

COMPUTATION WITH CONTINUOUS MODE

CMOS CIRCUITS IN IMAGE PROCESSING

AND PROBABILISTIC REASONING

A THESIS

SUBMITTED TO THE UNIVERSITY OF MANCHESTER

FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

IN THE FACULTY OF ENGINEERING AND PHYSICAL SCIENCES

2014

PRZEMYSLAW MROSZCZYK

SCHOOL OF ELECTRICAL AND ELECTRONIC ENGINEERING

Contents 2

Contents

Abstract 6

Declaration 7

Copyright 8

Acknowledgements 9

Author's publications 10

1 Introduction 11

1.1 Chapter overview ... 11

1.2 Reasons for alternative approaches .. 11

1.3 Alternative ways of information processing .. 15

1.3.1 Analogue computers .. 15

1.3.2 Artificial neural networks .. 16

1.3.3 Stochastic computers ... 17

1.4 Motivations ... 19

1.5 Research overview ... 19

1.5.1 Binary image processing ... 20

1.5.2 Bayesian inference... 21

1.6 Contributions .. 24

1.7 Thesis structure... 25

2 Computation with MOS transistors under parameter variability 27

2.1 Chapter overview ... 27

2.2 Analogue computation with MOS transistor .. 27

2.2.1 MOS model for hand calculations ... 29

2.2.2 Switched-current circuits ... 31

2.2.3 Analogue multipliers ... 32

2.3 Parameter variability in CMOS technologies ... 35

2.3.1 Physical model... 36

2.3.2 Empirical model .. 36

2.3.3 Variability propagation .. 38

2.4 Mismatch modelling ... 39

2.4.1 Mismatch MOS model for hand calculations .. 39

2.4.1.1 Strong inversion and saturation .. 40

2.4.1.2 Strong inversion and linear region ... 42

2.4.1.3 Weak inversion ... 43

2.4.2 Statistical MOS models for CAD .. 43

2.4.3 Extended simplified model .. 45

2.5 Mismatch scaling .. 45

2.6 Mismatch versus noise ... 48

2.7 Mismatch versus temperature ... 50

Contents 3

2.8 Mismatch optimisation ... 50

2.8.1 Circuit design techniques .. 50

2.8.2 Layout drawing techniques .. 51

2.9 Conclusions .. 52

3 Current-mode analogue multipliers 53

3.1 Introduction and chapter overview ... 53

3.2 Continuous-time Gilbert multiplier .. 53

3.2.1 Circuit analysis and realisation .. 54

3.2.2 Design issues ... 57

3.2.3 V-AMS MOS model.. 58

3.2.4 Computational errors ... 62

3.2.5 Simulation results .. 63

3.3 Discrete-time Gilbert multiplier ... 66

3.3.1 Circuit analysis and realisation .. 66

3.3.2 Design issues ... 71

3.3.3 Simulation results .. 73

3.4 Fixed point digital implementation .. 77

3.5 Summary and conclusions .. 80

4 Delay lines 81

4.1 Chapter overview ... 81

4.2 Introduction .. 81

4.3 Circuit operation ... 83

4.3.1 Current starved inverter (CSI) ... 85

4.3.2 Output split inverter (OSI)... 86

4.4 Mismatch analysis .. 86

4.4.1 Mismatch in CSI gate .. 88

4.4.2 Mismatch in OSI gate .. 89

4.4.3 Simplified analytical model ... 90

4.4.4 Charge sharing and S/D inherent capacitances ... 91

4.4.5 Model derivation ... 94

4.4.5.1 Mismatch model of a delay gate .. 96

4.4.5.2 Mismatch model of a delay line ... 98

4.4.5.3 Mismatch optimisation ... 98

4.5 Chip design and circuit implementation ... 99

4.6 Experimental results ... 102

4.6.1 Callibration .. 102

4.6.2 Normalised delay variance .. 104

4.6.3 Time jitter .. 107

4.6.4 Simulations versus measurements ... 108

4.7 Conclusions .. 112

5 Asynchronous CMOS logic array for binary image processing 113

5.1 Chapter overview ... 113

5.2 Introduction .. 113

5.2.1 Bio-inspired approach ... 113

5.2.2 SIMD paradigm ... 114

5.2.3 Vision chips ... 115

Contents 4

5.3 Wave propagation approach to skeletonization.. 116

5.3.1 Skeletonization (background knowledge) ... 116

5.3.2 Trigger-wave propagation concept .. 117

5.3.3 Hardware realisations .. 120

5.4 Circuit design ... 120

5.4.1 Propagation gate .. 121

5.4.2 Collision-detectig gate ... 122

5.4.3 CMOS circuit realisation ... 126

5.4.4 Mismatch optimisation .. 128

5.5 Chip implementation .. 131

5.6 Test system and setup ... 134

5.7 Experimental results ... 136

5.7.1 Result comparison ... 136

5.7.2 Delay voltage tuning.. 140

5.7.3 Supply voltage variability.. 141

5.7.4 Temperature variability ... 142

5.8 Design issues .. 144

5.8.1 Power rail ringing .. 144

5.8.2 Design asymmetry ... 146

5.9 Performance and power .. 147

5.10 Design improvements and conclusions .. 149

5.10.1 Conclusions ... 149

5.10.2 Improvements and future work ... 150

6 Wave propagation concept in arbitrary metrics 152

6.1 Chapter overview ... 152

6.2 Introduction .. 152

6.3 Propagation and timing analyses .. 154

6.4 Simplified switched RC model ... 157

6.5 CMOS design and experimental results ... 159

6.6 Conclusions .. 160

7 Probability and reasoning 162

7.1 Introduction and chapter overview ... 162

7.2 Conditional probability and Bayes' rule ... 163

7.3 Bayesian networks .. 164

7.4 Bayesian inference ... 165

7.5 Belief propagation .. 167

7.6 Factor graphs .. 169

7.7 Conclusions .. 173

8 VLSI systems for Bayesian inference 174

8.1 Chapter overview ... 174

8.2 Introduction .. 174

8.3 Analogue circuits for arithmetic operations ... 176

8.3.1 Continuous-time circuits ... 176

8.3.2 Discrete-time circuits... 177

8.4 Computational errors .. 179

8.5 Simulations ... 180

Contents 5

8.5.1 Simulation setup .. 180

8.5.2 Results ... 183

8.6 Networks in continuous-time analogue circuits ... 187

8.6.1 Accuracy versus redundancy ... 187

8.6.2 Accuracy versus area ... 189

8.6.3 Convergence in large networks ... 191

8.6.4 Complexity and power scaling .. 192

8.7 Performance of analogue systems .. 195

8.7.1 Computational efficiency .. 195

8.7.2 Performance of the continuous-time realisation 196

8.7.3 Performance of the discrete-time realisation ... 198

8.8 Digital implementation ... 200

8.8.1 Fixed point arithmetic.. 200

8.8.2 Hardware realisation .. 202

8.8.3 Computational accuracy .. 204

8.8.4 Digital synthesis and implementation ... 206

8.8.5 Performance of the digital realisation .. 209

8.9 Performance comparison .. 211

8.9.1 Analogue implementation ... 212

8.9.2 Digital implementation .. 212

8.9.3 Software implementation for PC ... 213

8.9.4 Discussion.. 215

8.10 Conclusions .. 220

9 Conclusions 222

9.1 Research summary ... 222

9.1.1 Binary image processing ... 223

9.1.2 Delay lines ... 223

9.1.3 Probabilistic reasoning .. 224

9.1.4 Contributions ... 225

9.2 Future work .. 226

9.2.1 Image processing ... 226

9.2.2 Bayesian inference... 226

9.2.3 Noise based information processing .. 227

9.2.4 Hardware-accelerated network learning .. 228

10 References 229

11 Appendix A 246

12 Appendix B 249

Final word count: 76 563

6

Abstract

Computation with Continuous Mode CMOS Circuits

in Image Processing and Probabilistic Reasoning

A thesis submitted to The University of Manchester for the degree of

Doctor of Philosophy

Przemyslaw Mroszczyk

May, 2014

The objective of the research presented in this thesis is to investigate alternative ways

of information processing employing asynchronous, data driven, and analogue

computation in massively parallel cellular processor arrays, with applications in machine

vision and artificial intelligence. The use of cellular processor architectures, with only

local neighbourhood connectivity, is considered in VLSI realisations of the trigger-wave

propagation in binary image processing, and in Bayesian inference. Design issues,

critical in terms of the computational precision and system performance, are extensively

analysed, accounting for the non-ideal operation of MOS devices caused by the second

order effects, noise and parameter mismatch. In particular, CMOS hardware solutions for

two specific tasks: binary image skeletonization and sum-product algorithm for belief

propagation in factor graphs, are considered, targeting efficient design in terms of the

processing speed, power, area, and computational precision.

The major contributions of this research are in the area of continuous-time and

discrete-time CMOS circuit design, with applications in moderate precision analogue and

asynchronous computation, accounting for parameter variability. Various analogue and

digital circuit realisations, operating in the continuous-time and discrete-time domains,

are analysed in theory and verified using combined Matlab-Hspice simulations,

providing a versatile framework suitable for custom specific analyses, verification and

optimisation of the designed systems. Novel solutions, exhibiting reduced impact of

parameter variability on the circuit operation, are presented and applied in the designs of

the arithmetic circuits for matrix-vector operations and in the data driven asynchronous

processor arrays for binary image processing. Several mismatch optimisation techniques

are demonstrated, based on the use of switched-current approach in the design of current-

mode Gilbert multiplier circuit, novel biasing scheme in the design of tunable delay

gates, and averaging technique applied to the analogue continuous-time circuits

realisations of Bayesian networks. The most promising circuit solutions were

implemented on the PPATC test chip, fabricated in a standard 90 nm CMOS process, and

verified in experiments.

7

Declaration

The University of Manchester

PhD Candidate Declaration

Candidate Name: Przemyslaw Mroszczyk

Faculty: Engineering and Physical Sciences

Thesis Title: Computation with Continuous Mode CMOS Circuits

 in Image Processing and Probabilistic Reasoning

Declaration to be completed by the candidate:

I declare that no portion of this work referred to in this thesis has been submitted in

support of an application for another degree or qualification of this or any other

university or other institute of learning.

Signed: Date:

8

Copyright

The author of this thesis (including any appendices and/or schedules to this thesis)

owns certain copyright or related rights in it (the “Copyright”) and s/he has given The

University of Manchester certain rights to use such Copyright, including for

administrative purposes.

Copies of this thesis, either in full or in extracts and whether in hard or electronic

copy, may be made only in accordance with the Copyright, Designs and Patents Act 1988

(as amended) and regulations issued under it or, where appropriate, in accordance with

licensing agreements which the University has from time to time. This page must form

part of any such copies made.

The ownership of certain Copyright, patents, designs, trade marks and other

intellectual property (the “Intellectual Property”) and any reproductions of copyright

works in the thesis, for example graphs and tables (“Reproductions”), which may be

described in this thesis, may not be owned by the author and may be owned by third

parties. Such Intellectual Property and Reproductions cannot and must not be made

available for use without the prior written permission of the owner(s) of the relevant

Intellectual Property and/or Reproductions.

Further information on the conditions under which disclosure, publication and

commercialisation of this thesis, the Copyright and any Intellectual Property and/or

Reproductions described in it may take place is available in the University IP Policy (see

http://documents.manchester.ac.uk/DocuInfo.aspx?DocID=487), in any relevant Thesis

restriction declarations deposited in the University Library, The University Library’s

regulations (see http://www.manchester.ac.uk/library/aboutus/regulations) and in The

University’s policy on Presentation of Theses.

9

Acknowledgments

I would like to express my great appreciation to my supervisor Dr. Piotr Dudek for

his professional guidance, enthusiastic encouragement and constructive suggestions

throughout this research work.

I express my gratitude to my colleagues Dr. Stephen Carey, Dr. Alexey Lopich,

Dr. David Barr, Dr. Jayawan Wijekoon, Mr. Bin Wang and Mr. Declan Walsh for their

assistance, help and support in this research, and for creating friendly environment.

I would like to extend my thanks to the academic, technical and administrative staff

of The University of Manchester for offering me help, resources and assistance,

necessary for successful completion of this research.

Finally, I wish to thank my parents (Danuta and Wieslaw) for their strong support,

patience and love, and my friends, who greatly contributed to my professional and

personal development.

10

Author's Publications

The work and the results presented in this thesis were in parts subject of the

following conference, journal, and poster contributions:

P. Mroszczyk, P. Dudek, "Trigger-Wave Collision Detecting Asynchronous Cellular

Logic Array for Fast Image Skeletonization", ISCAS 2012, pp. 2653-2656, May 2012

(Received Best Student Paper Award).

P. Mroszczyk, P. Dudek, "Tunable CMOS Delay Gate with Reduced Impact of

Fabrication Mismatch on Timing Parameters", NEWCAS 2013, pp. 1-4, Jun. 2013.

P. Mroszczyk, P. Dudek, "Trigger-wave propagation in arbitrary metrics in asynchronous

cellular logic arrays", ECCTD 2013, pp. 1-4, Sep. 2013.

P. Mroszczyk, P. Dudek, "The Accuracy and Scalability of Continuous-Time Bayesian

Inference in Analogue CMOS Circuits", accepted for ISCAS 2014.

P. Mroszczyk, P. Dudek, "Tunable CMOS Delay Gate with Improved Matching

Properties", IEEE Transactions on Circuits and Systems - I: Regular Papers

(in print), doi:10.1109/TCSI.2014.2312491, 2014.

P. Mroszczyk, P. Dudek, "Asynchronous Cellular Logic Array for Fast and Low-Power

Global Binary Image Processing", in preparation for submission to IEEE Transactions

on Circuits and Systems I.

"Bayesian Inference in Analogue VLSI", UK Neuroinformatics Node, poster

presentation, Manchester, UK, Nov. 2011.

"Bayesian Inference in Analogue Networks with Gaussian Noise", Building Bridges to

Build Brains, poster presentation, Edinburgh, UK, Nov. 2012.

Introduction 11

Chapter 1

Introduction

1.1 Chapter overview

This chapter discusses reasons for departing from digital computation towards

alternative approaches, operating in continuous domains using analogue and various bio-

inspired ways of information processing. In particular, motivations and key contributions

of this research are presented in the field of CMOS hardware design for image processing

and probabilistic reasoning tasks. Research summary and the outline of the thesis

structure concludes the chapter.

1.2 Reasons for alternative approaches

The application of Boolean logic in solving problems using networks of electro-

mechanical switches, proposed by Claude Elwood Shannon in his Master's dissertation

"A Symbolic Analysis of Relay and Switching Circuits" in 1940 [Shannon 38, 40], was

one of the major pioneering steps in establishing "digital computing", providing the most

reliable and precise way of information encoding and processing ever invented. This

work gave foundation for the build of a versatile programmable computing machine

(Turing machine), which principles of operation were proposed by Alan Turing

[Turing 36] and its particular hardware realisation, known as the von Neumann

architecture, was proposed by John von Neumann [von Neumann 45]. Merits of such

approach were quickly recognised and electro-mechanical switches were replaced with

Introduction 12

the best available electronic devices, first valves, and later bipolar and MOS transistors.

This began the era of digital computing, the quick development of which, was on one

hand propelled by the scientific curiosity and progress in the electronics manufacturing,

and on the other, by the political situation in the world, where the applications of new

computers, not only in science but also in security and defence, were highly expected.

Examples of the most famous constructions from that time are Electronic Numerical

Integrator And Computer (ENIAC), built by the scientists from the University of

Pennsylvania in 1946, and the Small Scale Experimental Machine ("The Baby") built at

the University of Manchester in 1948 as a prototype of a larger computing systems with

magnetic data storage [Bowden 53]. In particular, ENIAC could perform about 5000

operations per second with a certain degree of processing parallelism, using several

accumulators at the same time for different operations with 10 bit precision. It consumed

150 kW of power and consisted of over 17 000 vacuum tubes, costing an equivalent to 3

million pounds today. Due to the high cost, power consumption and large size, digital

computers were solely used for specific scientific and military purposes and access to

such devices was rather restricted only to small groups of scientists. The release of the

first commercially available programmable 4 bit microprocessor, Intel 4004, by Intel

Corporation in 1971, with processing capabilities comparable to ENIAC but consuming

only 0.5 W of power [Intel 86], was a milestone achievement in the history of the digital

computing. It denoted a new direction for the research and the industry leading to design

of cheaper and more power efficient systems based on synchronous digital circuits,

where low power consumption and high processing speed could be obtained by transistor

size downscaling, and the cost could be reduced by mass production and further MOS

process refinement. As a result, MOS technologies evolved, starting from 10 µm down to

nearly 10 nm feature size, supported by a highly reliable chip manufacturing processes

and a variety of CAD tools for simulation, design and verification of the designed

integrated circuits before fabrication.

Due to the long period of development and widespread use of systems based on

synchronous digital circuits, such computers could already be called classical (term

classical refers to a typical digital computer based on von Neumann or Harvard

architecture, often associated with a single-processor Personal Computers (PCs)

executing instructions serially). However, alternative machines, employing different

classes of electronic circuits and various ways of information encoding and processing,

have always been considered in parallel with the classical solutions. One reason for that,

Introduction 13

concerning mostly the earliest digital constructions, was the limited processing speed and

limited computational capacity of digital systems, unable to solve complex problems

required in many practical applications. Another reason was the limited processing

efficiency of the digital computers in comparison to the biological nervous systems,

inherently dealing with complex tasks while consuming very low power. Therefore,

many attempts have been made to mimic the operation of such systems using electronic

circuits. In general, the main limitations of digital computers are their high power

consumption, low processing speed and large size when compared to the asynchronous

or analogue circuit implementations realised in the same technology and dedicated for

particular tasks.

For a long time digital computing in CMOS technologies benefitted from the scaling

process resulting in improved power efficiency and higher processing speed. In order to

build faster and less power consuming computers, practically the same circuit designs,

with some minor modifications, could have been used for chip fabrication in the finer

technology nodes to achieve the desired effects. The continuous scaling process allowed

for implementation of larger circuits on the same chip area, with complexity growing

exponentially with time, as suggested by Gordon Moore in 1965 [Moore 65]. This

observation, known as Moore's law, became a general scaling rule widely used in science

and industry not only to predict the integration level of the future designs but also their

speed, power performance, available memory and potential cost. It is obvious, however,

that Moore's law is not a generic rule of progress but a self-propelling phenomenon

driven by competing corporations trying to maintain reputation and maximise profits.

Nonetheless, Moore's law provided a good estimate for parameters of future designs until

certain factors, stemming from quantum physics and thermodynamics, started to

constrain further performance growth of the CMOS circuits. The main goal of

technology feature size miniaturisation is MOS gate capacitance scaling, which on one

hand, allows for faster operation but, on the other hand, increases kT/C thermal noise.

This, in addition to the reduced supply voltage, affects the operation of digital circuits

reducing their statistical reliability. It should be noted that these effects do not constrain

the size of a transistor, that can be manufactured, but only suggest to limit either the

integration level, or to reduce the clock speed to maintain power dissipation and thermal

noise [Kish 2002]. Since device scaling is a very cost-efficient process, the integration

level grows exponentially following the Moore's law, however, other measures of

performance, such as power and speed have to be compromised in order to meet thermal

Introduction 14

constraints [Gea-Banacloche 2005]. This can be observed in Figure 1.1 showing the

scaling trends of Intel processors, where only the number of transistors per chip follows

the exponential growth.

Figure 1.1. Scaling trends of Intel chips (green - number of transistors, navy - clock speed, blue -

power, magenta - instruction-level parallelism), figure taken from [Shutter 2005].

Further scaling of the CMOS technologies will most probably continue for the next

several decades, and will not be quickly replaced by any other known approach on an

industrial scale. It is yet too early to assess to what extent novel propositions, based on

graphene, single electron, or polymer transistors, will provide satisfactory solutions. At

present, classical computing relies on CMOS technology and digital circuits operating

close to their thermodynamic limits. Therefore, faster processing is usually attempted by

novel programming techniques and better utilisation of the resources using multi core

processors. In particular, better integration of the memory and CPU has been suggested

to overcome so called von Neumann architectural bottlenecks [Backus 78], for example,

by employing massively parallel cellular processor architectures, with only local or

nearest neighbourhood connectivity, associative memories, and processing circuits

optimised for particular tasks. Further performance boost is also searched for in the

systems using asynchronous and analogue circuits, or even employing other ways of

representing and processing information.

Introduction 15

1.3 Alternative ways of information processing

In the following section more detailed review of the alternative processing methods,

such as analogue computers, artificial neural networks and stochastic machines, will be

provided. In particular, aspects concerning hardware design challenges and limitations,

essential to the research presented in this theses, will be discussed.

1.3.1 Analogue computers

Early realisations of digital computers were not fast and elaborate enough to handle

complex mathematical models described by large sets of differential equations. On the

other hand, it was observed that many such systems could easily be modelled by

analogue circuits with passive and active elements. Since the parameters of the circuits

can be tuned, they could inherently solve a set of equations while settling down to the

steady state. Such analogue computers were popular even before the invention of the

digital machines and used in many areas requiring system modelling and simulations,

such as in real time power network simulations [Joetten 85], in nuclear physics

experiments [Arbel 64], and in various control applications [Bissell 2004]. Examples of

such generic analogue computers used for solving differential equations and system

modelling are Newmark (1960, Cambridge, UK) and ELWAT-1 (1967, Wroclaw,

Poland). In particular, there were 50 units of ELWAT-1 manufactured by Elwro

company in Wroclaw (Poland) between 1967 and 1969 [Sienkiewicz 2009]. Each

computer consisted of 19 valve operational amplifiers, 12 computational blocks for

summation, differentiation and integration, one multiplier and 4 function generators, and

operated with a precision of 0.1% to 5%, displaying the results on an oscilloscope or

printing traces on a paper tape. For a long time such analogue computers were

competitive with the digital ones in terms of speed and the complexity of the problem,

that could be solved. However, relatively low precision, low dynamic range and strong

dependency of the circuit parameters on temperature, precluded their use in many

applications. Even though the motivations for using analogue circuits in computation and

modelling were driven solely by the lack of alternative solutions at that time, or by a low

speed and high cost of the early digital computers, the idea was not entirely abandoned

after the rapid improvement of the digital computers. It returns as an alternative for

classical computers in very complex applications such as bio-inspired processing systems

and massively parallel processor arrays.

Introduction 16

1.3.2 Artificial neural networks

Biological nervous systems are in many ways similar to electronic circuits, where the

information is processed and transmitted between conductive neurons using electric

charges. Given the very low power dissipation of the human brain, estimated to be about

20 W [Kish 2011], high complexity, and real time operation, the computational

efficiency of such biological computers is much higher than the ones achieved using

electronic circuits. One of the characteristic features adopted by nature in nervous

systems is the high degree of redundancy in the hardware structure and in the information

encoding scheme [von Neumann 52]. Such networks typically consist of a large number

of neurons working in parallel to collect, process and exchange information with each

other. Redundancy and parallelism assure high reliability of the system and its immunity

to parameter fluctuations. This distinguishes them from typical electronic circuits, where

failure of one component typically leads to an imminent failure of the whole system. One

of the early attempts to improve understanding of the operation of neural networks was

done in early 1940s by Warren McCulloch and Walter Pitts, who proposed a very simple

mathematical model of neuron operating in a binary mode with Heaviside step activation

function, used to the threshold sum of the active input signals [McCulloch 43]. A more

elaborate model of perceptron was later proposed by Frank Rosenblatt in 1958

[Rosenblatt 58]. These works, among others, gave foundation for different types of

artificial neural networks (ANN), such as multi-layer feed-forward networks and

feedback networks as described in [Hecht 90]. Notable types of ANN are Hopfield

networks [Hopfield 84] and cellular neural networks (CNN) [Chua 88a, 88b],

[Roska 93]. In particular, VLSI implementations of CNN became popular due to their

regular two-dimensional structure and only near neighbourhood connectivity between

neurons. There are a number of propositions for hardware implementations of such

networks, mainly using nonlinear analogue VLSI circuits, operating in continuous and

discrete time modes, or specific high performance parallel digital implementations

[Kinget 97]. It should be noted that analogue design in this area is very promising since

many problems can be solved using dedicated circuits [Mead 89]. Examples of such

circuits are single transistor multipliers based on the floating gate technique used as

programmable weighted synaptic connections between neurons [Dominguez-Castro 98],

rank-order extractors for winner-take-all networks [Hung 2002], and various nonlinear

function realisations [Chang 96a].

Introduction 17

In analogue networks, information is typically represented by an electric charge

measured either as a voltage, when stored on a capacitance, or as a current, when flowing

through a conducting element. This is sometimes used to differentiate between circuits

operating in the current or voltage mode. However, such classification is rather

conventional since the operation of any circuit requires constant transitions between

current and voltage domains. [Toumazou 93b].

In biological neural networks, the information is carried by trains of electrical pulses

(spikes) where the rate or probability of the pulse occurrence, measured over a period of

time, or a correlation between trains of spikes, correspond to the information encoded by

the signal. This shows the redundancy of biological systems not only in terms of the

hardware but also in terms of the information encoding. Such systems require processing

methods different from those used in the conventional electronic circuits [Kinget 97].

Following this approach, a separate class of electronic circuits, dedicated for the Spiking

Neural Networks, have been proposed [Maass 2001]. Such circuits combine the

processing methods of digital and analogue solutions and operate similarly to the

asynchronous circuits, processing discrete signals (e.g. digital pulses) but in continuous

time and representing continuous (analogue) values.

1.3.3 Stochastic computers

The probabilistic nature of the signals observed in biological neural networks was an

inspiration to the design of specific type of arithmetic machines, considered already in

1960s, as an alternative to the analogue computers [Riberio 67], [Poppelbaum 67],

[Gaines 67]. In the design of such stochastic computers it was assumed that the

continuous variables could be represented as sequences of random pulses with

probability proportional to an analogue value. Simple logic operations performed on such

sequences correspond to inherent arithmetic operations on the probabilities. For example,

if two random sequences of pulses are generated with probabilities p and q, the logical

AND operation on these signals will generate a sequence with probability equal pq

[Riberio 67]. Using more complex structures with logic gates, delay elements and

memory circuits, different arithmetic operations such as addition, subtraction,

multiplication, division, square root, integration and differentiation with respect to time

or other variable, can also be realised [Gaines 67].

Stochastic computers operate according to very simple principles, however, their

circuit realisations required additional hardware blocks such as generators of random

Introduction 18

pulses with controlled probability distribution and signal randomisers. The generators

were necessary to convert the analogue input signals to the sequences of random pulses.

The randomisers had to be used to restore the statistical properties of the intermediate

signals after each processing step [Riberio 67]. Since the computation is based on

stochastic processes, the result converges to the expected solution, however, with limited

precision depending on the length of the produced sequence. It has been shown that the

precision of an analogue value represented by a random pulse string is proportional to the

square root of the sequence length. In order to assure precision of 1% the sequence

should consist of 10,000 pulses, and this length will have to increase by 100 times if the

required precision is 0.1%. Even if longer sequences could be generated, due to the

stochastic nature of the process, the probability of unforeseen random disturbances will

gradually increase degrading the achievable precision [Poppelbaum 67]. The use of

stochastic computers have been suggested in image transformers and artificial neural

networks [Petriu 96]. They are promising alternatives to classical computers that could

be considered in future designs, where moderate precision is sufficient. The use of

modern CMOS technologies may facilitate some solutions to the aforementioned design

challenges, seen as unsolvable at the time when the integrated circuits were not widely in

use. It should be noted, however, that issues regarding area, power consumption and

scalability of such stochastic machines in CMOS need investigation.

The idea of processing continuous random signals (i.e. noise) to evaluate logic

functions has been proposed to address the problem of thermal noise in the modern

CMOS technologies [Kish 2011]. Such techniques rely on the correlated noise

information processing and are immune to the presence of the uncorrelated thermal noise.

In principle, the statistical parameters of random orthogonal signals are used to encode

logic state. In the processing, electronic circuits such as multipliers, low pass filters and

switches, can be used to perform logic operations on the noise signals. Such systems,

however, require analogue circuits operating in a very high bandwidth, to attain the

processing speed comparable to existing computers and more complex hardware

realisations of logic gates. It should be noted that there exist other approaches to

stochastic data processing using probabilistic CMOS computers [Korkmaz 2008] or

machines going beyond the scope of electronic circuits such as quantum computers [Shor

94]. Due to very specific principles of operation, the application domain of such

computers is still limited.

Introduction 19

1.4 Motivations

The main motivation for the research presented in this thesis is to address issues and

challenges in the design of cellular processor arrays in standard CMOS technologies with

applications in fast and power efficient image processing and probabilistic reasoning

tasks. In particular, asynchronous and analogue circuits are of the main interest, since

they can inherently solve many computationally demanding tasks faster and more

efficiently than classical computers.

The work undertaken in this research consists of two parts. The first part considers

the use of asynchronous pixel-parallel processor arrays in morphological operations on

binary image, supported with the experimental results obtained from the fabricated test

chip. The second part considers the use of the continuous-time and discrete-time

analogue processor arrays for a particular set of matrix-vector operations required in

loopy belief propagation algorithm for approximate inference in Bayesian networks.

Aspects, such as processing speed, computational accuracy under fabrication mismatch

and efficiency, accounting for power and area requirements, and scalability of such

solutions with network size were investigated. In addition to that, equivalent synchronous

digital circuits and software solutions on PC, were devised to provide the reference for

comparison of the analogue and digital systems in terms of speed, power, area and

computational efficiency.

1.5 Research overview

The progress of research work is not predictable and many initial assumptions, ideas

and expectations for potentially promising results has to be revised, modified and

sometimes abandoned. On the other hand, those unexpectedly encountered obstacles,

triggered new ideas and solutions, splitting the research into new branches or even

changing its main direction. In order to keep this thesis concise and consistent, some

ideas and conclusions, that go slightly off the track, although interesting and certainly

valuable, were not included but briefly summarised in the last chapter providing ideas

and directions for future work. The outline of the research presented in this thesis

indicating its turning points, encountered problems and proposed solutions, is presented

further in this section.

Introduction 20

1.5.1 Binary image processing

The idea of binary image processing using trigger-wave propagation concept was

initially inspired by the properties of the light-sensitive chemical nonlinear system

(a variant of the Belousov-Zhabotinski medium) capable of generating chemical

reactions in the form of propagating wave-fronts when stimulated by light [Kuhnert 89],

[Krinsky 91]. In literature, such systems are typically realised using asynchronous

CMOS cellular processor arrays with applications in morphological image processing

task such as geodesic reconstruction, hole filling, etc. [Dudek 2006].

The primary goal of the research was to use such arrays to evaluate skeletons of

binary images by implementing a mechanism to detect collisions between the

propagating waves. In such a system, it is essential for each processing cell to compute

results within a short and precisely defined period of time. Since there is no time

reference (e.g. clock signal) available in such asynchronous system, the idea was to

implement a simple delay gate generating the required time interval on the arrival of the

input data in each cell. By using a simple delay circuit based on a three-transistor current

starved inverter, very satisfactory simulation results were obtained. However, when

accounting for the parameter variability of MOS transistors, significant problems with

the precision of the generated time intervals were observed, affecting the quality of the

extracted images. This problem was solved by selective transistor scaling, where only

critical transistors in terms of the timing parameters were enlarged. It was also observed

that replacing the current limiting transistor with the switching one, in the delay gate

circuit, slightly changed the dynamic behaviour of the gate, reducing the impact of the

parameter variability on the generated time intervals. Such a gate has the current limiting

transistor in between the switching ones splitting the output of the inverter, therefore, it is

called output split inverter (OSI). The idea was further pursued in isolation from the

image processing framework, and eventually evolved into a separate research subject of

tunable delay lines with improved matching properties, applicable in delay locked loops,

time to digital converters, readout systems for particle detection and neuromorphic circuit

design.

In order to verify and optimise the operation of the designed system, investigate its

asynchronous behaviour, timing parameters and dynamic operation, simulations of the

actual circuit arrays rather than of a single processing cell were required. It seemed

necessary and convenient to provide the inputs and represent the results of the

Introduction 21

simulations in the form of binary images rather than time dependent signal traces. For

this purpose, a separate set of tools was built in Matlab and C++ to communicate with

Hspice circuit simulator and visualise the obtained results as a sequence of binary

images. This allowed to perform the mismatch optimisation of the array and also aided

investigating and solving problems related to current leakage, design asymmetry and

initialisation process, not easily detectable at the processing cell level.

It was also observed that slightly different contours of the waves triggered from a

single pixel can be generated depending on the timing parameters of the gate array. The

theory behind this was further investigated based on the simplified switched RC timing

model, generalising the principles of isotropic wave propagation in rectangular arrays in

the context of particular distance measure norm. The results of this research were applied

in the design of the asynchronous processor array, capable of generating circular

propagation waves, significantly improving the quality of the evaluated skeletons and

Voronoi diagrams, difficult to implement in synchronous circuits or even in software

adaptations of the propagation-based image processing method.

1.5.2 Bayesian inference

Bayesian inference in networks representing systems with cause-effect relationships

is often used in the applications requiring control, decision making, diagnoses and

forecasting [Pearl 86, 88], [Jensen 2007]. In general, methods for exact inference are

classified as NP-hard problems [Cooper 90], therefore, a lot of attention has been paid to

the simplified methods for approximate reasoning such as loopy belief propagation and

stochastic sampling [Neapolitan 2004]. In particular, belief propagation, relies on the

repetitive information exchange between the nodes, using only locally available data in

calculating probabilities. The algorithm performs algebraic operations including matrix-

vector and vector-vector multiplications on the discrete probability distributions. In order

to avoid underflow errors, belief propagation assumes normalisation of the computed

probability distributions after each processing step. This, however, requires additional

summations and divisions, increasing the computational complexity of the algorithm.

Despite extensive literature concerning principles of Bayesian inference by exact and

approximate methods, the area of their hardware implementations is not well explored

and limited to only a few publications. The idea of using sum-product algorithm in factor

graph implementations in analogue CMOS circuits, for the realisation of loopy belief

propagation, was initially proposed in [Kschischang 2001]. This approach was further

Introduction 22

followed in [Luckenbill 2002], reporting very low computational accuracy achieved in

such circuit realisations, however, relying on circuit simulations of a network with only

three nodes and using generic BSIM3 MOS transistor model, not related to any

technology. To the best of my knowledge, these are the only practical analogue circuit

realisations, apart from several works considering Bayesian inference in spiking neural

networks [Corneil 2012] and in digital domain using VLSI [Liang 2011] and field

programmable gate arrays (FPGA) [Lin 2010], [Kulesza 2006]. Therefore, the primary

motivation of this work was to revise the approach to Bayesian inference in analogue

CMOS circuits, and propose a clear formalism in a consistent framework, providing the

reference and the foundation for future research in this area.

In this thesis, the analogue circuits for arithmetic operations were implemented using

CMOS realisation of the Gilbert multiplier, operating in continuous-time and discrete-

time domains [Toumazou 93b]. The operation of such circuits was thoroughly analysed

in theory and verified in simulations using BSIM4 MOS transistor models provided by

the foundry. In particular, the operation of the continuous-time multiplier was verified

using the author's simplified equivalent model V-AMS, built in Verilog AMS language,

to account for second order effects in MOS transistors operating in weak inversion. It

was observed that the computational errors result mainly from the channel length

modulation effects and from the variable slope factor. These problems were addressed by

employing cascode current mirrors, single stage differential pairs (to assure operation in

saturation within the limited voltage headroom), and MOS transistors with different

threshold voltages, to reduce the leakage currents. The optimised design of the multiplier

was used to realise the matrix-vector and vector-vector operations in more complex

arithmetic structures, required in the sum product algorithm. Based on that, scaling rules

considering circuit complexity and power were derived.

At that stage it was also necessary to develop methods for quick verification of the

simulation results and the computational accuracy of the implemented networks. To

address this, a separate set of tools for Bayesian inference was built in Matlab. The

verification of a particular Bayesian network implemented in analogue circuit, for a given

set of input parameters, was performed using scripts for combined Matlab-Hspice

simulations, where the inference results obtained from the circuit and software were used

to evaluate the computational error. This allowed to further verify the operation and

scalability of the circuit realisations of larger networks.

Introduction 23

As was initially expected, accounting for the fabrication mismatch of MOS

transistors resulted in a significant degradation of the computational accuracy, calling

into question any practical use of such circuits. This concluded the preliminary stage of

the research giving directions to design of more precise analogue systems for arithmetic

operations. It brought attention to the parameter variability issues, setting the next

research objective, which was to investigate possible ways of mismatch reduction and

optimisation in such analogue circuits.

Several attempts to solve this problem were made, accounting for MOS transistor

scaling, network parameters optimisation, redundant design approach and also migration

to switched-current (SI) mode. The main disadvantage of the first method, based on

enlarging the size of MOS transistors, was a significant increase of the circuit area and

settling time. The idea of tuning network parameters to compensate for the parameter

mismatch was initially adapted from neural network systems, where inaccuracies of

neurons and synapses can be reduced by proper weight adjustment. Unfortunately, this

concept failed because of relatively small number of network parameters, as compared to

the number of MOS transistors used in the implementation. Another idea, benefiting

from the design redundancy was based on the hypothesis that collecting and averaging

results from several identical networks (affected by random parameter variability), will

generate more precise result. This idea was successful on the simulation level, however,

in order to obtain results with acceptable accuracy, large number of uncorrelated network

copies were required, practically precluding the use of this technique in CMOS

realisations.

Migration to switched-current mode was attempted due to the very high immunity of

such circuits to fabrication mismatch reported in literature. It was done based on the

observation that the continuous-time Gilbert multiplier can be realised using discrete-

time current mirrors The proposed idea was successful and the operation of the SI

version of the multiplier, and two Bayesian networks consisting of 5 and 7 nodes were

verified in simulations, giving promising results for the computational accuracy,

efficiency, and power.

Since the assumed realisation of such systems is fully parallel, each arithmetic

operation has its individual hardware block, which leads to a large area occupation. One

idea to address this issue is to employ time multiplexing of the resources and serialise the

processing flow. Another possibility is to investigate the hardware realisations of

stochastic methods for approximate Bayesian inference, such as Gibbs sampling and

Introduction 24

stochastic logic sampling. Such methods require less arithmetic operations per node than

belief propagation, however, the hardware realisation of the random generators is still an

open problem. So far, certain solutions for hardware random bit generators, based on

amplified thermal noise [Wee 2001], metastability [Vasyltsov 2008], and analogue chaos

generators [Dudek 2003] have been proposed.

In this research, the results obtained from the continuous-time and discrete-time

realisations of Bayesian networks were compared with their equivalent implementations

in synchronous digital circuits operating in fixed point arithmetic with different bit

precisions from 5 to 10 bits, and with software solutions realised in Matlab and C++. The

objective of this comparison was to provide an overview and performance measure of

three different approaches to the same problem realised in the same CMOS technology

node using, in each case, non-trivial and optimised solutions.

1.6 Contributions

The major contributions of the research presented in this thesis are:

 Analysis and design of the collision detecting layer for trigger-wave propagation-

based image processing algorithms in dynamic logic CMOS circuit combining logical

AND function and 1 bit memory latch, using only 8 MOS transistors.

 Analysis and design of the propagation gate for trigger-wave propagation-based

image processing algorithms with a novel bias scheme allowing for the generation of

the circular wave contours, difficult to achieve in software or using generic SIMD

processor arrays.

 Analysis and design of a delay gate employing a novel biasing scheme resulting in

almost twice better matching properties when compared to the commonly used

current starved inverter, with no penalty in terms of power or area.

 Analysis and design of the analogue CMOS discrete-time variant of the Gilbert

multiplier, operating in current mode with computational accuracy comparable to its

continuous-time equivalent but not affected by parameter mismatch.

 Analysis and design of an optimised digital fixed-point arithmetic circuits for matrix-

vector operations with applications in probabilistic calculus and other areas requiring

computation with normalised data.

 Analysis of the power, area and complexity scaling of the hardware realisations of the

factor graphs for belief propagation in analogue circuits.

Introduction 25

 Development and verification of the mismatch optimisation techniques based on the

novel biasing scheme (OSI delay gats), results averaging (Bayesian networks in

analogue continuous-time circuits) and switched-current technique (discrete-time

current-mode multipliers).

In addition to the undertaken research, the most promising and successful circuit

ideas were implemented on a test chip, fabricated using a standard 90 nm CMOS

technology available through mini@sic program supervised by EUROPRACTICE. The

layout of the PPATC chip (Parallel Processor Arrays Test Chip) was created in the full

custom approach. The design was submitted for fabrication in November 2012 and the

fabricated chips were received from the foundry in April 2013. The size of the PPATC

chip was 1875 µm × 1875 µm including I/O ring and 64 pads, and accommodated three

separate test designs:

 asynchronous logic array for binary image skeletonization and Voronoi tessellation

(64 × 96 pixels),

 two arrays of 512 16-stage delay lines each implemented using current starved

inverter (CSI) and output-split inverter (OSI) delay gates,

 two analogue processor arrays with various types of memory cells and Gilbert

multipliers operating in switched current mode, dedicated for applications in

Bayesian inference.

In order to test the fabricated chip, a separate test system based on Xilinx PicoBlaze

(Kcpsm3) microcontroller was designed and implemented on a Development Board from

Digilent, with Spartan 3 xc3s200 FPGA, operating in a command interpreting mode and

providing a communication link between a PC and the PPATC chip. This thesis includes

experimental results obtained from tests of the asynchronous logic array for binary image

processing and delay line arrays.

1.7 Thesis structure

The background knowledge and the literature review concerning the analogue

computation in CMOS circuits and a detailed discussion on parameter variability, are

presented in Chapter 2. The analysis and design of the continuous-time and discrete-time

current-mode analogue multipliers is presented in Chapter 3. The idea, analysis and the

Introduction 26

obtained experimental results, concerning the operation of the OSI delay gates with

improved matching parameters, are presented in Chapter 4. Chapter 5 provides an

introduction to binary image processing based on the trigger-wave propagation concept,

presents the proposed idea of detecting collisions, and discusses the obtained simulation

and experimental results. Chapter 6 extends this discussion to propagation in arrays

operating in different distance measure norms. An introduction to probabilistic reasoning,

Bayesian networks and belief propagation is provided in Chapter 7. Various realisations

of belief propagation algorithm, in analogue and digital systems, and the corresponding

comparative analysis, is provided in Chapter 8. Chapter 9 concludes the thesis and

discusses future work. Additional information concerning schematic diagrams and

scaling rules of the analogue hardware for Bayesian inference is provided in Appendices

A and B.

Computation with MOS transistors under parameter variability 27

Chapter 2

Computation with MOS transistors
under parameter variability

2.1 Chapter overview

This chapter provides a background knowledge and the literature review on the

computation in analogue circuits using MOS transistors and employing their switching

capability, nonlinear characteristics and information storing properties. A detailed

discussion will concern circuits such as analogue multipliers and switched-current

memory cells, used in the realisations of the circuits considered in this research. Since the

operation of the analogue and asynchronous circuits is highly determined by the accuracy

of the fabricated hardware, the major part of this chapter deals with mismatch analysis,

modelling and optimisation, providing foundation for CMOS circuit design discussed in

this thesis.

2.2 Analogue computation with MOS transistor

The function of MOS transistors in circuits for arithmetic operations is determined

by the form of the arguments and the principles of computation employed. In digital

domain, the computation on binary numbers is done using logic circuits with MOS

transistors operating as switches. In such circuits, the dynamic behaviour of transistors

during signal transitions and their nonlinear transfer characteristics, are usually not

considered, unless the timing constraints of the designed system are affected. In the

Computation with MOS transistors under parameter variability 28

analogue computing systems, the continuous arguments are represented by the magnitude

of voltage or current, and the arithmetic operations such as addition, subtraction,

integration etc., can be realised using linear RC circuits with operational amplifiers,

where characteristics of MOS transistors are of second importance [Razavi 2001],

[Allen 2002]. Such circuits are often used in communication, data converters and

analogue signal processing, and are not frequently considered in the realisations of

complex computing systems. This is mainly because of the high power and the large area

requirements of the operational amplifiers.

In order to reduce the area and power consumption, and to accelerate the processing

speed, circuits employing inherent features of MOS transistors (e.g. capacitance of the

insulated gate, nonlinear transfer characteristics) are usually considered. In such

approach, the mathematical relations between the drain currents and the gate, drain and

source voltages, of a MOS transistor, depend on the operating point, and can be used in

the realisations of different arithmetic operations, like addition, multiplication, division

or log-linear conversion. There are a number of challenges in the design of such circuits,

mainly stemming from biasing, dynamic range, noise and fabrication mismatch.

In the literature, fabrication mismatch and noise are often reported as the dominant

factors affecting the operation of analogue circuits. Transfer characteristics of a MOS

transistor, showing drain current ID and the RMS values σID (standard deviations) of the

noise and the fabrication mismatch versus gate-source voltage, are presented in

Figure 2.1. It can be observed that the variability of the drain current, resulting from

mismatch, depends on the operation region and is nearly one order of magnitude higher

than the variability caused by noise, when operating in strong inversion. In the designs

assuming the operation of MOS transistors in weak inversion, both noise and mismatch

should be taken into account. In particular, the exponential dependency of the drain

current on the gate-source voltage magnifies the impact of parameter mismatch on the

circuit performance. Also, a very small drain current in weak inversion approaches the

noise level, reducing the dynamic range and degrading signal to noise ratio in the circuit.

Nevertheless, the operation in weak inversion is often necessary, since the technology

scaling imposes lower supply voltages, which leaves less headroom for the operation in

strong inversion. Also, in weak inversion, the approximate exponential transfer

characteristics are beneficial in the realisations of some arithmetic operations.

Computation with MOS transistors under parameter variability 29

0 0.2 0.4 0.6 0.8 1 1.2
1p

10p

100p

1n

10n

100n

1u

10u

100u

1m

c
u

rr
e
n

t
[A

]

gate-source voltage [V]

I
D

 (drain current)

ID

 (mismatch)

ID

 (noise)

subthreshold strong inversion
(saturation) (saturation) (linear)

w
ea

k
in

ve
rs

io
n

m
oderte

 in
ve

rs
io

n

Figure 2.1. Drain current of MOS transistor and the RMS currents related to noise and fabrication

mismatch vs. gate-source voltage (simulation results obtained using low-leakage MOS model

from a 90 nm CMOS tech. assuming W = 1 µm and L = 1 µm, threshold voltage Vth = 0.45 V,

constant drain-source voltage VDS = 0.5 V, and gate-source voltage swept in range 0 - 1.2 V).

In the following section, an overview of different ideas utilising the inherent features

of MOS transistors in the realisation of arithmetic operations in analogue circuits will be

presented. In particular, switched-current circuits, advantageous in terms of mismatch

immunity and various realisations of analogue multipliers, will be discussed. The

discussion will be proceeded by a brief introduction to the simplest MOS transistor

model, based on the quadratic law (Spice Level 1), frequently used in analyses and hand

calculations. The remainder of this chapter focuses on parameter variability in CMOS

technologies, statistical models of MOS transistors, and mismatch optimisation

techniques.

2.2.1 MOS model for hand calculations

In literature, theoretical analyses of CMOS circuits typically assume the use of the

simplest MOS transistor model based on the square-law transfer characteristic, when

operating in strong inversion [Shichman 68]. Such model was a sufficient analysis tool

for hand calculations and computer simulations (known as Spice Level 1 model), useful

in modelling circuits designed in CMOS technologies above 1 µm feature size. In its

basic form, it considers only four electrical parameters: threshold voltage Vth, current

factor β, body effect parameter γ, and channel length modulation λ, which depend on the

physical parameters of semiconductors [Allen 2002]. In order to simplify the analyses,

Computation with MOS transistors under parameter variability 30

the body effect and the channel length modulation are usually not accounted for in the

hand calculations, and that the bulk-source voltage equals zero (i.e. source is electrically

connected to bulk). Such model describes the relations between the drain current iD and

the bias voltages vGS and vDS in strong inversion (when vGS > Vth) in two regions:

saturation, when vDS ≥ vGS - Vth and linear when vDS < vGS - Vth, and is given by the

following equations:

 2
2

thGSD Vui

, in saturation region where: thGSDS Vuu (2.1)

2

2

DS
DSthGSD

u
uVui , in linear region where: thGSDS Vuu (2.2)

The current factor (also called large signal transconductance) LWCox , depends on

the gate oxide capacitance Cox, carrier mobility µ and the device geometry defined by the

channel width W and length L.

An extension to this model, accounting for the subthreshold operation in weak

inversion, when vGS ≤ Vth, assumes the exponential dependency of the drain current on

the gate-source voltage according to the equation [Allen 2002], [Mead 89]:

T

GS
DD

nU

u

L

W
Ii exp0 (2.3)

where ID0 is a specific current in weak inversion, W and L are the channel width and

length respectively, UT = kT/q is thermal voltage (equal approximately to 25.85 mV at a

room temperature T = 300 K), and n is a subthreshold slope factor, depending on the gate

oxide capacitance Cox and the depletion layer capacitance Cdep, according to relation:

oxdep CCn 1 . In small signal analysis, the slope factor n can be treated as constant and

equal to a real number from interval 1 to 3 [Allen 2002]. In general, the slope factor n is

in a convoluted relation with uGS, Cdep and Cox, therefore, in a large signal analyses, it

should be considered as a function of gate-source voltage, rather than a constant

parameter [Toumazou 93b], [Mead 89]. The consequences of this effect will be further

investigated in Chapter 3, when discussing the computational errors of CMOS

multipliers.

Despite the limited accuracy of this model, equations (2.1) - (2.3) can be used in

hand calculations providing results and conclusions useful for further circuit

Computation with MOS transistors under parameter variability 31

optimisation, using more precise models such as BSIM (Berkeley Short-channel IGFET

Model [Sheu 97]) and dedicated CAD tools.

2.2.2 Switched-current circuits

Computation in switched-current circuits typically employs memory cells for

information storing and arithmetic operations. In such circuits, the information is

represented by a current, which flows to the drain of a diode-connected transistor

programming the gate voltage. After that, the gate disconnects from the drain and the

transistor operates as a source generating the programmed current. Apart from the

information storing purpose, such memory cells can also be used in the realisations of

simple current-mode arithmetic operations such as addition, subtraction, multiplication

and division by an integer number [Toumazou 93a, 93b].

There are many design challenges reported in the literature related to the realisations

of SI circuits, such as charge injection, channel length modulation, gate leakage, noise,

capacitive coupling, and parameter mismatch [Wegmann 89], [Daubert 88], [Fiez 91].

They affect the correct operation, accuracy and data retention time. Some of them, e.g.

gate leakage, noise and parameter mismatch, are technology dependent and cannot be

easily improved. However, effects such as charge injection, channel length modulation

and parasitic coupling, can, to some extent, be reduced by using specific circuit solutions

and by applying proper design and layout drawing techniques [Guggenbuhl 94],

[Yang 90], [Toumazou 90a].

Charge injection is a complex process depending on the size and the driving scheme

of the MOS switch connecting the gate and the drain of the information storing transistor

[Wegmann 90]. Solutions addressing charge injection problem usually suggest the use of

the minimum size switches, redundant dummy switches, individual switching scheme, or

the use of additional gate capacitor [Guggenbuhl 94]. In some applications requiring

higher precision, more complex structures were proposed including double (master-

slave) memory cells [Leenaerts 94], algorithmic memory cells [Toumazou 90a], and S
3
I

circuits [Carmona-Galan 2003]. These solutions employ multiple data storing transistors

and more complex switching sequences to reduce charge injection errors.

Channel length modulation of the information storing transistor decreases its drain-

source resistance, and hence, increases the error, depending on the voltage swing on the

output node during transitions between read and write cycles. This can be reduced by

employing cascode or regulated cascode memory cells, or by using cells with negative

Computation with MOS transistors under parameter variability 32

feedback loops and DC servo amplifiers assuring a constant voltage on the analogue bus

[Daubert 88], [Toumazou 90b]. Another circuit idea, addressing the charge injection,

channel length modulation and signal dependent error cancellation, is based on the S
2
I

memory cell [Hughes 93]. Due to its compact structure, requiring only two information

storing transistors, and simple switching sequence, such circuit is frequently considered

in designs of analogue computing systems [Dudek 2000a].

Circuits based on the SI technique are usually less accurate than their continuous-

time or switched-capacitor (SC) equivalents [Chang 96b]. The major disadvantage of the

SI approach in current-mode computation is relatively slow operation in comparison to

the continuous-time circuits. Especially, when the gate capacitances of the information

storing transistors are enlarged (to prevent charge injection errors), time necessary to

charge or discharge the gate increases. On the other hand, the realisation of the SI

circuits, unlike switched-capacitor solutions, does not require precise linear capacitors

nor high supply voltages to assure proper dynamic range [Leenaerts 96]. Most

importantly, the correct operation of the switched-current circuits is practically not

affected by fabrication mismatch, since the same transistor is used for storing and reading

the information. Therefore, SI technique is usually considered in the analogue circuit

realisations in standard CMOS technologies [Wegmann 89], [Dudek 2000].

2.2.3 Analogue multipliers

Analogue multipliers in CMOS technologies can be realised in various ways,

employing different design strategies and ideas, usually based on the nonlinear

characteristics of MOS transistors in continuous-time and discrete-time circuits,

operating in switched current (SI) or switched capacitor (SC) modes. Such computational

building blocks are used as analogue processing elements in adaptive filters, data

converters, mixers and modulators in radio frequency (RF) and communication systems,

and in parallel computing in neural networks and analogue processor arrays. In the

realisations of analogue multipliers, meeting specific design requirements such as good

linearity, wide dynamic range, low noise, high bandwidth and good matching, usually

depends on a particular application. For example, in the analogue computation, linearity,

dynamic range and parameter mismatch will be more important than noise or bandwidth

[Han 98].

In the literature, analogue multipliers are classified depending on the operation range

(single, two and four quadrant) and the operation mode, depending on whether the

Computation with MOS transistors under parameter variability 33

voltage or the current represents the arguments. More generic classification, proposed in

this review, differentiates between analogue multipliers based on the principles of signal

multiplication. In particular, multiplication utilising variable gain amplifiers, nonlinear

characteristics of MOS transistor, floating gate design and charge-based techniques will

be discussed.

A multiplication of two analogue signals can be done using an amplifier with a

variable gain, controlled by one of the signals, whereas the second one drives its input.

There are a number of possible circuit realisations of this idea, however, some of them

operate correctly only under the small signal assumption, where the characteristics of the

amplifiers remain approximately linear. This often affects the precision and the dynamic

range of the circuits, and usually requires differential representation of the signals to

eliminate products stemming from nonlinear characteristics, therefore, such structures are

mainly considered in RF and communication systems [Han 98].

Structures using MOS transistors operating in strong inversion and linear region,

realise analogue multiplication based on the proportion between the drain current and the

product of the gate and drain voltages, as shown in equation (2.2) [Shoemaker 91]. An

example circuit realisation of such multiplier using two MOS transistors operating in

linear region was presented in [Khachab 89]. There are many different possible

realisations of such multiplier, based on differential approach with improved accuracy

[Coban 95], [Lee 95], [Kub 90], switched capacitor (SC) circuits [Yasumoto 82],

[Enomoto 85], and single transistor implementations used in programmable synaptic

connections in CNN circuits [Dominguez-Castro 98], [Rodriguez-Vazquez 99],

[Carmona-Galan 2003].

For structures using MOS transistors in strong inversion and saturation, the analogue

multiplication is realised based on the proportion between the drain current and the

square of the difference of the gate and the source voltages, as shown in equation (2.1)

[Bult 87]. In practical realisation, the undesired components of the drain current can be

removed assuming operation in differential mode, using crossed coupled differential

pairs [Wang 93] or more complex structures based on multiple crossed-coupled circuits

implementing quarter square rule for multiplication [Song 90]. Such circuits are typically

realised using MOS squarers [Bult 86] or multiple-input floating gate transistors

performing inherent voltage summations on the input gate capacitive dividers

[Mehrvarz 95], [Ramirez-Angulo 96]. Discrete time realisation, based on a single squarer

and the SI memory cells for data storage and current subtraction, was reported in

Computation with MOS transistors under parameter variability 34

[Leenaerts 96], and its improved version using S
2
I memory cells was presented in

[Manganaro 98]. The use of the switched current technique allowed to store the

intermediate results and use only one squarer circuit, which reduced the area and

improved the matching, and the computational accuracy.

Structures using MOS transistors operating in weak inversion employ the

exponential relation between the drain current and the gate voltage, given by the equation

(2.3). Such multipliers are usually based on the Gilbert cell [Gilbert 68], realised as a set

of crossed coupled differential pairs operating in the voltage-current (VCM) or current-

current (CCM) mode. The VCM multipliers are highly nonlinear and operate correctly

only in the small signal approximation [Mead 89]. Such circuits are used in the

realisations of multipliers based on the quarter square identity [Liu 95]. The CCM

multipliers, first convert the input currents to their voltage representations using diode

connected MOS transistors, and then use these voltages to control the VCM circuits

[Song 93], [Gravati 2005a]. Such multiplies belong to the class of translinear circuits,

initially defined for bipolar transistors [Gilbert 75], and later extended to the circuits with

MOS transistors, operating in weak inversion [Andreou 96]. In these circuits, MOS

transistors are connected in loops, such that the gate source voltages around each loop

sum to zero, therefore the corresponding drain currents remain in certain linear

proportions [Toumazou 93b]. Such circuits allow for the operation in a wide dynamic

range, thus are frequently considered in the realisations of multiplier and divider circuits

for analogue computation [Gravati 2005b], [Andreou 96]. It is important to note that such

multipliers, when operating in the current-current mode, perform not only multiplication

but also normalisation of the computed results with respect to the input arguments

[Gilbert 84]. Although such normalisation is usually undesired and avoided by using

differential approach, it is advantageous in the realisations of the sum-product algorithm

for belief propagation, discussed in Chapter 7 [Pearl 88], [Luckenbill 2002].

There exist other ways of calculating products of analogue quantities using electronic

circuits, not necessarily employing any of the inherent features of MOS transistors. For

example, a sampled data multiplier operating in voltage-voltage mode, based on time and

current control in charging a capacitor, was proposed in [Brodarc 82]. A very compact

but less accurate, single quadrant charge-based multipliers were proposed for the

applications in spiking neural networks in the realisations of programmable synaptic

connections [Dominguez-Castro 98], [Massengill 91]. Also, the application of the

switched capacitor (SC) technique in multiplication and division was proposed in

Computation with MOS transistors under parameter variability 35

[Watanabe 84]. Approach using ideal log amplifiers in realisations of multiplication,

division and raising to a power was presented in [Grundy 94].

The most promising circuits for analogue computation can be found among

structures operating in the large signal current-current mode (CCM) in weak inversion,

and among structures realised in switched-current (SI) mode. In the former ones,

algebraic operations can be realised using translinear principle and inherent summation

of the current flowing into a common node. Unfortunately, the computational accuracy of

such circuits is highly degraded by fabrication mismatch, unless very large MOS

transistors are used [Gravati 2005b]. Switched-current circuits, on the other hand, are not

affected by mismatch but operate slower and generate additional errors, resulting from

charge injection, leakage and other effects. Therefore, hybrid solutions such as

translinear SI circuits, should be considered in the designs of analogue computational

systems. For example, the realisation of the analogue multiplier proposed in

[Manganaro 98], used S
2
I memory cells and a single arithmetic squarer operating in

strong inversion, giving very good performance parameters. The idea and design of a

multiplier based on the Gilbert cell and operating in switched-current mode is one of the

contributions of this research, discussed in detail in Chapter 3 and used in the realisation

of the sum-product algorithm for belief propagation in Chapter 8.

2.3 Parameter variability in CMOS technologies

An inherent shortcoming of any standard CMOS process is a certain degree of

random variability of the physical parameters of the manufactured devices. Usually, the

nature of these variations can be seen as a global, inter-die randomness (i.e. chip to chip,

wafer to wafer or batch to batch), and a local (uncorrelated) one, randomly affecting the

parameters of equally designed and closely laid out devices. Global variation can be

attributed to the randomness in the manufacturing process, resulting in a systematic shift

in the absolute values of all the device parameters within one wafer or one batch. Its

influence on the correct circuit operation can be minimized when a design relies solely

on the parameter ratios rather than their absolute values. Local parameter variation,

known as fabrication mismatch, is more difficult to mitigate and may significantly

degrade the accuracy and performance of a circuit [Pelgrom 89]. For example, it limits

the accuracy of A/D and D/A converters [Pelgrom 98], increases the offset voltage in

operational amplifiers, distorts the symmetry of current mirrors [Shyu 84], constraints the

Computation with MOS transistors under parameter variability 36

speed-power-accuracy trade off in analogue systems [Kinget 97], and affects the voltage

and timing margins in digital circuits [Christiansen 95], [Toifl 99], [Lovett 2000].

Moreover, the fabrication mismatch is being reported not to scale down linearly with the

technology feature size but the variability of the parameters of a minimum-size MOS

device increases when moving to finer nodes [Mead 94], [Rodriguez-Vazquez 2003].

Therefore, it becomes necessary to account for fabrication mismatch, its analysis,

modelling and optimisation in a standard design flow of VLSI circuits, in order to avoid

overdesign and properly estimate yield and the manufacturing costs [Cox 85].

In the following section, two approaches to mismatch modelling: based on the

physical grounds [Lakshmikumar 86], and based on empirical analysis [Pelgrom 89], will

be presented. Also, basic mathematical methods for quantifying the impact of parameter

variability on a device operation will be provided.

2.3.1 Physical model

Mismatch model evaluated based on the study of the physical parameter randomness,

was discussed in [Shyu 84] and [Lakshmikumar 86]. In the proposed analyses, it was

assumed that the fabrication mismatch was dominated mainly by the randomness in the

gate charge distribution and the channel doping concentration. Due to certain variability

in the process of masking and ion implantation, dopants typically occupy random

locations with distribution close to uniform across a given surface. It has been shown in

theory [Nicollian 82] and verified in experiments [Shyu 84] that the variability of such

charge density reduces with respect to the total device area. For example, the variability

of the depletion charge density
2

Qdep over a channel area WL can be calculated as:

WL

Qdep

Qdep 2
 (2.4)

The same approach was applied to quantify the variability of other physical parameters

such as oxide thickness tox and carrier mobility µ. The variances of the threshold voltage

Vth and current factor β were calculated using equations from Section 2.2.1 and the

method of variance propagation from statistics (see Section 2.3.3).

2.3.2 Empirical model

The empirical model is based on the mathematical analysis assuming that the surface

variability of a parameter P is given by a two-dimensional density function P(x, y)

Computation with MOS transistors under parameter variability 37

consisting of a fixed and random parts, with arguments x and y indicating the location on

a plane [Pelgrom 89]. It is important to note that such abstract model was constructed

with intention to show analogies to physical parameter variability across a chip die or a

wafer. The value of the parameter P, in a certain location (x, y), is represented by its

average and calculated by integrating the corresponding density function P(x, y) over the

area around this location. For two values of the same parameter P but obtained in

different locations, the mismatch was defined as the difference between their respective

mean values ∆P(x, y). The resulting variance of parameter ∆P between two identically

drawn rectangular devices of area WL in distance D between their centres, is given by the

formula:

22
2

2 DS
WL

A
P

P
P

 (2.5)

where AP and SP are the process dependent parameters corresponding respectively to the

local random variation, which averages out with the device area, and to the long distance

parameter variation, usually causing parameter offsets and gradients across the silicon

dies. The derivation of the Pelgrom's model can be found in [Linares-Barranco 2007].

It is important to note that the distance dependent component D in equation (2.5),

although verified in measurements [Pelgrom 89], [Bastos 95], has rather negligible

impact on the total parameter variability. In order to quantify the magnitude of the long

distance parameter variability, a corner distance Dm was introduced and defined as the

distance between two identical smallest-size MOS transistors, manufactured in a CMOS

technology of a particular λT feature size, where the components WLAP

2
 and

22DSP , in

the equation (2.5), become equal [Kinget 97]:

PT

P
m

S

A
D

 (2.6)

The corner distance for the threshold voltage Vth and the current factor β, reported for a

2.5 µm CMOS technology, was greater than 3 mm [Pelgrom 89], and already greater

than 14 mm for a 0.7 µm CMOS technology [Kinget 97]. Since the corner distance Dm is

much bigger than the size of a typical integrated circuit or even a full chip, the distance

dependent component in equation (2.5) can usually be neglected, and only the area

dependent mismatch can be considered.

Computation with MOS transistors under parameter variability 38

It can be concluded that, irrespective of the approach (either based on physical or

empirical studies), the variability of the threshold voltage 2

Vth and the current factor
2

of the square-law MOS transistor model are given by the following equations:

WL

AVth
Vth

2
2

 (2.7)

WL

A2

2

2

 (2.8)

where AVth and Aβ are the technology dependent constant parameters, usually extracted

from measurements.

2.3.3 Variability propagation

Standard MOS transistor models, such as Spice Level 1 or BSIM, define

mathematical relations between the operating point of the device (i.e. drain current and

gate-source voltage) and the electrical parameters of the transistors, such as threshold

voltage Vth and current factor β. When building statistical models of MOS transistors, it

is essential to "propagate" the variability of the model parameters (e.g. 2

Vth ,
2

) on the

variability of the drain current or the gate-source voltage. This is typically done by

calculating the approximate variance
2

F of a function f of n random variables

 nPPPf ,...,, 21 with variances 22

2

2

1 ,...,, PnPP using formula [Abel 93], [Papoulis 2002]:

n

i

n

ij

PjPi

ji

ijPi

n

i i

F
P

f

P

f

P

f

1 1

222

1

2

2 2 (2.9)

where ρij is the correlation factor between parameters Pi and Pj. In practice, it may be the

case that some of the correlation coefficients are negligibly small or zero. The physical

parameters of CMOS circuits can, in the majority of cases, be represented as a set of

independent random variables. However, the variability of the resulting electrical

parameters, specific to a particular MOS transistor model, may be correlated. This

happens when they rely on the same physical parameters and phenomena. For example,

the variability of the gate oxide thickness affects the gate oxide capacitance, and hence,

contributes to the variability of the threshold voltage Vth, and also to the variability of the

current factor β. However, the experimental results have shown that the correlation

between Vth and β is negligibly small [Kinget 2005]. In such a case, when all the

Computation with MOS transistors under parameter variability 39

parameters P1,...,Pn can be treated as uncorrelated random variables, the variance from

(2.9) simplifies to the following equation:

2

2

2

2

2

2

2

1

2

1

2 ... Pn

n

PPF
P

f

P

f

P

f

 (2.10)

In some mathematical considerations, it is important to differentiate between the

variance of a random parameter P equal
2

P and the variance of the difference ∆P of the

random values of the same parameter P equal
2

P [Kinget 97]. Since equation (2.5)

provides a method for calculating variance of the parameter difference, in some cases, it

is necessary to calculate the variability of the parameter P itself. Assuming that ∆P is a

difference of two uncorrelated and randomly generated values of the same parameter

∆P = P' - P'' and using (2.10), the variance equals
2

''

2

'

2

PPP . Values P' and P'' are

samples of the same parameter P, therefore, their variances are equal:
2

''

2

' PP , and the

variance
2

P of parameter P can be calculated as 222

PP .

2.4 Mismatch modelling

The majority of works considering mismatch modelling focus mainly on constructing

reliable statistical models applicable over a wide range of geometry sizes and different

bias conditions. It should be noted, however, that mismatch modelling does not

necessarily require constructing a new MOS transistor model. The main problem lies in

the correct identification of different physical sources of randomness in the fabrication

process, and in the analysis of their influence on the electrical parameters of MOS

devices. This is specific to the model chosen and to the random parameter cross

correlations.

In the following section, simplified MOS transistor model for mismatch analysis,

used in this thesis, will be derived based on the Spice Level 1 model presented in section

2.2.1 and the method of variance propagation from equation (2.10). For simplicity zero

correlation between variability of the threshold voltage and the current factor β will be

assumed.

2.4.1 Mismatch MOS model for hand calculations

The implications of parameter mismatch on the operation of analogue circuits were

extensively studied in [Kinget 96, 97, 2005]. Similarly to noise, the impact of parameter

Computation with MOS transistors under parameter variability 40

mismatch on the drain current iD or on the gate-source voltage uGS is usually considered,

assuming small signal approximation, depending on the operation mode of the transistor.

Assuming a generic relation for the drain current: ,,, thDSGSD Vuufi as a function of

bias voltages uGS and uDS, and parameters Vth and β, the following difference equation

can be derived:

th

th

DD
D V

V

ii
I

(2.11)

Using (2.10), the variability of the drain current in (2.11) can be calculated as:

2

2

2

2

2

2

Vth

D

m

D

ID

I

g

I

(2.12)

where GSDm uig is a small signal transconductance of MOS transistor calculated for

the assumed bias point determined by uGS, uDS and iD. The variability of the gate-source

voltage for a fixed drain current can be calculated based on the following difference

equation:

th

th

GSGS
GS V

V

uu
U

(2.13)

The partial derivatives in (2.13) can be calculated using CVuufi thDSGSD ,,, , where

C is a constant. Applying (2.10) to (2.13), the following equation for the variability of

gate-source voltage can be derived:

2

22

22

m

D
VthVGS

g

I

(2.14)

The impact of the parameter variability on the drain current (for the fixed bias

voltages) or on the gate-source voltage (for the fixed drain current), given by the

equations (2.12) and (2.14) respectively, can be calculated for each region of operation of

a MOS transistor, using equations (2.1), (2.2) and (2.3).

2.4.2.1 Strong inversion and saturation

In strong inversion and saturation the drain current of a MOS transistor is given by

equation (2.1) and the corresponding variability parameters of the drain current and gate-

source voltage are equal:

Computation with MOS transistors under parameter variability 41

 2
2

2

2

2

2 4

thGS

Vth

D

ID

VuI

(2.15)

2

22

22

4

 thGS

VthVGS

Vu

(2.16)

Inserting the area dependent components 2

Vth and
22 from the equations (2.7) and

(2.8) respectively, to (2.15) and (2.16), the following equations can be derived:

2

2
2

2

2 41

thGS

Vth

D

ID

Vu

A
A

WLI

(2.17)

2

2

22

4

1
 A

Vu
A

WL

thGS
VthVGS

(2.18)

It can be observed, that the propagation of the parameter mismatch on the drain

current ID and the gate-source voltage VGS depends on the gate area WL of a MOS

transistor but also on the operating point, determined by voltage uGS. For very low or

very high values of uGS - Vth, the variability of one parameter, either the threshold voltage

or the current factor becomes dominant. To address such cases, a corner gate-drive

voltage uGST = (uGS - Vth)m, has been defined as the bias condition where the effects of

mismatch in Vth and β are equal. In strong inversion and saturation, the corner gate-drive

voltage equals AAu VthGST 2 [Kinget 97]. In particular, for bias conditions such that

(uGS - Vth) > uGST, the variability in current factor Aβ dominates in equation (2.17),

whereas for (uGS - Vth) < uGST, the variability in the threshold voltage AVth is a major

contributor to mismatch. Since the corner gate-drive voltage is usually high, the transistor

will most likely operate on the gate-source bias voltages meeting relation (uGS - Vth) <

uGST, where the mismatch in Vth is dominant. For example, the corner gate-drive voltage

for low leakage nMOS transistor in a 90 nm CMOS technology is 0.66 V. For the

threshold voltage Vth = 0.45 V and supply voltage 1.2 V, the required gate-source voltage

uGS assuring (uGS - Vth) > uGST must be higher than 1.11 V. Assuming that, in most cases,

(uGS - Vth) < uGST, the equations (2.17) and (2.18) can be simplified to the following form:

 2
2

2

2 41

thGS

Vth

D

ID

Vu

A

WLI

(2.19)

Computation with MOS transistors under parameter variability 42

22 1
VthVGS A

WL

(2.20)

2.4.2.2 Strong inversion and linear region

In strong inversion and linear region, the drain current of a MOS transistor is given

by equation (2.2) and the corresponding variability parameters are equal:

 2
2

2

2

2

2

2DSthGS

Vth

D

ID

uVuI

(2.21)

2

2
222 2

 DSthGSVthVGS uVu

(2.22)

Assuming deep linear operation, where uDS ≈ 0, the equations (2.21) and (2.22) can be

simplified to:

 2
2

2

2

2

2

thGS

Vth

D

ID

VuI

(2.23)

2

2
222

 thGSVthVGS Vu

(2.24)

Inserting the area dependent components 2

Vth and
22 from equations (2.7) and

(2.8) respectively, to (2.23) and (2.24), the following equations can be derived:

2

2
2

2

2 1

thGS

Vth

D

ID

Vu

A
A

WLI

(2.25)

 2222 1
 AVuA

WL
thGSVthVGS

(2.26)

Based on the equations (2.25) and (2.26), two important conclusions can be

formulated. Firstly, the corresponding corner gate-drive voltage AAu VthGST is twice

lower than in the saturation, therefore, the dominant source of the parameter variability is

rather bias dependent. Secondly, for the same gate source voltage, the variability of the

drain current in saturation (2.17) is higher than in linear region (2.25). Therefore, in some

analogue circuits, for example in single transistor multipliers for synaptic connections in

CNN, ohmic region of MOS transistor was suggested for better accuracy [Rodriguez-

Vazquez 99], [Carmona-Galan 2003].

Computation with MOS transistors under parameter variability 43

2.4.2.3 Weak inversion

In weak inversion and saturation the drain current of a MOS transistor is given by

equation (2.3) and the corresponding variability parameters of the drain current and gate-

source voltage are equal:

 2
2

2

2

2

2

T

Vth

D

ID

nUI

(2.27)

2

2
222

 TVthVGS nU

(2.28)

Based on the experimental results, it has been shown that, in weak inversion, the

variability of the drain current and gate-source voltage is dominated by the mismatch in

the threshold voltage. For example, assuming n = 1.5 for low leakage nMOS transistor

from a 90 nm CMOS technology, and inserting the area dependent components 2

Vth and

22 from equations (2.7) and (2.8) respectively, to (2.27) and (2.8), the ratio

12.0 VthT AnUA which means that the contribution of the threshold voltage

component in (2.27) and (2.28) is almost ten times higher than the contribution of the

current factor. Based on that, the equations (2.27) and (2.28) can be represented in the

simplified forms:

2

2

2

2 1

T

Vth

D

ID

nU

A

WLI

(2.29)

22 1
VthVGS A

WL

(2.30)

The ratio of the drain current variability in strong inversion (2.19) to the current in

weak inversion (2.29) equals thGST VunU . Assuming typical bias conditions of the

low leakage nMOS transistor from a 90 nm CMOS technology operating in strong

inversion and saturation (uGS = 0.8 V, Vth = 0.45 V, see Figure 2.1), the variability of the

drain current in weak inversion is almost ten times higher than in strong inversion.

2.4.3 Statistical MOS models for CAD

The simplified MOS model, considered in previous sections, was convenient for

hand calculations and sufficiently precise for the technology feature size of 1 µm or

higher. However, it may no longer be practically justifiable for submicron and deep

Computation with MOS transistors under parameter variability 44

submicron CMOS processes, where the second order effects in MOS devices, such as

short channel effects, mobility degradation and body bias effect, start to play an

important role. Therefore, the use of more complex, compact models such as BSIM,

providing a better approximation of MOS transistor behaviour, is usually considered in

circuit simulations [Bhattacharyya 2009].

Due to the high complexity and the convoluted form of the equations in BSIM

model, the hand analysis of MOS transistor behaviour and circuit operation under model

parameter variability is no longer feasible. Instead, statistical Monte Carlo sampling

approach was proposed, using randomly generated sets of model parameters in multiple

circuit simulations. The variability of particular circuit parameters (e.g. offset voltage in

an operational amplifier) could be calculated directly from the statistics of the obtained

simulation results.

Given the improved accuracy of the members of BSIM family such as BSIM4 and

BSIM5 [He 2007], dedicated for CMOS processes below 65 nm feature size, the

complexity of such models, and hence, the resulting simulation time increases. Since

Monte Carlo analysis requires multiple simulation runs, it becomes critically important to

devise a sensible trade off between the accuracy of the statistical model, and its

complexity. This is usually achieved on the empirical bases assuming random fluctuation

of only selected parameters, such that, the statistical model fits into the data obtained

from the measurements [Drennan 2003]. The number of iterations in Monte Carlo

simulations should also be chosen individually, according to the required accuracy of the

parameter variability estimation. The relative error is inversely proportional to the square

root of the number of simulation runs, therefore, one order of magnitude accuracy

improvement requires two orders of magnitude more iteration runs. To address the

problem of long simulation time, methods employing macromodel extraction, or

approaches assuming limited number of runs, producing only critical circuit

configurations, were considered [Michael 92, 96].

Even though Monte Carlo simulations using statistical BSIM models provides much

more accurate tool for circuit variability estimation, the simplest square-law MOS

transistor model is still frequently used in the hand analyses, providing insightful

conclusions and directions for mismatch optimisation using more precise methods.

Computation with MOS transistors under parameter variability 45

2.4.4 Extended simplified model

In order to improve the accuracy of the simplified model discussed in section 2.2.1,

certain improvements accounting for the second order effects such as gate roughness,

effective mobility reduction, short and narrow channel effects and active gate area

reduction, were proposed [Steyaert 94], [Bastos 95].

Gate roughness is defined as an irregularity of the polysilicon and diffusion regions

forming MOS transistor gate. The impact of the resulting variations in the gate width and

length on the mismatch of β is given by the equation [Pelgrom 89]:

222

2
1

WL

A

LW

A
AA

WL

LW
ox

(2.31)

where AW and AL are constant process parameters. Important conclusion can be drawn

when calculating minimum of the function
22 from (2.31) for a constant area WL = A.

It can be shown that there exists an optimal ratio 22

LW AALW , minimising the

variability of the current factor β. This is particularly important in the mismatch

optimisation based on geometry scaling, where an improvement of the accuracy could be

achieved by a proper selection of W/L ratio for a constant gate area.

Several important effects observed in the small geometry MOS transistors such as

Drain Induced Barrier Lowering (DIBL) and Short Channel Effect (SCE) result from the

interaction between the depletion charge Qdep (induced by the gate-bulk bias voltage) and

the depletion regions surrounding reverse biased drain-bulk and source-bulk p-n

junctions. Such interaction between the depletion regions and the channel area can be

seen as an additional source of randomness, contributing to the variability of the

threshold voltage. Attempts to incorporate such effects in the simplest square-law model

were proposed in [Steyaert 94] and [Bastos 95]. It was observed that the variability of the

threshold voltage increases for wide and short channel devices, when the influence of the

drain voltage on the channel depletion charge was higher. This is particularly important

in analogue design, where wide and short channel transistors are often used (e.g. in the

input stages of amplifiers to achieve large transconductance).

2.5 Mismatch scaling

Assuming constant field scaling rules in CMOS technologies, certain physical and

electrical parameters of MOS devices increase or decrease by a constant factor K, which

Computation with MOS transistors under parameter variability 46

scales with the technology feature size λT ~ 1/K [Wong 83]. In particular, lateral and

vertical dimensions, such as channel width W, length L, and gate oxide thickness tox are

assumed to scale proportionally to 1/K, and the doping concentration ND proportionally

to K. In order to avoid punch through effects and drain-bulk junction breakdown, the bias

and supply voltages should also scale proportionally to 1/K. Although constant field

scaling rules are not precise when applied to submicron technologies, they are sufficient

for the approximate analyses presented in this section.

The variability of the threshold voltage of a MOS transistor depends mainly on the

fluctuations of the depletion charge Qdep stored on the gate capacitance Cox and can be

calculated from the approximate formula
222

oxQdepVth C [Lakshmikumar 86]. On the

other hand, the variability of the depletion charge Qdep, given by (2.4), equals

WLQdepQdep 2
. Combining the last two equation and assuming oxoxox tC and

DSdep qNQ 2 [Allen 2002], the following equation can be derived:

DS

ox

ox
Vth qN

t

WL

 2

1
2

2
 (2.32)

where WL is the gate area, tox is the oxide thickness, εox and εS is the electrical permittivity

of the oxide layer and the semiconductor (silicon) respectively, ψ is the surface potential

inducing the charge dislocation, q is the elementary electric charge, and ND is the doping

concentration of the semiconductor. Inserting the area dependent component of the

threshold voltage variability from (2.7), equal WLAVthVth

22 , to (2.32) it can be shown

the technology parameter Avth equals:

 4141
~2 DoxDS

ox

ox
Vth NtqN

t
A

 (2.33)

and is proportional to 41

DoxNt . Assuming scaling rules: Ktox 1~ and KND ~ , the

mismatch parameter AVth is proportional to:

4343 ~~ TVth KA (2.34)

From the equation (2.34) it can be seen that the parameter AVth scales down with the

technology feature size and becomes smaller when moving to finer nodes. Even though

the intrinsic matching of the threshold voltage improves for a fixed gate size, there exist

other physical limitations such as SCE and DIBL effects, introducing more sources of

parameter variability, further reducing the precision of MOS transistor operation

Computation with MOS transistors under parameter variability 47

[Bastos 95]. It should also be noted that technology scaling imposes lower supply and

bias voltages reducing the dynamic range of analogue circuits, and hence, further

magnifying the impact of parameter variability on the correct operation of such systems

[Kinget 97].

In the case of the current factor β, there is no clear relation between the mismatch

figure Aβ and the process parameters. In the literature it has only been speculated that the

variability of β could depend on the fluctuation of the gate oxide thickness tox, gate

roughness, and most likely, on the variability of the carrier mobility. The measurement

results reported in literature indicate a very weak scaling of Aβ with the technology

feature size, slightly improving when moving to finer nodes [Kinget 98], [Rodriguez-

Vazquez 2003]. It should be noted, however, that these conclusions were drawn based on

the measurements done in 1990s for CMOS technologies above 0.35 µm feature size.

When moving to finer nodes, certain reduction of the variability of parameter Aβ can be

observed (Table 2.1 and Figure 2.2b). Nevertheless, more experimental data for

technologies below 0.35 µm feature size is needed to confirm such observation.

The values of mismatch parameters AVth and Aβ, for different standard CMOS

technology nodes, reported in the literature and in the foundry documentation, are

presented in Table 2.1. It should be noted that these parameters are technology dependent

and may vary for the same node fabricated by different foundries [Pelgrom 2010]. Trends

showing the scaling of the average values of mismatch parameters of nMOS and pMOS

transistors in terms of the technology feature sizes λT are presented in Figure 2.2.

0 0.5 1 1.5 2 2.5
0

5

10

15

20

25

30

35

technology feature size
T
 [m]

A
V

th
 [

m
V

m
]

4300.18 TVthA

64.068.18 TVthA

0 0.5 1 1.5 2 2.5
0

0.5

1

1.5

2

2.5

3

3.5

technology feature size
T
 [m]

A

 [

%

m
]

28.048.2 TA

(a) (b)

Figure 2.2. Scaling trends of mismatch parameters a) AVth and b) Aβ in terms of technology

feature size.

Computation with MOS transistors under parameter variability 48

Table 2.1. Matching parameters AVth and Aβ for standard CMOS processes of different technology

feature size.

Technology (λT)
tox

[nm]
Type

AVth

[mV·µm]
Aβ [%·µm] Reference

2.5 µm 50
nMOS 30 2.3

[Pelgrom 89]
pMOS 35 3.2

1.2 µm 22.5
nMOS 21 1.8

[Bastos 95]
pMOS 25 4.2

1 µm 17.5
nMOS 13 2.5

[Bolt 96]
pMOS 23 3.0

0.7 µm 17
nMOS 11 1.9

[Bastos 97a]
pMOS 22 2.8

0.5 µm 12
nMOS 11 1.8

[Pelgrom 2010]
pMOS 13 2.3

0.35 µm 7.7
nMOS 9 1.9

[Pelgrom 2010]
pMOS 9 2.25

0.25 µm 6
nMOS 6 1.85

[Pelgrom 2010]
pMOS 6 1.85

0.18 µm 3.3
nMOS 5.23 0.61

[FDK 2009]
pMOS 5.85 0.93

0.13 µm 2.5
nMOS 5 1.6

[FDK 2009]
pMOS 5 1.6

90 nm 2.2
nMOS 5.14 1.56

[FDK 2009]
pMOS 3.43 1.14

65 nm 2.6
nMOS 4.18 0.89

[FDK 2009]
pMOS 2.99 0.69

In the case of the parameter AVth, the scaling rule derived in (2.34), represented by

function
43)(TT Cy for C = 18.00, was evaluated using square error minimisation

method and also added in the figure for reference. The same optimisation procedure was

repeated for the function
D

TT Cy)(, giving: C = 18.68 and D = 0.64. It can be

observed that the variability scaling of the threshold voltage extracted from the data is

slightly higher than the variability given by equation (2.34). This results from the

simplifications assumed in the derivation of (2.34), for example, not including the

variability of gate oxide thickness, trapped charges in gate etc. The prediction of the

parameter Aβ scaling, with respect to the technology feature size, was made using

function
D

TT Cy)(and the same optimisation procedure. The obtained parameters

are: C = 2.48 and D = 0.28.

2.6 Mismatch versus noise

The experimental results reported in the literature shows that random errors caused

by fabrication mismatch are about one to two orders of magnitude higher than the errors

stemming from noise [Kinget 97]. Assuming that MOS transistor operates in saturation,

Computation with MOS transistors under parameter variability 49

the variability of the equivalent input (gate) voltage can be calculated from equation

(2.20) as WLAVthVGS

22 , and the variability of this voltage as WLAVthhVGSmismatc 222 .

For simplicity, only the total wideband thermal noise kT/C of the gate capacitance Cg,

will be considered. The resulting noise voltage variability is equal to gVGSnoise CkT2
.

Assuming that the gate capacitance equals WLCC oxg , the ratio of the input voltage

variability caused by mismatch and noise is:

kT

CA oxVth

VGSnoise

hVGSmismatc

2

2

2

2

(2.35)

For example, for the low leakage nMOS transistor from a 90 nm CMOS technology

(assuming Avth = 5.14 mV·µm and tox = 2.2 nm), the ratio given by (2.35), equals

approximately 50, at the room temperature T = 300 K. This means that the error

introduced by mismatch is 50 times larger than the error stemming from thermal noise.

Using (2.34) and applying the constant field scaling rules to equation (2.35), and

assuming oxoxox tC , the following relation can be derived:

T

ox

ox
Vth

VGSnoise

hVGSmismatc KKK
t

A


  ~~~~ 211462

2

2

 (2.36) 

The mismatch to noise ratio from (2.35), with respect to technology feature size λT 

and calculated using data from Table 2.1, is presented in Figure 2.3. The scaling trend 

approximated by function   TT Cy  , was evaluated using square error minimisation 

method giving C = 71.88. The optimisation procedure was also repeated for the function 

D

TT Cy  )(  giving C = 71.73 and D = 0.37. It can be observed that the mismatch to 

noise ratio from (2.36) decreases when moving to finer nodes. Hypothetically, the error 

introduced by parameter mismatch will remain one order of magnitude above the error 

caused by thermal noise for technologies down to 3 nm feature size. It should be noted, 

however, that the rule derived in (2.36) is only an approximation not accounting for 

second order effects in MOS devices. 



Computation with MOS transistors under parameter variability 50 

0 0.5 1 1.5 2 2.5
0

10

20

30

40

50

60

70

80

90

100

technology feature size 
T
 [m]

(
m

is
m

at
ch

/
n
o

is
e)2

Tnoisemismatch  88.7122

37.022 73.71 Tnoisemismatch 

 

Figure 2.3. Scaling of the mismatch to noise ratio in terms of technology feature size. 

2.7 Mismatch versus temperature 

A temperature dependence of the process parameter variability is practically 

negligible. In particular, temperature affects the gate-semiconductor work function 

difference ΦMS and Fermi potential in the bulk ΦB, and hence, changes the threshold 

voltage Vth [Allen 2002]. The effect of temperature fluctuation can be seen as a 

systematic shift in the absolute values of physical parameters of semiconductor. 

Although ΦB and ΦMS linearly depend on temperature, they are proportional to the 

logarithm of the doping concentration ND (e.g. substrate or gate doping) [Mead 89]. 

Therefore, the impact of the variability of ΦB and ΦMS, caused by fluctuations of N, on 

the threshold voltage is negligible. In the case of the current factor β, parameter Aβ 

depends mainly on the fluctuations of carrier mobility caused by the channel edge 

roughness, which does not depend on temperature [Lakshmikumar 86]. 

Although parameter mismatch does not change with temperature, the generated 

thermal noise increases, reducing the mismatch to noise ratio discussed in the previous 

section. In theory, however, increase of the absolute temperature T by factor of 10 is 

necessary to equalise the effects of noise and mismatch, which is not realistic. 

2.8 Mismatch optimisation 

2.8.1 Circuit design techniques 

One of the commonly used techniques of mismatch optimisation in CMOS circuits is 

scaling, based on the assumption that the variability of electrical and physical parameters 

of MOS transistor reduce with the gate area increase [Pelgrom 89]. Other methods, 



Computation with MOS transistors under parameter variability 51 

account for circuit techniques such as auto-zero compensation, chopping, switched-

current operation and trimming [Kinget 97]. 

Auto-zero compensation is used in comparators, A/D converters and switched 

capacitor circuits, mainly to eliminate DC offset errors, stemming from the mismatch of 

MOS transistors in the input differential pairs. Such circuits require additional calibration 

cycle, therefore, this technique applies mainly to discrete time circuits. 

The main idea behind chopping technique is to reduce the effects of offset voltage 

and 1/f noise in band limited analogue signal processing systems. It assumes an 

interchangeable signal phase inversions of 0° and 180° with frequency higher than the 

signal bandwidth at the input and output of the a processing block. 

In discrete-time memory cells realised as switched-current circuits, the use of the 

same MOS transistor for both, read and write operation, practically eliminates the 

influence of parameter mismatch. This technique is further discussed in Chapter 3. 

Post fabrication trimming is the most generic mismatch optimisation technique 

applicable to a variety of CMOS circuit. It is usually based on individual operating point 

trimming or based on design redundancy, where additional transistors or processing 

blocks can individually be added or excluded from the system. Despite the increased area 

occupation and power consumption, such circuits usually require individual post 

fabrication trimming step and parameter storage technique, increasing the manufacturing 

costs. Therefore, this approach is rarely used in practice, except very specific designs 

[Heijne 96]. 

2.8.2  Layout drawing techniques 

An improvement in terms of parameter variability can be achieved by employing 

different layout drawing techniques, accounting for a symmetric component placement 

and common centroid design [Bastos 96]. In particular, mechanical stress caused by 

shallow trench isolation (STI) and metal coverage, can be reduced by using additional 

dummy devices separating the active circuit from trenches, and careful metal paths 

routing, leaving the critical transistors uncovered [Tuinhout 96, 2001]. An experimental 

study on the mismatch impact on the parameters of MOS transistors in different layout 

types was presented in [Yeh 2001]. Circuit design using self-aligned drain/source 

contacts of MOS devices was investigated in [Bolt 96]. It was concluded, however, that 

none of these techniques noticeably improves the design accuracy when compared to the 

typically used common-centroid approach. The effects of packaging and bonding on 



Computation with MOS transistors under parameter variability 52 

circuit parameter variability were studied in [Bastos 97b]. More advanced layout drawing 

techniques using statistical models and numerical optimisation methods, targeting both 

systematic and random parameter variability reduction, have been developed mainly for 

capacitor arrays in modern CMOS data converters [Hsiao 2012]. 

2.9 Conclusions 

Despite a high parameter variability in deep submicron CMOS technologies and 

rather pessimistic conclusions concerning mismatch scaling with technology feature size, 

the methods and results presented in this thesis provide a positive outlook on the idea of 

using asynchronous and analogue circuits for specific information processing tasks. 

Conclusions and optimisation techniques presented in this chapter, will be discussed in 

the contexts of particular circuit applications presented further in this thesis. 



Current-mode analogue multipliers 53 

Chapter 3 

Current-mode analogue multipliers 

3.1 Introduction and chapter overview 

This chapter presents the idea and design of two current-mode CMOS multipliers for 

analogue computation, operating in a continuous-time and a discrete-time modes. Both 

circuits are based on the Gilbert multiplier cell, realised using MOS transistors working 

in the subtheshold region. The operation of both circuits and the computational errors, 

stemming from mismatch and the second order effects in MOS transistors, are analysed 

in theory and verified in simulations. A comparison to an equivalent structure, realised in 

digital domain, is provided for reference and estimation of the computational precision. 

The proposed multipliers will be of use in the hardware realisations of the sum-product 

algorithm for belief propagation in factor graphs discussed in Chapter 8. 

3.2 Continuous-time Gilbert multiplier 

In the following section, the operation of the continuous-time Gilbert multiplier, 

implemented using MOS transistors working in the subthreshold region, will be 

discussed. In particular, the design issues, such as limited power supply, gate leakage and 

some second order effects in MOS devices, mainly affecting the computational accuracy, 

will be further investigated based on theoretical analyses and simulations using MOS 

transistor models from a standard 90 nm CMOS technology. 

 



Current-mode analogue multipliers 54 

3.2.1 Circuit analysis and realisation 

Schematic diagram of a basic Gilbert multiplier cell (a current normaliser), realised 

using four MOS transistors connected in a translinear loop is shown in Figure 3.1. 

 

M1

IX1 IX2

I0

M2 M4M3
VX1 VX2

ID1 ID2

VC

VREF VREF

 

Figure 3.1. Schematic diagram of a Gilbert multiplier realised on four MOS transistors connected 

in a translinear loop. 

In the following analysis, it is assumed that transistors M1 - M4 have identical 

geometries and operate in weak inversion and saturation, where uGS << Vth and 

uDS >> 4UT ≈ 100 mV. The drain current of a MOS transistor in weak inversion can be 

then calculated using (equation (2.9) in Chapter 2): 











T

GS
DD

nU

u

L

W
Ii exp0

 

(3.1) 

where ID0 is a specific current in weak inversion, W and L are the channel width and 

length respectively, UT = kT/q is thermal voltage equal approximately 25.85 mV at room 

temperature T = 300 K, and n is a subthreshold slope factor. Gate voltages VX1, VX2 and 

the common source voltage VC are measured in reference to the ground potential. The 

additional reference voltage VREF was introduced to assure appropriate voltage headroom 

for the circuit realisation of the current source I0. It will be shown that this voltage has no 

explicit impact on currents ID1 and ID2, nevertheless, it is used later in the practical 

implementation, therefore, it should be accounted for in this derivation. Using equation 

(3.1), and assuming that parameters ID0, W, L, and the slope factor n are the same for all 

four transistors in Figure 3.1, drain currents IX1 and ID1 can be calculated as: 








 










T

REF

T

X
DX

nU

V

nU

V

L

W
II expexp 1

01

 

(3.2) 



Current-mode analogue multipliers 55 








 










T

C

T

X
DD

nU

V

nU

V

L

W
II expexp 1

01
 (3.3) 

Using equations (3.2) and (3.3), the drain current ID1 and ID2 can be written as: 

 
 TREF

TC
XD

nUV

nUV
II






exp

exp
11

 
(3.4) 

 
 TREF

TC
XD

nUV

nUV
II






exp

exp
22

 
(3.5) 

Using equations (3.4) and (3.5), and assuming that the drain currents ID1 + ID2 = I0, the 

common source voltage VC can be calculated as: 

 














TREF

XX
TC

nUVI

II
nUV

exp
ln

0

21

 

(3.6) 

Inserting (3.6) to (3.4) and (3.5), the output drain currents ID1 and ID2 are equal: 

21

2
02

21

1
01

XX

X
D

XX

X
D

II

I
II

II

I
II







 (3.7) 

The obtained result could also be deduced from the translinear principle applied to 

the circuit from Figure 3.1. Assuming that transistors M1 - M4 operate in weak inversion 

and saturation, and the drain current is an exponential function of the gate voltage, the 

diode-connected transistors M3 and M4 work as logarithmic I-V converters of the input 

currents IX1 and IX2 generating voltages VX1 ~ ln(IX1) and VX2 ~ ln(IX2), which in turn 

control the differential pair on M1 and M2. Due to the exponential characteristics of M1 

and M2, the output currents ID1 and ID2 have the same proportions as the respective input 

ones and their sum is constant and equal I0. This conclusion leads directly to the set of 

equations (3.7). 

In the vector notation, the circuit from Figure 3.1 performs multiplication with 

normalisation given by the equation: 



















2

1
0

2

1

X

X

D

D

I

I
I

I

I

 

(3.8) 

where α = 1/(IX1 + IX2) is the normalising factor and I0 is the third input argument. The 

circuit presented in Figure 3.1 is the simplest realisation of a multiplier operating on two-



Current-mode analogue multipliers 56 

element vectors. Its extension to an n-element vector normaliser is straightforward and 

requires addition of more I-V converters and the corresponding output transistors in the 

common source section. The schematic diagram of the multiplier proposed in this work, 

realised in a standard 90 nm CMOS technology is presented in Figure 3.2. It implements 

the simplest current normaliser from Figure 3.1 with additional current mirrors for input 

argument I0 and the output currents ID1 and ID2. In the design, it was assumed that the 

input currents flow always to ground and the output currents are sourced from VDD. This 

helps to avoid additional current mirrors in the constructions of larger systems, where 

several multipliers are connected together. Such structures are further discussed in 

Chapter 8. The details concerning the implementation of the multiplier in Figure 3.2 and 

various technology related issues will be explained in the next section. 

 

VDD VDD

M1

VDD VDD

IX1 IX2ID1 ID2

I0

M2 M4M3

VREF

M5
1µm/0.5µm

M7
1µm/0.5µm

M6
1µm/0.5µm

M8
1µm/0.5µm

M13
1µm/0.5µm

M9
1µm/0.5µm

M14
1µm/0.5µm

M10
1µm/0.5µm

M15
1µm/0.5µm

M11
1µm/0.5µm

M16
1µm/0.5µm

M12
1µm/0.5µm

GILBERT MULTIPLIER

VX1 VX2

V01

V02

ID1
' ID2

'

I0
'

1.8µm/0.8µm 1.8µm/0.8µm 1.8µm/0.8µm1.8µm/0.8µm

(RVT)

(HVT)

(RVT)

(HVT) (HVT)

(RVT)

(HVT)

(RVT)

(RVT)(RVT)

(HVT)(HVT)

(TGO) (TGO)(TGO) (TGO)

RVT – Regular Threshold Voltage Device

HVT – High Threshold Voltage Device

TGO – Thick Gate Oxide High Device

VDD = 1.2 V

VREF = 300 mV

VC

 

Figure 3.2. Schematic diagram of the proposed basic multiplier cell realised in a standard 90 nm 

CMOS technology. 

 

 

 



Current-mode analogue multipliers 57 

3.2.2 Design issues 

Computational precision of the analogue circuits used for arithmetic operations is 

usually limited by the systematic and random errors. Systematic errors can be attributed 

to issues such as non-ideal operation of current mirrors, variable operating point, leakage, 

non-ideal characteristics of MOS devices etc. Random errors result mainly from the 

fabrication mismatch and noise. 

In order to reduce the level of systematic errors, several modifications to the basic 

multiplier circuit used by [Mead 89], [Loeliger 99, 2001] and [Luckenbill 2002], have 

been proposed. In the proposed solution. the input current I0 and the output currents ID1 

and ID2 are replicated using cascode current mirrors, exhibiting higher output resistance 

and better linearity, but also requiring a higher voltage headroom, necessary to keep the 

transistors in saturation. This becomes critical especially for the tail current source, 

constructed on transistors M5 and M7. Therefore, the sources of transistors M3 and M4 

(the logarithmic I-V converters) are connected to the reference voltage VREF > 0, rather 

than directly to the ground potential. The reference voltage VREF regulates the voltage VC, 

and hence, can be used to adjust the operating point of the tail current source, preventing 

M5 and M7 from leaving the saturation region, especially for small input currents IX1 and 

IX2. For very small input currents IX1 and IX2, corresponding gate-source voltages of M3 

and M4 are close to zero. For large tail currents, the VC voltage is pulled down to assure 

gate-source voltages of M1 and M2 high enough to properly split I0 between the two 

branches of the differential pair. In practice, VREF should be adjusted experimentally to 

assure proper operation of all the transistors in the circuit and minimise the generated 

computational errors. 

The leakage currents of the MOS transistors in the current mirrors determine the 

minimum value of the arguments, that can be correctly replicated. In the proposed 

solution, to reduce the leakage below 1 nA, and assure the correct operation of the circuit 

for currents in range of 1 nA - 1 µA, (necessary to encode values within range 0.1% - 

100%, Chapter 8), transistors M7,8, M13,14, and M15,16 were implemented as high threshold 

devices (HVT). The maximum value of the current is mainly limited by the size (width) 

of the transistors M1 - M4 (which operate in weak inversion for relatively low drain 

currents), and the size of transistors used in the current mirrors. In practice, the geometry 

of these transistors will be constrained by the timing requirements and the maximum 

circuit size. In the simulations of the multiplier presented in Figure 3.2 it was observed 



Current-mode analogue multipliers 58 

that the current mirrors introduce minor computational errors (assuming no mismatch) 

for transistor size W = 1 µm and L = 0.5 µm or higher, in range from 1 nA to 1 µA. The 

sizes of the transistors M1-4 are also not critical in terms of the computational precision of 

the multiplier, therefore, they were mainly dictated by the design of the discrete-time 

version of the multiplier (presented in Section 3.3), and for reference are kept the same 

and equal to W = 1.8 µm and L = 0.8 µm. 

3.2.3 V-AMS MOS model 

Yet another source of systematic errors results solely from the second order effects in 

MOS transistors M1 - M4 (Figure 3.2), such as channel length modulation (i.e. Early 

effect) and the variable slope factor n [Mead 89], [Xi 2003]. This affects the symmetry of 

the Gilbert cell, where each output branch operates on a different gate voltages, unless 

both input currents IX1 and IX2 are equal. The level of errors caused by such effects was 

smaller for thick gate oxide devices (TGO), however this could be an issue specific to the 

model and technology used. 

Given the structure of the BSIM model, the fundamental effects of a MOS device, 

such as channel length modulation, are not defined by one equation or a single parameter, 

that could be "activated" or "deactivated" by the user. Therefore, a simplified MOS 

transistor model was developed to allow for the simulations of the contribution of 

different effects to the total computational error. The proposed model, implemented in 

Verilog AMS language, is dedicated for the operation of MOS transistor in subthreshold 

region according to the formula [Mead 89]: 

OFF

A

DS

T

DS

T

GS
DD I

U

u

U

u

nU

u

L

W
Ii 









































 1exp1exp0

 

(3.9) 

The equation (3.9) extends the basic formula for drain current given in (3.1) by 

accounting for the contribution of the drain-source voltage uDS, the channel length 

modulation effect depending on the Early voltage UA, and the off (leakage) current IOFF. 

The variability of the slope factor n, in terms of the bias conditions, was first observed in 

the simulations of a simple test circuit for DC characteristics presented in Figure 3.3, 

using BSIM4 MOS transistor model provided by the foundry. Assuming the simplest 

relation between the drain current iD and gate-source voltage uGS = VGB - VSB, given by 

equation (3.1), the dependency of the inverted slope factor k = 1/n was evaluated from 

the simulations using the following relation: 



Current-mode analogue multipliers 59 

 

GB

D
T

V

i
Uk






ln
 (3.10) 

Based on the obtained results, it was observed that the traces showing the 

dependency of parameter k on the gate-bulk voltage VGB resemble Gaussian functions, 

slightly elongated on the right hand side and shifted with the source-bulk voltage VSB, as 

demonstrated in Figure 3.4. Therefore, in the constructed V-AMS MOS model, a 

Gaussian function was used as an approximation to reproduce the variability of the slope 

factor k according to the following empirical equation: 

 2exp GSkuKk 
 

(3.11) 

where K and αk are fitting parameters. The drain current iD and the slope factor k of the 

proposed V-AMS model were calculated adapting the equations (3.9) and (3.11) and 

adding more fitting parameters and control flags, eventually leading to the following 

model equations: 

 

OFF

A

SBDB

T

SBDB

T

SBGB
DD

I
U

VSHVV
UAF

U

VSHVV

U

VSHVVk

L

W
Ii








 
























 








 


1

exp1exp0

 

(3.12) 

     MINSBGBkMINMAX KVSHVVKFKKk 
2

exp 
 

(3.13) 

The values of the parameters used in the equations (3.12) and (3.13), are provided in 

Table 3.1. The values of the parameters were chosen experimentally to obtain 

qualitatively similar behaviour between BSM4 model, provided by the foundry, and the 

proposed V-AMS model. In the simulations, the circuit from Figure 3.3 was used 

assuming constant drain-bulk voltage VDB = 1.2 V and VGB swept in range 0 to 1.2 V for 

four different values of the source-bulk voltage VSB = 0 V, 100 mV, 200 mV and 300 

mV. The results showing drain currents iD and slope factors k, calculated using equation 

(3.10), are presented in Figure 3.4. It should be noted the equation (3.11) was derived 

based on the assumption that MOS transistor operates according to the equation (3.1). 

Since BSIM4 model accounts for the presence of various second order effects, they may 

to some extent, contribute to the variability of the slope factor calculated using (3.10). 

Therefore, equation (3.11) is an approximation of the slope factor variability, suitable for 

the proposed model, but its use for other purposes should further be investigated. 



Current-mode analogue multipliers 60 

iD

M
1.8µm/0.8µm
(BSIM4/V-AMS)

VDB

VSB

(1.2 V)

0 V

100 mV

200 mV

300 mV

VGB
(0 V – 1.2 V)

 

Figure 3.3. Schematic diagram of the test circuit used in V-AMS MOS transistor model 

verification. 

Based on the simulation results presented in Figure 3.4, it can be seen that the 

proposed V-AMS model, constructed for the thick gate oxide transistor of a particular 

geometry, remains in a good qualitative agreement with its BSIM4 counterpart provided 

by the foundry. A deviation of the simulated drain current above the off (leakage) floor in 

the weak inversion region stems from second order effects such as Drain Induced Barrier 

Lowering (DIBL), accounted for in the BSIM4 model but not included in the proposed 

V-AMS model. Also, a distinct inflexion region of the slope factor profile around the 

threshold voltage is not predicted by the V-AMS model, which assumes a smooth 

transition of k from moderate to strong inversion.  

A better fit of the proposed model could possibly be achieved by employing 

numerical optimisation, or by extending the proposed model to more elaborate form. 

Nevertheless, for the purpose of this research, the proposed model is sufficient in its 

current form, providing good qualitative description of MOS transistor behaviour. It is 

applicable to the subthreshold region and allows for "controlling" the channel length 

modulation, off leakage and variable slope factor, simply by setting the corresponding 

flags (see Table 3.1). Simulation results showing the impact of the systematic and 

random effects of MOS transistors on the computational error of analogue multipliers are 

presented and discussed in Section 3.2.5. 



Current-mode analogue multipliers 61 

(a) 

0 0.2 0.4 0.6 0.8 1 1.2
1p

10p

100p

1n

10n

100n

1u

10u

100u

1m

c
u

rr
e
n

t 
[A

]

gate-bulk voltage V
GB

 [V]

 

 

BSIM4 model

V-AMS model

0 0.2 0.4 0.6 0.8 1 1.2
1p

10p

100p

1n

10n

100n

1u

10u

100u

1m

c
u

rr
e
n

t 
[A

]

gate-bulk voltage V
GB

 [V]

 

 

BSIM4 model

V-AMS model

0 0.2 0.4 0.6 0.8 1 1.2
1p

10p

100p

1n

10n

100n

1u

10u

100u

1m

d
ra

in
 c

u
rr

e
n

t 
i D

 [
A

]

gate-bulk voltage V
GB

 [V]

 

 

BSIM4 model

V-AMS model

0 0.2 0.4 0.6 0.8 1 1.2
1p

10p

100p

1n

10n

100n

1u

10u

100u

1m

d
ra

in
 c

u
rr

e
n

t 
i D

 [
A

]

gate-bulk voltage V
GB

 [V]

 

 

BSIM4 model

V-AMS model

VSB = 0 V

VSB = 100 mV

VSB = 200 mV

VSB = 300 mV

 

0 0.2 0.4 0.6 0.8 1 1.2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

sl
o

p
e
 f

a
c
to

r 
k

gate-bulk voltage V
GB

 [V]

 

 

BSIM4 model

V-AMS model

0 0.2 0.4 0.6 0.8 1 1.2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

sl
o

p
e
 f

a
c
to

r 
k

gate-bulk voltage V
GB

 [V]

 

 

BSIM4 model

V-AMS model

0 0.2 0.4 0.6 0.8 1 1.2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

sl
o

p
e
 f

a
c
to

r 
k

gate-bulk voltage V
GB

 [V]

 

 

BSIM4 model

V-AMS model

0 0.2 0.4 0.6 0.8 1 1.2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

sl
o

p
e
 f

a
c
to

r 
k

gate-bulk voltage V
GB

 [V]

 

 

BSIM4 model

V-AMS model

VSB = 0 V

VSB = 200 mV

VSB = 300 mV

VSB = 100 mV

 

(b) 

(c) 

(d) 

Figure 3.4. Drain current and slope factor k simulated for the thick gate oxide transistor using 

BSIM4 model (provided by the foundry) and the proposed V-AMS model versus gate-bulk 

voltage VGB for VDB = 1.2 V and different values of the source-bulk voltage equal: a) VSB = 0 V,    

b) VSB = 100 mV, c) VSB = 200 mV, and d) VSB = 300 mV. 

 



Current-mode analogue multipliers 62 

Table 3.1. Parameters of the V-AMS MOS transistor model. 

Parameter Value Unit Remarks 
W 1.8 µm MOS transistor channel width  

L 0.5 µm MOS transistor channel length 

VGB 0 - 1.2 V Gate-bulk voltage 

VDB 0 - 1.2 V Drain-bulk voltage 

VSB 0 - 1.2 V Source-bulk voltage 

ID0 0.15 pA Specific current of MOS transistor in subthreshold 

UT 25.85 mV Thermal potential equal kT/q for T = 300 K (constant) 

UA 8 V Early voltage 

IOFF 1.3 pA Off (leakage) current 

KMAX 0.78 --- Maximum slope factor value (also the value of k when KF = 0) 

KMIN 0.28 --- Minimum slope factor 

αK 0.90 --- Fitting parameter of the slope factor k 

VSH 60 mV Source voltage shift (fitting parameter) 

UAF, KF 0/1 --- 

Flags used to "enable" or "disable" channel length modulation and vari-

able slope factor effect (for KF=0 the slope factor is constant and equals 

KMAX) 

 

3.2.4 Computational errors 

In the simulations, two definitions of the computational error are considered: the 

relative current error (RCE), and the normalised current error (NCE). The relative 

current error (RCE) is defined as the maximum difference between the vector of currents 

obtained from the circuit simulation ISIM (in the case of the multiplier from Figure 3.2, 

the elements of ISIM are the drain currents ID1 and ID2) and the vector IMAT (evaluated 

using equation (3.8)), with respect to the reference current IREF, defining the maximum 

value of the computed signals (i.e. IREF is equivalent to unity in the performed arithmetic 

operations): 

%100
]μA[

]μA[max
RCE[%] 




REF

MATSIM

I

II
 (3.14) 

The normalised current error (NCE) is defined as the maximum difference between 

the normalised current ISIM/||ISIM||, obtained from the simulation, and the normalised result 

IMAT/||IMAT||, obtained from equation (3.8), where ||X|| equals the sum of the elements in X: 

%100maxNCE[%] 
MAT

MAT

SIM

SIM

I

I

I

I
 (3.15) 

The first definition of the computational error (RCE) represents a disparity between 

the current obtained from the circuit simulation and the exact one, computed from the 

equation (7.8). The second definition of the computational error (NCE) was introduced to 

address applications where the information is represented by the ratios of the vector 



Current-mode analogue multipliers 63 

elements, rather than by their absolute values. This definition will be used in the 

calculations of the computational errors generated by the circuit realisations of the sum-

product algorithm for belief propagation in Chapter 8. 

3.2.5 Simulation results 

In the simulations of the continuous-time multiplier, presented in Figure 3.2, the 

input currents IX1, IX2 and I0 were provided directly from ideal current sources. The 

output currents ID1 and ID2 were sank using additional diode connected transistors of the 

same size and type as M1 - M4, with sources connected to the reference voltage VREF. The 

simulation results were obtained using MOS transistor models provided by the foundry 

for a typical process corner (TT) and the V-AMS model discussed in section 3.2.3. The 

simulations were performed using a predefined set of 5000 random pairs of input 

currents [IX1 IX2], generated in range 1 nA - 1 µA, and divided into ten subsets, each with 

different constant current I0, in range from 50 nA to 1 µA. 

The simulation results showing mean values of the computational errors RCE and 

NCE (section 3.2.4), in terms of the third input current I0, generated using BSIM4 and V-

AMS models applied to transistors M1 - M4, are presented in Figure 3.5. In particular, V-

AMS model was used with different settings of flags KF and UAF covering four cases: 

1) both the variable slope factor (KF = 1) and the channel length modulation effects 

(UAF = 1) are "activated", 2) only variable slope factor (KF = 1, UAF = 0) is accounted 

for, 3) only channel length modulation (KF = 0, UAF = 1) is considered, and 4) MOS 

transistor with pure exponential characteristics are used (KF = 0, UAF = 0). 

 

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

3.5

N
o

rm
a
li

se
d

 c
u

rr
e
n

t 
e
rr

o
r 

(N
C

E
) 

[%
]

Input current I
0
 [A]

 

 

BSIM4 model

V-AMS model (KF=1, UAF=1)

V-AMS model (KF=1, UAF=0)

V-AMS model (KF=0, UAF=0)

V-AMS model (KF=0, UAF=1)

 

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

R
e
la

ti
v

e
 c

u
rr

e
n

t 
e
rr

o
r 

(R
C

E
) 

[%
]

Input current I
0
 [A]

 

 

BSIM4 model

V-AMS model (KF=1, UAF=1)

V-AMS model (KF=1, UAF=0)

V-AMS model (KF=0, UAF=0)

V-AMS model (KF=0, UAF=1)

 

(a) (b) 

Figure 3.5. Simulations of the test circuit from Figure 3.3 using BSIM4 and V-AMS models 

showing the mean value of the computational errors vs. input current I0: a) NCE, and b) RCE. 



Current-mode analogue multipliers 64 

It can be observed that the impact of the variable slope factor in transistors M1 - M4 

on the computational accuracy (green dashed trace in Figure 3.5a) is much higher than 

the impact of the channel length modulation (blue dashed trace in Figure 3.5a). It can be 

observed that traces (dashed green and continuous green), that were generated assuming 

only the variable slope factor (dashed green trace) and assuming both the variable slope 

factor and the channel length modulation (continuous green trace), are close to each 

other. Therefore, it can be concluded that the slope factor variability dominates the 

precision of the multiplier. Slightly higher values of NCE, obtained for only slope factor 

variability (dashed green trace), result from the fact that this effect may, to some extent, 

be compensated by the Early effect, when both are accounted for in the model. It can also 

be observed that the NCE is the lowest when MOS transistors with pure exponential 

characteristics are used (continuous blue trace). A non-zero level of the NCE error 

(continuous blue trace) stems mainly from a non-ideal operation of the current mirrors 

built on pMOS transistors, since their performance degrades for lower and higher output 

currents due to leakage and nonlinearities such as Early effect. 

The relative current error (RCE) provides more generic measure of the circuit 

precision, also accounting for the non-ideal behaviour of the tail current mirror 

(Figure 3.2). In particular, for very low input currents IX1 and IX2, the corresponding 

values of voltages VX1 and VX2 are also low, and the common voltage VC will decrease to 

enable proper splitting of the tail current I0. If I0 is high, then VC drops further down to 

increase the gate-source voltages of M1 and M2. This, on the other hand, reduces the 

headroom for transistors M5 and M7, operating in saturation (Figure 3.2), and hence, 

affects the bottom current mirror reducing the replicated value of I0'. As a result, the RCE 

error reaches its maximum for the larger values of I0, indicating a dominant impact of the 

tail current on the generated computational errors. In the definition of the RCE error, the 

division by the fixed reference current IREF (representing the maximum argument value) 

is assumed, therefore, the computational errors evaluated for I0 < IREF will be reduced 

(Figure 3.5b). It should be noted that the normalisation of the output vector [ID1 ID2], 

done in the computation of the NCE error, does not account for the inaccuracy of the tail 

current mirror. 

Finally, it can be observed that the traces showing the computational errors generated 

using BSIM4 and V-AMS models (for KF = 1 and UAF = 1), remain in qualitative 

agreement, which confirms the validity of the proposed model. 



Current-mode analogue multipliers 65 

Histograms showing distribution of the computational errors NCE and RCE of the 

continuous-time multiplier from Figure 3.2, are presented in Figure 3.6. Histograms of 

the NCE and RCE error distribution, generated accounting for parameter mismatch in all 

MOS transistors in the circuit from Figure 3.2 are presented in Figure 3.7. The 

distribution of RCE error is represented on a log scale due to a long tail of very rare cases 

with higher error. The mean value of the computational errors NCE and RCE, in terms of 

the transistor size scaling, is presented in Figure 3.8. In the simulations, widths and 

lengths of all the transistors in the circuit from Figure 3.2 were multiplied by the scaling 

factor α in range from 1 to 20. 

 

0 1 2 3 4 5
0

100

200

300

400

500

600

700

800

Normalised current error (NCE) [%]

n
u

m
b

e
r 

o
f 

c
a
se

s

µ = 1.06%

σ = 0.98%

 

0 2 4 6 8 10
10

0

10
1

10
2

10
3

Relative current error (RCE) [%]

n
u

m
b

e
r 

o
f 

c
a
se

s

µ = 1.33%

σ = 1.56%

 
(a) (b) 

Figure 3.6. Histograms of the computational errors of the continuous-time multiplier from 

Figure 3.2: a) NCE (µ = 1.06%, σ = 0.98%), and b) RCE (µ = 1.33%, σ = 1.56%). 

0 5 10 15 20 25
0

100

200

300

400

500

600

700

Normalised current error (NCE) [%]

n
u

m
b

e
r 

o
f 

c
a
se

s

µ = 4.59%

σ = 3.80%

 

0 5 10 15 20 25 30 35 40 45
10

0

10
1

10
2

10
3

Relative current error (RCE) [%]

n
u

m
b

e
r 

o
f 

c
a
se

s

µ = 6.06%

σ = 5.80%

 
(a) (b) 

Figure 3.7. Histograms of the computational errors of the continuous-time multiplier from 

Figure 3.2 accounting for fabrication mismatch of MOS transistors: NCE (µ = 4.59%, σ = 3.80%) 

and b) RCE (µ = 6.06%, σ = 5.80%). 

 



Current-mode analogue multipliers 66 

0 2 4 6 8 10 12 14 16 18 20
1

2

4

6

scaling parameter 

N
o

rm
a
li

se
d

 c
u

rr
e
n

t 
e
rr

o
r 

(N
C

E
) 

[%
]

 

 

simulation with mismatch

simulation without mismatch

 

0 2 4 6 8 10 12 14 16 18 20

1

2

4

8

scaling parameter 

R
e
la

ti
v

e
 c

u
rr

e
n

t 
e
rr

o
r 

(R
C

E
) 

[%
]

 

 

simulation with mismatch

simulation without mismatch

 
(a) (b) 

Figure 3.8. a) Mean value of the NCE, and b) RCE computational errors versus transistor size 

scaling factor α (the corresponding gate area is proportional to α
2
). 

It can be observed that mismatch strongly affects the correct operation of the circuit 

reducing its accuracy. Transistor size scaling improves the precision of the multiplier, 

however, at the expense of the device area. In particular, the impact of the fabrication 

mismatch becomes comparable to the level of the systematic errors for the values of 

parameter α higher than 8. This means that the total area of the multiplier ought to be 

increased more than 64 times to notably reduce mismatch. In practice, the magnitude of 

the generated error in such multiplier may be too high for many applications requiring 

precise computation under strict area constraints. 

3.3 Discrete-time Gilbert multiplier 

3.3.1 Circuit analysis and realisation 

The basic Gilbert multiplier cell, presented in Figure 3.1, can also be seen as a 

combination of two structures resembling current mirrors, built on transistor pairs M1-M3 

and M2-M4. It is important to note, however, that these pairs operate with different source 

potentials, therefore, the corresponding gate-source voltages are different and the input 

currents IX1 and IX2 do not simply copy to the output. This similarity can be advantageous 

in terms of the discrete-time realisation of the circuit, where the transistor pairs can be 

replaced with dynamic current mirrors operating in the switched-current mode. The 

schematic diagram of a continuous-time current mirror and its dynamic, discrete-time 

equivalent, are presented in Figure 3.9. [Toumazou 93b]. 



Current-mode analogue multipliers 67 

I0

M1

I0
'

M2
VG

 

I0

MD

I0
'

φ1

φ2

IN INOUT OUT

φ = 0 (switch opened)

φ = 1 (switch closed)

SW1

SW3 SW2

VG

CG

φ1 φ1
φ2

 
(a) (b) 

Figure 3.9. Schematic diagram of a current mirror realised as a) continuous-time and b) discrete-

time circuit. 

The continuous-time current mirror, presented in Figure 3.9a, consists of two 

transistors: the diode-connected M1, converting the input current I0 to the gate voltage VG, 

and M2, controlled by VG and generating the output current I0'. Ideally, for the identical 

transistors M1 and M2, the output current I0' = I0 (not accounting for the second order 

effects in MOS transistors). The discrete time realisation, presented in Figure 3.9b, works 

in two phases, first it reads the input current I0 (IN phase) and then it generates the output 

current I0' (OUT phase). In the following analysis, ideal switches controlled by signals φ1 

and φ2 and no charge injection nor gate current leakage are assumed. When φ1 = 1 and 

φ2 = 0, the circuit is in the current reading mode (IN phase), switch SW2 is opened and 

SW1 and SW3 are closed. The input current I0 flows through the diode-connected 

transistor MD to the ground, charging the gate capacitance CG to a particular voltage VG, 

corresponding to the input current I0. In this phase, transistor MD operates similarly to M1 

in the continuous-time realisation in Figure 3.9a. When φ1 = 0 and φ2 = 1, the circuit 

generates the output current (OUT phase), switch SW2 is closed and SW1 and SW3 are 

opened, and the output current I0' is controlled by the voltage VG of the floating gate of 

MD, storing some electric charge on the gate capacitance CG. In this phase, transistor MD 

operates similarly to M2 in the continuous-time realisation in Figure 3.9a. 

It can be observed that the structure and the operation of the dynamic current mirror 

is identical to the analogue switched-current memory cell. The capacitance CG is usually 

an inherent gate capacitance of a MOS transistor. Due to the gate leakage, charge 

injection from the switch SW1, and parasitic coupling between gate and drain/source 

regions, external gate capacitors, may be needed in practice. The fundamental advantage 

of the dynamic current mirror is the use of the same transistor MD in both phases (IN and 

OUT), which makes the process of replicating currents indifferent to the parameters of 

the circuit, and hence, highly immune to the fabrication mismatch. It is important to note, 



Current-mode analogue multipliers 68 

however, that the switched current approach exhibits a range of design challenges related 

to charge injection from switches, gate leakage, and second order effects of MOS 

transistors (e.g. channel length modulation), which usually degrade the precision of such 

circuits. More detailed analysis and characterisation of the effects and their optimisation 

techniques have been a subject of a broad study and can be found in textbook positions 

such as [Toumazou 93a, 93b]. 

 

MD1

φ1

VG1

CG1

MD2
VG2

CG2

MD3
VG3

CG3

IX1 ID1

I0

VREF

IX2ID2

φ1φ1 φ1

φ1

φ1 φ1

φ2 φ2

φ2

φ1

φ2

IN INMUL MUL

φ = 0 (switch opened)
φ = 1 (switch closed)

VC

 

Figure 3.10. Schematic diagram of the discrete-time Gilbert multiplier. 

The schematic diagram of the discrete-time realisation of the Gilbert multiplier is 

shown in Figure 3.10. The proposed circuit consists of three memory cells built on 

transistors MD1, MD2 and MD3, and operates in two phases: reading the input currents IX1, 

IX2 and I0 (IN phase), and performing multiplication (MUL phase), generating the output 

currents ID1 and ID2. The additional cell with transistor MD3 is a replacement for the ideal 

current mirror I0 from Figure 3.1. When φ1 = 1 and φ2 = 0 (IN phase), the input currents 

IX1, IX2 and I0 charge the gate capacitances CG1, CG2 and CG3 of the respective transistors 

MD1, MD2 and MD3 to voltages VG1, VG2 and VG3. In particular, in this phase the transistors 

MD1 and MD2 operate as logarithmic I-V converters of the input currents IX1 and IX2, 

similarly to transistors M3 and M4 in Figure 3.1. The sources of transistors MD1 and MD2 

are connected to the bias voltage VREF rather than directly to the ground to assure proper 

voltage headroom for the transistor MD3 during the MUL phase. When φ1 = 0 and φ2 =1, 

the circuit is in the multiplying mode (MUL phase) and transistors MD1 and MD2 are 

connected to the drain of MD3 forming a differential pair, similar to the one built on 



Current-mode analogue multipliers 69 

transistors M1 and M2 in Figure 3.1. In this phase, the common source voltage VC will 

increase or decrease from VREF, depending on the relation between currents IX1, IX2 and I0 

(see discussion in section 3.2.2). Assuming constant gate voltages VG1 and VG2, the 

corresponding gate source voltages of MD1 and MD2 will change to split the current I0 into 

two branches of the differential pair, generating the output currents ID1 and ID2, 

proportional to the input currents IX1 and IX2. The proposed circuit operates according to 

the same principles as the continuous-time Gilbert multiplier, utilising the exponential 

characteristic of MOS transistors in weak inversion. Therefore, the output currents can 

also be calculated using equation (3.8). The only difference is the decomposition of the 

multiplication process into two independent phases, where the input currents are first 

converted to their logarithmic voltage representations, and then, these voltages drive the 

differential pair. The proof-of-concept implementation of the discrete-time multiplier 

realised in a standard 90 nm CMOS technology is presented in Figure 3.11. 

 

VDD VDD

MD1

VDDVDD

1.8µm/0.8µm
(TGO)

MD2
1.8µm/0.8µm
(TGO)

MD3
1µm/1µm

(LL-LVT)

MD4
1µm/1µm

(LL-LVT)

MD5
1µm/1µm
(LL-LVT)

MC3
0.5µm/1.5µm

(SP-RVT)

MC4
0.5µm/1.5µm

(SP-RVT)

MC5
0.5µm/1.5µm
(SP-RVT)

MS1
0.12µm/0.09µm
(LL-RVT)

MS2
0.12µm/0.09µm

(LL-RVT)

CG3

CG1 CG2

CG4 CG5

MS4
0.12µm/0.09µm
(LL-RVT)

MS5
0.12µm/0.09µm

(LL-RVT)

MS3
0.12µm/0.09µm
(LL-RVT)

IX1ID1 IX2 ID2

I0

φ1

φ1''

φ1

φ1'

φ1

φ1''

φ1

φ2
φ2' φ2'

φ2

φ2

φ3 φ3

Transmission gate 

1µm/0.09µm
(LL-RVT)

RVT – Regular Threshold Voltage Device

LVT – Low Threshold Voltage Device

TGO – Thick Gate Oxide Device

VDD = 1.15 V

VREF = 200 mV

VREF

VBP VBP

VBN

VBP = 800 mV

VBN = 350 mV

LL – Low Leakage Device
(intermediate gate oxide)

SP – Standard Performance Device
(thin gate oxide)

CG1-G5 = 50 fF + inherent gate capacitance TG1

TG2 TG3

TG4 TG5

TG6

TG7 TG8

TG9

VC

 

Figure 3.11. Schematic diagram of the discrete-time multiplier realised in a standard 90 nm 

CMOS technology. 



Current-mode analogue multipliers 70 

The circuit consists of five memory cells built on transistors MD1 - MD5. Their 

function is the same as in the simplified realisations in Fig. 3.10. The additional two 

cells, built on transistors MD4 and MD5, are used to store and output the computed results. 

The circuit operates in three phases IN, MUL and OUT using control signals φ1, φ2 and φ3 

turning on or off the transmission gates to obtain particular circuit configurations. The 

detailed timing diagram of the control signals used in the circuit is presented in 

Figure 3.12. 

 

2 µs 2 µs 2 µs

IN MUL OUT

φ1

φ1'

φ1''

φ2

φ2'

φ3

 

Figure 3.12. Timing diagram of a single IN-MUL-OUT sequence of the discrete-time multiplier. 

In the first phase (IN), denoted by the control signals φ1 = 1, φ2 = 0 and φ3 = 0, the 

transmission gates TG1, TG6 and TG9 are turned on providing the input currents IX1, IX2 

and I0 to the memory cells MD1, MD2 and MD3. The additional signals φ1' and φ1'' turn on 

the switches built on transistors MS1, MS2 and MS3, setting a diode-connected 

configuration of these memory cells. In order to reduce the effects of charge injection, 

these switches turn off before the transition from IN to MUL phase. Also, the 

transmission gate TG3 connects the sources of MD1 and MD2 to the bias voltage VREF = 

200 mV, assuring proper operation of the transistor MD3 during MUL phase. In the 

second phase (MUL), denoted by the signals φ1 = 0, φ2 = 1 and φ3 = 0, the gates TG2, TG5 

and TG7 turn on, reconfiguring the circuit such that the transistor MD3 works as the tail 

current source for the differential pair built on MD1 and MD2 splitting the tail current I0 

into the two branches according to the values of previously read IX1 and IX2. These 

currents flow through the diode connected transistors MD4 and MD5 as long as the control 

signal φ2' keeps transistors MS4 and MS5 turned on. Similarly as before, the control signal 



Current-mode analogue multipliers 71 

φ2' turns MS4 and MS5 off before the transition from MUL to OUT phase. In the last phase 

(OUT), denoted by the control signals φ1 = 0, φ2 = 0 and φ3 = 1, only the output gates 

TG4 and TG8 turn on, and the transistors MD4 and MD5 work as current sources supplying 

the computed results. It is important to note that the circuit configurations in phases IN 

and OUT are independent and can be evaluated at the same time. This is advantageous in 

larger computing systems, where sequential operations can be pipelined, requiring only 

two cycles per single multiplication. The duration of each phase (the cycle time) was set 

to TC = 2 µs (Figure 3.12) based on the assumption that the 10 nA current (representing 

value 0.01 assuming IREF = 1 µA) charges the capacitance C = 50 fF for ∆V = 0.4 V in 2 

µs. In practice ∆V may be smaller than 0.4 V due to the previously stored charge. 

3.3.2 Design issues 

There are many challenges in the sampled-current circuit design, mainly related to 

the fact that the information, at some point, is represented by an electric charge stored on 

the gate of a MOS transistor. Effects, such as charge injection and gate leakage, can 

significantly affect this charge and change or destroy the information stored. Therefore, 

techniques aiming at the reduction of these phenomena are usually employed in the 

design of such circuits. In the proposed implementation, the charge injection effect was 

reduced by using the transistors MS1 - MS5 implemented as low leakage devices (with 

intermediate oxide thickness) and of the smallest size. Devices with higher oxide 

thickness exhibit lower inherent gate capacitance, and hence, less coupling between the 

gate and the source/drain regions. Also, the off current of such transistors is lower due to 

the higher threshold voltage. The types of particular transistors were chosen based on the 

range of the operating voltages of the gate and drain of the corresponding information 

storing transistor MD1 - MD5. Therefore, only transistor MS3 is nMOS, whereas the 

remaining ones are of pMOS type. Transistors MD1 and MD2 are thick gate oxide devices 

with a high threshold voltage. This, together with the bias voltage VREF, shifts the 

operation range of MS1 and MS2 closer to VDD, which makes the p-type switch a better 

choice (this was verified in simulations). Thick gate oxide transistors were used to reduce 

the computational error of the multiplier caused by the slope factor variation and the 

gate-drain and gate-source capacitive coupling which results in an additional charge 

injection to the gates of MD1 and MD2. The downside of the thick gate oxide devices is the 

lower inherent gate capacitance, which makes the use of some additional capacitors 

necessary to reduce the effects of charge injection. Therefore, the capacitances CG1 - CG5, 



Current-mode analogue multipliers 72 

including the inherent gate capacitances of MOS transistors, were increased. Such 

additional capacitance can improve the precision of a memory cell, however, at the 

expense of the longer programming time and additional area (or volume) occupation. The 

efficiency of the proposed solution is technology dependent, and for standard CMOS 

technologies, such additional capacitance can be obtained using MIM (Metal-Insulator-

Metal) and MOM (Metal-On-Metal) capacitors. 

Another critical design issue of the analogue memories is charge leakage caused by 

the quantum effects observed between the gate and the channel (i.e. hot electron injection 

and tunnelling), and also caused by the subthreshold conductivity of the switching 

transistor connecting the gate to the drain. In order to reduce these effects, transistors 

MD3, MD4 and MD5 were implemented as intermediate gate oxide devices to reduce the 

gate tunnelling current and meet particular voltage headroom requirements. 

It is important to note that the level of systematic disparity, observed between the 

written and read currents results also from the high output conductance of the MOS 

transistors (Early effect), which affects the output (read) current when the drain voltage 

changes. When writing to a cell, the drain of the diode-connected nMOS transistor is on 

the same potential as the gate. Assuming that the source is on the ground potential and 

the gate voltage is around the threshold voltage, the drain voltage (equal to the gate 

voltage) will usually be closer to zero than VDD. When reading from the cell, the 

information storing transistor works as a current source and the drain voltage will depend 

on the circuit reading this current. If the current is read by another memory cell, which is 

usually the case, the diode connected pMOS transistor of that cell will pull up the drain 

voltage closer to VDD. The observed drain voltage variation causes additional drain 

current variation, depending on the output conductance of the information storing 

transistor. In order to reduce this current variability, in the proposed circuit, the 

additional cascode transistors MC3 - MC5, operating with a fixed bias voltages VBN and 

VBP, were used. This problem could also be solved by using the S
2
I memory cells, 

consisting of two charge storing transistors, one for the information and one for the 

correction compensating for the drain voltage variation [Manganaro 98], or S
3
I memory 

cells, dedicated for high precision applications [Carmona-Galan 2003]. Such circuits, 

however, occupy more area and require more complex control sequence, therefore, in the 

proposed proof-of-concept design the simplest solution has been chosen. 

 



Current-mode analogue multipliers 73 

3.3.3 Simulation results 

In the simulations of the discrete-time multiplier presented in Figure 3.11, the input 

currents IX1, IX2 and I0 were generated using additional cascode current mirrors built on 

pMOS transistors with regular threshold voltage (SP-RVT) of the size W = 4 µm and L = 

0.5 µm and supplied from voltage VDDM = 1.3 V. The use of the circuit current mirrors 

was necessary since the ideal sources, used directly to provide input currents to the 

multiplier, may cause convergence problems in the simulations when the corresponding 

transmission gates are disconnected. In order to avoid additional errors caused by these 

auxiliary current mirrors (in practice very low), in the mathematical calculations, the 

input currents flowing directly to the multiplier in Figure 3.11 were used. The output 

currents ID1 and ID2 were sank through additional diode-connected SP-RVT nMOS 

transistors of the size W = 2 µm, L = 80 nm. The simulation results were generated using 

MOS transistor models provided by the foundry for the typical process corner (TT). For 

inputs, a set of 5000 random pairs [IX1 IX2] in range 1 nA - 1 µA and I0 in range 50 nA - 1 

µA, the same as in section 3.2.5, was used. 

The histograms showing the distribution of the computational errors NCE and RCE, 

calculated for the proposed discrete-time multiplier circuit, are presented in Figure 3.13. 

The histograms of the error distribution, accounting for the fabrication mismatch in the 

MOS transistors in the multiplier, except for the auxiliary current mirrors, are presented 

in Figure. 3.14. The presented results were obtained based on the simulations of two full 

cycles (IN-MUL-OUT) of the discrete time multiplier to prevent additional errors caused 

by the limited time charging the gate capacitances for very small input currents. 

0 1 2 3 4 5 6
0

100

200

300

400

500

600

700

Normalised current error (NCE) [%]

n
u

m
b

e
r 

o
f 

c
a
se

s

µ = 1.31%

σ = 1.09%

 

0 2 4 6 8 10 12 14 16 18 20
10

0

10
1

10
2

10
3

Relative current error (RCE) [%]

n
u

m
b

e
r 

o
f 

c
a
se

s

µ = 1.09%

σ = 0.94%

 
(a) (b) 

Figure 3.13. Histograms of the computational error of the discrete-time multiplier from 

Figure 3.11: a) NCE (µ = 1.31%, σ = 1.09%), and b) RCE (µ = 1.09%, σ = 0.94%). 



Current-mode analogue multipliers 74 

0 1 2 3 4 5 6
0

100

200

300

400

500

600

700

Normalised current error (NCE) [%]

n
u

m
b

e
r 

o
f 

c
a
se

s

µ = 1.32%

σ = 1.09%

 

0 2 4 6 8 10 12 14 16 18 20
10

0

10
1

10
2

10
3

Relative current error (RCE) [%]

n
u

m
b

e
r 

o
f 

c
a
se

s

µ = 1.10%

σ = 0.94%

 
(a) (b) 

Figure 3.14. Histograms of the computational error of the discrete-time multiplier from Figure 

3.11, accounting for mismatch in MOS transistors: a) NCE (µ = 1.32%, σ = 1.09%), and b) RCE 

(µ = 1.10%, σ = 0.94%). 

It can be observed that the normalised current error (NCE) of the discrete-time 

multiplier is below 6% with only small amount of samples crossing the level of 5% 

(Figure 3.14a). The mean value of the NCE error of the discrete-time multiplier is equal 

to 1.32%, and is higher than the respective mean value of NCE error of the continuous-

time realisation, equal 1.06% (Figure 3.6a). The observed increase of the computational 

errors result mainly from the charge injection effects. The discrete-time implementation 

does not deal well with certain cases generating high RCE error reaching up to 20% 

(Figure 3.14b). This, however, is a very rare case, which happens when the voltage VC 

drops down to several tens of milivolts, as a result of very low input currents IX1 and IX2, 

and very high I0. On average, the discrete time realisation generates lower RCE (1.09%) 

than its continuous- time counterpart (1.33%). 

The main advantage of the discrete-time multiplier is the high immunity to the 

parameter variability. When mismatch modelling is accounted for, the mean value of the 

NCE error of this circuit increases by only a fraction (from 1.31% to 1.32%) whereas for 

the continuous-time implementation this error increases over four times (from 1.06% to 

4.59%). Also, the mean value of the RCE error of the discrete-time circuit increases only 

from 1.09% to 1.10%, but for the continuous-time circuit, it increases from 1.33% to 

6.06%. It can be concluded that the computational precision of the proposed discrete-

time multiplier is comparable with its continuous-time equivalent but does not degrade 

under fabrication mismatch. The additional source of error results from the effects 

degrading the performance of the memory cells and could be further reduced by 

employing more robust and better optimised circuits. 



Current-mode analogue multipliers 75 

The influence of the external gate capacitances CG1 - CG5 = CG on the computational 

errors NCE and RCE, is presented in Figure 3.15. The obtained results were generated in 

the simulations of a single IN-MUL-OUT sequence using the same set of 5000 input 

vectors and the values of the capacitances CG1 - CG5 = CG, and the cycle time TC = 2 µs. 

It can be observed that the additional capacitance CG improves the precision of the 

multiplier, reducing the effects of charge within range. The increase of CG over 10 fF, 

still reduces the relative current error (RCE) but does not reduce the normalised current 

error (NCE). This results from the definitions of these errors (see section 3.2.4). In the 

definition of the RCE, the difference between the simulated and the calculated currents is 

divided by IREF = 1 µA, representing the maximum signal value. For example, for the 

current vector IMAT = [5 nA 15 nA], obtained from the calculations using equation (3.8), 

and for the simulated one ISIM = [4 nA 14 nA], different due to effects such as leakage 

charge injection, etc., the computational error  RCE = 1nA/1uA = 0.1 %. However, 

normalising both results gives ||IMAT|| = [0.25 + 0.75] and ||ISIM|| = [0.22 + 0.78] resulting 

in NCE equal 3 %. When the results are very small, even very low disparity in the 

simulated and the calculated currents generates high normalised error. When CG 

increases, the NCE decreases for large output currents (typically for large I0) and 

increases when the output currents are small (typically for small I0). These effects tend to 

compensate each other and the mean value of the RCE remains on the same level for CG 

higher than 10 fF. 

The effect of shortening the single cycle time TC from 2 µs to 200 ns on the mean 

value and standard deviation of the computational errors, is presented in Figure 3.16. It 

can be observed that the relative current error (RCE) does not increase significantly until 

the cycle time becomes shorter than 0.5 µs, whereas the normalised current error (NCE) 

keeps increasing within the entire time interval. This results from the fact that the shorter 

cycle time does not allow the gate capacitances CG to charge properly when the input 

current I0 is very low. For very low input currents, however, the relative current error 

becomes less significant (due to the division by IREF), therefore, the level of RCE remains 

constant in the right hand side segment of the plot in Figure 3.16b. Since the NCE 

performs normalisation of the obtained result, even small variations of the low currents 

are magnified giving higher computational error. 



Current-mode analogue multipliers 76 

0 10 20 30 40 50 60
1

2

5

10

m
e
a
n

 o
f 

e
rr

o
r 

[%
]

gate capacitance C
G

 [fF]

 

 

mean(NCE)

mean(RCE)

 

0 10 20 30 40 50 60

1

5

10

st
d

 o
f 

e
rr

o
r 

[%
]

gate capacitance C
G

 [fF]

 

 

standard deviation(NCE)

standard deviation(RCE)

 
(a) (b) 

Figure 3.15. The influence of the gate capacitance CG on the measures of the computational error 

NCE and RCE expressed by: a) the mean value, and b) the standard deviation. 

0.4 0.8 1.2 1.6 2

1

2

5

10

m
e
a
n

 o
f 

e
rr

o
r 

[%
]

cycle time T
C
[s]

 

 

mean(NCE)

mean(RCE)

 

0.4 0.8 1.2 1.6 2

1

2

5

10

st
d

 o
f 

e
rr

o
r 

[%
]

cycle time T
C
[s]

 

 

standard deviation(NCE)

standard deviation(RCE)

 
(a) (b) 

Figure 3.16. The influence of shortening the cycle time TC on the measures of the computational 

error NCE and RCE expressed by a) the mean value, and b) the standard deviation. 

The relation between the computational error and the range of the input currents, 

expressed by the reference current IREF defining the maximum signal value, is presented 

in Figure 3.17. It should be noted that the assumed value of IREF affects the operation 

region of the transistors and the range of input and output currents. The accuracy of the 

multiplier, when operating with smaller currents will depend more on the charge 

injection errors and reduced charging time. For the larger currents, the accuracy starts 

degrading when the circuit does not operate in the assumed region (i.e. in the saturation 

and weak inversion). Also, when moving the operation region towards very low currents 

may degrade the computational accuracy due to noise, whereas moving it towards higher 

currents will increase the power consumption. Therefore, the selection of the reference 

current IREF, defining the operation range of the multiplier, should be seen as an 

optimisation process aiming maximisation of the computational accuracy and efficiency 



Current-mode analogue multipliers 77 

at the same time. For the proposed design of the discrete time multiplier, the reference 

current IREF = 1 µA was chosen experimentally in the simulations to assure the minimum 

computational errors. 

0.4 0.6 0.8 1 1.2 1.4 1.6
1

1.2

1.4

1.6

1.8

2

m
e
a
n

 o
f 

e
rr

o
r 

[%
]

I
REF

 [A]

 

 

mean(NCE)

mean(RCE)

 

0.4 0.6 0.8 1 1.2 1.4 1.6

1

1.2

1.4

1.6

1.8

2

st
d

 o
f 

e
rr

o
r 

[%
]

I
REF

 [A]

 

 

standard deviation(NCE)

standard deviation(RCE)

 
(a) (b) 

Figure 3.17. The influence of the value IREF on the measures of the computational error NCE and 

RCE expressed by a) the mean value, and b) the standard deviation. 

3.4 Fixed point digital implementation 

The computational accuracy of the analogue realisations of the Gilbert multiplier, 

discussed in this chapter, was compared with its functionally equivalent digital 

counterpart, implemented in software and using a fixed precision arithmetic and integer 

numbers represented by binary words of the number of bits N in range from 5 to 10. The 

block diagram of the digital multiplier is presented in Figure 3.18. 

 

IX1 N-bit

IX2 N-bit

ADD

DIV A/B
A

B

N

DIV A/B
A

B
N

N+1

MUL

MUL

I0 N-bit N

N

N

ID1 2N-bit2N

ID2 2N-bit2N

 

Figure 3.18. Block diagram of the digital equivalent of the Gilbert cell from Figure 3.1 realising 

multiplication and input vector normalisation using N bit fixed point arithmetic. 

The input vector [IX1 IX2] is normalised using N + 1 bit adder and two N bit dividers, 

and then multiplied by I0 using two multipliers. The two 2N bit numbers obtained from 

the multiplication represent the output currents [ID1 ID2]. Since the system operates on N 

bit arguments, the result of the multiplication is truncated, leaving only the higher halves 



Current-mode analogue multipliers 78 

of the computed words. This introduces an additional error with maximum value of 

1 LSB (least significant bit). This error could be reduced down to 0.5 LSB, if an 

additional rounding circuit was employed. It should also be noted that the 

implementation of the divider block is not straightforward, like the adder or the 

multiplier. One way of realising such division is first to multiply the input argument A by 

2
N
 (equivalent to logic left shift by N bits), and then divide such 2N bit number by the N 

+ 1 bit argument B using integer divider. The computational errors of a digital 

implementation cannot be attributed to only one functional block or strictly associated 

with a particular argument bit length N. It may be possible to implement the functionality 

of the system presented in Figure 3.18 using blocks operating with different levels of bit 

precision, achieving higher computational accuracy for a given number of gates, circuit 

area, and speed. Nevertheless, such design optimisation goes beyond the scope of this 

research, since the main objective here is to compare the computational precision of the 

analogue multipliers with their digital equivalent, operating with a fixed bit precision N. 

Digital design optimisation in terms of the structural complexity will be considered in 

Chapter 8, dealing with realisations of larger arithmetic systems, dedicated for matrix-

vector operations in the sum-product algorithm. 

The mean and standard deviation measures of the computational errors NCE and 

RCE, in terms of the bit precision N of the system, generated by the proposed digital 

multiplier, are shown in Figure 3.19. 

5 6 7 8 9 10

0.1

1

10

m
e
a
n

 o
f 

e
rr

o
r 

[%
]

bit resolution N

 

 

mean(NCE)

mean(RCE)

analogue continuous-time

(no mismatch)

analogue discrete-time

 

5 6 7 8 9 10

0.1

1

10

st
d

 o
f 

e
rr

o
r 

[%
]

bit resolution N

 

 

standard deviation(NCE)

standard deviation(RCE)

analogue discrete-time

analogue continuous-time

(no mismatch)

 
(a) (b) 

Figure 3.19. a) Mean value, and b) standard deviation of the computational errors NCE and RCE 

in terms of the precision N of the digital implementation of the Gilbert multiplier. 

For comparison, the computational errors of the analogue continuous-time and 

discrete-time realisations have also been inserted in the Figure 3.19. It should be noted, 

however, that the analogue and the digital realisations are substantially different systems, 



Current-mode analogue multipliers 79 

generating computational errors with different distributions. Therefore, statistical 

parameters such as mean value and standard deviation of the error provide a rather 

baseline comparison of the analogue and digital realisations. In particular, according to 

the NCE measure, the mean value of the analogue realisations corresponds to the 7 bit 

precision of the digital multiplier (Figure 3.19a), but with error spread corresponding to 8 

bit precision (Figure 3.19b). In the case of the NCE error, these figures correspond to 

precision of 6 bits and 5 - 6 bits respectively. The distributions of the generated 

computational errors NCE and RCE of the digital multiplier are presented in Figure 3.20. 

(a) 

0 5 10 15 20 25

1

10

100

1000

Relative Current Error (RCE) [%]

n
u

m
b

e
r 

o
f 

c
a
se

s

0 5 10 15 20 25 30 35 40
0

500

1000

1500

2000

2500

Normalised Current Error (NCE) [%]

n
u

m
b

e
r 

o
f 

c
a
se

s

µ = 1.53%

σ = 0.86%

µ = 3.10%

σ = 5.24%

N = 6 bits N = 6 bits

 

(b) 

0 1 2 3 4 5 6 7 8 9 10

1

10

100

1000

Relative Current Error (RCE) [%]

n
u

m
b

e
r 

o
f 

c
a
se

s

0 2 4 6 8 10 12 14 16 18 20
0

500

1000

1500

2000

2500

Normalised Current Error (NCE) [%]

n
u

m
b

e
r 

o
f 

c
a
se

s

µ = 0.75%

σ = 0.39%

µ = 1.37%

σ = 2.19%

N = 7 bits N = 7 bits

 

(c) 

0 1 2 3 4 5 6 7

1

10

100

1000

Relative Current Error (RCE) [%]

n
u

m
b

e
r 

o
f 

c
a
se

s

0 1 2 3 4 5 6 7 8
0

500

1000

1500

2000

2500

Normalised Current Error (NCE) [%]

n
u

m
b

e
r 

o
f 

c
a
se

s

µ = 0.36%

σ = 0.22%

µ = 0.64%

σ = 0.95%

N = 8 bits N = 8 bits

 

Figure 3.20. Histograms of the absolute computational error of the fixed point digital multiplier 

from Figure 3.18 for precision N equal: a) 6 bits, b) 7 bits, and c) 8 bits. 



Current-mode analogue multipliers 80 

3.5 Summary and conclusions 

In this chapter two approaches to analogue computation in CMOS circuits employing 

continuous-time and discrete-time processing, were presented. The idea, design and the 

circuit-related issues of the current-mode multipliers were discussed. In particular, the 

impact of the second order effects of MOS devices and the parameter mismatch on the 

computational error was further investigated. It has been concluded that parameter 

variability of a CMOS process highly affects the operation of the continuous-time 

circuits. This could be improved by transistor size scaling, however, at the expense of the 

excessive area increase. The employment of the switched-current technique, in the 

realisation of the discrete-time multiplier, allowed to minimise the effects of mismatch in 

the circuit operation, but at the expense of the reduced processing speed and slightly 

increased computational errors. The analyses and simulations reported the computational 

precision equivalent to 6 - 7 bits in the fixed point arithmetic, which is sufficient for 

moderate precision applications with strict power and area requirements. 

The presented analogue multipliers will be of use in Chapter 8, dealing with the 

designs of arithmetic circuits for continuous-time and discrete-time realisations of the 

sum-product algorithm for belief propagation. The experimental verification of the 

discrete-time multiplier in analogue computation is necessary and will be done in the 

future using the prototype processor array implemented on the PPATC test chip. 

 



Delay lines 81 

Chapter 4 

Delay lines 

4.1 Chapter overview 

This chapter presents the idea and design of a tunable CMOS delay gate (output-split 

inverter, OSI) exhibiting lower impact of fabrication mismatch on the generated delay 

time intervals than the commonly used current starved inverter (CIS) of the same size. 

The operation of the CSI and OSI circuits under parameter variability is analysed in 

theory and verified in simulations accounting for the realisations in different technology 

nodes, and in experiments using delay line arrays implemented on the PPATC chip 

fabricated in a 90 nm CMOS technology. The proposed circuit will be of use in the 

design of the asynchronous processor array presented in Chapter 5. 

4.2 Introduction 

Tunable CMOS delay gates and delay lines are important functional sub-blocks in 

various applications requiring generation and measurement of the controlled delay time 

intervals, such as delay locked loops (DLL) [Christiansen 95], time-to-digital converters 

(TDC) [Dudek 2000b], silicon pixel readout circuits for particle detection [Heijne 96], 

neuromorphic circuits [Indiveri 2006], [Wang 2013] and asynchronous processor arrays 

(discussed in Chapter 5). Due to parameter variability caused by fabrication process, an 

array of identically designed delay gates or delay lines will generate delay time intervals 

with randomly varying offsets, even under the same supply and bias conditions. Such 



Delay lines 82 

mismatch of the generated time intervals is usually reported as a dominant factor limiting 

precise operation of a systems relying on timing parameters [Cantatore 97]. The majority 

of solutions found in the literature employ a typical structure of a delay gate based on the 

current starved inverter (CSI) circuit, shown in Figure 4.1a. 

VDD

M2

M1

MD

VOUTVIN

VD C2

C1

VSD

 

VDD

M2

MD

M1

VOUTVIN

VD

C2

C1

VSD

 
(a) (b) 

Figure 4.1. Schematic diagrams of the nMOS asymmetric delay gate circuits: a) the commonly 

used current starved inverter (CSI), and b) the proposed output-split inverter (OSI). 

In the majority of designs employing the current starved inverter circuit, mismatch 

optimisation is done by proper scaling of the current limiting transistor MD (Figure 4.1a), 

mostly contributing to the generated time variability [Bolt 96]. An extensive research on 

the fabrication mismatch in the CSI gates was done for the design of particle detectors 

used in the experiments in nuclear physics. It has been shown that the accuracy of such 

circuits, and hence the precision of a detector, is dominated by the variability of timing 

parameters of the delay lines used for event buffering and synchronisation. In particular, 

various approaches to design of delay lines, immune to parameter mismatch, were 

investigated in [Toifl 99] and [Cantatore 97], as a preliminary step towards building 

detectors for the Large Hadron Collider (LHC) in CERN. Optimisation techniques, other 

than transistor scaling, account for the use of delay locked loops for individual biasing 

[Christiansen 95], post fabrication trimming [Heijne 96], and layout drawing techniques 

considering design symmetry, shadow effects and drain/source contact resistances 

[Bolt 96]. Reduced mismatch, is usually achieved at the expense of additional circuit 

area, higher power consumption and more complex tuning scheme, which in some 

applications is not desired. 

In this thesis, an alternative structure of a delay gate, the output-split inverter (OSI) 

shown in Figure 4.1b, is presented. The only topological difference between the CSI and 

the OSI circuits is the location of the current limiting transistor MD on the drain rather 



Delay lines 83 

than source side of the switching transistor M1, which separates or splits the output of the 

inverter. 

In principle, the operation of both circuits is similar and, for the rising input edge, the 

transistor MD controls the current discharging the output capacitance C1 regulating the 

output signal falling edge slope and discharge time. However, during the transient state, 

both circuits behave differently, which has a direct impact on their performance under the 

process parameter variability. It should be noted that the proposed OSI structure was 

previously used, for example, in the build of charge pump circuits [Christiansen 95], 

[Indiveri 2006], [Wang 2013] and linearly tuned delay elements [Jovanovic 2006]. 

Nevertheless, it has never been used in the applications where matching is of critical 

importance, nor its operation has ever been analysed in detail, providing particular 

description or mathematical model. Therefore, the primary goal of the work presented in 

this chapter is to fill this gap by presenting theoretical analysis and experimental 

verification of the operation and performance of the delay lines constructed using CSI 

and OSI gate. 

4.3 Circuit operation 

The implementation of both delay gates presented in Figure 4.1 uses the structure of 

a logic inverter (transistors M1 and M2) and employs the idea of delaying the output slope 

by discharging the capacitance C1 with the drain current of MD controlled by the bias 

voltage VD. Assuming that the transistors M1 and M2 work as ideal switches, the 

operation of both circuits is very similar. Depending on the transition of the input signal, 

the slew of the output signal is either controlled by the current limiting transistor MD (for 

the rising input edge) or is determined by the strength of M2 pulling the output node up to 

VDD (for the falling input edge). However, more detailed analysis of these gates reveals 

substantial differences in their operation which are of high importance in terms of the 

process parameter variability and its influence on circuit performance. The simulation 

results showing the transitions of VIN, VOUT and VSD signals of the asymmetric CSI and 

OSI delay gates from Figure 4.1, for the rising input slope (when the output load C1 

discharges through the current limiting transistor MD), are presented in Figure 4.2. In the 

simulations, MOS transistor models from a standard 90 nm CMOS technology were used 

assuming the same sizes for the current limiting transistors WD/LD = 1µm/0.5µm and for 

the switching transistors W1,2/L1,2 = 1µm/80nm. Capacitances C1 and C2 are always 



Delay lines 84 

present due to the junction capacitances of drain and source areas of MOS transistors. An 

additional capacitance of 1 fF has been added to represent the external load of the output 

node. In the full custom layout design, both transistors MD and M1 may share the same 

diffusion stripe, therefore, there is no additional capacitance attached to the VSD node, 

apart from the geometry-dependent one associated with the drain and source regions, 

already included in MOS transistor model. In the simulations, the bias voltage 

VD = 300 mV was used for both gates and the generated delay time TD was measured 

between 50% levels of the input (VIN) and output (VOUT) signals. 

 

VOUT VIN (rising time tR = 100 ps)

TD

VSD

 

VOUT VIN (rising time tR = 100 ps)

TD

VSD

 
(a) (b) 

Figure 4.2. Simulation results of the circuits from Figure 4.1: a) CSI gate, and b) OSI gate for the 

rising edge of the input voltage VIN, VD = 300 mV, VDD = 1.0 V and tR = 100 ps (MOS transistor 

models from a 90 nm CMOS technology were used assuming WD/LD = 1µm/0.5µm, 

W1,2/L1,2 = 1µm/80nm; C1 = 1 fF, C2 = 0 plus inherent source/drain MOS capacitances). 

The main difference in the operation of both delay gates can be observed during the 

transient state, when the rising input edge turns M1 on and M2 off. In the case of the 

proposed OSI gate, capacitance C2 (initially charged close to VD through MD when M1 is 

off for VIN = 0) quickly discharges to zero whereas capacitance C1 is gradually 

discharged from VDD to zero by the drain current of MD (Figure 4.2b). In the CSI circuit, 

however, capacitance C2 is initially discharged since MD is always on, and the rising 

input edge causes the transistor M1 to short its drain and source nodes such that the 

voltages VOUT and VSD converge close to the common value VCM, before the load 

capacitance starts discharging (Figure 4.2a). As a result, in the CSI circuit capacitance C1 

will discharge quicker and the output voltage VOUT will drop faster to 50% of VDD for the 

same current of MD as compared to the OSI one. The variability of the slew of the output 

signal is mostly dependent on the parameter variability of MD and the output load, but in 



Delay lines 85 

the CSI circuit the discharge time will also be affected by the variability of VCM, resulting 

from the mismatch between transistors M1 and M2. Therefore, the commonly used CSI 

circuit tends to generate shorter and more variable delay intervals than the proposed OSI 

structure, where capacitance C1 of the output node always discharges from the constant 

VDD voltage. In the following a simplified analysis presenting only the first-order 

behaviour will be provided addressing the major differences between circuits in Figure 

4.1 and their operation under the presence of the process parameter variability. 

4.3.1 Current starved inverter (CSI) 

A simplified analysis of the CSI circuit showing the transitions of voltages VIN, VOUT 

and VSD is presented in Figure 4.3. The timeline can be divided into three phases: the 

initial phase (t < t1), the switching phase (t1 < t < t2), and the discharge phase (t > t2). 

VDD

VCM

0
t1 t2

VINVOUT

VSD

t

V Initial 

Phase (I)

Switching 

Phase (II)
Discharge Phase (III)

50% VDD

Time Delay TD

Vthn

 

Figure 4.3. The behaviour of the CSI delay gate in a transient state for the rising input edge. 

In the initial phase, the capacitance C2 is discharged to zero through the current 

limiting transistor MD (for VD > 0) and capacitance C1 is charged to VDD through M2. In 

the switching phase, the rising edge of VIN turns M1 on and M2 off. As a result VOUT and 

VSD converge closer to the common level VCM denoting the starting point for the 

discharge phase. In a closer view, the transistor M1 turns on first (when VIN > Vthn) 

quickly increasing the conductance between nodes VOUT and VSD. In the same time the 

drain-source conductance of M2 decreases practically disconnecting the output node from 

the power rail. Due to the current limiting transistor MD, the total current flowing through 

M1 and M2 is reduced and the observed output voltage drop (from VDD to VCM) can 

practically be attributed to the charge sharing between capacitances C1 and C2. During 

the discharge phase the high logic level on the input keeps transistor M1 fully turned on 

which connects capacitances C1 and C2 in parallel. The discharge rate of these 



Delay lines 86 

capacitances depends mainly on the bias voltage VD controlling the current limiting 

transistor MD. 

4.3.2 Output split inverter (OSI) 

The analysis of the OSI circuit showing the transitions of voltages VIN, VOUT and VSD, 

is presented in Figure 4.4. In the following only the first-order effects will be discussed 

indicating the major differences in the operation between the CSI and OSI structures. 

VDD

0
t1 t2

VIN VOUT

t

V Initial 

Phase (I)

Switching 

Phase (II)
Discharge Phase (III)

Vthp

Vthn

VSD

VD

50% VDD

Time Delay TD

 

Figure 4.4. The behaviour of the OSI delay gate in a transient state for the rising input edge. 

In the initial phase, voltage VIN equals zero assuring that capacitance C1 is charged to 

VDD through the transistor M2. The current limiting transistor MD operates in weak 

inversion with its gate-source voltage high enough above zero to conduct the small off 

current of M1, therefore the capacitance C2 remains charged closely to the gate bias 

voltage VD. In the switching phase the rising edge of the input signal turns M1 on (when 

VIN > Vthn), which quickly discharges C2 to zero and, after that, turns M2 off (when VIN > 

VDD - |Vthp|) and C1 starts discharging with rate dependent mainly on the drain current of 

MD controlled by the bias voltage VD. Further operation of this gate is practically the 

same as in the case of the CSI one. 

4.4 Mismatch analysis 

The effects of parameter mismatch in the realisations of the CSI and OSI delay gates 

are presented in Figure 4.5. In the simulations, the same circuit realizations as before 

(Figure 4.2) were used, but with the mismatch Monte Carlo MOS transistor models and 

bias voltages VD tuned for both gates to ensure the same mean value of the generated 



Delay lines 87 

delays TD. Based on 5000 Monte Carlo simulation runs, in Figure 4.5, it can be seen that 

the random variability of the generated delay is larger in the CSI gate. 

 

CSI

OSI

TD

 

CSI

OSI

 
(a) (b) 

Figure 4.5. Transient mismatch Monte Carlo simulations (5000 runs) of the delay gates from 

Figure 4.2 tuned to generate equal mean delays TD ≈ 0.46 ns (VD = 280 mV for the CSI and VD = 

300 mV for the OSI gate): a) input and output signal transitions, b) detailed view of the output 

signals crossing the 50% VDD threshold. 

The detailed simulation results, accounting for the variability of the generated delay 

TD caused by mismatch of individual transistors in the delay gates are presented in 

Table 4.1. In particular, the effects of the input signal slope variability were verified 

using additional buffer BUFF consisting of two inverters (designed using the same 

transistor sizes as M1 and M2 in Figure 4.1) and driving the input of the delay gate with a 

fixed load capacitance of 1 fF. The results were obtained in the simulations of the circuit 

presented in Figure 4.6, based on 500 Monte Carlo runs using mismatch MOS transistor 

models with mismatch flag (one of the input parameters of the model) set to 1 or 0, in 

order to individually activate or deactivate random generators in the transistors. It can be 

concluded that the variability of the generated delay time TD in both gates depends 

mainly on the variability of the current limiting transistor MD. 

 

VIN

0V

1.0V

tR = 100 ps

MOS: W/L=1µm/80nm

INPUT BUFF

VD

VOUT

1 fF

DELAY GATE
M1,2: W/L=1µm/80nm
MD: W/L=1µm/500nm

 

Figure 4.6. Schematic diagram of the circuit used in simulations of the time delay variability of 

the CSI and OSI delay gates presented in Figure 4.1. 



Delay lines 88 

Table 4.1. Mismatch Monte Carlo simulation results of the CSI and OSI gates. 

Mismatch in 
CSI (VD = 280 mV) OSI (VD = 300 mV) 

TDMEAN [ps] σTD [ps] TDMEAN [ps] σTD [ps] 

MD 459.00 41.923 461.53 32.407 

MD + M1 459.35 42.381 461.64 32.438 

MD + M2 459.08 41.986 461.59 32.410 

ALL 459.43 42.434 461.69 32.441 

ALL + BUFF 477.19 45.259 475.62 34.695 

M1,2 + BUFF 475.04 2.187 474.21 1.820 

no mismatch 474.81 5×10
-12

 474.15 3×10
-12

 

 

In the following section, a qualitative analysis of the switching and discharge phases 

will be provided, supporting the obtained simulation results and explaining the influence 

of the MOS parameter variability on the precision of the generated delays. 

4.4.1 Mismatch in CSI gate 

The analysis of the CSI circuit is presented in Figure 4.7 showing the influence of the 

process parameter fluctuation on the variability of the VCM voltage and the generated 

delay time TD. 

VDD

0

t1 t2

VOUT

t

V

ΔVCM

ΔTD
50% VDD

higher C1, lower C2, 

slower MD

lower C1, higher C2, 

faster MD

 

Figure 4.7. The transient state of the CSI circuit showing the influence of the MOS parameter 

variability on the VCM voltage and the generated delay TD. 

During the switching phase (t1 < t < t2), both voltages VSD and VOUT converge 

towards the common level VCM which, in a crude approximation, can be estimated from 

the charge sharing between C1 and C2 (this will be further explained in Section 4.4.4). 

Therefore, the variability of the voltage VCM will be affected by the variability of these 

capacitances but also by the variability of all the MOS transistors, especially MD, and 

other effects such as off (leakage) current of M2, and the capacitive coupling between the 

input and output. The discharge phase will mainly be affected by the variability of the 

current limiting transistor MD. For example, due to the random variation of the threshold 



Delay lines 89 

voltage Vthn of MD, this transistor may be slightly "faster" (higher drain current for lower 

values of Vthn) or slightly "slower" (lower drain current for higher values of Vthn) than a 

regular one. For the faster MD, the corresponding discharge slope will be steeper and also 

the VCM voltage will be lower (due to the higher current of MD discharging the output 

node during the switching phase), whereas for the slower MD, the VCM voltage will reach 

a higher value and the discharge phase will take a longer time. As a result, it can be 

observed that not only the parameter variability of the current limiting transistor MD but 

also the variability of VCM voltage (ΔVCM) will affect the precision ΔTD of the generated 

time delay TD. 

4.4.2 Mismatch in OSI gate 

The analysis of the OSI circuit showing the influence of the MOS parameter 

fluctuations on the variability of the generated time delay TD is presented in Figure 4.8. 

VDD

0
t1 t2

VIN

VOUT

t

V

ΔVthp

ΔTD50% VDD

higher C1, faster M2, 

slower MD 

lower C1, slower M2, 

faster MD 

 

Figure 4.8. The transient state of the OSI circuit showing the influence of the MOS parameter 

variability on the generated delay time TD. 

Due to the current limiting transistor MD, "splitting" the output of the inverting stage, 

the rising edge of VIN may not force an immediate transition of VOUT, as it was observed 

in the case of the CSI circuit. While the capacitance C2 quickly discharges to zero, M2 

still pulls the output node up to VDD, postponing the discharge phase roughly until VIN 

crosses the threshold VDD -|Vthp| switching transistor M2 off. The variability ΔTD in the 

generated delay time will mainly depend on the parameter mismatch in transistors MD 

and M2. Similarly as before, the slightly faster transistor MD will force the discharge 

phase earlier and will discharge the output capacitance C1 faster. Additionally, for the 

slightly slower transistor M2 with a higher threshold voltage |Vthp|, the discharge phase 

may begin earlier than for the slightly faster one, further increasing the variability of the 



Delay lines 90 

generated delay time TD. The influence of the variability of the threshold voltage ΔVthp of 

M2 is usually suppressed by a sharp slope of VIN. Also, the discharge phase always begins 

for the same output voltage VOUT = VDD irrespective of the variability in C1 and C2. 

Because of this, the starting point of the discharge phase is more stable (C1 is always 

charged to the constant voltage VDD) and the discharge time of C1 is longer for the same 

current of MD as compared to the CSI structure where VCM < VDD. This makes the 

generated delay time of the OSI circuit less prone to mismatch. 

4.4.3 Simplified analytical model 

In the proposed simplified analytical model only the dynamic behaviour of the CSI 

and OSI delay gates will be considered during the discharge phase (with the initial 

conditions determined by the switching phase). It is assumed that the current limiting 

transistor MD operates in saturation and strong inversion regions for the generated delay 

time interval TD. This assumption holds for typical applications where the output signal 

triggers the next stage (e.g. the next gate in a delay line) at the 50% signal level, which is 

higher than a value of the saturation voltage of MD (usually VDSAT << VDD/2). Also, the 

gate-source voltage of MD (equal to VD when M1 is fully turned on) is usually higher than 

the threshold voltage Vthn, in order to avoid the increased impact of parameter mismatch 

on the circuit operation, when MD is in the subthreshold region. The schematic diagrams 

of the simplified CSI and OSI delay gates, representing the state of each circuit after the 

switching phase, are shown in Figure 4.9. 

VDD

C1

C2iD

VOUT

VSD

 

VDD

C1iD

VOUT

VSD

C2

 
(a) (b) 

Figure 4.9. Schematic diagrams of the simplified delay gates representing the state of the circuits 

after the switching phase for: a) CSI delay gate (initial condition: VOUT = VCM), and b) OSI delay 

gates (initial condition: VOUT = VDD). 

In both cases, the current limiting transistor MD was replaced with an ideal current 

source iD. The transistors M1 and M2 were replaced with switches, where the non-ideal 



Delay lines 91 

behaviour of these devices, in the case of the CSI gate, can be seen as an additional factor 

affecting the VCM voltage. The assumption of charge sharing between C1 and C2, as the 

primary reason for the output voltage drop, was verified in simulations and remains valid 

almost within the entire tuning range except for the very short delays for VD >> Vthn when 

MD starts pulling the node VSD and VOUT closer to zero during the switching phase. In 

particular, for the gate design implemented on the test chip, the inherent geometry 

dependent drain/source capacitances are approximately equal to 2.5 fF for the VOUT node, 

and 1.5 fF for the VSD node. The values were calculated assuming charge sharing effect 

with the resulting VCM voltage obtained from simulations for different load capacitances, 

as discussed in the following section. 

4.4.4 Charge sharing and S/D inherent capacitances 

In the proposed model of the CSI gate, the input signal slope turns M1 on and M2 off 

such that the output voltage VOUT drops down to a certain common value VCM, as a result 

of charge sharing between fully charged C1 and discharged C2. However, these 

transistors are non-ideal (resistive) switches, and also M1 turns on before M2 turns off, for 

the rising edge of the input signal. This will disrupt the charge sharing process and the 

resulting VCM voltage will be different than VDD×C1/(C1+C2). In order to verify the 

relevance of the proposed charge sharing approximation, the test circuit of the CSI gate, 

presented in Figure 4.10, will be considered. 

VDD

M2

M1

MD

VOUTVIN

VD

Cp1 + CSD1

V1

Cp2 + CSD2

 

Figure 4.10. Schematic diagram of the CSI delay gate used in the verification of the charge 

sharing effect and extraction of the inherent source/drain capacitances CSD. 

Due to parasitics, in this circuit the external capacitances Cp1 and Cp2 relate to the 

internal node capacitances, whereas CSD1 and CSD2 denote the inherent, geometry 



Delay lines 92 

dependent capacitances of the drain and source regions. It was assumed that CSD1 and 

CSD2 are constant and the output voltage drop results from charge sharing between Cp1 + 

CSD1 and Cp2 + CSD2. The asymmetric CSI delay gate, presented in Figure 4.10, was 

simulated for different configurations of Cp1 (from 0 to 1 fF) and Cp2 (from 0 to 0.2 fF) 

shown in Table 4.2. In the simulations, the size of the switching transistors M1 and M2 

was 1µm/80nm, and the size of the current limiting transistor MD was 1µm/500nm. 

Voltages VOUT and V1 converge towards the common value VCM during the transition 

state but usually don't meet. Therefore, the VCM voltage was calculated as the mean value 

of VOUT and V1, at the point where V1 reached maximum. The values of the capacitances 

CSD1 and CSD2 were calculated individually for the cases presented in Table 4.2, assuming 

the following relations: 

A
CC

C

V

V

SDSD

SD

DD

CM 



21

10  (4.1) 

B
CCCC

CC

V

V

SDpSDp

SDp

DD

CM 





2211

11
 (4.2) 

where VCM0 is the common voltage obtained from the simulation assuming Cp1 = Cp2 = 0. 

Using equations (4.1) and (4.2), the values of CSD1 and CSD2 can be calculated in the 

following way (for simplicity the voltage ratios were replaced with parameters A and B): 

 

AB

BCBC
C

pp

SD





1

1 21

1  (4.3) 

 1112  ACC SDSD  (4.4) 

The traces showing the variability of the extracted inherent drain/source capacitances 

CSD1 and CSD2 for the 16 configurations (cases 1 - 16) of Cp1 and Cp2 from Table 4.2, and 

bias voltages VD within range from 150 mV - 300 mV, covering the tuning range from 

0.3 ns to 8 ns, are presented in Figure 4.11. Values of the simulated mean delay time TD 

calculated over all the cases from Table 4.2 and time when the maximum value of V1 

voltage occurred TV1MAX for bias voltages VD considered in the simulations are presented 

in Table 4.3. 

 



Delay lines 93 

0 2 4 6 8 10 12 14 16
0

0.5

1

1.5

2

2.5

3

3.5

case number

c
a
p

a
c
it

a
n

c
e
 [

fF
]

 

 

capacitance C
SD1

capacitance C
SD2

0 2 4 6 8 10 12 14 16
0

0.5

1

1.5

2

2.5

3

3.5

case number

c
a
p

a
c
it

a
n

c
e
 [

fF
]

 

 

capacitance C
SD1

capacitance C
SD2

 
VD = 150 mV VD = 160 mV 

0 2 4 6 8 10 12 14 16
0

0.5

1

1.5

2

2.5

3

3.5

case number

c
a
p

a
c
it

a
n

c
e
 [

fF
]

 

 

capacitance C
SD1

capacitance C
SD2

0 2 4 6 8 10 12 14 16
0

0.5

1

1.5

2

2.5

3

3.5

case number

c
a
p

a
c
it

a
n

c
e
 [

fF
]

 

 

capacitance C
SD1

capacitance C
SD2

 
VD = 170 mV VD = 180 mV 

0 2 4 6 8 10 12 14 16
0

0.5

1

1.5

2

2.5

3

3.5

case number

c
a
p

a
c
it

a
n

c
e
 [

fF
]

 

 

capacitance C
SD1

capacitance C
SD2

0 2 4 6 8 10 12 14 16
0

0.5

1

1.5

2

2.5

3

3.5

case number

c
a
p

a
c
it

a
n

c
e
 [

fF
]

 

 

capacitance C
SD1

capacitance C
SD2

 
VD = 190 mV VD = 200 mV 

0 2 4 6 8 10 12 14 16
0

0.5

1

1.5

2

2.5

3

3.5

case number

c
a
p

a
c
it

a
n

c
e
 [

fF
]

 

 

capacitance C
SD1

capacitance C
SD2

0 2 4 6 8 10 12 14 16
0

0.5

1

1.5

2

2.5

3

3.5

case number

c
a
p

a
c
it

a
n

c
e
 [

fF
]

 

 

capacitance C
SD1

capacitance C
SD2

 
VD = 250 mV VD = 300 mV 

Figure 4.11. Values of the extracted inherent capacitances CSD1 and CSD2 for bias voltages from 

150 mV to 300 mV. 



Delay lines 94 

Table 4.2. Configurations of capacitances Cp1 and Cp2 considered in the simulations. 

case (*) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 
Cp1 [fF] 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.5 0.5 0.8 0.8 1 1 1 

Cp2 [fF] 0 0 0 0 0 0 0 0 0 0 0.1 0.2 0.1 0.2 0 0.1 0.2 

 

Table 4.3. Timing parameters of the CSI delay gate obtained from simulations. 

VD [mV] TV1MAX [ns] mean(TD) [ns] 
150 11.232 8.27 

160 10.946 6.22 

170 10.829 4.70 

180 10.644 3.58 

190 10.565 2.75 

200 10.425 2.13 

250 10.233 0.65 

300 10.155 0.28 

 

Assuming charge sharing effect, the calculated values of the inherent source/drain 

MOS capacitances are approximately equal to CSD1 ≈ 2.5 fF and CSD2 ≈ 1.5 fF with 

variability of +/- 30% in range from 150 mV to 300 mV. Since these capacitances are 

geometry dependent, in a particular circuit realisation they remain constant, which can be 

observed in the traces in Figure 4.11. That confirms the validity of the charge sharing 

concept.  

For the higher values of the VD voltage, the bias current of MD increases removing 

some charge from CSD1 and CSD2 during the switching phase. As a result, some part of the 

charge is sunk to the ground, which "increases" the equivalent capacitance CSD2 to about 

2 fF, and "decreases" the capacitance of CSD1 to about 2.4 fF for VD = 300 mV. Under 

such conditions, the bias current of MD becomes significant, precluding the use of the 

proposed model. Nevertheless, for VD > 300 mV the generated delay TD is shorter than 

0.3 ns. This means that the proposed approximate model will be invalid only for very 

short delay time intervals. 

4.4.5 Model derivation 

In the proposed approach, the delay time TD will be derived for the simplified CSI 

and OSI circuits from Figure 4.9 assuming the discharge scheme presented in 

Figure 4.12. 



Delay lines 95 

VDD

VCM

0
t1 t2

VIN

VOUT

t

V

50% VDD

Time Delay TD

VP

CSIOSI

t3
 

Figure 4.12. The transient state of the CSI and OSI circuit models generating the delay time 

interval TD measured at 50% input and output signal level and assuming the discharge of the 

respective capacitances by the iD current. 

For the purpose of this analysis, the discharge phase is assumed to begin when the 

input voltage crosses 50% of VDD and to terminate (generating time delay TD) when the 

output voltage crosses the same threshold (the capacitances continue to discharge to 0 V 

after that). The discharge phase of the current starved inverter (CSI) delay gate starts for 

the output voltage VOUT = VCM = VDD×C1/(C1+C2). Assuming the ideal operation of the 

switches, the generated delay time TD = TCSI depends only on the current iD discharging 

the capacitances C1 + C2 from the initial voltage VCM to VP (typically VP = VDD/2, 

terminating the generated time interval TD, Figure 4.12) and is given by the formula: 

 
D

PCM
CSI

i

VV
CCT


 21  (4.5) 

In the case of the proposed OSI circuit, the discharge phase always starts for the 

output voltage VOUT = VDD and terminates when the current iD discharges the capacitance 

C1 down to VP (the capacitance C2 is already shorted to the ground and does not 

participate in the discharge phase). The generated delay time TD = TOSI equals: 

D

PDD
OSI

i

VV
CT


 1  (4.6) 

One of the advantages of the proposed OSI circuit is its capability of generating 

longer delay time intervals TD for the same bias conditions. This is mainly caused by the 

fact that C1 is usually larger than C2 due to the additional load of the node VOUT, and the 

voltage VCM is usually lower than VDD. In particular, inserting VCM = VDD×C1/(C1+C2) to 

the equation (4.5) and VP = VDD/2 to (4.5) and (4.6), and assuming VCM ≥ VP (to ensure 



Delay lines 96 

discharging of the load capacitance from VCM to VP), the ratio TCSI/TOSI will simplify to 

the following formula: 

1

21

C

CC

T

T

OSI

CSI 
  (4.7) 

It is important to note that equation (4.7) was derived assuming C1 > C2 (which is 

usually the case due to the additional load capacitance) and switching at 50% of the 

maximum signal level (VP = VDD/2). It can be observed that, in such case, the OSI gate 

will generate a longer delay time interval (TOSI > TCSI). The proposed charge sharing 

approach can be further extended to account for other systematic effects affecting VCM 

voltage. For example, for a high coupling between the input and output nodes (due to e.g. 

high gate-source and gate-drain capacitances in MOS transistors) the additional charge 

injected to nodes VOUT and VSD from the input may increase the VCM voltage which, from 

the perspective of the proposed model, can be seen as an increase of the capacitance C1 in 

equation (4.7). Assuming charge sharing between C1 and C2 any other factor affecting 

the charge stored on these capacitances can be theoretically accounted for by modifying 

the value of C1 or C2. In the extreme case, when the charge injected to the output node 

causes VCM ≈ VDD, the operation of both CSI and OSI delay gates will become similar 

due to the fact that both gates will start the discharge phase for the same initial condition 

VOUT = VDD. 

4.4.5.1 Mismatch model of a delay gate 

The variability of the generated time delay TD of the CSI and OSI circuits can be 

estimated by applying the equation (2.10) from Chapter 2 to the calculated delays TCSI 

and TOSI. For both circuits it is assumed that the variability of the delay time TD results 

mainly from the variability of the parameters of the current limiting transistor MD and the 

capacitive load of the output node, therefore only the variability of the current iD and 

capacitances C1 and C2 will be accounted for in the following calculations. Despite its 

limitations, the proposed approach covers all major contributors to the TD time variability 

including all MOS transistors (e.g. the capacitive load of the next stage in a delay line 

will depend on the variability of M1 and M2) and the interconnecting tracks. The 

normalized delay variances derived for the CSI and OSI circuits (equations (4.5) and 

(4.6)) assuming VCM = VDD×C1/(C1+C2), VP = VDD/2 and VCM ≥ VP are equal to: 



Delay lines 97 

 221

2

2

2

1

2

2

2

2

CCiT

CC

D

ID

CSI

TCSI










 (4.8) 

2

1

2

1

2

2

2

2

CiT

C

D

ID

OSI

TOSI 






 (4.9) 

where σID
2
, σC1

2
 and σC2

2
 are the variances of the current iD and the capacitances C1 and 

C2. Assuming the simplest square law model of the transistor MD operating in strong 

inversion and saturation, the drain current ID, and its relative variability σID
2
/ID

2
 caused 

by the variability of the threshold voltage σVth and the transconductance σβ, are given by 

equations (see equations 2.1 and 2.15 in Chapter 2 for reference): 

 2
2

thGSD Vui 


 (4.10) 

 2
2

2

2

2

2 4

thGS

Vth

D

ID

VuI 
  



 

 

(4.11) 

From (4.5), (4.6), (4.8), (4.9), (4.10) and (4.11) the following equations can be obtained: 

   221

2

2

2

1

2

2

21

2

2

2 4

CCCCV

T

T

CC

DD

CSIVth

CSI

TCSI
















 
 (4.12) 

2

1

2

1

2

2

1

2

2

2 4

CCV

T

T

C

DD

CSIVth

OSI

TOSI 










 
 (4.13) 

Equations (4.12) and (4.13) show a linear dependence of the normalised delay 

variance in terms of the generated delay time TD. For a typical circuit implementation 

(when C1 > C2) the slope and the y-intercept component in (4.12) is greater than the 

respective one in (4.13), due to the dependency of the delay time of the CSI circuit on 

both C1 and C2. As a result, the delay variance of the CSI gate is higher than the one of 

the OSI gate for the same generated delay. It can be concluded that the OSI gate 

generates delay time intervals that are longer, as shown in equation (4.7), and less 

affected by parameter variability (equations 4.12 and 4.13). It is important to note that 

approximately linear dependency of the normalised delay variance on the generated delay 

can be observed in practice (Figure 4.20), for short delays, when the current limiting 

transistors operate in strong inversion. 

 

 



Delay lines 98 

4.4.5.2 Mismatch model of a delay line 

The proposed analysis can also be applied to designs of delay lines where a certain 

number of delay gates are connected in series creating a chain. For N gates with delay TD 

each connected in a chain, the delay of the entire line is equal to TN = NTD, i.e. it will 

increase linearly with the number of stages. Assuming that delays TD generated by 

different stages are normally distributed and independent random variables with variance 

σTD
2
, the total delay variance of a line will be equal to σTN

2
 = NσTD

2
, and hence the 

normalized delay variance of the line consisting of N such stages can be calculated as: 

2

2

2

2 1

D

TD

N

TN

TNT





 (4.14) 

It should be noted that, in some applications, the symmetric delay gates with two 

current limiting transistors on both pull-up and pull-down sides may be used [Bolt 96], 

[Cantatore 97]. Their operation is practically the same as the operation of the discussed 

asymmetric circuits but the delaying of the output signal occurs on both falling and rising 

slopes controlled either by transistor MDN or MDP (e.g. for the falling output slope 

transistor MDN controls the delay time whereas MDP does not participate in the discharge 

phase). Therefore, the analysis of the asymmetric circuit, presented in this thesis, applies 

also for the symmetric version used in the realisations of the delay lines on the test chip. 

4.4.5.3 Mismatch optimisation 

The mismatch optimisation technique based on scaling of the current limiting 

transistor assumes that the variability of the generated delay time intervals decreases with 

the increase of the gate area WL of MD. In general, this will reduce the variability of β, 

Vth, C1 and C2 in equations (4.12) and (4.13), but will also affect the value of the 

generated delay TD. Assuming only the variability in threshold voltage WLAVthVth 222   

and LWCox  , the normalised variance of the generated delay time TD in 4.12 and 

4.13 can be written in a simplified form: 

2

2

2

2 2

L

AC

CV

T

T

Vthox

LDD

D

D

TD 
  (4.15) 

where CL is a load capacitance representing C1 and C2 from equations (4.12) and (5.13). 

Based on the equation (4.15), it can be observed that the impact of the threshold voltage 

variability is only dependent on the length L of the current limiting transistor MD for a 



Delay lines 99 

constant delay TD. This is because enlarging of the area of MD by increasing W, requires 

also proper adjustment of the bias voltage VD to assure constant delay time TD. For 

example, increasing W by the factor of n
2
 will increase the discharge current n

2
 times. In 

order to reduce this current to assure the same delay time TD, the corresponding bias 

voltage VD has to be reduced n times (see equation (4.10)). This, in turn, will increase the 

variability of the drain current caused by mismatch of the threshold voltage n
2
 times (see 

equation (4.11)). As a result, the obtained mismatch reduction, caused by the area 

increase of MD, will be compensated by the same increase of the variability in the drain 

current, caused by the reduced bias voltage. Therefore, scaling of the current limiting 

transistor by increasing the channel length rather than width should be considered 

[Cantatore 97]. 

4.5 Chip design and circuit implementation 

In order to compare the operation and statistical parameters of the CSI and OSI delay 

gates, two arrays of delay lines employing these structures were fabricated in a standard 

90 nm CMOS technology. The architecture of the test system, implemented on the chip, 

including the arrays of 512 CSI and OSI delay lines and the additional control logic, is 

shown in Figure 4.13 and the circuit layout in Figure 4.14. 

R
O

W
 S

E
L

E
C

T
 

S
H

IF
T

 R
E

G
IS

T
E

R

COLUM SELECT

SHIFT REGISTER

32 × 16 CSI 

DELAY CELLS

I/O BUFFERS
IN

OUT

DATA, CLK

32 × 16 OSI 

DELAY CELLS
ROW

C
O

L

VIN VOUT

ROW COL

 

Figure 4.13. The test system with CSI and OSI delay line arrays implemented on the chip. 

 

Array of 32 × 16 CSI delay lines 

Array of 32 × 16 OSI delay lines + additional column with 

lines of different lengths (four lines of: 16, 15, 8, 7, 4, 3, 2 
and 1 gate) 

Figure 4.14. Full layout of the test system (area: 160 µm x 1140 µm). 



Delay lines 100 

Each array consists of 32 × 16 delay cells selected using the row/column addressing 

maintained by the boundary shift register on the left and top sides of the arrays. The 

schematic diagram of the delay cell including a 16-stage delay line and additional control 

and I/O logic is presented in Figure 4.15. 

VDP

VDN

VIN VOUT

16-STAGE CSI/OSI DELAY LINE

ROW

COL
 

Figure 4.15. The schematic diagram of the delay cell including the 16-stage CSI/OSI delay line, 

I/O buffers and the AND gate used in the row/column addressing. 

A particular cell from any of the arrays can be selected by shifting the programming 

sequence into the register using signals DATA and CLK which sets the appropriate 

column and row lines to the high logic state. An additional AND gate, implemented in 

each delay cell, will detect this condition and connect the output of the delay line to the 

output line through a tri-state buffer. In order to reduce the capacitive load of this buffer, 

the output line is shared only for the lines from the same column. The COL signal is then 

used to enable another tri-state buffer in the I/O block, which connects the selected 

column to the global output. The input signal is buffered at the input of each delay cell 

and also individually for each column in the I/O block. In order to assure the uniform 

propagation times of the input and output signals, the same numbers of buffers were used 

for each delay line irrespective of its position in the array. Each delay cell includes a 16-

stage delay line implemented using the symmetric variant of the CSI or OSI delay gate, 

presented in Figure 4.16. 

VDD

MDP

M2

M1

MDN

VOUTVIN

VDP

VDN
1µm/0.5µm

1µm/80nm

1µm/80nm

1µm/0.5µm

 

VDD

M2

MDP

MDN

M1

VOUTVIN

VDP

VDN

1µm/80nm

1µm/0.5µm

1µm/0.5µm

1µm/80nm

 

(a) (b) 

Figure 4.16. Schematic diagrams of the delay gates with two complementary current limiting 

transistors MDN and MDP: a) CSI variant, b) OSI variant. 



Delay lines 101 

In this implementation there are two current limiting transistors MDN and MDP of the 

size W/L = 1µm/0.5µm controlled by the bias voltages VDN and VDP respectively. The 

width of the switching transistors M1,2 is the same as the current limiting ones to assure 

compact layout structure where both transistors share the same diffusion stripe The 

layouts of the designed cells with delay lines consisting of 16 CSI and OSI gates used in 

the experiments are presented in Figure 4.17. The chip micrograph showing the region 

where the delay line arrays were implemented is presented in Figure 4.18. The area of the 

test system is 160 µm × 1140 µm. 

 

(a) 

 

(b) 

 

Figure 4.17. Layouts of the delay cells with lines consisting of 16 serially connected a) CSI gates 

and b) OSI gates (the size of each delay line is 3.7 µm × 27 µm). 

 

 

Figure 4.18. Chip micrograph showing the location the delay cell arrays. 

 



Delay lines 102 

4.6 Experimental results 

The measurement results of the fabricated chip were obtained in a laboratory 

environment using an Agilent 54641D oscilloscope and a KCPSM3 (Xilinx PicoBlaze) 

controller implemented on a Spartan 3 FPGA development board. The block diagram 

showing the setup used in the experiments is presented in Figure 4.19. The KCPSM3 

system communicates with a PC application (e.g. Matlab) via an RS-232 serial port, 

executes received commands and, based on that, provides communication with the chip 

by programming the boundary shift register and generating the square wave signal of 

5 µs period to drive a selected delay line. The delay time was measured on rising edges 

from 50% to 50% of the fixed level representing high logic state of input and output 

signals. The data acquisition setup of the oscilloscope assumed full bandwidth and 

averaging based on 64 samples to suppress the time jitter. Both the KCPSM3 system and 

the oscilloscope were working in a loop controlled by a Matlab script selecting delay 

lines in turn and collecting the measured delay times. 

PC Application

(MATLAB)

FPGA (xc3s200)

KCPSM3 System with 

Command Interpreter
RS-232

DATA

CLK

RST

DEL IN

AGILENT 54641D

OSCILLOSCOPE

DEL IN

DEL OUT

RS-232

DEL IN DEL OUT

TD

VDP

VDN

CSI/OSI ARRAY

selected delay line 

200 kHz 

Sqare Wave

 

Figure 4.19. Block diagram of the setup used for the delay time measurements. 

4.6.1 Calibration 

In the test system a particular delay line can be tested by programming the boundary 

shift register with a sequence addressing the corresponding cell in the array. The output 

signal of the selected delay line goes through two tri-state buffers (one in the cell and one 

in the I/O block) output buffer, the digital cell in the I/O ring including additional buffers 

and level shifters (to match the external and core logic standards) and through a buffer 

driving the capacitance of the test probe. Similarly the input signal is provided through 

the digital I/O cell and a series of buffers until it reaches the selected delay line. Due to 

the fact that it is not possible to measure the generated delays TD directly at the input and 

output nodes of the selected line, the delay time TMEAS measured between the input and 



Delay lines 103 

output slopes of the signals outside the chip will include additional offset time TOFF 

introduced by the buffers between the test points on the PCB, such that TMEAS = TD + 

TOFF. The offset time also slightly depends on the location of a particular delay line in the 

array due to different lengths of I/O paths. This variability, however, is only a small 

fraction of the entire length of the path between the array and the probes on the PCB, 

therefore it can be neglected in this analysis. In order to estimate the offset time TOFF, an 

additional column with OSI delay lines with different number of stages was 

implemented. Based on the measurement results of the delays TMEAS for four different 

OSI 16-stage and 1-stage delay lines for the bias voltages VDN = VDD and VDP = 0, the 

obtained mean values are TMEAS-16 =11.73 ns (for 16-stage lines) and TMEAS-1 = 9.50 ns (for 

1-stage lines). Assuming that the 16-stage line generates delays 16 times longer than the 

1-stage one, the delay TD of a single gate and TOFF were calculated suing the following 

relations: 

OFFDMEAS TTT  1616  
(4.16) 

OFFDMEAS TTT 1  
(4.17) 

The obtained values of the delay and offset time were TD = 0.149 ns and TOFF = 9.35 ns 

respectively. It should be noted that the input driver and the output buffer of the delay 

line slightly affect the propagation times TD of the first and last delay stage. The impact 

of the delay time variability ∆TD/TD on the accuracy of the offset time estimation can be 

calculated from: 

  DMEASDOFF TTTT  1  
(4.18) 

Developing (4.18) into Taylor series for the first two elements gives: 

  DDMEASDDOFF TTTTTT  1  
(4.19) 

Inserting (4.18) into (4.19) and dividing both sides of (4.19) by TOFF the following 

relation can be derived: 

11 






 DMEAS

DD

OFF

OFF

TT

TT

T

T

 
(4.20) 

Inserting the obtained values TD = 0.149 ns and TMEAS-1 = 9.50 ns into (4.20), the relation 

between the relative variability of TD and TOFF is given by the approximation: 

D

D

OFF

OFF

T

T

T

T 




63

1

 
(4.21) 



Delay lines 104 

From the equation (4.21) it can be seen that the relative variability of the measured 

time delay TD has negligible impact on the accuracy of the offset time estimation. For 

example +/- 50% variability of TD will affect the precision of the TOFF estimation by less 

than +/- 1%. Therefore, the impact of the non uniform delay time TD along the line 

caused by the input and output buffers can practically be neglected in the calculations of 

the offset time. The obtained delay time offset TOFF = 9.35 ns was subtracted from the 

raw data obtained from the measurements prior to any further statistical computations 

and analyses. 

4.6.2 Normalised delay variance 

In order to compare the performance of the CSI and OSI delay lines, the normalized 

delay variance will be calculated based on the measurement result obtained from the 

entire array containing 512 CSI and 512 OSI delay lines for symmetric bias voltages 

VDN = 150...430 mV and VDP = 850...570 mV (VDP = VDD - VDN). The core supply voltage 

of the chip is VDD = 1.0 V. The diagram showing the normalized delay variance as a 

measure of the relative time variability versus mean delay time, computed based on the 

obtained results of the CSI and OSI delay gates accounting for the offset time 

TOFF = 9.35 ns, is presented in Figure 4.20. 

0 50 100 150 200 250
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

-3

mean(T
D

) [ns]

(
T

D
/m

ea
n

(T
D

))
2

 

 

CSI delay line

OSI delay line

VN = 150 mV

VP = 850 mV

VN = 170 mV

VP = 830 mV

VN = 190 mV

VP = 810 mV

VN = 220 mV

VP = 780 mV

VN = 430 mV

VP = 570 mV

 

Figure 4.20. Normalized delay variance vs. mean delay time obtained from the measurements of 

the CSI and OSI delay lines. 

The traces of the normalised delay variances of the CSI and OSI circuits, presented 

in Figure 4.20, can be divided in two sections depending on the operation region of the 

current limiting transistors MDN and MDP during the discharge phase. In the first section, 



Delay lines 105 

for the measured delays TD below 100 ns, the current limiting transistors operate in 

strong inversion and the relation of the normalised delay variance in terms of mean delay 

is linear, as suggested by the proposed model in equations (4.12) and (4.13). For higher 

delays, transistors MDN and MDP enter subthreshold region where the drain current 

variability, and hence, the normalised delay variance, given by equations (4.6) and (4.7), 

is constant and independent on the bias voltages (see equation (2.29) in Chapter 2). 

However, the traces shown in Figure 4.20 obtained from measurements do not level out 

immediately but slightly bend towards the horizontal axis. Reasons for the observed 

phenomenon are mainly the operation of the MOS transistors in moderate inversion for 

bias around the threshold voltage. 

In the CSI and OSI circuits, the generated delay time TD increases when lowering the 

bias voltage VDN or increasing the voltage VDP. From equations (4.12) and (4.13), the 

variability of this current depends on the operating point of the transistor, and increases 

with the generated delay time, also increasing the corresponding relative time variability. 

This means that the precision of the circuit array degrades for longer delays. Therefore, 

the tuning range of the fabricated test arrays, will most probably be restricted to 20 - 30 

ns, where the current limiting transistors operate in strong inversion. Practically, in order 

to generate longer delays of the same precision, longer delay lines should be used. The 

normalized delay variance versus mean delay time limited to the 30 ns tuning range, is 

shown is Figure 4.21. 

0 5 10 15 20 25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
x 10

-3

mean(T
D

) [ns]

(
T

D
/m

ea
n
(T

D
))

2

 

 

CSI delay line

OSI delay line
VN = 280 mV

VP = 720 mV

VN = 300 mV

VP = 700 mV

VN = 430 mV

VP = 570 mV

 

Figure 4.21. Normalized delay variance vs. mean delay time obtained from the measurements for 

the tuning range limited to 30 ns. 



Delay lines 106 

The visual representation of the generated delay times across the CSI and OSI arrays 

on the same gray scale map is shown in Figure 4.22. The corresponding histograms of 

the generated delays are presented in Figure 4.23. Both arrays were tuned to generate 

delay time intervals of approximately 11 ns. In the experiment it was difficult to tune 

both arrays precisely and the mean values extracted from the measurements of the delay 

times were TDCSI = 11.463 ns and TDOSI = 10.633 ns for the CSI and OSI arrays 

respectively. To facilitate comparison, the difference of TDCSI - TDOSI was added to the 

results obtained from the OSI array to align both histograms and set the range of the gray 

scale map to cover the corner cases from both data sets. In the map, black colour 

represents the fastest line of TDMIN = 10.885 ns delay, and white colour represents the 

slowest line of TDMAX = 12.070 ns delay (after the alignment). It can be observed that the 

image representing delay time in the OSI array has lower contrast and looks more 

uniform in comparison to the image obtained from the CSI array. Also, the 

corresponding distribution of the generated delays is narrower for the OSI array 

indicating less effect of the physical parameter variability on the circuit performance. 

COLUMN

R
O

W

 

 

2 4 6 8 10 12 14 16

5

10

15

20

25

30 1.1

1.12

1.14

1.16

1.18

1.2

x 10
-8

 COLUMN

R
O

W

 

 

2 4 6 8 10 12 14 16

5

10

15

20

25

30 1.1

1.12

1.14

1.16

1.18

1.2

x 10
-8

 
(a) (b) 

Figure 4.22. Visual representation of the delay time variability on the same gray scale measured 

for a:) CSI array and b) OSI array (aligned results, see text for details, ROW and COLUMN 

correspond to the physical location on the chip). 

11.0 11.2 11.4 11.6 11.8 12.0
0

10

20

30

40

50

60

70

80

delay time T
D

 [s]

µ = 11.44 ns

σ = 213 ps

 

11.0 11.2 11.4 11.6 11.8 12.0
0

10

20

30

40

50

60

70

80

delay time T
D

 [s]

µ = 11.44 ns

σ = 137 ps

 
(a) (b) 

Figure 4.23. Histograms of the generated delay time distribution for: a:) CSI array and b) OSI 

array (aligned results, see text for details). 



Delay lines 107 

In the experiments, four other chips from the same fabrication run were tested. The 

results presented above were obtained from the measurements of chip (#1). The 

measured statistical parameters of the CIS and OSI delay lines (tuned to generate delays 

around 11 ns) for chips #1-#5 are presented in Table 4.4. For all the chips (#1 - #5) the 

offset time TOFF was measured individually. The ratios of the standard deviation to the 

generated mean delay time of the CSI and OSI delay lines in each chip for fixed delays 

20, 30, 40, 50 ns are presented in Table 4.5. 

Table 4.4. Measurement results of five different chips from the same batch. 

Chip TOFF [ns] 
CSI OSI 

TDMEAN [ns] σTD [ps] TDMEAN [ns] σTD [ps] 

#1 9.35 10.63 203 11.46 154 

#2 9.15 11.05 231 11.70 151 

#3 9.24 10.91 216 11.01 151 

#4 9.20 11.16 224 11.31 169 

#5 9.28 11.37 220 11.45 155 

Table 4.5. Delay time variability measured for five different chips from the same batch. 

TDMEAN 

Chip #1 Chip #2 Chip #3 Chip #4 Chip #5 

σTD/TD [%] σTD/TD [%] σTD/TD [%] σTD/TD [%] σTD/TD [%] 

CSI OSI CSI OSI CSI OSI CSI OSI CSI OSI 

20 ns 2.60 1.90 2.75 1.80 2.70 1.80 2.80 2.10 2.75 1.90 

30 ns 3.33 2.43 3.43 2.37 3.47 2.30 3.57 2.63 3.47 2.47 

40 ns 3.75 2.75 3.90 2.73 4.03 2.70 4.13 2.98 4.00 2.83 

50 ns 4.42 3.08 4.24 3.02 4.48 3.00 4.58 3.32 4.46 3.18 

 

4.6.3 Time jitter 

Apart from the fabrication mismatch, the generated delay time intervals are also 

affected by noise (from the power supply, bias voltages and thermal effects in the 

circuit), which causes random variation of the output signal slope (jitter). In previous 

experiments jitter was removed by applying averaging over 64 samples, which was 

sufficient to obtain stable delay measurement readouts. The influence of noise on the 

generated delay time was calculated based on 1000 measurements of the delay of a 

particular line working under constant bias conditions. The measurement results showing 

the calculated standard deviation of the delay times as a result of fabrication mismatch 

and jitter within 50 ns tuning range are presented in Figure 4.24. For the time jitter 

estimation the standard deviation and the mean value of the generated delay time was 

measured for the fastest and the slowest delay line in both CSI and OSI arrays, and the 

respective average values were calculated. The obtained results show that the delay time 



Delay lines 108 

variability is dominated by the fabrication mismatch and remains almost one order of 

magnitude higher than the measured time jitter. It was observed that the measured time 

jitter was also affected by the noise of the setup (oscilloscope, probes and IO buffers), 

introducing a baseline noise level of σTD = 30 ps for delay TD = 3.44 ns measured in the 

system without the chip and with the corresponding input and output pins shorted in the 

socket on the PCB. The same measurement repeated with averaging over 64 samples (set 

up in the oscilloscope) reduced the baseline noise level to σTD = 4.8 ps. Therefore, the 

measurements of the time delay variability caused by mismatch (done with averaging 

over 64 samples) are practically not affected by the noise but the time jitter 

measurements in Figure 4.24 can, to some extent, be overestimated due to the baseline 

noise level of the setup and the limited sampling rate of the oscilloscope (1 GSa / s in the 

dual channel mode). 

0 10 20 30 40
0.01

0.1

1

mean(T
D

) [ns]


T

D
 [

n
s]

 

 

CSI delay line

OSI delay line

mismatch

jitter

 

Figure 4.24. Generated time variability caused by the fabrication mismatch and noise (time jitter) 

measured for CSI and OSI arrays within 50 ns tuning range. 

4.6.4 Simulations versus measurements 

The operation of the CSI and OSI delay lines implemented on the test chip was 

verified in simulations using their circuit models extracted from the layouts, accounting 

for the parasitic resistances and capacitances. The schematic diagram of the test circuit 

used in the simulations is presented in Figure 4.25. The input signal was buffered using 

two inverters. The output of the delay line was driving additional dummy inverter 

providing a capacitive load. The generated delay time TD, for particular bias voltages VDN 

and VDP, was measured between the input and the output of the delay line. In the 

simulations, statistical MOS transistor models provided by the foundry were used with 



Delay lines 109 

switches MISMATCH = 1 and PROCESS = 0, accounting only for the parameter 

mismatch, not including batch to batch process variability. In the simulations, 200 Monte 

Carlo runs were performed for a each bias voltage pair VDN and VDP, covering the entire 

tuning range, and repeated for process corners: typical-typical (TT), fast-fast (FF) and 

slow-slow (SS). The obtained results, in comparison with the measurements, are 

presented in Figures 4.26 and 4.27. 

 

VDP

VDN

VIN

0V

1.0V

tR = 100 ps

MOS: W/L=1µm/80nm
INPUT BUFFER

MOS: W/L=1µm/80nm
OUTPUT INV

VOUT

DELAY LINE

(RC parasitic extraction from the layout)  

Figure 4.25. Schematic diagram of the test circuit used in the simulations of the delay lines. 

0 50 100 150 200 250
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

-3

mean(T
D

) [ns]

(
T

D
/m

ea
n

(T
D

))
2

 

 

CSI delay line

OSI delay line

measurement

simulation (TT) VN = 150 mV

VP = 850 mV

VN = 170 mV

VP = 830 mV

VN = 190 mV

VP = 810 mV
VN = 130 mV

VP = 880 mV

VN = 150 mV

VP = 850 mV
VN = 190 mV

VP = 810 mV

 

(a) 

0 50 100 150 200 250
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

-3

mean(T
D

) [ns]

(
T

D
/m

ea
n

(T
D

))
2

 

 

CSI delay line

OSI delay line

measurement

simulation (SS) VN = 150 mV

VP = 850 mV

VN = 170 mV

VP = 830 mV

VN = 190 mV

VP = 810 mV

VN = 175 mV

VP = 825 mVVN = 200 mV

VP = 800 mV

VN = 240 mV

VP = 760 mV

 

0 50 100 150 200 250
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

-3

mean(T
D

) [ns]

(
T

D
/m

ea
n

(T
D

))
2

 

 

CSI delay line

OSI delay line

measurement

simulation (FF) VN = 150 mV

VP = 850 mV

VN = 170 mV

VP = 830 mV

VN = 190 mV

VP = 810 mV

VN = 100 mV

VP = 900 mV

VN = 120 mV

VP = 880 mV

VN = 150 mV

VP = 850 mV

 

(b) (c) 

Figure 4.26. The normalised delay variance of the CSI and OSI delay lines versus mean delay 

time obtained from the measurements and simulations assuming mismatch MOS transistor 

models operating in a) TT process corner, b) SS process corner and c) FF process corner. 



Delay lines 110 

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

1n

10n

V
DN

 [V]

T
D

 [
s]

 

 

CSI delay line

OSI delay line

measurement

simulation (TT)

 

(a) 

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

1n

10n

V
DN

 [V]

T
D

 [
s]

 

 

CSI delay line

OSI delay line

measurement

simulation (SS)

 

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0.1n

1n

10n

V
DN

 [V]

T
D

 [
s]

 

 

CSI delay line

OSI delay line

measurement

simulation (FF)

 

(b) (c) 

Figure 4.27. Tuning range of the CSI and OSI delay lines obtained from the measurements and 

simulations assuming mismatch MOS transistor models operating in a) TT process corner, b) SS 

process corner and c) FF process corner. 

It can be observed that the measurement results, in terms of the tuning range, are the 

closest to the simulations obtained for the typical (TT) process corner (Figure 4.27a). 

Mismatch results, however, show higher disparities between the simulations and the 

measurements. There are several potential reasons for the observed differences, including 

limited model precision, distance dependent variability and parasitics.  

Mismatch Monte Carlo models account only for the local parameter variability in the 

adjacent MOS devices. For larger circuits, such as the test array of delay lines, also 

distance dependent variability component, predicted by Pelgrom's model, could be seen 

as a potential contributor of the increased mismatch. Nevertheless, its impact on the 

circuit performance has already been shown rather insignificant for standard CMOS 

technologies (Chapter 2). 

For simulations, parameters of BSIM4.3.0 MOS transistor model [Xi 2003], 

provided by the foundry, were used. However, this model is not accurate in the 



Delay lines 111 

subthreshold region. It can be observed that matching between simulation and 

measurement results improves for larger bias voltages VN, when the current limiting 

transistors operate in strong inversion. It should also be noted that there were no up-to-

date transistor models for this particular technology available, since the foundry is 

terminating fabrications in this node. The models used in the simulations were from May 

2009 (the PPATC chip was fabricated almost four years later in January 2013). 

Finally, simulations account only for the variability in the parameters of MOS 

transistor, whereas the parasitic RC components are fixed. In the fabricated circuit, the 

random variability of the parasitic components will additionally increase the variability 

of the generated delay time. 

It is important to note that the situation results indicating better matching properties 

of the CSI gate than the proposed OSI circuit (see Figure 4.26a and c), were observed 

only when using the standard performance transistor models from the 90 nm design kit. 

One characteristic feature of these transistors is their very thin gate oxide (tox = 1.6 nm), 

thinner than in other CMOS technologies, such as 65 nm (tox = 2.6 nm) or 180 nm (tox = 

3.3 nm). Such thin gate oxide is used mainly to manufacture fast transistors with 

applications in high speed digital systems. In the design of the CSI delay gate, it 

increases the gate capacitances of the switching transistors, and hence, the coupling 

between the input and output nodes. As a result, some part of the input charge is 

transferred to the output, charging the load capacitance above the supply voltage (the 

overshoot effect [Huang 2010]). Consequently, it elongates the discharge time by pulling 

voltage VCM closer to VDD. Since this effect is not significantly affected by the parameter 

variability, the generated delay intervals are longer and less variable. In the OSI circuit, 

however, the effect of overshooting is much lower due to the current limiting transistors 

separating the output node from the switching transistors, therefore, the overall 

performance of the CSI gate is seemingly better than the proposed OSI one.  

The operation of the 16-stage CSI and OSI delay lines designed in standard 180 nm, 

90 nm and 65 nm CMOS technologies was verified in simulations of the post layout 

models including RC parasitics, and using the test circuit presented in Figure 4.25. The 

size of the transistors in the delay gates was the same as shown in Figure 4.16. Only the 

channel length of the switching transistors M1 and M2 was defined by the minimum 

feature size of a particular technology. The ratio of the delay variance of the OSI and CSI 

lines (σTDOSI/ σTDCSI)
2
 versus mean delay time TD, obtained from the simulations in three 

different technology nodes and measurements, in the same tuning range 10 ns - 200 ns is 



Delay lines 112 

presented in Figure 4.28. It can be observed that the operation of the proposed OSI 

structure is less affected by the fabrication mismatch. The delay variance ratio remains 

within interval of 60% - 75% for 65 nm technology and 50% - 90% for 180 nm and 90 

nm technologies (both in simulations and measurements). Delay lines implemented in 

180 nm and 65 nm nodes were simulated for TT corner and in 90 nm node for SS corner. 

0 50 100 150 200

50

60

70

80

90

mean(T
D

) [ns]

(
T

D
O

S
I/

T
D

C
S

I)2
 [

%
]

 

 

180 nm (simulations)

90 nm (simulations)

65 nm (simulations)

90 nm (measurements)

 

Figure 4.28. Ratio of the delay variances of the OSI and CSI circuits vs. mean delay time 

obtained from the post layout simulations of the circuits designed in 180 nm, 90 nm and 65 nm 

standard CMOS technologies and from the measurements. 

4.7 Conclusions 

The superior performance of the proposed OSI delay gate was achieved by inserting 

the current limiting transistors in between the switching transistors, unlike in the case of 

the CSI circuit, where the current regulating transistors are on the side of the power rails. 

Despite the similar operation of both designs, significant differences in their dynamic 

behaviour could be observed during the signal transitions, which are of a high importance 

when process parameter variability is concerned. The analyses and the simulation results 

were confirmed in measurements of 512 16-stage CSI and OSI delay lines implemented 

on a test chip and fabricated in a standard 90 nm CMOS technology. The experimental 

results have shown that the proposed OSI delay lines generate 10% - 50% less variable 

delay intervals than the CSI ones, with no penalty in terms of additional area, power or 

complexity increase. The proposed OSI structure could be considered in applications 

where multiple tunable delay elements of matched parameters are required, for example, 

in the build of readout systems for particle detectors, and in neuromorphic circuits. In this 

thesis, the proposed OSI structure will be used in the design of the asynchronous 

processor array for binary image skeletonization discussed in Chapter 5. 



Asynchronous CMOS logic array for binary image processing 113 

Chapter 5 

Asynchronous CMOS logic array for 
binary image processing 

5.1 Chapter overview 

This chapter presents a concept of the trigger-wave propagation in binary image 

processing using asynchronous cellular logic arrays in CMOS technologies. The idea of 

detecting collisions between wave-fronts is proposed as an extension to the propagation 

mechanism, with applications in fast object skeletonization and Voronoi diagram 

extraction. Discussions concerning hardware realisation and circuit design issues are 

supported by simulation analyses and experimental results, confirming the correct 

operation of the prototype array fabricated in a 90 nm CMOS technology. 

5.2 Introduction 

5.2.1 Bio-inspired approach 

Processing visual information in nervous systems, developed by vertebrates, can 

typically be divided into three stages accounting for low, medium and high level tasks. 

The earliest processing step is associated with chemical reactions that occur in rod and 

cone photodetector cells, creating the outer layer of a retina. Its inner layers perform low 

level spatial and temporal tasks, decomposing the received image into sets of features 

considering colour, brightness, shape, orientation, and movement, and hence, reducing 

the amount of data necessary for transmission and further processing. Such pre-processed 



Asynchronous CMOS logic array for binary image processing 114 

information is then transmitted via optic nerve to areas performing higher level cognitive 

functions in brain [Roska 2001]. Due to its efficiency and robustness, the structure and 

the processing flow of such visual system has been a subject of an extensive study and 

inspired the development of cameras, vision sensors and many image processing 

algorithms. In particular, in the field of VLSI circuit design, the idea of integration of the 

light sensor with processing elements, in the form of a monolithic electronic retina, 

gained high popularity. Such pixel-processor arrays are particularly suited for low and 

medium level image processing tasks, providing a very high processing efficiency. 

Ideally, their task is to process visual data directly on the focal plane, reducing the 

amount of primarily captured information to only a set of abstract descriptors transmitted 

off the chip [Bernard 1993]. 

5.2.2 SIMD paradigm 

Image processing tasks can be classified depending on the form, size and the 

complexity of the visual information taken as input and generated as a result. In such 

classification, low level tasks perform simple image processing operations, for example 

filtering, theresholding, edge detection, expansion and dilation, where the amount of 

input and the output information is practically the same. Medium level tasks are more 

application specific and attempt image interpretation, recognition and more advanced 

feature extraction [Fernandez-Berni 2011]. Their input is usually a pre-processed image 

of its original size (e.g. after thresholding and binarisation), whereas the output is only a 

set of abstract descriptors. In their subsequent routines, medium level tasks usually 

employ algorithms requiring global information of the image [Manzanera 2002]. High 

level tasks can be associated with the functionality of the visual cortex in brain, receiving 

and interpreting visual data from retina to perform more complex cognitive functions 

such as image reconstruction, understanding and correlation with other sensory data. 

Although classical computers can be used in image processing, they usually require 

the use of the pixel-wise serialising procedures, which has a negative impact on the 

processing time. To alleviate this, architectures employing processor arrays operating in 

accordance with Single Instruction Multiple Data (SIMD) paradigm are usually 

considered [Unger 58]. Such computers employ uniform arrays of processing elements 

(PE), executing the same series of elementary instructions but processing the locally 

available data. 



Asynchronous CMOS logic array for binary image processing 115 

The majority of low and medium level image processing tasks fit well into the SIMD 

paradigm, requiring pixel-wise operations with only nearest neighbourhood connectivity. 

Therefore, vision chips are typically realised as SIMD pixel-processor arrays, trying to 

retain the high visual data throughput on chip, and send only the extracted sets of abstract 

features off the chip. Furthermore, such systems are often expected to provide high 

processing speed, efficiency, computational accuracy, and to consume low power, 

especially in applications requiring real time image capturing and processing (e.g. in 

robotics or industrial inspection and control [Carey 2013]). 

5.2.3 Vision chips 

In the literature there are several propositions of the vision systems realised as 

programmable "processor-per-pixel" SIMD arrays in CMOS technologies. They consist 

of a regular (typically rectangular) array of cells, each incorporating an image sensor and 

a processing element responsible for data storage, neighbourhood communication and 

pixel-wise operation [Zarandy 2011], [Moini 97], [Belbachir 2010]. Examples of such 

generic integrated pixel-parallel processor arrays for variety of computational tasks are 

SCAMP, realised using discrete time, switched-current analogue circuits [Dudek 2000, 

2005], ASPA, realised in digital domain, employing architectural solutions for optimised 

design such as bit serial arithmetic and asynchronous global summation [Lopich 2010a], 

and MIPA4k, designed as a mixed-mode circuit, accommodating asynchronous 

propagation mechanism and separate cores for greyscale and binary image processing 

[Poikonen 2009]. Other vision chips, based on generic purpose processor arrays, were 

also presented in [Ishikawa 99], [Komuro 2003, 2009], [Astrom 93] and [Zhang 2011]. 

Many image processing tasks, including low and medium level operations, can 

efficiently be solved using cellular neural networks universal machines (CNN-UM), 

where the operation of the network can be controlled by a set of global parameters 

(templates), used by each processing cell when operating on the local image data and 

signals from the neighbourhood [Chua 88a, 88b]. Although, both CNN-UM and SIMD 

architectures are processor arrays with a neighbourhood connectivity, the main difference 

between these approaches lies in the principles of computation employed. In SIMD 

arrays, each processor acts according to the globally issued instruction and performs 

some elementary operations on the image. Cellular neural networks, on the other hand, 

settle to a particular state satisfying the input data (image) according to the set of globally 

defined templates. Even though cellular neural networks can be implemented in digital 



Asynchronous CMOS logic array for binary image processing 116 

domain using numerical computation on processor arrays, the unconstrained continuous 

information flow in such systems strongly suggests the use of analogue and 

asynchronous circuits in their hardware realisations. Therefore, the majority of vision 

chips such as APAP [Carmona-Galan 2003] and ACE [Rodriguez-Vazquez 2004], were 

designed in mixed-mode approach using continuous and discrete time analogue circuits 

dedicated for particular arithmetic tasks. The main advantages of the analogue solutions 

are small area of the processing element and low power operation, when compared to 

their digital counterparts. On the other hand, the operation of analogue circuit arrays is 

affected by systematic and random errors, such as noise and fabrication mismatch, which 

degrades the computational precision and quality of the obtained results [Rodriguez-

Vazquez 2003]. 

5.3 Wave propagation approach to skeletonization 

Feature recognition in visual images usually requires global routines, operating on 

images in some already pre-processed forms. Such feature analysis, often employs binary 

image skeletonization (structurization), converting objects into more abstract forms 

representing their structures, shapes and sizes. In practice, skeletonization have been used 

in character recognition [Arora 2010], biological cell analysis [Xiong 2010] and human 

action recognition [Chen 2006]. Various methods for binary image skeletonization and 

their applications were discussed in [Davies 90] and [Lam 92]. 

5.3.1 Skeletonization (background knowledge) 

There are several ways of defining skeletons. In the following, binary images where 

objects in the foreground are already segmented and clearly distinct from the background 

will be considered, as shown in Figure 5.1. In general a skeleton consists of lines and 

curves creating continuous structure describing the shape and the size of an object 

[Davies 90]. Skeleton of an object is usually defined as a set of points equally distant 

from the edges and associated with the "ridges" on the distance transformation map of 

the object (white lines in Figure 5.1b) [Blum 67]. These points can also be interpreted as 

the centres of circles drawn into the object (Figure 5.1c) or as a result of collisions 

between isotropic waves triggered from the boundary and propagating to the inside of the 

object with a constant speed (Figure 5.1d) [Krinsky 91], [Rekeczky 99]. 



Asynchronous CMOS logic array for binary image processing 117 

    
(a) (b) (c) (d) 

Figure 5.1. a) Binary object, b) skeleton denoted by white "ridges" on the distance transformation 

map, c) method of circles, d) method of trigger-wave propagation. 

There are many different methods of binary image skeletonization exhibiting 

different levels of complexity and returning slightly different results. The majority of 

them are too complex for direct and compact hardware implementation. The most 

common ones, usually considered in VLSI realisations, are based on iterative thinning or 

distance transformation [Davies 90], [Lam 92]. Thinning algorithms require only logical 

operations (binary morphology) and one bit per pixel memory. However, a large number 

of templates, sometimes of two pixels radius, may increase the number of physical 

interconnections required between cells and the complexity of the corresponding 

hardware realization. In the case of the distance transformation, every processing element 

has to store the information about its distance relative to the object's edge. This usually 

involves numerical computation and makes the implementation more complex and 

image-size variant. A skeleton extraction, based on the trigger-wave propagation and the 

wave-front collision detection was initially proposed in [Blum 67]. In this approach, each 

boundary point triggers a wave that propagates to the inside of the object. It can be 

assumed that the points where the propagation waves collide form the skeleton of the 

object. In principle, propagation can be seen as a generic computational engine dedicated 

for medium level image processing tasks applicable for both thinning and distance 

transformation. It can be observed that the propagation method aggregates some benefits 

of both approaches, which makes it particularly promising in terms of efficient hardware 

implementation in synchronous and asynchronous logic circuits. 

5.3.2 Trigger-wave propagation concept 

There are at least two rather disjoint areas in literature, independently exploring 

trigger-wave propagation approach in image processing. The idea of wave propagation in 

feature interpretation tasks was initially discussed in [Blum 67], and later re-introduced 



Asynchronous CMOS logic array for binary image processing 118 

in [Krinsky 91], proposing also VLSI circuits realisations based on works considering 

experiments with propagation in light sensitive chemical solutions [Kuhnert 89]. Both 

articles cite previous works, nevertheless these particular publications seem the most 

comprehensive and influential in terms of further research, defining trigger-wave 

propagation mechanisms suitable for image processing. Despite different approaches and 

formalisms used in these works, the discussed concepts are practically the same. 

Blum suggested a new revised approach to object perceiving, applicable to feature 

recognition and interpretation. In his view, Euclidean geometry relying on vectors, and 

distance measures, is too detailed in terms of the size, position and location, when 

describing objects. Instead, in order to obtain global attributes of an image, the medial 

axis function (MAF) based on the trigger-wave propagation and the wave-front collision 

detection was proposed [Blum 67]. In particular, MAF gave foundation for the distance 

transformation (DT) and object's structure (skeleton) extraction. It was assumed that 

MAF and DT are computed in the most "natural" Euclidean metric. Further works found 

in the literature concerned mainly software methods for DT, showing a number of 

difficulties with even approximate computation in Euclidean metric. In particular, quasi-

Euclidean Distance Transformation (quasi-EDT), was proposed in [Montanari 68]. 

Optimised sequential algorithms for Euclidean Distance mapping were proposed in 

[Danielsson 80]. The calculation of DT in metrics different than Euclidean and the 

application of DT for Voronoi (Dirichlet) tessellation was considered in [Borgefors 86]. 

Hardware oriented approach, developing the approximation of Euclidean Distance 

Transformation for parallel architectures working in SIMD mode, was presented in 

[Razmjooei 2010]. 

The idea of image processing using trigger-wave propagation presented in 

[Krinsky 91] resulted in a variety of software and hardware realisations extensively 

described in [Astrom 96], [Dudek 2006], [Lopich 2009], [Carey 2013]. The majority of 

works considering SIMD and CNN based solutions are mainly inspired by the properties 

of the light-sensitive chemical nonlinear system, a variant of the Belousov-Zhabotinski 

medium, and try to build its electronic hardware replicas. Originally, such system is 

capable of generating chemical reactions in the form of the propagating wave-fronts 

stimulated by the intensity of incident light [Kuhnert 89]. It was observed that its 

behaviour resembles the operation of a special kind of a parallel image processor, 

capable of performing global image processing tasks. Krinsky proposed more formalized 

definition of such waves, initially discussed by Blum, treating them as a subclass of the 



Asynchronous CMOS logic array for binary image processing 119 

nonlinear waves (autonomous waves - autowaves). Such waves, contrary to the 

mechanical waves, exhibit a series of interesting properties. They propagate with a 

constant speed, utilizing the locally stored energy of the active medium, thus they can 

expand infinitely preserving their initial amplitudes and contours, in uniform media. The 

wave-front, moving across the medium, leaves it behind "discharged", inhibiting any 

other propagation (Figure 5.2a). It means that the only visible dynamic effect of such 

propagation is the locally moving wave-front separating charged and discharged areas. In 

particular, the backward propagation is not possible without recharging, therefore, 

interference and reflection is not observed. Also, when two wave-fronts meet, the 

propagation cannot proceed further due to the local medium discharge on both sides, and 

hence, the waves annihilate. The basic properties of autowaves and mechanical waves, 

are presented in Table 5.1, and graphically illustrated in Figure 5.2b. Autowave 

propagation is a natural phenomenon and can often be observed as combustion waves 

(e.g. forest fire), nerve impulses and epidemic spreads [Krinsky 91]. 

Table 5.1 Properties of mechanical waves and nonlinear autowaves [Krinsky 91]. 

Property 
Mechanical 

waves 
Autowaves 

Conservation of energy + - 

Conservation of amplitude - + 

Reflection + - 

Annihilation - + 

Interference + - 

Diffraction + + 

 

m

Ech

Edch   

(a) (b) 

Figure 5.2. Autowave properties (dotted contours illustrate wave-fronts at successive time 

intervals): a) the expansion of the wave-front in an active medium starting from trigger point 

marker m (the wave-front separates charged and discharged areas of energies Ech and Edch 

respectively), b) annihilation of two colliding waves and diffraction on the object. 



Asynchronous CMOS logic array for binary image processing 120 

5.3.3 Hardware realisations 

Further works following the idea of trigger wave propagation in image processing 

include various VLSI synchronous and asynchronous implementations of cellular arrays 

such as 2D CNN array of coupled Chua's circuits [Perez-Munuzuri 93], CNN universal 

machine with special cloning templates [Rekeczky 99], 2D Global Logic Unit (GLU) 

arrays [Astrom 96] and Asynchronous Cellular Logic Array (ACLA) [Lopich 2009, 

2010a, 2010b, 2011], [Dudek 2006]. Despite some successful realizations of trigger-

wave-based algorithms in VLSI circuits, the efficient implementation of the wave-front 

collision-detection mechanism, essential for skeleton and Voronoi diagram extraction, 

remains an open problem. Realisation of the propagation and the collision-detection in 

CNN was discussed in [Rekeczky 99], but the required feedback operator was of two 

pixels radius. For practical reasons, most of the fabricated VLSI implementations of 

CNN circuits are limited to only the nearest neighbourhood operators [Rodriguez-

Vazquez 93, 2003, 2004], [Halonen 90], [Harrer 92]. The design of a versatile CNN 

machine with cloning templates of two-pixels radius was reported in [Paasio 2002], 

however, circuit simplifications preclude the use of the "collision detecting" feedback 

template from [Rekeczky 99]. 

5.4 Circuit Design 

In the approach presented in this thesis, rather than attempting to inhibit the 

propagation at the point where two wave-fronts meet, as is typically done in the iterative 

thinning [Davies 90], [Lam 92] or CNN-based methods [Rekeczky 99], it is proposed to 

employ a separate layer dedicated for detecting collisions between waves in the 

propagation layer. This simplifies the design of the single cell and enables the 

asynchronous operation of the entire system. The array consisting of the proposed cells 

can be arranged by placing cells on a rectangular grid with only four neighbours 

connectivity. 

In this section the design and implementation of the asynchronous processing module 

(APM) will be described. It consists of two logic circuits connecting with the 

neighbouring cells in the array and creating two hardware layers, one for wave 

propagation and one for collision detecting. Due to their structural and operational 

simplicity, in this thesis, these circuits are also called gates, where array of propagation 



Asynchronous CMOS logic array for binary image processing 121 

gates creates the propagation layer and array of collision detection gates creates collision 

detecting layer. 

5.4.1 Propagation gate 

In VLSI systems the idea of trigger-wave propagation is typically implemented using 

pixel-parallel rectangular array of OR gates, where each cell connects to only four 

nearest orthogonal neighbours [Dudek 2006], as shown in Figure 5.3. Such circuit 

remains stable when the inputs and outputs of all the gates in the array are in low logic 

state. The output p of a particular OR gate depends on the logic state of the outputs of its 

neighbours pN, pE, pS and pW and can be set up to high logic state (activated) when a 

propagation signal is received, or by using the additional input m, individually triggering 

a selected gate, according to the formula: 

mppppp WSEN   (5.1) 

In such a case, when triggering propagation via marker m, the neighbours of the 

activated gate will detect the high logic states on their inputs and turn on, triggering their 

respective neighbours. The expansion of the activated region around the triggered cell 

resembles a wave propagation mechanism which continues until all the gates in the array 

are in high logic state (Figure 5.4). After that the array remains stable and a new 

propagation is not possible until all the gates are again set to the low logic state (i.e. the 

array requires initialization before the next evaluation cycle). 

pN

pE

pS

pW

m

p

from neighbours

to neighbours

 

pN

pE
pW

pS

p
pN

pE
pW

pS

p
pN

pE
pW

pS

p

pN

pE
pW

pS

p
pN

pE
pW

pS

p
pN

pE
pW

pS

p

pN

pE
pW

pS

p
pN

pE
pW

pS

p
pN

pE
pW

pS

p

 
(a) (b) 

Figure 5.3. a) Schematic diagram of the propagation OR gate and b) the network connectivity of 

the pixel-parallel logic array realising the wave propagation concept. 



Asynchronous CMOS logic array for binary image processing 122 

Step 1 

 

Step 2 

 

Step 3 

 

Step 4 

 
Step 5 

 

Step 6 

 

Step 7 

 

Step 8 

 

Figure 5.4. The expansion of the propagation wave triggered from the centre of the array (colour 

map used in the figure: white  - charged (not yet activated) cell, light gray  - cell that receives 

the propagation signal, medium grey  - discharged (activated) cell, black  - cell triggered from 

the marker). 

In terms of the trigger-wave propagation concept, logic '0' at the output p 

corresponds to the charged cell, and logic '1' denotes a discharged cell. The transition 

from low to high logic state occurs when the gate receives high logic signal from its 

neighbour(s), however, the opposite transition (from high to low state) is not possible. 

Therefore, it can be concluded that a wave propagates at the expense of the locally stored 

charge and, in order to repeat the propagation, all the cells should be set to low logic state 

(i.e. the circuit array should be initialised). In particular, all the properties of the 

autowaves such as amplitude conservation, annihilation etc. (see Table 4.1) can also be 

observed in such arrays. 

Usually, the logical OR gate arrays, used in image processing, require some 

additional features which, for example, enable to define the propagation space or set a 

particular direction of the propagation [Dudek 2006], [Astrom 96]. In this work, a design 

of a test array, solely dedicated to binary image skeletonization and Voronoi tessellation 

is considered, therefore the propagation space is by default set to the full array size and 

the binary input image corresponds to the logic states of markers m used to trigger the 

propagation. 

5.4.2 Collision-detecting gate 

The mechanisms of trigger-wave propagation and wave-front collision detection can 

be found in many implementations of binary image skeletonization. Using the CNN-

based methods [Rekeczky 99] or the iterative thinning approach [Davies 90], 

[Lopich 2009], the execution of the algorithm resembles the propagation which 



Asynchronous CMOS logic array for binary image processing 123 

terminates shortly before the two wave-fronts meet; in order to inhibit the propagation 

before the collision, each cell needs to monitor the state of its neighbourhood within at 

least two pixels radius. In the solution proposed in this work, the wave-fronts are allowed 

to meet and annihilate, whereas a separate logic circuit detecting collisions, based on the 

logic states of its four nearest neighbours is used. In such approach, if the logic state of 

all four neighbours of a particular cell turns to '1', it means that a collision has occurred 

and it could have been caused by two independent wave-fronts meeting at this point. 

However, it can also mean that a wave has simply passed by this cell and discharged all 

its neighbours, as observed in a typical propagation scheme. In terms of a circuit 

implementation, the state of an AND gate, used for detecting the state of the neighbour 

cells, determines only the necessary but not sufficient condition A for the occurrence of a 

collision, given by equation: 

WSEN ppppA 
 (5.2) 

It is important to note that the wave-front collision, between different wave-fronts, 

will be indicated by the AND gate before or immediately after the cell becomes 

activated. On the other hand, when only one wave-front is passing through the cell, the 

AND gate will indicate the wave-front pass condition, after all its neighbours become 

activated. Therefore, in the proposed solution it is critical to determine the specific time 

when the collision condition is valid and the state of the AND gate should be saved to 

discriminate between wave-front collision and wave-front pass situations. The logic 

diagram of the proposed cell with the propagation and collision-detection mechanisms is 

presented in Figure 5.5. The corresponding diagram illustrating the timing relations 

between signals is presented in Figure 5.6. For simplicity, 1D chain of the propagation 

gates is analyzed. 

pN
pE

pS
pW

m

P

CD Q

EN

TPD

TAD

TDD

A

EN

to neighboursfrom neighbours

 

Figure 5.5. Logic diagram of the proposed APM cell. 



Asynchronous CMOS logic array for binary image processing 124 

P1 P2 P3

A2

TPD TPD

TAD TAD

A1

TDD

D Q

EN

C1

TPD

D1

A1

EN1

P1 P2 P3

 

P1

P2

A1

EN1

TPD

TAD

TDD

C1

time slot

wave-front collision

wave-front pass

 

(a) (b) 

Figure 5.6. The timing analysis of the propagation chain: a) schematic of a 1D array illustrating 

timing relations, b) timing diagram (dashed traces of A1 and C1 show the rejection of the wave-

front pass case). 

When the propagation gate P1 of the first cell in the chain receives a signal from its 

preceding neighbour (or from the marker m), it sets the propagation bit P1 to the high 

state after a certain delay time TPD. This indicates the activation state of this cell denoting 

the beginning of the time slot when the collision-detecting circuit is supposed to react. 

The state of the AND gate A1 depends on the state of the propagation bits of the 

neighbouring cells and, if the collision condition is met (i.e. all the neighbours are in the 

high state), it turns to the high state after a certain propagation delay TAD. The state of the 

signal A1 determines the state for the collision bit C1. The corresponding D-latch (storing 

the value of C1) remains "transparent" when the signal EN1 is in the high state. This 

signal is generated by the inverting gate D1 and turns to the low state after the delay time 

TDD after the cell became activated. This terminates the time slot for collision-detecting 

mechanism and latches the value of A1. As the propagation progresses, all the inputs of 

the AND gate eventually receive signals from their neighbours however, the value of the 

respective collision bit C1 can only be modified during the time slot TDD (Figure 5.6b). 

For correct operation it must be ensured that: TAD < TDD < TPD. It is important to note that 

in the dedicated VLSI hardware implementation the operation of such an asynchronous 

structure will be sensitive to process parameter variation (mismatch) and noise, leading 

to the propagation speed variability across the array. As a result the neighbouring cells 

may not produce correct logic states right at the beginning of the time slot, but slightly 

later with a certain random time offset. For that reason, in the practical realization of the 

circuit, the delay time TDD will be tuned experimentally to obtain the most satisfactory 

results (see Figure 5.24). 

 



Asynchronous CMOS logic array for binary image processing 125 

(a) 

 

(b) 

 

(c) 

 

Figure 5.7. The operation of the propagation and collision detection mechanisms in different 

cases: a) the collision of two irregular parallel wave-fronts (the resulting collision line is of one or 

two pixels width depending on whether there was odd or even number of cells between colliding 

wave-fronts), b) square (the proposed mechanism correctly recognises the collision points), c) 

45°
 
rotated square (the proposed collision detecting mechanism does not recognise collisions 

because all the cells in the wave-front have at least one inactive (white) neighbour). The gray 

scale colour map used in the figure: white  - inactive (charged) cell, light gray  - cell that 

receives the propagation signal, medium grey  - activated (discharged) cell, dark grey  - cell 

that detects collision, black  - cell triggered from the marker. 

The proposed solution is in principle similar to the iterative thinning methods, but far 

more simplified. Instead of a set of matching templates (usually of two pixels radius), 

only one, logical AND of the nearest neighbourhood state, is defined. It is assumed that 

the resulting collision line should be continuous and of (at most) two pixels width, 

depending on whether there is an even or odd number of pixels in between parallel wave-

fronts. An exemplar case, showing the collision of two such waves propagating from the 

opposite directions, is presented in Figure 5.7a. 

The use of only one template applied to the four orthogonal neighbours may 

occasionally lead to confusions, especially for non-frontal collisions, where at the 

meeting point of two wave-fronts not all the neighbouring cells are activated. Two cases 

of the propagation with non-frontal collisions, triggered from edges of a square and a 45
0
 

degrees rotated square, are shown in Figure 5.7b and c respectively. In the first case, 

collisions are detected correctly because all the neighbouring cells of the points where 

two perpendicular wave-fronts meet are activated at the same time. In the second case 

(Figure 5.7c), however, the perpendicular waves collide, but the wave-fronts are 45
0
 

angled to the cell lattice, therefore each cell, where the collision should normally be 

detected, has at least one inactive neighbour. In such cases, the logic states of cells 

located further than the nearest neighbourhood should be considered. Nevertheless, 

despite the simplicity of the proposed method, it produces very satisfactory results 



Asynchronous CMOS logic array for binary image processing 126 

especially for natural objects of irregular shapes. Most importantly, it does not require 

discrete-time, synchronous iterations but can be done asynchronously, improving the 

speed and reducing the complexity of the array and the control circuit. 

5.4.3 CMOS Circuit realisation 

A direct realisation of the proposed Asynchronous Processing Module (APM) cell, 

based on the schematic diagram from Figure 5.5 and using complementary logic gates, is 

possible but rather inefficient due to the large area occupation. In the majority of VLSI 

implementations of the trigger-wave propagation concept for image processing, the 

dynamic logic design has typically been preferred [Dudek 2006], [Lopich 2010]. The 

schematic diagram of the proposed propagation and collision-detecting cell is shown in 

Figure 5.8. It is functionally equivalent to the structure from Figure 5.5, assuming that 

the transitions of signals pN, pE. pS and pW are always from '0' to '1' (which is the case 

here). 

M10

VDD

M11 M12 M13

M6

VDD

M7M8

precharge

NOR

M1 M2 M3 M4

pN pE pS pW

M9

M5

m

VMODE1

VMODE2

weak 

keeper

0.24/0.08 0.6/0.4 0.6/0.4 0.6/0.4 0.6/0.4

0.6/0.4 0.6/0.4 0.6/0.4 0.6/0.4

4/0.22

0.12/0.38 0.38/0.14

0.24/0.08
Vp

VDD

VDELAY

VDD

M17 M24

VDD

M23M22

precharge

NAND

M18pN

weak 

keeper

0.24/0.08

0.24/0.08

0.12/0.64 0.12/0.09

0.24/0.08
Vp

M19pE
0.24/0.08

M20
0.24/0.08

M21pW
0.24/0.08

pS

M14
0.12/0.32

M15
1.1/1.1

M16
1.1/1.1

P EN

pN

pE

pS

pW

m

P

D Q

ENEN

C

pN
pE
pS
pW

to neighbours

P

EN C

PROPAGATION GATE

DELAY GATE AND-LATCH GATE

 

Figure 5.8. Schematic diagram of the proposed APM cell consisting of propagation gate, delay 

gate and AND-Latch gate (transistor dimensions W/L are given in micrometers). 



Asynchronous CMOS logic array for binary image processing 127 

The size of each transistor is given in micrometers as the ratio of the channel width 

to the channel length. The sizes of the transistors were chosen to address the leakage and 

parameter mismatch issues, discussed further in this chapter. The circuit is realised using 

two-phase dynamic logic approach, therefore, each cell has to be initialized before the 

array can perform any operation. During the initialization phase, signal VP (precharge) is 

set to VDD discharging the parasitic capacitances of nodes P and C through M6 and M24 

respectively, and the capacitances of NOR and NAND nodes are precharged to VDD 

through M8 and M22. After that, signal VP is set to '0', which terminates the precharge 

phase and the array is ready to process the input image (i.e. the array is able to carry out 

one propagation cycle). In order to prevent charge leakage, transistors M8 and M22 work 

as weak keepers assuring the high logic state of nodes NOR and NAND as long as all the 

inputs remain inactive. 

If any of the input signals turns to a high state (the cell receives the propagation 

signal), the node NOR discharges, turning on M7 and setting the propagation bit P to VDD. 

If all the inputs turn to the high state, the node NAND can be discharged depending on 

the state of the signal EN (enable). This signal is generated by the inverting delay gate 

with delay time controlled by voltage VDELAY. As long as P remains in the low state, 

transistor M14 pulls up signal EN to VDD "enabling" the AND-Latch gate. This enables the 

latch to "follow" the output A of the AND gate determining the collision condition. The 

high state of this signal (when all the inputs pN, pE, pS and pW in a high state) discharges 

the node NAND setting the collision bit C to a high state. Once this node is discharged, 

the output state cannot be changed until the next initialization cycle. Such a limitation 

does not inhibit the cell from proper operation because all the signals received from the 

neighbours can change only once (from the low to the high logic state). 

A critical parameter of the circuit is the duration of the time slot defining how long 

the AND-Latch gate remains transparent for the signal A (Figure 5.6b). When the signal 

P turns to a high state (denoting the beginning of the time slot) the output capacitance of 

the delay gate (node EN) starts discharging. While the discharge time depends on the 

current controlled by the transistor M15, the time slot length can be tuned using voltage 

VDELAY biasing the gate of this transistor. 

 

 

 



Asynchronous CMOS logic array for binary image processing 128 

5.4.4 Mismatch optimisation 

It was observed that the fabrication mismatch is one of the major contributors 

affecting the operation of a circuit and degrading the quality of the extracted images. It 

introduces the variability of the timing parameters of the array which are critical in terms 

of the correct extraction of the collision lines. Matching between devices can be 

improved by proper transistor scaling (enlarging). The obtained improvement of the 

circuit's precision comes, however, at the price of the increased area and power 

consumption, and is usually limited by other design constraints. Therefore, only the 

critical transistors in the APM cell, which mostly contribute to the timing parameter 

variability, were scaled in order to keep the design area small. It was observed that the 

propagation speed uniformity across the array depends mostly on matching between 

transistors in the propagation gate whereas the precision of the generated time slot can be 

improved by proper scaling of the transistors in the delay gate (Figure 5.8). In particular, 

the evaluation transistors M1-4, M7, and M16, and the current limiting transistors (biased 

from the analogue voltage sources) M9-13 and M15 are the dominant contributors to the 

performance degradation. The mismatch optimisation of the APM was performed based 

on the simulation results of a reduced size array of 32 × 64 cells using statistical Monte 

Carlo MOS transistor models provided by the foundry, and assuming a simplified version 

of the propagation gate not including current regulating transistors M9-13 and M15. The 

sizes of these transistors, however critical, are not of the prime interest at this stage. The 

goal was to eliminate the artefacts in the resulting images stemming from the random 

variability of the timing parameters of the cells in the array. Figure 5.9 shows the results 

of the Monte Carlo mismatch simulations of five circuit arrays consisting of MOS 

transistors with different sizes. Transistors M1-5, M10-13 and M15,16, in the actual circuit, 

were oversized due to the available space in the APM layout (Figure 5.8 shows sizes 

used eventually in the circuit realisation after expanding the critical transistors). 

 

 

 

 



Asynchronous CMOS logic array for binary image processing 129 

 (a) 

 

 (b) 

 

  
Fixed gate size: 0.12µm/0.08µm 

Total gate area: 0.18µm
2
 (×1) 

 

 
 

Fixed gate size: 0.24µm/0.16µm 

Total gate area: 0.73µm
2
 (×4) 

 (c) 

 

 (d) 

 
 

 

Fixed gate size: 0.48µm/0.32µm 

Total gate area: 2.92µm
2
 (×16) 

 
 

 

Fixed gate size: 0.96µm/0.64µm 

Total gate area: 11.67µm
2
 (×64) 

 (e) 

 

 

  
Only critical transistors scaling 

Total gate area: 2.58µm
2
 (<×16) 

 

 

Figure 5.9. Mismatch Monte Carlo simulation results of the full image size rectangle obtained 

from the 32 × 64 cell arrays consisting of: a) minimum-size transistors, b) transistors of 4× larger 

gate array, c) transistors of 16× larger gate array, d) transistors of 64× larger gate array, e) 

transistors scaled using the proposed approach. 

It can be observed that the use of the OSI delay gate (presented in Chapter 3) further 

helped to reduce the variability of the critical timing parameters of the array without 

additional area increase. 

In order to verify the correct operation of the final design presented in Figure 5.8, 

arrays of 32 × 32 cells using post-layout models of APMs including only parasitic 

capacitances with delay gates realised based on current starved inverter (CSI) and the 

proposed output split inverter (OSI) circuits were simulated accounting for fabrication 

mismatch. The corresponding layouts of the APM modules, with CSI and OSI delay 

gates, are presented in Figure 5.10a and b respectively. The obtained results of two 

Monte Carlo runs, showing the collision lines extracted when triggering wave from the 

border of the array, are presented in Figure 5.11. 



Asynchronous CMOS logic array for binary image processing 130 

  
(a) (b) 

Figure 5.10. Layout of the APM module with delay gate design based on a structure of a) current 

starved inverter (CSI), and b) output-split inverter (OSI). 

  

  
(a) (b) 

Figure 5.11. Mismatch Monte Carlo simulation results of a full size square (propagation triggered 

from the boundaries) consisting of 32 × 32 APM cells of the same size with delay gate design 

based on a structure of a) current starved inverter (CSI), and b) output-split inverter (OSI). 

It can be concluded that the proposed APM module with OSI circuit is less affected 

by the fabrication mismatch and extracts skeletons of better quality. The variability of the 

timing parameters of the AND-Latch gate does not affect the operation of the circuit, 

therefore, the weak keeping and the output stage transistors were sized to assure that the 

gate operates correctly, whereas transistors M17-21 in the NAND pull-down network were 

slightly widened only to speed up the gate switching process, when the collision 

condition is met. 



Asynchronous CMOS logic array for binary image processing 131 

5.5 Chip implementation 

A test array consisting of 64 × 96 APM cells from Figure 5.8, was designed and 

fabricated in a standard 90 nm CMOS technology. The proposed circuit forms an 

asynchronous processing module (APM), suitable for integration within a dedicated 

processor array. In order to communicate with the array implemented on the test chip, 

each cell accommodates an additional I/O circuit consisting of two D flip flops, a 

multiplexer and two logic gates. The schematic diagram of the processor used in the 

implementation of the test array is shown in Figure 5.12. The input image bit is stored in 

DFF1 D flip flop, and if it is set to '0' (image background), it triggers the APM on the 

falling edge of the global START signal. The APM generates two signals: P and C, 

corresponding to the propagation and collision bits respectively. Depending on the state 

of the lines S1 and S0 (see table in Figure 5.12), either bit P or C can be saved in the 

second D flip flop DFF2. In the array both D flip flops are serially connected with their 

respective neighbours and form two separate shift registers REG1 and REG2. The 

register REG1 is used to shift the input image into the array (one bit per processor). The 

second register (REG2) can be used to send the captured result off the chip, when both 

signals S1 and S0 are in the high state. The generic structure of the global shift register 

used in the image data transfers in the chip is presented in Figure 5.13. The rising edge of 

the clock signal CLK2 is used to capture the value of bit P or C in DFF2 after or during 

the processing, which enables to observe the intermediate results of the propagation. The 

design of the processing cell (including the APM, I/O logic and signal routing) occupies 

12.5 µm × 12.5 µm. The layout of the cell is shown in Figure 5.14. The proposed APM 

cell consists of 24 MOS transistors and occupies 5.5 µm × 7.4 µm which is less than the 

area of three D flip flops in this technology. 

D Q D Q

APM

P

C

m

CLK1

REG1 IN REG1 OUT

REG2 IN

00

01

11

S
1

S
0 CLK2

REG2 OUT

START

S1  S0
0    0

0    1

1    1

propagation bit P

collision bit C

REG2 (shift register)

DFF1 DFF2

MUX

NOR

From DFF1 of 

the previous cell

To DFF1 of 

the next cell

From DFF2 of 

the previous cell

To DFF2 of 

the next cell

from neighbours

pN pE pS pW 

to neighbours

 

Figure 5.12. Schematic diagram of the processing element including the APM and I/O logic. 



Asynchronous CMOS logic array for binary image processing 132 

D Q

DFF

CLK

DQ

DFF

CLK

D Q

DFF

CLK

D Q

DFF

CLK

DQ

DFF

CLK

DQ

DFF

CLK

D Q

DFF

CLK

D Q

DFF

CLK

D Q

DFF

CLK

 

Figure 5.13. The structure of the scan register for serial I/O data exchange used in the test chip 

design. 

 

Figure 5.14. The layout of the processing cell including the APM and I/O logic (for clarity the 

power rails from the top 3 metal layers are not shown, core area: 12.5 µm × 12.5 µm). 

The additional inverter in the bottom right corner (Figure 5.14) is by default inactive 

(the output is floating and the input is set to '0'). In some cells these inverters were used 

as buffers in the signal distribution network, assuring the uniform propagation times of 

START and CLK2 signals from the respective I/O pads of the chip to each processor. The 

network is based on the "H-pattern" routing topology shown in Figure 5.15a, where the 

distance between the centre of a cluster of four cells and the input of each cell (e.g. the 

clock input of a D flip flop) is the same. This was repeated for each four clusters creating 

a second level of the signal distribution network covering 16 cells (Figure 5.15b). 

Following this idea, the uniform signal distribution network can be created for an 



Asynchronous CMOS logic array for binary image processing 133 

arbitrary size square array. Each time the signal descends to the lower level in such 

hierarchy it is buffered, therefore each buffer drives only the inputs of four buffers from 

the lower level. The top level of the design consists of 2 × 3 clusters with 32 × 32 cells 

each. The signals to all 6 clusters were routed manually, also assuring the same path 

lengths. It can be observed that the correct operation of the system is very sensitive to 

timing parameters, especially to the uniformity of the falling edge of the START signal, 

triggering the propagation, which can affect the quality of the obtained skeletons. Proper 

distribution of the CLK2 signal is also important in experiments when capturing images 

showing the intermediate states of the propagation and collision detecting layers. 

Therefore, it was critically important to assure that the propagation delays of both signals 

are uniform across the array. The chip micrograph showing the designed test array of 

64 × 96 processing cells, occupying 840 µm × 1200 µm area, is presented in Figure 5.16. 

In the design two separate power supply rails were used for the APMs and the I/O logic 

blocks respectively. 

D Q D Q

D Q D Q

processor

processor processor

processor

  
(a) (b) 

Figure 5.15. The proposed "H-pattern" routing topology for uniform-delay distribution of global 

signals across the array of processing elements: a) cluster of 4 cells, b) cluster of 16 cells. 

 

Figure 5.16. Micrograph showing the array of 64 × 96 processing cells                                          

(size: 840 µm × 1200 µm). 



Asynchronous CMOS logic array for binary image processing 134 

5.6 Test system and setup 

In order to verify the operation and measure the performance of the fabricated chip, a 

test system was designed to generate the programming sequences and the control signals 

for the circuit array, and to provide communication with a PC. The block diagram, 

showing the structure of the test system and its internal architecture, is presented in 

Figure 5.17. The design is based on the KCPSM3 (Xilinx PicoBlaze) controller with I/O 

interfaces and RAM memories implemented on a Spartan 3 XC3S200 FPGA. For 

communication with a PC, the RS-232 serial interface was chosen due to its simplicity 

and sufficient speed for this particular test application. The program stored in the ROM 

memory of the KCPSM3 controller is a command interpreter working in a text mode, 

executing commands received from the host through the serial port and sending back the 

results. Therefore, any PC application capable of accessing the serial port (e.g. Hyper 

Terminal, Matlab) can be used to communicate with the designed system. In particular, 

the Program Memory Manager module (PMM) can be accessed and any user's program 

can be uploaded to a separate 18 × 1k PRAM memory (Program RAM) and executed by 

switching between PRAM and ROM. This allows to develop and debug the software for 

KCPSM3 controller online without repeating the synthesis and implementation steps. 

Also, a dedicated MATLAB application was built to simplify the communication with 

the test system and to enable image data exchange and visualization. The two 1kB 

memory banks (RAM A and B) are used to store the binary input and output images. 

 

UART
RS-232 interface

(115.2kbps)

RAM A
1kB BRAM 

with I/O and 

addressing logic

PMM

ROM

UART command 

interpreter  

Program Memory 

Manager

(18×1k BRAM)  

KCPSM3
PicoBlaze Controller

I/
O

 P
O

R
T

RAM B
1kB BRAM 

with I/O and 

addressing logic

DCM
50MHz reference, 

100MHz with 

Phase Shifting

FSM
Dedicated Finite State Machine 

for processor array testing

PRCH

START

CLK2

REG1 OUT

REG2 IN

REG2 OUT

RESET

S1

S0

CLK1

REG1 IN

64 × 96 

CELL 

ARRAY

test chip

Serial port 

communication 

software 

(Hyper Terminal, 

MATLAB)

PC HOST

FPGA (XC3S200)

 

Figure 5.17. Block diagram of the test system. 



Asynchronous CMOS logic array for binary image processing 135 

The reset and I/O sequences controlling REG1 and REG2 registers are generated 

entirely by the KCPSM3 system, reading and writing to particular pins in the generic I/O 

PORT module. Due to the limited time resolution of such solution, the initialization and 

evaluation strobes for the chip are generated by a dedicated finite state machine (FSM) 

unit. The sequence generated by the FSM is shown in Figure 5.18. For the system clock 

frequency 50 MHz, the minimum time resolution of the FSM is 20 ns. It starts the cycle 

by bringing all the lines to their initial state (first 20 ns). Then it precharges the array (80 

ns) and generates START signal to begin the propagation. The inserted delay of 160 ns 

after the PRCH falling edge and before the START falling edge is necessary due to 

ringing observed on the power rails (see Section 5.8). The duration of the evaluation 

phase (when the START signal is in low state) is fixed to 80 ns, which is sufficient for the 

array to finish the propagation. The rising edge of the CLK2 signal is used to capture the 

processed image to register REG2. In order to observe the intermediate results of the 

propagation, an additional circuit generating the rising edge of CLK2 signal, shifted in 

phase with reference to the system clock, was designed and implemented using the Phase 

Shifter from the DCM module on the FPGA (Figure 5.19). Together with the digital 

delay line, consisting of a series of D flip flops, it generates the delay time equal: 

  75psns101  SPNT  (5.3) 

where PS is an 8 bit parameter controlling the Phase Shifter in the DCM module, and can 

be set in range -128...+127, and N is a number defining the length of D flip flop chain. 

After the evaluation phase, the FSM can generate from 1 to 256 wait states of 20 ns each 

before it returns to the initialization state. This enables to modify the length of the 

generated initialization-evaluation cycle from 360 ns to 5.46 µs. 

PRCH

START

CLK2

80 ns 160 ns 80 ns20 ns 20 ns – 5 µs

initialization evaluation additional 

wait states

Delay generated by DCM

 

Figure 5.18. Time diagram showing the initialization and evaluation sequences generated by the 

dedicated FSM. 



Asynchronous CMOS logic array for binary image processing 136 

DCM
(FPGA)

50 MHz

OSC

50 MHz

KCPSM3

100 MHz

DFF LINE

D Q D Q D Q D Q

0
1

2

N-1

N

START

CLK2

TPS

 

Figure 5.19. Schematic diagram of the CLK2 slope signal generator. 

5.7 Experimental results 

The operation of the fabricated chip was verified in a laboratory environment using 

the test system described in Section 5.6 and a dedicated set of voltage regulators 

providing required biases and power supplies working in range 0 - 2.5 V. The bias 

voltages VMODE1 and VMODE2 were adjusted experimentally to assure the circular contours 

of the propagation waves (the details will be provided in Chapter 6). The VDELAY voltage 

was adjusted to minimise the occurrence of the wave pass conditions, misclassified as 

collisions. The supply and bias voltages used in the tests presented in this paper are 

summarized in Table 5.2. The reasons for selection of such values will be discussed 

further in this and the next chapter. 

Table 5.2. The supply and bias voltages used for testing the fabricated chip assuring circular 

propagation. 

Parameter Value Remarks 
VDD 930 mV Power supply voltage (APMs) 

VCC 930 mV Power supply voltage (control and I/O logic) 

VDELAY 396 mV Delay gate bias voltage 

VMODE2 511 mV Propagation gate bias voltage (serial input transistors) 

VMODE1 315 mV Propagation gate bias voltage (common input transistor) 

VIO 2.5 V I/O ring supply voltage of the test chip 

 

5.7.1 Results comparison 

The skeletons obtained from the designed asynchronous array were compared with 

the results from two skeletonization algorithms. The first algorithm is the implementation 

of the propagation and collision detection mechanisms (discussed in Section 5.4) but 

executed synchronously. The second algorithm is more complex and extracts octagonal 

skeletons based on the iterative thinning using 8 structuring-element pairs [Haralic 92]. 



Asynchronous CMOS logic array for binary image processing 137 

Its software implementation, available in Matlab Image Processing Toolbox is bwmorph 

function called with a parameter skel, is used here as reference. The skeletons of several 

"natural" objects and geometric shapes, extracted by the fabricated circuit array and 

computed using the aforementioned algorithms, are presented in Figure 5.20. 

The differences in skeletons extracted by the iterative thinning method (Figure 5.20c) 

and the synchronous propagation-based method (Figure 5.20b) result mainly from the 

simplicity of the proposed collision detecting mechanism. It is equivalent to a single 

template matching approach, limited to only four nearest neighbours and logical AND 

operation. The differences between the synchronous (software) and asynchronous 

(hardware) implementations of the propagation-based method result from circular 

contours of the trigger-waves generated in the circuit array. In a synchronous 

implementation, a wave propagates with a constant cell-to-cell speed, therefore, it takes it 

twice as much time to reach the nearest cell on the diagonal direction than the nearest cell 

in the cardinal direction. As a result, the contour of the wave-front triggered from a 

single cell resembles a 45° rotated square (diamond), as presented in Figure 5.4, 

indicating anisotropic wave propagation speed (lower in the diagonal direction). In the 

asynchronous realisation, the diagonal cell receives signals from two nearest neighbours 

simultaneously which shortens the propagation time through this cell. As a result, the 

contour of the trigger-wave is closer to circular, as shown in Figure 5.21. The bias 

voltages VMODE1 and VMODE2 can be used to tune the timing parameters of the propagation 

gate, and hence, the shape of the generated wave-fronts. The principles of such circular 

propagation are further discussed in Chapter 6. In the case of skeletonization, the use of 

isotropic waves produces more accurate results with fewer discontinuities in the 

extracted skeletons when compared to the results obtained from the synchronous 

implementation of the propagation-based method. 



Asynchronous CMOS logic array for binary image processing 138 

   
(a) (b) (c) 

Figure 5.20. The skeletons of different objects extracted by: a) the asynchronous array on the test 

chip, b) the synchronous implementation of the propagation and collision detection algorithm, c) 

the iterative thinning method (reference). 



Asynchronous CMOS logic array for binary image processing 139 

 
0 ns 5 ns 10 ns 15 ns 20 ns 25 ns 

 
30 ns 35 ns 40 ns 45 ns 50 ns 55 ns 

Figure 5.21. The intermediate states of the propagation wave triggered from a single pixel in the 

middle of the array and captured after each 5 ns. 

The proposed propagation-based method can also be applied to generate Voronoi 

diagrams of binary images. In such a case, the waves are triggered from a set of points 

and the resulting collision lines create the tessellation of the propagation space. The 

experimental results showing the effects of the propagation triggered from several points 

in the array are presented in Figure 5.22. 

 

 
2.5 ns 5 ns 7.5 ns 10 ns 12.5 ns 15 ns 

 
17.5 ns 20 ns 22.5 ns 25 ns 27.5 ns 30 ns 

Figure 5.22. The intermediates steps of the propagation and collision detection mechanisms 

captured after each 2.5 ns showing the generation of the Voronoi diagram. 

For comparison, three different tessellation diagrams obtained from the test chip and 

computed using voronoi function in Matlab are shown in Figure 5.23. It can be observed 

that the proposed method using isotropic propagation and collision detection scheme 

correctly extracts tessellation diagrams. It can be observed that the lines segmenting 

images widen towards the edges of the array. This results from the unbalanced load of 

the border cells, where the propagation speed along the periphery of the array increases, 

confusing the collision detecting circuits, which misclassify the wave-front pass as a 

collision. This and other design issues will be discussed in section 5.8 of this chapter. 

 

 

 



Asynchronous CMOS logic array for binary image processing 140 

(a) 

 

(b) 

 

Figure 5.23. The results of the Voronoi tessellation obtained using: a) voronoi function in Matlab, 

b) asynchronous processor array on the test chip. 

5.7.2 Delay voltage tuning 

The quality of the obtained skeletons and tessellation diagrams depends on the 

VDELAY voltage regulating the delay time slot for the cells in the array. The experimental 

results showing skeletons of four different images, extracted for VDELAY bias from 270 

mV to 930 mV, are presented in Figure 5.24. For lower values of VDELAY, the generated 

time slot becomes longer and cells may start to misclassify the wave-front pass condition 

as a collision. As a result, the detected collision lines become wider and, due to the 

fabrication mismatch, can also be surrounded by some artefacts resembling the presence 

of noise. For higher values of VDELAY, the extracted collision lines become fractured and 

eventually disappear. It is important to note that such artefacts, contrary to the random 

noise, are stationary. The presence of random noise has been observed in the circuit but 

its level is very low and practically does not affect the obtained results. It can be 

observed that the value of VDELAY is critical in terms of the quality of the obtained results 

(Figure 5.24). The best skeletons can be extracted for VDELAY ≈ 400 mV. Based on a 

number of experiments with different images, for the particular chip used in all the tests, 

the value of VDELAY was fixed to 396 mV. 

 

 

 

 

 



Asynchronous CMOS logic array for binary image processing 141 

 
270 mV 300 mV 320 mV 340 mV 360 mV 380 mV 

 
400 mV 420 mV 440 mV 460 mV 560 mV 930 mV 

 

 
270 mV 300 mV 320 mV 340 mV 360 mV 380 mV 

 
400 mV 420 mV 440 mV 460 mV 560 mV 930 mV 

 

 
270 mV 300 mV 320 mV 340 mV 360 mV 380 mV 

 
400 mV 420 mV 440 mV 460 mV 560 mV 930 mV 

 

 
270 mV 300 mV 320 mV 340 mV 360 mV 380 mV 

 
400 mV 420 mV 440 mV 460 mV 560 mV 930 mV 

Figure 5.24. The skeletons of four images extracted for different VDELAY bias voltages from 

270 mV to 930 mV. 

5.7.3 Supply voltage variability 

The operation and robustness of the prototype array was verified for the variable 

supply voltage VDD (supplying APMs) and the variable temperature. In the experiments 

bias voltages VDELAY, VMODE1 and VMODE2, and the digital supply VCC were constant. The 

respective values of these voltages are provided in Table 5.2. The results of the VDD 

voltage variability within range +/- 100 mV, corresponding to the relative variability of 



Asynchronous CMOS logic array for binary image processing 142 

+/- 10%, are presented in Figure 5.25. The supply voltage of APMs affects the 

propagation speed, which decreases for smaller and increases for higher values of VDD. 

As a result, the time slot of the collision detecting mechanism, tuned by VDELAY to a 

particular propagation speed, will either be too short or too long, giving incomplete 

skeletons (Figure 5.25a) or excessive number of artefacts (Figure 5.25c) in the extracted 

images. This can be fixed by proper adjustment of VDELAY voltage. In the experiments, 

when the array worked at VDD = 830 mV and 1030 mV, the correct skeleton results (the 

same as for the nominal bias and supply conditions from Table 5.2) could be obtained for 

VDELAY equal 370 mV and 430 mV respectively. 

 

 
 

 
 

 
(a) (b) (c) 

Figure 5.25. Images obtained for different supply voltages VDD equal: a) 830 mV, b) 930 mV 

(nominal value), c) 1030 mV. 

5.7.4 Temperature variability 

The effects of the temperature variation on the quality of the obtained results are 

presented in Figure 5.26. The operation of the chip was tested in three different 

temperatures: 25°C (room temperature), 40°C and 60°C, assuming constant bias and 

supply voltages from Table 5.2. It was observed that the increased temperature does not 

significantly affect the propagation speed but it lengthens the generated time slot TD. 

Assuming that the OFF (leakage) current of a MOS transistor increases and the ON 



Asynchronous CMOS logic array for binary image processing 143 

current decreases with temperature [Allen 2002], the leakage currents of transistors M1-4 

in the first stage of propagation gate (Figure 5.8) will increase and the ON currents of the 

weak keeper M8 and the output transistor M7 will decrease. For a rising slope on any of 

the inputs of the propagation gate, the NOR node will be discharged faster to zero and the 

output node P will be pulled up to VDD slower. These two effects, to some extent, 

compensate each other with the temperature increase, resulting in almost constant 

propagation speed. The temperature increase affects also the operation of delay gate, 

where the current of the transistor M15 decreases, elongating the generated time slot. 

Consequently, for too long time slot, the circuit may start to mistakenly recognise the 

wave-front pass conditions as a collisions, leading to wider skeletons and additional 

artefacts, as shown in Figures 5.26b and c. The effects of the temperature increase can be 

compensated by proper adjustment to the bias voltage VDELAY. It was observed that the 

correct skeletons could be obtained for VDELAY = 410 mV and 420 mV for temperatures 

40°C and 60°C respectively. In practical applications (e.g. in vision chips) such 

calibration of VDELAY could be done automatically to minimise the disparities between the 

extracted skeletons and the reference results, using a set of input images and reference 

results. Based on such comparisons, bias voltages minimising the number of errors could 

be found. 

 
 

 
 

 
(a) (b) (c) 

Figure 5.26. Images obtained for different temperatures assuming constant bias and supply 

voltages from Table 3.2: a) T = 25°C (room temperature), b) T = 40°C, c) T = 60°C. 



Asynchronous CMOS logic array for binary image processing 144 

5.8 Design issues 

5.8.1 Power rail ringing 

In the experiments with the fabricated chip, it has been observed that the quality of 

the obtained results is strongly affected by the voltage oscillation (ringing) on the power 

rail, which occurs after a larger group of cells switches at the same time. Such situation 

occurs during the precharge phase, when the rising edge of the DSCH signal initializes 

all the cells in the array simultaneously, and during the evaluation cycle, when the falling 

edge of the START signal triggers the propagation from the markers. In the first case, the 

additional delay of 160 ns was inserted to assure that the power rail settles before the 

evaluation phase (Figure 5.18). This reduced the influence of the precharge cycle on the 

quality of the computed results. However, the influence of ringing caused by the falling 

edge of the START signal on the extracted image cannot be easily reduced. It modulates 

the propagation speed, confusing the collision detection circuit. In the resulting images, 

the intensity of artefacts will increase in the regions where the wave-front passes faster 

(due to the maximum in the supply voltage oscillations), and decrease in the regions 

where the propagation slows down. 

The oscillations of the power rail can be visually observed in the resulting image for 

lower VDELAY voltages. The generated time slot of each cell increases and the circuit array 

is more prone to misclassifying the wave-front pass conditions as collisions. This "side 

effect", however, can be used in observing the changes of the propagation speed across 

the array. In particular, for a certain value of VDELAY, the mistakenly captured collision 

pixels, caused by the increased propagation speed from the power rail oscillations, can be 

observed. In addition to that, the fabrication mismatch adds some random offsets to the 

generated time slots for all the cells individually, and the propagation speed variability 

can be observed in more "analogue" way as a variable concentration of the collision 

pixels, intensifying in the regions where the propagation accelerates. The experimental 

results showing such mistakenly captured pixels, when triggering propagation from a 

column of cells and a larger block of cells on the left hand side of the array, for VDELAY 

reduced to 330 mV, are presented in Figure 5.27. For a small number of markers (Figure 

5.27a) there is a large dark area around the object, suggesting a drop of the power supply 

voltage resulting in a lower propagation speed. The observed increase of the intensity of 

white pixels indicates the first maximum of the supply voltage. After that, the oscillations 

practically settle and the propagation speed remains constant. For a large number of 



Asynchronous CMOS logic array for binary image processing 145 

markers, the obtained image shows several distinct and white stripes (Figure 5.27b), 

indicating higher amplitude of the supply voltage oscillations. 

 

  
(a) (b) 

Figure 5.27. The oscillations of the supply voltage affecting the propagation speed in the 

designed array when triggering propagation from: a) a column of cells, and b) from a larger block 

of cells on the left hand side of the array. 

The effects of ringing on the extracted skeleton are shown in Figure 5.28. When the 

propagation is triggered from the background pixels (Figure 5.26a), the oscillations of the 

power rails impede the correct recognition of collisions. One way of reducing this 

undesirable effect is to reduce the number of marker pixels and trigger the propagation 

only from the objects boundary (Figure 5.26b). This requires additional logic operations 

on the input and output images, such as binary edge detection and masking, but these 

operations can easily be performed by a standard SIMD processor. Proper adjustment of 

the bias voltages VMODE1 and VMODE2 also helped to reduce the propagation speed, and 

hence, the switching current of the propagation gates, further reducing ringing. 

 

  

(a) (b) 

Figure 5.28. The skeletons of the same object extracted for: a) wave triggered from all the 

background pixels, and b) wave triggered only from the pixels on the border of the image. 

 

 



Asynchronous CMOS logic array for binary image processing 146 

5.8.2 Design asymmetry 

The proposed test array was designed for binary image skeletonization, where the 

waves are always triggered from the objects' boundary and propagate to its interior, but 

never along the borders of the array. However, in the case of the Voronoi diagram 

extraction, it is required that the propagation speed remains constant even along the 

border lines. In the designed test array the border line cells, unlike the rest, trigger only 

three or two nearest neighbours. Due to the lower output load, the propagation speed 

increases along the borders. The intermediate steps of the propagation, triggered from a 

column of pixels on the left hand side of the array, are presented in Figure 5.29. 

 

 
15 ns 25 ns 45 ns 

 
55 ns 65 ns 75 ns 

Figure 5.29. Bending of the propagation wave contour caused by the unbalanced load of the 

border cells. 

It can be observed that the cells located along the borders propagate faster triggering 

other cells inside the array. As a result, the wave-front bends towards the borders and the 

propagation speed increases. This can confuse the collision detecting mechanism, leading 

to widening the extracted collision lines, as shown in Figure 5.23b. This could easily be 

fixed by inserting an additional set of dummy gates around the array balancing the load, 

or by implementing the propagation space control mechanism, switching off the border 

line pixels if necessary. 

It should also be noted that transistors M17-21 in the pull-down network of the AND-

LATCH gate (Figure 5.8) have slightly different gate capacitances during switching, due 

to the body effects resulting from the serial connection and a common substrate potential. 

Such systematic asymmetry of the array can affect the propagation speed and make it 

direction dependent. For example, the wave contour in Figure 5.29 bends faster at the 



Asynchronous CMOS logic array for binary image processing 147 

bottom side than at the top side of the array (i.e. the wave propagates faster to the north-

east than to south-east direction). This, however, has a minor effect on the quality of the 

obtained results, as long as transistors M17-21 are much smaller than M1-4, which is usually 

the case, since only M1-4 are enlarged to reduce parameter mismatch. 

5.9 Performance and power 

The performance of the designed integrated circuit was verified using a dedicated 

FSM module on the FPGA test system (Figure 5.17), working in a loop and generating 

repetitive signal sequences for the initialization and evaluation cycles of the processor 

array. The respective timing of a single initialization and evaluation cycles (Figure 5.18) 

was adjusted to assure the correct extraction of the collision lines. The shortest sequence 

generated by the FSM (with no additional wait states), takes 360 ns and the longest (with 

256 wait states) 5.46 µs. In the power estimation, only the current of the power rail 

supplying the array of the APMs in the processor array (IAPM) was considered. The 

correct operation of the prototype chip was verified for constant supply and bias voltages 

(see Table 5.2), temperatures 25°C, 40°C and 60°C, and values of VDELAY tuned to 

compensate for the temperature effects. During tests, when the FSM was working in a 

loop, the obtained results were saved to register REG2 (on the rising edge of CLK2 

signal) overwriting the previous result without shifting it out. Only the last result, 

captured during the last cycle of the FSM after which it was stopped, was transmitted off 

chip for verification. For power measurements, four different input images were used: 

white (with no markers triggering the propagation), single dot in the middle (only one 

marker triggering the propagation), full size rectangle (markers on the boundary of the 

array) and black (all pixels are markers). The operation of the array was tested at the 

maximum processing speed (2.78 MHz at 360 ns FSM cycle) and in the idle state (when 

START = '1' and DSCH = '0') in temperatures 25°C, 40°C and 60°C. The summary of the 

tests and the obtained results are presented in Table 5.3 

Table 5.3. Performance and power results measured at 25°C, 40°C and 60°C. 

Test Condition (input image) 
IAPM @ 2.78 MHz IAPM @ 0Hz  

T = 25°C T = 40°C T = 60°C T = 25°C T = 40°C T = 60°C 

white (no markers) 0.20 mA 0.42 mA 0.77 mA 0.31 mA --- --- 

single pixel (propagation from the centre) 1.75 mA 1.95 mA 2.25 mA 0.31 mA 0.47 mA 0.70 mA 

full size rectangle (markers around the array) 1.78 mA 2.00 mA 2.27 mA 0.32 mA --- --- 

black (all pixels are markers) 1.95 mA 2.13 mA 2.40 mA 0.43 mA --- --- 

 



Asynchronous CMOS logic array for binary image processing 148 

In the case of the white input image, there is no propagation triggered in the array. It 

can be observed, however, that the corresponding current consumption is lower during 

the operation of the array (0.20 mA) than in the idle state (0.31 mA). This is caused by 

the leakage currents affecting the initial state of the array after the initialization cycle. In 

particular, nodes P (outputs of the propagation gates) are slowly pulled up through 

transistors M7, which eventually triggers a "spontaneous" propagation, discharging the 

array. After such discharge, the state of the array settles depending on the balance 

between the leakage currents, leaving all the transistors not fully turned on or off and 

creating DC paths between the power and ground rails. To assure low power operation in 

the idle state of the circuit, signal DSCH should be kept at high logic state, limiting the 

total leakage current of the APM modules to about 0.20 mA (~33 nA/pixel) at 25°C. This 

current increases with temperature to 0.40 mA at 40°C and to 0.68 mA at 60°C.  

The differences of the current consumption, measured at the maximum processing 

speed for the last three images in Table 5.3, result mainly from different number of 

collision pixels detected in each of the images. For example, for the single dot image, the 

measured average current is the lowest (1.75 mA) because there are no collisions 

detected. Each time a collision is detected, the respective AND-Latch gate is discharged, 

which requires additional amount of energy to overcome the weak keeping transistor M22 

(Figure 5.8). When the processed image generates collision pixels, the corresponding 

supply current will be higher (e.g. processing a full image size rectangle increases the 

supply current IAPM to 1.78 mA). The black input image was used to measure the worst 

case of the power consumption when all the pixels are markers and detect collisions. The 

respective supply current during the operation is 1.95 mA. Also, the corresponding 

supply current in the idle state (0.43 mA) increases due to the increased leakage of the 

AND-Latch gate when the collision bit C is set to '1' (~70 nA/pixel). The main design 

parameters and power performance measured at 25°C of the prototype chip are presented 

in Table 5.4. 

The maximum processing speed of the designed array is mainly limited by the 

oscillations after the initialization (precharge) cycle of the power rail requiring additional 

160 ns delay between the slopes of the PRCH and START signals. The propagation speed 

of about 1.1 pixels/ns typically requires less than 60 ns time to complete processing of an 

image. In the experiments, the delay of maximum 80 ns was assumed for testing. At such 

speed the array performs 2.78 million initialization and evaluation cycles per second. In 

practical implementations (e.g. in vision SoC), the speed will be limited by other factors 



Asynchronous CMOS logic array for binary image processing 149 

such as off chip data transfer, and the required maximum frame rate. In such a case, the 

design can benefit from a very low processing power, theoretically below 1 nW/fps, 

however, only applicable to frame rates over 200 kfps, where the dynamic power is 

higher than the static leakage losses. For lower speeds, the total power will mainly be 

limited by the leakage remaining on the constant level of 0.2 - 0.4 mW, depending on the 

number of the detected collision pixels. For designs with strict power constraints, the 

quiescent current can be reduced by supply voltage scaling or by using high threshold 

voltage and low leakage transistors in the design of APM. It should be noted that supply 

voltage scaling will affect the propagation speed and the use of MOS devices other than 

regular may increase the parameter mismatch requiring larger transistors to assure correct 

operation of the array. 

Table 5.4. Performance, power and design parameters of the fabricated test array. 

Parameter Value Remarks 
Technology CMOS 90 nm Dynamic logic full custom design 

No. transistors in APM 24 Sized accordingly to reduce effects of mismatch 

APM size 5.5 µm × 7.4 µm Less than 3 D flip flops in the same technology 

Test processor size 12.5 µm × 12.4 µm Including APM, I/O and control logic 

Test array size 840 µm × 1200 µm 64 × 96 processor array 

Image resolution 64 × 96  

Propagation speed 1.1 pixel/ns 1.4 pixel/ns for VMODE1 and VMODE2 set to VDD 

Current consumption 

33 nA/pixel 

50 nA/pixel 

70 nA/pixel 

idle mode (DSCH in high state) 

propagation without collision (idle state) 

propagation with collision (idle state) 

Max. processing speed 2.78 Mfps With no quality degradation 

Power consumption < 1mW/1Mfps for the supply voltage 930 mV and > 200 kfps 

Min. power consumption 0.2 - 0.4 mW 
For < 200 kfps, depending on the number of 

markers in the image (VDD = 930 mV) 

5.10 Design improvements and conclusions 

5.10.1 Conclusions 

The proposed circuit array implements the propagation and collision detection 

mechanisms suitable for a variety of morphological operations on binary images. In 

particular, its ability to detect the collisions between trigger-waves, can be used in binary 

image skeletonization and Voronoi tessellation. Despite the simplicity of the proposed 

method, the employment of the asynchronous circuit, generating circular propagation 

waves rather than square-like, produces good quality results when compared to its 

synchronous implementation. Low power, low area and a very high processing speed 

have been achieved employing full custom, dynamic logic design. The prototype array, 



Asynchronous CMOS logic array for binary image processing 150 

consisting of 64 × 96 APMs with additional I/O and control logic, was designed and 

fabricated in a standard 90 nm CMOS technology using standard performance design kit 

(SP) with very thin gate oxide MOS devices (tox = 1.6 nm). The experimental results 

confirmed the correct operation of the proposed circuit capable of processing up to 

2.78×10
6
 binary images per second consuming less than 1 nJ/image. 

5.10.1 Improvements and future work 

Several improvements to the APM design could be considered in the future 

implementations to reduce the effects of ringing, eliminate boundary effects and reduce 

the power consumption in the idle state. The schematic diagram of the improved 

propagation gate is presented in Figure 5.30. 

 

M10

VDD

M11 M12 M13

M6

VDD

M7

M1 M2 M3 M4

pN pE pS pW

M5

m

VMODE

Vp1

PM16

M8 M15Vp2

VpL

VDD

VpH

PS

GND

NOR

 

Figure 5.30. The improved design of the proposed propagation gate from Figure 5.8. 

The observed power rail oscillations result mainly from the use of transistor M5, 

pulling down the node NOR directly to ground when the weak keeping transistor M8 is 

still in operation. For a short while, before M7 will charge the output P to VDD, transistors 

M9 and M5 (Figure 5.8) create a DC path between the power rails. In order to reduce this 

current, it is proposed to add another initialization signal Vp2 to control the gate of M8 

separately. Both transistors M6 and M8 are controlled individually by signals Vp1 and Vp2, 

initializing the cell and working as weak keepers during the evaluation phase with gate 

bias voltages VpL and VpH respectively. This can also reduce the leakage current in the 

idle state when M6 and M8 are turned off. 

The border effects resulting from the unbalanced load of the cells located around the 

array can be solved by inserting dummy cells around the array, or by inserting an 



Asynchronous CMOS logic array for binary image processing 151 

additional transistor M15, controlled by bit PS (propagation space), switching on or off 

the output stage. For PS in high logic state, transistor M15 will be turned off and the gate 

will not generate propagation signal. Setting the border cells into such state will resolve 

the symmetry problems. The propagation space is also used in many morphological 

operations, therefore, such design extension would be beneficial. The current limiting 

transistor M9 (Figure 5.8), used solely to control the timing parameters of the gate can be 

removed, since proper biasing of transistors M10-13 is sufficient to assure circular wave 

propagation. It is also suggested to add transistor M16 in series with M5 to improve the 

timing parameter uniformity and further reduce the power rail oscillations. 

For designs with strict power constraints, the quiescent current can further be 

reduced by supply voltage scaling or by using high threshold voltage and low leakage 

MOS transistors with thicker gate oxide. It should be noted, however, that supply voltage 

scaling will affect (reduce) the propagation speed and the use of MOS devices other than 

regular may result in higher parameter mismatch, requiring larger transistors to assure 

correct operation of the array. Therefore, the use of the design kits dedicated for low 

leakage purposes should rather be considered in practical implementations of such 

processor arrays. 

 



Wave propagation concept in arbitrary metrics  152 

Chapter 6 

Wave propagation concept in     
arbitrary metrics 

6.1 Chapter overview 

This chapter extends the discussion on the trigger-wave propagation in asynchronous 

CMOS arrays, presented in Chapter 5. The propagation mechanism is considered in the 

context of isotropic propagation in spaces employing different distance measure norms. 

Theoretical analysis of the propagation mechanism and the proposed simplified timing 

model of the propagation gate are verified in circuit simulations, and are confirmed in the 

experiments with the fabricated prototype chip. 

6.2 Introduction 

Shape recognition usually involves medium level image processing algorithms 

requiring global operations such as distance transformation (DT), skeletonization or 

Voronoi tessellation. An interesting approach to global image attributes extraction, based 

on the trigger-wave propagation and wave-front collision detection concepts, was 

considered in the evaluation of the medial axis function (MAF) [Blum 67], and later 

practically observed in chemical solutions reacting with incident light (the Belousov-

Zhabotinsky reaction) [Kuhnert 89], [Krinsky 91]. Ideally, such waves (autowaves), 

when triggered from the edges of an object, propagate isotropically with a constant speed 

in every direction, utilizing the locally stored energy of a medium, and collide or bend 



Wave propagation concept in arbitrary metrics  153 

denoting the medial axis points [Blum 67] (see Sections 5.2 and 5.3 in Chapter 5). In this 

chapter propagation mechanism is considered in the context of isotropic propagation in 

spaces operating in different distance measure norms. 

There are several characteristic norms, typically used in image processing, such as 

the Euclidean norm, Manhattan norm and Chessboard norm [Borgefors 86], being 

particular cases of a generic p-norm, defined by a real number p (with a constraint p ≥ 1) 

and, for a 2-dimensional vector (x, y), given by the formula: 

 
ppp

p
yxyx

1

, 







  (6.1) 

Assuming the isotropic propagation in different p-norm spaces, the wave-front 

contours triggered from a single point are equidistant from that point, and hence, their 

shape corresponds to a particular value p. For example, for p = 2, the norm describes 

Euclidean space and the resulting contours are circular. The shapes of the propagation 

waves in typical distance measure norms are presented in Figure 6.1. 

y

x

 

y

x

 

y

x

 

(a) (b) (c) 

Figure 6.1. Contours of the 2-dimensional propagation waves in different p-norms: a) Manhattan 

(p = 1), b) Euclidean (p = 2), Chessboard (p → ∞). 

Since the Euclidean metric is the most "natural" to use, several algorithms for 

calculating the approximate Euclidean distance measure were considered in 

[Montanari 68], [Danielsson 80] and [Borgefors 86]. Also, hardware oriented approach 

for Single Instruction Multiple Data (SIMD) fine-grain processor arrays was presented in 

[Razmjooei 2010]. Direct hardware implementations of the trigger-wave propagation 

mechanism, using asynchronous logic arrays (presented in Chapter 4), were previously 

discussed in [Eklund 96] and [Dudek 2006]. Such arrays provide fast and energy efficient 

computational engine for image processing algorithms, e.g. hole filling, geodesic 

reconstruction, closed shape detection, where the correct operation is independent of the 

assumed metric. Also, the CNN implementations using the trigger-wave propagation, 



Wave propagation concept in arbitrary metrics  154 

usually do not consider the distance measure norm applied in image processing tasks 

[Rekeczky 99]. Some algorithms, however, such as distance transformation and 

skeletonization, typically require a circular (Euclidean) propagation [Blum 67], when 

using the trigger-wave and collision detecting scheme. 

Rounded shapes of the trigger-wave contours in asynchronous VLSI hardware 

realisations of processor arrays were reported in [Dudek 2006] and [Lopich 2010], and in 

CNN implementation in [Carmona-Galan 2003]. Attempts aiming the implementation of 

wave-front collision detection in CNN were presented in [Rekeczky 99], however, the 

contours of the waves in the propagation layer were highly distorted. 

6.3 Propagation and timing analyses 

The analysis of the propagation mechanism and the timing parameters will be 

presented assuming a regular 2-D array with only four nearest neighbours connectivity 

with a constant pixel pitch x. Two cases of the wave-front propagation: in the cardinal 

direction (A), and in the diagonal direction (B), triggered from a reference point O will 

be consider (Figure 6.2). 

 

O

A

B

y

x
 

Figure 6.2. The propagation of the wave triggered from the point O in the cardinal and in the 

diagonal directions considered in points A and B respectively. 

The cells located in the cardinal directions are always triggered from only one 

neighbour and the wave-front propagates with a constant cell-to-cell speed vA. The cells 

located in the diagonal directions, are triggered from two neighbours simultaneously and 

propagate the signal with the higher respective cell-to-cell speed vB > vA. As a result, 

wave triggered in a circuit array tends to accelerate towards the diagonal directions, 

which makes the propagation contours more circular [Dudek 2006]. More detailed 



Wave propagation concept in arbitrary metrics  155 

analysis of the propagation mechanism considered in points A and B in Figure 6.2, is 

shown in Figure 6.3. 

vA

A

A’

x

 B

vB

B’

X x

vB

x

X’

vA

vA

 
(a) (b) 

Figure 6.3. The mechanism of the wave propagation in a regular four-connected circuit array in 

the: a) cardinal, b) diagonal directions. 

For a cardinal direction, assuming that a wave travels distance x with a constant 

speed vA, the propagation time TC can be calculated as (Figure 6.3a): 

A

C
v

x
T   (6.2) 

For a diagonal direction (Figure 6.3b), the wave propagates through its nearest 

neighbours according to the assumed rectangular structure of the array with only four 

neighbourhood connectivity passing the distance 2x. Since the propagation in this 

direction is triggered from two neighbours simultaneously, the resulting speed in cardinal 

directions vB will be higher than vA and the corresponding propagation time TD equals: 

B

D
v

x
T

2
  (6.3) 

In the wave propagation context, assuming isotropic medium and constant propagation 

speed, the distance can be determined by means of the propagation time. Therefore, the 

diagonal distance d =|BB'| in Figure 6.3b can be calculated from the propagation time 

ratio d = (TD/TC)x, which leads to the following relation: 

AB vv

x
d

/

2
  (6.4) 



Wave propagation concept in arbitrary metrics  156 

Assuming that the array operates in an arbitrary metric defined by the parameter p of the 

p-norm in (6.1), the distance d between two diagonal neighbours in the regular array with 

the pixel pitch x is given by: 

xd p/12  (6.5) 

Combining equations (6.4) and (6.5) the following relation can be derived: 

p112   (6.6) 

where γ = vB/vA is the speed ratio parameter and p ϵ [1,...,∞] defines the p-norm from 

(6.1). The propagation speed vA and vB can be determined from the timing parameters of 

the circuit array, therefore, the equation (6.6) combines the circuit parameters with the 

geometric properties of the generated wave contours. Several characteristic isotropic 

propagation contours, generated numerically for particular distance measured norms 

defined by parameters p and γ, are presented in Table 6.1. 

Table 6.1. Isotropic propagation contours in different distance measure norms. 

Parameters p and γ Distance measure norm Wave contour 

1p  

1  
Manhattan (City Block) 

 

21  p  

21    

Manhattan/Euclidean 

 

2p  

2  

Euclidean 

 

2p  

2  

Euclidean/Chessboard 

 

p  

2  
Chessboard 

 

 



Wave propagation concept in arbitrary metrics  157 

6.4 Simplified switched RC model 

In order to verify the relation between the timing parameters of the circuit array and 

the properties of the generated wave-fronts, the operation of an asynchronous array, 

consisting of simplified switched RC propagation gates, will be considered. In particular, 

the timing parameters of the propagation gate presented in Figure 6.4, corresponding to 

the CMOS implementation from Figure 5.8 in Chapter 5, will be analyzed and used in 

the calculations of parameter γ. 

RN

CNOR

RN RN RN

PN PE PS PW

VDD

CP

RP

PRN

m

 

Figure 6.4. Schematic diagram of the ideal switched RC propagation gate. 

The initial conditions, specified for the proposed circuit array, assure the state just 

after initialisation phase where the capacitor CNOR is charged to VDD and the capacitor CP 

is discharged (the output P is at the zero logic level). This is the state just before the 

propagation phase. Transistors M1-5 (nMOS) and M7 (pMOS) from Figure 5.8 are 

implemented as ideal voltage controlled switches with fixed channel resistances RN and 

RP respectively. A switch turns on when its corresponding control voltage (any of the 

input signals for switches PN, PE, PS, PW and m, or the voltage across CNOR for switch RP) 

exceeds a certain threshold. When this is the case, for any of the input signals, the 

respective switch turns on discharging CNOR with a time constant τ1 = RNCNOR. When any 

two inputs are driven simultaneously, the capacitance CNOR discharges at twice the speed 

with a time constant τ1/2. When the voltage across CNOR falls below a certain value, the 

switch in the second stage turns on, charging the output capacitance CP with a time 

constant equal to τ2= RPCP. When the rising slope of the output signal P crosses the 

threshold voltage of the input switches, all the neighbouring gates will be triggered and 

the mechanism of the propagation will continue. The proposed circuit realisation of the 

gate consists of two stages, thus the propagation speed is inversely proportional to the 

sum of respective time constants v ~ 1/(τ1+τ2). Based on this relation, the speed ratio γ for 

the propagation speeds vA (when only one out of four switches PN, PE, PS, PW closes), and 



Wave propagation concept in arbitrary metrics  158 

vB (when two out of four switches closes simultaneously), of the proposed switched RC 

circuit equals to: 

PPNORN

PPNORN

A

B

CRCR

CRCR

v

v











2/2/ 21

21




  (6.7) 

For example, assuming that both of the time constants τ1 and τ2 are equal, the speed 

ratio is γ ≈ 1.33 which means that the observed propagation contour will be close to a 

circle, and the array will operate in the approximate Euclidean metric (see Table 6.1). 

The operation of the proposed ideal switched RC model of the propagation layer was 

verified in simulations using Hspice. Certain input circuit parameters such as supply 

voltage VDD = 1 V, ON/OFF resistance of the switches equal 10kΩ/1GΩ, and the basic 

time constant τ1 = 1 ns were chosen arbitrarily. In order to implement switched resistance 

RN = 10 kΩ with a threshold voltage 500 mV, a VCR (voltage-controlled resistor) 

element with resistance attribute changing from 1 GΩ (switch open) to 10 kΩ (switch 

closed) within the control voltage range from 499.5 mV to 500.5 mV was used (half of 

the initial voltage on charged CNOR capacitance). The values of the RC elements were 

calculated to assure fixed propagation time of each stage of 1 ns (RN = 10 kΩ and CNOR = 

CP = 144.27 fF). Inserting the assumed numerical values, the parameter γ can be set to 

any value between 1 and 2, depending on RP, given in kΩ, according on the equation: 

 
 




k10/5.0

k10/1

P

P

R

R
  (6.8) 

The snapshots of the propagation contours, obtained from the simulations of the 

array consisting of 33 × 33 switched RC delay gates, when triggering a wave from the 

centre, are shown in Fig 6.5. It can be observed that different wave contours are 

generated depending on the value of RP, and hence on the parameter γ, corresponding 

well with the shapes shown in Table 6.1. 

    
Rp = 50 kΩ 

γ ≈ 1.09 

Rp = 10 kΩ 

γ ≈ 1.33 

Rp = 7.071 kΩ 

γ ≈ 1.414 

Rp = 2 kΩ 

γ ≈ 1.71 

(a) (b) (c) (d) 

Figure 6.5. Propagation contours observed in the 33 × 33 cell array of the proposed switched RC 

gates for different γ values. 



Wave propagation concept in arbitrary metrics  159 

6.5 CMOS design and experimental results 

In the proposed design of the switched RC gate, the propagation speed and the 

generated wave contours depend solely on the value of RP and the time constant of the 

second stage τ2 = RPCP. In particular, for very large values of RP, the time constant 

τ2 >> τ1 and dominates the resulting cell-to-cell propagation speed, where the 

contribution of τ1 becomes negligible. This is typical to any synchronous implementation 

of the propagation mechanism, where the propagation speed is strictly denoted by a clock 

period. When reducing the value of RP, the time constant τ2 becomes lower and the 

contribution of the first stage in propagation becomes more dominant. This makes the 

corresponding cell-to-cell speed more dependent on the operation of the first stage of the 

propagation gate, depending on the number of triggering neighbours. As a result, the 

propagation across the diagonal direction accelerates and makes the wave contours more 

circular. In such model, in order to achieve any rounded shape of the propagation 

contour, e.g. to achieve propagation in approximate Euclidean metric, the corresponding 

time constant of the second stage τ2 has to be smaller than τ1. Since in practical 

realisations it seems much easier to elongate the propagation time of a logic circuit rather 

than shorten it, in the CMOS implementation of the propagation gate presented in 

Figure 5.8 in Chapter 5, the parameter γ is controlled using additional current limiting 

transistors M9-13 in the first stage, slowing its propagation time according to the bias 

voltages VMODE1 and VMODE2. In particular, transistors M10-13 (in series with M1-5) increase 

the corresponding resistances RN of each pull-down branch in the simplified switched RC 

model in Figure 6.4, which increases the time constant τ1 depending on VMODE2. 

Transistor M9, controlled by the voltage VMODE1, limits the total current discharging the 

corresponding capacitance CNOR, which makes τ1 less dependent on the number of the 

triggering neighbours. A similar effect can be observed in the proposed switched RC 

model when the time constant τ2 is much longer than τ1. 

In the experiments, the same measurement setup and methodology, as presented in 

Chapter 5, was used. The obtained images showing snapshots of the waves triggered 

form the centre of the array for different bias voltages VMODE1 and VMODE2, tuned to 

achieve operation in approximate Manhattan, Manhattan-Euclidean, Euclidean and 

Chessboard norms, are shown in Figure 6.6. The results showing the extracted Voronoi 

diagrams, based on the collisions of the propagation waves triggered from several pixels 

in the array, operating in four different distance measure norms, are presented in 



Wave propagation concept in arbitrary metrics  160 

Figure 6.7. The corresponding bias voltages used in the experiments are grouped in Table 

6.2 (the supply voltages were as given in Table 4.2 in Chapter 4). 

Table 6.2. Bias voltages of used to achieve different distance measure norms. 

Parameter Manhattan Mixed Euclidean Square 
VDELAY 372 mV 496 mV 396 mV 343 mV 

VMODE1 279 mV 930 mV 315 mV 371 mV 

VMODE2 1000 mV 930 mV 511 mV 359 mV 

 

 

(a) (b) (c) (d) 

Figure 6.6. Propagation contours observed for different bias voltages VMODE1 and VMODE2 resulting 

in a) approximate Manhattan, b) mixed Manhattan-Euclidean, c) approximate Euclidean, and     

d) approximate Chessboard metrics. 

 

 

(a) (b) (c) (d) 

Figure 6.7. The results of binary image tessellation evaluated in different distance measure 

norms: a) approximate Manhattan, b) mixed Manhattan-Euclidean,  c) approximate Euclidean,     

d) approximate Chessboard. 

6.6 Conclusions 

Based on the obtained experimental results, it can be observed that the Voronoi 

diagrams and skeletons (discussed in Chapter 5) of the best quality, can be extracted 

when array operates in approximate Euclidean metric. In such a case, the waves collide 

frontally, which is less confusing for the collision detection mechanism employed in the 

design. This can also be observed for the mixed Manhattan-Euclidean metric, assuming 

bias voltages VMODE1 = VMODE2 = VDD. Therefore transistors M9 - M13 could be removed 

from the design, if the area constraints were more strict, however, losing the control of 



Wave propagation concept in arbitrary metrics  161 

the wave contour. In particular, transistor M9, limiting the total current discharging the 

first stage of the propagation gate, could be removed from the design, since it is only 

necessary to assure operation in Manhattan metric (typical to synchronous systems). It 

can be concluded that transistors M10-13 are sufficient to assure the operation in 

approximate Euclidean metric and, when controlled individually, can also be used as 

switches defining the space and the direction of the propagation, allowing the 

implementation of variety of image processing algorithms discussed in [Astrom 96]. 



Probability and reasoning 162 

Chapter 7 

Probability and reasoning           

7.1 Introduction and chapter overview 

This chapter introduces the notions of probability, uncertainty and reasoning in 

networks modelling systems with cause-effect relationships between the variables. In 

particular, it discusses the probabilistic calculus, conditional probability and Bayes' rule, 

and its applications in reasoning under uncertainty in Bayesian networks. The theory of 

probability and the probabilistic reasoning have been a subject of many publications. The 

mathematical foundations for the methods and the algorithms used in Bayesian inference 

can be found in [Pearl 88], [Neapolitan 2004], [Jensen 2007] and [Darwiche 2009]. 

Two methods: one for the exact inference, based on the chain rule (used as reference 

in this research), and one for the approximate inference, using belief propagation 

approach, will be further discussed in detail. Methods of exact inference usually exhibit a 

very high computational complexity, growing nonlinearly with a network size [Cooper 

90], therefore, they are typically not considered in hardware realisations, unless the 

network is very small. The approximate methods require less extensive computation, and 

their complexity scales slower with the network size [Jensen 2007]. Since in many 

applications approximate inference provides sufficient accuracy, approximate methods 

are frequently considered in practical realisations. The background knowledge provided 

in this chapter will be of use in Chapter 8, dealing with analogue and digital hardware 

realisations of the sum-product algorithm for Bayesian inference in analogue hardware 

realisations of factor graphs. 



Probability and reasoning 163 

7.2 Conditional probability and Bayes' rule 

The probability P(A) of a particular outcome A in an experiment is always 

conditioned on all other known factors, which may affect the result of the experiment. 

For example, when tossing a coin, the probability of getting heads or tails is 1/2, 

assuming that the coin is fair. A conditional probability P(A|B), defining the probability 

of event A conditioned on the result of B, can be calculated using the fundamental rule 

given by the equation: 

 
 
 BP

BAP
BAP

,
|   (7.1) 

where    BAPBAP ,  is the probability of events A and B occurring simultaneously. 

From the law of alternation, the probability P(A,B) equals P(B,A). Applying this to (7.1), 

multiplying and dividing the right hand side of (7.1) by P(A), assuming that P(A) ≠ 0, the 

following formula can be obtained: 

 
   

 BP

APABP
BAP

|
| 

 
(7.2) 

The equation (7.2) is known as Bayes' rule of inverse probability. It says how an 

initial or a subjective knowledge of an event A, represented by P(A), can be improved 

given the observation B. In particular, in the equation (7.2), P(A) is called the prior 

probability of event A, usually estimated based on some "prior knowledge", resulting 

from an experiment, experience or guess. The inverse conditional probability of A, given 

by P(B|A), is the likelihood of A given B (equivalent to the conditional probability of B 

given A), and P(B) is the probability of the conditioning event B. The calculated 

conditional probability P(A|B) is called posterior probability of A given B or belief of A, 

accounting for the observation B [Jensen 2007]. 

Bayes' rule is essential in statistics but also finds applications in science, medicine 

and engineering. The probability updating, known as Bayesian inference, can be used in 

computer vision [Chow 68], [Koeser 2004], [Richardson 72], [Geman 85], 

[Felzenszwalb 2006], robotics [Zhou 2007], [Lee 2009], bioinformatics [Lin 2010], 

[Friedman 2004] navigation and tracking [Bergman 99], search for lost objects 

[Frost 96], medicine and health care [Beinlich 89], [Olesen 89], [Kim 87], and 

administration and management [Acid 2004]. 

 

 



Probability and reasoning 164 

7.3 Bayesian networks 

Bayes' rule, in its canonical form given by equation (7.3), is applicable to simple 

cases, where the underlying models consist of just one observation conditioned on a 

particular set of events. More elaborate systems, including many mutually dependent 

observations, are usually represented in a graphical form of causal networks. In such 

networks, events are associated with the variables or nodes, and are connected by links 

representing the underlying cause-effect relationships. Bayesian networks are particular 

class of causal networks. They consists of a set of variables (nodes) {A1,...,An}, 

representing particular observations or events, and a set of directed edges (links, arcs), 

indicating causal relations between these variables. The links always point from a parent 

to the child node, indicating the direction of causation [Pearl 88]. No cycles in causation 

are assumed, which means that starting from any node and following the path denoted by 

directed links, one must not come back to the same node. The structure of the network is 

mathematically defined as a directed acyclic graph (DAG). Depending on the number of 

states, variables can be discrete, with a countable and finite number of mutually 

exclusive states, or continuous, with an infinite (continuum) number of states. In many 

practical cases, networks including discrete variables are typically used. In some 

applications, networks with continuous variables or hybrid networks with mixed type of 

variables are considered, however, often limited to account only for the Gaussian 

probability density functions [Neapolitan 2004]. Each variable in a network has its 

individual conditional probability distribution (CPD) representing the strength of the 

relations between a node and its parents. If a variable and its parents are discrete, its CPD 

becomes a conditional probability table (CPT). In the case of root variables, which do 

not have parents, the corresponding CPTs are simpler and represent only the prior 

probabilities. 

An exemplar Bayesian network, illustrating the relations between four observations: 

Cloudy (C), Sprinkler (S), Rain (R) and Wet Grass (G) is shown in Figure 7.1. It consists 

of four variables {C, S, R, G} with two states {T, F} referring to true and false 

respectively. It describes a simple, real life system indicating potential reasons for wet 

grass (G), caused either by working sprinkler (S) or rain (R). The prior and conditional 

probabilities of the system can be obtained based on experience, analysis or in the 

process of parameter learning from statistical data. In this network, the occurrence of 

cloudy sky (C), with prior probability of 0.2 (e.g. estimated based on the weather 



Probability and reasoning 165 

patterns), can frequently cause rain, therefore, the probability of such a case is 0.8. 

Sometimes, when the clouds are very thick, they can occasionally dim the sunlight and 

trigger the sprinkler (S), which is supposed to wet the grass after the sunset. However, 

such situation is rare, therefore, its probability is equal to 0.1. Since both rain and 

sprinkler can make the grass wet, node G has two parents: S and R, and accordingly 

larger CPT accounting for 2
3
 = 8 possible cases of the conditional probability P(G|S,R). 

In such network, the probability of each node is represented by a discrete density 

function with two points corresponding to the probabilities of the states true and false. 
 

CLOUDY
T F

0.2 0.8

CLOUDY T F

0.6 0.4

SPRINKLER

T

F

RAIN T F

0.99 0.01

WET GRASS

T

F 0.9 0.1

SPRINKLER

T

T

0.1 0.9

T

F

F

F

0.9 0.1

0.0 1.0

CLOUDY T F

0.1 0.9

RAIN

T

F

0.8 0.2

C
Cloudy

R
Rain

S
Sprinkler

G
Wet Grass

Bayesian Network = DAG + CPD

DAG – Directed Acyclic Graph

CPD – Conditional Probability Distribution
 

Figure 7.1. Example Bayesian network representing system consisting of four two-state variables 

Cloudy (C), Sprinkler (S), Rain (R) and Wet Grass (G). 

7.4 Bayesian inference 

The task of Bayesian inference is to compute posterior probabilities of the network 

nodes, given the incorporated knowledge (i.e. the network structure and the conditional 

probabilities), and accounting for the inserted observations. Such observations can 

instantiate nodes to particular fixed states. Whenever a new observation is received, the 

state of the network changes and new posterior probabilities of the nodes (beliefs) can be 

calculated. This makes Bayesian inference particularly useful in answering probabilistic 

queries. By inserting evidence or hypothetical observations into a network, the behaviour 

of the modelled systems can be examined under different assumptions, usually not 

possible to verify in practice. For example, clamping the variable G to state T, inherently 

assumes that the grass is wet and, based on that, the probability of cloudy sky P(C|G
T
) 

can be computed. From equations (7.1) and (7.2), considering the simplest case of two 

events A and B, it can be seen that the corresponding conditional probabilities can be 



Probability and reasoning 166 

calculated using joint probability P(A, B), optionally marginalised in order to obtain 

probabilities of single observations P(A) or P(B). Assuming that a Bayesian network is 

defined for a particular universe of variables U = {A1, A2,..., An}, its unique joint 

probability distribution P(U) can be calculated using chain rule, given by the product of 

the conditional probabilities specified for all the nodes [Jensen 2007]: 

    



ni

ii AAPUP
...1

pa|  (7.3) 

where pa(Ai) is the set of parents of node Ai in the network. Chain rule can directly be 

used in the calculations of the conditional probabilities of variables in the network. For 

example, the probability of variable A1 being in i-th state, and denoted as 
iA1 , can be 

calculated as: 

   
 


nAAA

n

ii AAAPAP
,..,,.

211

32

,...,,  (7.4) 

where  nAAA ,..,,. 32  indicates the summation over the possible states of variables 

nAAA ,..,, 32 , whereas the state A1 is fixed to i. The probability of variable A1 being in i-th 

state, and conditioned on a variable A2 being in j-th state, can be calculated using the 

equation (7.1): 

 
 

 

 
 





n

n

AAA

n

j

AA

n

ji

ji

AAAAP

AAAAP

AAP

...,,

321

,...,

321

21

31

3

,...,,,

,...,,,

|  (7.5) 

The posterior probability of a node in a Bayesian network can be calculated 

assuming particular states of other variables, accounting also for the observations, 

evidence or assumptions given by the probabilistic queries. In such scheme, conditioning 

can only be done by instantiating selected variables into particular fixed states. For 

example, in the network from Figure 7.1, the variable Rain (R) can either be true or false. 

Therefore, it is not possible to explicitly insert so called likelihood evidence into (7.5), 

saying for example that the variable Rain is 90% true and 10% false. The likelihood 

evidence can be dealt with using, for example, auxiliary nodes with variable CPTs 

representing the inserted evidence. The method of Bayesian inference, directly applying 

the equations (7.4) and (7.5) in the calculations of the conditional probabilities, is called 

global marginalisation and provides foundation for other methods of exact Bayesian 

reasoning. These methods usually attempt to optimise the process of variable elimination 

by pre-computing the probability tables to avoid redundant calculations. In particular, 



Probability and reasoning 167 

methods such as variable elimination, following the topological order of the network (i.e. 

with respect to hierarchy moving from parents to children), avoid redundant computation 

and reduce the size of the joint probability tables [Jensen 2007]. Other methods operate 

directly on the structure of the network and implement node clustering or conditioning to 

optimise the process of variable elimination [Pearl 88]. In general, methods for exact 

inference try to reduce the amount of computation, and hence, to reduce the processing 

time but also keep balance between the speed and memory consumption. Since it has 

been proven that the complexity of exact inference quickly becomes intractable and 

grows nonlinearly with the size of a network [Cooper 90], more attention has been paid 

to the development of methods for approximate reasoning, such as belief propagation, 

and stochastic methods based on Monte Carlo approach. 

7.5 Belief propagation 

The idea of belief propagation in Bayesian networks lies in the properties of the 

graphical models defining conditional dependencies between nodes. In particular, 

recognising the conditional independencies between variables can simplify calculations, 

practically to the set of the nearest neighbourhood of each node. Such situation is 

illustrated in Figure 7.2 showing the neighbourhood of the variable A in a larger network. 

 

A



AD



AD

 

Figure 7.2. Neighbourhood of the node A in a singly connected network split into two 

conditionally independent parts. 

The shaded nodes in Figure 7.2 denote the Markov blanket of the variable A, defined 

as a set consisting of the parents of A, the children of A and its children parents. When all 

the nodes belonging to the Markov blanket of A are instantiated, A is d-separated from 

the rest of the network, and hence, the state of A can be evaluated based solely on the 



Probability and reasoning 168 

states of the neighbouring nodes [Jensen 2007]. This implies that only the local 

information received from the neighbours of A is necessary to compute belief of A. 

Assuming that the network, which part is shown in Figure 7.2, is singly connected, i.e. 

there exists at most one path between any two nodes, the variable A unambiguously 

separates the network into two sets including its predecessors 


AD  and successors 


AD  

[Pearl 86, 88]. Based on that, the universe of all variables of this network can be 

presented as },,{  AA DDAU  and the joint probability, from the chain rule, is equal to 

     ADPDAPUP AA ||  . The conditional probability of the variable A, for its 

particular state i, given the states of its successors and predecessors, can be calculated as: 

   
  


 

}{

,,

,,
,|

A

AA

AA

i

AA

i

DDAP

DDAP
DDAP

 

(7.6) 

The summation in the denominator of (7.6) is done over all states of the variable A, 

and the result of this operation is constant for a given network configuration, defined by 



AD  and 


AD . Therefore, in the calculation of the probability distribution of A, being a 

vector of elements A with all possible states, the summation in the denominator in (7.6) 

can be omitted, and obtained vector can be normalised. The posterior probability 

distribution of A, can be calculated based on equation (7.6), using the following formula: 

     ADPDAPABel AA ||   
(7.7) 

where Bel(A) represents a vector of conditional probabilities computed using (7.6) for all 

possible states of A, and α is the normalising factor. The components    ADAP A |  

and    AADP A  |  in (7.7) represent the top-down and bottom-up propagation of the 

probability density functions, sent respectively from the predecessors and successors of 

A. As a result, each link in the network conducts messages in both directions. The flow of 

the probabilistic information resembles the mechanism of propagation, where changes in 

belief of one node propagate across the network updating beliefs of other nodes. In such 

scheme, nodes operate as data-driven arithmetic processors, reacting to each new 

incoming message. If, as a result of such local computation, any of the outgoing 

messages will change, it will be detected by the neighbouring nodes, which in turn will 

perform appropriate calculations and send new messages to their respective neighbours. 

The process of belief propagation stops when the network attains equilibrium and no new 

updates for the output messages can be generated. 



Probability and reasoning 169 

In belief propagation mechanism in singly connected networks, the computed beliefs 

always converge to the posterior probabilities of the variables [Pearl 88]. When a 

network contains loops, i.e. there exists more than one path between two nodes (e.g. in 

the network in Figure 7.1 there are two paths between nodes A and D) , it is no longer 

singly connected, and the local propagation scheme may occasionally become 

problematic. It should be noted that these loops refer to the structure of the network, not 

loops in causation. In the networks with such structural loops, the messages exchanged 

between nodes may circulate indefinitely, also leading to oscillations, and the process 

may not converge to a stable equilibrium. In fact, it has been shown that such oscillations 

are usually not observed in probabilistic networks modelling real systems [Pearl 88]. It 

should be noted, however, that multiply connected networks may, for some nodes, 

violate the conditional independencies between subsets 


AD  and 


AD , assumed in the 

derivation of the belief propagation scheme, therefore, the asymptotic equilibrium, even 

if attained in such networks, may not always be coherent with the posterior probabilities 

of the variables. Nevertheless, it has been demonstrated that the corresponding error is 

often very small and can be neglected in many practical applications. 

7.6 Factor graphs 

Factor graph is a graphical model providing a convenient way of representing 

algorithms using complex global functions of many variables, which can be decomposed 

(factored) into a product of local functions requiring only local computation. In 

particular, the sum-product algorithm, based on the message the passing scheme, can be 

used in a variety of applications requiring computation of global functions 

[Loeliger 2004]. It has been shown that many tasks in signal processing, digital 

communication and artificial intelligence, can be represented as factor graphs and solved 

using particular adaptation of the sum-product algorithm. The merits of such approachs 

were demonstrated in the realisations of error correcting codes such as Viterbi 

[Shakiba 98] and BCJR [Moerz 2000] algorithms, iterative decoding using low density 

parity check (LDPC) codes [Srinivas 97], [Loeliger 2001], forward/backward algorithm 

for hidden Markov model, Kalman filtering, Fast Fourier Transformation and belief 

propagation in Bayesian networks [Kschischang 2001]. 

Factor graph representation of a Bayesian network provides a systematic and perhaps 

simpler approach to belief propagation mechanism, where the arithmetic operations 



Probability and reasoning 170 

performed by each node, can be decomposed into two separate sub-blocks, one 

corresponding to the variable and one to the factor node. The factor graph representation 

of the network from Figure 7.1 is shown in Figure 7.3. In the figure, squares denote 

factor nodes and circles refer to variable nodes. It can be observed that each Bayesian 

node consists of two nodes, one factor and one variable, from the underlying factor 

graph. 

VC

FC

VS

FS

VR

FR

VG

FG

CLOUDY

SPRINKLER RAIN

WET GRASS

 

Figure 7.3. Factor graph representation of the Bayesian network from Figure 7.1. 

In the following, one particular case will be considered in detail, where both factor 

and variable nodes communicate with only three neighbours and perform operations 

using two-state variables with elements from a set {T, F} denoting true and false. The 

connectivity and the corresponding arithmetic operations of such three-way factor and 

variable nodes are presented in Figures 7.4 and 7.5. Since variable nodes (V) 

communicate only with factor nodes (F), and factor nodes communicate only with 

variable nodes (see Figure 7.3), the factor node F in Figure 7.4 receives messages from 

its three neighbours V1, V2 and V3, denoted as VF1, VF2, and VF3, and generates output 

messages FV1, FV2 and FV3 respectively. Assuming that nodes V and F form a Bayesian 

node N, and V2 and V3 belong to the parents of N, the factor node F performs matrix-

vector multiplications, using conditional probabilities P(N|V2, V3). The probability P
ijk

 

refers to a particular entry from a CPT given by  kjiijk VVNPP 32|  where i, j and k 

define a particular configuration of states. For example, the probability of variable N in 

state T, denoted as N
T
, given states of its parents

TV2 and FV3 is  FTTTTF VVNPP 32| . The 



Probability and reasoning 171 

messages sent to all three neighbours FV1, FV2 and FV3 of the factor node can be 

calculated using the following equations: 



















































FF

TF

FT

TT

FFFFFTFTFFTT

TFFTFTTTFTTT

F

T

VFVF

VFVF

VFVF

VFVF

PPPP

PPPP

FV

FV

32

32

32

32

1

1

1  (7.8) 



















































FF

TF

FT

TT

FFFFFTTFFTFT

FTFFTTTTFTTT

F

T

VFVF

VFVF

VFVF

VFVF

PPPP

PPPP

FV

FV

31

31

31

31

2

2

2  (7.9) 



















































FF

TF

FT

TT

FFFFTFTFFTTF

FFTFTTTFTTTT

F

T

VFVF

VFVF

VFVF

VFVF

PPPP

PPPP

FV

FV

21

21

21

21

3

3

3  (7.10) 

where α1, α2 and α3 are the normalising factors ensuring probabilities sum to 1. It can be 

observed that each outgoing message sent to a particular neighbour is calculated based on 

the two input messages received from the two remaining neighbours, and particular 

configurations of the states in the column vector in (7.8)-(7.10) correspond to the 

respective configurations of the states of the fixed conditional probabilities. 

In the case of the variable node V, the outgoing messages can be calculated using the 

following equations: 






















FF

TT

F

T

FVFV

FVFV

VF

VF

32

32

1

1

1  (7.11) 






















FF

TT

F

T

FVFV

FVFV

VF

VF

31

31

2

2

2  (7.12) 






















FF

TT

F

T

FVFV

FVFV

VF

VF

21

21

3

3

3  (7.13) 

where α1, α2 and α3 are the normalising factors. In Bayesian perspective, the belief of a 

variable N, representing its posterior probability distribution normalised by factor α, can 

be calculated as a dot product accounting for all the messages received: 



Probability and reasoning 172 






















FFF

TTT

F

T

FVFVFV

FVFVFV

Bel

Bel

321

321  (7.14) 

Equations (7.8) - (7.14) provide a complete set of mathematical operations performed 

by a particular realisation of Bayesian processor communicating with two parents and 

two children, and operating using two-state variables. Block diagram of such processor 

implemented in node N1 is shown in Figure 7.6. It exchanges messages with parents N2 

and N3, and with children N4 and N5. Extension to a general case, accounting for an 

arbitrary number of parents, children, variable states of node N1 and its neighbours is 

straightforward and requires proper modifications of the equations (7.8) - (7.14). 

F

V3V2

V1

]

[

2

2

F

T
V
F

V
F

]

[

2

2

F

T
F
V

F
V

]

[

3

3

F

T

V
F

V
F

]

[

3

3

F

T

F
V

F
V

]
[

1
1

F
T

V
F

V
F

]
[

1
1

F
T

F
V

F
V

 

Figure 7.4. Connectivity of the factor node in factor graph implementation of belief propagation. 

V

F3F2

F1

]

[

2

2

F

T

F
V

F
V

]

[

2

2

F

T

V
F

V
F

]

[

3

3

F

T
F
V

F
V

]

[

3

3

F

T
V
F

V
F

]
[

1
1

F
T

F
V

F
V

]
[

1
1

F
T

V
F

V
F

 

Figure 7.5. Connectivity of the variable node in factor graph implementation of belief 

propagation. 



Probability and reasoning 173 

 






















FF

TT

F

T

VFVF

VFVF

FV

FV

1514

1514

4

11

11 

V3V2

]

[

1
2

1
2

F

T

F
V

F
V

]

[

2
1

2
1

F

T

V
F

V
F

]

[

1
3

1
3

F

T

F
V

F
V

]

[

3
1

3
1

F

T

V
F

V
F

]
[

1
1

1
1

F
T

F
V

F
V

]
[

1
1

1
1

F
T

V
F

V
F

V1

]

[

1
4

1
4

F

T

V
F

V
F

]

[

4
1

4
1

F

T

F
V

F
V

]

[

1
5

1
5

F

T

V
F

V
F

]

[

5
1

5
1

F

T

F
V

F
V

F1

F4 F5

NODE N2 NODE N3

NODE N4 NODE N5

NODE N1



















































FF

TF

FT

TT

FFFFFTFTFFTT

TFFTFTTTFTTT

F

T

FVFV

FVFV

FVFV

FVFV

PPPP

PPPP

VF

VF

1312

1312

1312

1312

1

11

11



















































FF

TF

FT

TT

FFFFFTTFFTFT

FTFFTTTTFTTT

F

T

FVFV

FVFV

FVFV

FVFV

PPPP

PPPP

VF

VF

1311

1311

1311

1311

2

21

21



















































FF

TF

FT

TT

FFFFTFTFFTTF

FFTFTTTFTTTT

F

T

FVFV

FVFV

FVFV

FVFV

PPPP

PPPP

VF

VF

1211

1211

1211

1211

3

31

31

Factor node F1:






















FF

TT

F

T

VFVF

VFVF

FV

FV

1511

1511

5

41

41 






















FF

TT

F

T

VFVF

VFVF

FV

FV

1411

1411

6

51

51 






















FFF

TTT

F

T

VFVFVF

VFVFVF

NBel

NBel

151411

151411

7

1

1

)(

)(


Variable node V1:

α1 - α7  – normalising factors

PF1 – conditional probability table P(N1|N2,N3)

 

Figure 7.6 Block diagram of a Bayesian processor N1 with parents N2, N3 and children N4, N5. 

 

7.7 Conclusions 

This chapter discussed the notion of the conditional probability, introduced Bayes' 

rule of inverse probability, and provided mathematical foundations for reasoning in 

networks representing cause-effect relationships. In particular, algorithm for belief 

propagation method was discussed in detail providing the background knowledge for its 

hardware and software implementations in factor graphs. The presented mathematical 

description of the sum-product algorithm and the message passing scheme will be used in 

Chapter 8 in the realisations of analogue and digital arithmetic circuits dedicated for 

probabilistic reasoning in Bayesian networks. 

 



VLSI systems for Bayesian inference 174 

Chapter 8 

VLSI systems for Bayesian inference 

8.1 Chapter overview 

This chapter discusses two design concepts of analogue CMOS arithmetic circuits 

using the Gilbert multiplier cell, presented in Chapter 3, in continuous-time and discrete-

time hardware realisations of belief propagation in factor graphs. Design issues, such as 

computational accuracy, power consumption, processing speed, area occupation and 

complexity scaling are further investigated. The performance of the analogue solutions is 

compared with the equivalent digital hardware, synthesised using the same CMOS 

technology, and with two software implementations on PC. The obtained figures of 

performance provide a baseline comparison between the realisations of the same 

computationally demanding task, using different hardware architectures and operating 

according to different principles. 

8.2 Introduction 

Message passing and belief updating in the sum-product realisation of Bayesian 

inference in factor graphs, discussed in Chapter 7, is an iterative process requiring high 

processing power. It becomes particularly important in applications involving complex 

network structures [Lin 2010] or real-time operation [Felzenszwalb 2006]. The idea of 

continuous-time processing in the implementation of the sum-product algorithm was 

initially considered in [Haygenauer 98]. Its VLSI hardware realisations in BiCMOS 

[Hagenauer 2002], [Moertz 2000], [Lustenberger 99a, 99b, 2001] and in standard CMOS 



VLSI systems for Bayesian inference 175 

technologies [Loeliger 2001] became a promising alternative to the classical systems in 

applications related to the iterative decoding in digital communication. The power and 

speed performance of a dedicated analogue computing circuit was reported almost two 

orders of magnitude better than in the case of its digital equivalent [Loeliger 99]. 

Although the analogue solutions provide very promising figures of performance, 

there are many design issues in standard CMOS technologies affecting the operation of 

such circuits and impeding scaling for more complex problems. In particular, the impact 

of parameter variability on the correct operation of the analogue decoders was discussed 

in [Lustenberger 2001]. The research showed a high robustness of such circuits to 

fabrication mismatch. It should be noted, however, that these systems process only 

binary data. Therefore, their sensitivity to parameter mismatch is usually lower than in 

the case of the circuits processing analogue signals. A preliminary research on that topic, 

done by [Luckenbill 2002], indicated the advantages and challenges in the build of such 

analogue circuits. The computational task of such systems is usually limited to perform a 

particular type of matrix-vector and vector-vector operations on real numbers from a 

unity interval [0...1] (see Chapter 7). Therefore, such systems have typically been 

realised in the current domain, where the arithmetic sums can be calculated by current 

additions in nodes and products can be evaluated using circuits employing the Gilbert 

cell (see Chapter 3). 

The sum-product algorithm for belief propagation in factor graphs, discussed in 

Chapter 7, exhibits a high degree of parallelism on the network level, as well as in terms 

of the operations performed by nodes. On the network level, the message exchange and 

belief computation are independent processes. Also "inside" the nodes, messages are 

processed for each output link individually. Therefore, various ways of implementing 

such systems, with different levels of "hardware virtualisation", understood as the degree 

of time multiplexing of particular hardware computing blocks, with direct consequences 

in processing time, can be considered [Zaveri 2010]. In particular, continuous-time 

solutions, operating based on inherent circuit settling, require fully parallel realisations. 

Discrete-time analogue and synchronous digital solutions, also discussed in this chapter, 

have potential for processing with time multiplexing, however, analysis of such 

realisations goes beyond the scope of this work, which focuses mainly on the estimation 

of the processing efficiency, not significantly depending on the level of hardware 

virtualisation (this will be further discussed in this chapter). In the following sections, the 

realisations of arithmetic circuits for analogue continuous-time and discrete-time 



VLSI systems for Bayesian inference 176 

processing, and equivalent digital and software implementations will be presented, 

verified in simulations, and analysed in terms of processing power, speed, efficiency, size 

and accuracy. 

8.3 Analogue circuits for arithmetic operations 

The arithmetic operations required in the sum-product algorithm for belief 

propagation, account for matrix-vector and vector-vector multiplications with 

normalisation of the intermediate results. Such operations can directly be implemented in 

dedicated analogue hardware using the proposed current-mode, continuous-time and 

discrete-time multipliers, discussed in Chapter 3. 

8.3.1 Continuous-time circuits 

The realisations of the arithmetic circuits for 2-element continuous-time vector-

vector and matrix-vector multiplications, are presented in Figure 8.1. 

I0IX1 IX2

ID2ID1

I0IX1 IX2

I0VX1 VX2

ID2ID1

I0VX1 VX2

ID2ID1

IY1 IY2

ID12ID11 ID22ID21

VREF

MUL 1

MUL 2 MUL 3

 

I0IX1 IX2

ID2ID1

I0IX1 IX2

I0VX1 VX2

ID2ID1

I0VX1 VX2

ID2ID1

IA21 IA22

ID2ID1

IA11 IA12

MUL 1

MUL 2 MUL 3

VREF

 
(a) (b) 

Figure 8.1. Block diagrams of the arithmetic circuits, realised using continuous-time current-

mode multiplier circuit from Figure 3.2 in Chapter 3, dedicated for: a) vector-vector 

multiplication, and b) matrix-vector multiplication. 

One of the main advantages of using continuous-time circuits is their low area, low 

power consumption and high processing speed, depending on the settling time of the 

circuit. However, such realisation requires fully parallel implementations, where each 

arithmetic operation has its individual hardware block. Since the information is encoded 

using currents, copying requires the use of current mirrors. In order to reduce the 

complexity of the circuits, arguments are distributed using their voltage representations 

rather than currents. Therefore, multipliers MUL 2 and MUL 3 in Figure 8.1 have 

voltage inputs VX1 and VX2, and the corresponding log-linear I-V converters are shared. 



VLSI systems for Bayesian inference 177 

The structure presented in Figure 8.1a performs vector-vector multiplication, accounting 

for all element permutations, given by equation: 















































22

12

21

11

22

21

12

11

YX

YX

YX

YX

D

D

D

D

II

II

II

II

I

I

I

I

 (8.1) 

The structure from Figure 8.1b performs matrix-vector multiplication given by formula: 



























2

1

2221

1211

2

1

X

X

AA

AA

D

D

I

I

II

II

I

I
 (8.2) 

It should be noted that the circuits in Figure 8.1 perform inherent normalisation of the 

input arguments [IX1 IX2] [IY1 IY2]. Moreover, the matrix-vector multiplier (Figure 8.1b) 

assumes normalised coefficient pairs A11-A21 and A12-A22. This limitation, however, is 

advantageous in the operations on discrete probability densities, requiring intermediate 

result normalisations. 

8.3.2 Discrete-time circuits 

The realisations of 2-element vector-vector and matrix-vector multipliers using the 

discrete-time circuits are presented in Figure 8.2. They perform the same arithmetic 

operations as the continuous-time structures from Figure 8.1, given by equations (8.1) 

and (8.2). The timing diagram of the control signals used for circuit reconfigurations is 

presented in Figure 8.3. 

ID11 ID12 ID21 ID22

φ1

φ2
φ2 φ2

φ2

IX1 I0 IX2

φIX

φI0

φMUL

ID1 ID2

MUL 2

φOUT

IX1 I0 IX2

φIX

φI0

φMUL

ID1 ID2

MUL 3

φOUT

IX1 I0 IX2

φIX

φI0

φMUL

ID1 ID2

MUL 1

IX1 I0 IX2

φOUT

φ1 φ1

IY1 IY2

φ1

φ1 φ2

φ3 φ3

φ4 φ4

φ4 φ4

TG1 TG2 TG3 TG4
’

’ ’

 
ID1 ID2

φ1

φ2

φ2

IX1 I0 IX2

φIX

φI0

φMUL

ID1 ID2

MUL 2

φOUT

IX1 I0 IX2

φIX

φI0

φMUL

ID1 ID2

MUL 3

φOUT

IX1 I0 IX2

φIX

φI0

φMUL

ID1 ID2

MUL 1

IX1 I0 IX2

φOUT

IA11

φ1

φ1 φ1

φ3 φ3

φ4 φ4

φ4 φ4

IA21 IA12 IA22

’

’ ’

 
(a) (b) 

Figure 8.2. Block diagrams of the arithmetic circuits, realised using discrete-time current-mode 

multiplier circuit from Figure 3.11 in Chapter 3, dedicated for: a) vector-vector multiplication, 

and b) matrix-vector multiplication. 



VLSI systems for Bayesian inference 178 

φ1

φ2

φ2

φ4

φ4

Write [IX1 IX2] and I0 to MUL 1 and [IY1 IY2] to MUL 2

Normalize [IX1 IX2]  in MUL 1 and write [IY1 IY2] to 

MUL 3

Update ID1 and ID2 in MUL 1

(keep the output available unless multiplying)

Multiply normalized vectors [IX1 IX2] × [IY1 IY2]

Update ID1 and ID2 in MUL 3 and 4

(keep the output available unless multiplying)

φ3 Write ID1 and ID2 from MUL 1 to MUL 2 and MUL 3

Φ1 Φ2 Φ3 Φ4 Φ5

’

’

 

Figure 8.3. Timing diagram of the control signals φ1 - φ5 of the arithmetic circuits from Figure 8.2 

(the comments refer to the vector-vector multiplier in Figure 8.2a). 

The proposed realisations of the discrete-time vector-vector and the matrix-vector 

multipliers operate in five phases Φ1 - Φ5 using control signals φ1 - φ5. The matrix-vector 

multiplier is a simplified version of the vector-vector multiplier. The only difference is 

the set of transmission gates TG1 - TG4 in the vector-vector multiplier, providing the 

second input argument [IY1 IY2] to MUL 2 and MUL 3. This, however, is not required in 

the matrix-vector multiplier, where the second input is a set of fixed parameters provided 

individually for both multipliers. In the following, the operation of the vector-vector 

multiplier will be discussed. 

In the implementation of the multipliers MUL 1, 2 and 3, the control signal φIN, 

common for the memory cells built on transistors MD1, MD2 and MD3 (see Figure 3.11 in 

Chapter 3), has been replaced with two signals φIX and φI0, independently controlling the 

writing process to the memory cells built on transistor pair MD2 - MD3, and MD1 

respectively. The additional signals controlling the switches MS1 - MS5 (Figure 3.11) of 

the multipliers, correspond to signals φIX, φI0 and φMUL, thus are not shown in Figures 8.2. 

and 8.3. In the first phase (Φ1) the control signal φ1 = 1 configures MUL 1 to save the 

input vector [IX1 IX2] and the reference current IREF, and also configures MUL 2 to save 

the second input vector [IY1 IY2], provided through the transmission gates TG1 and TG2. In 

the belief propagation scheme, each intermediate result of the computation is a vector 

representing probability distribution and ought be normalised in order to avoid operations 

on very low numbers leading to underflow errors. Such normalisation, in the hardware 

realisation of the arithmetic circuit, is actually not performed at the output but inherently 



VLSI systems for Bayesian inference 179 

at the input of the Gilbert multiplier. Since the vector [IY1 IY2] is written to the symmetric 

inputs of the multipliers MUL 2 and MUL 3, it will naturally be normalised, however, 

the elements of vector [IX1 IX2] feed the asymmetric inputs of these multipliers and will 

not be normalised. Therefore, the multiplier MUL 1 is necessary to perform such 

normalisation before the actual vector-vector multiplication. In the second phase (Φ2), 

the control signals φ2 = 1 configure MUL 1 to perform normalisation of [IX1 IX2] and 

write the results to the memory cells built on MD4 and MD5 in MUL 1. The results are 

available on the outputs ID1 and ID2 of MUL 1 in the next phases when φ3 = 1. In the third 

phase (Φ3), the control signal φ3 = 1 configures the asymmetric inputs of MUL 2 and 

MUL 3 to the reading mode, in order to copy the results computed by MUL 1 to MUL 2 

and MUL 3. In the fourth phase (Φ4), the control signals φ4 = 1 setting MUL 2 and MUL 

3 into the multiplying mode, where the vector-vector multiplication is performed and the 

results are saved in the corresponding output memory cells of these multipliers. In the 

last phase (Φ5), the computed result is available on the four outputs of MUL 2 and MUL 

3. It can be observed that the first phase Φ1 and the last Φ5 are independent and could 

overlap in a pipelined computation scheme. The operation of the matrix-vector multiplier 

from Figure 8.2b is practically the same, only the matrix coefficients IA11 - IA22 are 

written to MUL 2 and MUL 3 in the first phase Φ1. 

In the realisations of the arithmetic circuits presented in Figure 8.2, it has been 

assumed that the input arguments and the matrix parameters are available during the first 

and the second phases Φ1 and Φ2. This assumption can be met when using the output 

memory cells with transistors MD4 and MD5 in the multipliers as a temporary data storage, 

providing the computed results to other circuits between the update cycles. 

8.4 Computational errors 

The normalised computational error of belief evaluation using the sum-product 

algorithm (NCESPA) in hardware, is defined as the maximum difference between the 

elements of the normalised current vector ISIM/||ISIM||, representing belief of a particular 

node obtained from the circuit simulation, and the corresponding normalised vector 

BELSPA, obtained from the software implementation of the sum-product algorithm. The 

computational error NCESPA provides the same accuracy measure as the normalised 

current error, defined in equation (3.15) in Chapter 3, and can be seen as its extension 



VLSI systems for Bayesian inference 180 

applicable to more complex systems. The computational error NCESPA is calculated for 

each node individually, according to the equation: 

%100max[%]NCESPA  SPA

SIM

SIM BEL
I

I
 (8.3) 

The disparities between the results obtained using the software realisation of the 

sum-product algorithm (BELSPA) and beliefs computed using the global marginalisation 

algorithm BELGMA for exact Bayesian inference, can be seen as an additional source of 

computational errors. This error, however, does not result from hardware issues, but is 

inherent to the inference method employed, and will be calculated as: 

%100max[%]NCEGMA  SPAGMA BELBEL  (8.4) 

In this thesis, the results obtained using the sum-product algorithm for belief 

propagation are considered as reference for the analysis of the accuracy of the hardware 

circuit realisations. The detailed analysis of the computational errors and the convergence 

issues in belief propagation scheme itself, goes beyond the scope of this research and will 

not be further discussed. The computational error NCEGMA will be evaluated for 

reference and comparison with NCESPA of the hardware realisations. 

8.5 Simulations 

8.5.1 Simulation setup 

In the simulations, two exemplar Bayesian networks presented in Figure 8.4 will be 

considered. The first network, shown in Figure 8.4a, is called TN-5, consists of five 

nodes and contains a (structural) loop, existing between nodes A, B, C and D. The second 

network is called TN-7, consists of seven nodes and has a tree structure. Both networks 

have fixed conditional probability tables (CPTs) and operate on two-state variables with 

values from the set {T, F} representing the probability of true and false respectively. It 

should be noted that the typical network size used in the decision and control systems in 

robotics is usually 10 to 20 nodes [Lazkano 2006], [Lebeltel 2004]. Larger networks, 

consisting of several thousand nodes and more, are considered in simulations and 

modelling complex systems for example in bioinformatics [Nikolova 2011]. 

 



VLSI systems for Bayesian inference 181 

A
P(A)
0.20
0.80

A
T
F

P(C|A)
0.20
0.05

T
F

AC
T
T
F T
F F

0.80
0.95

P(D|B,C)
0.80
0.80

T
F

CB
T
T
F T
F F

0.80
0.05

D
T
T
T
T

T
F

T
T
F T
F F

F
F
F
F

0.20
0.20
0.20
0.95

B C

D E
P(E|C)
0.80
0.60

T
F

AE
T
T
F T
F F

0.20
0.40

prior P(A) 

evidence P(D) evidence P(E)

P(B|A)
0.80
0.20

T
F

AB
T
T
F T
F F

0.20
0.80

 

P(C|A)
0.20
0.05

T
F

AC
T
T
F T
F F

0.80
0.95

P(B|A)
0.80
0.20

T
F

AB
T
T
F T
F F

0.20
0.80

A

B

D E

evidence P(D) evidence P(E)

C

F G

evidence P(F) evidence P(G)

P(A)
0.20
0.80

A
T
F

prior P(A) 

P(D|B)
0.80
0.20

T
F

BD
T
T
F T
F F

0.20
0.80

P(E|B)
0.80
0.60

T
F

BE
T
T
F T
F F

0.20
0.40

P(F|C)
0.80
0.20

T
F

CF
T
T
F T
F F

0.20
0.80

P(G|C)
0.80
0.60

T
F

CG
T
T
F T
F F

0.20
0.40  

(a) (b) 

Figure 8.4. Bayesian networks used in the analogue circuits implementations consisting of a) five 

nodes with a loop (TN-5), and b) seven nodes singly connected forming a tree structure (TN-7). 

In the circuit realisations of the networks from Figure 8.4, Bayesian nodes were 

implemented as pairs of three-way factor and three-way variable nodes. In such 

configuration, one pair of links connects the two nodes together and the remaining ones 

allow for connections with up to two parents and two children (see Figure 7.6 in 

Chapter 7). Each link passes over two-element vectors, one for the input and one for the 

output message. All the unconnected links, depending on the direction, were terminated 

either by a diode connected transistors or by pairs of current sources, generating currents 

[0.5 0.5] × IREF. The diode-connected transistors were used to sink the output currents of 

the nodes, whereas the current sources were used to provide input messages, neutral in 

terms of the performed arithmetic operations. The prior probability for node A, in both 

networks, was inserted in its conditional probability table. The probabilities representing 

evidence for the bottom (leaf) nodes were inserted using one of the spare links for two 

potential descendants. 

In the analogue circuit implementation, variable and factor nodes consist of three 

independent computational blocks performing the arithmetic operations for each output 

link individually. Additionally, in the variable node a separate block has been instantiated 

to compute belief. Circuit schematics and block diagrams of the continuous-time 

analogue implementation of the three-way factor and variable nodes are presented in 

Appendix A. The architecture of the system using discrete-time multipliers is the same. 

In the designed system, the arithmetic blocks in the discrete-time implementation of 

three-way variable node require 12 phases to complete the computation of the output 

messages (including belief). The three-way factor node realisation requires 14 phases for 

the same task. Assuming that both nodes operate in parallel with cycle time TC = 2 µs 

(the cycle time TC was introduced in Chapter 3), the total processing time of a Bayesian 

node, necessary to update the output messages is 28 µs. The additional two phases were 



VLSI systems for Bayesian inference 182 

intentionally added to the control sequence of the variable node to assure equal 

processing times and synchronisation between nodes in the network. It is important to 

note that the message update time of a Bayesian node is twice longer and equal to 56 µs, 

due to the propagation of the input messages through the variable and factor nodes. 

The simulation results of the TN-5 network were generated based on the total number 

of 110 input vectors and several different sets of CPTs summarised in Table 8.1. Here the 

input vector is defined as the set of the input information including the prior probability 

P(A) of node A and the evidence E(D) and E(E) for nodes D and E respectively. All the 

probabilities provided in the input vectors were normalised with respect to the reference 

current IREF. In the calculations of the computational error, each node was taken as a 

separate case, therefore, the estimation of the statistical parameters of the corresponding 

NCESPA, for the TN-5 network, is based on the total number of generated results, equal 

110 × 5 = 550 (110 input vectors, see Table 8.1, and 5 nodes, each generating one result). 

Similarly, the simulation results of the TN-7 network were generated based on the total 

number of 90 input vectors and several different sets of CPTs summarised in Table 8.2. 

The computational error NCESPA of the TN-7 network was based on the total number of 

results equal 90 × 7 = 630 (the number of cases is 90, see Table 8.2). 

Table 8.1. Input parameters and vectors used in the simulations of the TN-5 network. 

Input set CPT P(A) E(D), E(E) # cases range 
#1 fixed (Figure 8.4a) fixed fixed 10 1% - 99 % 

#2 fixed (Figure 8.4a) fixed random 10 5% - 95 % 

#3 random (set #1) random random 30 5% - 95 % 

#4 random (set #2) random random 30 5% - 95 % 

#5 random (set #3) random random 30 5% - 95 % 

Table 8.2. Input parameters and vectors used in the simulations of the TN-7 network. 

Input set CPT P(A) E(D), E(E) # cases range 
#1 fixed (Figure 8.4b) random random 30 5% - 99 % 

#2 random (set #1) random random 30 5% - 95 % 

#3 random (set #2) random random 30 5% - 95 % 

 

The number of cycles (iterations), required to attain convergence, can be determined 

only for the singly connected networks. It corresponds to the number of nodes on the 

longest path. If a network has (structural) loops, the messages start to circulate and the 

state of the network converges to the solution asymptotically. In such a case, an 

additional mechanisms controlling the convergence ought to be used, for example, 

terminating the computation when the result of a satisfactory precision has been 



VLSI systems for Bayesian inference 183 

achieved. In the continuous-time analogue realisations, the convergence is attained 

inherently by the circuit, therefore, mechanisms for convergence monitoring are not 

necessary. In the discrete-time analogue realisations, the computed result slightly 

fluctuates around the target solution. Such behaviour has also been observed in the 

software implementations of the belief propagation, assuming reduced computational 

precision. In such systems, an arbitrary number of iterations for a particular network 

could be set to terminate the computations rather than measure the convergence rate, 

which may be difficult due to these oscillations. In the simulations, a fixed number of 

iterations has been assumed, equal 16, for the TN-5 network, and equal 12 for the TN-7 

network. As a result, the total processing time of the discrete-time realisation is 

16 × 28 µs = 448 µs (TN-5 network) and 12 × 28 µs = 336 µs (TN-7 network). For these 

numbers, the software implementation of the message passing algorithm converges to the 

result with error much below 1%. 

8.5.1 Results 

The histograms showing the distribution of the NCESPA error of the networks TN-5 

and TN-7, realised using the continuous-time and the discrete-time analogue circuits, are 

shown in Figures 8.5 and 8.6 respectively. 

 

0 0.5 1 1.5 2 2.5 3 3.5 4
0

10

20

30

40

50

60

70

Normalised computational error (NCE
SPA

) [%]

n
u

m
b

e
r 

o
f 

c
a
se

s

µ = 0.71%

σ = 0.57%

 

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
0

10

20

30

40

50

60

70

80

90

Normalised computational error (NCE
SPA

) [%]

n
u

m
b

e
r 

o
f 

c
a
se

s

µ = 0.81%

σ = 0.64%

 
(a) (b) 

Figure 8.5. Histograms of the computational error NCESPA of the analogue continuous-time 

networks: a) TN-5 (µ = 0.71%, σ = 0.57%), and b) TN-7 (µ = 0.81%, σ = 0.64%). 



VLSI systems for Bayesian inference 184 

0 1 2 3 4 5 6 7 8 9
0

10

20

30

40

50

60

70

80

90

Normalised computational error (NCE
SPA

) [%]

n
u

m
b

e
r 

o
f 

c
a
se

s

µ = 1.15%

σ = 0.95%

 

0 1 2 3 4 5 6
0

10

20

30

40

50

60

70

Normalised computational error (NCE
SPA

) [%]

n
u

m
b

e
r 

o
f 

c
a
se

s

µ = 1.17%

σ = 0.87%

 
(a) (b) 

Figure 8.6. Histograms of the computational error NCESPA of the analogue discrete-time networks 

for TC = 2 µs: a) TN-5 (µ = 1.15%, σ = 0.95%) and b) TN-7 (µ = 1.17%, σ = 0.87%). 

It can be observed that the distribution of the NCESPA is similar for both circuit 

realisations. In the case of the discrete-time solution the generated error is slightly higher, 

mainly due to the additional effects related to charge injection, leakage and the channel 

length modulation of the MOS transistors used in the analogue memory cells. The 

precision of the obtained result degrades when very small probabilities occur in the CPTs 

or evidence. This results from the limited accuracy of the analogue multipliers when 

operating on small currents. The outlying bars in the histograms towards the higher 

computational error can be associated with the cases where the input parameter set 

contains probabilities below 5 %. 

The simulations of the discrete-time circuit realisations were repeated assuming the 

cycle time TC = 0.2 µs. The histograms of the NCESPA, generated for the same parameter 

sets from Tables 8.1 and 8.2, are shown in Figure 8.7. It can be observed that shortening 

the processing time degrades the precision of the obtained results, roughly by 30 %. 

0 2 4 6 8 10 12 14 16 18
0

20

40

60

80

100

120

140

Normalised computational error (NCE
SPA

) [%]

n
u

m
b

e
r 

o
f 

c
a
se

s

µ = 1.58%

σ = 1.69%

 

0 1 2 3 4 5 6 7 8
0

10

20

30

40

50

60

70

Normalised computational error (NCE
SPA

) [%]

n
u

m
b

e
r 

o
f 

c
a
se

s

µ = 1.71%

σ = 1.41%

 
(a) (b) 

Figure 8.7. Histograms of the computational error NCESPA of the analogue discrete-time networks 

for TC = 0.2 µs: a) TN-5 (µ = 1.58%, σ = 1.69%) and b) TN-7 (µ = 1.71%, σ = 1.41%). 



VLSI systems for Bayesian inference 185 

The histogram of the computational error NCEGMA, inherent to the sum-product 

algorithm, in comparison to the exact inference method based on global the 

marginalisation algorithm, is presented in Figure 8.8. In the analysis, the TN-5 network 

containing a loop was simulated with the parameter sets provided in Table 8.1. The TN-7 

network is singly connected and the inference result returned by the sum-product 

algorithm is always exact (see Chapter 7). The obtained disparities between the results 

computed using belief propagation for approximate inference are typically below 1%, 

with a few samples above this level. It is important to note that the analogue circuit 

realisations of Bayesian networks, considered in this research, implement an approximate 

inference method. Therefore, besides the circuit design issues, affecting the precision of 

the obtained results, the error introduced by the method itself should also be considered 

when targeting more precise and better optimised circuit designs. 

0 1 2 3 4

1

10

100

1000

Normalised computational error (NCE
GMA

) [%]

n
u

m
b

e
r 

o
f 

c
a
se

s

µ = 0.19%

σ = 0.40%

 

Figure 8.8. Histogram of the computational error NCEGMA of the belief propagation in 

comparison to the global marginalisation method for exact inference (µ = 0.19%, σ = 0.40%). 

The process of convergence observed in nodes A and D, in the analogue realisations 

of the TN-5 network, is shown in Figures 8.9 and 8.10. The results obtained from the 

reference software implementation, and the currents representing the corresponding 

beliefs, computed by the continuous-time and the discrete-time circuit realisations, were 

normalised and plotted on one graph in terms of a normalised time. Although the traces 

do not represent the timing relations between the traces correctly, they illustrate the 

process of network settling in three different realisations. The timescale of the 

continuous-time analogue traces were modified to assure fitting with the discrete-time 

and software results. 



VLSI systems for Bayesian inference 186 

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

b
e
li

e
f(

A
=

T
)

normalised timescale

 

 

software

discrete time VLSI

continuous time VLSI

 

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

b
e
li

e
f(

A
=

F
)

normalised timescale

 

 

software

discrete time VLSI

continuous time VLSI

 
(a) (b) 

Figure 8.9. The convergence of the belief propagation mechanism in node A observed in the 

software and the analogue hardware implementations for the TN-5 network. 

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

b
e
li

e
f(

D
=

T
)

normalised timescale

 

 

software

discrete time VLSI

continuous time VLSI

 

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

b
e
li

e
f(

D
=

F
)

normalised timescale

 

 

software

discrete time VLSI

continuous time VLSI

 
(a) (b) 

Figure 8.10. The convergence of the belief propagation mechanism in node D observed in the 

software and the analogue hardware implementations for the TN-5 network. 

It can be observed that both analogue solutions correctly converge to the expected 

results, denoted by the software implementation of the sum-product algorithm. The 

additional bars on the traces of the discrete-time circuit, result from the normalisation of 

current during the message update phases. When the results computed by each node are 

being written to the output memory cells, the output currents are undefined for one cycle. 

In the simulations, these undefined currents are equal (due to the circuit symmetry) and 

after normalisation they are equal to 0.5. 

When the network settles to the solution, the intermediate results oscillate both in 

hardware and software realisations (see Figure 8.10). This is caused by the faster 

processing of the local data of the nodes and slower information flow across the network. 

This effect is particularly visible in the continuous-time analogue implementation. 



VLSI systems for Bayesian inference 187 

8.6 Networks in continuous-time analogue circuits 

In Chapter 3, random parameter variability has been identified as the dominant factor 

degrading the accuracy of the continuous-time analogue multiplier circuit. It has been 

shown that the precision can be improved by transistor size scaling or by employing 

switched-current technique. This section deals with the continuous-time implementation 

of the sum-product algorithm and provides more detail characterisation of such 

arithmetic circuits in terms of the accuracy, power, speed and area. In particular, two 

techniques of reducing the impact of parameter mismatch on the computational accuracy, 

based on redundant design and area scaling, will be presented. Also, the convergence and 

scalability of larger networks will be discussed. 

8.6.1 Accuracy versus redundancy 

The idea of improving computational accuracy, based on redundant design, assumes 

that a more precise result can be obtained when averaging the results generated by the 

same circuit realisations but affected by random parameter variability. In such approach, 

rather than suppressing the parameter variability by averaging over a MOS device area, it 

is suggested to average the set of obtained results. In the experiments, the continuous-

time circuit realisations of the networks TN-5 and TN-7, with mismatch Monte Carlo 

MOS transistor models were used. Due to the long simulation time, the analysis of the 

TN-5 network was limited to a set of 30 input vectors from case #3 in Table 8.1. The 

analysis of the TN-7 network was performed for the case #2 from Table 8.2. The 

simulations were performed assuming fixed seed of the random number generator, 

starting always from the same point to assure the same set of mismatch parameters for 

each input vector. In other words, such setup allowed to simulate a system consisting of a 

set of 500 identical network copies (operating in parallel), where the result was 

calculated by averaging over 1, 2, 3,..,500 such circuit copies. 

The simulation results showing the mean and the standard deviation of the 

normalised computational error (NCESPA), in terms of the number of network copies used 

in the result averaging, are shown in Figures 8.11 and 8.12. It can be observed that both, 

the mean value and the standard deviation of NCESPA, decrease with the number of 

network copies used for averaging, and converge closely to the values µCT and σCT, 

obtained from the simulations not accounting for parameter mismatch (the corresponding 

levels are denoted in the Figures by the horizontal dashed lines). In general, the obtained 



VLSI systems for Bayesian inference 188 

results do not improve significantly for the number of network copies higher than 100. 

For comparison, the mean µDT and the standard deviation σDT of the NCESPA, obtained 

from the simulations of the discrete-time realisations of these networks for the same 

input sets, are also shown in the Figures. The mean value of the computational error, 

generated by the discrete-time network realisations, corresponds to averaging over 

approximately 100 network copies. This, however, is only a rough estimation since both 

solutions operate based on different principles and are affected by different factors 

degrading the computational precision. Also, the standard deviation measure, 

representing the spread of the computational error, after some point, does not improve 

further with the number of network copies. 

 

10
0

10
1

10
2

10
3

0

1

2

3

4

5

6

7

8

9

number of network copies

m
e
a
n

(N
C

E
S
P

A
) 

[%
]

µCT = 0.63%

µDT = 1.03%

 

10
0

10
1

10
2

10
3

0

1

2

3

4

5

6

7

8

number of network copies

st
d

(N
C

E
S

P
A

) 
[%

]

σDT = 0.71%

σCT = 0.46%

 
(a) (b) 

Figure 8.11. Computational error NCESPE of the TN-5 network versus the number of networks 

copies used for result averaging: a) mean, and b) standard deviation. 

10
0

10
1

10
2

10
3

0

2

4

6

8

10

12

14

number of network copies

m
e
a
n

(N
C

E
S
P

A
) 

[%
]

µCT = 0.68%

µDT = 1.02%

 
10

0
10

1
10

2
10

3
0

1

2

3

4

5

6

7

8

9

10

11

number of network copies

st
d

(N
C

E
S

P
A

) 
[%

]

σCT = 0.45%

σDT = 0.75%

 
(a) (b) 

Figure 8.12. Computational error NCESPE of the TN-7 network versus the number of networks 

copies used for result averaging: a) mean, and b) standard deviation. 



VLSI systems for Bayesian inference 189 

It is important to note that the benefit of such design redundancy, resulting in the 

improved computational precision, comes is at a very high cost of power and area, and 

hence, decreases the processing efficiency of such realisations. In fact, power and area 

could be traded for time in the time-multiplexed realisation of such systems. Rather than 

building a set of fixed identical networks, a generic reconfigurable array of multipliers 

and current mirrors could be considered. In such approach, however, networks should be 

synthesised using different components to minimise the similarities between their 

particular realisations, in order to assure convergence of the averaged result. Therefore, 

the resources of such reconfigurable system, and its size, may be much higher than the 

maximum size of the network that could be efficiently implemented and solved. 

8.6.2 Accuracy versus area 

The simplest method of improving parameter matching in analogue circuits is 

transistor size scaling (see Chapter 2). In such approach, it is assumed that the random 

parameter variability of MOS devices averages out with the gate area increase. In the 

analyses presented in this section, widths and lengths of all the MOS transistors of the 

continuous-time circuit realisations of the test networks TN-5 and TN-7 were multiplied 

by an integer scaling factor α with values from 1 to 25. In the simulations, the same input 

parameter sets, as in the previous section, were used, assuming only one Monte Carlo run 

for each input vector and the same starting point of the random number generator for 

parameter variability modelling. In other words, circuits with the same mismatch 

parameters were generated for different transistor sizes defined by the parameter α, and 

simulated for the same set of input vectors. 

The simulation results showing the mean and the standard deviation of the 

normalised computational error (NCESPA), in terms of the area scaling factor α
2
, 

proportional to the circuit area, are shown in Figures 8.13 and 8.14. It can be observed 

that both, the mean value and the standard deviation of NCESPA, decrease with the circuit 

area, and converge closely to the respective values obtained from the simulations, not 

accounting for parameter mismatch (dashed black traces). For comparison, the results of 

the computational error, obtained from the method of averaging (from previous section), 

were also plotted (dashed grey traces). It can be assumed that the number of network 

copies used for averaging is equal to the area scaling factor α
2
, if no circuits other than 

the networks are required for such realisations. It can be observed that the efficiency of 

error suppression of both methods is similar in terms of the circuit area. In particular, the 



VLSI systems for Bayesian inference 190 

approach based on the gate area scaling provides systematic improvement of the 

accuracy, asymptotically converging to the result generated by circuit not affected by 

mismatch. Due to the stochastic nature of the average-based method, the error reduction 

process is not deterministic and may not asymptotically converge to the expected result, 

but oscillate slightly above it. However, the average-based approach tends to converge 

quicker than the area scaling method. In particular, the accuracy of the continuous-time 

solution is comparable with the results of the discrete-time realisation (in terms of the 

mean error value) for area scaling factor approximately higher than 300. The same level 

of precision could be achieved using the average-based method for approximately 100 

network copies (see previous section). This, however, is based on the analysis of a 

particular case of two test networks. 

 

10
0

10
1

10
2

10
3

0

1

2

3

4

5

6

7

8

9

area scaling factor 
2

m
e
a
n

(N
C

E
S
P

A
) 

[%
]

 

 

simulation with mismatch

simulation without mismatch

method of averaging

µDT = 1.03%

 

10
0

10
1

10
2

10
3

0

1

2

3

4

5

6

7

8

area scaling factor 
2

m
e
a
n

(N
C

E
S
P

A
) 

[%
]

 

 

simulation with mismatch

simulation without mismatch

method of averaging

σDT = 0.71%

 
(a) (b) 

Figure 8.13. Computational error NCESPE of the TN-5 network versus area scaling factor α
2
:  

 a) mean, and b) standard deviation. 

10
0

10
1

10
2

10
3

0

2

4

6

8

10

12

14

area scaling factor 
2

m
e
a
n

(N
C

E
S
P

A
) 

[%
]

 

 

simulation with mismatch

simulation without mismatch

method of averaging

µDT = 1.02%

 

10
0

10
1

10
2

10
3

0

1

2

3

4

5

6

7

8

9

10

11

area scaling factor 
2

st
d

(N
C

E
S

P
A

) 
[%

]

 

 

simulation with mismatch

simulation without mismatch

method of averaging

σDT = 0.75%

 
(a) (b) 

Figure 8.14. Computational error NCESPE of the TN-7 network versus area scaling factor α
2
:  

 a) mean, and b) standard deviation. 



VLSI systems for Bayesian inference 191 

More thorough characterisation of these methods should be considered in the future 

research, nevertheless, it should be noted that better accuracy is obtained at a very high 

cost of area. This may be prohibitive in many applications, precluding the use of such 

methods in practice. The processing speed and the implications of the area scaling on the 

convergence time in such networks will be discussed later in this chapter. 

8.6.3 Convergence in large networks 

The accuracy of continuous-time analogue circuits for Bayesian inference was 

verified in the simulations of several synthetic networks of a regular structure shown in 

Figure 8.15. Five networks of such structure were generated with number of nodes from 

9 (3×3) to 121 (11×11) and random CPTs with entries within range 5% - 95%. The input 

test vector consisted of the prior probability of the middle top node A and the evidence 

for the middle bottom node B (Figure 8.15). These nodes were chosen to assure the 

message propagation across the entire network to verify the settling process and the 

correctness of the obtained results. In order to reduce the simulation time, DC operating 

point analysis was used to achieve the final state of the network, conceptually equivalent 

to the propagation after infinite time. The corresponding transient analysis takes much 

longer time and may not always be conclusive since the convergence time of a network 

depends on its parameters and input data, and cannot be easily estimated. The 

simulations of the settling time were performed for the TN-5 and TN-7 networks to 

estimate the processing efficiency. 

A

B

PRIOR P(A) = [AT AF]

EVID. P(B) = [BT BF]  

Figure 8.15. The structure of the Bayesian network TN-3×3 consisting of 9 nodes generated on a 

regular grid (the structure of other test networks is similar). 

The simulation results of 5 synthetic networks, with structure shown in Figure 8.15 

and consisting of 5 to 121 nodes implemented using 3-way factor and variable nodes, are 



VLSI systems for Bayesian inference 192 

presented in Table 8.3. The reported number of transistors and the DC supply currents in 

the steady state account for the entire circuit with additional terminating blocks of unused 

links and banks of current sources for CPTs (the corresponding schematic and block 

diagrams are presented in Appendix A). The computational error was calculated based on 

100 random input vectors randomly generated for each network with values from 5% to 

95%. 

Table 8.3. Simulation results of the synthetic test networks showing the complexity, power and 

accuracy scaling. 

Network #MOS IVDD mean(ANEMPA) std(ANEMPA) 

TN-3×3 5,918 431.7 µA 0.523 % 0.346 % 

TN-5×5 16,406 1.166 mA 0.692 % 0.524 % 

TN-7×7 32,126 2.256 mA 0.578 % 0.392 % 

TN-9×9 53,078 3.701 mA 0.618 % 0.444 % 

TN-11×11 79,262 5.500 mA 0.541 % 0.434 % 

 

It can be observed that the mean value and the standard deviation, used as a measure 

of the error spread, remain at the same level despite the increased complexity of the 

computing hardware. This is mainly because belief propagation requires only local 

computation and the respective arithmetic circuits perform normalizations of the 

intermediate results at each processing step, which keeps the corresponding currents 

within the operating range of the circuit. 

8.6.4 Complexity and power scaling 

Despite the limited computational accuracy, the continuous-time circuit 

implementations exhibit several promising advantages such as low power and short 

convergence time resulting in a high processing speed [Loeliger 2001], [Luckenbill 

2002]. On the other hand, such hardware realisations of factor graphs become area and 

complexity prohibitive for larger networks. In this section, the analysis of the key scaling 

aspects of such hardware implementations, specific to the fully parallel, continuous-time 

realisation, is provided. The equations describing different complexity issues, derived for 

n-way factor and n-way variable nodes operating on k-state variables, are presented in 

Tables 8.4 and 8.5 respectively. It should be noted that the provided rules were derived 

based on the features of a particular implementation considered in this work. Other ways 

of realising the same functionality may also be possible. The details concerning the 

implementations of factor and variable nodes and the derivations of the equations for 

complexity and power scaling are provided in Appendices A and B. 



VLSI systems for Bayesian inference 193 

Table 8.4. Scaling rules of n-way factor node operating on k-state messages (see Appendix B). 

Feature Exact equation Complexity 

# basic multipliers of type A 1
2

1

1 






 n

n

k
k

k
kn   nknO   

# basic multipliers of type B     111  nkn   nknO   

# two-argument real number 

multiplications   nn kknn  12   nknO 2
 

# two-argument real number 

additions 
 11  nkkn   nknO   

# k element vector normalisations n   nO  

supply current      REFIknnn  1122   knnO 2
 

Table 8.5. Scaling rules of n-way variable node operating on k-state messages (see Appendix B). 

Feature Exact equation Complexity 

# basic multipliers of type A     knknn  12   knO 2
 

# basic multipliers of type B 1n   nO  

# two-argument real number multi-

plications 
    knknn  12   knO 2

 

# k element vector normalisations 1n   nO  

supply current for n = 2  2n : REFI8  --- 

supply current for n = 3  3n :    REFIkk  211412  --- 

supply current for n ≥ 4 (worst case 

approximation, error < 12 %) 
4n :       REFIkkkn  112141 2

  nO  

 

The complexity of the proposed continuous-time hardware realisation of factor graph 

for Bayesian inference does not only depend on the number of nodes N in the network 

but also on the structure of each node. Based on the rules provided in Tables 8.4 and 8.5, 

some estimates concerning the power, area, and the computational complexity of a 

generic Bayesian node can be derived. In particular, the hardware complexity and the 

area requirements grow proportionally to O(n
2
k

n
) with the number of links n. 

Interestingly, the power consumption of the analogue hardware grows much slower and 

proportionally to O(n
2
 + nk), which is very promising in terms of low power designs. 

This stems from the effect of current partitioning in the pyramid-structure multipliers 

(see Appendix B for reference) for vector-vector operations. It is achieved, however, at 

the expense of the computational precision, degrading for larger circuits since the 

information is gradually represented by smaller currents decreasing in geometric progress 

with the number of input vectors. This could be fixed by breaking larger pyramids into 

smaller sub-multipliers with intermediate current normalisation. 

Figures showing complexity of the two-way and three-way variable and factor nodes, 

operating on two-state variables and derived using the exact equations from Tables 8.4 



VLSI systems for Bayesian inference 194 

and 8.5, are presented in Table 8.6. It should be noted that the equations in Table 8.5 

consider variable node implementation assuming optimised pyramid-structure 

multipliers, without cells generating products of unused element permutations (see 

Appendix A and B). In the continuous-time circuit realisations full pyramid-structure 

multipliers were used. As a result, the statistics reported by the circuit simulator (Table 

8.3) show higher number of MOS transistors and power supply currents (including also 

additional bias IREF, terminating blocks for links, beliefs and CPT currents) than those 

predicted using scaling rules from Table 8.5. This disparity, however, is negligible for 

very low number of links n. 

Table 8.6. Complexity figures for two-was and three-way factor and variable nodes operating on 

two-state variables. 

Feature 
Factor node Variable node 

2-way 3-way 2-way 3-way
1)

 

# basic multipliers of type A 2 10 2 10/12 

# basic multipliers of type B 6 19 3 4 

# MOS transistors 118 416 72 206/236 

# 2-arg MUL operations 8 36 2 10 

# 2-arg ADD operations 4 18 --- --- 

# 2-element vector normalisations 2 3 3 4 

Supply current  10·IREF 22·IREF 8·IREF 16.75/18 IREF 
1)

 reduced pyramid-structure/full pyramid-structure multipliers (used in the circuit realisations) 

Continuous-time hardware realisations of the test networks used in this work and 

four example networks (Mendel Genetics, Car Diagnostic, Alarm and Hail Finder 

[Norsys 2014]), were analyzed in terms of the complexity and the computational 

requirements. The estimated figures of implementation requirements are presented in 

Tables 8.7 and 8.8. In the area prediction, it was assumed that implementation of a single 

continuous-time multiplier (Figure 3.2 in Chapter 3) in a standard 90 nm CMOS 

technology, occupies 6.8 µm × 10 µm area, which is comparable with three D flip-flop 

cells in the same technology. 

Table 8.7. Implementation requirements of the synthetic Bayesian networks used in this work. 

Network Analogue hardware Operations/iteration 

Name Complexity
1)

 #MOS IVDD Area [µm
2
] #mul #add #norm 

TN-1 5/2/2 1,516 119.5·I0 84×84 94 34 28 

TN-7 7/2/2 1,732 152.3·I0 90×90 94 28 38 

TN-3×3 9/2/2 3,438 245·I0 127×127 234 92 53 

TN-5×5 25/2/2 11,662 782·I0 234×234 826 324 157 

TN-7×7 49/2/2 24,862 1,629·I0 342×342 1,786 700 317 

TN-9×9 81/2/2 43,038 2,786·I0 450×450 3,114 1,220 533 

TN-11×11 121/2/2 66,190 4,253·I0 560×560 4,810 1,884 805 
1)

 Complexity: no. of nodes, max. no. of parents and max. no. of children 



VLSI systems for Bayesian inference 195 

Table 8.8. Implementation requirements of four example Bayesian networks with assuming 

realisations with two-state variables only [Norsys 2014]. 

Network Analogue hardware Operations/iteration 

Name Complexity
1
 #MOS IVDD Area [µm

2
] #mul #add #norm 

Mendel 6/2/2 1,706 135.5·I0 90×90 104 38 33 

Car Diag. 18/5/3 14,244 513·I0 260×260 1,656 572 104 

Alarm 37/3/5 19,676 1,111·I0 304×304 1,598 594 226 

HailFinder 56/4/16 34,344 1,539·I0 401×401 2,804 906 330 
1)

 Complexity: no. of nodes, max. no. of parents and max. no. of children 

8.7 Performance of analogue systems 

8.7.1 Computational efficiency 

A comparison of the performance of the computational systems realised in different 

architectures and operating according to different principles, is usually not 

straightforward. A baseline performance estimation of such systems can be done 

assuming that a particular task, in general, consists of some elementary arithmetic 

operations (e.g. additions, multiplications, divisions etc.), and is executed in a certain 

time consuming certain power. The measure of the computational efficiency CE, used in 

the comparison of the systems considered in this research, is defined as a ratio of the 

number of arithmetic operations performed per second per consumed power according to 

the generic formula: 

[J] 

[OP]  #

]W[ 

]OPS[  /#
CE

energy

operations

power

 speedprocessing

power

timeoperations
  (8.5) 

In the equation (8.5), the unit of the processing speed is OPS (i.e. operations-per-second), 

and the computational efficiency CE is measured in OPS/W. The proposed definition of 

the computational efficiency requires only basic parameters of a system such as the 

number of the executed operations and the consumed energy. In particular, the level of 

the system parallelisation, which is not of the main interest here, will be marginalised in 

the calculation of the parameter CE. It should be noted that such comparison is valid only 

if the considered systems generate results of a similar precision. For example, a 

comparison of the analogue continuous-time and discrete-time systems should account 

for the effects of fabrication mismatch. Therefore the computational efficiency of the 

continuous-time solutions should be estimated for the systems employing the average-

based or scaling-based mismatch optimisation techniques, discussed in previous sections. 

The precision of the continuous-time analogue circuit increases almost to the level where 

such comparison becomes justifiable, assuming either the result averaging over 100 



VLSI systems for Bayesian inference 196 

network copies, or the area sizing by a factor of 300. Similarly, in order to compare the 

analogue and digital realisations, the later ones should be implemented assuming 

computation with reduced precision, "matching" the accuracy of the analogue solutions. 

In the following sections, the computational efficiency CE will be calculated based on 

the equation (8.5), with respect to the number of two-argument multiplications required 

for one message update (one cycle) of a three-way factor and three-way variable node 

operating on two-state variables. It is assumed that one such cycle requires the execution 

of the equations (7.8) - (7.10), in the case of the factor node, and equations (7.11) - 

(7.14), in the case of the variable node.  

8.7.2 Performance of the continuous-time realisation 

The computational efficiency of the continuous-time and discrete-time analogue 

realisations of the TN-5 and TN-7 test networks was verified in the simulations assuming 

five input vectors including different sets of network parameters. Due to the circuit 

symmetry, the continuous-time realisations consume a constant power in the steady state, 

and also when settling to the solution. The measurement of the settling time in the 

continuous-time circuits is not straightforward since it depends on the network 

parameters and can vary in a wide range for the same network structure. The settling time 

was simulated using transient analysis assuming zero initial condition (i.e. all circuit 

nodes with zero initial voltage). This allows to measure the worst case convergence time 

where all the MOS gate capacitances has to be charged. The DC operating point analysis 

was used to obtain the steady state solution of the circuit. The currents obtained from 

both (transient and DC) analyses were normalised to represent beliefs. The results of the 

transient analyses were then sampled with a fixed time interval of 20 ns to search for the 

moment where the difference between the obtained result and the asymptotic solution 

from the DC analysis is less than 1%. This analysis was repeated for both networks for 

five different input vectors (defining the network parameters) assuming area scaling 

factor α
2
 equal 1 and 300, to estimate the convergence time of the networks employing 

the average-based and scaling-based mismatch optimisation techniques. The obtained 

results are summarised in Tables 8.9, 8.10 and 8.11. 

In the considered hardware implementations, each Bayesian node consists of one 

variable and one factor node with three ways each, where one message update sequence 

requires 46 two-argument multiplications (36 for the factor node and 10 for the variable 

node, see Table 8.6 for reference). Due to the continuous-time operation of the circuit, it 



VLSI systems for Bayesian inference 197 

is not possible to determine the number of operations performed before the network 

settles to the solution. Therefore, in the estimations of the processing speed and 

efficiency, the number of operations performed will calculated based on the discrete-time 

realisation whereas the power and convergence time will be taken from the continuous-

time circuit simulations. In the discrete-time realisation (and in software), it was assumed 

that the TN-5 network converges in 16 message update cycles, and the TN-7 network 

converges in 12 message update cycles. The total number of operations performed by 

each network equals 46 × 5 × 16 = 3680 (for the TN-5 network), and 46 × 7 × 12 = 3864 

(for the TN-7 network). Assuming the estimated average supply current IDD, supply 

voltage VDD = 1.2 V and the convergence time TCONV from Table 8.9, the processing 

speed of the TN-5 network is 3680 / 0.56 = 6571 MOPS (mega operations per second) 

and the processing speed of the TN-7 network is 3864 / 0.62 = 6232 MOPS. The 

computational efficiency of the TN-5 network is CE = 6571 MOPS / 277 µW = 

23.7 TOPS/W, and the computational efficiency of the TN-7 network is CE = 

6232 MOPS / 393 µW = 15.9 TOPS/W. It is important to note that the computational 

efficiency is a measure of the system performance and does not necessarily provide an 

information concerning its scalability in terms of the processing speed. Therefore, it 

should be carefully used in the estimations of the speed. For example, a processing 

efficiency of 1 TOPS/W does not necessarily mean that a system will perform 10
15

 

operations per second at the power of 1kW. In particular, in the continuous-time systems, 

the processing speed and the power consumption depend on the inherent RC circuit 

parameters, and hence, cannot easily be controlled. 

Ideally, the continuous-time analogue computing systems exhibit a very high 

processing efficiency of about 20 TOPS/W. Nevertheless, the effects of parameter 

mismatch significantly affect the accuracy of such circuits. Mismatch optimisation 

employing the average-based and the scaling-based techniques, discussed in this chapter, 

improve the precision but degrades the processing speed and efficiency. In particular, the 

average-based method, assuming the use of 100 network copies, increases the power 

consumption and reduces the processing efficiency by factor of 100 respectively, but do 

not affect the speed. The scaling-based technique, assuming gate size scaling by factor of 

300, increases the convergence time and decreases the processing speed and efficiency 

roughly by factor of 300, but do not increase the power consumption. This results mainly 

from the fact that the gate capacitances and the settling time of a continuous-time circuit 

scales with the gate area. 



VLSI systems for Bayesian inference 198 

Table 8.9. The computational efficiency of the continuous-time realisations of TN-5 and TN-7 

networks (no mismatch assumed). 

 TN-5 TN-7 

case 
IDD 

[µA] 

Power 

[µW] 

TCONV 

[µs] 

Speed 

[MOPS] 

CE 

[TOPS/W] 

IDD 

[µA] 

Power 

[µW] 

TCONV 

[µs] 

Speed 

[MOPS] 

CE 

[TOPS/W] 

#1 231.11 277.33 0.76 4842 17.5 327.64 393.17 0.68 5682 14.5 

#2 230.87 277.04 0.44 8364 30.2 328.25 393.90 0.50 7728 19.6 

#3 231.37 277.64 0.40 9200 33.1 327.63 393.16 0.60 6440 16.4 

#4 231.06 277.27 0.52 7077 25.5 328.08 393.70 0.52 7431 18.9 

#5 231.02 277.22 0.66 5576 20.1 327.49 392.99 0.78 4954 12.6 

average 231 277 0.56 6571 23.7 328 393 0.62 6232 15.9 

Table 8.10. The computational efficiency of the continuous-time realisations of TN-5 and TN-7 

networks (average-based method using 100 network copies). 

 TN-5 TN-7 

case 
IDD 

[mA] 

Power 

[mW] 

TCONV 

[µs] 

Speed 

[MOPS] 

CE 

[TOPS/W] 

IDD 

[mA] 

Power 

[mW] 

TCONV 

[µs] 

Speed 

[MOPS] 

CE 

[TOPS/W] 

#1 23.111 27.733 0.76 4842 0.175 32.764 39.317 0.68 5682 0.145 

#2 23.087 27.704 0.44 8364 0.302 32.825 39.390 0.50 7728 0.196 

#3 23.137 27.764 0.40 9200 0.331 32.763 39.316 0.60 6440 0.164 

#4 23.106 27.727 0.52 7077 0.255 32.808 39.370 0.52 7431 0.189 

#5 23.102 27.722 0.66 5576 0.201 32.749 39.299 0.78 4954 0.126 

average 23.1 27.7 0.56 6571 0.237 32.8 39.3 0.62 6232 0.159 

Table 8.11. The computational efficiency of the continuous-time realisations of TN-5 and TN-7 

networks (scaling-based method for α
2
  = 300). 

 TN-5 TN-7 

case 
IDD 

[µA] 

Power 

[µW] 

TCONV 

[µs] 

Speed 

[MOPS] 

CE 

[TOPS/W] 

IDD 

[µA] 

Power 

[µW] 

TCONV 

[µs] 

Speed 

[MOPS] 

CE 

[TOPS/W] 

#1 219.76 263.71 187 19.68 0.074 309.78 393.17 121 31.93 0.086 

#2 219.92 263.90 211 17.44 0.066 309.68 393.90 154 25.09 0.068 

#3 219.69 263.63 131 28.09 0.107 309.67 393.16 114 33.89 0.091 

#4 219.70 263.64 131 28.09 0.107 309.64 393.70 125 30.91 0.083 

#5 219.74 263.69 147 25.03 0.095 309.80 392.99 152 25.42 0.068 

average 219 264 161 22.85 0.087 328 393 133 29.05 0.074 

 

8.7.3 Performance of the discrete-time realisation 

The architectures and the corresponding block diagrams of the discrete-time and the 

continuous-time network realisations, considered in this research, are identical, and can 

be referenced to Appendices A and B. The only difference is the operation of the basic 

multiplier cell. The discrete-time circuit realisations were implemented, using only three-

way factor and three-way variable nodes. It was assumed that the TN-5 network 

converges after 16 message update cycles, and the TN-7 network after 12 message update 

cycles. The number of two-argument multiplications performed for each message update 

was equal to 46 × 5 × 16 = 3680 (for the TN-5 network) and 46 × 7 × 12 = 3864 (for the 

TN-7 network). The power consumption was calculated based on the average supply 



VLSI systems for Bayesian inference 199 

current IDD, obtained from the simulations assuming the cycle time TC = 2 µs and supply 

voltage VDD = 1.15 V. Since the implemented three-way variable and three-way factor 

nodes require 14 cycles to compute the output messages, the total processing time of the 

TN-5 network is 14 × 2 µs × 16 ≈ 450 µs and the total processing time of the TN-7 

network is 14 × 2 µs × 12 ≈ 340 µs. Therefore, the TN-5 network performs 3680/450 = 

8.18 MOPS, and the TN-7 network performs 3864 / 340 = 11.36 MOPS. The 

computational efficiency of the TN-5 network is CE = 8.18 MOPS / 50.77 µW = 

0.161 TOPS/W, and of the TN-7 network is CE = 11.36 MOPS / 74.46 µW = 

0.153 TOPS/W. The obtained results and the corresponding are summarised in Table 

8.12. Figures for the same parameters but assuming a shorter cycle time TC = 0.2 µs are 

presented in Table 8.13. 

Table 8.12. The computational efficiency of the discrete-time realisations of TN-5 and TN-7 

networks for TC = 2 µs. 

 TN-5 TN-7 

case IDD [µA] Power [µW] 
Speed 

[MOPS] 

CE 

[TOPS/W] 
IDD [µA] Power [µW] 

Speed 

[MOPS] 

CE 

[TOPS/W] 

#1 44.07 50.68 8.18 0.161 62.10 74.52 11.36 0.153 

#2 44.67 51.37 8.18 0.159 61.50 73.80 11.36 0.154 

#3 43.81 50.38 8.18 0.162 61.95 74.34 11.36 0.153 

#4 44.01 50.61 8.18 0.162 61.66 73.99 11.36 0.154 

#5 44.20 50.83 8.18 0.161 63.05 75.66 11.36 0.150 

average 44.20 50.77 8.18 0.161 62.05 74.46 11.36 0.153 

Table 8.13. The computational efficiency of the discrete-time realisations of TN-5 and TN-7 

networks for TC = 0.2 µs. 

 TN-5 TN-7 

case IDD [µA] Power [µW] 
Speed 

[MOPS] 

CE 

[TOPS/W] 
IDD [µA] Power [µW] 

Speed 

[MOPS] 

CE 

[TOPS/W] 

#1 48.78 50.68 81.8 1.46 68.94 82.73 113.6 1.37 

#2 49.77 51.37 81.8 1.43 68.34 82.00 113.6 1.39 

#3 48.54 50.38 81.8 1.47 68.95 82.74 113.6 1.37 

#4 48.86 50.61 81.8 1.46 68.32 81.94 113.6 1.39 

#5 48.87 50.83 81.8 1.46 69.03 82.84 113.6 1.37 

average 48.96 56.31 81.8 1.45 68.72 82.46 113.6 1.38 

 

It can be observed that shortening the cycle time by the factor of 10 decreases the 

processing time and increases the processing speed 10 times. However, it causes only a 

small increase of the power consumption, which improves the computational efficiency. 

It should be noted that this improvement of the circuit performance comes at the cost of 

the reduced computational precision, therefore, it should be compared with an equivalent 

continuous-time implementation generating results of a similar precision. This could be 



VLSI systems for Bayesian inference 200 

obtained by decreasing the number of the network copies used in the average-based 

approach or reducing the value of the area factor α in the scaling-based approach. For 

example, for the TN-5 network in the discrete-time realisation (assuming cycle time TC = 

0.2 µs), the parameters of the computational error are: µ = 1.58% and σ = 1.69% 

(Figure 8.7a). Such level of the computational error could be obtained from the 

continuous-time realisation assuming the result averaging over 50 network copies (Figure 

8.11a) or area scaling by factor α
2 

= 200 (Figure 8.13a). Assuming the averaging over 50 

network copies, the power consumption will reduce two times, giving only twice higher 

efficiency equal 0.50 TOPS/W (see Table 8.10 for reference) which is almost three times 

lower than the efficiency of the discrete-time system equal 1.45 TOPS/W (see Table 

8.13) for the same computational accuracy. 

8.8 Digital implementation 

This section presents several realisations of the sum-product algorithm for Bayesian 

inference in the dedicated digital hardware and in software for PC. In particular, digital 

circuits for fixed-point arithmetic are considered in the realisations of the computational 

systems with reduced precision, trading accuracy for speed and processing efficiency. 

The figures of performance of such digital solutions are compared with the analogue 

realisations designed in the same technology, and with the software implementations in 

Matlab and C++. 

8.8.1 Fixed point arithmetic 

The sum-product algorithm for belief propagation operates on arguments from the 

unity interval [0...1], therefore, the required arithmetic operations could be performed 

using unsigned N-bit integer numbers, representing probabilities within range 0 to 

(2
N 

- 1)/2
N
. This, however, imposes specific design and requires particular solutions on 

the hardware level, concerning issues such as rounding errors, under-flow and over-flow 

cases, and the realisations of the arithmetic operations such as addition, multiplication 

and division. 

In the realisations considered in this research, the multiplication of two N-bit 

arguments returns a 2N bit result, preceded by the decimal point. The truncation to N bit 

number is done simply by taking only the first N most significant bits of the obtained 2N 

bit result. This introduces some rounding error, but simplifies the hardware design. A 



VLSI systems for Bayesian inference 201 

critical operation is vector normalisation, which requires addition of all the elements of a 

vector and division of each element by the obtained sum. This is usually time, power and 

area consuming, even in the fixed point arithmetic circuits. The normalisation is 

necessary to avoid over-flow and under-flow errors. Since the probabilistic information is 

encoded in the ratios of the vector elements, rather than their absolute values, in this 

work, a simplified approach, based on a successive bit shifting, is proposed. Assuming 

that the elements of a vector (before normalisation) are within the unity interval (i.e. for 

unsigned integer notation are smaller or equal (2
N 

- 1)/2
N
), they are logically shifted to 

the left, filling the rightmost bits with zeros, which is equivalent to successive 

multiplications by 2. After each shift, the overflow occurrence is checked and, if any of 

the elements is higher than one, the elements from the previous iteration (still within the 

unity interval) are taken as the final result. Such mechanism can easily be implemented 

as a state machine using N + 1 bit shift registers for the vector elements and a logic 

circuit performing OR operation on the most significant bits of the elements to indicate 

the overflow occurrence. It should be noted that more precise normalisation procedure 

could be implemented assuming multiplications not by 2 (realised as logic shifts) but by 

an argument higher than one. Also, in the bit shifting approach, rather than filling the 

least significant bits of the register with zeros, the lower half of the 2N bit result after 

multiplication could be used. These improvements, however, require additional hardware 

and increase the complexity of a design. In this research, the simplest hardware 

realisation was chosen. In some cases, as a result of the previously performed operation 

(e.g. dot product multiplication) and the rounding errors, a vector may only have zero 

elements, which should be detected before the normalisation. If that is the case, then the 

normalisation process should be skipped, issuing a vector with equal and non-zero 

elements representing uniform probability distribution (a neutral element in the 

performed calculations). 

Slightly more complex state machine is required to normalise results of the matrix-

vector multiplications, which involve additions, and may return numbers higher than one. 

In such a case, the left or right logic shifts of all the elements may be required, depending 

on the initial value of the largest element in the vector. If, for example, the largest 

element is higher than one, then all its elements have to be successively divided by 2 

(i.e. iteratively right shifted) until all the elements are smaller or equal to one. Also, in 

order to avoid overflow errors in the matrix-vector multiplications, the corresponding 



VLSI systems for Bayesian inference 202 

adders should operate on N + m bit words, where m is the number of added arguments, 

with a decimal point fixed after N less significant bits of the N + m bit result. 

8.8.2 Hardware realisation 

The test networks TN-5 and TN-7 were implemented as fully parallel synchronous 

digital circuits, where each Bayesian node has a fixed hardware module, consisting of a 

three-way variable and a three-way factor nodes, providing connectivity with up to four 

neighbouring Bayesian nodes (i.e. two parents and two children). Such approach was 

chosen because its structure corresponds to the analogue realisations considered in this 

research. The arithmetic operations performed by the variable and factor nodes are 

implemented using dedicated state machines computing the output messages and beliefs 

according to the equations (7.8) - (7.14) from Chapter 7. Each state machine is a simple 

digital processor equipped with a bank of registers and processing blocks for fixed point 

operations required by the implemented algorithm. In the realisations considered in this 

work, the three-way variable node consists of a single state machine, called V-3W, 

performing serial computation of the output messages and the corresponding beliefs. The 

three-way factor node consists of three identical state machines, called F-1W, computing 

the output messages in parallel for each link. Since the number of clock cycles required 

by the V-3W and F-1W state machines to complete a single message update is almost the 

same, such approach maximises the processing speed of the system.  

The diagram showing the processing flow of a simplified version of the V-3W state 

machine, calculating only belief of the three-way variable node, is presented in 

Figure 8.16. Belief is calculated based on the three input messages [IX1
T
 IX1

F
], [IX2

T
 IX2

F
] 

and [IX3
T
 IX3

F
] according to the equation (see Chapter 7 for reference): 






















F

X

F

X

F

X

T

X

T

X

T

X

F

T

III

III

Bel

Bel

321

321

 

(8.5) 

where α is a normalising factor. The computation of the three output messages (not 

shown in the diagram in Figure 8.16) is analogous and requires dot product of the three 

pairs of the input messages. The operations are performed using fixed point arithmetic 

with precision determined by the argument length N. The state diagram in Figure 8.16 

consists of 9 states #1 - #9 representing particular arithmetic and logic operations 

performed by the circuit. In states #1 to #4, the dot product of the three input vectors is 



VLSI systems for Bayesian inference 203 

calculated. Rounding to the N most significant bits after multiplication is done by saving 

only the higher halves of the obtained results. 

 

IX1X2X3
T N+1 bit

BELT N-bit

MUL

IX1
T N-bit

IX2
T N-bit

2N-bit

IX1X2
T N-bit

MUL

IX3
T N-bit

N-bit

2N-bit

IX1X2X3
T N-bit

IX1X2
T

MUL

IX1
F N-bit

IX2
F N-bit

2N-bit

IX1X2
F N-bit

MUL

IX3
F N-bit

N-bit

2N-bit

IX1X2X3
F N-bit

IX1X2
F

IX1X2X3
T N+1 bit 0

IX1X2X3
F N+1 bit 0

SLL

IX1X2X3
T N+1 bit

IX1X2X3
F N+1 bit

[011...1] ONE N+1 bit

A<B

A

B

A<B

B

A

IX1X2X3
F N+1 bit

BELF N-bit

IX1X2X3
TN+1 bit

IX1X2X3
FN+1 bit

 ZERON+1 bit

A=B

A

B

A=B

B

A

IX1X2X3
T N+1 bit

BELT N-bit

IX1X2X3
F N+1 bit

BELF N-bit

Z

Z = 1 Z = 0

 ONEN+1 bit

 ONEN+1 bit

N

N = 0 N = 1

#1

#2

#3

#4

#5

#6

#7

#8

#9

 

Figure 8.16. Block diagram of the simplified V-3W state machine for belief computation. 

When the input messages include elements close or equal zero, the dot product 

[IX1X2X3
T
 IX1X2X3

F
] may occasionally consist of only zero elements. This will be detected in 

state #5, where the elements of the computed result are compared with zero. If both of 

them are zero, the normalisation of the result is skipped and the vector representing the 

computed belief is assigned elements of the maximum value to represent the uniform 

probability distribution. In fact, any nonzero value from the unity interval could be 

assigned to the elements of the vector representing belief. The same approach applies to 



VLSI systems for Bayesian inference 204 

the output messages computed in the network and was introduced to avoid possibility of 

clamping the state of a network or its part to zero, which may occur when zero messages 

start to circulate. In the majority of cases, the computed vector [IX1X2X3
T
 IX1X2X3

F
] will 

consist of non zero elements requiring normalisation. The normalisation is performed in 

states #7 and #8, where the elements of the vector are first shifted logically to the left 

(multiplication by 2) and then compared with the value representing the probability of 

one. This process is repeated in a loop until any of the elements exceeds one. The result 

of the performed normalisation is the N most significant bits from the N + 1 bit shift 

register, equal the result from the previous iteration. 

8.8.3 Computational accuracy 

The operation and the computational accuracy of the test networks TN-5 and TN-7, 

implemented using simplified fixed point arithmetic approach, was verified in software 

(Matlab) for the input data from Tables 8.1 and 8.2. The simulations were performed for 

different values of the argument bit length N, in range from 5 to 10, defining the 

precision of the system. The obtained mean values and standard deviations of the 

computational error NCESPA are presented in Figure 8.17. In the evaluation of the 

computational error, the definition given by equation (8.3) was used assuming that 

ISIM/||ISIM|| is the belief evaluated by the fixed point implementation and BELSPA is the 

reference result obtained using double precision floating point realisation. In the 

simulations of the fixed point realisations, a constant number of 20 iterations for both 

networks was used to assure convergence. For comparison, the parameters of the 

analogue implementations of the same networks (for the same data sets) are also 

included. 

5 6 7 8 9 10

0.1

1

10

N
o

rm
a
li

se
d

 c
o

m
p

u
ta

ti
o

n
a
l 

e
rr

o
r 

[%
]

bit resolution

 

 

mean value

standard deviation

analogue continuous-time

(no mismatch)

analogue discrete-time

(TC = 2 µs)

analogue discrete-time

(TC = 0.2 µs)

 

5 6 7 8 9 10

0.1

1

10

N
o

rm
a
li

se
d

 c
o

m
p

u
ta

ti
o

n
a
l 

e
rr

o
r 

[%
]

bit resolution

 

 

mean value

standard deviation

analogue discrete-time

(TC = 2 µs)

analogue discrete-time

(TC = 0.2 µs)

analogue continuous-time

(no mismatch)

 
(a) (b) 

Figure 8.17. The computational error NCESPA in terms of the precision of the digital 

implementation obtained for the networks a) TN-5, and b) TN-7. 



VLSI systems for Bayesian inference 205 

It can be observed that the computational precision of such systems improves 

exponentially with the number of bits N. The computational accuracy of the continuous-

time analogue realisations reaches almost the same precision as the 8 bit digital 

equivalent, however, the simulations of the analogue circuit do not account for the 

parameter variability, therefore, this result does not reflect the real circuit behaviour. The 

precision of the continuous-time analogue system employing the average-based and 

scaling-based mismatch optimisation techniques decreases to about 6 - 7 bits, depending 

on the network. The accuracy of the discrete-time implementations remains within the 

range of 7 - 8 bits, assuming the cycle time TC = 2 µs and decreases to 6 - 7 bits for TC = 

0.2 µs. The histograms of the error distribution of the TN-5 and TN-7 networks, for 

different values of parameter N, are presented in Figures 8.18 and 8.19. respectively. 

 

0 1 2 3 4 5 6
0

10

20

30

40

50

60

Normalised Computational Error [%]

n
u

m
b

e
r 

o
f 

c
a
se

s

0 2 4 6 8 10 12 14 16
0

10

20

30

40

50

60

70

80

Normalised Computational Error [%]

n
u

m
b

e
r 

o
f 

c
a
se

s

µ = 2.37%

σ = 1.88%

N = 6 bits

µ = 1.16%

σ = 0.90%

N = 7 bits

 

0 0.5 1 1.5
0

10

20

30

40

50

60

70

Normalised Computational Error [%]

n
u

m
b

e
r 

o
f 

c
a
se

s

0 0.5 1 1.5 2 2.5 3 3.5
0

10

20

30

40

50

60

70

Normalised Computational Error [%]

n
u

m
b

e
r 

o
f 

c
a
se

s

µ = 0.53%

σ = 0.41%

N = 8 bits

µ = 0.27%

σ = 0.20%

N = 9 bits

 

Figure 8.18. The histograms of the normalised computational errors of the TN-5 network 

implemented in the fixed point arithmetic. 

 

 

 



VLSI systems for Bayesian inference 206 

0 2 4 6 8 10 12 14
0

20

40

60

80

100

120

Normalised Computational Error [%]

n
u

m
b

e
r 

o
f 

c
a
se

s

0 2 4 6 8 10 12 14
0

5

10

15

20

25

30

35

40

45

Normalised Computational Error [%]

n
u

m
b

e
r 

o
f 

c
a
se

s

µ = 2.96%

σ = 2.12%

N = 6 bits

µ = 1.59%

σ = 1.22%

N = 7 bits

 

0 0.5 1 1.5 2 2.5 3 3.5
0

20

40

60

80

100

120

140

Normalised Computational Error [%]

n
u

m
b

e
r 

o
f 

c
a
se

s

0 1 2 3 4 5 6
0

10

20

30

40

50

60

70

80

90

100

Normalised Computational Error [%]

n
u

m
b

e
r 

o
f 

c
a
se

s

µ = 0.79%

σ = 0.62%

N = 8 bits

µ = 0.39%

σ = 0.31%

N = 9 bits

 

Figure 8.19. The histograms of the normalised computational errors of the TN-7 network 

implemented in the fixed point arithmetic. 

8.8.4 Digital synthesis and implementation 

The state machines V-3W and F-1W were synthesised from a parameterised VHDL 

behavioural description for argument length N equal from 5 to 10. For the logic synthesis 

and implementation Design Compiler and IC Compiler tools from Synopsys and RVT 

(regular threshold voltage, VCC = 0.9 V) standard cell libraries designed in a standard 

90 nm CMOS technology were used. The synthesis report specifying the type, quantity 

and the size of the components recognised in the VHDL description, is summarised in 

Table 8.14. 

Table 8.14. Components recognised by the synthesis tools in the V-3W and F-1W state machines. 

component 
variable node V-3W factor node F-1W 

size number size number 

multiplier N×N 1 N×N 1 

adder --- 0 2N+4 2 

register 
N 

N+1 

21 

2 

N 

2N+4 

8 

4 

comparator N+1 2 2N+4 2 

 



VLSI systems for Bayesian inference 207 

The power prediction of the synthesised circuits was performed at two design stages: 

after synthesis and mapping, and after placement and routing. The former one provides 

estimation based solely on the power dissipation of the logic gates used in the design. 

The later one accounts also for the losses of the clock distribution network and wire 

switching. In both cases, the power consumption was estimated based on the assumed 

switching activity of the input ports. This could either be generated from a testbench or 

assigned manually, given the toggle rates of particular input lines. In this work, the 

second approach was chosen. The required switching activities of the input ports were 

estimated assuming the continuous operation of the state machines (i.e. there is no 

waiting time before each message update). Since the duration of the normalisation 

procedure depends on the elements of the input vector, in the behavioural simulations of 

the state machines, three uniform sets of input messages and parameters (equal 0.1, 0.5 

and 0.9) were considered. The simulation results, showing the number of clock cycles 

required to complete one message update sequence in V-3W and F-1W state machines, 

are summarised in Table 8.15. Each parameter set is represented in percents. 

Table 8.15. The number of clock cycles required to complete one message update sequence for 

three values of the input parameters equal 10%, 50% and 90%. 

Resolution N 
# clock cycles (V-3W) # clock cycles (F-1W) 

10% 50% 90% 10% 50% 90% 

5 bit 24 42 32 26 37 41 

6 bit 24 42 32 26 39 43 

7 bit 66 42 32 31 41 45 

8 bit 66 42 32 29 43 47 

9 bit 66 42 32 29 45 49 

10 bit 66 42 32 31 47 51 

 

It can be observed that the number of clock cycles required by the state machines 

depends on the input parameters and the resolution N. The shortest processing time of 

only 24 clock cycles (for the V-3W) and 26 clock cycles (for the F-1W) occurs for the 

lowest bit precision of 5 and 6 bits, and the smallest values of the input parameters, equal 

0.1. In these cases, the low value of the input parameters and the reduced precision of the 

arithmetic operations generate zero vectors as a result of the dot product multiplications. 

Therefore, the normalisation sequence is omitted, shortening the processing time. The 

constant numbers of clock cycles for the input parameters equal 50% and 90% in the 

V-3W state machine, stems from the fact that the obtained dot product result scales 

linearly with N, and hence, requires the same number of logic shifts during the 

normalisation process. Also, larger input parameters (e.g. 90%) produce larger dot 



VLSI systems for Bayesian inference 208 

product elements and the number of logic shifts required to normalise the result is lower. 

The situation is more complex in the case of the F-1W state machine, where small input 

values (e.g. 10%), as a result of the performed matrix-vector multiplication, generate 

vectors with elements smaller than one requiring logic left shifts during the 

normalisation. For larger input parameters (e.g. 50% and 90%) the results of the matrix-

vector multiplications are larger than one and require divisions by 2 (right logic shifts) 

during the normalisation. 

The V-3W and F-1W state machines were implemented in a standard 90 nm CMOS 

technology for the resolutions N from 5 bits to 10 bits, the same timing constraints and 

the clock period equal 10 ns. The synthesis and mapping steps were performed assuming 

leakage power and area optimisation. The placement and routing was performed to meet 

the specified timing constraints. The power prediction was performed assuming the 

switching activities corresponding to the input parameters of 50% for both state machines 

(see Table 8.15). The summaries of the obtained results for the V-3W and F-1W state 

machines, including the predicted dynamic and leakage power, area, and the time slack 

of the critical paths, are presented in Tables 8.16 and 8.17. 

Table 8.16. The summary of the synthesis and implementation of the V-3W state machine in a 

standard 90 nm CMOS technology. 

Resolution  
Power [µW] @ 100 MHz Area 

[µm × µm] 

Slack 

[ns] 

Max freq. 

[MHz] 

Max speed 

[MOPS] 

CE 

[TOPS/W] Synthesis
1)

 Implementation
1)

 

5 bit 123 + 10 142 + 11 67 × 65 7.23 360 69 0.124 

6 bit 177 + 12 182 + 13 74 × 74 7.04 337 64 0.098 

7 bit 205 + 14 212 + 14 80 × 79 6.71 304 58 0.084 

8 bit 234 + 17 234 + 17 87 × 85 6.66 300 57 0.076 

9 bit 261 + 19 266 + 19 92 × 90 5.91 244 46 0.067 

10 bit 291 + 22 296 + 23 99 × 96 5.61 227 43 0.060 
1)

 Power estimation: dynamic + leakage 

Table 8.17. The summary of the synthesis and implementation of the F-1W state machine in a 

standard 90 nm CMOS technology. 

Resolution  
Power [µW] @ 100 MHz Area 

[µm × µm] 

Slack 

[ns] 

Max freq. 

[MHz] 

Max speed 

[MOPS] 

CE 

[TOPS/W] Synthesis
1)

 Implementation
1)

 

5 bit 110 + 11 113 + 12 71 × 71 6.77 310 101 0.257 

6 bit 129 + 13 178 + 14 76 × 76 6.71 304 94 0.160 

7 bit 178 + 15 186 + 16 84 × 82 5.95 247 72 0.144 

8 bit 199 + 18 219 + 19 90 × 90 6.13 258 72 0.117 

9 bit 217 + 20 232 + 20 95 × 93 5.22 209 56 0.106 

10 bit 241 + 23 253 + 23 101 × 99 4.86 189 48 0.093 
1)

 Power estimation: dynamic + leakage 

 



VLSI systems for Bayesian inference 209 

The maximum operating frequency and the maximum processing speed were 

calculated assuming that the clock period could be shortened by the estimated time slack. 

It is important to note, however, that faster circuits could be synthesised assuming 

different timing constraints at the beginning of the synthesis process. The maximum 

processing speed and the computational efficiency were estimated assuming that the 

V-3W state machine requires 42 clock cycles to complete the operation and performs 8 

multiplications (operations). In the case of the F-1W circuit, the number of 

multiplications performed in one message update is 12 and the corresponding numbers of 

clock cycles were taken from Table 8.15 for the 50% column according to the bit 

resolution N. The power estimation, provided in Tables 8.16 and 8.17, account for the 

dynamic and leakage power respectively. 

8.8.5 Performance of the digital realisation 

The computational efficiency and the power performance of a single Bayesian node, 

consisting of one state machine V-3W and three state machines F-1W, was estimated 

based on the data from Tables 8.16 and 8.17. In the following, parameters of such system 

will be calculated for bit resolution N = 8. For the clock speed of 100 MHz, the power 

consumption of a Bayesian node processor (after implementation) is 1 × (234 + 17) + 3 × 

(219 + 19) = 965 µW. The supply current is IVDD = 1.07 mA (for the default value of the 

supply voltage VCC = 0.9 V of the standard cell library used in the implementation). Such 

Bayesian processor performs 1 × 8 + 3 × 12 = 44 multiplications to generate belief and 

the output messages, and it requires (on average) 43 clock cycles. It should be noted that 

8 bit implementations of V-3W and F-1W state machines require 42 and 43 clock cycles 

respectively (see Table 8.15 for N = 8 and 50% input parameters), therefore, V-3W will 

have to wait one extra cycle. therefore, the number of cycles of the corresponding 

Bayesian processor is 43. Also, in the digital realisation of the V-3W state machine, first, 

the output messages are calculated and, after that, beliefs. Since the dot product of the 

message pairs are already computed, one of them can be used and multiplied by the third 

input message to evaluate belief. Therefore, only two additional multiplications are 

required to compute belief (not four as in the case of the analogue solution, see Table 

8.6). For the assumed clock speed of 100 MHz, the considered Bayesian processor 

performs (44 × 100) / 43 = 102 MOPS  with efficiency CE = 102 MOPS / 965 µW = 

0.106 TOPS/W. The maximum processing speed is limited by the maximum operating 

frequency of the F1-W state machine, equal 258 MHz, and can be calculated as 



VLSI systems for Bayesian inference 210 

(44 × 258) / 43 = 264 MOPS. The area of such single processor can be estimated as 

1 × (87 × 85) + 3 × (90 × 90) = 178 µm × 178 µm, and the processing speed 43 × 10 ns = 

430 ns. The parameters of Bayesian nodes, for N = 5 to 10, are summarised in Table 8.18 

Table 8.18. The parameters of Bayesian processors estimated for different bit resolutions. 

Resolution 
Power 

@ 100 MHz  

[µW] 

Area 

[µm × µm] 

# MUL/ 

# CLK 

Max 

clock 

[MHz] 

Speed 
@ 100 MHz 

[MOPS] 

Max speed  

[MOPS] 

CE  

[TOPS/W] 

5 bit 528 140 × 140 44/42 310 105 325 0.199 

6 bit 771 151 × 151 44/42 304 105 318 0.136 

7 bit 832 164 × 164 44/42 247 105 259 0.126 

8 bit 965 178 × 178 44/43 258 102 264 0.106 

9 bit 1041 187 × 187 44/45 209 97.8 204 0.094 

10 bit 1147 199 × 199 44/47 189 93.6 177 0.082 

 

The realisations of Bayesian processors communicating with larger number of 

neighbours than considered in this research, can easily be done by extending the state 

machines V-3W and F-1W. In general, a Bayesian processor communicating with K 

parents and L children will require (L+1)-way variable node and (K+1)-way factor nodes. 

Due to the fact that the number of the required operations does not scale in the same way 

for the variable and factor nodes (see Tables 8.4 and 8.5), the system assuring maximum 

processing speed requires proper design of the state machines, "synchronised" in terms of 

the processing speed. In order to assure maximum processing speed, all the state 

machines should ideally finish their tasks at the same time (i.e. after the same number of 

clock cycles). In practice, for different K and L, and different numbers of states of the 

processed variables, such designs could be optimised by using time multiplexing, 

serialising short computation sequences and parallelising the long ones. For example, in 

the diagram presented in Figure 8.16, states #1, #3, and #2, #4 could be executed in 

parallel, reducing the number of the required clock cycles, but at the expense of the 

additional area and power consumed by the second multiplier. For larger number of 

links, e.g. L = 12, each element of the vector dot product requires multiplication of 12 

numbers which can be done in parallel in 4 steps using 6 multipliers, or in 5 steps using 

only 3 multipliers. In such cases, the normalisation of the intermediate results should also 

be considered in order to avoid underflow errors, which may further increase the number 

of the required clock cycles. Such optimisation could also be done for the factor node, 

however, the uniform processing speed of the system may be difficult to achieve when 

the number of parents and the number of children of a particular Bayesian processor are 

significantly different. In such a case, the node with the larger number of links will have 



VLSI systems for Bayesian inference 211 

to perform more operations in parallel to produce the result in the same time as the node 

with the lower number of links. This will increase the power and area of the hardware 

realisation, which in some practical realisations may not be acceptable. 

In the case of the networks considered in this research, using fixed implementation of 

Bayesian processors, the power and area will scale linearly with the number of nodes in 

the network. In the mini asic design of 1500 µm × 1500 µm active circuit area (excluding 

the I/O ring), the possible number of nodes operating with 8 bit precision, that could be 

implemented, assuming 20 µm spaces between the nodes for I/O and memory registers, 

is approximately equal (1500 × 1500) / (190 × 190) = 62. The approximate power 

consumption of such circuit operating at 100 MHz clock is 62 × 965 µW = 59 mW, and 

may increase up to 147 mW for the maximum clock speed of 250 MHz. In the full chip 

realisation of 10 mm × 10 mm die size, the number of Bayesian nodes is 2770, and the 

consumed power is 2.6 W for the clock speed of 100 MHz. The estimated maximum 

processing speed is 730 GOPS consuming 6.6 W of power. It should be noted that, in the 

provided estimations, the number of operations is equal to the number of two-argument 

multiplications. The actual processing capabilities of such system are much higher, when 

accounting for the data summations, transfers and normalisations. 

Although the estimated performance figures are very promising in terms of network 

scaling, the scalability of the computational error, resulting from the use of the fixed 

point arithmetic, need to be further investigated. The use of the simplest approach to the 

implementation of the fixed point arithmetic, presented in this thesis, was mainly 

motivated by the possibility of its straightforward comparison to the analogue solutions. 

The design of more complex circuits for fixed point arithmetic could be considered in 

order to reduce the computational errors. In particular, designs aiming optimisation of the 

processing error, area and power consumption by using computational bocks of mixed bit 

precision and variable time multiplexing, could be investigated in the future designs. 

8.9 Performance comparison 

This section provides the overview and comparison of three different approaches to 

computation considered in this research, accounting for the analogue and digital 

hardware realisations, and two software solutions, implemented in Matlab and C++ 

language for PC. The corresponding figures of performance are estimated for the 

implementations of the TN-5 and TN-7 test networks. Details concerning each particular 



VLSI systems for Bayesian inference 212 

realisation are discussed further in the following sections. The performance analysis and 

comparison is provided in a separate section discussing the obtained results. 

8.9.1 Analogue implementation 

The implementations of the three-way variable and three-way factor nodes in 

analogue circuits, require 14 and 29 Gilbert multipliers respectively (see Tables 8.4 and 

8.5). Assuming that the area of a Gilbert multiplier, realised in a standard 90 nm CMOS 

technology, is 6.8 µm × 10 µm, the approximate area of a three-way variable node is 31 

µm × 31 µm and the area of the three-way factor node is 44 µm × 44 µm. Based on that, 

the area of a single Bayesian node with 2 parents and 2 children is 54 µm × 54 µm. It 

should be noted that some additional area will be required to implement current sources 

to store and generate the network parameters. 

The architecture of the discrete-time analogue realisation is practically the same as 

the continuous-time one and also requires 14 Gilbert multipliers for the three-way 

variable node and 29 multipliers for the three-way factor node. The discrete-time Gilbert 

multiplier consists of 5 memory cells (see Figure 3.11). Three of them use an information 

storing transistor of size 1 µm × 1 µm and two of them use a thick gate oxide transistors 

of the size 1.8 µm × 0.8 µm. Assuming, for simplicity, that each memory cell requires 

area of 2 µm × 2 µm (accounting for the information storing transistor, transmission 

gates and the cascoding transistors), the estimated area of a three-way variable node is 

17 µm × 17 µm, and the estimated area of the three-way factor node is 24 µm × 24 µm. 

Based on that, the area of a single Bayesian processor communicating with 2 parents and 

2 children is 30 µm × 30 µm. 

Based on the provided estimations, the area of the continuous-time realisation of the 

TN-5 network is 5 × 54 µm × 54 µm = 121 µm × 121 µm, and of the TN-7 network is 7 × 

54 µm × 54 µm = 143 µm × 143 µm. The area of the discrete-time realisation of the TN-5 

network is 5 × 30 µm × 30 µm = 67 µm × 67 µm, and the area of the TN-7 network is 7 × 

30 µm × 30 µm = 79 µm × 79 µm. 

8.9.2 Digital implementation 

The performance figures of the digital implementation of the TN-5 and TN-7 test 

networks were estimated based on the parameters of a single Bayesian processor realised 

in a standard 90 nm CMOS technology and operating at the maximum clock frequency 

(see Table 8.18). In the following, the calculations concerning realisations with 8 bit 



VLSI systems for Bayesian inference 213 

precision will be provided assuming linear scaling of the power and processing speed 

with the clock frequency. The maximum power consumption of the TN-5 network 

implementation is 5 × 965 µW × 258 / 100 = 12.45 mW and of the TN-7 network is 

7 × 965 µW × 258 / 100 = 17.43 mW. Assuming 43 clock cycles for each message 

update (in the 8 bit architecture), the minimum processing time of the TN-5 network is 

43 × 3.88 ns × 16 = 2.67 µs, and in the case of the TN-7 network, the minimum 

processing time is 43 × 3.88 ns × 12 = 2.00 µs. The maximum processing speed of the 

TN-5 network is 5 × 264 MOPS = 1320 MOPS and of the TN-7 network is 

7 × 264 MOPS = 1848 MOPS. The area of the TN-5 implementation is 

5 × (178 µm × 178 µm) = 398 µm ×398 µm, and the area of the TN-7 network is 

7 × (178 µm × 178 µm) = 471 µm × 471 µm. 

8.9.3 Software implementation for PC 

The software realisations of belief propagation algorithm in the TN-5 and TN-7 

networks were implemented and tested in Matlab 2012a environment, and in C++ using 

Microsoft Visual Studio 2008. Similarly as before, it was assumed that the networks 

consist of Bayesian nodes communicating with two parents and two children, and 

perform a fixed set of arithmetic operations (see Figure 7.6 in Chapter 7). In both cases, 

only the fundamental data types and standard coding techniques were employed, 

assuming no parallelisation or GPU use. In Matlab, the profiler tool was used to optimise 

the code in terms of speed. The compilation of the C++ sources was performed assuming 

speed optimisation. The performance of both solutions was verified using an off-the-shelf 

PC with Intel Core i7 950 processor, 6 GB RAM, running Windows 7 operating system. 

In the processing time estimation, only the algorithm runtime was measured, excluding 

the variable initialisation and the output log generation. In the Matlab environment, 

functions tic and toc were used for code timing. Such method allowed to measure the 

execution time with resolution of about 1 µs. In the C++ implementations, the state of the 

Time Stamp Counter (TSC) was used for code timing [Paoloni 2010]. In order to improve 

the precision of the time measurement, multiple iterations of the message passing scheme 

were executed. In particular, in Matlab realisations, 10
5
 iterations were assumed, and in 

C++ implementations, 10
7
 iterations were assumed. The processing speed was calculated 

assuming that each Bayesian node performs 44 operations (i.e. two-argument 

multiplications, see Section 8.8.5) for each message update. The obtained mean 

processing speed figures (calculated based on five runs), were: 1.44 MOPS for the TN-5 



VLSI systems for Bayesian inference 214 

and TN-7 networks in the Matlab realisations. The reported processing time of the TN-5 

network was 1.53 s and of the TN-7 network was 2.13 s (for 10
5
 iterations). For the C++ 

implementations, the processing speed was equal to 662 MOPS, for the TN-5 network, 

with processing time of 3.34 s, for 10
7
 iterations, and 647 MOPS, for the TN-7 network, 

with processing time of 4.84 s, for 10
7
 iterations. The maximum power dissipation of the 

Intel i7 950 processor is equal to 130 W and the chip die area is 263 mm
2
 [Intel 2014]. 

The power of one core can be estimated as 130 W / 4 = 32.5 W, and the area as 

263 mm
2
 / 4 ≈ 8110 µm × 8110 µm. The corresponding processing efficiency of both 

networks is approximately equal to 20 MOPS/W (C++ implementations) and 

0.04 MOPS/W (Matlab implementation). The processing speed and power efficiency of 

the hardware and software realisations discussed in the previous sections are summarised 

in Tables 8.19 and 8.20 for the TN-5 and TN-7 test networks respectively. 

Table 8.19. The parameters of the TN-5 network in analogue and digital realisations 

(comparison). 

Realisation 
Power 

[mW] 

Time 

[µs] 

Area 

[µm × µm] 

Speed 

[MOPS] 

CE 

[TOPS/W] 

Analogue 
continuous-time 

(no mismatch) 

0.231 0.56 121 × 121 6,571 23.7 

Analogue 

continuous-time 

(average-based technique) 

23.1 0.56 1210 × 1210 6,571 0.237 

Analogue 

continuous-time 

(scaling-based technique) 

0.219 161 2096 × 2096 22.85 0.087 

Analogue 

discrete-time 

(TC = 2 µs) 

0.051 450 67 × 67 8.18 0.161 

Analogue 

discrete-time 

(TC = 0.2 µs) 

0.056 45 67 × 67 81.8 1.45 

Digital 

5 bit @ 310 MHz 
8.18 2.17 313 × 313 1,625 0.199 

Digital 

6 bit @ 304 MHz 
11.72 2.21 338 × 338 1,590 0.136 

Digital 

7 bit @ 247 MHz 
10.28 2.72 367 × 367 1,295 0.126 

Digital 

8 bit @ 258 MHz 
12.45 2.67 398 × 398 1,320 0.106 

Digital 

9 bit @ 209 MHz 
10.88 3.44 418 × 418 1,020 0.094 

Digital 

10 bit @ 189 MHz 
10.84 3.98 445 × 445 885 0.082 

Digital (Intel i7, C++) 

64 bit FP @ 3.00 GHz 
32,500 5.34 8110 × 8110 662 20 × 10

-6 

Digital (Intel i7, Matlab 

64 bit FP @ 3.00 GHz 
32,500 245 8110 × 8110 1.44 4 × 10

-8 



VLSI systems for Bayesian inference 215 

Table 8.20. The parameters of the TN-7 network in analogue and digital realisations 

(comparison). 

Realisation 
Power 

[mW] 

Time 

[µs] 

Area 

[µm × µm] 

Speed 

[MOPS] 

CE 

[TOPS/W] 

Analogue 
continuous-time 

(no mismatch) 

0.393 0.62 143 × 143 6,232 15.9 

Analogue 

continuous-time 

(average-based technique) 

32.8 0.62 1430 × 1430 6,232 0.159 

Analogue 

continuous-time 

(scaling-based technique) 

0.393 133 2477 × 2477 29.05 0.074 

Analogue 

discrete-time 

(TC = 2 µs) 

0.074 340 79 × 79 11.36 0.153 

Analogue 

discrete-time 

(TC = 0.2 µs) 

0.082 34 79 × 79 113.6 1.38 

Digital 

5 bit @ 310 MHz 
11.46 1.62 370 × 370 2,275 0.199 

Digital 

6 bit @ 304 MHz 
16.41 1.66 400 × 400 2,226 0.136 

Digital 

7 bit @ 247 MHz 
14.39 2.04 434 × 434 1,813 0.126 

Digital 

8 bit @ 258 MHz 
17.43 2.00 471 × 471 1,848 0.106 

Digital 

9 bit @ 209 MHz 
15.23 2.58 495 × 495 1,428 0.094 

Digital 

10 bit @ 189 MHz 
15.17 2.98 527 × 527 1,239 0.082 

Digital (Intel i7, C++) 

64 bit FP @ 3.00 GHz 
32,500 5.8 8110 × 8110 647 20 × 10

-6 

Digital (Intel i7, Matlab 

64 bit FP @ 3.00 GHz 
32,500 256 8110 × 8110 1.44 4 × 10

-8 

 

8.9.4 Discussion 

The relation between the processing speed and the consumed power is presented in 

Figure 8.20 (the data from both tables are included). The fastest solutions, providing the 

processing speed of over 6 GOPS, are realised in analogue circuits operating in the 

continuous-time mode, assuming no parameter mismatch, and employing the average-

based mismatch optimisation. In such solutions, the settling time of the analogue circuit 

does not depend on the number of network copies, therefore, it preserves the processing 

speed at the expense of the consumed power. In other words, in the average-based 

mismatch reduction method, power is traded for precision, shifting the solution along the 

horizontal axis in the design space presented in Figure 8.20. The second approach to 

mismatch optimisation, based on the transistor size scaling, preserves power but at the 



VLSI systems for Bayesian inference 216 

expense of the processing time. Larger transistors exhibit higher gate capacitances, 

therefore the corresponding settling time of the circuit increases. As a result, scaling-

based approach trades processing speed for accuracy and shifts the solution down along 

the vertical axis, as shown in Figure 8.20. 

10 uW 100 uW 1 mW 10 mW 100 mW 1 W 10 W 100 W
1 MOPS

10 MOPS

100 MOPS

1 GOPS

10 GOPS

Power

P
ro

c
e
ss

in
g

 s
p

e
e
d

Digital synchronous
fixed point arithmetic
(5 bit – 10 bit precision) 

Analogue
continuous-time 

(average-based technique) 

Analogue
continuous-time 

(scaling-based technique) 

Analogue
continuous-time 

(no mismatch) 

Analogue
discrete-time 

(TC = 2 µs) 

Analogue
discrete-time 

(TC = 0.2 µs) 

Digital synchronous
Intel i7 (45 nm, 3.00 GHz) 
(double precision floating point) 

C++

MATLAB

Figure 8.20. The design space of the computational systems defined by the processing speed and 

power consumption. 

Hardware realisations, such as the digital synchronous (with fixed point arithmetic), 

the discrete-time analogue (with TC = 2 µs), and the continuous-time analogue (with 

mismatch optimisation applied), were designed to operate with a similar computational 

accuracy. It can be observed that all three solutions are located close to the line 

representing a proportion between the power and the processing speed (dashed grey line 

in Figure 8.20). It suggests that the processing efficiency, defined as the ratio of the 

processing speed and power, may be limited for a given computational accuracy in a 

particular technology, irrespective of the assumed approach and circuit realisation. Such 

conclusion, however, refers to the solutions considered in this research. One possibility 

to depart from the observed trend and improve the processing speed or efficiency, is 

based on scaling of the cycle time TC in the discrete-time realisations. It can be observed 

that shortening the cycle time from 2 µs to 200 ns increases the processing speed by 

factor of ten but reduces the computational accuracy by 30% (see Section 8.5.1). In such 

approach, the corresponding proportion between the processing speed and the power 

consumption is much steeper (dotted grey line in Figure 8.20) than in the previous case. 

This is very promising in terms of the high efficiency analogue computing, however, 

needs to be further investigated, especially in terms of the processing accuracy. 



VLSI systems for Bayesian inference 217 

The software realisations for PC, considered in this research, exhibit significantly 

different processing speed and power efficiency, even though both were implemented 

and tested on the same hardware platform. In particular, the implementation in C++ 

language is almost three order of magnitude faster than its equivalent realised in Matlab 

environment. In both cases, programs were written in the same way assuming fixed, hard 

coded matrix-vector operations with no generic structures such as loops, branching or 

dynamic memory preallocation (i.e. the code was written entirely for a particular network 

structure). Since the program execution in Matlab is based on code interpreting, the 

corresponding overhead reduces the achievable processing speed, when compared to the 

approach employing code compilation (e.g. C++ language). In the C++ realisations, the 

number of the clock cycles spent on the message computation and update for one 

Bayesian node can be estimated assuming that 10
7
 iterations of the TN-5 network 

realisation takes 3.34 s resulting in (3 × 10
9
 × 3.34) / (5 × 10

7
) ≈ 200 clock cycles per 

node. Given that such node requires 79 arithmetic operations (i.e. 44 two-argument 

multiplications, 28 two-argument additions, and 7 divisions, see Figure 7.6 in Chapter 7), 

the average number of cycles per arithmetic operation and the related data traffic, is 

about 2.5. For a regular network structure, presented in Figure 8.15, and consisting of N 

nodes, the number of iterations to attain convergence (proportional to the number of 

nodes along the diagonal of the square) is equal to N22  (accounting for the forward 

and backward propagation). Assuming that each Bayesian node requires 200 clock cycles 

for message update, and 3 GHz clock speed of the processor, networks consisting of 

about 30,000 nodes could be solved in one second using an off-the-shelf PC. This, 

however, is only an estimation assuming the use of fixed Bayesian nodes communicating 

with only two parents and two children. In general, the number of clock cycles and 

iterations will depend on the size of the nodes and the structure of the network. 

A comparison of the processing speed and the efficiency of the hardware and 

software solutions, considered in this research, are presented in Figures 8.21, 8.22 and 

8.23. Figure 8.21 shows the processing speed of different solutions. It should be noted, 

however, that different realisations exhibit different design approaches and different 

levels of time-multiplexing. Figure 8.22 shows the computational efficiency as a ratio of 

the processing speed and the consumed power, as defined in the equation (8.5). Figure 

8.23 shows the processing efficiency calculated as a ratio of the operation speed and the 



VLSI systems for Bayesian inference 218 

product of power and area occupation. It can be interpreted as a measure of energy and 

silicon utilisation in terms of the performed computation. 

10
6

10
7

10
8

10
9

10
10

Processing speed [OPS]

Intel i7, MATLAB

Intel i7, C++ 

Continuous-time
(scaling-based technique)

Continuous-time
(average-based technique)

Digital, 10 bit

Digital, 9 bit

Digital, 7 bit

Digital, 8 bit

Digital, 6 bit

Digital, 5 bit

Discrete-time
(TC = 2 µs)

 Discrete-time
(TC = 0.2 µs)

 Continuous-time
(no mismatch)

1.44 MOPS

9.77 MOPS

26 MOPS

98 MOPS

655 MOPS

1.06 GOPS

1.22 GOPS

1.55 GOPS

1.58 GOPS

1.91 GOPS

1.95 GOPS

6.4 GOPS

6.4 GOPS

 

Figure 8.21. The comparison of the processing speed of different hardware and software 

solutions (measured as the number of two-argument multiplications per second). 

10
4

10
6

10
8

10
10

10
12

10
14

Computational efficiency [OPS/W]

Intel i7, C++ 

Intel i7, MATLAB

Continuous-time
(scaling-based technique)

Digital, 10 bit

Digital, 9 bit

Digital, 8 bit

Digital, 7 bit

Digital, 6 bit

Discrete-time
(TC = 2 µs)

Digital, 5 bit

Continuous-time
(average-based technique)

 Discrete-time
(TC = 0.2 µs)

 Continuous-time
(no mismatch)

0.04 MOPS/W

20 MOPS/W

81 GOPS/W

82 GOPS/W

94 GOPS/W

106 GOPS/W

126 GOPS/W

136 GOPS/W

157 GOPS/W

199 GOPS/W

206 GOPS/W

1.42 TOPS/W

19.8 TOPS/W

 

Figure 8.22. The comparison of the processing efficiency of different hardware and software 

solutions (measured as the number of two-argument multiplications per second per watt of 

power). 



VLSI systems for Bayesian inference 219 

10
-4

10
0

10
4

10
8

10
12

Computational efficiency [OPS/(Wm
2
)]

Intel i7, MATLAB 6 × 10-4

Intel i7, C++ 0.3

15,932Continuous-time
(scaling-based technique)

124,936Continuous-time
(average-based technique)

354,670Digital, 10 bit

460,813Digital, 9 bit

573,497Digital, 8 bit

Digital, 7 bit

Digital, 6 bit

802,217

1,020,217

Digital, 5 bit 1,742,435

30,190,375Discrete-time
(TC = 2 µs)

 Discrete-time
(TC = 0.2 µs)

272,065,108

1.198 × 109 Continuous-time
(no mismatch)

 

Figure 8.23. The comparison of the processing efficiency of different hardware and software so-

lutions (measured as the number of two-argument multiplications per second per watt of power 

per square micron of the silicon area). 

In the Figures, the continuous-time analogue realisation (not accounting for 

mismatch) exhibits the highest processing speed and power/area efficiency. Such 

solution, however, is only theoretical, since parameter variability cannot be avoided in 

practice. The processing speed of the discrete-time analogue realisation is lower and 

outperforms only the software realisation in Matlab. However, due to its very low power 

consumption and area occupation, the corresponding processing efficiency is over one 

order of magnitude higher than any other practical solution. The processing efficiency of 

the synchronous digital and the continuous-time analogue solutions (with average-based 

mismatch optimisation) remains within the same order of magnitude and varies in range 

from 80 to 200 GOPS/W. These solutions are located along the dashed grey line in 

Figure 8.20. The processing speed of the C++ software realisation is comparable with the 

performance of the synchronous digital solutions, however, the efficiency is over four 

orders of magnitude lower than the least efficient hardware solution. It should be noted 

however, that the software realisations employ double precision floating point operations, 

and are executed on a processor realised in a 45 nm technology. Therefore, a direct 

comparison of these solutions is not straightforward. More reasonable comparison could 



VLSI systems for Bayesian inference 220 

be made using PC with a processor fabricated in a 90 nm technology or implementing the 

proposed hardware solutions in a 45 nm technology. 

The dedicated hardware solutions, considered in this research, exhibit several orders 

of magnitude higher processing efficiency and area utilisation than their functional 

equivalents in software running on a PC. Assuming comparable computational accuracy, 

the continuous-time analogue circuit realisations exhibit the highest processing speed, 

almost 6 times faster than the dedicated fixed point digital, and almost one order of 

magnitude faster than a floating point solution running on a general purpose processor.  

The processing speed of the continuous-time analogue circuit is only limited by the 

currents representing computed quantities and capacitances of the gates of MOS 

transistors and wires. However, a high impact of the fabrication mismatch reduces the 

computational precision of such solutions below a typically acceptable level. The 

average-based and the scaling-based mismatch optimisation methods, proposed in this 

research, improved the computational accuracy but at the expense of the increased power 

consumption or area occupation, which in turn reduced the processing efficiency. Despite 

a very high processing speed, the continuous-time analogue approach requires large area, 

and hence, is probably too expensive for realisations in standard CMOS technologies, 

given the fact that its 8 times slower digital equivalent (for N = 7) occupies 10 times less 

area and consumes about 7 times less power. 

The processing speed of the discrete-time analogue realisations is the lowest among 

the three hardware solutions. However, the low power consumption results in a high 

processing efficiency of about 1.4 TOPS/W. Assuming that the processing accuracy of 

the discrete-time circuits is comparable to a 7 bit fixed point digital realisation, the 

efficiency of the discrete-time solution is almost 30 times higher. Given their very low 

power and potential for time-multiplexing, they provide a good alternative for digital 

computation in applications where power and area is of the main concern. 

8.10 Conclusions 

This chapter presented the comparison of different realisations of analogue and 

digital computing hardware, dedicated for belief propagation algorithm. Based on the 

obtained results, no practical circuit realisation could be favoured in terms of the 

processing speed and efficiency at the same time. 



VLSI systems for Bayesian inference 221 

The discrete-time analogue solutions are the most promising in terms of the 

processing efficiency. Nevertheless, more research is needed to investigate the scalability 

of the computational accuracy, both with the processing speed, and the network size. The 

dedicated synchronous digital solutions provide a good processing speed and efficiency, 

sufficient for many practical applications. However, more research is needed to verify the 

convergence of larger networks, when using fixed point arithmetic with reduced 

computational precision. Also, structures exhibiting different levels of time-multiplexing 

should be considered for more efficient network realisations. 

The software solutions employing the hard coded arithmetic matrix-vector operations 

could be considered in the applications requiring high computational precision. In 

particular, the scalability of such software realisations in terms of the processing speed 

and efficiency, with network complexity and the size of the resulting program, should 

further be investigated. 

 



Conclusions 222 

Chapter 9 

Conclusions 

9.1 Research summary 

The objective of the research presented in this thesis was to investigate the 

alternative ways of information processing employing asynchronous (data driven), and 

analogue computation in massively parallel cellular processor arrays, with applications in 

machine vision and artificial intelligence. The use of cellular processor architectures, 

with only local neighbourhood connectivity, was considered in the VLSI hardware 

realisations of the trigger-wave propagation in binary image processing, and in belief 

propagation in Bayesian inference. Design issues, critical in terms of the computational 

precision and system performance, were extensively analysed, accounting for the non-

ideal operation of MOS devices caused by the second order effects, noise and parameter 

mismatch. In particular, CMOS hardware solutions for two specific tasks: binary image 

skeletonization and sum-product algorithm for belief propagation in factor graphs, were 

considered, targeting efficient design in terms of the processing speed, power, area, and 

computational precision. In the research, various analogue and digital circuit realisations, 

operating in the continuous-time and discrete time domains, were analysed in theory and 

verified using combined Matlab-Hspice simulation environment, providing a versatile 

framework, suitable for arbitrary analyses, verification, optimisation of the designed 

systems. Novel circuit solutions, exhibiting a reduced impact of parameter variability, 

such as discrete-time current-mode Gilbert multiplier and output-split inverter delay gate, 

were used in the designs of the arithmetic circuits for matrix-vector operations, and in the 



Conclusions 223 

data driven asynchronous processing arrays. The most promising circuit ideas were 

implemented on the PPATC test chip, fabricated in a standard 90 nm CMOS process, and 

verified in experiments. 

9.1.1 Binary image processing 

In this thesis, the implementation of the trigger-wave propagation for morphological 

operations on binary images was considered using asynchronous CMOS cellular logic 

arrays. The proposed hardware realisation of the trigger-wave propagation mechanism 

extends its functionality to detect collisions between the wave-fronts, and hence, enables 

the binary image skeletonization and Voronoi diagrams generation. Low power and high 

processing speed requirements were achieved by employing asynchronous dynamic logic 

design. Critical design issues, such as current leakage and parameter variability, affecting 

the correct circuit operation, were resolved by proper MOS transistor scaling, and by 

employing the delay gate design based on the output-split inverter circuit, exhibiting 

reduced impact of fabrication mismatch on the generated time intervals. The quality of 

the obtained skeletons was further improved by a novel biasing scheme of the 

propagation gate, enabling the generation of approximately circular waves. The operation 

of the circuit was verified in simulations and in experiments with the fabricated prototype 

array consisting of 64 × 96 cells. The fabricated prototype logic array is capable of 

processing up to 2.78 × 10
6
 images per second consuming less than 2 mW of power. The 

proposed asynchronous logic array could be of use in the future designs of vision chips 

as a co-processing layer, dedicated for fast and low power morphological operations on 

binary images, extending the application domain of such circuits to skeletonization and 

Voronoi diagram extraction. 

9.1.2 Delay lines 

The operation of the output-split inverter delay gate (OSI), exhibiting less timing 

parameter variability than the commonly used current starved inverter (CSI), was verified 

in simulations, for three different technology nodes (180 nm, 90 nm and 65 nm), and in 

experiments with the prototype delay line arrays, implemented on the PPATC test chip. 

The obtained experimental results showed almost twice better matching properties of the 

proposed structure, achieved solely by modifying the biasing scheme of the current 

starved inverter gate, with no additional cost in terms of the consumed power or circuit 

area. The theoretical analysis of the dynamic operation of the CIS and OSI delay gates, 



Conclusions 224 

presented in this thesis, showed significant differences in their dynamic behaviour, which 

are of a high importance when process parameter variability is concerned. The proposed 

OSI gate structure could be considered in the applications requiring multiple tunable 

delay elements of matched parameters with strict area constraints, for example, in the 

build of readout systems for particle detectors, or in neuromorphic circuits. In this thesis, 

the proposed OSI structure was used in the design of the asynchronous logic array for 

data-driven image processing, improving the precision of the collision detecting layer, 

and hence, improving the quality of the extracted skeletons. 

9.1.3 Probabilistic reasoning 

In this thesis, several approaches to hardware and software realisations of the sum-

product algorithm, dedicated for belief propagation in factor graphs, were considered. In 

particular, hardware implementations of the factor graphs in the dedicated analogue and 

digital cellular processor arrays, operating in the continuous-time and discrete-time 

modes, were further investigated. In general, the continuous-time analogue realisations 

have the potential for processing with a high speed and power-efficiency, easily 

outperforming any other approach, of a comparable precision, considered in this 

research. However, the high susceptibility to parameter mismatch, and no alternative for 

the time multiplexed realisations, are the major factors limiting the use of such circuits in 

many practical applications. Two mismatch optimisation techniques, applicable to the 

continuous-time solution, based on the transistor size scaling and the result averaging, 

were proposed and tested. Both techniques were shown successful in terms of improving 

the computational precision, however, at the cost of processing efficiency and significant 

area increase. 

The most promising solution, in terms of power consumption and area occupation, is 

based on the discrete-time analogue processing. Although the processing speed of these 

solutions is relatively low, it has been shown that it scales up with power much better 

than other solution considered in this work and has potential for time multiplexed 

computation. Therefore, it is a very promising alternative, outperforming other solutions 

in terms of processing efficiency, which could be considered in the applications requiring 

very low power and low area designs. The major issue of such approach is the limited 

computational accuracy, caused mainly by the charge injections and second order effects 

in MOS devices. This could be further reduced employing more robust memory cells and 

using CMOS technologies dedicated for low leakage designs. 



Conclusions 225 

Based on the results presented in this thesis, it can be concluded that the processing 

efficiency of different hardware realisations remains within the same order of magnitude, 

irrespective of the processing method employed, as long as the computational precision 

remains on the same level. Therefore, not only analogue but also dedicated digital 

solution, employing the fixed point arithmetic operations, should definitely be considered 

in the search for faster and more efficient ways of information processing, especially in 

parallel and time multiplexed processor architectures. 

9.1.4 Contributions 

The major contributions of the research presented in this thesis are: 

 Analysis and design of the collision detecting layer for trigger-wave propagation-

based image processing algorithms in dynamic logic CMOS circuit combining logical 

AND function and 1 bit memory latch, using only 8 MOS transistors. 

 Analysis and design of the propagation gate for trigger-wave propagation-based 

image processing algorithms with a novel bias scheme allowing for the generation of 

the circular wave contours, difficult to achieve in software or using generic SIMD 

processor arrays. 

 Analysis and design of a delay gate employing a novel biasing scheme resulting in 

almost twice better matching properties, when compared to the commonly used 

current starved inverter, with no penalty in terms of power or area. 

 Analysis and design of the analogue CMOS discrete-time variant of the Gilbert 

multiplier, operating in current mode with computational accuracy comparable to its 

commonly used continuous-time equivalent. 

 Analysis and design of an optimised digital fixed-point arithmetic circuits for matrix-

vector operations with applications in probabilistic calculus and other areas requiring 

computation with normalised data. 

 Analysis of the power, area and complexity scaling of the hardware realisations of the 

factor graphs for belief propagation in analogue circuits. 

 Development and verification of the mismatch optimisation techniques based on the 

novel biasing scheme (OSI delay gats), results averaging (Bayesian networks in 

analogue continuous-time circuits) and switched-current technique (discrete-time 

current-mode multipliers). 



Conclusions 226 

9.2 Future work 

9.2.1 Image processing 

The proposed prototype array for binary image skeletonization could easily be 

adopted to the design of a generic asynchronous co-processing unit, applicable to a 

variety of morphological operations, aiding fast and low power processing on SIMD 

arrays in vision chips. In particular, design improvements discussed in Chapter 5, 

addressing boundary effects, power rail oscillations and modified initialisation scheme, 

should be considered in the future designs. Special attention should also be paid to the 

leakage currents in larger arrays, occasionally triggering spurious propagations. This 

could be addressed by the use of low leakage and/or high threshold voltage devices, and 

power supply reduction. It should be noted, however, that the use of transistors other than 

regular, may result in increased parameter mismatch. It is also important to verify the 

scalability of such solution in terms of the uniformity of the propagation speed, impact of 

the systematic errors on the quality of the extracted collision lines, and the circular shape 

of the propagation wave contours, for larger array sizes, realised in a particular CMOS 

technology node. 

9.2.2 Bayesian inference 

The scope of the research concerning the probabilistic reasoning in analogue VLSI, 

presented in this thesis, was limited to the analysis of networks represented by factor 

graphs, operating on two-state variables and consisting of only three-way nodes. It 

provided a valuable contribution to the current state-of-the-art literature, extending the 

application domain of the hardware realisations of factor graphs to account for belief 

propagation in Bayesian inference. Although the main objective of this research was to 

provide a baseline comparison of the performance and computational accuracy of 

different analogue and digital realisations, several issues could be seen as a direct 

continuation, building upon the presented results. 

In this research, the scalability of factor graph realisations in analogue continuous-

time CMOS circuits was investigated in detail in terms of power, size and computational 

complexity and processing accuracy. Since the discrete-time analogue and the dedicated 

digital solutions (employing the fixed point arithmetic) were found promising in terms of 

the processing efficiency, the scalability of the processing speed, accuracy and 

convergence time with the network size and complexity, should be verified. 



Conclusions 227 

The average-based mismatch optimisation technique, applied to the continuous-time 

analogue circuits, improved the computational accuracy while preserving the processing 

speed but at the cost of increased power consumption and silicon area occupation. 

Despite its practical disadvantages, it should further be investigated, especially in terms 

of the convergence and scalability. It is important to check if averaging will still work for 

larger networks, and, if the number of network copies required to achieve a particular 

level of precision will depend on the network size. Since the idea of result averaging is 

not related to a particular implementation or technology, the obtained results may 

become beneficial for future designs in technologies other than CMOS, possibly offering 

lower fabrication cost and higher integration level, where design redundancy may 

become feasible. 

The use of cellular architectures for factor graph representations, where nodes 

maintain data traffic independently and perform operations in parallel, is a very efficient 

solution. Nevertheless, the possibilities for fast and more area efficient computation, 

should also be verified in terms of the time-multiplexed processing, applicable to the 

discrete-time analogue and digital realisations. In such approach, rather than using area 

expensive parallelisation, a generic reconfigurable state machines for factor and variable 

nodes could be used as an accelerator, aiding inference in a generic digital or analogue 

computer. 

In general, the software or hardware solutions for Bayesian inference should be 

devised individually, depending on the application. In robotics, most probably power 

efficient analogue solutions, providing moderate accuracy, will be of main interest. 

However, in forecasting or bioinformatics, very large networks and precise computation 

may be needed. In such cases, the use of the optimised software realisations and 

dedicated digital hardware realisations of Bayesian inference, employing HPC clusters, 

FPGA or ASIC chips may be necessary. 

Apart from the research presented in this thesis, some exploratory work has been 

undertaken in the areas of approximate inference in networks using stochastic signals and 

in hardware-accelerated structure learning from statistical data. 

9.2.3 Noise based information processing  

Inference in networks with continuous variables is usually done in two ways. The 

first method assumes discretization of the probability density functions and the use of 

methods typical for discrete variables. Such approach is very efficient and frequently 



Conclusions 228 

used in software applications. The second approach is based on processing probability 

distributions in their analytical forms, which usually requires lengthy calculations of 

multiple integrals. In the approach proposed for future consideration, rather than 

processing probability distributions, it is suggested to process directly random noise 

signals representing these distributions. Noise processing techniques can be adapted from 

the algebra of random variables, where it is known that addition of two or more 

uncorrelated random variables is equivalent to the convolution of their probability 

density functions. Products of the probability density functions can be calculated using 

coincidence detectors, used in spiking neural networks. Based on these two mechanisms, 

the inference in Gaussian Bayesian network could be implemented. Aspects such as 

signal generation, randomisation, convergence and scalability of such networks, and 

analogies to spiking neural networks should further be investigated. 

9.2.4 Hardware-accelerated network learning 

There are a number of different algorithms for learning Bayesian networks, which 

have been developed and refined to provide efficient and robust tools for networks 

discovery. Irrespective of the learning approach, it has been observed that the majority of 

the algorithm's runtime is largely dominated by statistical tests on the data bases. Such 

operations requite counting the number of records in the data base which fit to a 

particular pattern. Such operations could be solved by employing associative processing 

and by using content addressable memory (CAM), with additional hardware counting the 

number of matched cases. Distributed data processing, performed directly on memory 

arrays, significantly reduces the data traffic in database operations, and hence, reduces 

power and increases the processing speed of the implemented system. In particular, 

counting methods and realisations of fast CAM circuits in CMOS technologies, dedicated 

for Bayesian network learning, is an important and promising subject of future research. 

 



References 229 

 

References 

 

[Abel 93] C. J. Abel, C. Michael, M. Ismail, C. S. Teng, R. Lahri, "Characterisation of 

Transistor Mismatch for Statistical CAD of Submicron CMOS Analog Circuits", IEEE 

International Symposium on Circuits and Systems (ISCAS) Vol. 2, pp. 1401 - 1404, May 

1993. 

[Acid 2004] S. Acid, L. M. de Campos, J. M. Fernandez-Luna, S. Rodriguez, J. M. 

Rodriguez, J. L. Salcedo, "A comparison of learning algorithms for Bayesian networks: a 

case study based on data from emergency medical service", Artificial Intelligence in 

Medicine, Vol. 30, No. 3, pp. 215-232, Mar. 2004. 

[Allen 2002] P. E. Allen, D. R. Holberg, "CMOS Analogue Circuit Design Second 

Edition", Oxford University Press, 2002. 

[Andreou 96] A. G. Andreou, K. A. Boahen, "Translinear Circuits in Subthreshold 

MOS", Analog Integrated Circuits and Signal Processing, Vol. 9, No. 2, pp. 141 - 166, 

Mar. 1996. 

[Arbel 1964] A. F. Arbel, "Current operated nucleonic modules", Nuclear Instruments 

and Methods, vol. 32, pp. 341-346, Sep. 1964. 

[Arora 2010] S. Arora, L. Malik, D. Bhattacharjee, M. Nasipuri, "A novel approach to 

handwritten Devnagari character recognition", Computer Vision and Pattern Recognition, 

arXiv:1006.5924, Jun. 2010. 

[Astrom 93] A. Astrom, R. Forchheimer, P. Ingelhag, "An Integrated Sensor/Processor 

Architectures Based on Near-Sensor Image Processing" Proceedings of Computer 

Architectures for Machine Perception, pp. 147-154, Dec. 1993. 



References 230 

[Astrom 96] A. Astrom, R. Forchheimer, J. E. Eklund, "Global Feature Extraction 

Operations for Near-Sensor Image Processing" IEEE Transactions on Image Processing, 

Vol. 5, No. 1, pp.102 - 110, Jan. 1996. 

[Backus 78] J. Backus, " Can programming be liberated from the von Neumann style?: a 

functional style and its algebra of programs", Communications of the ACM, Vol. 21, No. 

8, pp. 613 - 641, 1978. 

[Bastos 95] J. Bastos, M. Steyaert, R. Roovers, P. Kinget, W. Sansen, B. Graindourze, A. 

Pergoot, Er. Janssens, "Mismatch characterisation of small size MOS transistors", 

Proceeding of the International Conference on Microelectronic Test Structures (ICMTS), 

pp. 271 - 276, Mar. 1995. 

[Bastos 96] J. Bastos, M. Steyaert, B. Graindourze, W. Sansen, "Matching of MOS 

Transistors with Different Layout Styles", Proceedings of the IEEE International 

Conference on Microelectronic Test Structures (ICMTS 1996), pp. 17 - 18, Mar. 1996. 

[Bastos 97a] J. Bastos, M. S. J. Steyaert, A. Pergoot, W. M. Sansen, "Mismatch 

Characterization of Submicron MOS Transistors", Journal of Analog Integrated Circuits 

and Signal Processing, Vol. 12, pp. 95 - 106, 1997. 

[Bastos 97b] J. Bastos, M. S. J. Steyaert, A. Pergoot, W. M. Sansen, "Influence of Die 

Attachment on MOS Transistor Matching", IEEE Transactions on Semiconductor 

Manufacturing, Vol. 10, No. 2, pp. 209 - 218, May 1997. 

[Beinlich 89] I. A. Beinlich, H. J. Suermondt, R. Martin Chavez, G. F. Cooper, "The 

ALARM Monitoring System: A Case Study with two Probabilistic Inference Techniques 

for Belief Networks", Lecture Notes in Medical Informatics, Vol. 38, pp. 247 - 256, 

1989. 

[Belbachir 2010] A. N. Belbachir, "Smart Cameras", Springer, 2010. 

[Bergman 1999] N. Bergman, "Recursive Bayesian Estimation Navigation and Tracking 

Applications", Department of Electrical Engineering, Linkoping University, Dissertation 

No. 579, 1999. 

[Bernard 93] T. M. Bernard, B. Y. Zavidovique, F. J. Devos, "A Programmable Artificial 

Retina", IEEE Journal of Solid-State Circuits, Vol. 28, No. 7, pp. 789 - 798, Jul. 1993. 

[Bhattacharyya 2009] A. B. Bhattacharyya, "Compact MOSFET Models for VLSI 

Design", John Wiley & Sons, 2009. 

[Bissell 2004]C. C. Bissell, "A great disappearing act: the electronic analogue computer", 

IEEE Conference on the History of Electronics, Bletchley, UK, Jun. 2004. 

[Blum 67] H. Blum, "A transformation for extracting new descriptors of shape", 

Symposium on Models for Perception of Speech and Visual Form (W. Wathen-Dunn, 

Ed.), pp. 362-380, MIT Press, Cambridge, Massachusetts, 1967. 

[Bolt 96] E. Bolt, E. Cantatore, M. Socha, C. Aussems, J. Solo, "Matching Properties of 

MOS Transistors and Delay Line Chains with Self-Aligned Source/Drain Contacts", 



References 231 

IEEE International Conference on Microelectronic Test Structures (ICMTS), pp. 21 - 25, 

Mar. 1996. 

[Borgefors 86] G. Borgefors, "Distance Transformations in Digital Images", Computer 

Vision, Graphics and Image Processing 34, pp. 344 - 371, Feb. 1986. 

[Bowden 53] B. V. Bowden, "Faster than thought", A Symposium on Digital Computing 

Machines, London, 1953. 

[Brodarc 82] D. Brodarc, D. Herbst, B. J. Hosticka, B. Hoefflinger, "Novel Sampled-data 

MOS multiplier", Electronics Letters, Vol. 18, No. 5, pp. 229 - 230, Mar. 1982. 

[Bult 86] K. Bult, H. Wallinga, "A CMOS Four-Quadrant Analog Multiplier", IEEE 

Journal of Solid-State Circuits, Vol. SC-21, No. 3, Jun. 1986. 

[Bult 87] K. Bult, H. Wallinga, "A Class of Analog CMOS Circuits Based on the Square-

Law Characteristics of MOS Transitor in Saturation", IEEE Journal of Solid-State 

Circuits, Vol. SC-22, No. 3, Jun. 1987. 

[Cantatore 97] E. Cantatore, et al., "Statistical analysis and optimisation of delay line 

chains for pixel readout electronics", Nuclear Instruments and Methods in Physics 

Research A 395, pp. 318 - 323, 1997. 

[Carey 2013] S. J. Carey, D. R. W. Barr, A. Lopich and P. Dudek, "A 100,000 fps Vision 

Sensor with Embedded 535 GOPS/W 256x256 SIMD Processor Array", VLSI Circuits 

Symposium 2013, Kyoto, June 2013. 

[Carmona-Galan 2003] R. Carmona-Galan, F. Jimenez-Garrido, R. Dominguez-Castro, 

S. Espejo, T. Roska, C. Rekeczky, I. Petras, A. Rodriguez-Vazquez, "A Bio-Inspired 

Two-Layer Mixed-Signal Flexible Programmable Chip for Early Vision", IEEE 

Transactions on Neural Networks, Vol. 14, No. 5, pp. 1313 - 1336, Sep. 2003. 

[Chang 96a] R. C. Chang, B. J. Sheu, J. Choi, D. C. H. Chen, "Programmable-Weight 

Building Blocks for Analog VLSI Neural Network Processors", Analog Integrated 

Circuits and Signal Processing, vol. 9, pp. 215 - 230, Kulwer Academic Publishers, 1996. 

[Chang 96b] S. T. Chang, B. R. Hayes-Gill, C. J. Paull, "Multi-Function Block for 

Switched Current Field Programmable Analogue Array", IEEE 39th Midwest 

Symposium on Circuits and Systems, Vol. 1, pp. 158 - 161, Aug. 1996. 

[Chen 2006] H. S. Chen, H. T. Chen, Y. W. Chen, S. Y. Lee, "Human action recognition 

using star skeleton", Proceedings of the 4th ACM international workshop on Video 

surveillance and sensor networks, pp. 171 - 178, 2006. 

[Chow 68] C. K. Chow, C. N. Liu, "Approximating Discrete Probability Distributions 

with Dependence Trees", IEEE Transactions on Information Theory, vol. 14, no. 3, pp. 

462-467, May 1968. 

[Christiansen 95] J. Christiansen, "An Integrated CMOS 0.15 ns Digital Timing 

Generator for TDC's and Clock Distribution Systems", IEEE Transactions on Nuclear 

Science, Vol. 42, No. 4, pp. 753 - 757, Aug. 1995. 



References 232 

[Chua 88a] Chua. L., Yang L., "Cellular Neural Networks: Applications", IEEE 

Transactions on Circuits and Systems, vol. 35, no. 10, Oct. 1988. 

[Chua 88b] L. Chua, L. Yang, "Cellular Neural Networks: Theory", IEEE Transactions 

on Circuits and Systems, vol. 35, no. 10, Oct. 1988. 

[Coban 95] A. L. Coban, P. E. Allen, X. Shi, "Low-Voltage, Analog IC Design in CMOS 

Technology", IEEE Transactions on Circuits and Systems I, Vol. 42, No. 11, pp. 955 - 

958, Nov. 1995. 

[Cooper 90] G. F. Cooper, "The Computational Complexity of Probabilistic Inference 

Using Bayesian Belief Networks", Artificial Intelligence, No. 42, pp. 393 - 405, 1990. 

[Corneil 2012] D. Corneil, D. Sonnleithner, E. Neftci, E. Chicca, M. Cook, G. Indiveri, 

R. Douglas, "Real-time inference in a VLSI spiking neural network", IEEE International 

Symposium on Circuits and Systems (ISCAS) pp. 2425 - 2428, May 2012. 

[Cox 85] P. Cox, P. Yang, S. S. Mahant-Shetti, P. Chatterjee, "Statistical Modeling for 

Efficient Parametric Yield Estimation of MOS VLSI Circuits", IEEE Journal of Solid-

State Circuits, Vol. SC-20, No. 1, pp. 391 - 398, Feb. 1985. 

[Danielsson 80] P. E. Danielsson, "Euclidean Distance Mapping", Computer Graphics 

and Image Processing 14, pp. 227 - 248, Feb. 1980. 

[Darwiche 2009] A. Darwiche, "Modeling and reasoning with Bayesian networks", 

Cambridge University Press, 2009. 

[Daubert 88] S. J. Daubert, D. Vallancourt, Y. P. Tsividis, "Current copier cells", 

Electronics Letters, Vol. 24, No. 25, Dec. 1988. 

[Davies 90] E. R. Davies, "Machine Vision: Theory , Algorithms, Practicalities", 

Cambridge University Press, 1990. 

[Dominguez-Castro 98] R. Dominguez-Castro, A. Rodriguez-Vazquez, S. Espejo, R. 

Carmona, "Four-Quadrant One-Transistor-Synapse for High-Density CNN 

Implementations", IEEE Proceedings of Fifth International Workshop on Cellular Neural 

Networks and Their Applications, pp. 243 - 248, Apr. 1998. 

[Drennan 2003] P. G. Drennan, C. C. McAndrew, "Understanding MOSFET Mismatch 

for Analog Design", IEEE Journal of Solid-State Circuits, Vol. 38, No. 3, pp. 450 - 456, 

Mar. 2003. 

[Dudek 2000a] P. Dudek, P. J. Hicks, "A CMOS General-Purpose Sampled-Data Analog 

Processing Element", IEEE Transactions on Circuits and Systems II, Vol. 47, No. 5, pp. 

467 - 472, May 2000. 

[Dudek 2000b] P. Dudek, S. Szczepanski, J. V. Hatfield, "A High-Resolution CMOS 

Time-to-Digital Converter Utilizing a Vernier Delay Line", IEEE J. Solid-State Circuits, 

Vol. 35, No. 2, pp. 240-247, Feb. 2000. 

[Dudek 2003] P. Dudek and V. D. Juncu,  "Compact Discrete-Time Chaos Generator 

Circuit", Electronics Letters, Vol.39, No. 20, pp. 1431-1432, Oct. 2003. 



References 233 

[Dudek 2005] P. Dudek, "A General-Purpose Processor-per-Pixel Analog SIMD Vision 

Chip", IEEE Transactions on Circuits and Systems I, Vol. 52, No. 1, pp. 13 - 20, Jan. 

2005. 

[Dudek 2006] P. Dudek, "An Asynchronous Cellular Logic Network for Trigger-Wave 

Image Processing on Fine-Grain Massively Parallel Arrays", IEEE Transactions on 

Circuits and Systems II, vol. 53, no.5, pp. 354-358, May 2006. 

[Eklund 96] J. E. Eklund, C. Svensson, A. Astrom, "VLSI Implementation of a Focal 

Plane Image Processor-A Realization of the Near-Sensor Image Processing Concept", 

IEEE Transactions on Very Large Scale Integration (VLSI) Systems, Vol. 4, No. 3, pp. 

322 - 335, Sep. 1996. 

[Enomoto 85] T. Enomoto, M. Yasumoto, "Integrated MOS Four-Quadrant Analog 

Multiplier Using Switched Capacitor Technology for Analog Signal Processor IC's", 

IEEE Journal of Solid-State Circuits, Vol. SC-20, No. 4, pp. 852 - 859. Aug. 1985. 

[FDK 2009] Foundry Design Kit, NDA confidential. 

[Felzenszwalb 2004] P. F. Felzenszwalb, D. P. Huttenlocher, "Efficient Belief 

Propagation for Early Vision", IEEE Computer Society Conference of Computer Vision 

and Pattern Recognition (CVPR), Vol. 1, pp. 261 - 268, Jul. 2004. 

[Fernandez-Berni 2011] J. Fernandez-Berni, R. Carmona-Galan, L. Carranza-Gonzalez, 

"FLIP-Q: A QCIF Resolution Focal-Plane Array for Low-Power Image Processing", 

IEEE Journal of Solid State-Circuits, Vol. 46, No. 3, pp. 669 - 680, Mar. 2011. 

[Fiez 91] T. S. Fiez, G. Liang, D. J. Allstot, "Switched-Current Circuit Design", IEEE 

Journal of Solid-State Circuits, Vol. 26, No. 3, Mar. 1991. 

[Friedman 2004] N. Friedman, M. Linial, I. Nachman, D. Pe'er, "Using Bayesian 

Networks to Analyze Expression Data", Journal of Computational Biology, Vol. 7, No. 

3-4, pp. 601 - 620, Jul. 2004. 

[Frost 96] J. R. Frost, "The Theory of Search", Soza & Company, Ltd., of Airfax 

Virginia, U.S.A, in cooperation with the U.S. Coast Guard, Oct. 1996. 

[Gaines 67] B. R. Gaines, "Stochastic computing", Proceedings of the Spring Joint 

Computer Conference, pp. 149 - 156, Apr. 1967. 

[Gea-Banacloche 2005] J. Gea-Banacloche, L. B. Kish, " Future Directions in Electronic 

Computing and Information Processing", Proceedings of IEEE, Vol. 93, No. 10, pp. 

1858-1863, Oct. 2005. 

[Geman 85] S. Geman, D. E. McClure, "Bayesian Image Analysis: An Application to 

Single Photon Emission Tomography", Proceedings of the Statistical Computing Section, 

pp. 12 - 18, 1985. 

[Gilbert 68] B. Gilbert, "A Precise Four-Quadrant Multiplier with Subnanosecond 

Response", IEEE Journal of Solid-State Circuits, Vol. SC-3, No. 4, pp. 365 - 373, Dec. 

1968. 



References 234 

[Gilbert 75] B. Gilbert, "Translinear circuits: a proposed classification", Electronics 

Letters, Vol. 11, No. 1, pp. 14 - 16, Jan. 1975. 

[Gilbert 84] B. Gilbert, "A Monolithic 16-Channel Analog Array Normalizer", IEEE 

Journal of Solid-State Circuits, Vol. SC-19, No. 6, Dec. 1984. 

[Gravati 2005a] M. Gravati, M. Valle, "Modeling mismatch effects in CMOS translineat 

loops and current mode multipliers", Proceedings of the European Conference on Circuit 

Theory and Design (ECCTD), Vol. 3, pp. 373 - 376, Sep. 2005. 

[Gravati 2005b] M. Gravati, M. Valle, G. Ferri, N. Guerrini, L. Reyes, "A Novel Current-

Mode Very Low Power Analog CMOS Four Quadrant Multiplier", Proceedings of the 

31st European Solid-State Circuits Conference (ESSCIRC), pp. 495 - 498, Sep. 2005. 

[Grundy 94] D. L. Grundy, "A Computational Approach to VLSI Analog Design", 

Journal of VLSI Signal Processing, Vol. 8, No. 1, pp. 53 - 60, 1994. 

[Guggenbuhl 94] W. Guggenbuhl, J. Di, J. Goette, "Switched-Current Memory Circuits 

for High-Precision Applications", IEEE Journal of Solid-State Circuits, Vol. 29, No. 9, 

pp. 1108-1116, Sep. 1994. 

[Hagenauer 98] J. Hagenauer, "Decoding of binary codes with analogue networks", 

Proceeding of Information Theory Workshop, pp. 13 - 14, Feb. 1998. 

[Hagenauer 2002] J. Hagenauer, M. Moerz, A. Schaefer, "Analog Decoders and 

Receivers for High Speed Applications", Proceedings of International Zurich Seminar on 

Broadband Communication, 2002. 

[Halonen 90] K. Halonen, V. Porra, T. Roska, L. Chua, "VLSI Implementation of a 

Reconfigurable Cellular Neural Network Containing Local Logic (CNNL)", IEEE 

International Workshop on Cellular Neural Networks and their Applications, CNNA-90, 

pp. 206 - 215, Dec. 1990. 

[Han 98] G. Han, E. Sanchez-Sinencio, "CMOS Transcondunctance Multipliers: A 

Tutorial", IEEE Transactions on Circuits and Systems II, Vol. 45, No. 12, pp. 1550 - 

1563, Dec. 1998. 

[Haralick 92] R. M. Haralick, L. G. Shapiro, "Computer and Robot Vision", Vol. 1, 

Addison-Wesley, 1992. 

[Harrer 92] H. Harrer, J. A. Nossek, R. Stelzl, "An Analog Implementation of Discrete-

Time Cellular Neural Networks", IEEE Transactions on Neural Networks, Vol. 3, No. 3, 

pp. 466 - 476, May 1992. 

[Hsiao 2012] W. H. Hsiao, Y. T. He, M P. H. Lin, R. G. Chang, S. Y. Lee, "Automatic 

Common-Centroid Layout Generation for Binary-Weighted Capacitors in Charge-

Scaling DAC". International Conference on Synthesis, Modeling, Analysis and 

Simulation Methods and Applications to Circuit Design (SMACD), pp. 173 - 176, Sep. 

2012. 



References 235 

[He 2007] J. He, X. Xi, H. Wan, M. Dunga, M. Chan, A. M. Niknejad, "BSIM5: An 

advanced charge-based MOSFET model for nanoscale VLSI circuit simulation", Journal 

of Solid-State Electronics, Vol. 51, pp. 433 - 444, 2007. 

[Hecht 90] R. Hecht-Nielsen, "Neurocomputing", Addison Wesley, 1990. 

[Heijne 96] E. H. M. Heijne, et al., "LHC1: A semiconductor pixel detector readout chip 

with internal, tunable delay providing a binary pattern of selected events", Nuclear 

Instruments and Methods in Physics Research A 383, pp. 55 - 63, 1996. 

[Hopfield 84] J. J. Hopfield, "Neurons with graded response have collective 

computational properties like those of two-state neurons",  Proceedings of the National 

Academy of Sciences of the United States of America, Vol. 81, pp. 3088 - 3092, May 

1984. 

[Huang 2010] Z. Huang, A. Kurokawa, M. Hashimoto, T. Sato, M. Jiang, Y. Inoue, 

"Modeling the Overshooting Effect for CMOS Inverter Delay Analysis in Nanometer 

Technologies", IEEE Transactions on Computer-Aided Design of Integrated Circuits and 

Systems. Vol. 29, No. 2, pp. 250 - 260, Feb. 2010. 

[Hughes 93] J. B. Hughes, K.W. Moulding, "S
2
I: A switched-current technique for high 

performance", Electronics Letters, Vol. 29, No. 16, Aug. 1993. 

[Hung 2002] Y. C. Hung, B. D. Liu, "An analog CMOS rank-order extractor with O(N) 

complexity using maximum/winner-take-all circuit", Asian-Pacific Conference on Circuit 

and Systems (APCCAS), Vol. 2, pp. 389 - 394, 2002. 

[Indiveri 2006] G. Indiveri, E. Chicca, R. Douglas, "A VLSI Array of Low-Power 

Spiking Neurons and Bistable Synapses With Spike-Timing Dependent Plasticity", IEEE 

Transactions on Neural Networks, Vol. 17, No. 1, pp. 211-221, Jan. 2006. 

[Intel 86] "4004 Single Chip 4-Bit P-Channel Microprocessor", Intel Corporation, Mar. 

1987. 

[Intel 2014] http://ark.intel.com/products/37150/Intel-Core-i7-950-Processor-8M-Cache-

3_06-GHz-4_80-GTs-Intel-QPI 

[Ishikawa 99] M. Ishikawa, K Ogawa, T. Komuro, I. Ishii, "A CMOS Vision Chip with 

SIMD Processing Element Array for 1ms Image Processing", IEEE International Solid-

State Circuits Conference (ISSCC), pp. 206 - 207, Feb. 1999. 

[Jensen 2007] F. V. Jensen, T. D. Nielsen, “Bayesian Networks and Decision Graphs 

Second Edition”, Information Science & Statistics, Springer, 2007. 

[Joetten 85] R. Joetten, T. Weiss, J. Wolters, H. Ring, B. Bjoernsson, "A New Real-Time 

Simulator for Power System Studies", IEEE Power Engineering Review, vol PER-5, no. 

9, pp. 58 - 59, Sep. 1985. 

[Jovanovic 2006] G. S. Jovanovic, M. K. Stojcev, "Current Starved Delay Element with 

Symmetric Load", International Journal of Electronics, Vol. 93, No. 3, pp. 167-175, Mar. 

2006. 



References 236 

[Khachab 89] N. I. Khachab, M. Ismail, "MOS multiplier/divider cell for analogue 

VLSI", Electronics Letters, Vol. 25, No. 23, pp. 1550 -1552, Nov. 1989. 

[Kinget 96] P. Kinget, M. Steyaert, "Impact of transistor mismatch on the speed-

accuracy-power trade-off of analog CMOS circuits", Proceedings of the IEEE Custom 

Integrated Circuits Conference, pp. 333 - 336, May 1996. 

[Kinget 97] P. Kinget, M. Steyaert, "Analog VLSI Integration of massive parallel 

processing systems", Kluwer Academic Publishers, 1997. 

[Kinget 2005] P. Kinget, "Device Mismatch and Tradeoffs in the Design of Analog 

Circuits", IEEE Journal of Solid-State Circuits, Vol. 40, No. 6, pp. 1212 - 1224, Jun. 

2005. 

[Kim 87] J. H. Kim, J. Pearl, "CONVINCE: A Conversational Inference Consolidation 

Engine", IEEE Transactions on Systems, Man, and Cybernetics, Vol. SMC-17, No. 2, pp. 

120 - 132, Apr. 1987. 

[Kish 2002] L. B. Kish, "End of Moore's law: thermal (noise) death of integration in 

micro and nano electronics", Physics Letters A, 305, pp. 144-149, 2002. 

[Kish 2011] L. B. Kish, "Noise-based Information Processing", 21st International 

Conference on Noise and Fluctuations (ICNF), pp. 28-33, Jun. 2011. 

[Koeser 2004] K. Koeser, C. Perwass, G Sommer, "Dense Optic Flow with a Bayesian 

Occlusion Model", SCVMA, Lecture Notes in Computer Science, Vol. 3667, pp. 127 - 

139, 2004. 

[Komuro 2003] T. Komuro, I. Ishii, M. Ishikawa, A. Yoshida, "A Digital Vision Chip 

Specialised for High-Speed Target Tracking", IEEE Transactions on Electron Devices, 

Vol. 50, No. 1, pp. 191 - 199, Jan. 2003. 

[Komuro 2009] T. Komuro, A. Iwashita, M. Isikawa, "A QVGA-Size Pixel-Parallel 

Image Processor for 1,000-FPS Vision", IEEE Computer Society, pp. 58 - 67, Dec. 2009. 

[Korkmaz 2008] P. Korkmaz, B. E. S. Akgul, K. V. Palem, "Energy, Performance, and 

Probability Tradeoffs for Energy-Efficient Probabilistic CMOS Circuits", IEEE 

Transactions on Circuits and Systems I, Vol. 55, No. 8, pp. 2249-2262, Sep. 2008. 

[Krinsky 91] V. I. Krinsky, V. N. Biktashev, I. R. Efimov, "Autowaves Principles for 

Parallel Image Processing", Physica D, vol. 49, pp. 247-253, 1991. 

[Kschischang 2001] F. R. Kschischang, B. J. Frey, H. A. Loeliger, "Factor Graphs and 

the Sum-Product Algorithm", IEEE Transactions on Information Theory, Vol. 47, No. 2, 

pp. 498 - 519, Feb. 2001. 

[Kub 90] F. J. Kub, K. K. Moon, I. A. Mack, F. M. Long, "Programmable Analog 

Vector-Matrix Multipliers", IEEE Journal of Solid-State Circuits, Vol. 25, No. 1, pp. 207 

- 214, Feb. 1990. 

[Kuhnert 89] L. Kuhnert, K. I. Agladze, V. I. Krinsky, "Image processing using light-

sensitive chemical waves", Letters to Nature, Nature vol. 337, pp. 244-247, 1989. 



References 237 

[Kulesza 2006] Z. Kulesza, W. Tylman, "Implementation of Bayesian Network in FPGA 

Circuit", Proceedings of the International Mixed Design of Integrated Circuits and 

Systems (MIXDES), pp. 711 - 715, Jun. 2006. 

 

[Lakshmikumar 86] K. R. Lakshmikumar, R. A. Hadaway, M. A. Copeland, 

"Characterisation and Modeling of Mismatch in MOS Transistors for Precision Analog 

Design", IEEE Journal of Solid-State Circuits, Vol. SC-21, no. 6, pp. 1057 - 1066, Dec. 

1986. 

[Lam 92] L. Lam, S. W. Lee, C. Y. Suen, "Thinning Methodologies - A Comprehensive 

Survey", IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 14, No. 

9, pp. 869 - 885, Sep. 1992. 

[Lazkano 2006] E. Lazkano, B. Sierra, A. Astigarraga, J. M. Martinez-Otzeta, " On the 

use of Bayesian Networks to develop behaviours for mobile robots", Robotics and 

Autonomous Systems, Vol. 55, pp. 253 - 265, 2007. 

[Lebeltel 2004] O. Lebeltel, P. Bessiere, J. Diard, E. Mazer, "Bayesian Robot 

Programming", Autonomous Robots, Vol. 16, No. 1, pp. 49 - 79, Kluwer Academics 

Publisher, Jan. 2004. 

[Lee 95] S. T. Lee, K. T. Lau, L. Siek, "Four-quadrant CMOS analogue multiplier for 

artificial neural network", Electronics Letters, Vol. 31, No. 1, pp. 48 - 49, Jan. 1995. 

[Lee 2009] S. H. Lee, I. H. Suh, "Bayesian Network-based Behavior Control for 

Skilligent Robots", IEEE International Conference on Robotics and Automation, pp. 

2910 - 2916, May 2009. 

[Leenaerts 94] D. M. W. Leenaerts, A. J. Leeuwenburgh, G. G. Cell, "A High-

Performance SI Memory Cell", IEEE Journal of Solid-State Circuits, Vol. 29, No. 11, 

Nov. 1994. 

[Leenaerts 96] D. M. W. Leenaerts, G. H. M. Joordens, J. A. Hegt, "A 3.3 V 625 kHz 

Switched-Current Multiplier", IEEE Journal of Solid-State Circuits, Vol. 31, No. 9, Sep. 

1996. 

[Liang 2011] K. Liang, C. C. Cheng, Y. C. Lai, L. G. Chen, "Hardware-Efficient Belief 

Propagation", IEEE Transactions on Circuits and Systems, Vol. 21, No. 5, pp. 525 - 537, 

2011. 

[Lin 2010] M. Lin, I. Lebedev, J. Wawrzynek, "High-throughput bayesian computing 

machine with reconfigurable hardware", Proceedings of the 18th annual ACM/SIGDA 

international symposium on Field programmable gate arrays (FPGA), pp. 73 - 82, 2010. 

[Linares-Barranco 2007] B. Linares-Barranco, T. Serrano-Gotarredona, "A Physical 

Interpretation of the Distance Term in Pelgrom’s Mismatch Model results in very 

Efficient CAD", IEEE International Symposium on Circuits and Systems (ISCAS), pp. 

1561 - 1564, May 2007. 



References 238 

[Liu 95] S. I. Liu, C. C. Chang, "CMOS subthreshold four-quadrant multiplier based on 

unbalanced source-coupled pairs", International Journal of Electronics, Vol. 78, No. 2, 

pp. 327 - 332, Feb. 1995. 

[Loeliger 99] H. A. Loeliger, F. Tarkoy, F. Lustenberger, M. Helfenstein, "Decoding in 

Analog VLSI", IEEE Communication Magazine, Vol. 37, No. 4, pp. 99 - 101, Apr. 1999. 

[Loeliger 2001] H. A. Loeliger, F. Lustenberger, M. Helfenstein, F. Tarkoy, "Probability 

Propagation and Decoding in Analog VLSI", IEEE Transactions on Information Theory, 

Vol. 47, No. 2, pp. 837 - 843, Feb. 2001. 

[Loeliger 2004] H. A. Loeliger, "An Introduction to Factor Graphs", IEEE Signal 

Processing Magazine, Vol. 21, No. 1, pp. 28 - 41, Jan. 2004. 

[Lopich 2009] A. Lopich, P. Dudek, "Hardware Implementation of Skeletonization 

Algorithm for Parallel Asynchronous Image Processing", Journal of Signal Processing 

Systems, Vol. 56, No. 1, pp. 91-103, Jul. 2009. 

[Lopich 2010a] A. Lopich, P. Dudek, "An 80×80 general-purpose digital vision chip in 

0.18 μm CMOS technology", IEEE International Symposium on Circuits and Systems 

(ISCAS), pp 4257-4260, May 2010. 

[Lopich 2010b] A. Lopich, P. Dudek, “Asynchronous Cellular Logic Network as a Co-

Processor for a General-Purpose Massively Parallel Array", International Journal of 

Circuit Theory and Applications, DOI: 10.1002/cta.679, Apr. 2010. 

[Lopich 2011] A. Lopich and P. Dudek, "A SIMD Cellular Processor Array Vision Chip 

With Asynchronous Processing Capabilities", IEEE Transactions on Circuits and 

Systems - I, vol 58, issue 10, pp. 2420-2431, October 2011. 

[Lovett 98] S. J. Lovett, M. Welten, A. Mathewson, B. Mason, "Optimizing MOS 

Transistor Mismatch", IEEE Journal of Solid-State Circuits, Vol. 33, No. 1, pp. 147 - 

150, Jan. 1998. 

[Lovett 2000] S. J. Lovett, G. A. Gibbs, A. Pancholy, "Yield and Matching Implications 

for Static RAM Memory Array Sense-Amplifier Design", IEEE Journal of Solid-State 

Circuits, Vol. 35, No. 8, pp. 1200 - 1204, Aug. 2000. 

[Luckenbill 2002] S. B. Luckenbill, "Building Bayesian Networks with Analog 

Subthreshold CMOS CIrcuits", Yale University, 2002. 

[Lustenberger 99a] F. Lustenberger, M. Helfenstein, G. S. Moschytz, H. A. Loeliger, F. 

Tarkoy, " All- Analog Decoder for Binary (18, 9, 5) Tail-Biting Trellis Code", 

Proceedings of the European Solid-State Circuits Conference, pp. 362 - 365, Sep. 1999. 

[Lustenberger 99b] F. Lustenberger, M. Helfenstein, H. A. Loeliger, F. Tarkoy, G. S. 

Moschytz, " An analog VLSI decoding technique for digital codes", IEEE International 

Symposium on Circuits and Systems (ISCAS), Vol. 2, pp. 424 - 427, Jun. 1999. 

[Lustenberger 2001] F. Lustenberger, H. A. Loeliger, "On Mismatch Errors in Analog-

VLSI Error Correcting Decoders", IEEE International Symposium on Circuits and 

Systems (ISCAS), Vol. 4, pp. 198 - 201, 2001. 



References 239 

[Maass 2001] W. Maass, C. M. Bishop, "Pulsed Neural Networks", Massachusetts 

Institute of Technology, 2001. 

[Manganaro 98] G. Manganaro, J. P. de Gyvez, "A Four-Quadrant S
2
I Switched-Current 

Multiplier", IEEE Transactions on Circuits and Systems II, Vol. 45, No. 7, Jul. 1998. 

[Manzanera 2002] A. Manzanera, "Morphological Segmentation on the Programmable 

Retina: Towards Mixed Synchronous/Asynchronous Algorithms", 6
th

 International 

Symposium on Mathematical Morphology, pp. 389-399, 2002. 

[Massengill 91] L. W. Massengill, "A Dynamic CMOS Multiplier for Analog VLSI 

Based on Exponential Pulse-Decay Modulation", IEEE Journal of Solid-State Circuits, 

Vol. 26, No. 3, pp. 268 - 276, Mar. 1991. 

[McCulloch 43] W. D. McCulloch, W. Pitts, "A logical calculus of the ideas immanent in 

nervous activity", The Bulletin, of Mathematical Biology, Vol. 5, No. 5, pp. 115 - 133, 

Dec. 1943. 

[Mead 89] C. Mead, "Analog VLSI and Neural Systems", Addison-Wesley Publishing 

Company, 1989. 

[Mead, 94] C. A. Mead, "Scaling of MOS Technology to Submicrometer Feature Size", 

Journal of VLSI Signal Processing, Vol. 8, pp. 9 - 25, 1994. 

[Mehrvarz 95] H. R. Mehrvarz, C. Y. Kwok, "A Large-Input-Dynamic-Range Multi-

Input Floating-Gate MOS Four-Quadrant Analog Multiplier", IEEE International Solid-

State Circuits Conference (ISSCC), pp. 60 - 61, Feb. 1995. 

[Michael 92] C. Michael, M. Ismail, "Statistical Modeling of Device Mismatch for 

Analog MOS Integrated Circuits", IEEE Journal of Solid-State Circuits, Vol. 27, No. 2, 

pp. 154 - 166, Feb. 1992. 

[Michael 96] C. Michael, H. Su, M. Ismail, A. Kankunnen, M. Valtonen, "Statistical 

Techniques for the Computer-Aided Optimization of Analog Integrated Circuits", IEEE 

Transactions on Circuits and Systems I, Vol. 43. No. 5, pp. 410 - 413, May 1996. 

[Moerz 2000] M. Moerz, J. Hagenauer, E. Offer, "On the Analog Implementation of the 

APP (BCJR) Algorithm", IEEE International Symposium on Information Theory, 

pp.425, 2000. 

[Moini 97] A. Moini, "Vision Chips or Seeing Silicon", The Centre for High 

Performance Integrated Technologies and Systems Department of Electrical & 

Electronics Engineering The Univ. of Adelaide, SA 5005, Australia, 1997. 

[Montanari 68] U. Montanari, "A Method for Obtaining Skeletons Using a Quasi-

Euclidean Distance", Journal of the Association for Computing Machinery, Vol. 15, No. 

4, pp. 600 - 624, Oct. 1968. 

[Moore 65] G. E. Moore, " Cramming more components onto integrated circuits", 

Electronics, Vol. 38, No. 8, pp 114 ff., Apr. 1965. 



References 240 

[Neapolitan 2004] R. E. Neapolitan, “Learning Bayesian Networks”, Pearson Prentice 

Hall, 2004. 

[von Neumann 45] J. von Neumann, "First Draft of a Report on the EDVAC", Contract 

No. W-670-ORD-4926, between the United States Army Ordnance Department and the 

University of Pennsylvania, Moore School of Electrical Engineering, Jun. 1945. 

[von Neumann 52] J. von Neumann, "Probabilistic logics and the synthesis of reliable 

organisms from unreliable components," lectures delivered at the California Institute of 

Technology, January 4-15, 1952. Notes by R. S. Pierce, Caltech Eng. Library, 

QA.267.V6. 

[Nicollian 82] E. H. Nicollian, J. R. Brews, "MOS Physics and Technology", New York: 

Wiley, 1982. 

[Nikolova 2011] O. Nikolova, S. Aluru, "Parallel Discovery of Direct Casual Relations 

and Markov Boundaries with Applications to Gene Networks" International Conference 

on Parallel Processing (ICPP), pp. 512-521, Sep. 2011. 

[Norsys 2014] Resources of Norsys Software Corp. (networks library) available at: 

https://www.norsys.com/netlibrary/index.htm 

[Olesen 89] K. G. Olesen, U. Kjaerulff, F. Jensen, F. V. Jensen, B. Falck, S. Andreassen, 

S. K. Andersen, "A MUNIN network for the median nerve - a case study on loops", 

Journal of Applied Artificial Intelligence, Vol. 3, No. 2-3, pp. 385 - 403, 1989. 

[Paasio 2002] A. Paasio, M. Laiho, A. Kananen, K. Halonen, "An Analog Array 

Processor Hardware Realization with Multiple New Features", Proceedings of the 

International Joint Conference on Neural Network (IJCNN), Vol. 2, pp. 1952 - 1955, 

May 2002. 

[Paoloni 2010] G. Paoloni, "How to Benchmark Code Execution Times on Intel IA-32 

and IA-64 Instruction Set Architectures", Intel White Paper, Sep. 2010. 

[Papoulis 2002] A. Papoulis, "Probability, random variables, and stochastic processes", 

McGraw-Hill 4th edition, 2002. 

[Pearl 86] J. Pearl, "Fusion, Propagation, and Structuring in Belief Networks", Artificial 

Intelligence, Vol. 29, pp. 241 - 288, Sep. 1986. 

[Pearl 88] J. Pearl, “Probabilistic Reasoning in Intelligent Systems: Networks of 

Plausible Inference”, Morgan Kaufmann Publishers, 1988. 

[Pelgrom 89] M. J. M. Pelgrom, A. C. J. Duinmaijer, A. P. G. Welbers, "Matching 

Properties of MOS Transistors", IEEE Journal of Solid-State Circuits, Vol. 24, No. 5, pp. 

1433 - 1440, Oct. 1989. 

[Pelgrom 98] M. J. M. Pelgrom, H. P. Tuinhout, M. Vertregt, "Transistor matching in 

analog CMOS applications", IEEE International Electron Devices Meeting (IEDM'98), 

pp. 915 - 918, Dec. 1998. 

[Pelgrom 2010] M. J. M. Pelgrom, "Analog-to-Digital Conversion", Springer, 2010. 



References 241 

[Perez-Munuzuri 93] V. Perez-Munuzuri, V. Perez-Villar, L. O. Chua, "Autowaves for 

Image Processing on Two-Dimensional CNN Array of Excitable Nonlinear Circuits: Flat 

and Wrinkled Labyrinths", IEEE Transactions on Circuits and Systems I, Vol. 40, No. 3, 

pp. 174 - 181, Mar. 1993. 

[Petriu 96] E. M. Petriu, K. Watanabe, T. H. Yeap, "Applications of Random-Pulse 

Machine Concept to Neural Network Design", IEEE Transactions on Instrumentation and 

Measurement, Vol. 45, No. 2, pp. 665-669, Apr. 1996. 

[Poikonen 2009] J. Poikonen, M. Laiho, A. Paasio, "MIPA4k: A 64×64 Cell Mixed-

mode Image Processor Array", IEEE International Symposium on Circuits and Systems 

ISCAS 2009, May 2009. 

[Poppelbaum 67] W. J. Poppelbaum, C. Afuso, J. W. Esch, "Stochastic computing 

elements and systems", Proceedings of the Joint Computer Conference, pp. 635 - 644, 

Nov. 1967. 

[Ramirez-Angulo 96] J. Ramirez-Angulo, "±0.75V BiCMOS Four Quadrant Analog 

Multiplier with Rail-Rail Input Signal-Swing", IEEE International Symposium on 

Circuits and Systems (ISCAS), Vol.1, pp. 242 - 245, May 1996. 

[Ramirez-Angulo 97] J. Ramirez-Angulo, G. Gonzalez-Altamirano, S. C. Choi, 

"Modelling Multiple-Input Floating-Gate Transistors for Analog Signal Processing", 

IEEE International Symposium on Circuits and Systems, Vol. 3, pp. 2020 - 2023, Jun. 

1997. 

[Razavi 2001] B. Razavi, "Design of Analogue CMOS Integrated Circuits", McGraw-

Hill, International Edition, 2001. 

[Razmjooei 2010] S. Razmjooei, P. Dudek, "Approximating Euclidean Distance 

Transform with Simple Operations in Cellular Processor Arrays", IEEE Workshop on 

Cellular Nanoscale Networks and Applications, CNNA 2010, Feb. 2010. 

[Rekeczky 99] C. Rekeczky, L. O. Chua, "Computing with Front Propagation: Active 

Contour and Skeleton Models in Continuous Time CNN", Journal of VLSI Signal 

Processing Systems for Signal, Image and Video Technology, Volume 23, Numbers 2-3, 

pp. 373-402, 1999. 

[Riberio 67] S. T. Riberio, "Random-Pulse Machines", IEEE Transactions on Electronic 

Computers, Vol. EC-16, No. 3, Jun. 1967. 

[Richardson 72] W. H. Richardson, "Bayesian-Based Iterative Method of Image 

Restoration", Journal of the Optical Society of America, Vol. 62, No. 1, pp. 55 - 59, Jan. 

1972. 

[Rodriguez-Vazquez 93] A. Rodriguez-Vazquez, S. Espejo, R. Dominguez-Castro, J. L. 

Huertas, E. Sanchez-Sinencio, "Current-Mode Techniques for the Implementation of 

Continuous- and Discrete-Time Cellular Neural Networks", IEEE Transactions on 

Circuits and Systems II, Vol. 40, No. 3, pp.132 - 146, Mar. 1993. 

[Rodriguez-Vazquez 99] A. Rodriguez-Vazquez, E. Roca, M. Delgado-Restituto, S. 

Espejo, R. Dominguez-Castro, " MOST-Based Design and Scaling of Synaptic 



References 242 

Interconnections in VLSI Analog Array Processing CNN Chips" Journal of VLSI Signal 

Processing, Vol. 23, pp. 239 - 266, 1999. 

[Rodriguez-Vazquez 2003] A. Rodriguez-Vazquez, G. Linan, S. Espejo, R. Dominguez-

Castro, "Mismatch-Induced Trade-Offs and Scalability of Analog Processing Visual 

Microprocessor Chips", Journal of Analog Integrated Circuits and Signal Processing, 

Vol. 37, pp. 77-83, 2003. 

[Rodriguez-Vazquez 2004] A. Rodriguez-Vazquez, G. Linan-Cembrano, L. Carranza, E. 

Roca-Moreno, R. Carmona-Galan, F. Jimenez-Garrido, R. Dominguez-Castro, S. Espejo 

Mena, "ACE16k: The Third Generation of Mixed-Signal SIMD-CNN ACE Chips 

Towards VSoCs", IEEE Transactions on Circuits and Systems - I: Regular Papers, vol. 

51, no. 5, May 2004. 

[Rosenblatt 58] F. Rosenblatt, " The perceptron: A probabilistic model for information 

storage and organization in the brain", Psychological Review, Vol. 65, Nov. 1958. 

[Roska 93] T. Roska, L. Chua, "The CNN Universal Machine: An Analogic Array 

Computer", IEEE Transactions on Circuits and Systems - II: Analog and Digital Signal 

Processing, vol. 40, no. 3, Mar. 1993. 

[Roska 2001] B. Roska, F. Werblin, " Vertical interactions across ten parallel, stacked 

representations in the mammalian retina, Nature, Vol. 410, pp. 583 - 587, Mar. 2001. 

[Shakiba 98] M. H. Shakiba, D. A. Johns, K. W. Martin, "BiCMOS Circuits for Analog 

Viterbi Decoders", IEEE Transactions on Circuits and Systems II, Vol. 45, No. 12, pp. 

1527 - 1537, Dec. 1998. 

[Shannon 38] C. E. Shannon, "A Symbolic Analysis of Relay and Switching Circuits", 

Transactions of AIEE, vol. 57, pp. 713 - 723, May 1938. 

[Shannon 40] C. E. Shannon, "A Symbolic Analysis of Relay and Switching Circuits", 

Master's Thesis, Massachusetts Institute of Technology, 1940. 

[Sheu 87] B. J. Sheu, D. L. Scharfetter, P. K. Ko, M. C. Jeng, "BSIM: Berkeley Short-

Channel IGFET Model for MOS Transistors", IEEE Journal of Solid-State Circuits, Vol. 

SC-22, No. 4, pp. 558 - 566, Aug. 1987. 

[Shichman 68] H. Shichman. D. A. Hodges, "Modeling and Simulation of Insulated-Gate 

Filed-Effect Transistor Switching Circuits", IEEE Journal of Solid-State Circuits, Vol. 

SC-3, No. 3, pp. 285 - 289, 1968. 

[Shoemaker 91] P. A. Shoemaker, G. L. Haviland, R. L. Shimabukuro, I. Lagnado, "A 

Simple CMOS Analog Four-Quadrant Multiplier", Analog Integrated Circuits and Signal 

Processing I, Kulwer Academic Publishers, Vol. 1, No. 2, pp. 107 - 117, Oct. 1991. 

[Shor 94] P. W. Shor, "Algorithms for quantum computation: Discrete logarithms and 

factoring", Proceedings of 35th Annual Symposium on Foundations of Computer 

Science, pp. 124-134, Nov. 1994. 

[Shutter 2005] H. Sutter, "The Free Lunch Is Over: A Fundamental Turn Toward 

Concurrency in Software", C/C++ Users Journal, vol. 23, Feb. 2005. 



References 243 

[Shyu 84] J. B. Shyu, G. C. Tmes, F. Krummenacher, "Random Error Effects in Matched 

MOS Capacitors and Current Sources", IEEE Journal of Solid-State Circuits, Vol. SC-19, 

No. 6, pp. 948 - 955, Dec. 1984. 

[Sienkiewicz 2009] P. Sienkiewicz, J. S. Nowak, "Sixty Years of Cybernetics and Polish 

Informatics", Scientific Magazine no. 3, pp. 9 - 23,WWSI, Warsaw, 2009. 

(in original: P. Sienkiewicz, J. S. Nowak, "Sześćdziesiąt lat cybernetyki i polskiej 

informatyki", Zeszyt Naukowy nr 3, str. 9 - 23,WWSI, Warszawa, 2009). 

[Song 90] H. J. Song, C. K. Kim, "An MOS Four-Quadrant Analog Muliplier Using 

Simple Two-Input Squaring Circuits with Source Followers", IEEE Journal of Solid 

State Circuits, Vol. 25, No. 3, Jun. 1990. 

[Song 93] L. Song, M. I. Elmasry, A. Vennelli, "Analog Neural Network Building 

Blocks Based on Current Mode Subthreshold Operation", IEEE International Symposium 

on Circuits and Systems (ISCAS), Vol. 4, pp. 2462 - 2465, May 1993. 

[Srinivas 97] M. A. Srinivas, R. J. McEliece, "A General Algorithm for Distributing 

Information in a Graph", IEEE International Symposium on Source, pp. 6, 1997. 

[Steyaert 94] M. Steyaert, J. Bastos, R. Roovers, P. Kinget, W. Sansen, B. Graindourze, 

A. Pergoot, Er. Janssen, "Thereshold voltage mismatch in short-channel MOS 

transistors", Electronics Letters, Vol. 30, No. 18, pp. 1546 - 1547, Sep. 1994. 

[Toifl 99] T. Toifl, R. Vari, P. Moreira, A. Marchioro, "4-Channel Rad-Hard Delay 

Generation ASIC with 1ns Timing Resolution for LHC", IEEE Transactions on Nuclear 

Science, Vol. 46, No. 3, pp. 139 - 143, Jun. 99. 

[Toumazou 90a] C. Toumazou, N. C. Battersby, C. Maglaras, "High-performance 

algorithmic switched-current memory cell", Electronics Letters, Vol. 26, No. 19, pp. 

1593 - 1995, Sep. 1990. 

[Toumazou 90b] C. Toumazou, J. B. Hughes, D. M. Pattullo, "Regulated cascode 

switched-current memory cell", Electronics Letters, Vol. 26, No. 5, Mar. 1990. 

[Toumazou 93a] C. Toumazou, J. B. Hughes, N. C. Battersby, "Switched-Currents an 

analogue technique for digital technology", IEE Circuits and Systems Series 5, Peter 

Peregrinus Ltd, 1993. 

[Toumazou 93b] C. Toumazou, F. J. Lidgey, D. G. Haigh, "Analogue IC Design: the 

current-mode approach", IEE Circuits and Systems Series 2, Peter Peregrinus Ltd, 1993. 

[Tuinhout 96] H. Tuinhout, M. Pelgrom, R. Penning de Vries, M. Vertregt, "Effects of 

Metal Coverage on MOSFET Matching", International Electron Devices Meeting 

(IEDM), pp. 735 - 738, Dec. 1996. 

[Tuinhout 2001] H. P. Tuinhout, M. Vertregt, "Characterisation of Systematic MOSFET 

Current Factor Caused by Metal CMP Dummy Structures", IEEE Transactions on 

Semiconductor Manufacturing, Vol. 14, No. 4, pp. 302 - 310, Nov. 2001. 



References 244 

[Turing 36] A. Turing, "On computable numbers, with an application to the 

Entscheidungsproblem", Proceedings of the London Mathematical Society, Series 2, pp. 

230 - 265, Nov. 1936. 

[Unger 58] S. H. Unger, " A Computer Oriented Toward Spatial Problems", Proceedings 

of IRE, Vol. 46, No. 10, pp. 1744 - 1750, Oct. 1958. 

[Vasyltsov 2008] I. Vasyltsov, E. Hambardzumyan, Y. S. Kim, B. Karpinskyy, "Fast 

Digital TRNG Based on Metastable Ring Oscillator", Lecture Notes in Computer 

Science, Vol. 5154, pp. 164 - 180, 2008. 

[Wang 93] Z. Wang, "A Four-Quadrant Analog Multiplier Using MOS Transistors in the 

Saturation Region", IEEE Transactions on Instrumentation and Measurement, Vol. 42, 

No. 1, Feb. 1993. 

[Wang 2013] R. Wang, G. Cohen, T. J. Hamilton, J. Tapson, A. van Schaik, "An 

Improved aVLSI axon with programmable delay using spike timing dependant delay 

plasticity", International Symposium on Circuits and Systems (ISCAS), May 2013. 

[Watanabe 84] K. Watanabe, G. C. Temes, "A Switched-Capacitor Multiplier/Divider 

with Digital and Analog Outputs", IEEE Transactions on Circuits and Systems, Vol. 

CAS-31, No. 9, pp. 796 - 800, Sep. 1984. 

[Wee 2001] K. H. Wee, T. Shibata, T. Ohmi, " A Simple Random Noise Generator 

Employing Metal-Oxide-Semiconductor-Field-Effect-Transistor Channel kT/C Noise 

and Low-Capacitance Loading Buffer", Japanese Journal of Applied Physics, Vol. 40, 

Part 1, No. 7, Jul. 2001. 

[Wegmann 89] G. Wegmann, E. A. Vittoz, "Very accurate dynamic current mirrors", 

Electronics Letters, Vol. 25, No. 10, May 1989. 

[Wegmann 90] G. Wegmann, E. A. Vittoz, "Analysis and Improvements of Accurate 

Dynamic Current Mirrors", IEEE Journal of Solid-State Circuits, Vol. 25, No. 3, Jun. 

1990. 

[Weste 85] N. Weste, K. Eshragian, "Principles of CMOS VLSI Design A System 

Design Perspective", AR&T Bell Laboratories, 1985. 

[Wong 83] S. Wong, C. Andre, T. Salama, "Impact of Scaling on MOS Analog 

Performance", IEEE Journal of Solid-State Circuits, Vol. SC-18, No. 1, pp. 106 - 114, 

Feb. 1983. 

[Xi 2003] X. Xi, M. Dunga, J. He, W. Liu, K. M. Cao, X. Jin, J. J. Ou, M. Chan, A. M. 

Niknejad, C. Hu, "BSIM4.3.0 MOSFET Model", Department of Electrical Engineering 

and Computer Sciences, University of Berkeley, 2003. 

[Xiong 2010] Y. Xiong, C. Kabacoff, J. Franca-Koh, P. Devreotes, D. N. Robinson, P. A. 

Iglesias, "Automated characterisation of cell shape change during amoeboid motility by 

skeletonization", BMC System Biology, 4:33, Mar. 2010. 



References 245 

[Yang 90] H. C. Yang, T. S. Fiez, D. J. Allstot, "Current-feedthrough effects and 

cancellation techniques in switched-current circuits", IEEE International Symposium on 

Circuits and Systems (ISCAS), Vol. 4, pp. 3186 - 3188, May 1990. 

[Yasumoto 82] M. Yasumoto, T. Enomoto, "Integrated MOS four-quadrant analogue  

multiplier using switched-capacitor technique", Electronics Letters, Vol. 18, No. 18, Sep. 

1982. 

[Yeh 2001] T. H. Yeh, J. C. H. Lin, S. C. Wong, H. Huang, J. Y. C. Sun, "Mis-match 

Characterisation of 1.8V and 3.3V Devices in 0.18µm Mixed Signal CMOS 

Technology", Proceedings of the International Conference on Microelectronic Test 

Structures (ICMTS), pp. 77 - 82, 2001. 

[Zarandy 2011] A. Zarandy, "Focal-Plane Sensor-Processor Chips", Springer, 2011. 

[Zaveri 2010] M. S. Zaveri, D. Hammerstrom, "CMOL/CMOS Implementations of 

Bayesian Polytree Inference: Digital and Mixed-Signal Architectures and 

Performance/Price", IEEE Transactions on Nanotechnology, Vol. 9, No. 2, pp. 194 - 211, 

Mar. 2010. 

[Zhang 2011] W. C. Zhang, Q. Y. Fu, N. J. Wu, "A Programmable Vision Chip Based on 

Multiple Levels of Parallel Processors", IEEE Journal of Solid State Circuits, Vol. 46, 

No. 9, pp. 1 - 16, Sep. 2011. 

[Zhou 2007] H. Zhou, S. Sakane, "Mobile robot localization using active sensing based 

on Bayesian networks inference", Journal of Robotics and Autonomous Systems, Vol. 

55, pp. 292 - 305, 2007. 



Appendix A 246 

Appendix A: Continuous-time analogue VLSI circuits for Bayesian 

inference - schematics and structures 

A.1 Schematic and block diagrams of the continuous-time circuit structures 

ID1 ID2

I0

VX1 VX2

V01

V02

I0VX1 VX2

ID2ID1

MUL A

 
 

ID1 ID2

VX1 VX2

V01

V02

V01VX1 VX2

ID2ID1

MUL B

V02

 
 

Multiplier of type A Multiplier of type B 

 

I0

V01

V02

I0

V02V01

HM

 

IX

VREF

VX

IX

VX

Log I/V

 

IX

VREF

IX

TR

 
Half current mirror Log-linear converter Terminator 

 

MUL AMUL A

MUL B

V01VX1 VX2V02

VY1 VY2VY1VY2

V01VX1 VX2V02VY1 VY2

ID2ID1

ID2ID1 ID2ID1

ID21ID12ID11 ID22  

MUL B

V01VX1 VX2V02

MUL AMUL A

VX1 VX2VX1VX2

MUL AMUL A

VX1 VX2VX1VX2

MUL A

VX1 VX2

MUL A

VX1 VX2I0

VY1 V01VX1 VX2V02VZ1 VY2 VZ2

I0

I0 I0 I0 I0

ID2ID1

ID2ID1 ID2ID1

ID2ID1 ID2ID1 ID2ID1 ID2ID1

ID111 ID112 ID121 ID122 ID211 ID212 ID221 ID222  

V01VX1 VX2

ID21ID12

MUL XY

V02VY1 VY2

ID11 ID22

 

V01VX1 VX2

ID112

MUL XYZ

V02VY1 VY2

ID111

VZ1

ID121 ID122 ID212ID211 ID221 ID222

VZ2

 

 Full pyramid structure for 
generic multiplications 
accounting for all input vectors 
elements combinations 

 Reduced pyramid structure for 
input vectors dot product (in 
gray colour) 

Two input multiplier XY Three input multiplier XYZ 



Appendix A 247 

A.2 Block diagram of the three-way factor node 

 

L
o
g
 I

/V

L
o
g
 I

/V

L
o
g
 I

/V

L
o
g
 I

/V

L
o
g
 I

/V

L
o
g
 I

/V

Xn1

V01VX1 VX2

ID21ID12

MUL XY

V02VY1 VY2

ID11 ID22

L
o
g
 I

/V

L
o
g
 I

/V

L
o
g
 I

/V

L
o
g
 I

/V

L
o
g
 I

/V

L
o
g
 I

/V

PTTF PTFTPTFF

L
o
g
 I

/V

L
o
g
 I

/V
PFTTPFTF PFFTPFFF

I0VX1 VX2

ID2ID1

MUL A

I0VX1 VX2

ID2ID1

MUL A

I0VX1 VX2

ID2ID1

MUL A

I0VX1 VX2

ID2ID1

MUL A

I0

V02V01

IREF

input messages

Xn2 Xn3

PTTF

conditional probabilities

Nx1output message

Three-way factor node 

Part 1/3

to part 2/3
HM

 

 

 

 

V01VX1 VX2

ID21ID12

MUL XY

V02VY1 VY2

ID11 ID22

I0

V02V01

I0

V02V01

I0

V02V01

I0

V02V01

V01VX1 VX2

ID2ID1

MUL B

V02 V01VX1 VX2

ID2ID1

MUL B

V02 V01VX1 VX2

ID2ID1

MUL B

V02 V01VX1 VX2

ID2ID1

MUL B

V02

IX

TR

IX

TR

IX

TR

IX

TR

V01VX1 VX2

ID2ID1

MUL B

V02 V01VX1 VX2

ID2ID1

MUL B

V02 V01VX1 VX2

ID2ID1

MUL B

V02 V01VX1 VX2

ID2ID1

MUL B

V02

IX

TR

IX

TR

IX

TR

IX

TR

output message: Nx2

from part 1/3 to part 3/3

Three-way factor node 

Part 2/3

HM HM HM HM

 

 



Appendix A 248 

V01VX1 VX2

ID21ID12

MUL XY

V02VY1 VY2

ID11 ID22

I0

V02V01

I0

V02V01

I0

V02V01

I0

V02V01

V01VX1 VX2

ID2ID1

MUL B

V02 V01VX1 VX2

ID2ID1

MUL B

V02 V01VX1 VX2

ID2ID1

MUL B

V02 V01VX1 VX2

ID2ID1

MUL B

V02

IX

TR

IX

TR

IX

TR

IX

TR

V01VX1 VX2

ID2ID1

MUL B

V02 V01VX1 VX2

ID2ID1

MUL B

V02 V01VX1 VX2

ID2ID1

MUL B

V02 V01VX1 VX2

ID2ID1

MUL B

V02

IX

TR

IX

TR

IX

TR

IX

TR

from part 2/3 Three-way factor node 

Part 3/3

output messages Nx3

HM HM HM HM

 

 

A.3 Block diagram of the three-way variable node 

 

L
o

g
 I

/V

L
o

g
 I

/V

L
o

g
 I

/V

L
o

g
 I

/V

L
o

g
 I

/V

L
o

g
 I

/V

Xn1

V01VX1 VX2

ID21ID12

MUL XY

V02VY1 VY2

ID11 ID22

I0

V02V01

IREF

input messages

Xn2 Xn3

HM

IX

TR

IX

TR

output message Nx1

V01VX1 VX2

ID21ID12

MUL XY

V02VY1 VY2

ID11 ID22

IX

TR

IX

TR

output message Nx2

V01VX1 VX2

ID21ID12

MUL XY

V02VY1 VY2

ID11 ID22

IX

TR

IX

TR

output message Nx2

V01VX1 VX2

ID112

MUL XYZ

V02VY1 VY2

ID111

VZ1

ID121 ID122 ID212ID211 ID221 ID222

VZ2

IX

TR

IX

TR

IX

TR

IX

TR

IX

TR

IX

TR

output message Nx3

Three-way variable node 

Part 1/1

 

 

 

 

 

 

 



Appendix B 249 

Appendix B: Continuous-time analogue VLSI circuits for Bayesian 

inference - scaling rules 

Assumptions and general rules: 

 n - the number of ways ( 2n ). 

 k - the number of states of the represented variable ( 2k ). 

 Type A multiplier: 5k + 4 MOS transistors (each branch for the element from the k-

element input vector consists of 5 MOS transistors plus 4 MOS transistors in the 

bottom current mirror). 

 Type B multiplier: 5k + 2 MOS transistors (each branch for the element from the k-

element input vector consists of 5 MOS transistors plus 2 MOS transistors in the 

bottom current source). 

A.5 Scaling rules for factor node 

A.5.1 The number of type A multipliers 

MUL B

MUL AMUL A MUL AMUL A

MUL A MUL A

31n
ROW:

21n
ROW:

11n
ROW:

k outputs

k outputs k outputs

The number of type A multipliers in the pyramid is:

a1 = k (first row n – 1 = 2)

q = k (ratio of the number of multipliers between rows)

n - 2  (the number of rows)

Sum of type A multipliers in 

the pyramid with n – 2 rows: k

k
k

n



 

1

1 2

Type A multipliers are also used to compute Nx1 

message connected to all the outputs of the full 

pyramid:

The number of outputs 

from the pyramid: 
1nk

Total number of type A multipliers:

1
2

1

1 


















 n
n

k
k

k
kn

 

A.5.2 The number of type B multipliers 

Derivation: 

 Type B multipliers are connected to the bottom of the pyramid in each link apart 

from the first one (computing message Nx1). Each output expands through half 

current mirrors to k type B multipliers. Since there are k
n - 1

 outputs from each 

pyramid, the number of type B multipliers in each link is k
n - 1

 × k = k
n
. 

 Each link, apart from the first one (computing message Nx1), has one more type B 

multiplier at the top of the pyramid, therefore, the number of type B multipliers is     

k
n + 1

). 

 There is only one type B multiplier in the first link computing message Nx1. 



Appendix B 250 

The total number of type B multipliers is:    111  nkn . 

A.5.3 The number of terminating blocks TN 

Derivation: 

 Terminating blocks are used to terminate unused outputs of type B multipliers in all 

n - 1 output links (except for the first link computing message Nx1). 

 Since each link has k
n
 type B multipliers connected to the bottom of the pyramid (see 

rule A.5.2), there are k
n
 × (k - 1) terminators (in each link). 

The total number of terminators is:    nkkn 11  . 

A.5.4 The number of log-linear converters 

Derivation: 

Log-linear converters are used to convert input currents into voltages of the input 

messages and the conditional probabilities: 

 Since n k-element vectors generated nk signals, there are nk log-linear converters 

used at the input. 

 Since the number of elements in the CPT is k
n
 , there are k

n
 log-linear converters used 

for parameters. 

The total number of log-linear converters is: nkk n  . 

A.5.5 The number of half current mirrors 

Derivation: 

 Half mirrors are used at the outputs of the pyramids in (n - 1) links (apart from the 

first one computing message Nx1). Since there are k
n - 1

 outputs from the pyramid (see 

rule A.5.1), there are (n - 1) k
n - 1

 half mirrors in each link. 

 There is one half mirror used to distribute the reference current IREF. 

The total number of half current mirrors is:   11 1  nkn . 

A.5.6 Supply current and power 

Assumptions: 

 Each row in the pyramid consumes in total 2IREF current (1×IREF to bias the 

differential pair and 1×IREF that splits evenly to the outputs). 

 Input currents are not accounted for. 

 

 



Appendix B 251 

Derivation: 

 The first link (computing message Nx1) consists of n - 1 rows in the pyramid (n - 1 

input messages to multiply) and one row of multipliers at the bottom of the pyramid. 

This gives n rows in total and 2nIREF current consumption. 

 The remaining n - 1 links have pyramids with n - 1 rows each, and k extra rows of the 

multipliers connected to the bottom of the pyramid (each half current mirror splits to 

k multipliers generating k separate rows, see rule A.5.4). This gives n - 1 + k rows 

and results in 2(n - 1 + k)IREF supply current. 

The total supply current is:     REFIkknnn  122 . 

A.5.7 Two-argument multiplications 

Derivation (one link): 



















































FF

TF

FT

TT

FFFFFTFTFFTT

TFFTFTTTFTTT

F

T

XNXN

XNXN

XNXN

XNXN

PPPP

PPPP

NX

NX

32

32

32

32

2

1

matrix has k rows and kn – 1 columns (n – 2) columns of two-

argument dot products 

kn - 1 rows of two-

argument dot products 

  12  nkn
two-argument 

multiplications

1 nkk
two-argument multiplications 

in matrix-vector operations  

The total number of two-argument multiplications is:   nn kknn  12 . 

A.5.8 Two-argument additions 

Derivation: 

 The number of two-argument additions per row of the probability matrix is: k
n - 1

 - 1 

 The number of rows of the probability matrix is: k 

The total number of two-argument additions is  11 nknk . 

A.5.9 Normalisations 

The number of k-element vector normalisations is equal to the number of links n. 

A.5.10 Coefficients 

The number of coefficients in CPT is k
n
. 

 

 



Appendix B 252 

A.6 Scaling rules for variable node 

A.6.1 The number of type A multipliers 

Assumptions: 

 Since variable node does not need a full pyramid to evaluate a dot product of k-

element vectors, two options of implementation can be considered based on: 

 full pyramid-structure multipliers (including all multipliers inside the pyramid), 

o full pyramid-structure multipliers (including all multipliers inside the pyramid 

o reduced pyramid-structure multipliers (including only outer multipliers necessary 

to compute dot product). 

 The approach using reduced pyramid-structure multipliers provides more compact 

implementation and will be considered in the formulation of scaling properties. 

Derivation: 

Feature Full pyramid Reduced pyramid 

The number of type A multipliers in one 

link: 

(in reduced pyramid: k - number of multi-

pliers in a row, (n - 2) - number of rows) 
k

k
k

n



 

1

1 2

  2nk  

The number of type A multipliers used to 

compute belief: 

(all n input links are processed) k

k
k

n



 

1

1 1

  1nk  

The total number of type A multipliers: 
k

k
k

k

k
nk

nn








 

1

1

1

1 12

    12  nknnk  

 

The number of type A multipliers in the realisation of variable node with reduced pyra-

mids is:    12  nknnk . 

A.6.2 The number of type B multipliers 

There is only one type B multiplier per link (at the top of each pyramid) and one at the 

top of the pyramid for belief calculation, therefore the number of type B multipliers is 

n + 1. 

A.6.3 The number of terminating blocks TN 

Derivation: 

In the full pyramid realisation, terminators connect to all unused outputs at the bottom of 

the pyramids: 

 The number of bottom links is k
n - 1

, out of which k is used for output. Therefore the 

number of terminators is k
n - 1

 - k. 

 Since computing belief requires the same operations but for all the inputs, the number 

of terminators will be: k
n 

 - k. 

The total number of terminators in the full pyramid realisation is:   kkkkn nn 1
. 



Appendix B 253 

 

In the half pyramid realisation, each type A multiplier is terminated with k - 1 

terminators. 

 The number of type A multipliers in one pyramid is k(n - 2), see rule A.6.1. 

 The number of terminator in each link is k(n - 2)( k - 1). 

 Since computing belief requires the same operations but for all the inputs, the number 

of terminators will be: k(n - 1)( k - 1). 

The total number of terminators in the half pyramid realisation is: 

      1122  knkknkn . 

A.6.4 The number of log-linear converters 

Log-linear converters are used to convert input currents into voltages of the input 

messages, therefore, the number of converters is: nk. 

A.6.5 The number of half current mirrors 

There is only one half current mirror used to distribute the reference current IREF. 

A.6.6 Supply current and power 

Derivation: 

MUL B

MUL AMUL A MUL AMUL A

MUL A MUL A

4n
ROW:

3n
ROW:

2n
ROW:

k outputs

k outputs k outputs

I/k I/k

I/k2 I/k2 I/k2 I/k2

I/k3 I/k3 I/k3 I/k3 I/k3 I/k3 I/k3 I/k3

FULL

I2

I2

I2

REDUCED

I2

I2

2// kIkI 

I2 32 // kIkI 

4n
22

121
4

kkk


332

1221
4

kkkk
5n

6n
4432

12221
4

kkkkk


 
  2

3

2

1

11

1121
4











n

n

kk

k

kk

24 

44 

64 

 12 n

n   kkk 11

21
4

2 


    REFInnn 212 

3,2n

Total current of variable node with n links using full 

pyramid structures:

Total current of variable node with n links using 

reduced pyramid structures:

    REFInnn 212 

4n REFREF I
kkk

I 









22

121
412

4n  
   REFI

kkk
n 












11

21
41

2

 

 



Appendix B 254 

A.6.7 Two-argument multiplications 

Derivation: 






















FFF

TTT

F

T

XnXnXn

XnXnXn

Bel

Bel

321

321

(n – 2) columns of two-

argument dot products 

k rows of two-argument 

dot products 

 2nk
two-argument 

multiplications per link

 1nk
two-argument multiplications 

to compute belief  

The total number of two-argument multiplications is:    12  nknnk . 

A.6.8 Normalisations 

The number of k-element vector normalisations is equal to the number of links n plus one 

normalisation of belief. 


