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Abstract
A contextual semantics – defined in terms of successful termination and may- and should-
convergence – is analyzed in the synchronous pi-calculus with replication and a constant Stop
to denote success. The contextual ordering is analyzed, some nontrivial process equivalences are
proved, and proof tools for showing contextual equivalences are provided. Among them are a con-
text lemma and new notions of sound applicative similarities for may- and should-convergence.
A further result is that contextual equivalence in the pi-calculus with Stop conservatively ex-
tends barbed testing equivalence in the (Stop-free) pi-calculus and thus results on contextual
equivalence can be transferred to the (Stop-free) pi-calculus with barbed testing equivalence.
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1 Introduction

The π-calculus [9, 8, 20] is a well-known model for concurrent processes with message
passing. Its minimalistic syntax includes parallel process-composition, named channels, and
input/output-capabilities on the channels. The data flow in the π-calculus is programmed
by communication between processes. There is a lot of research on several bisimulations
of π-processes (see e.g. [20, 10]). They equate processes if testing the processes (using
reduction) exhibits that they have the same input and output capabilities and that they
reach equivalent states. Bisimulations occur in strong variants, where bisimilar processes
must have an identical reduction behavior for every single reduction step, and there are weak
bisimulations, where the numbers of internal reduction need not coincide, but equivalent
states w.r.t. the reflexive-transitive closure of reduction must be reached.

While proving processes bisimilar is often easy and elegant, the bisimilarities (in weak and
strong variants) are very fine grained notions, and thus may not allow to equate processes
even if they can be seen as semantically equal. We are interested in coarser notions of process
equivalences as the semantic base and view bisimulations (provided that they are sound
w.r.t. the semantics) as very helpful proof tools for investigating the (contextual) semantics.

For program calculi based on the lambda-calculus the usual approach to program equival-
ence is Morris style-contextual equivalence [11, 15] which can be used in a uniform way for a
lot of those calculi. For deterministic languages, contextual equivalence is based on the notion
of a terminated (or successful) program and it equates programs, if the ability to terminate
(i.e. so-called may-convergence) is indistinguishable when exchanging one program by the
other in any surrounding program context. For non-deterministic languages this equivalence
is too coarse, but it can be strengthened by additionally observing whether the program
successfully terminates on all execution paths, i.e. whether the program must-converges,
or as a slightly different approach, whether the program should-converges, which holds, if
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32 Observing Success in the Pi-Calculus

the property of being may-convergent holds on all execution paths. In contrast to must-
convergence, should-convergence (see e.g. [12, 2, 16, 21]) has some kind of fairness built-in:
the predicate does not change even if instead of all reduction sequences only fair ones are
taken into account, where fair reduction sequences ensure that every reducible expression is
reduced after finitely many reduction steps.

In this paper we analyze contextual equivalence in the synchronous π-calculus with
replication and – for simplicity – without sums. Since the π-calculus has no notion of
successful termination, we use the same approach as e.g. [6, 13] and add a syntactic construct
(the constant Stop) which indicates successful termination. We call the extended calculus
ΠStop. We develop two proof tools for showing program equivalences: We prove that a context
lemma holds, which restricts the required class of contexts to show contextual equivalence.
We introduce notions of applicative similarities for the may- and the should-convergence.
There are soundness results on bisimilarities and barbed may- and should-testing for the
asynchronous π-calculus in [5], but to the best of our knowledge our notion of an applicative
similarity for should-convergence is new. We prove soundness of these similarities w.r.t. the
contextual preorders and thus they can be used for co-inductive proofs to show contextual
equivalence. Even though the test for may-convergence is subsumed by testing should-
convergence, our reasoning tools require also reasoning about may-convergence, and thus we
will consider both predicates. Equipped with these tools we show that process interaction
is correct, if it is deterministic, prove some further process equations, and investigate the
contextual ordering. We show that a contextually least element does not exist in ΠStop, but
a largest element exists – the constant Stop.

Our notion of contextual equivalence seems to be close to testing equivalences (see e.g. [3]
for CCS, [1] for a restricted variant of the π-calculus, [5] for the asynchronous π-calculus,
and [7] for the join-calculus), which are defined analogously to contextual equivalence, but
instead of observing successful termination, other observations are relevant. For barbed
testing equivalences [5] the capability of receiving (or emitting) a name on an (open) input
(or output) channel is observed (i.e. the process has an input or output barb). There is also
some work where testing is a combination of may- and must- or should-testing (which is
sometimes called fair must-testing, e.g. [5]). Roughly speaking, these predicates require an
input or output capability on every execution path. We prove a strong connection between
contextual equivalence and barbed may- and should-testing: On Stop-free processes, barbed
testing equivalence coincides with contextual equivalence. This connection enables us to
transfer several of our results to the classic π-calculus without Stop.

Outline. In Sect. 2 we introduce the synchronous π-calculus with Stop. The context lemma
and soundness of applicative similarity is proven in Sect. 3. We analyze the contextual
ordering and prove correctness of deterministic process interaction in Sect. 4. In Sect. 5
we analyze the connection between contextual equivalence in ΠStop and barbed testing
equivalence in the π-calculus without Stop and transfer our results obtained in ΠStop to the
Stop-free calculus. Finally, we conclude in Section 6.

2 The π-Calculus ΠStop with Stop

We consider the synchronous π-calculus ΠStop with replication and a constant Stop. For
simplicity, we neither include sums nor name matching. Let N be a countably infinite set of
names. Processes ProcStop and action prefixes π are defined as follows, where x, y ∈ N :

P,Q,R ∈ ProcStop ::= π.P | P1 |||P2 | !P | 0 | νx.P | Stop π ::= x(y) | xy
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P1 |||P2 is the parallel composition of processes P1 and P2. A process x(y).P has the capability
to receive some name z along the channel x and then behaves like P [z/y] where [z/y] is the
capture free substitution of y by z. A process xy.P can send the name y along the channel x
and thereafter it behaves like P . 0 is the silent process and Stop is the successful process. A
restriction νz.P restricts the scope of the name z to process P . The replication !P represents
arbitrary many parallel copies of process P . The constructs νx.P and y(x).P bind the name
x with scope P which induces a notion of α-renaming and α-equivalence =α as usual. We
use fn(P ) for the set of free names of P and adopt the distinct name convention, and assume
that free names are distinct from bound names and bound names are pairwise distinct. We
also use name substitutions σ : N → N . With Σ we denote the set of all name substitutions.

In the remainder of the paper, we use several binary relations on processes. Given a
relation R ⊆ (ProcStop × ProcStop), we write R−1 for the relation {(Q,P ) | (P,Q) ∈ R} and
Rσ is defined as: (P,Q) ∈ Rσ iff (σ(P ), σ(Q)) ∈ R for all σ ∈ Σ.

A context C ∈ CStop is a process with a hole [·]. Replacing the hole of C by process P is
written as C[P ]. Structural congruence ≡ is the smallest congruence satisfying the axioms:

P ≡Q, if P =α Q

P1 ||| (P2 |||P3)≡ (P1 |||P2) |||P3
νz.(P1 |||P2)≡P1 ||| νz.P2, if z 6∈ fn(P1)

P ||| 0≡P
P |||Q≡Q |||P
νz.0≡0

νx.Stop≡Stop
νz.νw.P ≡ νw.νz.P

!P ≡P ||| !P

Processes x(y).0 and xy.0 are abbreviated as x(y) and xy. Instead of νx1.νx2. . . . .νxn.P

we write νx1, . . . , xn.P , or also νX .P if the concrete names x1, . . . , xn and the number
n ≥ 0 are not of interest. We also use set-notation for X and e.g. write xi ∈ X with its
obvious meaning. With choice(P,Q) we abbreviate the internal choice of two processes
choice(P,Q) := νx, y.(x(y1).P |||x(y2).Q |||xy) (where x, y, y1, y2 6∈ fn(P |||Q)).

The main reduction rule of Stop expresses a synchronous communication between two
process, i.e. the reduction rule x(y).P |||xv.Q ia−→ P [v/y] |||Q performs interaction between
two processes. The standard reduction of Stop is the closure of the rule ia−→ w.r.t. structural
congruence and reduction contexts. We prefer to use reduction contexts instead of closing
reduction by congruence rules for the reduction as done e.g. in [20]. However, this leads
to the same notion of a standard reduction. Note that there are also approaches [19] to
make even the structural transformations of ≡ more deterministic (by using reduction rules),
however, for our goals in this paper this does not seem to be helpful.

I Definition 2.1. Reduction contexts D are D ∈ D ::= [·] | D |||P | P |||D | νx.D. A standard
reduction sr−→ applies an ia−→-reduction in a reduction context (modulo structural congruence):

P ≡ D[P ′], P ′ ia−→ Q′, D[Q′] ≡ Q, and D ∈ D
P

sr−→ Q

The redex of an sr−→-reduction is the subprocess x(y).P |||xv.Q which is replaced by P [v/y] |||Q.
We define sr,∗−−→ :=

⋃
i≥0

sr,i−−→ and sr,+−−−→ :=
⋃
i>0

sr,i−−→ where for P,Q ∈ ProcStop: P
sr,0−−→ P

and P sr,i−−→ Q if there exists P ′ ∈ ProcStop s.t. P sr−→ P ′ and P ′ sr,i−1−−−−→ Q.

We define contextual equivalence by observing whether a process may- or should become
successful, i.e. may-observation means that the process can be reduced to a successful process,
and should-observation means that the process never looses the ability to become successful.

I Definition 2.2. A process P is successful (denoted by stop(P )) if P ≡ Stop |||P ′ for
some process P ′. May-convergence ↓ is defined as P↓ iff ∃P ′ : P sr,∗−−→ P ′ ∧ stop(P ′) and
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34 Observing Success in the Pi-Calculus

should-convergence ⇓ is defined as: P⇓ iff ∀P ′ : P sr,∗−−→ P ′ =⇒ P ′↓. We write P↑ (P is
may-divergent) iff P⇓ does not hold, and P⇑ (P is must-divergent) iff P↓ does not hold.

For ξ ∈ {↓,⇓, ↑,⇑}, the preservation preorders ≤ξ are defined as P ≤ξ Q iff Pξ =⇒ Qξ.
Contextual preorder ≤c is defined as ≤c := ≤c,↓ ∩ ≤c,⇓ where for ξ ∈ {↓,⇓, ↑,⇑}: P ≤c,ξ Q
iff ∀C ∈ CStop : C[P ] ≤ξ C[Q]. Contextual equivalence ∼c is defined as ∼c := ≤c ∩ ≥c.

For ξ ∈ {↓,⇓, ↑,⇑} we write ≥c,ξ for (≤c,ξ)−1 and ∼c,ξ for the intersection ≤c,ξ ∩ ≥c,ξ.

Note that P↑ is equivalent to ∃P ′ : P sr,∗−−→ P ′ ∧ P ′⇑ and note also that for any successful
process P , any contractum P ′ is also successful, i.e. stop(P ) ∧ P sr,∗−−→ P ′ =⇒ stop(P ′).

Since reduction includes transforming processes using structural congruence, structural
congruent processes are contextually equivalent:

I Proposition 2.3. If P ≡ Q, then for ξ ∈ {↓,⇓, ↑,⇑}: P ≤ξ Q, P ≤c,ξ Q, Q ≤ξ P ,
Q ≤c,ξ P and thus in particular P ∼c Q.

Some easier properties are:

I Lemma 2.4. 1. If P sr−→ Q then νx.P sr−→ νx.Q.
2. If νx.P sr−→ Q then P sr−→ Q′ such that either Q ≡ νx.Q′ or Q ≡ Q′.
3. For ξ ∈ {↓,⇓, ↑,⇑}: P ≤ξ νx.P and νx.P ≤ξ P .

3 Proof Methods for Contextual Equivalence

For disproving an equation P ∼c Q, it suffices to find a distinguishing context. Proving
an equation P ∼c Q is in general harder, since all contexts must be considered. Hence, we
develop proof tools supporting those proofs. In Sect. 3.1 we show that a context lemma
holds, which restricts the set of contexts that need to be taken into account for proving
P ∼c Q. In contrast to the co-inductive proofs given in [14, 20] for a context lemma for
barbed congruence in the π-calculus, our context lemma is proved inductively and also for
should-convergence. In Sect. 3.2 we show soundness of applicative similarities which permit
co-inductive proofs by analyzing the input or output possibilities on open channels of P and
Q. The applicative similarities are related to the “weak early bisimilarities” in the π-calculus,
but there are some differences which are discussed after the definitions.

3.1 A Context Lemma for May- and Should-Convergence
As a preparation we show two extension lemmas for ≤↓ and ≤↑ w.r.t. contexts of hole depth
1, which are the contexts [·] |||R, R ||| [·], x(y).[·], xy.[·], νx.[·], and ! [·]. To ease reading the
proofs are given in the appendix.

I Lemma 3.1. Let P,Q ∈ ProcStop. If σ(P ) |||R ≤↓ σ(Q) |||R for all σ ∈ Σ and R ∈ ProcStop,
then σ(C[P ]) |||R ≤↓ σ(C[Q]) |||R for all C ∈ CStop of hole depth 1, all σ ∈ Σ and R ∈ ProcStop.

I Lemma 3.2. Let P,Q ∈ ProcStop. Assume that σ(C[Q]) |||R ≤↓ σ(C[P ]) |||R for all σ ∈ Σ,
all C ∈ CStop, and all R ∈ ProcStop. If σ(P ) |||R ≤↑ σ(Q) |||R for all σ ∈ Σ and R ∈ ProcStop,
then σ(C[P ]) |||R ≤↑ σ(C[Q]) |||R for all C ∈ CStop of hole depth 1, all σ ∈ Σ and R ∈ ProcStop.

I Theorem 3.3 (Context Lemma). For all processes P,Q:
If for all σ,R: σ(P ) |||R ≤↓ σ(Q) |||R, then P ≤c,↓ Q.
If for all σ,R: σ(P ) |||R ≤↓ σ(Q) |||R ∧ σ(P ) |||R ≤⇓ σ(Q) |||R, then P ≤c Q.
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Proof. For the first part it suffices to show that σ(C[P ]) |||R ≤↓ σ(C[Q]) |||R for all C ∈ CStop,
σ ∈ Σ, and R ∈ ProcStop, which follows from Lemma 3.1 by induction on the depth of the
hole of the context C. For the second part we use the fact that σ(P ) |||R ≤↓ σ(Q) |||R for all
σ,R implies σ(C[P ]) |||R ≤↓ σ(C[Q]) |||R for all σ,R,C. By induction on the depth of the hole
of the context C, the fact that σ(P ) |||R ≤⇓ σ(Q) |||R is equivalent to σ(Q) |||R ≤↑ σ(P ) |||R,
and by Lemma 3.2 it follows σ(C[Q]) |||R ≤↑ σ(C[P ]) |||R for all C, σ and thus P ≤c,⇓ Q. J

I Remark. The condition for all σ,R: σ(P ) |||R ≤⇓ σ(Q) |||R is in general not sufficient for
P ≤c,⇓ Q. Let P := νx.xy |||x(y).Stop |||x(y) and Q := 0. Then σ(P ) |||R ≤⇓ σ(Q) |||R for all
σ and R, but P 6≤c,⇓ Q, since the context ! [·] distinguishes P and Q: !P⇓ while !Q⇑.

3.2 Applicative Similarities
We first provide co-inductive definitions of ≤↓ and ≤↑, which will ease some of our proofs:

I Definition 3.4. We define the operators F↓ and F↑ on binary relation on processes:
For η ⊆ (ProcStop × ProcStop), P F↓(η) Q holds iff
1. If P is successful (i.e. stop(P )), then Q↓.
2. If P sr−→ P ′, then there exists Q′ such that Q sr,∗−−→ Q′ and P ′ η Q′.
For η ⊆ (ProcStop × ProcStop), P F↑(η) Q holds iff
1. If P⇑, then Q↑.
2. If P sr−→ P ′, then there exists Q′ such that Q sr,∗−−→ Q′ and P ′ η Q′.

The relation -↓ (-↑, resp.) is the greatest fixpoint of the operator F↓ (F↑, resp.).

For an operator F on binary relations, a relation η is F -dense, iff η ⊆ F (η). The
co-induction principle is that an F -dense relation η is contained in the greatest fixpoint of F .

Since≤↓ is F↓-dense and ≤↑ is F↑-dense, the following lemma holds.

I Lemma 3.5. ≤↓ = -↓ and ≤↑ = -↑.

Before defining “applicative similarities” for may- and should-convergence, we define the
property of a relation to preserve the input and output capabilities of one process w.r.t. another
process. This definition is analogous to preserving actions in labeled bisimilarities. We prefer
this definition here, since we can omit the definition of a labeled transition system.

I Definition 3.6. For processes P,Q ∈ ProcStop and a binary relation η ⊆ (ProcStop ×
ProcStop), we say η preserves the input/output capabilities of P w.r.t. Q iff:

Open input: If P ≡ νX .(x(y).P1 |||P2) with x 6∈ X , then for every name z ∈ N there
exists a process Q′ ∈ ProcStop s.t. Q sr,∗−−→ Q′, Q′ ≡ νY.(x(y).Q1 |||Q2) with x 6∈ Y, and
(νX .(P1[z/y] |||P2)) η (νY.(Q1[z/y] |||Q2)).
Open output: If P ≡ νX .(xy.P1 |||P2) with x, y 6∈ X , then there exists a process Q′
s.t. Q sr,∗−−→ Q′, Q′ ≡ νY.(xy.Q1 |||Q2) with x, y 6∈ Y , and (νX .(P1 |||P2)) η (νY.(Q1 |||Q2)).
Bound output: If P ≡ νX , νy.(xy.P1 |||P2) with x 6∈ X , then there exists Q′ s.t. Q sr,∗−−→ Q′,
Q′ ≡ νY, νy.(xy.Q1 |||Q2) with x 6∈ Y, and (νX .(P1 |||P2)) η (νY.(Q1 |||Q2)).

I Definition 3.7 ((Full) Applicative Similarities). We define the operators Fb,↓ and Fb,↑ on
binary relations on processes, where applicative ↓-similarity -b,↓ is the greatest fixpoint of
Fb,↓ and applicative ↑-similarity -b,↑ is the greatest fixpoint of the operator Fb,↑.

For η ⊆ (ProcStop × ProcStop), P Fb,↓(η) Q holds iff
1. If P is successful (i.e. stop(P )), then Q↓.
2. If P sr−→ P ′, then ∃Q′ with Q sr,∗−−→ Q′ and P ′ η Q′.
3. If P is not successful, then η preserves the input/output capabilities of P w.r.t. Q.

WPTE’15
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For η ⊆ (ProcStop × ProcStop), P Fb,↑(η) Q holds iff
1. If P⇑, then Q↑.
2. If P sr−→ P ′, then ∃Q′ with Q sr,∗−−→ Q′ and P ′ η Q′.
3. If ¬P⇑, then η preserves the input/output capabilities of P w.r.t. Q.
4. Q -b,↓ P .

Full applicative ↓-similarity -σb,↓ and full applicative ↑-similarity -σb,↑ are defined as
P -σb,↓ Q (P -σb,↑ Q, resp.) iff σ(P ) -b,↓ σ(Q) (σ(P ) -b,↑ σ(Q), resp.) for all σ ∈ Σ. Full
applicative similarity -b is defined as the intersection -b := -σb,↓ ∩ (-σb,↑)−1. Mutual full
⇓-applicative similarity 'b,⇓ is the intersection -σb,↑ ∩(-σb,↑)−1 and mutual full applicative
similarity 'b is the intersection 'b := -b ∩ (-b)−1.

We discuss our definitions of applicative similarity. We first consider -b,↓. Its defin-
ition is related to early labeled bisimilarity for the π-calculus [20], but adapted to the
successfulness-test. However, there is a difference whether a similarity or a bisimilarity
is used. Applicative ↓-bisimilarity would be defined as the largest relation R such that
R and R−1 are Fb,↓-dense. The relation -b,↓ ∩ (-b,↓)−1 is much coarser than applicative
↓-bisimilarity. For instance, the processes Pa,bc := choice(a(u1), choice(b(u2), c(u3))) and
Pab,c := choice(choice(a(u1), b(u2)), c(u3)) are not applicative ↓-bisimilar, since after re-
ducing Pa,bc

sr−→ P0 ≡ νx, y.(x(y1).a(u1) ||| choice(b(u2), c(u3))) there is no process P1 with
Pab,c

sr,∗−−→ P1 s.t. P0 and P ′ are applicative ↓-bisimilar. However, Pa,bc -b,↓ Pab,c and
Pab,c -b,↓ Pa,bc. The following example (adapted from an example in [20]) shows that even
-b,↓ is more discriminating than contextual may preorder:

I Proposition 3.8. Let Sxy := x(z).yz and Syx := y(z).xz. For P := ax ||| !Sxy ||| !Syx and
Q := ay ||| !Sxy ||| !Syx, it holds: ¬(P -b,↓ Q) (and thus also ¬(P -σb,↓ Q)), but P ≤c,↓ Q.

Proof. P -b,↓ Q does not hold, since the output on channel a is different. P ≤c,↓ Q is
proved in the appendix in Lemma A.1. J

The definition of applicative ↑-similarity includes the property Q -b,↓ P , i.e.:

I Proposition 3.9. P -b,↑ Q =⇒ Q -b,↓ P .

Thus – like the discussion before on bisimilarity – this requirement makes the relation -b,↑
very fine-grained: the processes Pa,bc and Pab,c are not applicative ↑-similar, although the
processes are contextually equivalent. The reason for our choice of this definition is that we
did not find a coarser ↑-similarity which is sound for contextual should-preorder. Properties
that must hold for such a definition are that it preserves may-divergence w.r.t. Stop, i.e. ↑,
but also (due to Theorem 5.5, see below) that it preserves the may-divergence w.r.t. barbs.
The second condition holds for -b,↑, since we added Q -b,↓ P in Definition 3.7. Obviously,
-b,↓ preserves may-convergence and -b,↑ preserves may-divergence:

I Lemma 3.10. -b,↓ ⊆ -↓ and -b,↑ ⊆ -↑.

We now show soundness of our applicative similarities.

I Proposition 3.11. For all P,Q,R ∈ ProcStop and all X , the following implications hold:
1. (P -b,↓ Q) =⇒ νX .(P |||R) -↓ νX .(Q |||R).
2. (P -b,↑ Q) =⇒ νX .(P |||R) -↑ νX .(Q |||R).
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Proof. The relation -↓ ∪ {(νX .(P |||R), νX .(Q |||R)) | P -b,↓ Q, for any X , R} is F↓-dense
(proved in the appendix, Lemma A.2) and thus the first part holds. The second part holds,
since the relation -↑ ∪ {(νX .(P |||R), νX .(Q |||R)) | P -b,↑ Q, for any X , R} is F↑-dense,
which is proved in the appendix, Lemma A.3. J

I Theorem 3.12 (Soundness of Full Applicative Similarities). The following inclusions hold:
1. -σb,↓ ⊆ ≤c,↓,
2. -b ⊆ ≤c, and
3. 'b,⇓ = 'b ⊆ ∼c.

Proof. For the first part Proposition 3.11 part (1) shows that σ(P ) -b,↓ σ(Q) implies
σ(P ) |||R -↓ σ(Q) |||R for all σ,R. Thus, P -σb,↓ Q implies σ′(P ) |||R -↓ σ′(Q) |||R for all
σ′, R. Since -↓ = ≤↓ (Lemma 3.5) the context lemma (Theorem 3.3) shows P ≤c,↓ Q.

For the second part we apply both parts of Proposition 3.11 which shows that P -σb,↓ Q
and Q -σb,↑ P imply that σ′(P ) |||R -↓ σ′(Q) |||R and σ′(Q) |||R -↑ σ′(P ) |||R for all σ′, R.
Since -↓ = ≤↓ and -↑ = ≥⇓ (Lemma 3.5), Theorem 3.3 shows P ≤c Q.

The equation of the last part follows from Proposition 3.9. The inclusion of the last part
follows from the second part and the definitions of 'b and ∼c. J

4 Equivalences and the Contextual Ordering

In this section we analyze the contextual ordering and also show some contextual equivalences.

4.1 Correctness of Deterministic Interaction
We demonstrate our developed techniques for an exemplary program optimization and apply
Theorem 3.12 to show correctness of a restricted variant of the ia-reduction that ensures
determinism. Moreover, the result can be used to show a completeness result w.r.t. the tests
in the context lemma (Corollary 4.3).

I Theorem 4.1 (Correctness of Deterministic Interaction). For all processes P,Q the equation
νx.(x(y).P |||xz.Q)) ∼c νx.(P [z/y] |||Q) holds.

Proof. We use Theorem 3.12 and show that νx.(x(y).P |||xz.Q)) 'b,⇓ νx.(P [z/y] |||Q).
Let S := {(σ(νx.(x(y).P |||xz.Q)), σ(νx.(P [z/y] |||Q))) | for all x, y, z, P,Q, σ} ∪ ≡. We

show that S and S−1 are Fb,↓-dense and Fb,↑-dense.
Let (R1, R2) = (σ(νx.(x(y).P |||xz.Q)), σ(νx.(P [z/y] |||Q))). Then (R1, R2) ∈ Fb,↓(S):

1. R1 is not successful, so there is nothing to show.
2. If R1

sr−→ R′1, then R′1 ≡ R2 and (R2, R2) ∈ S.
3. R1 does not have an open input or output, thus there is nothing to show.
Also (R2, R1) ∈ Fb,↓(S−1):
1. If R2 is successful, then R1↓, since R1

sr−→ R2.
2. If R2

sr−→ R′2, then R1
sr,2−−→ R′2 and (R′2, R′2) ∈ S−1.

3. If R2 has an open input or output, then R1
sr−→ R2 and the condition of Fb,↓ can be

fulfilled.
Thus S and S−1 are Fb,↓-dense, and thus R1 -b,↓ R2 and R2 -b,↓ R1 for any (R1, R2) ∈ S.

Now we show that (R1, R2) ∈ Fb,↑(S):
1. If R1⇑ then R2⇑, since R1

sr−→ R2.
2. If R1

sr−→ R′1, then R′1 ≡ R2 (since there is only one reduction possibility for R1) and
(R′1, R′1) ∈ S.
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3. R1 does not have an open input or output, thus there is nothing to show.
4. R2 -b,↓ R1 is already proved.
Finally, also (R2, R1) ∈ Fb,↑(S−1):
1. If R2⇑ then clearly R1↑.
2. If R2

sr−→ R′2, then R1
sr,2−−→ R′2 and (R′2, R′2) ∈ S−1.

3. If R2 has an open input or output, then R1
sr−→ R2 and the condition of Fb,↑ can be

fulfilled.
4. R1 -b,↓ R2 is already proved.

Thus S and S−1 are Fb,↑-dense and R1 -b,↑ R2 and R2 -b,↑ R1 for all (R1, R2) ∈ S and
thus Theorem 3.12 shows the claim. J

Contextual preorder does not change, if we additionally consider all name substitutions:

I Lemma 4.2. For ξ ∈ {↓,⇓}: P ≤c,ξ Q iff ∀C ∈ CStop, σ ∈ Σ: C[σ(P )] ≤ξ C[σ(Q)].

Proof. “⇐” is trivial. For “⇒” we define for σ = {x1 7→ y1, . . . , xn 7→ yn} the context
Cσ := νW.(w1(x1).w2(x2). . . . .wn(xn).[·] |||w1y1 ||| . . . |||wnyn) where W = {w1, . . . , wn} and
W ∩ (fn(P ) ∪ fn(Q)) = ∅. The reductions Cσ[P ] ia,∗−−→ σ(P ) and Cσ[Q] ia,∗−−→ σ(Q) are
valid, where all ia-steps are deterministic and thus by Theorem 4.1 Cσ[P ] ∼c σ(P ) and
Cσ[Q] ∼c σ(Q). Now let P ≤c,ξ Q and let C, σ s.t. C[σ(P )]ξ. Since σ(P ) ∼c Cσ[P ] also
C[Cσ(P )]ξ which in turn implies C[Cσ(Q)]ξ. Since Cσ[Q] ∼c σ(Q), this shows C[σ(Q)]ξ.
Since C, σ were chosen arbitrarily, C[σ(P )] ≤ξ C[σ(Q)] holds for all C ∈ CStop and σ ∈ Σ. J

Thus, the tests of the context lemma (Theorem 3.3) are complete w.r.t. ≤c:

I Corollary 4.3. For all P,Q ∈ ProcStop:
P ≤c,↓ Q iff for all σ ∈ Σ, R ∈ ProcStop: σ(P ) |||R ≤↓ σ(Q) |||R.
P ≤c Q iff for all σ ∈ Σ, R ∈ ProcStop, ξ ∈ {↓,⇓}: σ(P ) |||R ≤ξ σ(Q) |||R.

4.2 Results on the Contextual Ordering
We show several properties on the contextual ordering and equivalence. All successful
processes are in the same equivalence class. More surprisingly, all may-convergent processes
are equal w.r.t. contextual may-convergence, which is a strong motivation to also consider
should-convergence. Further results are that Stop is the largest element in the contextual
ordering, and there is no least element:

I Theorem 4.4.
1. If P,Q are two successful processes, then P ∼c Q.
2. If P,Q are two processes with P↓, Q↓, then P ∼c,↓ Q.
3. There are may-convergent processes P,Q with P 6∼c Q.
4. Stop is the greatest process w.r.t. ≤c.
5. 0 is the smallest process w.r.t. ≤c,↓.
6. There is no smallest process w.r.t. ≤c.

Proof. For (1) let P and Q be successful. Then for any σ ∈ Σ and any R ∈ ProcStop also
σ(P ) |||R and σ(Q) |||R are successful. This implies σ(P ) |||R↓, σ(Q) |||R↓, σ(P ) |||R⇓, and
σ(Q) |||R⇓ for all R ∈ ProcStop and σ ∈ Σ and thus Theorem 3.3 shows P ∼c Q.

Since P↓ =⇒ σ(P ) |||R↓ for any process P,R and σ ∈ Σ, Theorem 3.3 shows part (2).
For (3) the empty context distinguishes choice(Stop,0) and Stop: choice(Stop,0)↓, and

choice(Stop,0)↑, while Stop⇓, hence choice(Stop,0) 6∼c Stop.
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For part (4) clearly Stop |||R⇓ for all R. Since Stop |||R⇓ =⇒ Stop |||R↓, we have
σ(P ) |||R ≤↓ Stop |||R and σ(P ) |||R ≤⇓ Stop |||R for any P , σ, and R. Thus Theorem 3.3
shows P ≤c Stop for any process P .

Part (5) follows from Theorem 3.12, since {(0, P ) | P ∈ ProcStop} is Fb,↓-dense.
For (6) assume that there is a process P0 that is the smallest one, i.e. P0 ≤c P for all

processes P . Then P0⇑, since P0 ≤c 0. Let P0
∗−→ P1, such that P1 = D[x(y).P3], and where

x is free. With D1 = xy.Stop we obtain D1[P1]↓, but D1[0] ≡ xy.Stop⇑. We argue similarly
for outputs. Thus the reducts of P0 do not have open outputs. Now let P = x(y).0, where
by our assumption P0 ≤c,⇓ P holds. Let D = [·] |||xy.0 |||x(y).Stop. Then D[P0]⇓, since there
is no communication between the reducts of P0 and D, but D can always be reduced to a
successful process. Now consider D[P ]. It is D[P ]→ 0 |||x(y).Stop, which is must-divergent,
hence we have reached the contradiction P0 6≤c,⇓ P . J

We show that it is suffices to test should-convergence in all contexts, since all tests for
may-convergence can be encoded:

I Theorem 4.5.
1. ≤c,⇓ = ≤c,
2. ≤c 6= ≤c,↓,
3. and ≤c,⇓ 6⊆ ∼c,↓.

Proof. For part (1), we show that ≤c,⇓⊆≤c,↓: let Cx,y,X := ! νx, y, νX .[·]. For any process
P with x, y 6∈ fn(P ) and X ⊇ fn(P ) one can verify that P↓ iff Cx,y,X [P ]⇓: If P↓, then
P ′ := νx, y.νX .P↓ by Lemma 2.4 and for !P ′ we can generate a parallel copy of P ′, and
thus Cx,y,X [P ]⇓. If Cx,y,X [P ]⇓, then νx, y,X .P↓, since parallel copies of νx, y,X .P cannot
communicate due to the name restriction. Lemma 2.4 shows P↓. Now let P ≤c,⇓ Q, C[P ]↓,
but C[Q]⇑. With fresh names x, y, X = fn(P ) ∪ fn(Q): Cx,y[C[P ]]⇓ but Cx,y[C[Q]]↑ which
contradicts P ≤c,⇓ Q.

The inequality of part (2) follows from Theorem 4.4 items (5), (6).
For part (3), clearly, 0 ≤c Stop, since Stop is a largest element of ≤c, but 0⇑ while Stop↓,

and thus in ΠStop contextual should-preorder does not imply contextual may-equivalence. J

We conclude this subsection, by analyzing several equations, including the ones from [4].

I Theorem 4.6. For all processes P,Q, the following equivalences hold:
1. !P ∼c ! !P .
2. !P ||| !P ∼c !P .
3. ! (P |||Q) ∼c !P ||| !Q.
4. ! 0 ∼c 0.
5. ! Stop ∼c Stop.
6. ! (P |||Q) ∼c ! (P |||Q) |||P .
7. x(y).νz.P ∼c νz.x(y).P if z 6∈ {x, y}.
8. xy.νz.P ∼c νz.xy.P if z 6∈ {x, y}.

Proof. This holds, since Si∪-b,↑ and S−1
i ∪-b,↑ are Fb,↑-dense, where Si := {(R ||| li, R ||| ri) |

for all R}, and li, ri are the left and right hand side of the ith equation. J
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5 Results for the Stop-free Calculus

In this section we consider the π-calculus Π without the constant Stop but with barbed
may- and should-testing as notion of process equivalence. We will show a strong connection
between ΠStop and Π which makes a lot of results transferable.

I Definition 5.1. Let Π be the subcalculus of ΠStop that does not have the constant Stop as
a syntactic construct. Processes, contexts, reduction, structural congruences are accordingly
adapted for Π. We write Proc for the set of processes of Π and C for the set of contexts of Π.

We define the notion of a barb, i.e. that a process can receive a name on an open channel1.
Barbed may- and should-testing is defined analogously to contextual equivalence, where the
observation of success is replaced by observing barbs:

I Definition 5.2. Let P ∈ Proc and x ∈ N . A process P has a barb on input x (written as
P �x) iff P ≡ νX .(x(y).P ′ |||P ′′) where x 6∈ X . We write P �x iff there exists P ′ s.t. P

sr,∗−−→ P ′

and P ′ �x. We write P ��x iff for all P ′ with P sr,∗−−→ P ′ also P ′ �x holds. We write P ��x iff
P �x does not hold, and we write P �x iff P ��x does not hold.

For a name x ∈ N , barbed may- and should-testing preorder ≤c,barb and barbed may- and
should-testing equivalence ∼c,barb are defined as ≤c,barb:=≤c,�x ∩ ≤c,��x and ∼c,barb:=≤c,barb
∩(≤c,barb)−1 where for ξ ∈ {�x, ��x,�x, ��x} and P,Q ∈ Proc the inequality P ≤c,ξ Q holds iff
for all contexts C ∈ C : C[P ]ξ =⇒ C[Q]ξ.

In difference to observing success, the barb behavior is not stable under reduction, e.g. for
the process P = x(z) |||xy, P �x holds, but P sr−→ 0 and 0��x. We show that in ∼c,barb the
concrete name x is irrelevant:

I Proposition 5.3. For all x, y ∈ N : ≤c,�x
= ≤c,�y

and ≤c,��x
= ≤c,��y

.

Proof. First assume P ≤c,�x
Q, C[P ]�y, but C[Q]��y. Let C ′ = yw.x(w′).0 ||| νX .([·]) where

X = (fn(C[P ]) ∪ fn(C[Q])) \ {y}. From C[P ]�y also C ′[C[P ]]�x follows. Hence C ′[C[Q]]�x
holds, too. But, the structure of C ′ shows that this is only possible if C[Q] sr,∗−−→ Q′ with Q′ �y

and thus C[Q]��y cannot hold. Now assume P ≤c,��x Q and C[P ]��y, but C[Q]�y. Clearly,
C ′[C[P ]]��x holds. The assumption C[Q]�y implies that C[Q] sr,∗−−→ Q′ with Q′��y. Then also
C ′[Q′]��x, and since C ′[C[Q]] sr,∗−−→ C ′[Q′] we also have C ′[C[Q]]�x. This is a contradiction,
since P ≤c,��x Q implies C ′[C[P ]]��x =⇒ C ′[C[Q]]��x. J

I Corollary 5.4. P ≤c,barb Q iff ∀x ∈ N : P ≤c,�x
Q ∧ P ≤c,��x

Q.

We show that contextual equivalence of ΠStop conservatively extends barbed testing
equivalence of the π-calculus: P ∼c,barb Q =⇒ P ∼c Q for all stop-free P,Q. Moreover,
on Stop-free processes2 P,Q, contextual equivalence is also complete for barbed testing,
i.e. P ∼c Q =⇒ P ∼c,barb Q. Thus the identity translation (see e.g. [22] for properties of
translations) from Π into ΠStop is fully-abstract w.r.t. ∼c,barb in Π and ∼c in ΠStop.

I Theorem 5.5. For all processes P,Q ∈ Proc: P ≤c,barb Q ⇐⇒ P ≤c Q, and hence also
P ∼c,barb Q ⇐⇒ P ∼c Q.

1 We only consider an input capability here, since the barbed may- and should-testing equivalence does
not change if also output capabilities are observed.

2 Stop-free means without occurrences of Stop.



D. Sabel and M. Schmidt-Schauß 41

Proof. Let P,Q be Stop-free processes. It suffices to show that P ≤c,�x Q iff P ≤c,↓ Q and
P ≤c,��x

Q iff P ≤c,⇓ Q. In the remainder of the proof let ψu,v(R) be the process (or context)
R with every occurrence of Stop replaced by u(v) and let ψ−1

u,v(R) be the process (or context)
R with every occurrence of the subprocess u(v) be replaced by Stop.

P ≤c,�x Q =⇒ P ≤c,↓ Q: Let P ≤c,�x Q and C ∈ C with C[P ]↓, i.e. C[P ] = P0
sr−→

P1 . . .
sr−→ Pn s.t. stop(Pn). Let u, v be fresh names. Then ψu,v(C)[P ] = ψu,v(P0) sr−→

ψu,v(P1) sr−→ . . .
sr−→ ψu,v(Pn), since ia-reductions do not use Stop and the axiom

νz.Stop ≡ Stop can be replaced by νz.u(v) ≡ u(v) (since u is fresh). Since Pn ≡ Stop |||R,
we have ψu,v(Pn) ≡ (u(v) |||ψu,v(R)) and thus ψu,v(Pn) �u and ψu,v(C)[P ]�u. By Propos-
ition 5.3 and P ≤c,�x

Q we have P ≤c,�u
Q and thus ψu,v(C)[Q]�u, i.e. ψu,v(C)[Q] sr−→

Q1 . . .
sr−→ Qm where Qm �u, i.e. Qm ≡ νX .(u(v).R1 |||R2). The reduction cannot perform

an ia-reduction using the prefix u(v), since u is fresh, and thus R1 = 0. Thus the reduction
C[Q] sr−→ ψ−1

u,v(Q1) . . . sr−→ ψ−1
u,v(Qm) exists, and ψ−1

u,v(Qm) ≡ νx1, . . . xn.(Stop |||ψ−1
u,v(R2))

and thus C[Q]↓.
P ≤c,↓ Q =⇒ P ≤c,�x

Q: Let P ≤c,↓ Q, C be a Stop-free context, and C[P ]�x.
Then C[P ] sr−→ P1 . . .

sr−→ Pn ≡ νX .(x(y).P ′ |||P ′′), and for C1 := ([·] |||xy.Stop) we have
C1[C[P ]]↓, since the reduction for C[P ] can be used and results in C1[Pn] which reduces
to a successful process. P ≤c,↓ Q also implies C1[C[Q]]↓ and the corresponding reduction
C1[C[Q]] sr,∗−−→ Qm with stop(Qm) must include an ia-reduction with a redex of the
form x(z).R |||xy.Stop. Let Qi

sr,∗−−→ Qi+1 be this step in C1[C[Q]] sr,∗−−→ Qm. The prefix
C1[C[Q]] sr,i−−→ Qi can be used to construct a reduction C[Q] sr,i−−→ Q′i where Q′i �

x and
thus C[Q]�x.
P ≤c,⇓ Q =⇒ P ≤c,��x

Q: Let P ≤c,⇓ Q. For any Stop-free context C ∈ C we have to
show: C[Q]�x =⇒ C[P ]�x. Let C be a Stop-free context with C[Q]�x, i.e. C[Q] sr,∗−−→ Q′

and ¬(Q′�x). Then also C1[C[Q]]↑ with C1 = [·] |||xy.Stop, since C1[C[Q]] sr,∗−−→ C1[Q′] and
C1[Q′] cannot become successful (otherwise Q′�x would hold). P ≤c,⇓ Q implies C1[C[P ]]↑,
i.e. C1[C[P ]] sr,∗−−→ P ′ and P ′⇑. The reduction C1[C[P ]] sr,∗−−→ P ′ can never reduce
xy.Stop, since otherwise P ′⇑ cannot hold, and thus we can assume that P ′ ≡ C1[P ′′] and
C[P ] sr,∗−−→ P ′′. Again P ′′↓ �x cannot hold (otherwise C1[P ′′]⇑ would not hold) and thus
C[P ]�x.
P ≤c,��x

Q =⇒ P ≤c,⇓ Q. Let P ≤c,��x
Q and C be a context with C[Q]↑, i.e. C[Q] =

Q0
sr−→ . . .

sr−→ Qn and Qn⇑. Let u, v be fresh names. Then ¬(ψu,v(Qn)�u) and also
ψu,v(Qi)

sr−→ ψu,v(Qi+1) and thus ψu,v(C)[Q]�u. From P ≤c,��x
Q (using Proposition 5.3)

we have P ≤c,��u
Q and thus ψu,v(C)[P ]�u, i.e. C ′[P ] sr,∗−−→ Pm and ¬(Pm�u). Then

ψ−1
u,v(Pn)⇑ (otherwise Pn�u would hold). Also ψ−1

u,v(Pi)
sr−→ ψ−1

u,v(Pi+1), since Pi
sr−→ Pi+1

cannot reduce any occurrence of u(v). This shows C[P ]↑.
J

Theorem 5.5 enables us to transfer some of the results for ΠStop into Π.

I Corollary 5.6. All equations in Theorem 4.6 (except for equation 5) also hold in Π for
Stop-free processes, and for barbed testing equivalence ∼c,barb. Deterministic interaction (see
Theorem 4.1) is correct in Π for ∼c,barb.

Also Theorem 4.5 can be transferred to Π by applying Theorem 5.5, which shows that
barbed should-testing preorder implies barbed may-testing equivalence (which does not hold
for ΠStop and contextual preorders, see Theorem 4.5 (3)):

I Corollary 5.7. For all Stop-free processes P,Q ∈ Proc: P ≤c,��x Q implies P ∼c,�x Q.
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Proof. The inclusion ≤c,��x ⊆ ≤c,�x follows from Theorems 4.5 and 5.5. Before proving the
remaining part, we show that the equivalence P�x ⇐⇒ C1[P ]�y holds, where C1 := R ||| [·] with
R = νz.(zy ||| z(w).w(w′) |||xx′.z(z′)) and P is any process with fn(P ) ∩ {w,w′, z, z′, x′} = ∅
We have to show two implications:
1. P �x =⇒ C1[P ] �y: If P �x, then C1[P ] can be reduced to P ′′ := νz.(z(w).w(w′)) |||P ′

where P ′ is the contractum of P after receiving x′ along x. Clearly, P ′′ cannot barb on y
(i.e. P ′′ ��y) and thus C1[P ]�y.

2. C1[P ]�y =⇒ P �x: We show its contrapositive P ��x =⇒ C1[P ] ��y. If P ��x, then in any
reduction of C1[P ] the process P cannot interact with the process R, and since R ��y,
also C1[P ] ��y holds.

We show ≤c,��x
⊆ (≤c,�x

)−1: Let P ≤c,��x
Q, C[Q]�x, but C[P ] ��x. Proposition 5.3 and

P ≤c,��x Q imply Q ≤c,�y P . But C1[C[Q]]�y while C1[C[P ]]��y which is a contradiction. J

Finally, we show that there is no surjective encoding from ΠStop into Π which preserves the
ordering of processes w.r.t. contextual preorder in ΠStop and barbed testing preorder in Π.

I Theorem 5.8. There is no surjective translation ψ : ΠStop → Π s.t. for all P,Q ∈ ProcStop:
P ≤c Q =⇒ ψ(P ) ≤c,barb ψ(Q).

Proof. This holds since Stop is a largest element of ΠStop w.r.t. ≤c, but in Π there is no largest
element w.r.t. ≤c,barb: Assume the claim is false, and P is a largest element w.r.t. ≤c,barb.
Let X = fn(P ) and x 6∈ X . Then x(z) 6≤c,barb P , since νX .x(z)�x but νX .P ��x. J

6 Conclusion

We analyzed contextual equivalence w.r.t. may- and should-convergence in a π-calculus with
Stop. We proved a context lemma and showed soundness of an applicative similarity. Since
ΠStop with contextual equivalence conservatively extends the π-calculus without Stop and
barbed testing equivalence, this also provides a method to show barbed testing equivalences.

Future work may investigate extensions or variants of the calculus ΠStop, e.g. with
(guarded) sums, or with recursion. The results of this paper may also open easier possibilities
to define and analyze embeddings of ΠStop into other concurrent program calculi (e.g., the
CHF-calculus [17, 18]) which also use a contextual semantics.
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A Proofs for the Calculus ΠStop

Proofs of Lemmas 3.1 and 3.2. For Lemma 3.1, we analyze all contexts of hole depth 1:
1. C = [·] |||S: Then σ(C[P ]) |||R ≡ (σ(P ) |||R′) and σ(C[Q]) |||R ≡ σ(Q) |||R′ with R′ =

σ(S) |||R. The precondition of the claim implies that σ(P ) |||R′ ≤↓ σ(Q) |||R′ and thus
Proposition 2.3 shows σ(C[P ]) |||R ≤↓ σ(C[Q]) |||R.

2. C = S ||| [·]: The claim follows from the previous item and Proposition 2.3.
3. C = νx.[·]: Since σ(P ) |||R ≤↓ σ(Q) |||R holds by the precondition of the claim, Lemma 2.4

shows the claim.
4. C = x(y).[·]: Let σ(C[P ]) |||R

sr,n−−→ Pn where Pn is successful. We use induction on n.
The base case n = 0 holds, since in this case R must be successful, and thus σ(C[Q]) |||R
is successful, too. For the induction step assume σ(x) = x1 and w.l.o.g. σ(y) = y. Let
x1(y).σ(P ) |||R sr−→ νX .σ(P )[z/y] |||R′ be the first reduction step of the reduction sequence,
where X ⊆ {z}. The same reduction step for σ(x(y).Q) |||R results in νX .σ′(Q)[z/y] |||R′.
By induction assumption, the lemma holds for the pair σ(P )[z/y] and σ(Q)[z/y], and by
item (3) also for extending it with ν.

5. C = xy.[·]: This case is similar to the previous item.
6. C = ! [·]. Let σ(!P ) |||R

sr,n−−→ Pn where stop(Pn). We show σ(!Q) |||R↓ by induc-
tion on n. If n = 0, then R or P is successful. Thus stop(σ(P ) |||R) holds and
the precondition of the lemma shows (σ(Q) |||R)↓, which implies σ(!Q) |||R↓. For
n > 0, let σ(!P ) |||R sr−→ P1 be the first reduction of σ(!P ) |||R

sr,n−−→ Pn: If the re-
dex is inside R, then the same reduction can be performed for σ(!Q |||R) and then
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the induction hypothesis shows the claim. If the redex uses one instance of σ(P )
and parts of R, i.e. P1 ≡ σ(!P ) |||RP , s.t. R |||σ(P ) sr−→ RP , then we apply the in-
duction hypothesis to P1 and have (σ(!Q) |||RP )↓. This implies σ(!Q) |||σ(P ) |||R↓,
since σ(!Q) |||σ(P ) |||R sr−→ σ(!Q) |||RP . By the precondition of the lemma we have
σ(!Q) |||σ(P ) |||R ≡ σ(P ) ||| (σ(!Q) |||R) ≤↓ σ(Q) ||| (σ(!Q) |||R) ≡ σ(!Q) |||R, and thus we
have σ(!Q) |||R↓. If the redex uses two instances of σ(P ), i.e. P1 ≡ σ(!P ) |||R |||P ′,
s.t. σ(P ) |||σ(P ) sr−→ P ′, then the induction hypothesis for P1 shows σ(!Q) |||R |||P ′↓. Since
σ(P ) |||σ(P ) sr−→ P ′, we have σ(!Q) |||R |||σ(P ) |||σ(P )↓. We apply the precondition twice:
σ(!Q) |||R |||σ(P ) |||σ(P ) ≡ σ(P ) ||| (σ(P ) ||| (σ(!Q) |||R)) ≤↓ σ(Q) ||| (σ(P ) ||| (σ(!Q) |||R)) ≡
σ(P ) ||| (σ(!Q) |||R) ≤↓ σ(Q) ||| (σ(!Q) |||R) ≡ σ(!Q) |||R and thus σ(!Q) |||R↓.

The proof of Lemma 3.2 is analogous to Lemma 3.1 by replacing ≤↓ with ≤↑, and replacing
the base cases “if σ(C[P ]) |||R is successful, then σ(C[Q]) |||R↓” with “if (σ(C[P ]) |||R)⇑, then
(σ(C[Q]) |||R)↑” which holds, since σ(C[Q]) |||R ≤↓ σ(C[P ]) |||R. J

I Lemma A.1. For P,Q, Sxy, Syx as defined in Proposition 3.8: P ≤c,↓ Q.

Proof. Let S := S1 ∪ S2 ∪ -↓ where S2 := {(σ(P ) |||R, σ(Q) |||R) | for any R and σ} and
S1 := {((!Sxy ||| !Syx |||R[x/w] ||| yu1 ||| . . . ||| yun), (!Sxy ||| !Syx |||R[y/w] |||xu1 ||| . . . |||xun))

| for any R, any x, y, w, ui, and any n ≥ 0}
For proving P ≤c,↓ Q, it suffices to show that the relation S is F↓-dense: This implies

σ(P ) |||R ≤↓ σ(Q) |||R for all R, σ and thus the context lemma (Theorem 3.3) shows P ≤c,↓ Q.
First let (P1, P2) ∈ S1. If P1 is successful, then clearly also P2 is successful and thus P2 ↓.

If P1
sr−→ P ′1, then there are following cases:

If the redex is inside R[x/w], then either the same reduction can also be performed for
P2, then P2

sr−→ P ′2 and (P ′1, P ′2) ∈ S, or the name x occurs in R. We consider two cases,
where we use the abbreviations Lx := xu1 ||| . . . |||xun and Ly := yu1 ||| . . . ||| yun:
1. If R = νW.(w(z′).R1 |||xv.R2 |||R3) and
P ′1 = !Sxy ||| !Syx ||| νW.(R1[v/z′] |||R2 |||R3)[x/w] |||Ly, then P2

sr−→ P ′2
sr−→ P ′′2 with

P2 = !Sxy ||| !Syx |||Lx ||| νW.(w(z′).R1 |||xv.R2 |||R3)[y/w] and
P ′′2 = !Sxy ||| !Syx |||Lx ||| νW.(R1[v/z′] |||R2 |||R3))[y/w], since xv.R2 |||Sxy

sr−→ R2 ||| yv.
Since (P ′1, P ′′2 ) ∈ S, we are finished.

2. If R = νW.(x(z′).R1 |||wv.R2 |||R3) and for P ′1 we have
P ′1 = !Sxy ||| !Syx ||| νW.(R1[v/z′] |||R2 |||R3)[x/w] |||Ly, then there exists the reduction
P2

sr−→ P ′2
sr−→ P ′′2 with P2 = !Sxy ||| !Syx |||Lx ||| νW.(x(z′).R1 |||wv.R2 |||R3)[y/w] and

P ′′2 = !Sxy ||| !Syx |||Lx ||| νW.(R1[v/z′] |||R2 |||R3))[y/w], since yv.R2 |||Syx
sr−→ R2 |||xv

and thus (P ′1, P ′′2 ) ∈ S.
The redex is Syx ||| yui, i.e. with the abbreviation Ly = yu1 ||| . . . yui−1 ||| yui+1 ||| . . . yun,
the reduction is P1 = !Sxy ||| !Syx |||R[x/w] ||| yui |||Ly

sr−→ !Sxy ||| !Syx |||R[x/w] |||xui |||Ly ≡
!Sxy ||| !Syx ||| (R |||wui)[x/w] |||Ly = P ′1. Then for Lx := xu1 ||| . . . xui−1 |||xui+1 ||| . . . xun,
there is the following reduction for process P2: P2 = !Sxy ||| !Syx |||R[y/w] |||xui |||Lx

sr−→
!Sxy ||| !Syx |||R[y/w] ||| yui |||Lx ≡ !Sxy ||| !Syx ||| (R |||wui)[y/w] |||Lx=P ′2 and (P ′1, P ′2) ∈ S.
The redex is Sxy |||R[x/w], i.e. R = wv.R′ and for Ly := yu1 ||| . . . ||| yun we have
P1 = !Sxy ||| !Syx |||xv.R′[x/w] |||Ly

sr−→ !Sxy ||| !Syx |||R′[x/w] ||| yv |||Ly = P ′1. Then for
Lx := xu1 ||| . . . |||xun the reduction P2 = !Sxy ||| !Syx ||| yv.R′[y/w] |||Lx

sr−→ P ′2 exists,
where P ′2 := !Sxy ||| !Syx |||R′[y/w] |||xv |||Lx = P ′2 and thus (P ′1, P ′2) ∈ S.

Now let (P1, P2) ∈ S2 and let a′ = σ(a), x′ = σ(x), y′ = σ(y), z′ = σ(z) . If P1 is
successful, then P2 is successful. If P1

sr−→ P ′1, then there are the cases:
If the redex is inside R, then P2

sr−→ P ′2 and (P ′1, P ′2) ∈ S.
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If R = νW.(a′(w).R′ |||R′′) and P1
sr−→ !σ(Sxy) ||| !σ(Syx) ||| νW.(R′[x/w] |||R′′) := P ′1.

Then P ′1 ≡ !σ(Sxy) ||| !σ(Syx) ||| νW.(R′ |||R′′)[x/w], since we may assume that w was
renamed fresh for R′′. Then P2

sr−→ P ′2 with P ′2 := !σ(Sxy) ||| !σ(Syx) ||| νW.(R′[y/w] |||R′′).
Since P ′2 ≡ !σ(Sxy) ||| !σ(Syx) ||| νW.(R′ |||R′′)[y/w] = P ′2, this shows (P ′1, P ′2) ∈ S.
R = νW.(x′u.R′ |||R′′) and P1

sr−→ a′x′ ||| !σ(Sxy) ||| !σ(Syx) ||| (R′ |||R) ||| y′u = P ′1. Then P2
sr−→ a′y′ ||| !σ(Sxy) ||| !σ(Syx) ||| (R′ |||R) ||| y′u = P ′2. and (P ′1, P ′2) ∈ S.
R = νW.(y′u.R′ |||R′′) and P1

sr−→ a′x′ ||| !σ(Sxy) ||| !σ(Syx) ||| (R′ |||R) |||x′u = P ′1. Then P2
sr−→ a′y′ ||| !σ(Sxy) ||| !σ(Syx) ||| (R′ |||R) |||x′u = P ′2 and (P ′1, P ′2) ∈ S. J

I Lemma A.2. The relation S := {(νX .(P |||R), νX .(Q |||R)) | P -b,↓ Q, for any X , R}∪-↓
is F↓-dense.

Proof. Let (νX .(P |||R), νX .(Q |||R)) ∈ S. We have to show (νX .(P |||R), νX .(Q |||R)) ∈
F↓(S). If νX .(P |||R) is successful, then P or R is successful too, and thus either Q↓ and
so does νX .Q |||R or νX .(Q |||R) is already successful. For νX .(P |||R) sr−→ P1 we show
that νX .(Q |||R) sr,∗−−→ Q1, s.t. (P1, Q1) ∈ S: If the redex of νX .(P |||R) sr−→ P1 is inside
P , i.e. P1 = νX .(P ′ |||R), then by P -b,↓ Q there exists Q′ with Q

sr,∗−−→ Q′, P ′ -b,↓ Q
′.

Since also νX .(Q |||R) sr,∗−−→ νX .(Q′ |||R) and thus (νX .(P ′ |||R), νX .(Q′ |||R)) ∈ S, this case
is finished. If the redex of νX .(P |||R) sr−→ P1 is inside R, i.e. P1 = νX .(P |||R′) then also
νX .(Q |||R) sr−→ νX .(Q |||R′) and (νX .(P |||R′), νX .(Q |||R′)) ∈ S.

The remaining cases are that the redex uses parts of P and parts of R.

If P ≡ νX1.(x(y).P ′ |||P ′′), R ≡ νX2.(xz.R′ |||R′′) with z 6∈ X2 and νX .(P |||R) sr−→
νX .(νX1.(P ′[z/y] |||P ′′) ||| νX2.R

′ |||R′′) = P1, then by P -b,↓ Q there exists Q0 s.t.
Q

sr,∗−−→ Q0 = νY1.(x(y).Q′ |||Q′′) and X1.(P ′[z/y] |||P ′′) -b,↓ νY1.(Q′[z/y] |||Q′′). Since
νX .(Q |||R) sr,∗−−→ νX .(Q0 |||R) sr−→ νY1.(Q′[z/y] |||Q′′) ||| νX2.R

′ |||R′′) = Q1, (P1, Q1) ∈ S.
If P ≡ νX1.(x(y).P ′ |||P ′′), R ≡ νz,X2.(xz.R′ |||R′′) and νX .(P |||R) sr−→ P1 with P1 :=
νX .(νz.(νX1.P

′[z/y] |||P ′′ ||| νX2.(R′ |||R′′))), then by P -b,↓ Q there exists a process Q0

s.t. Q sr,∗−−→ Q0, Q0 = νY1.(x(y).Q′ |||Q′′) and νX1.(P ′[z/y] |||P ′′) -b,↓ νY1.(Q′[z/y] |||Q′′).
Since νX .(Q |||R) sr,∗−−→ νX .(Q0 |||R) sr−→ νX .(νz.(νY1.(Q′[z/y] |||Q′′) ||| νX2.(R′ |||R′′))) =
Q1 we have (P1, Q1) ∈ S.
If P ≡ νX1.(xy.P ′ |||P ′′) and R ≡ νX2.(x(z).R′ |||R′′) with y 6∈ X1 and νX .(P |||R) sr−→
νX .(νX1.P

′ |||P ′′) ||| νX2.(R′[y/z] |||R′′) = P1, then by P -b,↓ Q there exists Q0 with
Q

sr,∗−−→ Q0, Q0 = νY1.(xy.Q′ |||Q′′) where y 6∈ Y1 s.t. νX1.(P ′ |||P ′′) -b,↓ Y1.(Q′ |||Q′′).
Since also νX .(Q |||R) sr,∗−−→ νX .(Q0 |||R) sr−→ νX .(νY1.(Q′ |||Q′′) ||| νX2.(R′[y/z] |||R′′)) =
Q1, we have (P1, Q1) ∈ S.
If P ≡ νy.νX1.(xy.P ′ |||P ′′), R ≡ νX2.(x(z).R′ |||R′′), and νX .(P |||R) sr−→ P1 where
P1 := νX .νy.(νX1.(P ′ |||P ′′) ||| νX2.(R′[y/z] |||R′′)), then by P -b,↓ Q there exists Q0 with
Q

sr,∗−−→ Q0, Q0 = νy.νY1.(xy.Q′ |||Q′′) s.t. νX1.(P ′ |||P ′′) -b,↓ νY1.(Q′ |||Q′′). Since also
νX .νy.(Q |||R) sr,∗−−→ νX .νy.(Q0 |||R) sr−→ νX .νy.(νY1.(Q′ |||Q′′) ||| νX2.(R′[y/z] |||R′′)) =
Q1, we have (P1, Q1) ∈ S. J

I Lemma A.3. The relation S := {(νX .(P |||R), νX .(Q |||R)) | P -b,↑ Q, for any X , R}∪-↑
is F↑-dense.

Proof. Note that if P -b,↑ Q, then Q -b,↓ P . Let (νX .(P |||R), νX .(Q |||R)) ∈ S. We
have to show that (νX .(P |||R), νX .(Q |||R)) ∈ F↑(S). If νX .(P |||R) ⇑, then Q -b,↓ P and
Proposition 3.11 show that νX .(Q |||R) -↓ νX .(P |||R) which implies that νX .(P |||R) ≤⇑
νX .(Q |||R) and thus νX .(Q |||R) ↓ . If νX .(P |||R) sr−→ P1, then we have to show that
νX .(Q |||R) sr,∗−−→ Q1, s.t. (P1, Q1) ∈ S. If the redex of νX .(P |||R) sr−→ P1 is inside P ,
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i.e. νX .(P |||R) sr−→ νX .(P ′ |||R) then P -b,↑ Q shows that Q sr,∗−−→ Q′ s.t. P ′ -b,↑ Q
′.

Since νX .(Q |||R) sr,∗−−→ νX .(Q′ |||R) and thus (νX .(P ′ |||R), νX .(Q′ |||R)) ∈ S in this case.
If the redex of νX .(P |||R) sr−→ P1 is inside R, i.e. νX .(P |||R) sr−→ νX .(P |||R′) then also
νX .(Q |||R) sr−→ νX .(Q |||R′) and thus (νX .(P |||R′), νX .(Q |||R′)) ∈ S in this case.

It remains to consider the cases where the redex uses parts of P and parts of R.

If P ≡ νX1.(x(y).P ′ |||P ′′), R ≡ νX2.(xz.R′ |||R′′) with z 6∈ X2 and νX .(P |||R) sr−→
νX .(νX1.(P ′[z/y] |||P ′′) ||| νX2.R

′ |||R′′) = P1, then by P -b,↑ Q there exists Q0 with
Q

sr,∗−−→ Q0 = νY1.(x(y).Q′ |||Q′′) s.t. X1.(P ′[z/y] |||P ′′) -b,↑ νY1.(Q′[z/y] |||Q′′). Since
νX .(Q |||R) sr,∗−−→ νX .(Q0 |||R) sr−→ νY1.(Q′[z/y] |||Q′′) ||| νX2.R

′ |||R′′) = Q1 this shows
(P1, Q1) ∈ S.
If P ≡ νX1.(x(y).P ′ |||P ′′), R ≡ νz,X2.(xz.R′ |||R′′), and νX .(P |||R) sr−→ P1 where P1 :=
νX .(νz.(νX1.P

′[z/y] |||P ′′ ||| νX2.(R′ |||R′′))), then P -b,↑ Q shows that there exists Q0

with Q
sr,∗−−→ Q0 = νY1.(x(y).Q′ |||Q′′) s.t. νX1.(P ′[z/y] |||P ′′) -b,↑ νY1.(Q′[y/z] |||Q′′).

Since νX .(Q |||R) sr,∗−−→ νX .(Q0 |||R) sr−→ νX .(νz.(νY1.(Q′[z/y] |||Q′′) ||| νX2.(R′ |||R′′))) =
Q1 we have (P1, Q1) ∈ S.
If P ≡ νX1.(xy.P ′ |||P ′′), R ≡ νX2.(x(z).R′ |||R′′) with y 6∈ X1, and νX .(P |||R) sr−→ P1
with P1 := νX .(νX1.P

′ |||P ′′) ||| νX2.(R′[y/z] |||R′′), then P -b,↑ Q shows that Q sr,∗−−→ Q0
with Q0 := νY1.(y.Q′ |||Q′′) where y 6∈ Y1 s.t. νX1.(P ′ |||P ′′) -b,↑ Y1.(Q′ |||Q′′). Since
νX .(Q |||R) sr,∗−−→ νX .(Q0 |||R) sr−→ νX .(νY1.(Q′ |||Q′′) ||| νX2.(R′[y/z] |||R′′)) = Q1, we have
(P1, Q1) ∈ S.
If P ≡ νy,X1.(xy.P ′ |||P ′′), R ≡ νX2.(x(z).R′ |||R′′), and νX .(P |||R) sr−→ P1 with P1 :=
νX .νy.(νX1.(P ′ |||P ′′) ||| νX2.(R′[y/z] |||R′′)), then P -b,↑ Q shows that Q sr,∗−−→ Q0 with
Q0 = νy.νY1.(y.Q′ |||Q′′) s.t. νX1.(P ′ |||P ′′) -b,↑ νY1.(Q′ |||Q′′). Since also the reduc-
tion νX .νy.(Q |||R) sr,∗−−→ νX .νy.(Q0 |||R) sr−→ Q1 exists, where the process Q1 is Q1 :=
νX .νy.(νY1.(Q′ |||Q′′) ||| νX2.(R′[y/z] |||R′′)), this shows(P1, Q1) ∈ S. J
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