by the St. Venant—
Kirchhoff model given in Section 6.1.

6.2.3. Yield criterion and loading/unloading conditions. In correspondence with the standard

theory of plasticity, existence of the yield surface in the stress space is assumed in the form

�"�(S, K). The admissible stresses can never leave the closed domain specified by

�(S,K))0

At some time instant t3[0,¹] for the process to be elastic it is required that � (S,K )(0 and

E� �"0, RQ "0, while for plastic deformations to be present it is necessary that � (S,K )"0. (If

d�'0 the loading is taking place, d�"0 specifies the neutral loading while d�(0 specifies the

elastic unloading.)

The associative theories describe a broad class of elasto-plastic material models which are

characterised by the so-called normality principle. For these materials plastic flow and hardening

rule may be represented in the form	

E� �"��
��
�S

(65a)

RQ "!��
��
�K

(65b)

The so-called consistency parameter �� *0 is consistent with the loading and unloading which are

expressed as the Kuhn—Tucker conditions�

�)0, �� *0, �� �"0 (66)

These conditions must be satisfied at any time instant t3[0, ¹].

6.2.4. Von Mises plasticity model—small-strain description. Elasto-plastic material considered

in this work will be assumed to follow the von Mises plasticity model. The yield criterion will be

represented in the form

�(S,K )"	
�
�S���!	

�
(S

�
#K)�)0 (67)

where S� :"dev [S]"S!	
�

tr [S] is the deviatoric stress tensor, S
�

is the uniaxial yield stress and

�dev [S]� :"(S� : S�)	��"(S�
��
S�
��
)	��.

The associated flow rule and hardening rule will be considered which for the von Mises yield

criterion (67) may be expressed as

E� �"��
��(S,K )

�S
"�� S� (68a)

KQ "!�� K� (R)
��(S,K )

�K
"�� �

�
K� (R) [S

�
#K(R )] (68b)

RQ "[K� (R)]
	KQ (68c)

Equations (68) further imply the following important relationships:

�� "�E� ���S��
	 (69a)



R(t)"�
�



�

2

3
�E� � (�)� d� (69b)

Relation (69b) defines the internal variable R(t) as the so-called equivalent plastic strain.

Remark 3. We note that in the case of the full finite strain kinematics the correct definition of

the deviatoric part of the second Piola—Kirchhoff stress tensor is

S�"Dev [S]"S!	
�
[S :C]C
	 (70)

Since C"(1#2E), then for small Green—Lagrange strains (i.e. when �E��;�E�;1) it follows

that

S�"S!	
�
[S : 1]1#O(�E� )"dev[S]#O (�E� ) (71)

where O (�E�) denotes the terms which tend to zero, i.e. O (�E� )P0, as �E�P0. Thus, when

strains are restricted to be small, an approximate definition of the deviatoric stress tensor may be

employed. Therefore, in problems where finite rotations may be present but strains are restricted

to be small, the above von Mises model for large deformations of elasto-plastic shells (67)—(69) is

equivalent to the small-strain von Mises elasto-plastic model. Accordingly, all aspects of material

identification known for small-strain elasto-plastic models transfer immediately to the present

elasto-plastic thin-shell model. For situations arising during failures of elasto-plastic thin shells

typically associated with buckling-type instabilities and/or bending-dominated shell problems

resulting in the formation of plastic hinges this model is expected to provide accurate description

of the physical phenomena.

6.3. Elasto-plastic constitutive model for thin shells: matrix formulation

The present elasto-plastic constitutive model for thin shells employs the condition of the zero

stress in normal direction, i.e. S��"0. Hence, in matrix formulation of the elasto-plastic

constitutive model the following definitions will be employed:	

S�"�S		,S��,S	�,S	�,S���
�	
��

(72a)

S��"�S�		,S���,S�	�,S�	�, S����
�	
��

(72b)

E�"�E
		

,E
��

, 2E
	�

, 2E
	�

, 2E
��
�

�	
��
(72c)

(E�)�"�E�
		

,E�
��

, 2E�
	�

, 2E�
	�

, 2E�
��
�

�	
��
(72d)

Here S denotes the stress vector, S� is the deviatoric stress vector, E is the strain vector and E� is

the plastic strain vector. The vectors (72a)—(72d) consist of the physical components of stresses

and strains, i.e. they are defined relative to the orthonormal basis, opposite to the stress—strain

components defined earlier in equations (35), (43) and Section 6.1. This approach considerably

simplifies the implementation of elasto-plastic constitutive law. In addition, the following matrix

relationship will be used

S�"P
	
S (73a)

	 In the following S,S�,E, E� and E� will denote the corresponding vectors while, in Section 6.2, the same notation was

related to the corresponding tensors



where the matrix P
	

may be expressed as

P
	
"1

3

2 !1 0 0 0

!1 2 0 0 0

0 0 3 0 0

0 0 0 3 0

0 0 0 0 3
��
��

(73b)

In accordance with the model described in Section 6.2, notation (72), the elasto-plastic

constitutive model for thin shells may be written in the following matrix form:

E"E�#E� (74a)

S"C[E�] (74b)

�"	
�
S�P

�
S!	

�
[S

�
#K(EM � )]� (74c)

E� �"�� P
�
S (74d)

EMQ �"RQ "�� (�
�
S�P

�
S )	�� (74e)

with loading/unloading conditions expressed as

�)0, �� *0, �� �"0 (74f )

Matrix P
�

has the form

P
�
"1

3

2 !1 0 0 0

!1 2 0 0 0

0 0 6 0 0

0 0 0 6 0

0 0 0 0 6
��
��

(74g)

Note that matrix P
�

differs from the earlier matrix P
	

as a result of the effect of shear terms of E� �
in (74d) and usage of S��� in (74c), e.g. for shear component of E� � it follows 2EQ �

	�
"�� 2S�	�. Matrix

C is the matrix of elastic constants for the thin shells obtained by condensation (S��"0) of

the three-dimensional relations (see Section 6.1). Since the orthonormal co-ordinate system is

adopted in this section, form of the elastic constitutive matrix is simpler than the one that may be

obtained from equation (56). The shear correction factors are taken as equal to 1.

Observe that E�
��

and E�
��

are not zero, which is not explicitly stated in the above equations.

6.4. Integration algorithm for thin shell elasto-plastic constitutive model

In the solution of the non-linear evolution problem for the rate-independent thin-shell elasto-

plasticity, described in Sections 6.2 and 6.3, a numerical time integration procedure is typically

employed, which provides an approximate solution to the problem at discrete points of the time

interval [0, ¹]"�

��	

[t
�
, t

��	
]. In this section, the so-called generalized midpoint algorithm,

formalized by Ortiz and Popov,�� is employed.

6.4.1. Problem definition. The equilibrium equations are assumed to be satisfied at time instant

t
�
. In addition, it is assumed that the stress field S

�
and the internal variables �E�

�
,EM �

�
� satisfy the

discrete version of the constitutive law described in Sections 6.2 and 6.3. For the present purpose,



it may also be assumed that the displacement field u
��	

and hence, the strain field E
��	

are given

at the time instant t
��	

. The problem consists in evaluating the stress field S
��	

and the set of

internal variables �E�
��	

, EM �
��	

� at the time instant t
��	

which are consistent with the discrete

version of the constitutive law described in Sections 6.2 and 6.3.

6.4.2. Integration algorithm. By employing the generalized midpoint algorithm to the evolu-

tion problem of thin-shell rate-independent elasto-plasticity described in Section 6.3, the in-

cremental version of the elasto-plastic evolution problem is obtained as follows: Values of

E�
��	

and EM �
��	

at the time instant t
��	

are obtained as

E�
��	

"E�
�
#�E�

��� (75a)

EM �
��	

"EM �
�
#�EM �

��� (75b)

where t
���3[t

�
, t

��	
], 
3[0, 1] and

�E�
���"	

� (E�
���!E�

�
) (76a)

�EM �
���"	

� (EM �
���!EM �

�
) (76b)

Values at the time instant t
��� are obtained as

E
���"E

�
#
�E

�
"(1!
)E

�
#
E

��	
(77a)

E�
���"E�

�
#
 �E�

�
"(1!
)E�

�
#
E�

��	
(77b)

EM �
���"EM �

�
#
�EM �

�
"(1!
)EM �

�
#
EM �

��	
(77c)

S
���"C[E

���!E�
���] (77d)

In accordance with equations (75)—(77) it follows that

E�
��	

"E�
�
#�

���P�
S
��� (78a)

EM �
��	

"EM �
�
#�

�����
�
(S�

���P�
S
���)	�� (78b)

where the notation �
���"�t �� is introduced.

The incremental elasto-plastic problem (75)—(78), is solved by employing the standard operator

split methodology, where the original problem, (75)—(78) is solved through composition, applying

first the elastic and then the plastic algorithm. The essential steps of this well-known numerical

procedure are briefly summarized in Box 1, while details of implementation with explicit

expressions may be found in References 2 and 3.

6.5. Consistent elasto-plastic tangent modulus

In agreement with notation introduced in Section 5, the weak form of equilibrium for a shell

may be expressed as

G(�
��	

, 	�)"G
���

(�
��	

, 	�)!G
���

(	�)"0 (79)

where G
���

(�
��	

, 	�) and G
���

(	�) represent the internal and external virtual work, respectively

(see (46)). With known state at t
�
defined by �E

�
, E�

�
, EM �

�
�, and given external loading at t

��	
, a new

configuration is required �
��	

:"�(t
��	

) and internal variables �E�
��	

, EM �
��	

� consistent



Box 1. Elastic predictor - plastic corrector algorithm for the von-Mises thin shell elasto-plastic constitutive
model

(i) Evaluate elastic predictor

E
���"(1!
)E

�
#
E

��	

S����

���"C[E

���!E�� ����

��� ]"C[E

���!E�
�
]

(ii) Check yield condition

�����

���"	

�
(S����


��� )�P
�
S����

���!	

�
[S

�
#K(EM �� ����


��� )]�

If �����

���)0 THEN (Elastic State)

Set (• )
���"(• )����


���)0 and GOTO (iii.2)

ELSE (Plastic Corrector)
GOTO (iii)

(iii) Evaluate the plastic corrector
(iii.1) Evaluate the consistency parameter �

��� by N—R solution of:

�
���"	

�
S�
���P�

S
���!	

�
[S

�
#K(EM �

���)]�"0

EM �
���"EM �

�
#
�

�����
�
(S�

���P�
S
��� )	�� .

(iii.2) Update stresses, plastic strain and hardening parameter

C� "(I#
�
���CP

�
)
	C"(C
	#
�

���P�
)
	

S
���"C� [E

���!E�
�
]

E�
��	

"E�
�
#�

���P
�
S
���

EM �
��	

"EM �
�
#�

�����
�
[S�

���P�
S
���]	��

K
��	

"K(EM �
��	

)

S
��	

"C� [E
��	

!E�
��	

]

with the discrete constitutive model described in Section 6.4. This procedure defines an (algorith-

mic) incremental relationship

S
��	

"S� (�
��	

, E�
��	

,EM �
��	

; E�
�
,EM �

�
) (80)

Incremental problem may then be defined as: For the known state �E
�
,E�

�
,EM �

�
� and known

loading at t
��	

find the configuration �
��	

, and the state variables �E�
��	

, EM �
��	

�, which satisfy

weak equilibrium statement (79) and are consistent with the constitutive model described in

Section 6.4.

Equation (79) defines a highly non-linear function and requires, in general, an iterative solution

procedure. In this work, the solution is being sought by using the Newton—Raphson procedure.

As will be detailed in Section 9, linearization of the incremental boundary value problem at the

given configuration �
��	

is required, which also involves, as its essential part, the linearization of

the constitutive equations at the fixed geometry.

The linearized form of the relationship (80) — i.e. the derivative

C�
��	

"�S
��	

�E
��	

(81a)



which defines the elasto-plastic modulus C�
��	

consistent with applied time integration algo-

rithm — can be evaluated in the closed form as (see References 2 and 3)

C�
��	

"C� ! C� P
�
S
���S�

���P�
C�

S�
���P�

C� P
�
S
���#�

�
[[S

�
#K (EM �

���)]�K� (EM �
���)/ (1!�

�

�

���K� (EM �
��� ))]

(81b)

where

C� "(I#
�
���CP

�
)
	C"(C
	#
�

���P�
)
	 (81c)

represents the algorithmic tangent modulus. The symmetry of C�
��	

is evident.

7. FIRST APPROXIMATION OF THE SHELL THEORY: MATRIX FORMULATION

7.1. First approximation of the shell theory

Within the single director shell model, the following approximations of the above-presented

geometrically non-linear shell theory may be introduced:

(i) It may be assumed that the components E ���
�� of the strain tensor are so small that they can

be neglected, i.e. E ���
�� P0. This is equivalent to E ���

��
P0, so the last part in the expression

for the internal virtual work in (52) vanishes. This assumption leads to the (classical) linear

distribution of the strain components E�� through the shell thickness. Considering equation

(40), it can be seen that in that case the relation t
�� · t��+T

�� · T�� is required, which holds

for R
��+0 (see (17)). Then t

�� · t��"(RT)
�� · (RT)

��+(RT
��) · (RT

�� )"T
�� · T�� . The upper

assumption therefore restricts the gradients of the tensor field R to be small. The order of

the relative error for this approximation is given in Reference 9.

(ii) The variation of metric through the shell thickness may be neglected, i.e. G
��
+A

��
,

G��+A��. Thus �N +1, Z+I. This simplifies the constitutive relations in (60a) since

C ���

	

and C���

�

become zero.

7.2. Matrix formulation

In advance to the finite element formulation of the above approximate thin-shell model the

kinematic and force variables are expressed in matrix notation. The matrix notation for vector-

valued quantities such as displacements and rotations is obvious. The strain tensor in matrix

notation takes the form

�
��	

"
⎧
⎪
⎨
⎪
⎩

E �
�
		

E �
�
��

2E �
�
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⎭
��	

, �
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"�2E �
�
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2E �
�
��
�
��	

, �
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"
⎧
⎪
⎨
⎪
⎩

E �	�
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��

2E �	�
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⎫
⎪
⎬
⎪
⎭
��	

(82)

while the stress resultants (49)—(51) are written as

n
��	

"
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⎪
⎩
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⎫
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⎫
⎪
⎬
⎪
⎭
��	

(83)



By employing the definitions of the second Piola—Kirchhoff stress resultants (49) and (50), the

stress resultants (83) may be expressed in the familiar form as

n��
��	

"�
	�

	

S��
��	

�N d�, q��
��	

"�
	�

	

S��
��	

�N d�, m���	�
��	
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S��
��	

��N d� (84)

Following standard practice, the generalized strain—displacement operators are introduced in

the matrix form as

Bm (�
��	
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(85a)

Bb (���	
)
��
��

"

(t
��	)�

�
��	

(�
��	)�

�
��	

(t
���)�

�
���

(�
���)�

�
���

(t
��	)�

�
���

#(t
���)�

�
��	

(�
��	)�

�
���

#(�
���)�

�
��	

��	

(85b)

which, in turn, define the membrane, shear and bending strain variations as

	�"Bm (�
��	

)	�, 	�"Bs (���	
)	�, 	�"Bb (���	

)	� (86a)

where the following compact notation is used:

	�"�
	u

	t� (86b)

and 	t is defined by relation (see (32) and (33))

	t"� (s
��	

) �
	sL 	
	sL �� (86c)

where � (s
��	

) is a (3�2) matrix. It is sometimes convenient to express the relation (86a) in

a compact form as

⎧
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"
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(86d)

where B (�
��	

) is the total strain—displacement matrix.



The two-dimensional expression for the principle of the virtual work, (52) can now be written

(with the assumptions (i) and (ii)) as

G(n
��	

, m
��	

, q
��	

, �
��	

; 	�)"�
M

[n
��	 · Bm (�

��	
)	�

#m
��	 · Bb (���	

)	�#q
��	 · Bs (���	

)	�] dA

!G
���

(	�)"0 (87)

8. FINITE ELEMENT FORMULATION

In this section the finite element formulation is presented based on the total Lagrangian

formulation and a quadrilateral shell element. Pure displacement formulations that arise from the

direct finite element approximation of the weak form of equilibrium (87), result in poor perfor-

mances caused by the shear locking behaviour in a thin-shell limit. It is therefore essential that

solutions are based on some form of mixed formulation. Among various mixed formulations,

hybrid-mixed methods seem to be well-suited for this class of problems (due to the strain-driven

character of plasticity, assumed strain methods are more attractive than assumed stress methods).

The four-node shell elements, based on displacement formulations, are not strongly affected by

the membrane locking (the effect that is associated with the falsely activated membrane energy in

bending-dominated problems). However, they exhibit very strong locking associated with the

transverse shear strains. Therefore, approximation of the transverse shear strain field is performed

by employing the so-called Assumed Natural Strain (ANS) concept, in the form first suggested by

Dvorkin and Bathe.	�

8.1. Interpolation of the shell geometry

As discussed in Section 2, the shell reference configuration can be completely described by the

middle surface M, the initial thickness h



and the unit vector field T normal to the middle surface

M. The adopted spatial finite element discretization relies on the isoparametric mapping from

the parent element which is represented as the bi-unit square with co-ordinates

(�, �)3[!1, 1]�[!1, 1]L��. In the standard manner, the shell middle surface placement

X� 3M is defined as

XM � (�, �)" �
�
��	

N�(�, �)XM �
�
, (k"1, 2, 3) (88)

where XM �
�
are the element nodal co-ordinates, while N� (�, �) are standard bi-linear shape functions

N�(�, �)"	
�
(1#��

�
) (1#��

�
) (89)

with (�
�
, �

�
)3�(!1,!1); (1,!1); (1, 1); (!1, 1)� (see Figure 4).

In the approximation of the director field over the element, special consideration must be given

to possible discretization errors, arising from the definition of the directors at the nodes of the

finite element mesh. It seems that for shell elements with five degrees of freedom per node the most

appropriate way to evaluate nodal directors is by averaging the nodal normals of the adjoined

elements.� The interpolation of the director field then may be given as

¹� (�, �)" �
�
��	

N�(�, �)¹�
�
, (k"1, 2, 3) (90)



Figure 4. The four-node shell finite element

8.2. Interpolation of physical fields

The isoparametric discretization of the shell body displacement field described by (4) and (5)

leads to

U" �
�
��	

N� (�, �)U
�
" �

�
��	

N�(�, �) (u#�(t!T))
�

(91)

Clearly, the middle surface displacement field is interpolated in the same way as the components

of middle surface position vector.

The transverse shear field interpolation, based on the ANS method, prescribes the transverse

shear to vary linearly between two opposite element edges (Figure 4). In the middle of each edge

the shear is calculated with respect to the edge direction

2EM �
�
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�
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��
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�
(1#�)2E�
��

	�
, 2EM �
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��
#	

�
(1#� )2E�
��

��
(92)

where the middle surface points X� �, ¸"A,B,C, D are defined with

X� �"	
�
(X� (�

�
, �

�
)#X� (�



, �



) ) (93)

with (¸,M,N)3� (A, 1, 2); (B, 2, 3); (C, 3, 4); (D, 1, 4)�.

8.3. Variations and derivatives of the physical fields

In the discrete form of the virtual work expression for shells (87), the following variations and

derivatives of the physical fields will be required: u
�� , 	u

� � , 	t, t
� � , 	t

� � , for �"�, � and

(· · ·)
� �"� (· · ·)/�. Mid-surface displacement field variations are easily obtained as

u
� �"

�
�
��	

N�
��u� , 	u

��"
�
�
��	

N�
� �	u

�
(94)

where N�
� � denotes a partial derivative �N�/�. The rotational fields, according to (91), may be

expressed as

t
��"
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��	

N�
��t� , 	t" �
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N�	t
�
, 	t

� �"
�
�
��	

N�
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�
(95)



where t
�

is obtained by (23) and 	t
�

is given by (32) and (33). Thus, during the computational

process it is necessary to construct local basis �E
�
� at each nodal point. To this end definitions of

E
	

and E
�

are usually required, since E
�
"T is already prescribed.

Linearization process further demands the second derivatives � (	t) and � (	t
�� ) which may be

obtained as

� (	t)" �
�
��	

N��(	t
�
), � (	t

� � )"
�
�
��	

N�
��� (	t

�
) (96)

8.4. Discretized weak form of equilibrium

The discretized weak form of the equilibrium equations (87) takes the form

G(n
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, m
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; 	�)" ��

�
��	

�
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[n
��	 · Bn(���	
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���

(	�)"0 (97)

where dA"�A d�d�"�X�
���X�

�	� d�d� and an integration domain A
�

is a bi-unit square.

Since relations (92) are used to interpolate the transverse shear strain and stress resultants are

given by (84), the above discretized weak form may be rewritten as
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where B� s (���	
)	� is obtained by employing the interpolation (92) (see Reference 13 for details of

implementation).

Remark 4. In order to simplify the elasto-plastic constitutive equations the local Cartesian

frames are defined at numerical integration points. Details of implementation of this procedure

are provided in Reference 13.

9. SOLUTION PROCEDURE: LINEARIZATIONS ASPECTS

The discrete form of the weak form of equilibrium for the present shell model given by (98)

represents a set of highly non-linear equations with kinematic variables (nodal displacements and

‘rotations’) as unknowns. Usually, this problem is solved by a form of the Newton—Raphson

iterative solution procedure. As an essential step of this procedure the linearization of this

equation is required. In this section, the basic steps of this process are described. It should be

observed that the linearization here is performed after the finite element discretization.

9.1. Second derivatives of kinematic variables

The second derivative of the �"(�, t) required within the Newton—Raphson iterative process

may be obtained as

D(	u, 	t) [�u,�t]" d

d
 ���


(	u� , 	t�)": 	
�(	u)

�(	t)
 (99)

It may easily be checked that D(	u)[�u,�t] is zero.



In contrast, the second directional derivative of t (in the direction of �s) may be obtained as

� (	t)": D(	t) [�s]" d

d
 � ��


(	t)�"
d

d
 ���


[	t(s#
�s; 	s)] (100)

The above expression is explicitly given as

� (	t)"�s� cos (�s� )!sin (�s� )

�s��
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[ (s ·�s)	s�T#(s · 	s)�s�T] (101)

Details of the procedure describing implementation of the second derivatives of kinematic

variables are provided in Appendix I.

9.2. Newton—Raphson method

The present problem may be stated as follows: Find a configuration �
��	

, such that

G(�
��	

; 	�)"0 for any 	�. Since the solution of the above non-linear problem is pursued by

employing the Newton—Raphson method a linearization of G(�
��	

; 	�) is required. The New-

ton—Raphson procedure at the configuration �
��	

"��
��	

may be expressed in the form

DG(�� ���
��	

; 	�) [�����]"!G(�� ���
��	

; 	�) (102)

where the left-hand side of (102) supplies the tangent stiffness operator while the right-hand side

has a standard interpretation as the unbalanced (residual) forces.

9.3. Linearization of the virtual work functional

Assuming the conservative loading, the tangent stiffness operator can be obtained by the

directional derivative of the ‘internal virtual work’ in the direction ��"(�u,�t) of incremental

displacements and incremental ‘rotations’ at the discrete (nodal) points. It may be conventionally

split into material and geometric parts:

DG(�
��	

; 	�)[��]"DMG(�
��	

; 	�)[��]#DGG(�
��	

; 	�)[��] (103)

where
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are, respectively, the material and geometric stiffness operators.



9.4. Material stiffness operator

The material stiffness operator arises from the linearization of the constitutive equations at the

fixed geometry. A starting point for the evaluation of the material stiffness operator is the first

approximation of the expression (48) for the three-dimensional weak form of equilibrium. By

employing the matrix notation (82)—(86) and finite element formulation described in Section 8, the

tangent stiffness matrix may then be written as
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with the submatrices defined as
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where

[C�
��	

]"	
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�
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��
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�


��	

(106b)

represents membrane, shear and combined membrane—shear parts of the consistent tangent

stiffness matrix (81).

Remark 5. The material part of the tangent stiffness matrix and internal stress resultants are

evaluated by numerical integration through the thickness of the shell. It is worth noting that the

classical (Newton—Cotes or Gaussian) quadrature formulae are designed for the purpose of

integrating continuous and smooth functions. However, in the present work, functions may

neither be smooth nor continuous. The influence of this defect on the accuracy of numerical

results is, in general, difficult to estimate and further research is required.

9.5. Derivatives of strain measure variations

Derivatives of strain measure variations (	�, 	�, 	�) in the direction of ��"(�u,�t) may be

expressed as
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9.6. Geometric stiffness operator

The geometric stiffness operator arises from the linearization of the geometric part, when

holding the material part fixed. It is recovered from the second integral in (104) by employing the



following relationships:
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Linearization of the transverse shear part based on interpolation (92) is not considered here.

Implementation details may be found in Reference 13.

10. NUMERICAL EXAMPLES

In this section, a set of numerical examples is presented in order to illustrate the range of

applications and performance capabilities of the described finite rotation elasto-plastic shell

model. The non-linear equations are solved by the full Newton—Raphson method in all examples.

The deformation paths are followed by carrying out either force control or by the cylindrical

arc-length method as described in Reference 23. In all examples the local tolerance, when iterating

for the incremental plastic multiplier, is set to 1·0�10
�, while the global convergence is achieved

when the Euclidean norm of the residual is less than 1·0�10
�. Whenever it is possible

comparisons wih results in the literature are presented.

Example 1. Failure analysis of the Scordelis—¸o roof. Geometry and material characteristics

for this example are given in Figure 5. The half-length of the shell is ¸"7·6 m, radius is

R"7·6 m and thickness is h


"0·076 m. The material parameters of the roof are: elastic modulus

is E"2·1�10� N/mm�, Poisson’s ratio is �"0·0, yield stress is S
�
"4·2 N/mm� and hardening

parameter is assumed to be equal to H"0·0. The gravity-type loading of the shell is considered

with the reference value of f


"4·0 kN/m�. Due to the symmetry conditions, the analysis is

performed for one quarter of the roof, restricting deformations to be symmetric along the lines

X
	
"0 and X

�
"0. The displacement boundary conditions can be, in relation to Figure 5,

expressed as

º
	
"0, �

�
"0 at X

	
"0

º
�
"0, �

	
"0 at X

�
"0

º
	
"º

�
"0, �

�
"0 at X

�
"¸

where º
�
are displacements in X

�
-directions and �� are rotations about the X�-axis.



Figure 5. Scordelis—Lo roof: geometry, material characteristics and loading conditions

This example has been analysed by many authors with the most complete non-linear analyses

completed by Perić and Owen�� and Crisfield and Peng.�� In both publications, the authors used

the faceted shell formulations based on Morley thin-shell triangular elements, which do not

account for the transverse shear strains.

Full finite deformation kinematics is considered in the analysis and the computation is

performed employing standard arc-length control.�� Simpson’s integration rule with seven

equidistant integration points is adopted for the numerical integration across the shell thickness.

Two different meshes of 32�32 and 50�50 four-node elements for one quarter of the roof are

used to simulate elasto-plastic shell deformations.

Gravitational load versus vertical displacement curves for point A are plotted in Figure 6. Both

meshes give virtually the same results for deformation prior to the maximum load, and compare

well with the results of Perić and Owen and Crisfield and Peng, obtained with a mesh of 16�16

triangular Morley elements. This, however, cannot be said for the force—displacement curves in

the section of non-stable equilibrium configurations. A sharp drop , observed in all diagrams,

occurs at º
�
+!1·0 m in References 24 and 25, while it is noticed at º

�
+!1·3 m in the

present analysis. The differences in results may relate to the differences in the finite element

formulations.

It is interesting to note that a different mode of failure is observed as well. The very localized

failure mode of the roof can be evident from Figure 7, where five equilibrium configurations for

the mesh 50�50 are plotted. The displacements of point A at the configurations denoted by a, b,

c and d in Figure 7 are also marked in Figure 6. The failure starts through formation of a plastic

hinge about X
�

axis in the central part of the shell accompanied by the appearance of another

elliptically shaped plastic hinge (see Figures 7(a) and 7(b)). Both hinges meet at two points, seen

clearly in Figure 7(c). The formation of the plastic hinges in the central part of the shell is followed

by the plastic hinge formation which leads from the two mentioned points towards the corners of

the roof.

The Morley thin-shell element and the four-node bilinear shell element thus produce two

different modes of failure (see Figure 5.8 in Reference 24 for comparison). A possible explanation

may be that the Morley thin-shell element does not account for the transverse shear deformation.

Also the higher geometric flexibility of the triangular-type shell element over the structured

quadrilateral element mesh may be a reason for different behaviours in the representation of these

highly localized modes of failure.

The Euclidean norm of residuals �G� for two typical load steps given in Table I clearly

illustrate quadratic rate of asymptotic convergence typical for the Newton—Raphson-based



Figure 6. Scordelis—Lo roof: load versus displacement curves for point A

iterative procedure. The final configuration for the finer mesh, corresponding to the point

A displacement of º
�
"!2·9385 m, was attained in 150 load steps.

Example 2. Elasto-plastic buckling of cylindrical shell. Sobel and Newman�� performed experi-

mental tests for the (axisymmetric) plastic buckling of axially compressed steel cylinders. The

geometry characteristics of the typical specimen, denoted by C!2 in Reference 26 are: length is

¸"127·1 mm, thickness is h


"2·36 mm and radius is R"43·33 mm. The points of the

stress—strain hardening curve of the steel considered are given in Table II and the Poisson ratio is

given as 0·274. Thickness-to-radius ratio (h


/R+0·054) is chosen to be such that the buckling

occurs in the plastic range (see Figure 8).

During the experimental testing procedure, all cylinders initially developed a short axisymmet-

ric bulge of half sine wave near one or both ends. Upon further increasing the load, the bulge

continued to grow and after the load had reached its maximum value the bulge developed into an

axisymmetric ring. The maximum load the cylinder was able to sustain before the first ring

occurred was defined as the buckling load. Its values for the three cylinders of length ¸+127·0

are reported as 202·83, 212·17 and 183·70 MPa, where the last value was not considered to be very

accurate. It is interesting to note that the buckling load for the cylinder of length ¸"254·3 mm,

which is twice the length of other specimens, is reported to be 216·6 MPa, which indicates that the

ratio h


/¸ has small influence on the buckling load in this case. Additionally, Sobel and Newman

numerically estimated the buckling load with their computer programme. They reported the

value of 189·5 MPa, when the cylinder with the above given geometrical characteristics was

simply supported at its ends.

In the present analysis, the mesh of 32�48 four-node elements is used (due to the symmetry

conditions) to generate one octant of the same cylinder. Two cases, simply supported and

clamped, are considered. The radial expansion of the cylinder ends is prevented in both cases,

since due to the friction between the cylinder and the loading plates its ends cannot move freely.

The solutions for the buckling load for the simply supported and clamped case were 186·3 and



Figure 7. Scordelis—Lo roof: deformed configuration of the shell at five different load stages

Table I. Failure analysis of Scordelis—Lo roof: Euclidean
norms of residuals for two typical load steps for the mesh

(32�32)

Iteration f / f


"1·256 f / f



"1·400

1 0·1018�10�� 0·1367�10��
2 0·2399�10�� 0·6869�10��
3 0·3033�10�	 0·3996�10��
4 0·1971�10
 0·6924�10�	
5 0·3120�10
� 0·2423�10�	
6 0·1198�10
� 0·8672�10

7 0·1634�10

8 0·4515�10
�
9 0·1868�10
�



Table II. Elasto-plastic buckling of cylindrical shell: hardening curve

Point Stress S (N/mm�) Eq. plastic strain, EM � (%)

1 162·722 0·000
2 231·672 0·100
3 248·910 0·255
4 268·905 0·425
5 286·143 0·675
6 295·800 0·925
7 313·723 1·425
8 329·581 2·425
9 373·709 5·425

10 428·180 9·925

Figure 8. Cylindrical shell: geometry, material characteristics and loading conditions

195·1 kN, respectively. The clamped case gives higher values, which is in accordance with the

numerical observations of Sobel and Newman. The axial force versus axial displacement curves

are depicted in Figure 9 for both cases along with the experimentally obtained buckling loads for

the three shorter cylinders. The buckling load obtained by Sobel and Newman is slightly higher

than the buckling load obtained by the present analysis. Figures 10 and 11 show the finite element

representation of development of the first axisymmetric ring for both simply supported and

clamped cases.

Example 3. Pinched elasto-plastic cylinder with isotropic hardening. This example, pinching of

a cylinder, was considered by Simo and Kennedy,�� who used the generalized Ilyushin—Shapiro

elasto-plastic model, formulated entirely in stress resultants. The short cylinder, bounded by two

rigid diaphragms at its ends is pinched by two concentrated forces at its middle section. The



Figure 9. Cylindrical shell: axial force versus axial displacement curves

Figure 10. Simply supported cylindrical shell: deformed finite element mesh at various stages of loading

geometry is shown in Figure 12. Due to the symmetry, only one octant of the cylinder is modelled

with a mesh of 32�32 four-node elements. The half-length of a cylinder is ¸"300, the radius is

R"300 and the thickness is h


"3·0. The material is characterized by an isotropic hardening



Figure 11. Clamped cylindrical shell: deformed finite element mesh at various stages of loading

Figure 12. Pinched elasto-plastic cylinder: geometry, material characteristics and loading conditions

plastic response. The material properties are assumed to be: elastic modulus is E"3000,

Poisson’s ratio is �"0·3, yield stress is S
�
"24·3 and hardening parameter is H"50·0. All

geometrical and material characteristics are equal to those in Reference 27, except the hardening

parameter, since the hardening parameters of the shell model and the classical J
�
model cannot be

related explicitly. As shown in Reference 27, the linear isotropic hardening response of the shell

model is considerably different compared to the classical J
�

theory for the same value of the

hardening parameter.

In the present approach, the numerical integration through the shell thickness was performed

by Simpson’s integration rule with seven integration points. In the Figure 13 the pinching load is



Figure 13. Pinched elasto-plastic cylinder: displacements under the force

Figure 14. Pinched elasto-plastic cylinder: deformed finite element meshes for different load stages



Table III. Pinched elasto-plastic cylinder with isotropic
hardening: Euclidean norms of residuals and maximum
norms of displacement/rotation for a load step

F"2·6655�10
�

Iteration �G� max �º �

1 0·5802�10�� 0·3455�10�	
2 0·1352�10�� 0·4677�10

3 0·1196�10�� 0·1359�10

4 0·3919�10�	 0·2922�10
	
5 0·3975�10
 0·1204�10
�
6 0·2998�10
	 0·1918�10
�
7 0·5032�10
� 0·9965�10
�

plotted against the radial displacements under the load. A snap-through mechanism is observed

when displacement under the point load reaches a value of 183. The snap-through behaviour can

also be observed by comparing equilibrium configurations depicted in Figures 14(c) and 14(d).

The response of the shell can be divided into two parts: the first is characterized by bending

stiffness and a small slope of the load deflection curve and the second is characterized by the stiffer

response of the shell after the snap-through occurs. The first part of the shell response is in

accordance with the results in Reference 27, while the snap-through mechanism is not observed

by Simo and Kennedy and therefore the second part of the response differs from those reported in

Reference 27.

The Euclidean norm of residuals �G� for a typical load step given in Table III again illustrate

quadratic rate of asymptotic convergence.

11. CONCLUSIONS

In this work, a model for large deformations of thin elasto-plastic shells is described. The main

features of the model can be briefly summarised as follows:

(i) Full non-linear shell kinematics is employed accounting for large displacements and finite

rotations of the shell. Finite rotation description of the director field is based on the

rotation vector formulation.

(ii) Strains are assumed to be small. This makes finite element implementation of a material

model particularly simple, since computational models developed for small strain elasto-

plastic materials can be easily incorporated within the present approach. In addition, all

complex aspects of the material identification are immediately applicable to this model.

(iii) The von Mises yield criterion is used in the description of the elasto-plastic material.

However, as mentioned above, any other appropriate computational model already

available for elasto-plastic materials can easily be incorporated.

(iv) In agreement with (ii) and (iii), numerical integration over the shell thickness is employed.

This is considered important if accurate simulation of elasto-plastic shells is required.

(v) Consistent linearization of the shell kinematics and elasto-plastic material model leading

to the Newton—Raphson numerical procedure is performed.

(vi) Typical applications of the present model include failures of elasto-plastic thin shells

associated with buckling-type instabilities and/or bending-dominated shell problems

resulting in formation of plastic hinges.



A range of selected numerical examples is chosen among the available experimental results and

representative numerical tests to illustrate the above points (i)—(vi). Clearly the present approach

has shown efficient and robust performance in series of difficult tests.

Future work will be directed towards extension of the present model by incorporating full finite

strain kinematics and formulation of the framework for dynamic analysis.

APPENDIX I

Second directional derivative of the director motion

In this section, equation (101) is given in the form suitable for the finite element implementa-

tion. By employing the following relations (which may be obtained after a straightforward tensor

algebra, see e.g. Reference 17):

(	s · s) (s · �s)T"[(	s)�[ss�]�s]T

(	s · �s) s�T"[(	s)�I�s]s�T

(	s · �s)T"[(	s)�I�s]T
(109)

(	s · s) (s · �s)s�T"[(	s)�[ss�]�s]s�T

(s · �s)	s�T"[(	s)�A�s]E
	
#[(	s)�B�s]E

�

(s · 	s)�s�T"[(	s)�A��s]E
	
#[(	s)�B��s]E

�

equation (101) expressing the second derivative of the director field motion may be rewritten as

� (	t)"�s� cos (�s� )!sin (�s� )

�s��
(![(	s)�[ss�]�s]T#[(	s)�I�s] s�T )

!sin (�s� )

�s�
[(	s)�I�s]T

#sin (�s�) (3!�s��)!3�s� cos (�s� )

�s��
[(	s)�[ss�]�s] s�T

#�s� cos (�s� )!sin (�s� )

�s��
(E

	
[ (	s)�[A#A�]�s]#E

�
[(	s)�[B#B�]�s]) (110)

Further insight into the constituents to the above equation may be accomplished by resolving

vectors 	s, �s and s in the local orthonormal basis �E
�
� (see Section 2.3.2). It then follows that

	s"	sL �E
�
"�

	sL 	
	sL �� , �s"�sL �E

�
"�

�sL 	
�sL �� , ss�"sL �sL �E

�
E�

�
"	

sL 	sL 	
sL 	sL �

sL 	sL �
sL �sL �
 (111)

while matrices A and B may be expressed as

A"	
0

sL 	
0

sL �
 , B"	
!sL 	

0

!sL �
0 
 (112)



By multiplying � (	t) with any vector b3�� the following expression may be obtained:

� (	t) · b"�
	sL 	
	sL ��

�
Y�

�sL 	
�sL �� (113)

where the matrix Y is given as

Y"�s� cos (�s� )!sin (�s�)

�s�� �!	
sL 	sL 	
sL 	sL �

sL 	sL �
sL �sL �
 T · b#	

1

0

0

1
 (s�T ) · b�
!sin (�s� )

�s� 	
1

0

0

1
 T · b

#sin (�s� ) (3!�s��)!3�s� cos (�s� )

�s�� 	
sL 	sL 	
sL 	sL �

sL 	sL �
sL �sL �
 (s�T ) · b (114)

#�s� cos (�s�)!sin (�s� )

�s�� �	
0

sL 	
sL 	
2sL �
 E

	 · b!	
2sL 	
sL �

sL �
0 
 E

� · b�
Note that the vector s, which can be resolved in the fixed basis �e

	
, e

�
, e

�
� as s"s�e

�
, may be

alternatively obtained as (see (22) and (23))

⎧
⎪
⎨
⎪
⎩

s	

s�

s�

⎫
⎪
⎬
⎪
⎭

"
�


		
�


	�
�


�	
�


��
�


�	
�


��

�
sL 	
sL ��"[E

	
, E

�
] �

sL 	
sL �� (115)
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