473 research outputs found

    Facility location optimization model for emergency humanitarian logistics

    Get PDF
    Since the 1950s, the number of natural and man-made disasters has increased exponentially and the facility location problem has become the preferred approach for dealing with emergency humanitarian logistical problems. To deal with this challenge, an exact algorithm and a heuristic algorithm have been combined as the main approach to solving this problem. Owing to the importance that an exact algorithm holds with regard to enhancing emergency humanitarian logistical facility location problems, this paper aims to conduct a survey on the facility location problems that are related to emergency humanitarian logistics based on both data modeling types and problem types and to examine the pre- and post-disaster situations with respect to facility location, such as the location of distribution centers, warehouses, shelters, debris removal sites and medical centers. The survey will examine the four main problems highlighted in the literature review: deterministic facility location problems, dynamic facility location problems, stochastic facility location problems, and robust facility location problems. For each problem, facility location type, data modeling type, disaster type, decisions, objectives, constraints, and solution methods will be evaluated and real-world applications and case studies will then be presented. Finally, research gaps will be identified and be addressed in further research studies to develop more effective disaster relief operations

    Resource location for relief distribution and victim evacuation after a sudden-onset disaster

    Get PDF
    Quick responses to sudden-onset disasters and the effective allocation of rescue and relief resources are vital for saving lives and reducing the suffering of the victims. This paper deals with the problem of positioning medical and relief distribution facilities after a sudden-onset disaster event. The background of this study is the situation in Padang Pariaman District after the West Sumatra earthquake. Three models are built for the resource location and deployment decisions. The first model reflects current practice where relief distribution and victim evacuation are performed separately and relief is distributed by distribution centers within administrative boundaries. The second model allows relief to be distributed across boundaries by any distribution center. The third model further breaks down functional barriers to allow the evacuation and relief distribution operations share vehicles. These models are solved directly for small problems and by using a direct approach as well as heuristics for large problems. Test results on small problems show that resource sharing measures, both across boundaries and across different functions, improve on current practice. For large problems, the results give similar conclusions to those for small problems when each model is solved using its own best approach

    Design of evacuation plans for densely urbanised city centres

    Get PDF
    The high population density and tightly packed nature of some city centres make emergency planning for these urban spaces especially important, given the potential for human loss in case of disaster. Historic and recent events have made emergency service planners particularly conscious of the need for preparing evacuation plans in advance. This paper discusses a methodological approach for assisting decision-makers in designing urban evacuation plans. The approach aims at quickly and safely moving the population away from the danger zone into shelters. The plans include determining the number and location of rescue facilities, as well as the paths that people should take from their building to their assigned shelter in case of an occurrence requiring evacuation. The approach is thus of the location–allocation–routing type, through the existing streets network, and takes into account the trade-offs among different aspects of evacuation actions that inevitably come up during the planning stage. All the steps of the procedure are discussed and systematised, along with computational and practical implementation issues, in the context of a case study – the design of evacuation plans for the historical centre of an old European city

    Location-allocation models for relief distribution and victim evacuation after a sudden-onset natural disaster

    Get PDF
    Quick response to natural disasters is vital to reduce loss of and negative impact to human life. The response is more crucial in the presence of sudden-onset, difficult-to-predict natural disasters, especially in the early period of those events. On-site actions are part of such response, some of which are determination of temporary shelters and/ or temporary medical facility locations, the evacuation process of victims and relief distribution to victims. These activities of last-mile disaster logistics are important as they are directly associated with sufferers, the main focus of any alleviation of losses caused by any disaster. This research deals with the last-mile site positioning of relief supplies and medical facilities in response to a sudden-onset, difficult-to-predict disaster event, both dynamically and in a more coordinative way during a particular planning time horizon. Four mathematical models which reflect the situation in Padang Pariaman District after the West Sumatera earthquake were built and tested. The models are all concerned with making decisions in a rolling time horizon manner, but differ in coordinating the operations and in utilization of information about future resource availability. Model I is a basic model representing the current practice with relief distribution and victim evacuation performed separately and decisions made only considering the resources available at the time. Model II considers coordination between the two operations and conducts them with the same means of transport. Model III takes into account future information keeping the two operations separate. Model IV combines the features of Models II and III. The four models are approached both directly and by using various heuristics. The research shows that conducting relief distribution and victim evacuation activities by using shared vehicles and/or by taking into account future information on resource availability improves the current practice . This is clearly demonstrated by the experimental results on small problems. For large problems, experiments show that it is not practical to directly solve the models, especially the last three, and that the solution quality is poor when the solution process is limited to a reasonable time. Experiments also show that the heuristics help improve the solution quality and that the performances of the heuristics are different for different models. When each model is solved using its own best heuristic, the conclusions from results of large problems get very close to those from small problems. Finally, deviation of future information on resource availability is considered in the study, but is shown not to affect the performance of model III and model IV in carrying out relief distribution and victim evacuation. This indicates that it is always worthwhile to take into account the future information, even if the information is not perfect, as long as it is reasonably reliable

    ОПТИМАЛЬНАЯ МАРШРУТИЗАЦИЯ ВОЗДУШНЫХ СУДОВ И МАШИН СКОРОЙ ПОМОЩИ В ЛОГИСТИКЕ ПРИ СТИХИЙНЫХ БЕДСТВИЯХ

    Get PDF
    One of the most vital aspects of emergency management studies is the development and examination of post-disaster search and rescue activities and treatment facilities. One of such issues to be considered while performing these operations is to reach the disaster victims within minimum time and to plan disaster logistics in the most efficient manner possible. In this study, the problem of planning debris scanning activities with Unmanned Aerial Vehicles after an earthquake and transporting the injured people to the hospitals by ambulances within minimum time was discussed, and mathematical models were developed to solve the problem. The ambulance routing problem and the mathematical model to be used in the solution to the problem are discussed for the first time in the literature. The developed model was tested on the problem sets created by taking into account the data of the province under investigation.Одним из наиболее важных аспектов исследований по управлению рисками и чрезвычайными ситуациями является разработка и изучение поисково-спасательных мероприятий и очистных сооружений после стихийных бедствий. Одним из вопросов, которые необходимо учитывать при выполнении этих операций, является обеспечение доступа к жертвам стихийных бедствий в минимальные сроки и планирование логистики в случае стихийных бедствий наиболее эффективным способом. В данном исследовании рассматривается проблема планирования работ по спасению с помощью беспилотных летательных аппаратов после землетрясения и транспортировки пострадавших людей в больницы на машинах скорой помощи за минимальное время. Для решения этой проблемы были разработаны и предложены математические модели. Впервые рассматривается задача маршрутизации скорой помощи и математическая модель, которая будет использоваться для решения этой задачи. Разработанная модель была протестирована на множествах задач, созданных с учетом реальных данных исследуемой провинции Турции

    A memetic algorithm for location-routing problem with time windows for the attention of seismic disasters a case study from Bucaramanga, Colombia

    Get PDF
    Introduction− In recent years, a great part of the population has been affected by natural and man-caused disasters. Hence, evacua-tion planning has an important role in the reduction of the number of victims during a natural disaster. Objective−In order to contribute to current studies of operations research in disaster management, this paper addresses evacuation planning of urban areas by using buses to pick up affected people after an earthquake.Methodology−The situation is modeled using Location-Routing Problem with Time Windows (LRPTW) to locate emergency shelters and identify evacuation routes that meet attention time constraints. To solve the LRPTW problem, a memetic algorithm (MA) is de-signed to minimize the total response time during an evacuation. The algorithm is not only validated using instances of literature, but also with the assessment of a case study of a seismic event in Bucaramanga, Colombia.Results and conclusions− The main contribution of this article is the development of a memetic algorithm for the solution of the proposed model that allows to solve real-size instances. The hybrid initialization of the MA prevents an early convergence by combin-ing randomness and a heuristic technique. Computational results indicate that the MA is a viable approach for the LRPTW solution. Likewise, a case study is presented for the city of Bucaramanga in order to validate the proposed model. Two scenarios are simulated showing that the management of the time windows (homogeneous or random) directly influences the solution and affects the objec-tive function. From a practical perspective, the location-routing problem must consider other criteria such as the cost of evacua-tion, including the attention delay cost, and the cost of opening shelters and routing.Introducción− En años recientes gran parte de la población ha sido afectada por desastres tanto naturales como antrópicos. Por esto, la planificación de la evacuación juega un papel importante en la reduc-ción del número de víctimas ante un desastre natural. Objetivo− Con el propósito de contribuir a los estudios actuales desde la investigación de operaciones en gestión de desastres, esta inves-tigación aborda la planificación de la evacuación de áreas urbanas usando buses para recoger afectados.Metodología− El problema se modela mediante un problema de localización-ruteo con ventanas de tiempo (LRPTW) para determinar el número y la ubicación de los albergues las y rutas de recolección para evacuación, cumpliendo restricciones en tiempo de atención. Para solucionar el LRPTW, se diseña un algoritmo memético (MA) que minimiza el tiempo total de respuesta en la evacuación. El algo-ritmo es validado en instancias de la literatura y mediante un caso de estudio de un evento sísmico en Bucaramanga (Colombia).Resultados y conclusiones− La contribución principal de este ar-tículo es el desarrollo de un MA para solucionar el modelo propuesto, que permite resolver instancias de tamaño real. La inicialización híbrida del MA evita una convergencia temprana, combinando alea-toriedad con una técnica heurística. Los resultados computacionales indican que el MA es un enfoque viable para solucionar el LRPTW. Así mismo, se presenta un caso de estudio en Bucaramanga para validar el modelo propuesto. Se plantean dos escenarios de desastre, evidenciando que el tratamiento que se da a las ventanas de tiempo (homogénea o aleatoria) influye directamente en la solución y afec-ta la función objetivo. Desde un enfoque práctico, el problema debe considerar otros criterios que pueden influir en la planificación de la evacuación, como el costo de la evacuación, costo de la demora en la atención, costo de apertura y de ruteo

    Un algoritmo memético para el problema de localización-ruteo con ventanas de tiempo para la atención de desastres sísmicos: un caso de estudio de Bucaramanga, Colombia

    Get PDF
    Introduction: In recent years, a great part of the population has been affected by natural and man-caused disasters. Hence, evacuation planning has an important role in the reduction of the number of victims during a natural disaster. Objective: In order to contribute to current studies of operations research in disaster management, this paper addresses evacuation planning of urban areas by using buses to pick up affected people after an earthquake. Methodology: The situation is modeled using Location-Routing Problem with Time Windows (LRPTW) to locate emergency shelters and identify evacuation routes that meet attention time constraints. To solve the LRPTW problem, a memetic algorithm (MA) is designed to minimize the total response time during an evacuation. The algorithm is not only validated using instances of literature but also with the assessment of a case study of a seismic event in Bucaramanga, Colombia. Results and conclusions: The main contribution of this article is the development of a memetic algorithm for the solution of the proposed model that allows to solve real-size instances. The hybrid initialization of the MA prevents an early convergence by combining randomness and a heuristic technique. Computational results indicate that the MA is a viable approach for the LRPTW solution. Likewise, a case study is presented for the city of Bucaramanga in order to validate the proposed model. Two scenarios are simulated showing that the management of the time windows (homogeneous or random) directly influences the solution and affects the objective function. From a practical perspective, the location-routing problem must consider other criteria such as the cost of evacuation, including the attention delay cost, and the cost of opening shelters and routing.Introducción: En años recientes gran parte de la población ha sido afectada por desastres tanto naturales como antrópicos. Por esto, la planificación de la evacuación juega un papel importante en la reducción del número de víctimas ante un desastre natural. Objetivo: Con el propósito de contribuir a los estudios actuales desde la investigación de operaciones en gestión de desastres, esta investigación aborda la planificación de la evacuación de áreas urbanas usando buses para recoger afectados. Metodología: El problema se modela mediante un problema de localización-ruteo con ventanas de tiempo (LRPTW) para determinar el número y la ubicación de los albergues las y rutas de recolección para evacuación, cumpliendo restricciones en tiempo de atención. Para solucionar el LRPTW, se diseña un algoritmo memético (MA) que minimiza el tiempo total de respuesta en la evacuación. El algoritmo es validado en instancias de la literatura y mediante un caso de estudio de un evento sísmico en Bucaramanga (Colombia). Resultados y conclusiones: La contribución principal de este artículo es el desarrollo de un MA para solucionar el modelo propuesto, que permite resolver instancias de tamaño real. La inicialización híbrida del MA evita una convergencia temprana, combinando aleatoriedad con una técnica heurística. Los resultados computacionales indican que el MA es un enfoque viable para solucionar el LRPTW. Así mismo, se presenta un caso de estudio en Bucaramanga para validar el modelo propuesto. Se plantean dos escenarios de desastre, evidenciando que el tratamiento que se da a las ventanas de tiempo (homogénea o aleatoria) influye directamente en la solución y afecta la función objetivo. Desde un enfoque práctico, el problema debe considerar otros criterios que pueden influir en la planificación de la evacuación, como el costo de la evacuación, costo de la demora en la atención, costo de apertura y de ruteo
    corecore