13 research outputs found

    A Computer Program for Simplifying Incompletely Specified Sequential Machines Using the Paull and Unger Technique

    Get PDF
    This report presents a description of a computer program mechanized to perform the Paull and Unger process of simplifying incompletely specified sequential machines. An understanding of the process, as given in Ref. 3, is a prerequisite to the use of the techniques presented in this report. This process has specific application in the design of asynchronous digital machines and was used in the design of operational support equipment for the Mariner 1966 central computer and sequencer. A typical sequential machine design problem is presented to show where the Paull and Unger process has application. A description of the Paull and Unger process together with a description of the computer algorithms used to develop the program mechanization are presented. Several examples are used to clarify the Paull and Unger process and the computer algorithms. Program flow diagrams, program listings, and a program user operating procedures are included as appendixes

    Publications of the Jet Propulsion Laboratory, July 1968 through June 1969

    Get PDF
    Annotated bibliography on space exploration, materials, and physical science

    Contributions to the Theory of Finite-State Based Grammars

    Get PDF
    This dissertation is a theoretical study of finite-state based grammars used in natural language processing. The study is concerned with certain varieties of finite-state intersection grammars (FSIG) whose parsers define regular relations between surface strings and annotated surface strings. The study focuses on the following three aspects of FSIGs: (i) Computational complexity of grammars under limiting parameters In the study, the computational complexity in practical natural language processing is approached through performance-motivated parameters on structural complexity. Each parameter splits some grammars in the Chomsky hierarchy into an infinite set of subset approximations. When the approximations are regular, they seem to fall into the logarithmic-time hierarchyand the dot-depth hierarchy of star-free regular languages. This theoretical result is important and possibly relevant to grammar induction. (ii) Linguistically applicable structural representations Related to the linguistically applicable representations of syntactic entities, the study contains new bracketing schemes that cope with dependency links, left- and right branching, crossing dependencies and spurious ambiguity. New grammar representations that resemble the Chomsky-Schützenberger representation of context-free languages are presented in the study, and they include, in particular, representations for mildly context-sensitive non-projective dependency grammars whose performance-motivated approximations are linear time parseable. (iii) Compilation and simplification of linguistic constraints Efficient compilation methods for certain regular operations such as generalized restriction are presented. These include an elegant algorithm that has already been adopted as the approach in a proprietary finite-state tool. In addition to the compilation methods, an approach to on-the-fly simplifications of finite-state representations for parse forests is sketched. These findings are tightly coupled with each other under the theme of locality. I argue that the findings help us to develop better, linguistically oriented formalisms for finite-state parsing and to develop more efficient parsers for natural language processing. Avainsanat: syntactic parsing, finite-state automata, dependency grammar, first-order logic, linguistic performance, star-free regular approximations, mildly context-sensitive grammar

    Evolutionary algorithms for synthesis and optimisation of sequential logic circuits

    Get PDF
    Considerable progress has been made recently 1n the understanding of combinational logic optimization. Consequently a large number of university and industrial Electric Computing Aided Design (ECAD) programs are now available for optimal logic synthesis of combinational circuits. The progress with sequential logic synthesis and optimization, on the other hand, is considerably less mature. In recent years, evolutionary algorithms have been found to be remarkably effective way of using computers for solving difficult problems. This thesis is, in large part, a concentrated effort to apply this philosophy to the synthesis and optimization of sequential circuits. A state assignment based on the use of a Genetic Algorithm (GA) for the optimal synthesis of sequential circuits is presented. The state assignment determines the structure of the sequential circuit realizing the state machine and therefore its area and performances. The synthesis based on the GA approach produced designs with the smallest area to date. Test results on standard fmite state machine (FS:M) benchmarks show that the GA could generate state assignments, which required on average 15.44% fewer gates and 13.47% fewer literals compared with alternative techniques. Hardware evolution is performed through a succeSSlOn of changes/reconfigurations of elementary components, inter-connectivity and selection of the fittest configurations until the target functionality is reached. The thesis presents new approaches, which combine both genetic algorithm for state assignment and extrinsic Evolvable Hardware (EHW) to design sequential logic circuits. The implemented evolutionary algorithms are able to design logic circuits with size and complexity, which have not been demonstrated in published work. There are still plenty of opportunities to develop this new line of research for the synthesis, optimization and test of novel digital, analogue and mixed circuits. This should lead to a new generation of Electronic Design Automation tools.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Evolutionary algorithms for synthesis and optimisation of sequential logic circuits.

    Get PDF
    Considerable progress has been made recently 1n the understanding ofcombinational logic optimization. Consequently a large number of universityand industrial Electric Computing Aided Design (ECAD) programs are nowavailable for optimal logic synthesis of combinational circuits. The progresswith sequential logic synthesis and optimization, on the other hand, isconsiderably less mature.In recent years, evolutionary algorithms have been found to be remarkablyeffective way of using computers for solving difficult problems. This thesis is,in large part, a concentrated effort to apply this philosophy to the synthesisand optimization of sequential circuits.A state assignment based on the use of a Genetic Algorithm (GA) for theoptimal synthesis of sequential circuits is presented. The state assignmentdetermines the structure of the sequential circuit realizing the state machineand therefore its area and performances. The synthesis based on the GAapproach produced designs with the smallest area to date. Test results onstandard fmite state machine (FS:M) benchmarks show that the GA couldgenerate state assignments, which required on average 15.44% fewer gatesand 13.47% fewer literals compared with alternative techniques.Hardware evolution is performed through a succeSSlOn ofchanges/reconfigurations of elementary components, inter-connectivity andselection of the fittest configurations until the target functionality is reached.The thesis presents new approaches, which combine both genetic algorithmfor state assignment and extrinsic Evolvable Hardware (EHW) to designsequential logic circuits. The implemented evolutionary algorithms are able todesign logic circuits with size and complexity, which have not beendemonstrated in published work.There are still plenty of opportunities to develop this new line of research forthe synthesis, optimization and test of novel digital, analogue and mixedcircuits. This should lead to a new generation of Electronic DesignAutomation tools

    36th International Symposium on Theoretical Aspects of Computer Science: STACS 2019, March 13-16, 2019, Berlin, Germany

    Get PDF

    Control of Energy Storage

    Get PDF
    Energy storage can provide numerous beneficial services and cost savings within the electricity grid, especially when facing future challenges like renewable and electric vehicle (EV) integration. Public bodies, private companies and individuals are deploying storage facilities for several purposes, including arbitrage, grid support, renewable generation, and demand-side management. Storage deployment can therefore yield benefits like reduced frequency fluctuation, better asset utilisation and more predictable power profiles. Such uses of energy storage can reduce the cost of energy, reduce the strain on the grid, reduce the environmental impact of energy use, and prepare the network for future challenges. This Special Issue of Energies explore the latest developments in the control of energy storage in support of the wider energy network, and focus on the control of storage rather than the storage technology itself
    corecore