100,168 research outputs found

    Observing Success in the Pi-Calculus

    Get PDF
    A contextual semantics - defined in terms of successful termination and may- and should-convergence - is analyzed in the synchronous pi-calculus with replication and a constant Stop to denote success. The contextual ordering is analyzed, some nontrivial process equivalences are proved, and proof tools for showing contextual equivalences are provided. Among them are a context lemma and new notions of sound applicative similarities for may- and should-convergence. A further result is that contextual equivalence in the pi-calculus with Stop conservatively extends barbed testing equivalence in the (Stop-free) pi-calculus and thus results on contextual equivalence can be transferred to the (Stop-free) pi-calculus with barbed testing equivalence

    On the Two-Point Correlation Function for the Uq[SU(2)]U_q[SU(2)] Invariant Spin One-Half Heisenberg Chain at Roots of Unity

    Full text link
    Using Uq[SU(2)]U_q[SU(2)] tensor calculus we compute the two-point scalar operators (TPSO), their averages on the ground-state give the two-point correlation functions. The TPSOs are identified as elements of the Temperley-Lieb algebra and a recurrence relation is given for them. We have not tempted to derive the analytic expressions for the correlation functions in the general case but got some partial results. For q=eiπ/3q=e^{i \pi/3}, all correlation functions are (trivially) zero, for q=eiπ/4q=e^{i \pi/4}, they are related in the continuum to the correlation functions of left-handed and right-handed Majorana fields in the half plane coupled by the boundary condition. In the case q=eiπ/6q=e^{i \pi/6}, one gets the correlation functions of Mittag's and Stephen's parafermions for the three-state Potts model. A diagrammatic approach to compute correlation functions is also presented.Comment: 19 pages, LaTeX, BONN-HE-93-3

    Composing security protocols: from confidentiality to privacy

    Get PDF
    Security protocols are used in many of our daily-life applications, and our privacy largely depends on their design. Formal verification techniques have proved their usefulness to analyse these protocols, but they become so complex that modular techniques have to be developed. We propose several results to safely compose security protocols. We consider arbitrary primitives modeled using an equational theory, and a rich process algebra close to the applied pi calculus. Relying on these composition results, we derive some security properties on a protocol from the security analysis performed on each of its sub-protocols individually. We consider parallel composition and the case of key-exchange protocols. Our results apply to deal with confidentiality but also privacy-type properties (e.g. anonymity) expressed using a notion of equivalence. We illustrate the usefulness of our composition results on protocols from the 3G phone application and electronic passport

    A criterion for separating process calculi

    Get PDF
    We introduce a new criterion, replacement freeness, to discern the relative expressiveness of process calculi. Intuitively, a calculus is strongly replacement free if replacing, within an enclosing context, a process that cannot perform any visible action by an arbitrary process never inhibits the capability of the resulting process to perform a visible action. We prove that there exists no compositional and interaction sensitive encoding of a not strongly replacement free calculus into any strongly replacement free one. We then define a weaker version of replacement freeness, by only considering replacement of closed processes, and prove that, if we additionally require the encoding to preserve name independence, it is not even possible to encode a non replacement free calculus into a weakly replacement free one. As a consequence of our encodability results, we get that many calculi equipped with priority are not replacement free and hence are not encodable into mainstream calculi like CCS and pi-calculus, that instead are strongly replacement free. We also prove that variants of pi-calculus with match among names, pattern matching or polyadic synchronization are only weakly replacement free, hence they are separated both from process calculi with priority and from mainstream calculi.Comment: In Proceedings EXPRESS'10, arXiv:1011.601

    Trees from Functions as Processes

    Get PDF
    Levy-Longo Trees and Bohm Trees are the best known tree structures on the {\lambda}-calculus. We give general conditions under which an encoding of the {\lambda}-calculus into the {\pi}-calculus is sound and complete with respect to such trees. We apply these conditions to various encodings of the call-by-name {\lambda}-calculus, showing how the two kinds of tree can be obtained by varying the behavioural equivalence adopted in the {\pi}-calculus and/or the encoding

    On the Distributability of Mobile Ambients

    Get PDF
    Modern society is dependent on distributed software systems and to verify them different modelling languages such as mobile ambients were developed. To analyse the quality of mobile ambients as a good foundational model for distributed computation, we analyse the level of synchronisation between distributed components that they can express. Therefore, we rely on earlier established synchronisation patterns. It turns out that mobile ambients are not fully distributed, because they can express enough synchronisation to express a synchronisation pattern called M. However, they can express strictly less synchronisation than the standard pi-calculus. For this reason, we can show that there is no good and distributability-preserving encoding from the standard pi-calculus into mobile ambients and also no such encoding from mobile ambients into the join-calculus, i.e., the expressive power of mobile ambients is in between these languages. Finally, we discuss how these results can be used to obtain a fully distributed variant of mobile ambients.Comment: In Proceedings EXPRESS/SOS 2018, arXiv:1808.08071. Conference version of arXiv:1808.0159
    • …
    corecore