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Modern society is dependent on distributed software systems and to verify them different modelling

languages such as mobile ambients were developed. To analyse the quality of mobile ambients

as a good foundational model for distributed computation, we analyse the level of synchronisation

between distributed components that they can express. Therefore, we rely on earlier established

synchronisation patterns. It turns out that mobile ambients are not fully distributed, because they can

express enough synchronisation to express a synchronisation pattern called M. However, they can

express strictly less synchronisation than the standard pi-calculus. For this reason, we can show that

there is no good and distributability-preserving encoding from the standard pi-calculus into mobile

ambients and also no such encoding from mobile ambients into the join-calculus, i.e., the expressive

power of mobile ambients is in between these languages. Finally, we discuss how these results can

be used to obtain a fully distributed variant of mobile ambients.

1 Introduction

Modern society is increasingly dependent on large-scale software systems that are distributed, collabo-

rative, and communication-centred. Most of the existing approaches that analyse the distributability of

concurrent systems use special formalisms often equipped with an explicit notion of location, e.g. [2]

in Petri nets or the distributed pi-calculus [14]. Other approaches implement locations implicitly, as e.g.

the parallel operator in the pi-calculus that combines different distributed components of a system. In the

latter case, we consider distributability and, thus, all possible explicitly-located variants of a calculus.

The pi-calculus [18] is a well-known and frequently used process calculus to model concurrent sys-

tems. Therein, intuitively, the degree of distributability corresponds to the number of parallel components

that can act independently. Practical experience, though, has shown that it is not possible to implement

every pi-calculus term—not even every asynchronous one—in an asynchronous setting while preserving

its degree of distributability. To overcome these problems e.g. the join-calculus [17] or the distributed

pi-calculus [14] were introduced as models of distributed computation.

To analyse the quality of an approach as a good foundational model for distributed computation,

we compare the expressiveness of different such models w.r.t. to their power to express synchronisa-

tion between distributed components. Such synchronisations make the implementation of terms in an

asynchronous setting difficult and, thus, indicate languages that are not suitable to describe distributed

computation. In particular, we try to identify hidden sources of synchronisation, i.e., synchronisation

that was not intended with the design of the calculus.

Distributability and Synchronisation Patterns. To analyse the degree of distribution in process cal-

culi and to compare different calculi by their power to express synchronisation, [22, 20] defines a criterion

for the preservation of distributability in encodings and introduces synchronisation patterns to describe

minimal forms of synchronisation. Process calculi are then separated by their power to express such

synchronisation patterns and, thus, by the kinds of synchronisation that they contain. Therefore, we

show that no good and distributability-preserving encoding can exist from a calculus with enough syn-

chronisation to express some synchronisation pattern into a calculus that cannot express this pattern. In
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Figure 1: A fully reachable pure M in Petri nets (a), the M as state in a transition system (b), and the

synchronisation pattern ⋆ in Petri nets (c).

this sense, synchronisation patterns have two purposes: (1) First, they describe some particular form or

level of synchronisation in an abstract and model-independent way. Thereby, they help to spot forms of

synchronisation—in particular, forms of synchronisation that were not intended with the design of the

respective calculus. (2) Second, they allow to separate calculi along their ability to express the respective

pattern and the respective level of synchronisation.

In [22], two synchronisation patterns, the pattern M and the pattern ⋆, are highlighted. An M, as

visualised in Figure 1 (a), describes a Petri net that consists of two parallel transitions (a and c) and one

transition (b) that is in conflict with both of the former. In other words, it describes a situation where

either two parts of the net can proceed independently or they synchronise to perform a single transition

together. [11, 12] states that a Petri net specification can be implemented in an asynchronous, fully

distributed setting iff it does not contain a fully reachable pure M. Accordingly, they denote such Petri

nets as distributable. They also present a description of a fully reachable pure M as conditions on a

state PM in a step transition system, as visualized in Figure 1 (b), which allows us to directly use this

pattern to reason about process calculi. Note that a, b, and c in Figure 1 (b) are not labels. They serve

just to distinguish different steps. Moreover, x ‖ y refer to the parallel execution of x and y, given a step

semantics. Hence, a process calculus is distributable iff it does not contain a non-local M. A ⋆ is a

chain of conflicting and distributable steps as they occur in an M that build a circle of odd length. The

Figure 1 (c) nicely illustrates this circle of M. There is e.g. one M consisting of the transitions a, b,

and c with their corresponding two places. Another M is build by the transitions b, c, and d with their

corresponding two places and so on.

These patterns are then used to locate various π-like calculi within a hierarchy with respect to the

level of synchronisation that can be expressed in these languages. More precisely, [22] shows that (1) the

join-calculus is distributed, because it does not contain either of the two synchronisation patterns, (2) the

asynchronous pi-calculus and its extension with separate choice can express the pattern M but no pattern

⋆, whereas the standard pi-calculus with mixed choice contains M’s and ⋆’s.

Mobile Ambients. In the current paper, we use the technique derived in [22] to analyse the degree of

distribution in mobile ambients. Mobile ambients were introduced in [4, 5]. Similar to the join-calculus,

mobile ambients were designed as a calculus for distributed systems. But, in contrast to the join-calcu-

lus, they do contain the pattern M, as we show in the following. Accordingly, mobile ambients are not

fully distributed and their implementation in a fully distributed setting is difficult. Fortunately, the little

amount of synchronisation that is contained in mobile ambients is not enough to express the ⋆. Thus,

mobile ambients are less synchronous than, e.g., the standard pi-calculus. Moreover, the nature of the



106 Distributability of Mobile Ambients

pattern M that we find in mobile ambients tells us what kind of features lead to synchronisation in mobile

ambients. More precisely, we show that synchronisation in mobile ambients results from the so-called

open-actions and the fact that different ambients may share the same name. This observation allows us

to discuss ways to obtain a variant of mobile ambients that is free of hidden synchronisations and can,

thus, be implemented easily in a distributed setting.

Overview. Section 2 introduces process calculi (§ 2.1), mobile ambients (§ 2.2), encodings (§ 2.3), and

synchronisation patterns together with some results of [22] (§ 2.4) that are necessary for this paper. In

Section 3, we show that mobile ambients can express enough synchronisation to contain pattern M and

that this implies that there is no good and distributability-preserving encoding from mobile ambients

into the join-calculus. Section 4 analyses the nature of conflicts in mobile ambients that limits the forms

of synchronisation they can express. It is shown that mobile ambients do not contain ⋆-patterns; this

separates them from the standard pi-calculus. The observations on the nature of synchronisation in

mobile ambients is then used in Section 5 to discuss ways to obtain a distributed variant of mobile

ambients. We conclude with Section 6. The missing proofs can be found in [21].

2 Technical Preliminaries

We start with some general observations on process calculi and the relevant notions that we need for the

comparison of process calculi as described in [22]. Then we describe the calculus of mobile ambients

as introduced in [4, 5] and “good” encodings as defined in [13]. Finally, we shortly revise the results of

[22] that are relevant for our analysis of mobile ambients.

2.1 Process Calculi

A process calculus is a language L = 〈 P, 7−→ 〉 that consists of a set of process terms P (its syntax)

and a relation 7−→ : P ×P on process terms (its reduction semantics). We often refer to process terms

also simply as processes or as terms and use upper case letters P,Q,R, . . . ,P′,P1, . . . to range over them.

Assume a countably-infinite set N , whose elements are called names. We use lower case letters

a,b,c, . . . ,a′,a1, . . . to range over names. Let τ /∈ N . The syntax of a process calculus is usually defined

by a context-free grammar defining operators, i.e., functions op : N n ×Pm → P . An operator of arity

0, i.e., m = 0, is a constant. The arguments that are again process terms are called subterms of P.

Definition 2.1 (Subterms). Let 〈 P, 7−→ 〉 be a process calculus and P ∈P . The set of subterms of P =
op(x1, . . . ,xn,P1, . . . ,Pm) is defined recursively as {P}∪{P′ | ∃i ∈ {1, . . . ,m} . P′ is a subterm of Pi}.

With Definition 2.1, every term is a subterm of itself and constants have no further subterms. We add the

special constant X to each process calculus. Its purpose is to denote success (or successful termination)

which allows us to compare the abstract behaviour of terms in different process calculi as described in

Section 2.3. Therefore, we require that each language defines a predicate P↓X that holds if the term P is

successful (or has terminated successfully). Usually, this predicate holds if P contains an occurrence of

X that is unguarded (see mobile ambients below).

A scope defines an area in which a particular name is known and can be used. For several reasons, it

can be useful to restrict the scope of a name. For instance to forbid interaction between two processes or

with an unknown and, hence, potentially untrusted environment. Names whose scope is restricted such

that they cannot be used beyond their scope are called bound names. The remaining names are called free

names. As ususal, we define three sets of names occurring in a process term: the set n(P) of all of P’s
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names, and its subsets fn(P) of free names and bn(P) of bound names. In the case of bound names, their

syntactical representation as lower case letters serves as a place holder for any fresh name, i.e., any name

that does not occur elsewhere in the term. To avoid confusion between free and bound names or different

bound names, bound names can be replaced with fresh names by α-conversion. We write P ≡α Q if P

and Q differ only by α-conversion.

We assume that the semantics is given as an operational semantics consisting of inference rules

defined on the operators of the language [24]. For many process calculi, the semantics is provided in two

forms, as reduction semantics and as labelled transition semantics. We assume that at least the reduction

semantics 7−→ is given as part of the definition, because its treatment is easier in the context of encodings.

A single application of the reduction semantics is called a (reduction) step and is written as P 7−→ P′.

If P 7−→ P′, then P′ is called derivative of P. Let P 7−→ (or P 67−→) denote the existence (absence) of

a step from P, and let Z=⇒ denote the reflexive and transitive closure of 7−→. A sequence of reduction

steps is called a reduction. We write P 7−→ω if P has an infinite sequence of steps and call P convergent

if ¬(P 7−→ω). We also use execution to refer to a reduction starting from a particular term. A maximal

execution of a process P is a reduction starting from P that cannot be further extended, i.e., that is either

infinite or of the form P Z=⇒ P′ 67−→.

We extend the predicate P↓X to reachability of success. A term P ∈ P reaches success, written as

P⇓X, if it reaches a derivative that is successful, i.e., P⇓X, ∃P′. P Z=⇒ P′∧P′ ↓X. We write P⇓X!, if P

reaches success in every finite maximal execution.

To reason about environments of terms, we use functions on process terms called contexts. More

precisely, a context C ([·]1, . . . , [·]n) : Pn → P with n holes is a function from n terms into a term, i.e.,

given P1, . . . ,Pn ∈ P , the term C (P1, . . . ,Pn) is the result of inserting P1, . . . ,Pn in the corresponding

order into the n holes of C .

We assume the calculi πm for the standard pi-calculus (with mixed choice) as defined in [18] and its

subcalculi the pi-calculus with only separate choice (πs), i.e., there all parts of the same choice construct

are either all guarded by an input or all guarded by an output prefix, and the asynchronous pi-calculus

(πa) as introduced in [3, 15]. Moreover, we assume the join-calculus (J) as introduced in [8].

Definition 2.2 (Syntax, [22]). The sets of process terms are given by

Pm ::= P1 | P2 | X | (νn)P | !P | ∑i∈I πi.Pi

π ::= y〈z〉 | y(x) | τ

Ps ::= P1 | P2 | X | (νn)P | !P | ∑i∈I πO
i .Pi | ∑i∈I π I

i .Pi

πO ::= y〈z〉 | τ and π I ::= y(x) | τ

Pa ::= 0 | P1 | P2 | X | (νn)P | !P | y〈z〉 | y(x) .P | τ .P

PJ ::= 0 | P1 | P2 | X | y〈z〉 | defD inP

J ::= y(x) | J1 | J2 and D ::= J ⊲P | D1 ∧D2

for some names n,x,y,z ∈ N and a finite index set I.

In all languages the empty process is denoted by 0 and P1 | P2 defines parallel composition. Within

the pi-calculi restriction (νn)P restricts the scope of the name n to the definition of P and !P denotes

replication. The process term ∑i∈I πi.Pi represents finite guarded choice; as usual, the sum ∑i∈{1,...,n} πi.Pi

is sometimes written as π1.P1+ . . .+πn.Pn and 0 abbreviates the empty sum, i.e., where I = /0. The input

prefix y(x) is used to describe the ability of receiving the value x over link y and, analogously, the output

prefix y〈z〉 describes the ability to send a value z over link y. The prefix τ describes the ability to perform

an internal, not observable action. The choice operators of πm and πs require that all branches of a choice

are guarded by one of these prefixes. We omit the match prefix, because it does not influence the results.
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In PJ the operator y〈z〉 describes an output prefix similar to Pa. A definition def D inP defines a

new receiver on fresh names, where D consists of one or several elementary definitions J ⊲P connected

by ∧, J potentially joins several reception patterns y(x) connected by |, and P is a process. Note that

def D inP unifies the concepts of restriction, input prefix, and replication of the pi-calculus.

As usual, the continuation 0 is often omitted, so e.g. y(x).0 becomes y(x). In addition, for simplicity

in the presentation of examples, we sometimes omit an action’s object when it does not effectively

contribute to the behaviour of a term, e.g. y(x) .0 is written as y.0 or just y, and def y(x) ⊲ 0iny〈z〉 is

abbreviated as def y⊲0iny. Moreover, let (ν x̃)P abbreviate the term (νx1) . . . (νxn)P.

The definitions of free and bound names are completely standard, i.e., names are bound by restriction

and as parameter of input and n(P) = fn(P)∪bn(P) for all P. In the join-calculus the definition def D inP

binds for all elementary definitions Ji ⊲Pi in D and all join pattern yi, j (xi, j) in Ji the received variables

xi, j in the corresponding Pi and the defined variables yi, j in P.

To compare process terms, process calculi usually come with different well-studied equivalence re-

lations (see [10] for an overview). A special kind of equivalence with great importance to reason about

processes are congruences, i.e., the closure of an equivalence with respect to contexts. Process calculi

usually come with a special congruence ≡ ⊆ P ×P called structural congruence. Its main purpose

is to equate syntactically different process terms that model quasi-identical behaviour. For the above

variants of the pi-calculus we have:

P ≡ Q if P ≡α Q P | 0≡ P P | Q ≡ Q | P P | (Q | R)≡ (P | Q) | R !P ≡ P |!P
(νn)0≡ 0 (νn) (νm)P ≡ (νm)(νn)P P | (νn)Q ≡ (νn) (P | Q) if n /∈ fn(P)

The entanglement of input prefix and restriction within the definition operator of the join-calculus limits

the flexibility of relations defined by sets of equivalence equations. Instead structural congruence is

given by an extension of the chemical approach in [1] by the heating and cooling rules. They operate on

so-called solutions R ⊢ M , where R and M are multisets. We have (1) ⊢ P | Q ⇋ ⊢ P,Q, (2) D∧E ⊢
⇋ D,E ⊢, and (3) ⊢ def D inP ⇋ σdv(D) ⊢ σdv(P), where only elements—separated by commas—that

participate in the rule are mentioned and σdv instantiates the defined variables in D to distinct fresh

names. Then P ≡ Q if P and Q differ only by applications of the ⇋-rules, i.e., if ⊢ P ⇋ ⊢ Q.

The semantics of the above variants of the pi-calculus is given by the axioms

(. . .+ τ .P+ . . .) 7−→ P (. . .+ y(x) .P+ . . .) | (. . .+ y〈z〉 .Q+ . . .) 7−→ { z/x}P | Q

for πm and πs, the axioms τ .P 7−→ P and y(x) .P | y〈z〉 7−→ { z/x}P for πa, and the three rules

P 7−→ P′

P | Q 7−→ P′ | Q

P 7−→ P′

(νn)P 7−→ (νn)P′

P ≡ Q Q 7−→ Q′ Q′ ≡ P′

P 7−→ P′

that hold for all three variants πm, πs, and πa. The operational semantics of J is given by the heating and

cooling rules (see structural congruence) and the reduction rule J ⊲P ⊢ σrv(J) 7−→ J ⊲P ⊢ σrv(P), where

σrv substitutes the transmitted names for the distinct received variables.

Recursion or replication distinguishes itself from other operators by the fact that (one of) its subterms

can be copied within rules of structural congruence in the pi-calculus or by reduction rules in the join-

calculus while the operator itself is usually never removed during reductions. We call such operators and

capabilities recurrent. We denote the parts of a term that are removed in reduction steps as capabilities.

2.2 Mobile Ambients

Mobile ambients (MA) were introduced in [4, 5] as a process calculus for distributed systems with mobile

computations. They define ambients as bounded places on that computations may happen and that can be

moved (with their computations). Their syntax is defined in two stages: the first stage describes ambient

processes and the nesting of ambients; the second stage describes the movements of ambients.
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Definition 2.3 (Syntax, [5]). The set of ambient processes PMA is given as

PMA ::= 0 | P1 | P2 | X | (νn)P | !P | n[P ] | M.P
M ::= inn | outn | openn

for some names n ∈ N .

The empty process is denoted by 0 and P1 | P2 define parallel composition. Restriction (νn)P restricts

the scope of the name n to the definition of P. Replication !P provides potentially infinitely many copies

of P. The n[P ] describes an ambient n in which the process P is located. Ambients may exhibit a tree

structure induced by the nesting of ambient brackets. The term M.P defines the exercise of capability M,

which could be either “inn” to enter ambient n, or “outn” to exit from ambient n, or “openn” to open

ambient n. As usual, the continuation 0 is often omitted. Moreover, we often abbreviate n[0 ] by n[ ] and

let (ν x̃)P abbreviate the term (νx1) . . . (νxn)P.

Restriction is the only binder of mobile ambients, i.e., the names are bound by restriction and all

names of a process that are not bound by restriction are free. The “.” in M.P denotes sequential compo-

sition, where the M guards the subterm P. A subterm of a process is unguarded if it is not hidden behind

a guard. As usual, P↓X if P contains an unguarded occurrence of success.

For mobile ambients, [5] define structural congruence as the least congruence that satisfies the rules

of ≡ defined above and additionally the rules !0≡ 0 and (νn) (m[P ])≡ m[ (νn)P ] if n 6= m.

The reduction semantics of mobile ambients in [5] consists of the axioms

n[ inm.P | Q ] | m[R ] 7−→ m[n[P | Q ] | R ]

m[n[outm.P | Q ] | R ] 7−→ n[P | Q ] | m[R ] openn.P | n[Q ] 7−→ P | Q

and the rules:

P 7−→ P′

(νn)P 7−→ (νn)P′

P 7−→ P′

n[P ] 7−→ n[P′ ]

P 7−→ P′

P | R 7−→ P′ | R

P ≡ Q Q 7−→ Q′ Q′ ≡ P′

P 7−→ P′

The first axiom moves an ambient n with all its content (except for the consumed inm-capability)

into a sibling ambient with name m, where it is composed in parallel to the content of m. The second

axiom allows an ambient n with all its content (except for the consumed outm-capability) to exit its

parent ambient m. As result ambient n is placed in parallel to m. The third axiom dissolves the boundary

of an ambient named n that is located at the same level as the open-capability. The next three rules

propagate reduction across scopes, ambient nesting, and parallel composition. By the last rule reductions

are defined modulo structural congruence.

Note that [5] explicitly states, that the same name can be used to name different ambients, i.e.,

ambients with separate identities. Moreover, if there are several ambients with the same name at the

same hierarchical level all in and open-capabilities that affect an ambient with this name can chose

freely (non-deterministically) between the alternatives.

Following [22], we denote the operator !P for replication as recurrent, because (in contrast to the

other operators) it is itself never removed during reductions. Similarly, we denote an ambient that is not

opened or moved in a step as recurrent for this step and, otherwise, as non-recurrent w.r.t. this step. To

distinguish between different occurrences of syntactically the same subterm in a term, we assume that

all capabilities of processes in the following are implicitly labelled as described in [22].

2.3 Encodings and Quality Criteria

Let LS = 〈 PS, 7−→S 〉 and LT = 〈 PT, 7−→T 〉 be two process calculi, denoted as source and target

language. An encoding from LS into LT is a function J · K : PS → PT. We often use S,S′,S1, . . . to
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range over PS and T,T ′,T1, . . . to range over PT. Encodings often translate single source term steps

into a sequence or pomset of target term steps. We call such a sequence or pomset an emulation of the

corresponding source term step.

To analyse the quality of encodings and to rule out trivial or meaningless encodings, they are aug-

mented with a set of quality criteria. In order to provide a general framework, Gorla in [13] suggests

five criteria well suited for language comparison. They are divided into two structural and three seman-

tic criteria. The structural criteria include (1) compositionality and (2) name invariance. The semantic

criteria include (3) operational correspondence, (4) divergence reflection, and (5) success sensitiveness.

It turns out that we do not need the second criterion to derive the separation results of this paper. Thus,

we omit it. Note that a behavioural equivalence ≍ on the target language is assumed for the definition

of name invariance and operational correspondence. Moreover, let ϕ : N → N k be a renaming policy,

i.e., a mapping from a name to a vector of names that can be used by encodings to reserve special names,

such that no two different names are translated into overlapping vectors of names.

Intuitively, an encoding is compositional if the translation of an operator is the same for all occur-

rences of that operator in a term. Hence, the translation of that operator can be captured by a context that

is allowed in [13] to be parametrised on the free names of the respective source term.

Definition 2.4 (Compositionality, [13]). The encoding J · K is compositional if, for every operator op :

N n ×Pm
S → PS of LS and for every subset of names N, there exists a context C N

op([·]1, . . . , [·]n+m) :

N n×Pm
S →PT such that, for all x1, . . . ,xn ∈N and all S1, . . . ,Sm ∈PS with fn(S1)∪ . . .∪ fn(Sm) =N,

it holds that J op(x1, . . . ,xn,S1, . . . ,Sm) K = C N
op(ϕ(x1) , . . . ,ϕ(xn) ,J S1 K , . . . ,J Sm K).

The first semantic criterion is operational correspondence. It consists of a soundness and a complete-

ness condition. Completeness requires that every computation of a source term can be emulated by its

translation. Soundness requires that every computation of a target term corresponds to some computation

of the corresponding source term.

Definition 2.5 (Operational Correspondence, [13]). The encoding J · K satisfies operational correspon-

dence if it satisfies:

Completeness: For all S Z=⇒S S′, it holds J S K Z=⇒T≍ J S′ K.

Soundness: For all J S K Z=⇒T T , there exists an S′ such that S Z=⇒S S′ and T Z=⇒T≍ J S′ K.

The definition of operational correspondence relies on the equivalence ≍ to get rid of junk possibly

left over within computations of target terms. Sometimes, we refer to the completeness criterion of

operational correspondence as operational completeness and, accordingly, for the soundness criterion as

operational soundness.

The next criterion concerns the role of infinite computations in encodings.

Definition 2.6 (Divergence Reflection, [13]). The encoding J · K reflects divergence if, for every source

term S, J S K 7−→ω
T implies S 7−→ω

S .

The last criterion links the behaviour of source terms to the behaviour of their encodings. With

Gorla [13], we assume a success operator X as part of the syntax of both the source and the target

language. Since Xcannot be further reduced and n(X)= fn(X)= bn(X)= /0, the semantics and structural

congruence of a process calculus are not affected by this additional constant operator. We choose may-

testing to test for the reachability of success, i.e., P⇓X, ∃P′. P Z=⇒ P′∧P′ ↓X. However, this choice is

not crucial. An encoding preserves the abstract behaviour of the source term if it and its encoding answer

the tests for success in exactly the same way.

Definition 2.7 (Success Sensitiveness, [13]). The encoding J · K is success-sensitive if, for every source

term S, S⇓X iff J S K⇓X.



K. Peters & U. Nestmann 111

This criterion only links the behaviours of source terms and their literal translations, but not of their

derivatives. To do so, Gorla relates success sensitiveness and operational correspondence by requiring

that the equivalence on the target language never relates two processes with different success behaviours.

Definition 2.8 (Success Respecting, [13]). ≍ is success respecting if, for every P and Q with P⇓X and

Q 6⇓X, it holds that P 6≍ Q.

By [13] a “good” equivalence ≍ is often defined in the form of a barbed equivalence (as described e.g.

in [19]) or can be derived directly from the reduction semantics and is often a congruence, at least with

respect to parallel composition. For the separation results presented in this paper, we require only that ≍
is a success respecting reduction bisimulation.

Definition 2.9 ((Weak) Reduction Bisimulation). The equivalence ≍ is a (weak) reduction bisimulation

if, for every T1,T2 ∈ PT such that T1 ≍ T2, for all T1 Z=⇒T T ′
1 there exists a T ′

2 such that T2 Z=⇒T T ′
2 and

T ′
1 ≍ T ′

2.

Note that the best known encoding from the asynchronous pi-calculus into the join-calculus in [8] is

not compositional, but consists of an inner, compositional encoding surrounded by a fixed context—the

implementation of so-called firewalls—that is parametrised on the free names of the source term. In order

to capture this and similar encodings and as done in [22] we relax the definition of compositionality in

our notion of a good encoding.

Definition 2.10 (Good Encoding). We consider an encoding J · K to be good if it is (1) either com-

positional or consists of an inner, compositional encoding surrounded by a fixed context that can be

parametrised on the free names of the source term, (2) satisfies operational correspondence, (3) reflects

divergence, and (4) is success-sensitive. Moreover we require that the equivalence ≍ is a success re-

specting (weak) reduction bisimulation.

In this case a good encoding respects also the ability to reach success in all finite maximal executions.

Lemma 2.11 ([23]). For all success respecting reduction bisimulations ≍ and all convergent target terms

T1,T2 such that T1 ≍ T2, it holds T1⇓X! iff T2⇓X!.

Then success sensitiveness preserves the ability to reach success in all finite maximal executions.

Lemma 2.12 ([23]). For all operationally sound, divergence reflecting, and success-sensitive encodings

J · K with respect to some success respecting equivalence ≍ and for all convergent source terms S, if S⇓X!

then J S K⇓X!.

2.4 Distributability and Synchronisation Pattern

Intuitively, a distribution of a process means the extraction (or: separation) of its (sequential) components

and their association to different locations. However, not all process calculi in the literature—as e.g. the

standard pi-calculus in [18]—consider locations explicitly. For the calculi without an explicit notion

of location [22] defines a general notion of distributability that focuses on the possible division of a

process term into components. Accordingly, a process P is distributable into P1, . . . ,Pn, if we find some

distribution that extracts P1, . . . ,Pn from within P onto different locations.

Definition 2.13 (Distributability, [22]). Let 〈 P, 7−→ 〉 be a process calculus, ≡ be its structural congru-

ence, and P ∈ P . P is distributable into P1, . . . ,Pn ∈ P if there exists P′ ≡ P such that

1. for all 1 ≤ i ≤ n, Pi contains at least one capability or constant different from 0 and Pi is an

unguarded subterm of P′ or, in case ≡ is given by a chemical approach, ⊢ P′ ⇋ R ⊢ Pi,M for

some multisets R,M ,
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2. in P1, . . . ,Pn there are no two occurrences of the same capability, i.e., no label occurs twice, and

3. each guarded subterm and each constant (different from 0) of P′ is a subterm of at least one of the

terms P1, . . . ,Pn.

The degree of distributability of P is the maximal number of distributable subterms of P.

Accordingly, a pi-term P is distributable into P1, . . . ,Pn if P ≡ (ν ã)(P1 | . . . | Pn). The PJ-term def a ⊲
0in (def b ⊲ c〈a〉 in (a | b)) is distributable into def a ⊲0ina and def b ⊲c〈a〉 inb, but e.g. also into def a ⊲
0in0, def b ⊲c〈a〉 in0, a, and b, because ⊢ def a ⊲0in (def b ⊲ c〈a〉 in (a | b))⇋ def a in0,def b inc〈a〉 ⊢
a | b ⇋ def a in0,def b inc〈a〉 ⊢ a,b ⇋ ⊢ def a ⊲0in0,def b ⊲ c〈a〉 in0,a,b.

Mobile ambients come with an explicit notion of locations: ambients. A term of PMA is distributable

into pairwise intersected subsets of its outermost ambients. Applying the Definition 2.13 results into

exactly these distributable components. Because of the rule !P ≡ P |!P, the replication of an ambient,

e.g. by !(n[P ]) or !((νn)n[P ]), is a distributable recurrent operation.

Preservation of distributability means that the target term is at least as distributable as the source term.

Definition 2.14 (Preservation of Distributability, [22]). An encoding J · K : PS → PT preserves dis-

tributability if for every S ∈ PS and for all terms S1, . . . ,Sn ∈PS that are distributable within S there are

some T1, . . . ,Tn ∈ PT that are distributable within J S K such that Ti ≍ J Si K for all 1 ≤ i ≤ n.

In essence, this requirement is a distributability-enhanced adaptation of operational completeness. It

respects both the intuition on distribution as separation on different locations—an encoded source term is

at least as distributable as the source term itself—as well as the intuition on distribution as independence

of processes and their executions—implemented by Ti ≍ J Si K.

If a single process—of an arbitrary process calculus—can perform two different steps, i.e., steps

on capabilities with different labels, then we call these steps alternative to each other. Two alternative

steps can either be in conflict or not; in the latter case, it is possible to perform both of them in parallel,

according to some assumed step semantics.

Definition 2.15 (Distributable Steps, [22]). Let 〈 P, 7−→ 〉 be a process calculus and P ∈ P a process.

Two alternative steps of P are in conflict, if performing one step disables the other step, i.e., if both reduce

the same not recurrent capability. Otherwise they are parallel. Two parallel steps of P are distributable,

if each recurrent capability reduced by both steps is distributable, else the steps are local.

Remember that the “same” means “with the same label”, i.e., in (openn | n[P1 ] | n[P2 ]) the two steps that

open one of the ambients n are in conflict but (openn | n[P1 ] | openn | n[P2 ]) can perform two parallel

steps—using different open -capabilities and ambients—to open both ambients n.

Next we define parallel and distributable sequences of steps.

Definition 2.16 (Distributable Executions, [22]). Let 〈 P, 7−→ 〉 be a process calculus, P ∈ P , and let

A and B denote two executions of P. A and B are in conflict, if a step of A and a step of B are in conflict,

else A and B are parallel. Two parallel sequences of steps A and B are distributable, if each pair of a step

of A and a step of B is distributable.

Two executions of a term P are distributable iff P is distributable into two subterms such that each per-

forms one of these executions. Hence, an operationally complete encoding is distributability-preserving

only if it preserves the distributability of sequences of source term steps.

Lemma 2.17 (Distributability-Preservation, [22]). An operationally complete encoding J · K : PS →PT

that preserves distributability also preserves distributability of executions, i.e., for all source terms S ∈
PS and all sets of pairwise distributable executions of S, there exists an emulation of each execution in

this set such that all these emulations are pairwise distributable in J S K.
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As described in the introduction, we consider a process calculus is distributable iff it does not contain

a non-local M.

Definition 2.18 (Synchronisation Pattern M, [22]). Let 〈 P, 7−→ 〉 be a process calculus and PM ∈ P

such that:

1. PM can perform at least three alternative steps a: PM 7−→ Pa, b: PM 7−→ Pb, and c : PM 7−→ Pc such

that Pa, Pb, and Pc are pairwise different.

2. The steps a and c are parallel in PM.

3. But b is in conflict with both a and c.

In this case, we denote the process PM as M. If the steps a and c are distributable in PM, then we call the

M non-local. Otherwise, the M is called local.

As shown in [22], all M in the join-calculus (J) are local but the asynchronous pi-calculus (πa)

contains the non-local M: y〈u〉 | y(x) .P1 | y〈v〉 | y(x) .P2 with P1,P2 ∈ Pa, where the steps a, b, and

c are the reduction of the first out- and input, the first input and the second output, and the second

out- and input, respectively. Because of that, there is no good and distributability-preserving encoding

from πa into J. To further distinguish different variants of the pi-calculus, [22] introduces a second

synchronisation pattern called ⋆. Interestingly, it reflects a well-known standard problem in the area of

distributed systems, namely the problem of the dining philosophers [7].

Definition 2.19 (Synchronisation Pattern ⋆, [22]). Let 〈 P, 7−→ 〉 be a process calculus and P⋆ ∈P such

that:

1. P⋆ can perform at least five alternative reduction steps i : P⋆ 7−→ Pi for i ∈ {a,b,c,d,e} such that

the Pi are pairwise different.

2. The steps a, b, c, d, and e form a circle such that a is in conflict with b, b is in conflict with c, c is

in conflict with d, d is in conflict with e, and e is in conflict with a. Finally,

3. every pair of steps in {a,b,c,d,e} that is not in conflict due to the previous condition is parallel in

P⋆.

In this case, we denote the process P⋆ as ⋆. The synchronisation pattern ⋆ is visualised by the Petri net

in Figure 1 (c). If all pairs of parallel steps in {a,b,c,d,e} are distributable in P⋆, then we call the ⋆
non-local. Otherwise, it is called local.

Note that we need at least four steps in this cycle, to have two steps that are distributable, and a cycle

of odd degree to distinguish different variants of the pi-calculus. Accordingly, the ⋆ is the smallest

structure with these requirements. To see the connection with the dining philosophers problem, consider

the places in Figure 1 (c) as the chopsticks of the philosophers, i.e., as resources, and the transitions

as eating operations, i.e., as steps consuming resources. Each step needs mutually exclusive access to

two resources and each resource is shared among two subprocesses. If both resources are allocated

simultaneously, eventually exactly two steps are performed.

[22] then shows that the asynchronous pi-calculus (πa) and also the pi-calculus with separate choice

(πs) do not contain the pattern ⋆, whereas the standard pi-calculus (πm) with mixed choice has ⋆.

Example 2.20 (Non-Local ⋆ in πm). Consider a term S⋆m
(

S⋆1, . . . ,S
⋆
5

)

∈ Pm such that

S⋆m(S
⋆
1, . . . ,S

⋆
5) = a+b.S⋆1 | b+ c.S⋆2 | c+d.S⋆3 | d + e.S⋆4 | e+a.S⋆5

for some S⋆1, . . . ,S
⋆
5 ∈ {0,X}. Then, S⋆m

(

S⋆1, . . . ,S
⋆
5

)

can perform the steps a, . . . , e, where the step

i ∈ {a, . . . ,e} is a communication on channel i. By Definition 2.19, S⋆m
(

S⋆1, . . . ,S
⋆
5

)

is a non-local ⋆.

Actually, the above term S⋆m
(

S⋆1, . . . ,S
⋆
5

)

is a ⋆ in CCS with mixed choice, because for this counterex-

ample the communication of values was not relevant. Adding (unused) values to the communication

prefixes is straight forward. By using the ⋆-pattern S⋆m
(

S⋆1, . . . ,S
⋆
5

)

as counterexample, [22, 23] shows

that there is no good and distributability-preserving encoding from πm into πs (or πa).
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3 Mobile Ambients are not Distributable

Similar to the join-calculus, mobile ambients were designed in order to be distributed (or distributable),

where ambients were introduced as an explicit representation of locations. But in opposite to the join-

calculus there are non-local M in mobile ambients, i.e., some form of synchronisation between ambients.

Example 3.1 (Non-Local M in Mobile Ambients.). Consider the PMA-term

PM

MA = (openn1 | n1[P1 ]) | (n1[ inn2.P2 ] | n2[P3 ])

with P1,P2,P3 ∈ PMA. PM

MA can perform modulo structural congruence the steps

• a: PM

MA 7−→ P1 | (n1[ inn2.P2 ] | n2[P3 ])

• b: PM

MA 7−→ n1[P1 ] | inn2.P2 | n2[P3 ]

• c: PM

MA 7−→ (openn1 | n1[P1 ]) | (n2[n1[P2 ] | P3 ])

Here, the steps a and b compete for the non-recurrent open-capability. The steps b and c compete for the

right ambient n1 that is non-recurrent in both steps. Hence, both of these pairs of steps are in conflict,

while the pair of steps a and c is distributable. Thus PM

MA is a non-local M.

Similar to the proof, that there is no good and distributability-preserving encoding from πa into J, we

use this PM

MA as a counterexample to show that there is no good and distributability-preserving encoding

from MA into J. Therefore, we instantiate the processes P1, P2, and P3 such that the conflicting step b can

be distinguished by success from the distributable steps a and c. We choose P1 = n3[ ], P2 = inn3.X, and

P3 = openn1, such that PM

MA reaches success iff the steps a and c are performed.

Example 3.2 (Counterexample). The non-local M

SMMA = (openn1 | n1[n3[ ] ]) | (n1[ inn2.inn3.X] | n2[openn1 ])

reaches success iff SMMA performs both of the distributable steps a and c, where

• a: SMMA 7−→ Sa with Sa = n3[ ] | (n1[ inn2.inn3.X] | n2[openn1 ]) and Sa⇓X!,

• b: SMMA 7−→ Sb with Sb = n1[n3[ ] ] | inn2.inn3.X | n2[openn1 ] and Sb 6⇓X, and

• c: SMMA 7−→ Sc with Sc = (openn1 | n1[n3[ ] ]) | n2[n1[ inn3.X] | openn1 ] and Sc⇓X!.

Any good encoding that preserves distributability has to translate SMMA such that the emulations of the

steps a and c are again distributable. However, the encoding can translate these two steps into sequences

of steps, which allows to emulate the conflicts with the emulation of b by two different distributable

steps. We show that every distributability-preserving encoding has to distribute b and, afterwards, that

this distribution of b violates the criteria of a good encoding.

Lemma 3.3. Every encoding J · K : PMA → PJ that is good and distributability-preserving has to split

up the conflict in SMMA of b with a and c such that there exists a maximal execution in
q
SMMA

y
in which a

is emulated but not c, and vice versa.

In [22] we show a similar result for all encodings from πa into J (Lemma 4 in [22]) using a counterex-

ample E1. Since the counterexample SMMA in MA is in its properties very similar to the counterexample

E1 of [22], the proof of Lemma 3.3 is exactly the same as the proof of Lemma 4 in [22] as presented in

[23]. The main idea of this proof is as follows: Any good encoding that preserves distributability has to

translate SMMA such that the emulations of the steps a and c are again distributable. Moreover any good
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encoding has to translate the conflicts between a and b as well as between b and c into conflicts between

the respective emulations. This either leads to a non-local M again or it results into an emulation of b

with at least two steps such that the conflicts with the emulation of b are emulated by two different steps.

Next we show that this distribution of the conflict violates the criteria of a good encoding with respect to

the considered source language, i.e., w.r.t. our counterexample SMMA and an adaptation of this example.

Also the proof that there is no good and distributability-preserving encoding from MA into J is very

similar to the proof for the non-existence of such an encoding from πa into J in [22, 23].

Theorem 3.4. There is no good and distributability-preserving encoding from MA into J.

Proof. Assume the opposite. Then there is a good and distributability-preserving encoding of SMMA. By

the proof of Lemma 3.3, there is a maximal execution of
q
SMMA

y
in that a but not c is emulated or vice

versa. Since Sa ⇓X! and Sc ⇓X! and because of success sensitiveness, the corresponding emulation leads

to success. So there is an execution such that the emulation of a leads to success without the emulation

of c or vice versa. Let us assume that a but not c is emulated. The other case is similar.

For encodings with respect to the relaxed definition of compositionality in Definition 2.10, there

exists a context C
[·]1 ,[·]2
: (PJ)

2 → PJ—the combination of the surrounding context and the context intro-

duced by compositionality (Definition 2.4)—such that
q
SMMA

y
= C (J S1 K ,J S2 K), where S1,S2 ∈ PMA

with S1 = openn1 | n1[n3[ ] ] and S2 = n1[ inn2.inn3.X] | n2[openn1 ]. Let S′2 = n1[outn2.inn3.X] |
n2[openn1 ]. Since fn(S2) = fn(S′2), also S1 | S′2 has to be translated by the same context, i.e., J S1 | S′2 K=
C (J S1 K ,J S′2 K). SMMA and S1 | S′2 differ only by a capability necessary for step c, but step a and b are

still possible. We conclude, that if C (J S1 K ,J S2 K) reaches some Ta⇓X! without the emulation of c, then

C (J S1 K ,J S′2 K) reaches at least some state T ′
a such that T ′

a ⇓X. Hence, J S1 | S′2 K⇓X but (S1 | S′2) 6⇓X

which contradicts success sensitiveness.

Note that the only differences in the proof above and the proof for the the non-existence of a good and

distributability-preserving encoding from πa into J in [23] are the due to the different counterexample

and the corresponding choice of its adaptation with S′2.

4 Conflicts in Mobile Ambients

Both of the above-defined synchronisation patterns rely on the notion of conflict. In mobile ambients,

the same ambient can be considered as recurrent in one step, but non-recurrent in another step. This fact,

i.e., the existence of operators that are recurrent for some but non-recurrent for other steps, distinguishes

mobile ambients from all other calculi considered in [22] and generates a new notion of conflict.

Example 4.1 (Asymmetric Conflict). Consider the mobile ambient term:

P = n1[ inn2 ] | n2[ inn3 ] | n3[ ]

P can perform two alternative steps

• s1 : P 7−→ P1 with P1 = n2[n1[ ] | inn3 ] | n3[ ] and

• s2 : P 7−→ P2 with P2 = n1[ inn2 ] | n3[n2[ ] ]

that both use the ambient n2 (but no other operator is used in both steps). In s1, the ambient n2 is

a recurrent capability but in s2 the ambient n2 is moved and, thus, is non-recurrent. Accordingly, s2

disables s1, i.e., P2 67−→, but not vice versa, i.e., P1 can perform the step s2 such that P1 7−→ n3[n2[n1[ ] ] ].
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Accordingly, we denote a conflict as symmetric if the steps compete for an operator that is non-

recurrent in both, i.e., if both steps disable the respective other step, and otherwise as asymmetric. The

example above can be extended to a cyclic structure of odd degree. The term

a[ inb ] | b[ inc ] | c[ ind ] | d[ ine ] | e[ ina ]

even satisfies Definition 2.19, i.e., it describes a non-local ⋆, if we were to relax in the required conflicts

in Definition 2.19 by requiring only asymmetric conflicts. However, because of the asymmetric conflicts

within this structure, it can be encoded much more easily than a ⋆ with symmetric conflicts. This is also

reflected by the fact that in the proofs for the separation result between πm and πa in [22] we have to rely

on the mutually exclusive nature of the conflicts in the ⋆ of the counterexample S⋆m
(

S⋆1, . . . ,S
⋆
5

)

. Accord-

ingly, we cannot use an M or a ⋆ with asymmetric conflicts to derive separation results as done above.

Instead, we show that, despite of the ⋆ with asymmetric conflicts, mobile ambients can be separated from

πm by the synchronisation pattern ⋆, because they cannot express a ⋆ with symmetric conflicts.

It turns out that the symmetric conflict in the pattern M of the step b with a and c as given in Exam-

ple 3.1 can only be expressed with an open-action.

Lemma 4.2. Let P ∈ PMA be an M. Then one of the two conflicts is asymmetric or the step b reduces

an open-action.

Since the synchronisation pattern ⋆ consists of several cyclic overlapping M, all five steps of a ⋆
in mobile ambients have to reduce an open-capability or at least one of the conflicts is asymmetric.

However, five steps on open-capabilities cannot be combined in a cycle of odd degree. Thus, in all ⋆-like

structures there is at least one asymmetric conflict. But there are no ⋆ (without asymmetric conflicts) in

mobile ambients.

Lemma 4.3. For all ⋆-like structures P ∈ PMA one of the conflicts in P that exist according to Defini-

tion 2.19 is asymmetric.

A ⋆ with an asymmetric conflict cannot be extended to a ⋆ that can be used as counterexample

similarly to S⋆m
(

S⋆1, . . . ,S
⋆
5

)

in [22, 23]. The proof to separate πm from πs and πa in [22, 23] exploits

the fact that every maximal execution of ⋆ contains exactly two distributable steps of the five alternative

steps that form the ⋆. But, if we replace a conflict in the ⋆ by an asymmetric conflict, then three steps are

possible in one execution.

Lemma 4.4. All ⋆-like structures P ∈ PMA have an execution that executes three of the five alternative

steps that exist according to Definition 2.19.

Proof. By Lemma 4.3, all ⋆ in mobile ambients have an asymmetric conflict. Thus, whenever some

S⋆m([·]a, . . . , [·]e) : P5
MA → PMA is such that for all S⋆1, . . . ,S

⋆
5 ∈ {0,X} the term S⋆m

(

S⋆1, . . . ,S
⋆
5

)

is a ⋆
except for asymmetric conflicts, then there is a maximal execution of S⋆m

(

S⋆1, . . . ,S
⋆
5

)

that contains three

steps of the set {a, . . . ,e}: the two steps that are related by the asymmetric conflict (executing first the

step that is not in conflict to the other and then the one-sided conflicting step) and the step that is in

parallel to both of the former neighbouring steps.

To show that there is no good and distributability-preserving encoding from πm into MA we proceed

as in [22, 23]. First, we observe that every conflict in our counterexample S⋆m
(

S⋆1, . . . ,S
⋆
5

)

has to be

translated into conflicts of the respective emulations in mobile ambients.

Lemma 4.5. Any good and distributability-preserving encoding J · K : Pm → PMA has to translate the

conflicts in S⋆m
(

S⋆1, . . . ,S
⋆
5

)

into conflicts of the corresponding emulations.
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The proof of this Lemma is exactly the same as the proof for the corresponding Lemma for encodings

from πm into πs in [23] but using the lemmas above, because this proof relies on the encodability criteria

and the abstract notion of conflicts that is the same for πs and MA. Note that this proof assumes an

encoding that satisfies compositionality as defined in Definition 2.4, but, as already stated in [22], it also

holds in case of the relaxed version of compositionality that is used here. Then, similar to Lemma 3.3,

we show that each good encoding of the counterexample requires that a conflict has to be distributed.

Lemma 4.6. Any good and distributability-preserving encoding J · K : Pm →PMA has to split up at least

one of the conflicts in S⋆m
(

S⋆1, . . . ,S
⋆
5

)

(or in S⋆m([·]a, . . . , [·]e)) such that there exists a maximal execution

of J S⋆m([·]a, . . . , [·]e) K that emulates only one source term step, i.e., unguards exactly one of the five holes.

Again, the above proof is in its main idea similar to the respective proof of the corresponding result

for encodings from πm into πs in [23]. However, since that proof depends on the expressive power of the

considered target language to reason about the properties of the counterexample, we have to adapt it to

mobile ambients. Finally, we show again that this distribution of the conflict rules out the possibility of

a good and distributability-preserving encoding.

Theorem 4.7. There is no good and distributability-preserving encoding from πm into MA.

The proof of this Theorem very closely follows the proof of the corresponding Theorem for encod-

ings from πm into πs in [23]. It picks the maximal execution of the translation that unguards—according

to Lemma 4.6—only one hole [·]x by emulating only one step x of S⋆m
(

S⋆1, . . . ,S
⋆
5

)

. Then, we can choose

S⋆1, . . . ,S
⋆
5 ∈ {0,X} such that S⋆x = 0= S⋆y , where y is one of the two steps that is parallel to x, and S⋆z =X

for all other cases. Accordingly, for the result Sx of the step x : S⋆m
(

S⋆1, . . . ,S
⋆
5

)

7−→ Sx, we have Sx 6⇓X!,

by doing y next, but Sx ⇓X, because of success in the respective other step that can be executed after x.

However, the maximal execution of S⋆m([·]a, . . . , [·]e) that unguards only [·]x and emulates only x cannot

have the same behaviour w.r.t. success. After emulating x we reach a term that cannot offer the possibil-

ity to reach success (without the emulation of another source term step) as well as to deadlock without

reaching success. This violates our requirements on good encodings.

5 Distributing Mobile Ambients

Theorem 3.4 shows that mobile ambients are not as distributable as the join-calculus. Nonetheless, [9]

presents an encoding from MA into J in order to build a distributed implementation of mobile ambients in

Jocaml ([6]). Let us consider what this encoding does with our counterexample PM

MA for the non-existence

of a good and distributability-preserving encoding from MA into J. The encoding in [9] translates each

ambient into a single unique join definition. Then it splits in, out, and open-actions into respective

subactions that are controlled by the join definition that represents the parent ambient in the source.

Therefore, to perform the emulations of the distributed steps a and c of PM

MA, the respective parts of

the implementation first have to register their desire to do these steps with their parent join definition.

Unfortunately, as each join definition is a single location, these two steps interact with the same join

definition, so they cannot be considered as distributed. Accordingly, the encoding presented in [9] is not

distributability-preserving in our sense, because the emulations of a and c are synchronised.

Indeed, the authors of [9] already state that the explicit control of subactions by the translation of

the parent ambient introduces some form of synchronisation. However, they claim that the form of

synchronisation introduced by the presented encoding is less crucial than, e.g., a centralised solution. Our

results support the quality of their solution, by proving that no good and fully distributability-preserving

encoding from MA into J exists. So, a bit of synchronisation is indeed necessary. But, our results also
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suggest possible ways to circumvent the problems in the distribution of mobile ambients altogether by

proposing small alterations of the source calculus itself in order to prevent M-patterns from the outset.

By Lemma 4.2, all M in mobile ambients rely on a conflict with an open-action that addresses

two different ambients with the same name. A natural solution to circumvent this problem is to avoid

different ambients with the same name. By Lemma 4.2, mobile ambients with unique ambient names

cannot express the pattern M.

Corollary 5.1. There are no M in mobile ambients, where all ambient names are unique.

Without such an M as counterexample, our proof of Theorem 3.4 would no longer work. Instead, we

can show that there is then no good and distributability-preserving encoding from πa into MA, by using

the example of an M in πa of [22] as counterexample and following a similar proof strategy as for the

separation result between πa and J.

Claim 5.2. If mobile ambients forbid for ambients with the same name, then there is no good and

distributability-preserving encoding from πa into MA.

The proof of the above claim relies of the formalisation of the requirement that no two different

ambients have the same name in the definition of the calculus. More precisely, we need to adapt the

proof that every good and distributability-perserving encoding has to split up the conflict in the M of b

with a and c to the target language MA with unique ambient names. Since there are several different

ways to implement this requirement in the syntax of mobile ambients, we do not formally prove the

above claim here. However, we expect that this proof would exploit the same strategy as in [23] and

require only small adaptations due to the definition of the calculus.

Actually, the possibility to have different ambients with the same name was already identified as

problematic in the encoding of [9]. To circumvent this problem, the encoding introduces unique iden-

tifiers for all ambients and one of the reasons for the interaction with the respective translation of the

parent ambient to control the translations of ambient actions is that these translations of parent ambients

keep the knowledge about the unique identifiers of their children. Thus, forbidding different ambients

with the same name not only allows for completely distributed implementations of the calculus but also

significantly simplifies translations that follow the strategy of [9].

To obtain strategies to implement this requirement, we can have a look at other distributed calculi

with unique location names. The join-calculus ([8]) ensures the uniqueness of its locations by combining

input prefixes with restriction in join definitions. Thus, every join definition, i.e., location, introduces

its own name space. Interaction is limited to such restricted names with a clear and unique destina-

tion. The advantage is that the uniqueness of location names is ensured by definition; the disadvantage

is that some forms of interaction—e.g. a two-way handshake—are syntactically more difficult due to

these sharp restriction borders. The distributed pi-calculus ([14]) has a flat structure of locations and

ensures uniqueness by the structural congruence rule n[P ] | n[Q ] ≡ n[P | Q ] that unifies different parts

of a location. However, adding such a rule to mobile ambients requires a non-trivial adaptation of the

semantics, because the open, in, and out-actions would need to first collect all ambient parts that are

possibly dispersed over the term structure before they can proceed. Moreover, following this approach

would not completely rule out different ambients with the same name but only different such ambients

in the same parent ambient (or at top-level). This is, however, sufficient to ensure that there are no M.

6 Conclusions

We proved that there is no good and distributability-preserving encoding from mobile ambients (MA)

into the join-calculus (J) and neither from the standard pi-calculus with mixed choice (πm) into mobile
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Figure 2: Distributability in Pi-like Calculi.

ambients. Note that these results stay valid also for the extension of MA with communication prefixes

as described in [4, 5], because these communications are local steps that cannot be in conflict to steps

with in, out, or open-actions. Thus, all conflicts added by the extension with communication primitives

are local and not relevant for the preservation of distributability. Consequently, by extending the results

of [22], we place mobile ambients on the same level as the pi-calculus with separate choice (πs) and the

asynchronous pi-calculus (πa) above J and below πm. As visualized in Figure 2, mobile ambients contain

non-local M but cannot express a non-local ⋆ without asymmetric conflicts.

Asymmetric conflicts, as present in mobile ambients, constitute a variant of conflicts that turns out to

be not as crucial for distributed implementations as the standard symmetric conflicts that we usually find

in calculi. Nonetheless, the existence of non-local M make fully distributed implementations of mobile

ambients difficult—as already observed in [9]. However, since the reason for these difficulties is now

clearly captured in a simple synchronisation pattern, we can more easily derive strategies to adapt mobile

ambients to a distributed calculus without such problems.

Interestingly, the extension of mobile ambients into mobile safe ambients in [16] does not solve this

problem. The main idea of safe ambients is that actions require an explicit agreement on this action

by both participating ambients. Therefore, safe ambients augment the respective target ambient of an

action a with a matching complementary action a. This extension, however does neither change the

power to express the pattern M nor the asymmetric nature of conflicts with steps that do not rely on an

open-action. In fact, the PM

MA in mobile ambients, i.e., the pattern M, becomes

(openn1 | n1[openn1 | P1 ]) |
(

n1[openn1 | inn2.P2 ] | n2

[

inn1 | P3

])

in safe ambients. This term is again an M sharing the kind of steps and properties of PM

MA. Thus, we

obtain the same separation result as in Theorem 3.4 with safe ambients using the above counterexample.

Moreover, since safe ambients do also not contain ⋆, also Theorem 4.7 stays valid for safe ambients.

The most obvious way to obtain a fully distributed variant of mobile ambients is to ensure uniqueness

of ambient names. As a consequence, actions of mobile ambients have a clear and unique destination.

Note that, having clear and unique destinations for all actions that travel location borders is also crucial

for the distributability of other calculi such as the join-calculus or the distributed pi-calculus. Such unique

destinations significantly limit the possibility of conflicts and ensure that all remaining conflicts of the

language are local. As a consequence, distributed implementations of such languages do not need to

introduce synchronisations and, thus, do not change their semantics. Hence, keeping the destinations for

all actions that travel location borders unique, is a good strategy to build distributed calculi in general.
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