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ABSTRACT 

 Quick response to natural disasters is vital to reduce loss of and negative 

impact to human life. The response is more crucial in the presence of sudden-

onset, difficult-to-predict natural disasters, especially in the early period of those 

events. On-site actions are part of such response, some of which are determination 

of temporary shelters and/ or temporary medical facility locations, the evacuation 

process of victims and relief distribution to victims. These activities of last-mile 

disaster logistics are important as they are directly associated with sufferers, the 

main focus of any alleviation of losses caused by any disaster. 

 This research deals with the last-mile site positioning of relief supplies and 

medical facilities in response to a sudden-onset, difficult-to-predict disaster event, 

both dynamically and in a more coordinative way during a particular planning 

time horizon. Four mathematical models which reflect the situation in Padang 

Pariaman District after the West Sumatera earthquake were built and tested. The 

models are all concerned with making decisions in a rolling time horizon manner, 

but differ in coordinating the operations and in utilization of information about 

future resource availability. Model I is a basic model representing the “current 

practice” with relief distribution and victim evacuation performed separately and 

decisions made only considering the resources available at the time. Model II 

considers coordination between the two operations and conducts them with the 

same means of transport. Model III takes into account future information keeping 

the two operations separate.  Model IV combines the features of Models II and III. 

The four models are approached both directly and by using various heuristics. 

 The research shows that conducting relief distribution and victim evacuation 

activities by using shared vehicles and/or by taking into account future 

information on resource availability improves the “current practice”. This is 

clearly demonstrated by the experimental results on small problems. For large 

problems, experiments show that it is not practical to directly solve the models, 

especially the last three, and that the solution quality is poor when the solution 

process is limited to a reasonable time. Experiments also show that the heuristics 
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help improve the solution quality and that the performances of the heuristics are 

different for different models. When each model is solved using its own best 

heuristic, the conclusions from results of large problems get very close to those 

from small problems. Finally, deviation of future information on resource 

availability is considered in the study, but is shown not to affect the performance 

of model III and model IV in carrying out relief distribution and victim 

evacuation. This indicates that it is always worthwhile to take into account the 

future information, even if the information is not perfect, as long as it is 

reasonably reliable.  
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CHAPTER 1                                                           

INTRODUCTION 

In this chapter, the background of the current research is presented. This is 

followed by a section which identifies the research problem more clearly. The 

scope of the research follows, which is needed in order for the research to be 

specific and focused. Following the research scope, general objectives of the 

current research are presented. An outline of the thesis is presented afterwards. 

The chapter concludes with thesis contributions. 

1.1 Research Background 

A disaster is highly likely to lead to severe problems, including extensive 

human misery and physical losses or damage. The frequency of both natural and 

manmade disasters is expected to grow over time, affecting millions of people. 

In the sense of natural disasters, there was an increasing trend of 

occurrences from year 1900 to 2011. Those events killed millions of people, 

affected millions of others and caused US$ billions in economic damage. For the 

same period, most natural disasters took place in developing countries as well as 

the least developed countries. Equally, the majority of the human victims resulting 

from natural disaster occurrences in the same period were located in developing 

and least-developed countries. 

Regarding their occurrence and/or impact, natural disasters can be classified 

as either sudden-onset or slow-onset. Natural disasters in the first category are 

characterised by their rapid arrival and impact, whereas those in the latter class 

arise slowly with slow impact. Natural disasters can also be classified in 

accordance with their predictability, i.e. either predictable – with a certain degree 

of accuracy – or not. Considering these two ways of categorisation, it is possible 

to have natural disasters with sudden-onset, difficult-to-predict occurrence. 

Earthquakes are an example of this type of natural disaster. Slow-onset, easy-to-

predict is another category of natural disasters, an example of which is drought. 
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In order to reduce loss and negative impact to human life, it is vital to 

respond quickly to natural disasters. It usually incorporates - to name a few - the 

provision of disaster logistics, the evacuation process of threatened populations, 

and fatality management. The response is even more crucial in the presence of 

sudden-onset, difficult-to-predict natural disasters, especially in the early period of 

those events. 

Disaster logistics itself consists of various activities. These include the 

activation of emergency operations centres, the establishment of shelters and the 

provision of mass care service, the provision of emergency rescue and medical 

care service, and the delivery of food, medicine, tents, sanitation equipment, tools 

and other necessities to disaster sufferers. 

1.2 Research Problem Identification 

The occurrence of a natural disaster leads to victims, infrastructure damage 

and psychological impacts, respectively. Victims of a natural disaster can be 

classified as wounded victims and injury-free sufferers. In certain circumstances, 

a natural disaster occurrence also causes death. Impacts on infrastructure range 

from damage to telecommunications to damage to housing, schools, and 

government buildings. It is also not uncommon that existing medical facilities are 

impacted by a natural disaster in such ways that their capability to provide 

medical services is reduced significantly. Additionally, it is inherent in any event 

declared as a disaster that the impact of the event exceeds the capacity of the 

affected societies to cope. 

The appearance of a natural disaster – particularly that with sudden impact 

and which is hard to predict - needs to be responded to with on-site actions, some 

of which are as follows: (1) Identification process of injuries, injury-free victims, 

and dead victims/ human remains, (2) First aid for the wounded victims, (3) 

Determination of temporary shelters and/ or temporary medical facility locations 

followed by their establishment, (4) Evacuation process of the victims, and (5) 

Relief distribution to the victims. These activities of last-mile disaster logistics – 

i.e. disaster logistics at the final stage of the disaster logistical chain - are 
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important as they are directly associated with the sufferers, the main focus of any 

alleviation of losses caused by any disaster. 

The establishment of temporary facilities –such as temporary medical 

centres/ facilities, temporary intermediate distribution centres and/ or temporary 

shelters - is an important part of response to a last-mile sudden-onset, difficult-to-

predict natural disaster. Temporary medical centres are needed to reduce 

congestion in existing emergency units. They are also needed to reduce delay in 

providing health care service for the victims. Intermediate distribution centres are 

needed to support the distribution process of logistics to disaster areas. Temporary 

shelters, if necessary, are crucial in providing temporary housing for the victims. 

For example, victims’ houses may be destroyed or the risk of remaining in 

residence too great. 

The evacuation process of the survivors is a very important last-mile action 

after any sudden-onset, difficult-to-predict natural disaster. In this type of 

response, injured victims are transported either to operational existing medical 

centres or to temporary medical facilities.  If necessary, injury-free victims may 

go or be transferred to temporary shelters. When removed from disaster areas, 

human remains are generally transported to hospitals – either permanent or 

temporary - for autopsy. 

Another equally important last-mile action following sudden-onset, 

difficult-to-predict natural disasters are the distribution of relief to sufferers. 

Commodity supplies need to be delivered to those who refuse to leave or be 

evacuated from the affected sites. The evacuees in temporary shelters, if any, also 

need to be supplied with food, water, tents, tarpaulins, clothes and the like. 

Responses such as those mentioned above could be under single 

authoritative bodies or, more likely, involve various organisations in charge. 

These organisations may serve autonomously or under a particular rule of 

coordination. Within the context of Indonesia, for instance, the Ministry of Social 

Affairs and its derivatives at lower levels of governmental structure is responsible 

for the provision of temporary intermediate distribution centres and/ or temporary 
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shelters and the supply of relief goods to disaster victims. Still in the same 

country, the services to injured victims (including the establishment of temporary 

medical centres/ facilities and their evacuation to medical facilities) are carried out 

by, among others, the Ministry of Health and its derivatives at various levels of 

governmental organisation. The National Board for Disaster Management and its 

derivatives, in the meantime, serve as coordinating governmental bodies in the 

event of disasters. With regard to the response phase of managing the disasters, 

the last body has a command power in coordinating other parties (including those 

from other countries and/or not-for-profit relief organisations) involved in disaster 

management. 

In responding to a particular disaster event at on-site level, availability of 

resources such as temporary medical facilities that need to be deployed or means 

of transport for distributing the relief and/or evacuating the victims are important 

factors that needs to be considered. Therefore, it is crucial to have information on 

resource availability characteristics to hand. This includes the fact that the 

resources available at different time points vary, in other words, the information 

on resources is dynamic in nature. It is not unusual that the information on 

resource availability throughout the period of the disaster relief operation might be 

known at the beginning of the disaster response with relatively high accuracy. 

This, for instance, is due to the reality that those resources are provided by other 

parties and the parties are able to let the coordinating authoritative body know 

about the resource availability in advance. 

With regards to all the aforementioned factors and features, it might be 

valuable to conduct the last-mile site positioning of relief supplies and medical 

facilities in response to a particular sudden-onset, difficult-to-predict disaster 

event dynamically and in a more coordinative way during a particular planning 

time horizon. The coordinative way may refer to the resource sharing of the relief 

distribution and victim transportation or might be related to the inclusion of 

information on resource availability during the planning horizon. In this sense, 

there are at least three different potential methods of last-mile positioning to 

consider: (1) dynamically conducting relief distribution and victim evacuation 
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with the same means of transport, (2) dynamically carrying out relief distribution 

and victim transportation separately taking into account information on resource 

availability in upcoming periods, and (3) combining the first two into one action. 

These three approaches can be evaluated and compared using a performance 

criterion derived from a desire to reduce loss of, and negative impact on, human 

life, the main purpose of any response to the upheaval caused by a disaster. 

1.3 Research Scope 

This research is limited by the following scope: 

1. Natural disasters under study are characterized by their sudden, difficult-to-

predict onset, whereas slow-onset/impact natural disasters (such as famine 

and drought) are excluded. 

2. The victims are categorised into injured victims and injury-free sufferers 

and are located in certain disaster areas. The process of classifying the 

victims and the provision of first aid to them are excluded. 

3. Due to the emergency nature of sudden-onset natural disaster response, 

costs are not the major concern. The research will therefore take no account 

of costs incurred in the process of achieving an optimal solution. 

4. This study is merely based on a positivist point of view; it does not deal 

with the matter of achieving a “thick description” – i.e. “... the researcher’s 

task of both describing and interpreting observed social action (or behavior) 

within its particular context” (Ponterotto, 2006) - of natural disasters. 

1.4 General Research Objectives 

This research is carried out to meet the following general objectives: 

1. To produce mathematical models which help to optimise the decisions on 

distributing relief, evacuating victims, and determining temporary site 
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allocations following a sudden-onset, difficult-to-predict natural disaster 

occurrence; 

2. To obtain general insights about the performance of the mathematical 

models; and 

3. To improve the process of distributing relief and evacuating victims soon 

after the occurrence of a sudden-onset, difficult-to-predict natural disaster. 

1.5 Outline of Thesis Report 

A brief synopsis of each chapter follows. 

Chapter 1: Introduction 

Chapter 1 provides a background to the research, research problem identification, 

research scope, general research objectives, and outline of the thesis. 

Chapter 2: Literature Review 

This chapter reviews previous research papers and other documents that are 

relevant to the current research. The review covers a variety of issues, but is 

mainly focused on disaster logistics and previous work on disaster logistics 

optimisation. The last part of this chapter is concerned with research significance, 

and explains how the current research fills in research gaps found in the literature 

and hence explains its significance. 

Chapter 3: Mathematical Models 

Motivated by the research problem under concern, four different mathematical 

models are presented. The first model tries, in many aspects, to represent the 

problem of “real practice” as it was found during the fieldwork. Three other 

mathematical models which are intended as improvements to the “real practice” 

model are also formulated. 

Chapter 4: On Model Testing with Computational Experiments 

Computational experiments are performed to test the operability and performance 

of the models developed in Chapter 3. Data obtained from the fieldwork following 

the West Sumatera earthquake are used as parameter inputs. Analysis of the 
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experimental results includes statistical significance and practical significance and 

is used to compare the relative performance of the four models using model I as a 

baseline. 

Chapter 5: On Heuristics 

In order to obtain additional insights into the performance of the four models on 

larger test problems, several heuristics are applied to the problems under 

consideration. The results of the application of the heuristics are analysed and 

discussed. Finally, a comparison on the performance of each of the models with 

and without the heuristic approaches is carried out and used to advise if and when 

it is better to utilize the model as is or to apply a heuristic. 

Chapter 6: Conclusions 

The final chapter provides overall conclusions, highlights research limitations and 

considers future research directions in this area. 

1.6 Thesis Contribution 

This research addresses location-allocation problems in relief distribution 

and victim evacuation after a sudden-onset, difficult-to-predict natural disaster 

and makes contributions in the following areas: 

1. Detailed review of problems and related previous research in disaster 

logistics. 

2. Development of mixed integer programming (MIP) models to optimise the 

site positioning of relief supplies and medical facilities in response to 

disaster occurrences dynamically and in a more coordinative way. 

3. Development of several heuristics to solve the abovementioned site 

positioning optimisation problem efficiently. 

4. Testing of these models and heuristics to evaluate the benefits of taking a 

coordinative approach and utilising future information. 
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CHAPTER 2                                                                 

LITERATURE REVIEW 

This chapter focuses on literature relevant to the research under concern. In 

order to be precise, a definition of disaster is needed. It is also important to have a 

clear scope about which type of disaster the current research deals with. A closer 

look at disaster trends and its impact supports how important disaster management 

is, meaning that a short overview on the disaster management cycle is necessary. 

Logistics within a disaster context is the issue of the current research and, 

therefore, it is essential to consider this area. The current research proposes to 

carry out site location in a more coordinative way, and thus coordination in the 

context of disaster needs to be outlined. Performance of the proposed approaches 

is a key element of this research and hence a short outline of performance 

measures and disaster logistic optimisation is provided. There follows a review of 

research work on the optimisation of disaster logistics – especially those which 

include location aspects – another key element of the research presented in this 

thesis. How the facilities are deployed is as important as other issues and is 

presented in the last part of this chapter. All of the sections in the chapter give 

clear evidence that research gaps exist and that the current research is important 

and relevant. 

2.1 Definition of Disaster 

Disaster has been defined in many different ways. Indeed, there is no precise 

or standardised definition for a disaster (Eshghi and Larson, 2008; Guha-Sapir et 

al., 2004). For these reasons, the following paragraph presents various definitions 

on disaster from a variety of sources. Several common terminologies in the 

definitions are then extracted, and a proposed definition employed in the thesis is 

provided at the end of this section. 

The United Nations (UNISDR, 2009) and the Asian Disaster Reduction 

Center (ADRC, 2013) define disaster as “a serious disruption of the functioning of 

society, causing widespread human, material or environmental losses which 
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exceed the ability of affected society to cope using only its own resources”. In its 

complete form, the Emergency Events Database (EM-DAT) defines disasters as 

“a situation or event which overwhelms local capacity, necessitating a request to 

the national or international level for external assistance, or is recognized as such 

by a multilateral agency or by at least two sources, such as national, regional or 

international assistance groups and the media” (Guha-Sapir et al., 2004). The 

International Federation of Red Cross and Red Crescent Societies (IFRC) defines 

a disaster as “... a sudden, calamitous event that seriously disrupts the functioning 

of a community or society and causes human, material, and economic or 

environmental losses that exceed the community’s or society’s ability to cope 

using its own resources…” (IFRC, 2013). Emergency Management Australia 

(EMA) defines disaster as “a serious disruption to community life which threatens 

or causes death or injury in that community and/or damage to property which is 

beyond the day-to-day capacity of the prescribed statutory authorities and which 

requires special mobilization and organization of resources other than those 

normally available to those authorities” (EMA, 1998). Below et al. (2007) 

propose “an accumulation of widespread losses over multiple economic sectors, 

associated with a natural hazard event, that overwhelms the ability of the affected 

population to cope” as a definition of a disaster. Keller and DeVecchio (2012) 

describe disaster as a hazardous event taking place in a certain region over a 

limited period. 

From those various definitions, it is apparent several terminologies are 

commonly shared. These include event, losses, affected population and beyond-

capacity or beyond-ability. From these shared terminologies, the thesis defines 

disasters as those events that cause losses to the affected population to a degree 

which is beyond the ability of the population to handle. 

2.2 Disaster Types 

Disasters can be classified in several ways. These ways include, to name a 

few, causes of disaster, speed of disaster arrival, arrival time and location of 

disaster (Apte, 2009; Apte and Yoho, 2011) and a combination of causes of 

disaster and speed of disaster arrival (Van Wassenhove, 2006). Disaster can also 
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be classified according to numbers of victims and affected areas (Gad-El-Hak, 

2008). 

Regarding their causes, EM-DAT (see, for example, Guha-Sapir et al. 

(2013); EM-DAT (2009b)) andFischer (2008) classify disasters into two different 

categories: natural and technological. The natural disasters are further 

distinguished into biological, geophysical, hydrological, meteorological and 

climatological disasters (EM-DAT, 2009a). Earthquakes, floods, tornadoes, 

volcanoes and tsunamis are examples of the first category of disasters (see EM-

DAT (2009a) and Fischer (2008)), whereas nuclear accidents and mass 

transportation accidents, on the other hands, are examples of the second category 

of disasters (Fischer, 2008). 

An example of classification of disasters with respect to their arrival time is, 

for instance, found in Coppola (2007). The author divides disasters into sudden-

onset disasters and “creeping” ones. According to him, sudden-onset disasters 

often arise with little, or even without, warning, whereas “creeping” disasters can 

exist for a long time period. Earthquakes, tsunamis, volcanoes, landslides, 

tornadoes and floods are examples of the first category of disasters. Examples for 

the second category include drought, famine, the AIDS epidemic and erosion. 

Van Wassenhove (2006) proposes a classification scheme (see Table 2.1) to 

understand disasters. According to him, disasters can be classified by using causes 

of disasters and arrival time. With respect to this way of classification, a particular 

disaster falls into one of sudden-onset natural disasters, sudden-onset man-made 

disasters, slow-onset natural disasters or slow-onset man-made disasters. 

Table 2.1 Categorisation of disasters based on van Wassenhove (2006) 

 Natural Man-made 

Sudden-onset Earthquake, hurricane, 

tornadoes 
Terrorist attack, coup d’état, 

chemical leak 

Slow-onset Famine, drought, poverty Political crisis, refugee crisis 
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Regarding its scope in terms of sufferer number and/ or geographic areas 

affected, Gad-El-Hak (2008) distinguishes disasters into five categories as can be 

seen in Table 2.2.Using the table, an earthquake disaster that takes place on a 500 

km
2
 area and which affects the overall 100.000 inhabitants of the area is classified 

as a gargantuan disaster of which the scope is V. 

Table 2.2 Disaster scope in terms of number of victims and/ or geographic areas 

affected (source: Gad-El-Hak (2008)) 

Scope Category No. of sufferers  
Geographical 

areas affected 

Scope I Small disaster < 10 persons Or < 1 km
2 

Scope II Medium disaster 10-100 persons Or 1-10 km
2 

Scope III Large disaster 100-1,000 persons Or 10-100 km
2 

Scope IV Enormous disaster 1,000-10
4
 persons Or  100-1,000 km

2 
Scope V Gargantuan disaster > 10

4
 persons Or  > 1,000 km

2 

 

It is also possible to distinguish a particular disaster according to its arrival 

predictability. Weather-related disasters such as hurricanes, wind storms, heavy 

localized rain or snowfall, and severe storms, heat waves, droughts, regional 

heavy precipitation, and extreme cold spells are usually predictable with a certain 

degree of accuracy (Dudhia, 2008). On the other hand are disasters of which 

arrival are unpredictable or hardly predictable, such as earthquake, terror attacks, 

and hazardous material release (see, for instance, Hsu and Peeta (2012) and 

Sayyady and Eksioglu (2010)). 

This thesis uses a combination of the abovementioned disaster 

classifications to determine disaster types. Padang Pariaman District – from which 

most parameter inputs of all models in the thesis is taken -, in particular, has a 

total area of 1,328.79 km
2
 with a total population of 390,226 people (data in year 

2008; see BPS (2009)). An earthquake that took place in West Sumatera Province 

on September 30, 2009 heavily affected the district. The problem under study, 

therefore, is in the context of a sudden-onset, gargantuan, difficult-to-predict 

natural disaster. It is necessary to mention, however, that the approach proposed in 

the current research can also be applied to other sudden-onset disasters falling into 

a different scope such as the flash flood that took place in several villages in 
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Jember District in 2006, the tsunami in Pangandaran Beach, West Java, in 2007 or 

the Mount Kelud eruption that took place in February 2014, all of which fall into 

the enormous disaster category. 

2.3 Trends in Disaster Occurrences and Their Impact 

Lichterman (1999) predicts that frequency of disasters and their effects seem 

to be increasing. This prediction is confirmed by a review of various related 

published sources from 1900-2005 by Eshghi and Larson (2008). Both natural and 

man-made disasters are likely to raise another five-fold over the next fifty years 

(from the year 2005) due to environmental degradation, rapid urbanization and the 

spread of HIV/AIDS in the less developed world (Thomas and Kopczak, 2005b). 

By looking at the EM-DAT database (EM-DAT, 2013b), it is also obvious that 

there is an increasing trend in the occurrences of natural disasters from 1900 to 

2011. Until 2004, over 90 percent of natural disasters occurred in developing 

countries (UNISDR, 2004). By processing data provided by EM-DAT, UNISDR 

shows that slightly more than 60% of natural disaster events during the period of 

2002-2012 took place in Asia (UNISDR, 2013a). 

Even though the total number of people killed by natural disasters from 

1900 to 2011 shows a decreasing figure, the number of affected people and the 

economic loss caused by natural disasters suggest an opposite profile. With regard 

to 2011 alone, CRED (Centre for Research on the Epidemiology of Disasters) (see 

Guha-Sapir et al. (2012)) reports that there were 332 natural disaster occurrences 

(excluding biological disasters) with 30,773 persons killed, 244.7 million others 

affected and approximately US$ 366.1 billion of economic damage. The same 

figures in 2012 as presented by UNISDR (UNISDR, 2013b), meanwhile, are 310 

natural disaster events, 9,330 dead victims, 106 million affected people and 

around US$ 138 billion economic loss. With regard to technological disasters, 

figures on their occurrences and people killed rose significantly from the 1970s to 

2011 (EM-DAT, 2013c). Figures on economic loss caused by the disasters from 

the 1980s to 2011, similarly, demonstrates a considerable increase (EM-DAT, 

2013a). 
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2.4 Disaster Management 

Disaster management can be seen as “the body of policy and administrative 

decisions, the operational activities, the actors and technologies that pertain to the 

various stages of a disaster at all levels” (Lettieri et al., 2009). The term 

emergency management is usually used in place of disaster management (see, for 

instance, UNISDR (2009) and Moe and Pathranarakul (2006)). Meanwhile, 

disaster operations can be considered as the set of activities that are performed 

before, during, and after a disaster which are aimed at preventing loss of human 

life, reducing its impact on the economy, and returning to a normal situation 

(Altay and Green, 2006). Using the terminology of disaster relief operations 

(DRO) as a substitute for disaster operations, Pujawan et al. (2009) state that 

DRO consists of a variety of activities such as assessing demands, acquiring 

commodities, finding out priorities as well as receiving, classifying, storing, 

tracing and tracking deliveries. 

Disaster management can be divided into four, inter-connected phases (see, 

for example, Altay and Green (2006), Coppola (2007), Lodree et al. (2012), 

Miller et al. (2005) and Tomasini and van Wassenhove (2009)): mitigation, 

preparedness, response, and recovery (or rehabilitation). The following paragraphs 

give a brief explanation of each disaster management phase. 

2.4.1 Disaster Mitigation 

Mitigation is the application of measures for either avoiding or lessening the 

possibility or the consequence (or consequence component) of a disaster arrival, 

or both (see, for instance, Coppola (2007), Altay and Green (2006) and Lodree et 

al. (2012)). Occasionally entitled prevention or risk reduction (Coppola, 2007), 

mitigation “treats” the disaster in such a way that the disaster occurrence affects 

people to a lesser extent (Coppola, 2007). Mitigation activities give attention to 

long-term solutions and, in general, are the most costly options in disaster 

management (Lodree et al., 2012). Examples of mitigation activities are, to name 

a few, construction of barrier systems to deflect disaster forces, zoning and land 

use control to avoid occupation of high hazard areas, environmental control, 
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behavioural adjustment and controls on building reconstruction following disaster 

events (see, for instance, Altay and Green (2006) and Coppola (2007)). 

2.4.2 Disaster Preparedness 

Preparedness involves activities taken in advance of a disaster occurrence to 

provide adequate response to and to recover from the effects of the disaster arrival 

(see, for example, Coppola (2007), Altay and Green (2006) and Lodree et al. 

(2012)). It aims at knowing what to do and how and being properly equipped 

following a disaster onset (Coppola, 2007). Unlike disaster mitigation, disaster 

preparedness gives focus on short-term activities (Lodree et al., 2012). Examples 

of activities in the disaster preparedness stage include: setting up large-scale 

evacuation plans, securing disaster relief supply items (Lodree et al., 2012), 

relevant training for response personnel or related citizens and establishment of 

emergency operation centres (Altay and Green, 2006). Another example is the 

provision of vehicles and equipment needed in the response phase (Altay and 

Green (2006); Coppola (2007)). 

2.4.3 Disaster Response 

Among the four functions of disaster management, the response phase is the 

most complex activity (Coppola, 2007). Disaster response can be defined as the 

employment of a set of measures during the initial occurrence of certain disastrous 

events, including those to save casualties’ lives and prevent further property 

damage (see, for example, Barbarosoǧlu and Arda (2004) and Coppola (2007)). It 

is usually performed as part of a previously determined disaster response plan 

(Altay and Green, 2006) and starts as soon as a particular disaster is about to 

happen and ends once the emergency is declared to be over (Coppola, 2007). 

Disaster response incorporates the evacuation process of threatened populations 

(Tierney et al. (2003); Altay and Green (2006); Yi and Kumar (2007); Chiu and 

Mirchandani (2008)), the activation of emergency operations centres, the 

establishment of shelters and the provision of mass care services, the provision of 

emergency rescue and medical care services, fire fighting (Altay and Green, 2006) 
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and fatality management (Altay and Green (2006); Coppola (2007)), to name a 

few. 

2.4.4 Disaster Recovery 

Recovery involves long-term actions carried out after the instantaneous 

impact of the disaster has passed to get the victims’ lives back to pre-disaster 

conditions and to lessen the risk of the same misfortune (Coppola (2007); Lodree 

et al. (2012); Altay and Green (2006)). It generally starts once the response phase 

has been completed (Coppola, 2007). Examples of disaster recovery include 

debris removal, rebuilding of dwellings, provision of temporary housing or 

shelter, and business restoration (see, for example, Coppola (2007), Lodree et al. 

(2012) and Altay and Green (2006)). 

The current research takes into account issues of location positioning, relief 

distribution and victim evacuation in the aftermath of a sudden-onset, massive, 

and unpredicted natural disaster. It is clear, therefore, that disaster response is the 

most relevant phase of disaster management to the research. The response to such 

a disaster, as already explained, also relies on a previously established response 

plan. This means that the research is also closely related to the preparedness phase 

of the disaster life cycle. 

Logistics plays an important part in all phases of disaster management. It is 

especially true in disaster preparedness and disaster response, the phases to which 

the thesis is mostly related. Location positioning, relief distribution and victim 

evacuation are all logistics-related issues. The logistical issues within disaster 

management are therefore explored and presented in the following section. 

Research on logistics optimisation in preparedness and response phases of disaster 

management is presented in Section 2.8, and is focused on aspects such as 

location, resource allocation, relief distribution and victim transportation. 
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2.5 Logistics in Disaster Management 

2.5.1 Definition and Scope of Logistics 

Logistics can be defined as follows (Sheu, 2007a):  

“Logistics is the process of planning, implementing, and controlling 

the efficient, effective flow and storage of goods, services and related 

information from the point of origin to the point of consumption for 

the purpose of conforming to customers requirements at the lowest 

total cost.”  

Logistics system operation consists of network design, information, 

transportation, inventory, warehousing, material handling and packaging (see Wu 

and Huang (2007)). Network design itself can be seen as consisting of the 

following activities (Goetschalckx, 2008): (1) establishing the appropriate 

quantity of distribution centres (DCs); (2) setting up the location of each DC; (3) 

allocating customers to each DC; (4) allocating appropriate commodities to each 

DC; and (5) determining the throughput and storage capacity of each DC. 

2.5.2 Characteristics of and Activities in Logistics within the Disaster 

Context 

Many different terms are used to describe the application of logistics in the 

disaster context. These include disaster logistics (see, e.g., Van Wassenhove 

(2006)), disaster relief logistics (see, for instance, Clay Whybark (2007) and 

Schulz and Blecken (2010)), humanitarian logistics (Kovacs and Spens, 2011; 

Kovács and Spens, 2007, 2009, 2011; Tatham and Kovács, 2010), relief logistics 

(e.g. Hsueh et al. (2008)), emergency logistics (see, for example, Sheu (2007a), 

Caunhye et al. (2012) and Tovia (2007)), emergency relief logistics (e.g. Pettit 

and Beresford (2005) and Lei (2007)), humanitarian relief chain (e.g. Beamon and 

Balcik (2008); Balcik et al. (2010); Charles and Lauras (2011)), humanitarian 

relief supply chain (e.g. Russell (2005), Falasca and Zobel (2011) and Ben-Tal et 

al. (2011)), disaster supply chain (see, e.g., Boin et al. (2010)), disaster relief 

supply chain (see, for example, Clay Whybark et al. (2010) and Day et al. (2009)) 

and humanitarian and disaster relief supply chain (e.g. Day et al. (2012)). The 
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terminologies all refer to similar activities and components henceforth referred to 

as disaster logistics within this thesis. 

Logistics in the disaster context has its own unique characteristics, 

especially with respect to its demand and supply, ultimate goals and 

environmental factors (Balcik and Beamon, 2008). It is apparent that the goods, 

materials, related information and services in the disaster context are present with 

uncertainty (Balcik and Beamon, 2008), are needed under emergency conditions 

(Sheu, 2007a), are demanded in huge amounts and with very short lead time 

(Balcik and Beamon, 2008), and, therefore, they are critical (Apte, 2009). Unlike 

commercial logistics, the main purpose of disaster logistics is to reduce the 

beneficiaries’ suffering (Thomas and Kopczak, 2005a). In general, disaster 

logistics take place in a complex environment (see, e.g. Day et al. (2012) or Van 

Wassenhove (2006)). 

Disaster logistics consists of a variety of operations and activities. These 

include, but are not limited to, asset prepositioning and resource allocation, 

temporary site selection, relief distribution, victim evacuation and inventory 

management (see, for instance, Holguín-Veras et al. (2012a); Apte (2009, ch. 4 

and Conclusion); Yi and Özdamar (2007)). 

2.5.3 Importance of Disaster Logistics 

Previous sections have already illustrated the vital role that logistics play in 

emergency management. Sheu (2007a) declares that, due to the possibility of 

disaster occurrences anytime around the world with huge effects, disaster logistics 

management has become an important global concern. Disaster logistics is even 

more crucial because it can be one of the most expensive elements of a relief 

effort (Thomas and Kopczak, 2005b), where 80% of cost is associated with 

logistics (Van Wassenhove, 2006). People affected by disasters, deprived of food, 

housing, livelihood and other means of supporting themselves need the delivery of 

food, medicine, tents, sanitation equipment, tools and other necessities (Clay 

Whybark, 2007). The timely delivery of important goods after a disaster event is 

crucial (Boin et al., 2010). The science of logistics and supply chain management 
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is becoming more vital for humanitarians (Van Wassenhove, 2006), and “the 

subject of disaster management is an absolutely fascinating one that is growing in 

importance” (Van Wassenhove, 2003). The importance of disaster logistics also 

stems from its contribution to the effectiveness and speed of response for 

humanitarian programs and its role in supporting repository data for post-event 

knowledge (Thomas and Kopczak, 2005b). 

The vital role of disaster logistics is also supported by disaster events from 

the field. This is indicated, for instance, by Oloruntoba (2005) and Thomas (2006) 

with regard to the 2004 Indian Ocean tsunami, Portilla et al. (2010) and Holguín-

Veras et al. (2013) with respect to the 2010 Haiti earthquake and Norio et al. 

(2012) concerning the 2011 Eastern Japan tsunami. 

2.5.4 Disaster Logistics and Its Potential Improvement 

McEntire (1999) states that disaster studies must discover ways to improve 

the provision of relief after a disaster hits. Regarding the relief of the Indian 

Ocean tsunami, the humanitarian organizations providing relief acknowledged 

that relief supply can and needs to be faster and more efficient (Thomas, 2005). 

Together with hurricane Katrina, the Indian Ocean tsunami gives evidence that 

there is a lack of ability to connect the aid provided with the aid received 

(Thomas, 2005), regardless of the unprecedented amount of relief provided during 

these two misfortunes. 

The potential improvement in disaster logistics could come in a variety of 

ways. Perry (2007), for instance, accentuates the availability of logistician cadres 

as a key element of disaster response, as part of needs assessment and for 

procuring, transporting, and distributing relief provisions. Good logistics planning 

as a key to the success of an emergency program is suggested by Davis and 

Lambert (2002). Furthermore, the development of new technology for track/trace 

and disaster relief supply chains is proposed as one way to improve the delivery of 

humanitarian relief (Baluch, 2007). In the context of the participation of non-

governmental organizations (NGOs) in worldwide emergencies (e.g. volcanic 

eruptions, earthquakes, floods, war), Beamon and Kotleba (2006) point out that 
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the capability of an NGO’s supply chain and logistics operations directly 

influences the success of a relief effort. Pujawan et al. (2009), meanwhile, 

propose information visibility, coordination, accountability, and professionalism 

as successful requirements of logistics for DRO. 

The difficulties of logistics management in the disaster context tend to be 

increasing with the presence of a variety of organisations addressing different 

needs, mandates, capacity and logistics capability and arriving at different time 

points, which are discussed in the following section. 

2.6 Coordination in the Disaster Management Context 

When a disaster strikes, it is common that a variety of organisations get 

involved (Balcik et al., 2010). Their involvement is not always in the same time 

frame (see, for instance, Telford and Cosgrave (2006) with regard to the 2004 

Indian Ocean tsunami, Abolghasemi et al. (2006) on arrivals of international 

response to the 2003 Bham earthquake and Norio et al. (2012) concerning 

international assistance to the 2011 Eastern Japan tsunami). Additionally, a 

disaster frequently takes place where resource scarcity exists (Balcik et al. (2010); 

Najafi et al. (2013)). All of these lead to increasing complexity of management 

and calls for good coordination (Coppola (2007); Baldini et al. (2012)). In the 

disaster context, coordination has been defined as “the relationships and 

interactions among different actors operating within the relief environment” 

(Balcik et al., 2010). 

Effectiveness in responding to disaster arrivals is the main objective of 

coordination (Akhtar et al., 2012). A solid coordination is proven to be able to 

lessen losses arising from disasters (see, for instance, Prizzia (2008)) and serves as 

a critical success factor in disaster management (Moe and Pathranarakul, 2006). 

Regarding the response phase of the disaster management life cycle, well-

coordinated response is vital for its effectiveness (Rosen et al., 2002). Indeed, lack 

of coordination is found as one cause, along with others, of failure of the response 

(Thévenaz and Resodihardjo (2010); Cigler (2007); Eikenberry et al. (2007) with 

respect to Hurricane Katrina, 2005). 
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Coordination might take place vertically (i.e. amongst entities at different 

levels of the disaster relief chain) or horizontally (i.e. amongst entities at the same 

level of the disaster relief chain) (Balcik et al., 2010). The need for coordination 

in disaster management can take place at international level, national level and/ or 

field level (Tomasini and van Wassenhove, 2009), depending on the scope of the 

disaster. With respect to the disaster life cycle, coordination can be by command, 

by consensus, or by default (Tomasini and van Wassenhove, 2009). 

As mentioned above, the involvement of various agencies in a disaster 

response takes place at different periods. Consequently, resource supplies 

included in the response are not always available at the same time points. This 

includes vehicles (see, for instance, Pedraza Martinez et al. (2011)) and medical 

facilities (see, for example, Abolghasemi et al. (2006)). The vehicles need to be 

dispatched (see, for example, Jotshi et al. (2009)) and the medical facilities, 

frequently, have to be positioned (see, e.g., Merin et al. (2010) and Kreiss et al. 

(2010)). Along with the fact that the resources are frequently limited, the 

utilisation of the resources needs to be well-coordinated, two of which activities 

are resource sharing (see, e.g., Chen et al. (2008), Nolte et al. (2012) and Kapucu 

et al. (2009)) and the inclusion of confirmed and anticipated data on resource 

availability in the current disaster management plans and measures (see, for 

example, Ozdamar and Yi (2008), Yi and Özdamar (2007) and Yi and Kumar 

(2007)). 

Regarding the South Asian earthquake in 2005 (see Akhtar et al. (2012)), it 

was found that tangible resources (finance, technology, and people), intangible 

resources (leadership, relevant experience and education, relationship 

management skills, research abilities, and performance measurement skills) and 

extra effort (extra time and hard work) determine the success of coordination. 

With respect to the Fort Worth tornado (March 28, 2000), political support, 

preparedness measures, networking and cooperative relationships, technology, 

and the nature and use of emergency operations centres were found to be key 

success factors of the given coordinated response (McEntire, 2002). 
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2.7 Performance Measures and Disaster Logistics 

Performance measurement is needed in each of the disaster management 

stages in order to examine the present level of performance and to unearth aspects 

that are still open for improvement (Moe et al., 2007).This also applies to disaster 

logistics as part of disaster management (see, for instance, Beamon and Balcik 

(2008) and Bolsche (2013)). Insight into logistical performance can be obtained in 

at least two ways: (1) by comparing the performance measures of different 

disaster logistical structures for different disaster events (see, for example, 

Gatignon et al. (2010) with regard to old and new supply chain structures of 

IFRC), or (2) by comparing the performance measures of different disaster 

logistical structures for a particular disaster (see, for example, Holguín-Veras et 

al. (2012b) with respect to different logistic structures following the Haiti 

earthquake). 

Critical success factors in the disaster logistic management context have 

been proposed (see, for example, Pettit and Beresford (2009)). Several scholars, 

furthermore, have developed performance metrics for disaster logistics (see, e.g., 

Beamon and Balcik (2008), Davidson (2006), Schulz and Heigh (2009), Bolsche 

(2013), Santarelli et al. (2013) and Torabi (2013)). 

Average and minimum response time (Beamon and Balcik (2008); Torabi 

(2013)), delivery date reliability (Santarelli et al., 2013), goods-to-delivery time 

(Santarelli et al. (2013); Davidson (2006)), total amount of relief supplied to the 

victims (Torabi (2013); Beamon and Balcik (2008)), number of flawless deliveries 

(Torabi, 2013) and unsatisfied demands on goods (see, for instance, Ozdamar et 

al. (2004) and Lin et al. (2011)) are examples of the performance features, factors 

and measures of relief distribution. Total number of victims served (Liu et al., 

2010) and time needed or distance travelled for evacuation (Saadatseresht et al. 

(2009); Yuan and Wang (2009); Fang et al. (2011); Chiu et al. (2007)), injured 

victims transported to medical facilities (Kuwata and Takada, 2004) or simply 

victims evacuated (Chiu et al., 2007) are examples of performance measures of 

victim evacuation. A combination of un-evacuated injured people and unsatisfied 

demand on commodities (see, for instance, Yi and Kumar (2007), Ozdamar and 
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Yi (2008), Ozdamar (2011) and  Najafi et al. (2013)) is an example of a 

performance measure of joint relief distribution-victim transportation. 

2.8 Problem Types in Disaster Logistic Optimisation 

This section focuses on several problem types in combinatorial optimisation 

(see, for instance, Blum and Roli (2003), Blum (2005), Zlochin et al. (2004) on 

the subject of combinatorial optimisation) within the disaster logistic context 

using mathematical models as the main modelling methodology. For the reason of 

relevance to the current research, the problems presented are limited to those on 

the allocation of resources to particular places or demand points, how relief 

delivery or victim evacuation (including the route selection) is carried out, how 

particular sites are selected and how combined site location-routing in the disaster 

context is conducted. For the same reason, the research reviewed is mainly related 

to disaster preparedness and disaster response, the most relevant areas of research 

to this thesis. Four different problem types in disaster logistic optimisation are 

subsequently identified: (1) resource allocation problems, (2) relief distribution 

and/ or victim transportation, (3) location-allocation problems, and (4) location-

routing problems. The following sub-sections explore these problem types in 

more detail, with particular emphasis on location-allocation and location-routing 

as these are more relevant to the current research. 

2.8.1 Resource Allocation Problems 

The resource allocation problem in general is the process of allocating 

resources to a variety of activities, projects or business units in order to optimise 

particular objectives subject to a set of constraints (Chaharsooghi and Meimand 

Kermani, 2008; Yin and Wang, 2006a, 2006b). The objectives could be profit 

maximisation or cost minimisation (Chaharsooghi and Meimand Kermani, 2008). 

When formulated as a mathematical programming problem, the objectives can be 

either linear or non-linear (Yin and Wang, 2006a). A considerable amount of 

research on resource allocation optimisation has been carried out within a disaster 

context, for example Fiedrich et al. (2000), Gong and Batta (2007), Zhu et al. 
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(2008), Lee et al. (2006), Altay (2012), Arora et al. (2010), Mert and Adivar 

(2010) and Adıvar and Mert (2010). 

2.8.2 Relief Distribution and/or Victim Transportation 

According to Chopra (2003), distribution can be seen as a series of steps to 

convey and stock up a product from the provider to a user in the supply chain. 

Relief distribution comprises three different elements: supply, demand and 

transportation (Tzeng et al., 2007). Humanitarian aid distribution (see, for 

instance, Vitoriano et al. (2009), Vitoriano et al. (2010), Ortuño et al. (2010) and 

Balcik et al. (2010)) or relief aid distribution (see, for example, Balcik et al. 

(2008)) is sometimes used instead of relief distribution. Examples of relief 

distribution optimisation within a disaster context can be found in Barbarosoǧlu 

and Arda (2004), Sheu (2007b), Tzeng et al. (2007), Liu and Zhao (2007), Chern 

et al. (2010), Wenxue and Zihui (2010) and Yan and Shih (2009). Research 

papers by Rottkemper et al. (2011), Rottkemper et al. (2012) and McCoy and 

Brandeau (2011), in the meantime, are examples of research which focus on relief 

distribution as well as other aspects of disaster logistics. 

Evacuating disaster casualties from disaster areas to medical facilities is 

another issue arising after disaster occurrences. Disaster victim transportation can 

be seen as a process of distributing relief with the only difference that the object to 

be transported is people and not relief goods and has been researched by Chiu and 

Zheng (2007), Saadatseresht et al. (2009), Lu et al. (2003, 2005) and Jotshi et al. 

(2009) amongst others. 

Considering the necessity of delivering relief and transporting victims, it is 

possible to handle these two activities simultaneously. Research papers by Yi and 

Kumar (2007) and Ozdamar and Yi (2008) are examples of this type of research 

on optimisation of relief delivery and/ or victim transportation. 

One way of delivering relief to the victims or transporting victims from one 

place to another is by determining delivery/ evacuation routes. In this case, the 

relief distribution or casualty transportation is the same as the vehicle routing 
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problem (VRP). In its most basic form (see, for example, Bulbul et al. (2008) and 

Laporte (2007)), VRP is concerned with the optimal delivery or collection routes 

for a limited number of identical vehicles with limited capacities from a central 

depot/ warehouse to a set of geographically scattered customers. Examples of 

research on VRP-type relief distribution optimisation within the disaster context 

include Haghani and Oh (1996) and Oh and Haghani (1997), Hwang (1999), 

Barbarosoğlu et al. (2002), Ozdamar et al. (2004), Berkoune et al. (2012), Balcik 

et al. (2008), Hsueh et al. (2008), Gong et al. (2009), Stepanov and Smith (2009), 

Jotshi et al. (2009), Yi and Kumar (2007) and Ozdamar and Yi (2008). 

2.8.3 Location-Allocation Problems (LAPs) 

As previously stated in Goetschalckx (2008), the location-allocation 

problem (LAP) (some papers use the term location problem instead) can be seen 

as part of distribution network design problems. Given the location of a set of 

customers with different demands, LAP is concerned with the selection of supply 

centres’ positions dedicated to serving the customers as well as the decision of the 

allocation of the customers to supply centres, with both of them aimed at 

optimizing a given criterion (Hsieh and Tien, 2004). It is also assumed that there 

is no interaction among supply centres. The criterion can be single such as 

transportation costs (see, for example, Goetschalckx (2008); Zhou and Liu (2003); 

Manzini and Gebennini (2008)) or may comprise several aspects (see, for 

example, Mitropoulos et al. (2006)). Applications of LAP range from business-

related sectors to public services environments (see, for instance, Smith et al. 

(2009)). 

According to ReVelle and Eiselt (2005), LAP is characterised by four main 

elements: (1) customers, who are assumed to already exist, (2) facilities that will 

be situated, (3) a space in which customers and facilities are located, and (4) a 

metric that provides either distances or times between customers and facilities. 

In the sense of the space in which the LAPs are modelled (Daskin, 2008; 

ReVelle et al., 2008) or topological characteristics of the facility and demand sites 

(Jia et al., 2007a), models on LAP can be divided into four different categories: 
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analytic models, continuous models, network models, and discrete models. In 

analytic models, demand is usually assumed to be distributed in some way over a 

service area and that facilities can be sited anywhere in the area. Continuous 

models typically assume that demand arises at discrete points in the area, whereas 

facilities can be located anywhere in the area. Network models assume that 

demand arises and facilities can be located only on a network comprised by nodes 

and links. Discrete models assume that demands as well as candidates for facilities 

locations are in discrete sets. 

Location-allocation problem models can also be classified according to the 

nature of problem input parameters (see, for example, Owen and Daskin (1998), 

Current et al. (2001) and Boloori Arabani and Farahani (2012)). In this regard, 

there are four different types of LAP models: static, dynamic, deterministic and 

stochastic. Static LAP models assume that input parameters are static over time. 

In dynamic LAP models, input parameters vary over time and are assumed to be 

known. Deterministic LAP models assume that input parameters are known. 

When input parameters are uncertain, associated LAP models are called stochastic 

LAP models. 

With respect to supply centres’ capacity, LAP can be divided into 

capacitated and un-capacitated (Hsieh and Tien, 2004). Capacitated LAP refers to 

any LAP where the capacities of supply centres are fixed. When the capacities of 

each supply centre can be adjusted, the LAP is called an un-capacitated LAP. 

Another criteria in classifying the LAP is the objective of the model (Jia et 

al., 2007a). In covering models, the total quantity of sites is minimised while 

coverage to all demand points is provided or the coverage to demand points is 

maximised given a fixed number of sites. Minimising maximum distance is the 

main concern of P-centre models. The minimisation of total or average distance, 

on the other hand, is the main focus of P-median models. 

Time horizon is another criterion for categorising LAP (Jia et al., 2007a). 

With respect to this criterion, LAP models can be distinguished into static and 

dynamic LAP models. Static LAP models optimise the system performance by 



 26 

concurrently choosing all variable values. Dynamic LAP models consider 

different periods and all relevant information and data related to each of them, and 

the overall solution is obtained from each of these unique time intervals. 

Research work on various LAPs is plentiful. The following papers provide 

several examples of this work: Hsieh and Tien (2004), Bischoff and Dächert 

(2009), Chan et al. (2008), Berman et al. (2007), Berman et al. (2008), Eben-

Chaime et al. (2002), Zhou and Liu (2003, 2007), Wen and Iwamura (2008), 

Schmid and Doerner (2010) and Mitropoulos et al. (2006). 

In addition, research on LAP has been carried out taking account of other 

aspects, for example inventory conditions or capacities of the facilities. The 

decisions with respect to all of these factors can be made simultaneously or in 

sequence order. Papers by Snyder et al. (2007), ÜSter et al. (2008), Yao et al. 

(2010) and Manzini and Gebennini (2008), to name a few, are examples of 

research on LAP with the inclusion of inventory level calculation. The presence of 

capacity calculation (e.g. of medical facilities) along with facility location and 

demand allocation aspects – and commonly found in health-related environment – 

can be found in, to name a few, Cho (1998), Segall (2000) and Harper (2005). 

With regard to LAP in a disaster context, flow of ‘goods’ can be from the 

demand points (which represent points of origin) to facility sites (which function 

as points of destination) or vice versa. Included in the first category is research on 

LAP of which the main concern is victim transportation from disaster areas to 

medical facilities. The second type of research, on the other hand, contains 

research that gives attention to location of relief supply sites and demand 

allocation to sites. 

The following paragraphs present an overview of research papers on the 

LAP in the context of disaster optimisation with respect to: types of disaster, 

disaster management phase to which the optimisation is devoted, input features, 

whether supply sites are capacity-constrained or not, objective of the model, main 

decisions, time horizon (whether it is single time period or multiple time period) 
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and solution methods (i.e. exact methods or heuristics). Table 2.3 provides the 

related review in tabular form. 

It should be noted that other decisions and/ or problem types in disaster 

logistics optimisation occasionally exist – such as inventory-related ones – and 

also need to be made. Unless included in the four abovementioned problem types, 

research on these types of problem and/ or decision is excluded from the overview 

as they are of minimal relevance to the thesis. 

As mentioned previously, disasters can be classified as slow-onset, easy-to-

predict disasters, slow-onset, difficult-to-predict disasters, sudden-onset, easy-to-

predict disasters and sudden-onset, difficult-to-predict disasters. With regard to 

the research papers included on the LAP in the context of disaster optimisation, it 

was found that none of the abovementioned disaster categories were provided. 

The majority of research papers on LAP in the context of disaster logistic 

optimisation are concerned with disasters in general (see, for instance, Ablanedo-

Rosas et al. (2009), Alcada-Almeida et al. (2009), Bozorgi-Amiri et al. (2013), Jia 

et al. (2007a), Kusumastuti et al. (2013), Rawls and Turnquist (2012)). Several 

research papers deal with sudden-onset disasters such as earthquakes or hurricanes 

(e.g. An et al. (2013), Balcik and Beamon (2008), Jia et al. (2007b) and Salmeron 

and Apte (2010)). Chang et al. (2007), Widener and Horner (2011), Galindo and 

Batta (2013) are examples of research that are concerned with sudden-onset, easy-

to-predict disaster phenomena. Finally, sudden-onset, difficult-to-predict disasters 

are addressed by, for instance, Döyen et al. (2011), Edrissi et al. (2013), Hu et al. 

(2012), Li et al. (2011) and Mahecha and Akhavan-Tabatabaei (2012). 

Another important issue is to which phase of disaster management the 

research is dedicated. Most of the papers under review deal with measures in the 

preparedness phase (see, e.g., Alcada-Almeida et al. (2009), Balcik and Beamon 

(2008), Chang et al. (2007), Galindo and Batta (2013), Hu et al. (2012), Jia et al. 

(2007b), Mahecha and Akhavan-Tabatabaei (2012) and Salmeron and Apte 

(2010)). Several papers (such as Li et al. (2011), Widener and Horner (2011), 
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Table 2.3 Research on disaster-related LAPs within disaster logistic optimisation 

Author(s) 
Disaster 

types 
Phase Input type 

Supply 

capacity 
Model objective Main decisions 

Time 

period 
Solution 

method(s) 

Ablanedo-Rosas et 

al. (2009) 
General Preparedness Static Un-capacitated Covering Location Single Exact 

Alcada-Almeida et 

al. (2009) 
General Preparedness Static Capacitated P-median Location, victim 

transportation 
Single Approximate  

An et al. (2013) Sudden Preparedness, 

response 
Stochastic Un-capacitated P-median Location, victim 

transportation 
Single Exact  

Balcik and Beamon 

(2008) 
Sudden Preparedness Stochastic Capacitated Covering Location, inventory Multi Exact  

Bozorgi-Amiri et al. 

(2013) 
General Preparedness, 

response 
Stochastic Capacitated P-median, P-

centre 
Location, inventory, 

relief distribution 
Single Exact  

Bozorgi-Amiri et al. 

(2012) 
General Preparedness, 

response 
Stochastic Capacitated P-median, P-

centre 
Location, inventory, 

relief distribution 
Single Approximate  

Campbell and Jones 

(2011) 
General Preparedness Stochastic Un-capacitated P-median Location, inventory Single Approximate  

Chang et al. (2007) Sudden, 

easy 
Preparedness Stochastic Capacitated P-median Location, victim 

transportation 
Single Approximate  

Chi et al. (2011) General Preparedness Static Capacitated P-median Location Single Approximate  

Chowdhury et al. 

(1998) 
Sudden Preparedness Stochastic Capacitated P-median Location Single Exact 

Dekle et al. (2005) General Response Static Un-capacitated Covering Location Single Approximate 

Doerner et al. (2009) Sudden, 

difficult 
Preparedness Stochastic Un-capacitated Covering, P-

median 
Location Single Exact, 

approximate 

Döyen et al. (2011) Sudden, 

difficult 
Preparedness, 

response 
Stochastic Capacitated P-median Location, inventory, 

relief distribution 
Single Approximate 
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Table 2.3 Research on disaster-related LAPs ... (continued) 

Author(s) 
Disaster 

types 
Phase Input type Supply capacity Model objective Main decisions 

Time 

period 

Solution 

method(s) 

Drezner (2004) General Preparedness Static Un-capacitated Covering, P-

median, P-centre 

Location Single  Exact 

Drezner et al. (2006) General Preparedness Static Un-capacitated Covering, P-

median, P-centre 

Location Single  Approximate 

Edrissi et al. (2013) Sudden, 

difficult 

Mitigation, 

preparedness, 

response 

Stochastic Un-capacitated P-median Location, relief 

distribution 

Single  Approximate 

Galindo and Batta 

(2013) 

Sudden, 

easy 

Preparedness Stochastic Capacitated P-median Location, relief 

distribution 

Single Approximate 

Hu et al. (2012) Sudden, 

difficult 

Preparedness Static Capacitated Covering Location Single Approximate 

Huang et al. (2010) General Response Static Un-capacitated P-centre Location Single Approximate 

Jia et al. (2007a) General Preparedness, 

response 

Stochastic Un-capacitated Covering, P-

median, P-centre  

Location Single Exact 

Jia et al. (2007b) Sudden Preparedness Stochastic Un-capacitated Covering Location Single Approximate 

Jing et al. (2010) General Preparedness Stochastic Capacitated P-median Location, relief 

distribution 

Single Approximate 

Kandel et al. (2011) General Preparedness Static Un-capacitated P-median Location Single Approximate 

Kongsomsaksakul et 

al. (2005) 

Sudden, 

easy 

Preparedness Static Capacitated P-median Location, victim 

transportation 

Single Approximate 

Kulshrestha et al. 

(2011) 

General Preparedness Stochastic Capacitated P-median Location, victim 

transportation 

Single Approximate 

Kusumastuti et al. 

(2013) 

General Response Static, 

dynamic 

Capacitated, un-

capacitated 

Covering,  

P-median 

Location, relief 

distribution 

Single, 

multi 

Exact  

Lee et al. (2009a) General Preparedness Static Capacitated Covering, P-median Location, capacity Single Approximate  

Lee et al. (2009b) General Preparedness Static Capacitated Covering, P-median Location, capacity Single Approximate  

Li and Jin (2010) Sudden, 

easy 

Preparedness, 

response 

Stochastic Capacitated P-median Location, capacity, 

inventory, victim 

transfer 

Single Approximate  
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Table 2.3 Research on disaster-related LAPs ... (continued) 

Author(s) 
Disaster 

types 
Phase Input type Supply capacity Model objective Main decisions 

Time 

period 

Solution 

method(s) 

Li et al. (2011) Sudden, 

difficult 

Response Stochastic Capacitated P-median Location, relief 

distribution 

Single Approximate 

Lodree et al. (2012) Sudden, 

easy 

Preparedness Stochastic Un-capacitated P-median Location, relief 

distribution 

Single Exact, 

approximate 

Mahecha and 

Akhavan-Tabatabaei 

(2012) 

Sudden, 

difficult 

Preparedness Static Capacitated P-median Location Single Exact 

Mete and Zabinsky 

(2010) 

General Preparedness, 

response 

Stochastic Capacitated P-median Location,  inventory, 

routing 

Single Exact 

Murali et al. (2012) Sudden, 

difficult 

Preparedness Stochastic Capacitated P-median Location Single Approximate 

Park et al. (2012) Sudden, 

difficult 

Preparedness Stochastic Capacitated Covering Location Single Approximate 

Paul and Hariharan 

(2012) 

General Preparedness, 

response 

Stochastic Capacitated P-median Location, capacity, 

victim transportation 

Single Exact 

Paul and Batta (2008) General Preparedness Static Capacitated Covering Location, capacity Single  Approximate 

Ratick et al. (2008) General Preparedness Static Un-capacitated Covering Location Single Exact 

Rawls and Turnquist 

(2010) 

General Preparedness, 

response 

Stochastic Capacitated P-median Location,  inventory, 

relief distribution 

Single  Approximate 

Rawls and Turnquist 

(2011) 

General Preparedness, 

response  

Stochastic Capacitated P-median Location,  inventory, 

relief distribution 

Single  Exact 

Rawls and Turnquist 

(2012) 

General Preparedness, 

response 

Stochastic Capacitated P-median Location,  inventory, 

relief distribution 

Multi Exact 

Rekik et al. (2013) General Response Static Un-capacitated Covering Location, relief 

distribution, vehicle 

routing  

Single Exact 

Salmeron and Apte 

(2010) 

Sudden, 

easy 

Preparedness Stochastic Capacitated P-median Location, relief 

distribution, victim 

transportation 

Single  Exact 
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Table 2.3 Research on disaster-related LAPs ... (continued) 

Author(s) 
Disaster 

types 
Phase 

Input 

type 

Supply 

capacity 
Model objective Main decisions 

Time 

period 

Solution 

method(s) 

Sherali et al. (1991) 
Sudden, 

easy 
Preparedness Static Capacitated P-median 

Location, victim 

transportation 
Single Approximate 

Widener and Horner 

(2011) 
Sudden, 

easy 
Response Static Capacitated P-median Location Single  Exact 

Xiang-lin et al. 

(2010) 
General Preparedness Stochastic Un-capacitated Covering Location Single  Approximate 

Xiang-lin and 

Yun-xian (2009a) 
General Preparedness Stochastic Un-capacitated Covering Location Single  Approximate 

Xiang-lin and 

Yun-xian (2009b) 
General Preparedness Stochastic Un-capacitated Covering Location Single  Approximate 

Xue et al. (2012) General Preparedness Static Un-capacitated P-median Location Single  Approximate 

Yushimito et al. 

(2010) 
General Preparedness Static Un-capacitated Covering Location Single  Approximate 

Zhan and Liu (2011) General Preparedness Stochastic Un-capacitated P-median 
Location, relief 

distribution 
Single  Exact 

Zhang et al. (2013) General Preparedness Static Un-capacitated P-median Location Single  Approximate 

Zhu et al. (2010) General Preparedness Static Capacitated P-median Location Single  Approximate 
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Kusumastuti et al. (2013)) are concerned with activities in the response stage of 

disaster management. Research papers such as An et al. (2013), Bozorgi-Amiri et 

al. (2013), Döyen et al. (2011), Jia et al. (2007a) and Rawls and Turnquist (2012), 

meanwhile, are devoted to activities in both the preparedness and response phases. 

Edrissi et al. (2013), finally, is concerned with activities in the mitigation, 

preparedness and response stages. 

The papers are also categorised with regard to input characteristics of the 

data, i.e. static, dynamic, deterministic or stochastic in nature. Ablanedo-Rosas et 

al. (2009), Alcada-Almeida et al. (2009), Hu et al. (2012), Mahecha and 

Akhavan-Tabatabaei (2012) and Widener and Horner (2011), for example, deal 

with static input parameters. One of the two models in Kusumastuti et al. (2013), 

meanwhile, is concerned with dynamic input parameters. The majority of the 

research papers (such as An et al. (2013), Balcik and Beamon (2008), Bozorgi-

Amiri et al. (2013), Chang et al. (2007), Döyen et al. (2011), Edrissi et al. (2013), 

Galindo and Batta (2013), Jia et al. (2007a), Jia et al. (2007b), Li et al. (2011), 

Rawls and Turnquist (2012) and Salmeron and Apte (2010)) address problems 

with stochastic input parameters. 

Capacity of sites is another important aspect by which research papers may 

be classified. Alcada-Almeida et al. (2009), Balcik and Beamon (2008), Bozorgi-

Amiri et al. (2013), Chang et al. (2007), Döyen et al. (2011), Galindo and Batta 

(2013), Li et al. (2011), Mahecha and Akhavan-Tabatabaei (2012), Rawls and 

Turnquist (2012) and Widener and Horner (2011), for example, relate to 

capacitated LAP. Research such as that by Ablanedo-Rosas et al. (2009), An et al. 

(2013), Edrissi et al. (2013), Jia et al. (2007a) and Jia et al. (2007b), in the 

meantime, deal with LAPs where there are no particular limits on site capacity. 

Models on LAP can also be classified according to model objectives. In this 

respect, it seems that the majority of research papers under concern fall into P-

median models (see, for instance, Alcada-Almeida et al. (2009), An et al. (2013), 

Döyen et al. (2011), Edrissi et al. (2013), Galindo and Batta (2013), Li et al. 

(2011), Mahecha and Akhavan-Tabatabaei (2012), Rawls and Turnquist (2012), 

Salmeron and Apte (2010)). Much research work such as Ablanedo-Rosas et 
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al.(2009), Balcik and Beamon (2008), Jia et al. (2007b) and Yushimito et al. 

(2010) deals with covering problems. P-centre problems solely (as they appear in 

the objective function(s)) can be found in Huang et al. (2010) and in model I in 

Kusumastuti et al. (2013), and the use of P-centre approach along with either P-

median or covering or both appears in work by Bozorgi-Amiri et al. (2013), 

Drezner (2004), Drezner et al. (2006) and Jia et al. (2007a), to name a few. 

Location is the main decision in all of the research papers under review. The 

location aspect can be the only decision (see, for example, Ablanedo-Rosas et al. 

(2009), Drezner (2004), Drezner et al. (2006), Hu et al. (2012), Jia et al. (2007a) 

and Jia et al. (2007b), Mahecha and Akhavan-Tabatabaei (2012) and Widener and 

Horner (2011)) or in combination with other decision(s) such as inventory level 

(see, for instance, Balcik and Beamon (2008) and Campbell and Jones (2011)), 

relief distribution (e.g. Edrissi et al. (2013), Galindo and Batta (2013), 

Kusumastuti et al. (2013) and Li et al. (2011)), victim transportation (e.g. Alcada-

Almeida et al. (2009), An et al. (2013), Chang et al. (2007) and Kongsomsaksakul 

et al. (2005)), inventory and relief distribution (e.g. Bozorgi-Amiri et al. (2013), 

Döyen et al. (2011) and Rawls and Turnquist (2012)), inventory and routing in 

sequential order such as that in Mete and Zabinsky (2010) or relief distribution 

and victim transportation such as that in Salmeron and Apte (2010). 

With regard to time period, it is apparent that most of the research papers 

under review approach the problems statically. Only two research papers (i.e. 

Balcik and Beamon (2008) and Rawls and Turnquist (2012)) and one model (i.e. 

model II in Kusumastuti et al. (2013)) deal with the associated problem under 

concern dynamically. 

Solution method(s) is the final criteria applied in the review. In this respect, 

either exact methods or approximate approaches come into play in roughly equal 

measure. Ablanedo-Rosas et al. (2009), Bozorgi-Amiri et al. (2013), Kusumastuti 

et al. (2013) and Salmeron and Apte (2010) are examples of research papers with 

exact methods as solution approaches. Approximate methods are employed by, for 

instance, Alcada-Almeida et al. (2009), Döyen et al. (2011) and Galindo and 
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Batta (2013). Few research papers (see, e.g., Doerner et al. (2009) and Lodree et 

al. (2012)) employ exact methods as well as approximate approaches. 

From the summary, it should be mentioned that only Rawls and Turnquist 

(2012) and one of the model in Kusumastuti et al. (2013) deal with the 

optimisation of location selection and relief distribution dynamically. The latter, 

in particular, is concerned with the activities of positioning the temporary 

distribution centres and distributing the related relief commodities after a 

particular disaster occurrence. Salmeron and Apte (2010), in the meantime, deal 

with the optimisation of location positioning, relief distribution and casualty 

transportation. In contrast to one of the models in Kusumastuti et al. (2013), the 

three activities in Salmeron and Apte (2010) take place in the preparedness stage 

of disaster management. These three research papers are further reviewed and are 

presented in the following paragraphs. 

Rawls and Turnquist (2012) take into account location to be pre-positioned, 

inventory level of emergency supplies in that location and quantity of the supplies 

to fulfil demands. Uncertainties regarding the demands and transportation network 

availability due to disaster events are reflected in particular scenarios. The 

researchers develop a two-stage stochastic mixed integer program (SMIP) to solve 

the problem. The research addresses the allocation part of the problem 

dynamically. 

An optimisation of temporary facility positioning and relief distribution in 

response stage of disaster management is the main concern of Kusumastuti et al. 

(2013). The research deals with a four-layer relief logistics network, where 

distribution facilities at district level and village level need to be positioned and 

relief distribution from provincial level facilities through district level facilities to 

village level facilities need to be optimised. For that purpose, two different 

mathematical models are subsequently constructed. A static model – which is a 

slight modification of a maximal covering location problem – is built and aims to 

determine locations of village level distribution facilities within a given budget 

that maximises the expected number of casualties that can be served by the 

facilities during the overall period of disaster relief. The output from this model is 
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fed into a dynamic model where locations of district level facilities and relief 

distribution from provincial level facilities to the district facilities are determined 

under a certain limited budget and aims to minimise the total delivery time of 

relief from the provincial level facilities to village level facilities. A real problem 

of a flood taking place in Jakarta Province is used to give evidence about the merit 

of the proposed models. 

Salmeron and Apte (2010) deal with the problem of capacity expansion 

(including the possibility of having new sites), relief distribution, and victim 

transportation. The authors approach the problem statically. In the paper, 

resources already exist or can be prepositioned in relief locations. Victims, 

meanwhile, are classified into three different categories: (1) critical victims 

needing to be evacuated to relief locations for medical treatment, (2) stay-back 

victims who may stay in affected areas but need to be supplied with relief from 

relief locations, and (3) transfer victims who need to be evacuated to relief 

locations due to their temporary displacement status. To minimise the expected 

number of casualties under a variety of disaster scenarios, the authors develop a 

two-stage stochastic optimisation model. The first stage of the model is concerned 

with the decision on expansion of resources. Vehicles needed, relief delivered to 

those in need and victims transported to related sites, in the meantime, are the 

main concern of the second stage of the model. 

2.8.4 Location-Routing Problems (LRPs) 

Location aspects are also found in the location-routing problem category. 

The same issues applied in the review of LAPs above (i.e. disaster types, disaster 

management phase, types of input parameters, capacity of the sites, objective(s) in 

the related mathematical model(s), main decisions found in the research, time 

period of the research and solution method(s) utilised in the research) are also 

employed in the LRP category within disaster logistic optimisation for the reason 

that the main focus of LRP is on location aspects. The categorisation process is 

preceded by a brief presentation on LRPs. 
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Given a set of candidate depot sites and customer requirements, LRP in its 

simplest form can be seen as comprising the determination of the depots’ location 

and the routes of the vehicles devoted to serve the customers, in such a way that 

constraints, which generally relate to the capacity of depots and vehicles, length 

and duration of routes, and the requirements stemming from customers, are met 

and, at the same time, an objective function which usually incorporates routing 

costs, vehicle fixed costs, depot fixed costs and depot operating costs, is 

minimized (Ambrosino and Grazia Scutellà, 2005). Regarding this definition, it is 

reasonable to conclude that LRP addresses several aspects of a distribution 

network design problem (Ambrosino and Grazia Scutellà, 2005). 

The location-routing problem can be seen as a certain type of location 

analysis (Nagy and Salhi, 2007). It addresses facility location and vehicle routing 

aspects simultaneously (Ambrosino et al., 2009). In contrast to the location-

allocation problem which assumes a straight-line or radial journey from the supply 

centres to the customer locations (Min et al., 1998), LRP necessitates the tours in 

the journey process from the depot’s location to the customers’ sites (Min et al., 

1998). A review of LRP can be found in Min et al. (1998) and Nagy and Salhi 

(2007). 

Unlike LAPs, research on LRP within disaster logistic optimisation is not so 

plentiful. Included in this category of disaster logistic optimisation are those 

performed by Yi and Özdamar (2007), Ukkusuri and Yushimito (2008), Han et al. 

(2007, 2010, 2011), Afshar and Haghani (2012), Lin et al. (2012), Rath and 

Gutjahr (2014) and Abounacer et al. (2014). 

Some of the research deals with disasters in general (see, for instance, Yi 

and Özdamar (2007), Afshar and Haghani (2012), Abounacer et al. (2014) and 

Rath and Gutjahr (2014)), and one paper (Lin et al. (2012)) addresses particular 

types of disaster. Most of the research (e.g. Yi and Özdamar (2007), Han et al. 

(2011), Lin et al. (2012), Afshar and Haghani (2012), Rath and Gutjahr (2014) 

and Abounacer et al. (2014)) is devoted to the response phase of the disaster 

cycle, and only one paper (Ukkusuri and Yushimito, 2008) is concerned with site 

positioning at the preparedness stage. Several research works treat the input 
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parameters as constant (see, for example Abounacer et al. (2014) and Rath and 

Gutjahr (2014)), whereas the others handle the inputs dynamically (see Yi and 

Özdamar (2007), Han et al. (2010), Han et al. (2011), Lin et al. (2012) and Afshar 

and Haghani (2012), for instance). For the reason of the dynamic nature of input 

parameters, some authors propose to address the problem under concern 

dynamically (e.g. Yi and Özdamar (2007), Han et al. (2011), Lin et al. (2012) and 

Afshar and Haghani (2012)). Most authors solely use a P-median model in the 

objective function(s) (see, e.g., Yi and Özdamar (2007), Han et al. (2011), Lin et 

al. (2012), Abounacer et al. (2014), Rath and Gutjahr (2014) and Afshar and 

Haghani (2012)). Several authors (e.g. Yi and Özdamar (2007) and Afshar and 

Haghani (2012)) handle the location aspect of the problem dynamically. Table 2.4 

gives a summary of the papers under review. 
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Table 2.4 Research on disaster-related LRPs 

Author(s) 
Disaster 

types 
Phase Input type 

Supply 

capacity 
Model objective Main decisions 

Time 

period 
Solution 

method(s) 

Abounacer et al. 

(2014) 
General Response Static Capacitated P-median 

Location, relief 

distribution and vehicle 

routing 

Single 
Exact, 

approximate 

Afshar and Haghani 

(2012) 
General Response Dynamic Capacitated P-median 

Location, relief 

distribution and vehicle 

routing 

Multi Approximate  

Han et al. (2007) General Response Dynamic Un-capacitated P-median 
Location, vehicle 

routing 
Multi Exact 

Han et al. (2010) General Response Dynamic Un-capacitated P-median 
Location, vehicle 

routing 
Multi Approximate 

Han et al. (2011) General Response Dynamic Un-capacitated P-median 
Location, vehicle 

routing 
Multi Approximate 

Lin et al. (2012) 
Sudden, 

difficult 
Response Dynamic Capacitated P-median 

Location, relief 

distribution and vehicle 

routing 

Multi Approximate 

Rachaniotis et al. 

(2013) 
General Response 

Static, 

stochastic 
Un-capacitated Covering, P-median 

Location, relief 

distribution, vehicle 

routing 

Single, 

multi 
- 

Rath and Gutjahr 

(2014) 
General Response Static Capacitated P-median 

Location, relief 

distribution and vehicle 

routing 

Single Approximate 

Ukkusuri and 

Yushimito (2008) 
General Preparedness Static Un-capacitated Covering Location, routing Single Exact 

Yi and Özdamar 

(2007) 
General Response Dynamic Capacitated P-median 

Location, relief 

distribution, victim 

transportation and 

vehicle routing 

Multi Approximate 
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To the best knowledge of the researcher, the simultaneous optimisation of 

site positioning, relief distribution and victim transportation in dynamic 

environment is only found in Yi and Özdamar (2007). The paper is outlined 

below, for the reason of its relevance to the present research. 

Commodity dispatch, evacuation and transfer of injured people to 

emergency units, selection of locations for temporary emergency centres and 

shelters in the affected regions, and an optimal medical personnel allocation on 

both temporary and permanent emergency units in nearby hospitals might take 

place simultaneously in logistics planning in disaster response activities. To 

overcome this type of problem, Yi and Özdamar (2007) develop a two-stage 

mixed integer multi-commodity network flow model. This model treats vehicles 

as integer commodity flows rather than binary variables in the first stage. In the 

second stage, a vehicle splitting algorithm that converts integer vehicle flows into 

binary vehicle routes is employed at first. Subsequently a set of linear equations is 

solved to assign a loading/ unloading schedule to each such journey. At the end of 

the second stage, detailed vehicle instructions are obtained. In the paper, the 

proposed procedure is then compared with the VRP based single-stage model 

built for the same problem. The proposed model is shown to be superior with 

respect to model size, number of binary/ integer variables, number of constraints, 

computation time and iteration count. 

2.9 Facility Deployment in Disaster Context 

With respect to relief distribution and victim transportation, location of 

facilities (and allocation of ‘customers’ to the facilities) is closely related to 

facility deployment strategies. As noted by Jia et al. (2007a), facility deployment 

strategies in response to large-scale disaster occurrences can be categorised into 

proactive and reactive facility deployment. Slow-onset disasters usually have 

delayed effects and yet need continuous and large amounts of relief supplies. In 

response to this type of disaster, a reactive strategy is hence more appropriate. 

Sudden-onset disaster arrivals, on the other hand, need supplies to be kept in 

particular facilities prior to disaster onset. In other words, this type of disaster is 
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better approached by a proactive facility deployment strategy. This will enable a 

quick delivery of commodity supplies to demand points. 

It is generally recognizable that, following the occurrence of a particular 

disaster with large impact and which is difficult to predict, necessary on-site 

facilities are broken or their service capacities decreased (see, for instance, Huang 

et al. (2010)). In order to give the best service, hence, there is a common need to 

provide backup to the facilities with decreasing service capacities and, to some 

degree, to restoring those aforementioned facilities using those from other areas. 

Assistance from other regions comes to the disaster areas even in the situation 

where the facilities on site remain in full service, as a particular event declared as 

a disaster simply means that the current capacity of the affected societies cannot 

cope with the disaster impact. All of these incoming facilities need to be 

positioned. 

The research papers with location aspects – i.e. those presented in Sub-

sections 2.8.3 and 2.8.4- can be re-examined with reference to facility deployment 

strategies as they are defined in Jia et al. (2007a) above, disaster types and 

whether the location aspects are simultaneously handled along with vehicle 

routing aspects (if any). Table 2.5 summarises this re-examination.  
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Table 2.5 Re-examination of research papers containing location positioning 

Author(s) Disaster types  
Facility 

deployment 

strategies 

Vehicle routing aspects  

Yes or no 
If any, dealt 

simultaneously or not 

Ablanedo-Rosas et al. (2009) General Proactive No  

Abounacer et al. (2014) General Reactive Yes Yes 
Afshar and Haghani (2012) General Reactive Yes Yes 

Alcada-Almeida et al. (2009) General Proactive No  

An et al. (2013) Sudden Proactive No  

Balcik and Beamon (2008) Sudden Proactive No  

Bozorgi-Amiri et al. (2013) General Proactive No  

Bozorgi-Amiri et al. (2012) General Proactive No  

Campbell and Jones (2011) General Proactive No  

Chang et al. (2007) Sudden, easy Proactive No  

Chi et al. (2011) General Proactive No  

Chowdhury et al. (1998) Sudden Proactive No  

Dekle et al. (2005) General Reactive No  

Doerner et al. (2009) Sudden, difficult Proactive No  

Döyen et al. (2011) Sudden, difficult Proactive No  

Drezner (2004) General Proactive No  

Drezner et al. (2006) General Proactive No  

Edrissi et al. (2013) Sudden, difficult Proactive No  

Galindo and Batta (2013) Sudden, easy Proactive No  

Han et al. (2007) General Reactive Yes Yes 

Han et al. (2010) General Reactive Yes Yes 

Han et al. (2011) General Reactive Yes Yes 
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Table 2.5 Re-examination of ... (continued) 

Author(s) Disaster types  
Facility 

deployment 

strategies 

Vehicle routing aspects  

Yes or no 
If any, dealt 

simultaneously or not 

Hu et al. (2012) Sudden, difficult Proactive No  

Huang et al. (2010) General Reactive No  

Jia et al. (2007a) General Proactive No  

Jia et al. (2007b) Sudden Proactive No  

Jing et al. (2010) General Proactive No  

Kandel et al. (2011) General Proactive No  

Kongsomsaksakul et al. (2005) Sudden, easy Proactive No  

Kulshrestha et al. (2011) General Proactive No  

Kusumastuti et al. (2013) General Reactive No  

Lee et al. (2009a) General Proactive No  

Lee et al. (2009b) General Proactive No  

Li and Jin (2010) Sudden, easy Proactive No  

Li et al. (2011) Sudden, difficult Reactive No  

Lin et al. (2012) Sudden, difficult Reactive Yes Yes 

Lodree et al. (2012) Sudden, easy Proactive No  

Mahecha and Akhavan-Tabatabaei (2012) Sudden, difficult Proactive No  

Mete and Zabinsky (2010) General Proactive Yes No 

Murali et al. (2012) Sudden, difficult Proactive No  

Park et al. (2012) Sudden, difficult Proactive No  

Paul and Hariharan (2012) General Proactive No  

Paul and Batta (2008) General Proactive No  

Rachaniotis et al. (2013) General Reactive Yes Yes 
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Table 2.5 Re-examination of ... (continued) 

Author(s) Disaster types  
Facility 

deployment 

strategies 

Vehicle routing aspects 

Yes or no 
If any, dealt 

simultaneously or not 

Rath and Gutjahr (2014) General Reactive Yes Yes 

Ratick et al. (2008) General Proactive No  

Rawls and Turnquist (2010) General Proactive No  

Rawls and Turnquist (2011) General Proactive No  

Rawls and Turnquist (2012) General Proactive No  

Rekik et al. (2013) General Reactive Yes No 

Salmeron and Apte (2010) Sudden, easy Proactive No  

Sherali et al. (1991) Sudden, easy Proactive No  

Ukkusuri and Yushimito (2008) General Proactive Yes Yes 

Widener and Horner (2011) Sudden, easy Reactive No  

Xiang-lin et al. (2010) General Proactive No  

Xiang-lin and Yun-xian (2009a) General Proactive No  

Xiang-lin and Yun-xian (2009b) General Proactive No  

Xue et al. (2012) General Proactive No  

Yi and Özdamar (2007) General Reactive Yes Yes 

Yushimito et al. (2010) General Proactive No  

Zhan and Liu (2011) General Proactive No  

Zhang et al. (2013) General Proactive No  

Zhu et al. (2010) General Proactive No  
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It is concluded that most research papers without simultaneous optimisation 

of vehicle routing – including those which deal with sudden-onset disasters – 

employ a proactive strategy in determining the location of sites under concern and 

this positioning decision, therefore, takes place in the preparedness phase of 

disaster management. Most of the research papers that are concerned with site 

positioning after the occurrence of disasters, in the meantime, are those with 

routing of vehicles handled concurrently with location positioning. 

The majority of research papers with a reactive facility deployment strategy 

(see Abounacer et al. (2014), Afshar and Haghani (2012), Dekle et al. (2005), 

Han et al. (2007), Han et al. (2010), Han et al. (2011), Kusumastuti et al. (2013), 

Li et al. (2011), Lin et al. (2012), Rachaniotis et al. (2013), Rath and Gutjahr 

(2014), Rekik et al. (2013), Widener and Horner (2011) and Yi and Özdamar 

(2007)) are concerned with facilities that are located temporarily. The temporary 

facilities are expected to provide services mostly during the planning horizon of 

disaster management, where Yi and Özdamar (2007) and Afshar and Haghani 

(2012) locate the temporary facilities during the planning horizon dynamically. 

Permanent facility positioning, in the meantime, is only found in Huang et al. 

(2010). Among the papers of which site positioning is performed after the disaster 

occurrence, Li et al. (2011) and Lin et al. (2012) specifically address sudden-

onset, difficult-to-predict natural disasters. 

2.10 Research Significance 

The research problem and its background have already been formulated and 

are provided in Chapter 1. The literature relevant to the research problem forms 

the earlier part of this chapter. This section provides the connection between the 

current research and previous work and, ultimately, provides an explanation about 

the position and hence contribution, of the current research. 

2.10.1 Identified Problem and Its Association with Previous Work 

By concurrently considering the research problem (see Chapter 1) and the 

reviewed literature (see previous parts of this chapter), it can be stated that the 
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research problem under concern can be seen as an LAP-type problem. With regard 

to the facility aspects contained in the current research problem, it is also evident 

that it is relatively close to an LRP-type problem. In general, LAP deals with the 

problem of locating facilities and allocating demand points/ areas to these facility 

locations. The inclusion of vehicle route selection along with the facility 

positioning, in the meantime, distinguishes LRP-type problems from LAPs. 

Relating to the research addressed in the thesis, temporary facilities under 

concern consist of: (1) temporary intermediate distribution points – from which 

commodities are distributed, and (2) temporary medical centres/ facilities – which 

provide services to the injured victims. Fixed locations included in the current 

research, meanwhile, are existing medical facilities (i.e. the facilities which also 

give service to the injured victims) and disaster areas (i.e. the areas from which 

the victims come). 

The inclusion of relief distribution and casualty transportation in site 

location is found in Salmeron and Apte (2010). Dynamic ways of sending relief 

and/ or transporting victims are chosen by Kusumastuti et al. (2013), Rawls and 

Turnquist (2012), Afshar and Haghani (2012), Han et al. (2007), Han et al. 

(2010), Han et al. (2011), Lin et al. (2012), Rachaniotis et al. (2013) and Yi and 

Özdamar (2007). The need to establish temporary site locations in the response 

phase of the disaster management cycle has been researched by Abounacer et al. 

(2014), Afshar and Haghani (2012), Dekle et al. (2005), Han et al. (2007), Han et 

al. (2010), Han et al. (2011), Kusumastuti et al. (2013), Li et al. (2011), Lin et al. 

(2012), Rachaniotis et al. (2013), Rath and Gutjahr (2014), Rekik et al. (2013), 

Widener and Horner (2011) and Yi and Özdamar (2007). 

2.10.2 Unique Features of the Current Research 

As discussed in the literature review, the optimal site location of temporary 

facilities following a disaster has already been addressed by several researchers. 

The inclusion of relief distribution attributes and victim transportation aspects 

together with a dynamic approach to optimisation, on the other hand, has not been 

widely addressed. To the best knowledge of the researcher, only Yi and Özdamar 
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(2007) have considered the simultaneous dynamic optimisation of the 

determination of temporary emergency centres, the distribution practice of 

disaster relief and the evacuation process of the injured victims after natural 

disaster occurrences. 

It is generally accepted, however, that location-related decisions (in this 

case, the number and locations of temporary facilities) are strategic issues, 

whereas commodity dispatch and routing (in this case, relief distribution and 

victim evacuation process routing) are operational issues. Therefore, instead of 

treating facility location, commodity dispatch, and evacuation process routing 

simultaneously, it is more practical to treat them in stages: determining the facility 

location first and then making the detailed vehicle routing decisions for 

commodity distribution and victim evacuation with the fixed facility locations. 

This research focuses on the first stage, i.e. facility location (and allocation) 

in the response phase of disaster management. More specifically, it pays attention 

to the location-allocation aspects of last-mile relief distribution and victim 

evacuation following a sudden-onset, difficult-to-predict natural disaster. In this 

respect, the current research is related to previous work on location-allocation 

problems in disaster management. 

An additional difference between the current research and that by Yi and 

Özdamar (2007) lies in how the temporary facilities are treated. This difference is 

elaborated below. 

The work by Yi and Özdamar (2007) implicitly deals with location aspects 

by allocating optimal service rates to existing medical centres and temporary 

emergency centres according to which patients are freed from the system. In the 

sense of temporary emergency centres, they utilize the medical resources of 

hospitals/ medical centres in the area and consume some of the total health care 

capacity in that locale. 

The on-going research, on the other hand, concentrates on the location 

decisions for temporary sites – consisting of temporary intermediate distribution 
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points and temporary medical facilities – rather than for temporary emergency 

centres solely. After being selected, these temporary sites remain present for the 

remainder of the planning horizon. Also different from Yi and Özdamar (2007), 

temporary medical facilities that are included in this research carry out the same 

function as those of existing medical facilities. Finally, these temporary medical 

facilities will not consume some of the total capacity of the existing medical 

facilities. Instead, these temporary medical facilities come from other unaffected 

areas, e.g. in the form of temporary field hospitals (see, for instance, Memarzadeh 

et al. (2004) and Loghmani et al. (2008) on the establishment of field hospitals). 

The inclusion of additional resources such as incoming medical facilities 

from other areas will give the authority larger capability in dealing with the relief 

distribution and victim evacuation. The decision about distribution centre 

locations gives the authority greater flexibility in responding to the disaster event. 

The established temporary sites, which remain present for the remainder of the 

planning horizon, are easier to manage. These three features (i.e. greater 

capability, flexibility and simplicity) as well as the practical characteristics 

provide advantages to the current approach in comparison with that proposed by 

Yi and Özdamar (2007). 
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CHAPTER 3                                                         

MATHEMATICAL MODELS 

This chapter presents all mathematical models developed to represent 

different approaches to the problem under study. The mathematical models are 

presented with the related specific assumptions. Prior to this, the general settings 

for the models and common assumptions applicable to all the models are first 

described. 

3.1 General Settings 

Natural disasters are highly likely to lead to severe problems, including 

extensive human misery and property losses or damage. It is therefore vital to 

respond quickly to natural disasters – especially sudden-onset natural disasters. 

The response includes the positioning of temporary facilities for last-mile relief 

distribution and for victim evacuation and medical treatment. 

Location of facilities can be proactive or reactive. The reactive strategy is 

appropriate for slow-onset disasters which usually have delayed effects and yet 

need continuous and large amount of relief supplies. Sudden-onset disasters, on 

the other hand, need instantaneous response requiring supplies to be kept in 

particular facilities prior to the disaster arrivals. 

The proactive approach is exactly what the Ministry of Social Affairs and 

the Ministry of Health, the Republic of Indonesia, take in anticipation of disaster 

arrivals (Kusumastuti et al. (2013); interview by the researcher). The Ministry of 

Social Affairs has already built a certain number of warehouses at various levels 

of the disaster logistical chain (i.e. at national and provincial level and some at 

district/ municipality levels), whereas the Ministry of Health has already set up 

some Centres for Disaster Management. In addition, in each district/municipality, 

there is usually a warehouse for medical-related goods (e.g. drugs, medicine). 

From these facility locations, commodity supplies as well as medical teams are 

dispatched to disaster areas, when a disaster strikes. There are also hospitals and 
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other medical facilities, serving as the destinations of injured victims in the 

disaster areas. 

Despite the existence of the abovementioned locations, new locations (and 

allocation of demand points to them) still need to be established soon after a 

disaster event (i.e. at the final stage of the disaster logistical chain). This means 

that the reactive deployment strategy is also needed. 

The necessity for determining new locations and allocating the demand 

points to both types of locations (i.e. existing and new) stems from at least three 

sources. First, existing facilities may have been incapacitated due to the disaster 

event. Therefore, new facilities have to be set up. Second, the disasters may take 

place in such a way that existing and functioning facilities (if any) cannot provide 

service optimally. Third, commodity relief and medical teams coming from 

outside in response to a particular disaster need to be situated in appropriate 

locations. 

Disaster logistics at the final stage of the disaster logistical chain is 

generally called last-mile logistical operation systems (Balcik et al. (2008); 

Özdamar and Demir (2012)). It is stated by Beamon (2004) that last mile relief 

distribution network configuration is one of the challenging issues in relief chain 

management. 

The research in this thesis is enriched by a field study on disaster 

management in Indonesia. More specifically, the West Sumatera earthquake that 

took place on 30 September 2009 is used as a base for mathematical model 

building. 

Despite the existence of an Implementing Unit for Disaster Management in 

Padang Pariaman District, the distribution of relief and the evacuation of injured 

victims were carried out by different governmental agencies. The commodity 

relief distribution to sub-districts was performed by the Ministry of Social Affairs 

agency in the district. In each sub-district, the local government body was in 

charge of the relief distribution. The locations for temporary distribution supplies 
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in the sub-district were also decided by the same government body. The Ministry 

of Health agency in the district, on the other hand, carried out the injured victim 

evacuation.  The allocation of incoming medical facilities to particular areas was 

also conducted by this agency. Each of the in-charge governmental agencies was 

also responsible in providing vehicles for the relief distribution or the injured 

victim evacuation and, as a consequence, the vehicles available for the relief 

distribution are different from those for the victim evacuation. All these activities 

were reported in a regular joint meeting coordinated by the Implementing Unit for 

Disaster Management and attended by all related agencies. 

Based on the practice in Padang Pariaman District, disaster management is 

carried out in three levels. For model purposes and for consistency, we will use 

the following terms.  The whole district affected by the disaster will be referred to 

as the region which is divided into sub-regions. Each sub-region consists of a 

number of disaster areas. Each disaster area is a basic unit which will not be 

further divided. This significantly reduces model complexity and hence model 

size and associated solution time. Figure 3.1 shows a schematic example of the 

region, sub-regions and disaster areas. 

The region
The region is subdivided 

into 2 sub-regions

Each of sub-regions is subdivided 

into 7 disaster areas

 

Figure 3.1 A schematic example of region, sub-regions and disaster areas 

Interviews conducted by the researcher reveal a policy for commodity relief 

distribution which is to send the amounts of commodities to disaster areas ideally 

in proportion to the estimated numbers of lives in the areas. 

The deployment of incoming medical facilities to areas is performed by 

using the following criteria, in order of priority: (1) To cover disaster areas 

according to their level of severity, (2) To cover any areas without medical facility 
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coverage (because existing medical facilities are affected by the disaster, for 

instance), (3) (In case criteria 1 and 2 have already been met) To give support to 

existing medical facilities. 

In order to reflect the situation in Padang Pariaman District after the West 

Sumatera earthquake, a ‘current-practice’ location allocation model is built which 

will be referred to as model I. It tries to represent, in many ways, the commodity 

relief distribution and victim evacuation practice that took place in the district. 

The model mainly consists of two parts. Sub-model Ia is devoted to the 

commodity relief distribution, whereas the victim evacuation process is 

represented by sub-model Ib. In line with the practice policy, the model tries to 

minimize the victim suffering in the worst area. Hence, both sub-models are of P-

centre type. Minimizing the total suffering over all areas is also considered as a 

secondary objective. Thus, the model has a P-median feature as well. 

It is frequently found that a national board for disaster management exists in 

a particular disaster context. In general, the existence of a command body – with 

sufficient power to instruct and coordinate – should permit more synchronic and 

coordinative decisions. Good coordination is proven to be able to minimise losses 

caused by disaster occurrences (Prizzia (2008); Balcik et al. (2010)). With respect 

to the response phase of disaster management, poor coordination is seen as one 

source, among others, of failure in the response (Thévenaz and Resodihardjo, 

2010). Concerning Indonesia, the need to improve coordination during its disaster 

relief operations is supported by a research finding (van Rossum and Krukkert, 

2010). 

In Indonesia, a National Board for Disaster Management has already been 

set up. Its derivatives in several provinces and municipalities/districts have also 

already been established. The body and its derivatives have a command authority 

during the response phase after a disaster. It coordinates various agencies, either 

governmental or non-governmental organisations, involved in the response phase 

of disaster management. 
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In future, all provinces in Indonesia are obliged to have such a derivative 

body. Municipalities and/or districts, on the other hand, can choose whether to 

establish a derivative body. In case a particular municipality or district decides not 

to establish the body, the disaster management function is carried out by a 

particular organisation with disaster management capability. 

It is also apparent that the arrival times of additional resources from other 

regions can be obtained in advance by the associated authorities in the disaster 

location. This is what exactly occurred in the aftermath of the West Sumatera 

earthquake (based on the interview performed by the researcher). The authorities 

of the Ministry of Health at central level, for example, let the authorities of the 

Ministry of Health at provincial and district levels know about their plan to send 

medical teams to the disaster region beforehand. This simply means that, in many 

circumstances, information about future resource availability can be acquired in 

advance with relatively high accuracy. 

To fully utilise the coordinating agencies’ coordination potential and/or the 

information on future resource availability, three further models are constructed. 

Model II is mainly characterised by allowing the commodity distribution and the 

victim evacuation to be carried out by the same vehicles. The inclusion of future 

resource availability information is the unique feature that differentiates model III 

from model I. Model IV accommodates both of these features. In other words, 

model IV is characterized by the following features: (1) Future information with 

respect to resource availability is included, and (2) It enables victim evacuation 

and commodity relief distribution to be jointly carried out. Model I described 

earlier will be used as a baseline for assessing the performance of all the models. 

Graphically, the relationship amongst these four models is provided in 

Figure 3.2. 



 53 

Model I:

LA model for 

“current practice” 

relief distribution-

victim evacuation

Model II:

LA model for  

joint relief distribution-

victim evacuation

Model III:

LA model for  relief 

distribution-victim 

evacuation with future 

information taken into 

account

Model IV:

LA model for joint 

relief distribution-

victim evacuation 

and future information 

taken into account

 

Figure 3.2 Relationship amongst the models 

 

Model II, model III and model IV are expected to perform better than model 

I. It is also expected that, after a series of computational experiments and analysis 

and discussion, a clear insight about the benefits of combining the relief 

distribution and victim transportation or including future information about 

resource availability or having both can be obtained. 

All four models take vehicle availability into consideration. According to 

the practice of the relevant agencies during the management of the 2009 West 

Sumatera earthquake, it is possible that incoming vehicles as well as incoming 

medical facilities leave the scene within the planning horizon. This is 

accommodated in the proposed models. 

All the models run in a rolling horizon fashion. That is, the model is run (or 

implemented as we will sometimes call it later) immediately after the disaster with 

available and known resources, facilities and vehicles at that time to decide the 

locations of temporary medical centres and temporary commodity relief 

distribution centres, the allocation of the disaster areas and vehicles to these 

centres. 
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At the beginning of the next period (e.g. one day) or when new resources or 

information on future resource availability become available, the model is 

run/implemented again, considering the situation at the time. Temporary facilities 

set in previous periods are treated as existing ones in the subsequent model 

implementations. 

In each run, the planning horizon of the model is from that time point to the 

end of the disaster relief effort when all injured victims are evacuated and 

sufficient commodity relief is distributed to all disaster areas.  The operation will 

follow the decisions resulting from the model until the next run of the model 

which will plan and modify the decisions for the operations in the remaining 

periods. 

The objective of the models is to minimize the suffering of the victims.  

This is represented by the number of un-evacuated injured victims multiplied by 

the duration of their waiting for evacuation as well as the unsatisfied relief 

demand (i.e. shortages) of the victims in the disaster areas multiplied by the 

duration over which demand is not met. While suffering exists in any disaster 

areas, we try to minimize suffering in the worst area as well as to minimize total 

suffering in all areas. 

3.2 General Assumptions 

General assumptions applied to all the models are provided in the following 

paragraphs. 

A disaster may cause many victims. The research represents the area 

locations of victims as points. Moreover, these locations are assumed to be 

known. 

The victims are categorised into two different classes: (1) Injured victims, 

and (2) Injury-free sufferers. Injured victims are treated individually and need to 

be evacuated for medical treatment. Injury-free sufferers, on the other hand, are 

assumed to stay in the disaster areas and need commodity relief delivered to them. 
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The injured victims in any disaster area have to be evacuated to a particular 

site with a medical facility. Similarly, the injury-free victims in the area have to be 

supplied by a particular site with a distribution centre for supplying commodity 

relief. In order to do so, at least one site with a distribution centre and one site 

with a medical facility are assumed to be available in every time period within the 

planning horizon. 

In order to be able to send the required commodities, a number of temporary 

sites with distribution centres need to be open in each sub-region (for model I) or 

in the region (for models II, III and IV). They are decided once by local 

government in each sub-region (for model I) or by the government in the region 

(for models II, III and IV) at the beginning of the disaster relief operation. All 

candidate sites for the temporary distribution centres are assumed to be known. 

In response to the disaster, medical teams from other regions or other 

countries arrive over time. They need, therefore, to be placed in particular sites. 

Along with existing sites with medical facilities which are still able to provide 

medical treatment, they function as the destinations of injured victim evacuation 

in the region. Locations of the candidate sites for temporary medical facilities as 

well as existing sites with medical facilities are assumed to be known. 

In certain circumstances of disaster arrivals, the injury-free sufferers have to 

be evacuated/ relocated, far enough from the disaster areas. However, the research 

assumes that this activity is performed at the recovery-reconstruction phase. As a 

consequence, this activity is excluded from the study. 

Travel times between locations are assumed to be known. These travel times 

already encompass additional times needed due to road damage, congestion, etc. 

Transfer of injured victims from any medical facility to other medical 

facilities, if any, is not included in the models. Similarly, transportation of 

commodity relief from any distribution centre to other distribution centres, if any, 

is also excluded from the models. These two types of transportation, if they exist, 
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are assumed to be performed by vehicles different from those used for victim 

evacuation and relief distribution. 

Vehicles either for commodity relief distribution or for victim evacuation or 

for both activities are assumed to use particular sites as bases. 

All vehicles available at sites at the beginning of the planning horizon are 

assumed ready to be allocated to any site. They are included in “vehicles available 

at time point 0”. As a consequence, all sites are assumed to have no vehicle at 

time point 0 of the first implementation of the model. 

All vehicles are assumed to have the same capacity. This is because vehicles 

in last-mile commodity relief distribution and victim evacuation phase are very 

similar in size. 

Both incoming medical facilities and incoming vehicles will not leave the 

disaster scene at the time as they arrive. This is because if they do so, then they 

will not make any contribution and so need not to be considered as part of the 

problem under study. As a consequence, there are no leaving vehicles at time 

point 0 of the first implementation of any of the four models. 

Once a vehicle is allocated to a site at the beginning of a time period, it will 

serve the site during the whole of that period. Its movement to other sites is only 

possible at the beginning of the next period. 

A penalty with the same value will be given for each un-evacuated injured 

victim in each period. A penalty with another constant value will also be given for 

each unit of unmet type-2-commodity relief demands in each period. 

It is quite common that, following a disaster occurrence, a huge amount of 

commodity relief arrives at the disaster region/country. With respect to this 

situation, it is assumed that supplies of any commodities are unlimited. 
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3.3 Model I 

As already mentioned, model I (the ‘current-practice’ location-allocation 

model) consists of two sub-models. Sub-model Ia reflects the practice of 

commodity relief distribution in Padang Pariaman District after the earthquake. 

Meanwhile, the practice of victim evacuation in the district is represented by sub-

model Ib. All general assumptions are applicable to the model. 

3.3.1 Additional Assumptions of Model I 

Along with general assumptions previously presented, what follow are 

additional assumptions of model I. 

Following the division of the region into sub-regions, each sub-region has a 

specific task to serve the commodity relief demands within the sub-region. As a 

consequence, the distribution sites in a particular sub-region only serve the 

commodity relief demands in the sub-region. The distribution activity is 

conducted by local government in the sub-region. Likewise, vehicles available for 

distribution purpose in a particular sub-region have to serve disaster areas in the 

sub-region only. 

The division of the region into sub-regions does not affect the victim 

evacuation process. The evacuation of injured victims in any sub-region to any 

medical facility within the whole region is, therefore, allowed. The evacuation 

activity is conducted by the Ministry of Health agency in the region and its 

derivatives. Similarly, vehicles provided for evacuating injured victims are able to 

serve the injured victims in any sub-region. 

Model I is run repeatedly every time new information arises. Outputs 

resulting from the implementation of the model in the first run will be used as 

inputs for the second run and so forth. Sub-model Ia is for individual sub-regions, 

whereas sub-model Ib is intended for the region as a whole. 
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3.3.2 Sets Used in Model I 

Sets used in mathematical model I are as follows. As it can be seen later, 

some of these sets are also used in model III and/or model II and/or model IV. 

  Set of sub-regions,   =           ; 

   Set of disaster areas in sub-region    ,    
    =  ; 

  Set of all disaster areas,  =    
   ; 

  
  Set of existing sites with distribution centres but not allowed to have 

medical facilities in sub-region    ,     
 

    =  ; 

   Set of existing sites with medical facilities but not allowed to have 

distribution centres; 

  
  Set of candidate sites for temporary distribution centres in sub-region 

   ,    
 

    =  ; 

   Set of candidate sites for temporary medical facilities; 

  
  Set of all sites either with existing distribution centres or candidates for 

distribution centres in sub-region r,  
 =   

    
 ,  

    
  =  ; 

   Set of all sites either with existing medical facilities or candidates for 

medical facilities for models I and III,  =      ,      =  ; 

  Set of time points,                ; 

  
   Set of temporary medical facilities arriving at time point 0 of model 

implementation; 

3.3.3 Parameters in Model I 

The following are parameters used in model I. Like some of the sets 

previously provided, some of the parameters are also used in model II and/or 

model III and/or model IV. 

    Estimated travel time (including loading-unloading time) from disaster 

area   to site  ; 

    Estimated travel time from site   to site  ; 

   Estimated total number of injury-free victims in disaster area   (in 

number of people); 
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    Un-evacuated injured victims in disaster area  at the beginning of model 

implementation (in number of people); 

   Total amount of repeatedly-needed-commodity relief (or type-1-

commodity relief) needed per time unit per person (in volume unit per 

person per time unit); 

   Total amount of once-and-for-all-commodity relief (or type-2-

commodity relief) needed per person during planning horizon (in volume 

unit per person); 

   
  Inventory level of type-1-commodity relief in disaster area  at the 

beginning of model implementation (in volume unit); 

    
  Total amount of type-2-commodity relief already sent from site   to 

disaster area   up to the beginning of model implementation (in volume 

unit); 

  
  Penalty for unmet type-1-commodity relief demand of a victim during a 

particular time period; 

  
  Penalty for unmet type-2-commodity relief demand of a victim during a 

particular time period; 

   Penalty for an un-evacuated injured victim during a particular time 

period; 

    Conversion factor (in volume unit per person); 

   
    Number of vehicles already available at site  at the beginning of model 

implementation;  

    Capacity of each vehicle (in volume unit); 

  Time availability in one time period (in time unit); 

  A very big positive number; 

   
  Maximum number of temporary distribution centres to establish in sub-

region  ; 

  
    Number of new vehicles for commodity relief distribution becoming 

available at the beginning of model implementation in sub-region  ; 

  
     Number of vehicles for commodity relief distribution leaving sub-region 

  at the beginning of model implementation; 
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   Number of new vehicles becoming available for victim evacuation at the 

beginning of model implementation; 

  
    Number of vehicles for victim evacuation leaving the disaster scene at 

the beginning of model implementation; 

3.3.4 Variables in Model I 

Decision variables used in model I or model III are defined below. Some of 

these decision variables will also be used in model II and/or model III and/or IV 

later. 

   Maximum amongst the weighted unmet commodity relief demands in 

disaster areas in        during the planning horizon; 

   Maximum amongthe weighted numbers of un-evacuated injured victims 

in disaster areas during the planning horizon; 

   
  Type-1-commodity relief shortages in disaster area   at time point   (in 

volume unit); 

   
  Type-2-commodity relief shortages in disaster area   at time point   (in 

volume unit); 

    Number of un-evacuated injured victims in disaster area   at time point  ; 

     Number of injured victims evacuated from area   to site   in the period 

from time point   to     ; 

   
  Inventory level of type-1-commodity relief in disaster area   at time point 

 ; 

    
  Total amount of type-1-commodity relief sent from site   to disaster area 

  in the period from time point   to t + 1 (in volume unit); 

    
  Total amount of type-2-commodity relief sent from site   to disaster area 

 in the period from time point   to t + 1 (in volume unit); 

     
                                                       
                                                                                     

 ,      
  ; 

  
       

   if site      open 
   otherwise           

 ; 

    
                                                        
                                                                                         

 ; 
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    = 
                                                                 
                                                                        

                                                                                                

 ; 

      
                                                        
                                                        

                                                                                         

 ; 

   
    Number of vehicles at site   from period   to    ; 

    
     Number of vehicles already available at site   moved from site   to site    

at time point  ; 

  
    Number of new vehicles arriving at the beginning of model 

implementation assigned to site   ; 

  
      Number of vehicles leaving site    at the beginning of model 

implementation; 

     Vehicle-time allocated/required for making trips between area   and site 

  in the period from time point   to    ; 

3.3.5 Sub-Model Ia: Commodity Relief Distribution 

In model I, the commodity relief distributions in different sub-regions are 

performed independently.  Model Ia is therefore for each sub-region r. 

Objective function: 

                   
     

     
       

  
  
          ... (0) 

The objective function of commodity relief distribution for model I - 

represented by (0) - is related to the weighted amount of unmet commodity relief 

demand, in each disaster area in the sub-region. While this quantity may be 

different for different areas, the objective is to minimize a weighted sum of the 

maximum among the quantities in the areas and the total quantity over all areas in 

the sub-region. The maximum is provided by constraints (1). The first term of this 

objective is in line with the commodity distribution policy made by the Ministry 

of Social Affairs in the region. In order to achieve the minimum value of the first 

term in the objective function without interference from the second term, the 

weight of the first term is set larger than that of the second term. The second term 



 62 

itself tries to minimise the total unmet commodity relief demand over all disaster 

areas within the sub-region without affecting the minimisation of the first term. 

The two terms represent the maximum and total victim suffering, respectively, 

due to the commodity relief shortage. 

Subject to the following constraints: 

Un-met commodity relief demands: 

    
     

     
       

  
  
               ... (1) 

As can be seen in constraints (1), un-met commodity relief demands in 

model I are weighted with penalty values. These values reflect the importance of 

each commodity type. Additionally, penalties for un-met type-2-commodity 

demands become higher over time. This will force model I to fulfil the type-2-

commodity requirements as soon as possible. 

Variable values at the first time point: 

   
     

 ,            ... (2) 

    
       ,      

      
      ... (3) 

Inventory level of type-1-commodities at time point 0 for model I is defined 

in constraints (2). It is equal to the inventory level of the commodities at the 

beginning of model implementation. Constraints (3), meanwhile, relate to vehicle 

movement at the first time point of the first implementation of the model. These 

latter constraints, therefore, do not apply from the second implementation of the 

model onwards. 

Constraints on commodity relief demands: 

                    
           

 
    

       
      

 ,               

        ... (4) 

                   
 

    
        

    
       

      
 ,              

        ... (5) 

           
       

                         ,  
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               ... (6) 

    
       

           ,           
            ... (7) 

Constraints (4) determine the amount of type-1-commodity relief shortage 

in each disaster area at the end of each period. If the demand in the period is 

greater than or equal to the supply including the inventory at the beginning of the 

period and the amount distributed to the area during the period, then the difference 

will be the shortage and there will be no inventory at the end of the period. 

Otherwise, there will be some inventory left and no shortage. 

Shortage of type-2-commodities at time point one onwards, on the other 

hand, cannot be less than the amount of the commodities required by un-

evacuated injured victims and injury-free ones at the time point minus the total 

amount of the supplied commodities up to the point. Constraints (5) reflect this 

relation. 

The amount of supplied commodities from a site to an area in a time period 

cannot exceed the commodity delivery capacity allocated between the two 

locations during the time period. Likewise, a site can supply commodities to a 

disaster area only if the area is allocated to the site. These requirements are 

formulated as constraints (6) and (7). 

Location of provisional sites: 

         
 

    
       ... (8) 

Constraint (8) relate to the number of temporary sites with distribution 

centres to open at the beginning of the first implementation of the model. In this 

case, the total number of sites with distribution centres to open in a sub-region 

cannot exceed the maximum number of new distribution centres to establish for 

the sub-region. The constraints do not apply from the second model 

implementation onwards. 
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Allocation of disaster areas to sites: 

               ,      
             ... (9) 

            
 ,                   ... (10) 

Constraints (10) require that commodity relief demands in an area in a given 

time period are satisfied by exactly one site, and constraints (9) ensure that a site 

must be open in order for it to supply commodity relief. Because provisional sites 

with distribution centres are determined only once in the first implementation of 

the models, constraints (9) do not apply to subsequent implementations of the 

models.  The opened sites will be treated as existing sites in the subsequent 

implementations. 

Constraints on vehicle-time requirement in a particular site: 

                
              

      
     ,      

          ... (11) 

Vehicle-time requirement at a site with a distribution centre during a time 

period is defined by constraints (11). In the constraints, the vehicle-time 

requirement is determined by the total number of vehicles available at the site in 

the time period multiplied by the duration of the time period minus the number of 

vehicles moving from other sites to this site at the beginning of the time period 

multiplied by the time spent moving. 

A special case appears in the first implementation of the model. That is, 

there are no vehicles moving in from other sites at that time. 

Vehicle availability: 

   
       

      
           

    
    

 –      
    

    
     

   ,       
  

        ... (12) 

      
         

    
    

 –      
    

    
     

   ,       
             

        ... (13) 
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The number of vehicles available for commodity relief distribution at a 

given site from time point one onwards is determined by three different elements: 

(1) number of vehicles already available at the site, (2) number of vehicles 

moving into the site at the time point, and (3) number of vehicles moving out of 

the site at the point. Constraints (13) reflect this situation. Constraints (12), 

meanwhile, correspond to the number of relief distribution vehicles available in 

sites at time point 0. When the model is first implemented, there is neither vehicle 

movement nor leaving vehicles at time point 0. 

Vehicle out-movement: 

     
    

    
         

   ,      
               ... (14) 

The number of vehicles for commodity relief distribution moving from a 

site to other sites (including those moving to the site itself, i.e., staying in the site) 

at the beginning of any particular time period (except the first time period) should 

be equal to the number of vehicles already available at the site in the previous 

time period. Constraints (14) reflect this necessity. 

Number of vehicles arriving and assigned to a particular site: 

   
   

    
      

         ... (15) 

Vehicles arriving and available for relief distribution within a particular sub-

region are always deployed to sites. Constraint (15) reflects the situation. 

Number of vehicles leaving from a particular site: 

   
     

    
     

          ... (16) 

The total number of vehicles for relief distribution leaving all sites with 

distribution centres in a sub-region at the beginning of any implementation of the 

model is equal to the number of relief distribution vehicles leaving the sub-region. 

This relationship is reflected by constraint (16). 
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Vehicles for commodity relief distribution leaving a site: 

  
           

   ,       
      ... (17) 

The number of vehicles for relief distribution leaving a site at time point 0 

of the model implementation cannot exceed the number of vehicles available at 

the site at the time point. Constraints (17) correspond to this necessity. The 

constraints are in line with the requirement that any vehicle cannot arrive at and 

leave a site at the same time. 

Relation between vehicle deployment and existence of site: 

   
            ,      

             ... (18) 

The deployment of commodity relief distribution vehicles to a particular site 

is carried out only if the site is open. Otherwise, the number of vehicles allocated 

to the site is forced to be zero. Constraints (18) reflect the requirement. The 

constraints apply to the first implementation of the models only. 

Non-negative variables: 

            ... (non_1) 

   
    ,                   ... (non_2) 

   
    ,                    ... (non_3) 

   
     ,              ... (non_4) 

    
   ,            

              ... (non_5) 

    
   ,            

              ... (non_6) 

      ,           
              ... (non_7) 

Integer variables: 

   
      and integer,      

             ... (int_1) 

    
        and integer,      

      
            ... (int_2) 

  
      and integer,      

      ... (int_3) 

  
        and integer,      

     ... (int_4) 
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Binary variables: 

           ,           
             ... (bin_1) 

         ,      
       ... (bin_2) 

3.3.6 Sub-Model Ib: Victim Evacuation 

Objective function: 

                         
  
          ... (20) 

The objective of sub-model Ib is to minimize the weighted sum of the 

maximum suffering and total suffering of the un-evacuated injured victims in 

disaster areas. The suffering here refers to the delay in evacuation. Again, a larger 

weight is assigned to the first term than that to the second term to make sure the 

maximum suffering is minimized first in the optimal solution. 

Subject to the following constraints: 

Un-evacuated injured victims in disaster areas: 

         
  
       ,          ... (21) 

The maximum weighted number of un-evacuated victims during the 

planning horizon (i.e. maximum suffering) is always greater than or equal to the 

weighted number of un-evacuated victims in any area. Constraints (21) represent 

this relation. 

Several variable values at the first time point: 

       ,           ... (22) 

    
       ,                ... (23) 

The number of un-evacuated injured victims at the first time point is defined 

in constraints (22). The number is equal to the number of un-evacuated victims at 

the beginning of model implementation. Constraints (23), which only apply to the 
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first implementation of the model, represent vehicle movement at the first time 

point. 

Constraints on victim evacuation demands: 

                         
,               ... (24) 

                                    ,              

             ... (25) 

              ,                      ... (26) 

Constraints (24) state that the number of un-evacuated victims in an area at 

a given time point is equal to the number of un-evacuated victims at the previous 

point minus the number of evacuated victims between these two time points. 

Constraints (25), in the meantime, insist that the capacity of a particular site to 

transport injured victims from an area during a time period cannot be exceeded by 

the number of injured victims received by the site from the area in the period. 

Constraints (26) require that the number of evacuated victims for any unconnected 

site-area pair in the sub-models is zero. 

Deployment of temporary medical facilities to sites: 

        
   ,      

       ... (27) 

Constraints (27) indicate that a temporary medical facility is deployed to at 

most one temporary site. 

Location of provisional sites: 

  
              

  ,           ... (28) 

    
              

  ,          ... (29) 

Constraints (28) and (29) relate to medical facilities arriving at the 

beginning of the model implementation. In this sense, a provisional site is open 

for medical services when there is at least one temporary medical facility 

allocated to it. 



 69 

Allocation of disaster areas to sites: 

           
    

   ,                  ... (30) 

            
,                  ... (31) 

Constraints (31) require that, in a given time period, injured victims in an 

area are evacuated to exactly one site. In addition, constraints (30) necessitate that 

the evacuation must be to a site that is open. 

Constraints on vehicle-time requirement in a particular site: 

               
              

     
     ,                

        ... (32) 

Vehicle-time requirement for a site with a medical facility to conduct 

evacuation during any time period is defined by constraints (32). Similar to 

constraints (11) of sub-model Ia, the vehicle-time requirement is determined by 

the number of vehicles available at the site in the time period multiplied by the 

duration of the time period minus the number of vehicles moving from other sites 

to this site multiplied by the time spent on the moving. 

Again, a special case appears in the first implementation of the model. That 

is, there are no vehicles moving in from other sites at that time. 

Vehicle availability for victim evacuation: 

   
       

      
           

    
    

–      
    

    
    

   ,        

        ... (33) 

      
         

    
    

–     
    

    
    

   ,                   

        ... (34) 

Vehicle availability for victim evacuation is defined by constraints (33) and 

(34). The explanations are similar to those for constraints (12) and (13). 
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Vehicle out-movement: 

     
    

    
        

   ,                    ... (35) 

Requirement on vehicle out-movement of sub-model Ib is provided by 

constraints (35). Analogous with constraint (14) of sub-model Ia, the total number 

of evacuation vehicles moving out of a site to all sites (including those moving to 

the site itself, i.e., staying in the site) at a given time point (except time point 0 

and the last time point) is equal to the number of evacuation vehicles available at 

the site in the period. 

Number of vehicles arriving and assigned to a site:  

   
   

    
    

        ... (36) 

Constraint (36) requires that the total number of vehicles for victim 

evacuation arriving at the beginning of the model implementation and assigned to 

all sites are exactly equal to the number of available vehicles. 

Number of vehicles leaving a site: 

   
     

    
    

         ... (37) 

The total number of vehicles for victim evacuation leaving all sites with 

medical facilities is exactly the same as the number of victim evacuation vehicles 

leaving the disaster scene. Constraint (37) indicates the requirement. 

Vehicles leaving from a particular site: 

  
           

   ,            ... (38) 

The number of vehicles for victim evacuation already available at a site at 

the beginning of the model implementation cannot be exceeded by the number of 

vehicles leaving the site at that time point. Constraints (38) reflect this 

requirement. 
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Relation between vehicle deployment and existence of site: 

   
         

       ,                  ... (39) 

Constraints (39) necessitate that the deployment of evacuation vehicles to a 

site is carried out only if the site is open. 

Non-negative variables: 

            ... (non_8) 

      ,               ... (non_9) 

       ,                       ... (non_10) 

      ,                       ... (non_11) 

Integer variables: 

   
      and integer,                  ... (int_5) 

    
        and integer,                      ... (int_6) 

  
      and integer,          ... (int_7) 

  
        and integer,          ... (int_8) 

Binary variables: 

           ,                      ... (bin_3) 

          ,      
            ... (bin_4) 

  
           ,           ... (bin_5) 

3.4 Model III 

Model III is one of proposed location-allocation models intended to realize 

the potential for improvement in the presence of a National Board for Disaster 

Management and its derivatives at several levels. It is based on model I, but takes 

future information on resource availability into consideration, while keeping 

commodity relief distribution and victim evacuation separate. 
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In many instances of disaster management, some future information with 

respect to resource availability can be obtained in advance with adequate 

certainty. Examples of such information include the numbers of incoming medical 

facilities and incoming vehicles, as well as the time they will arrive at and depart 

from the disaster scene. 

Because of the inclusion of future information, the fact that incoming 

medical facilities as well as incoming vehicles are able to leave the scene within 

the planning horizon affects the way the problem is formulated. One of the effects 

is the need to re-define variables providing information about the functioning and 

closure of temporary sites. Variables are also needed to represent the number of 

already-allocated-vehicles departing from a site. 

Similar to model I, model III consists of two sub-models. Sub-model IIIa 

deals with commodity relief distribution, while victim evacuation is addressed by 

sub-model IIIb. The corresponding sub-models in the two models also share 

similar structures with some constraints being the same. 

3.4.1 Additional Assumptions of Model III 

There are also several additional assumptions for model III. These 

additional assumptions are as follows. 

With the coordination of the National Board for Disaster Management and 

its derivatives, the boundaries of the sub-regions should not be restrictive for the 

evacuation and distribution activities. Therefore, division of the region into sub-

regions is not considered in model III. As a consequence, the commodity demand 

in a particular disaster area can be fulfilled by any site with a distribution centre. 

Injured victims in the area, in the meantime, can be transported to any site with a 

medical facility. 

It is possible that the departure times of medical facilities (of which arrival 

times are known in advance) are either not known beforehand or uncertain. In this 

case, these incoming medical facilities are assumed to be able to stay in the 

disaster scene during the planning horizon. 
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It is likely that, as time goes on, information on resources changes. Model 

III is re-run every time these changes occur. Examples of this situation are 

changes in terms of the number of vehicles available at particular time points, 

when and how many incoming medical facilities already considered will arrive at 

and leave from the disaster scene, and when and how many other incoming 

medical facilities will arrive at and depart from the scene. 

3.4.2 Sets Used in Model III 

Sets used in mathematical model III are as follows. As it can be seen later, 

some of these sets are also used in model II and/or model IV. Other sets appear in 

the model have already been defined in the section associated with model I and, 

therefore, do not need to be explained again. 

   Set of all existing sites with distribution centres but not allowed to have 

medical facilities,   =    
 

   ;  

   Set of candidate sites for temporary distribution centres,   =    
 

   ; 

   Set of all sites either with existing distribution centres or candidates for 

distribution centres,   =      ,      =  ;  

  
   Set of temporary medical facilities arriving at time point         ; 

  
    Set of temporary medical facilities leaving the disaster scene at time 

point         ; 

3.4.3 Parameters in Model III 

The following are parameters used in model III. Like some of the sets 

previously provided, some of the parameters are also used in model II and/or 

model IV. Other parameters, in the meantime, have already been described in 

Section 3.3. 

    Maximum number of temporary distribution centres to establish; 

   
   Number of new vehicles becoming available for commodity relief 

distribution at time point  ; 
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    Number of vehicles for relief distribution leaving the disaster scene at 

time point  ; 

   
   Number of new vehicles becoming available for victim evacuation at 

time point  ; 

   
    Number of vehicles for victim evacuation leaving the disaster scene at 

time point  ; 

3.4.4 Variables in Model III 

Decision variables used in model III are defined below.Other decision 

variables have already been defined in association with model I and, therefore, 

will not be described again in the current part. 

   Maximum among the weighted un-met commodity relief demands in all 

disaster areas during the planning horizon; 

     
                                                       
                                                                                     

 ,      
  ; 

   
       

                                             
                                                                        

 ; 

   
    Number of vehicles arriving at time point   assigned to site   ; 

   
      Number of vehicles leaving site   at time point  ; 

3.4.5 Sub-Model IIIa: Commodity Relief Distribution 

Unlike sub-model Ia, this sub-model is for the whole region including all 

sub-regions. 

Objective function: 

                   
     

     
       

  
  
         ... (40) 

As for sub-model Ia, the objective of this sub-model is to minimize the 

weighted sum of maximum suffering and total suffering due to commodity relief 

shortage, with the maximum suffering as the primary concern. 
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Subject to the following constraints: 

    
     

     
       

  
  
               ... (41) 

   
     

 ,           ... (42) 

    
       ,                ... (43) 

                    
           

 
    

      
      

 ,              

        ... (44) 

                  
 

    
       

    
       

     
 ,              

        ... (45) 

           
       

                         ,             

             ... (46) 

    
       

           ,                     ... (47) 

             
      ... (48) 

              ,                  ... (49) 

            
,                  ... (50) 

               
              

     
     ,                ... (51) 

   
       

       
            

    
    

–      
    

    
    

   ,        

        ... (52) 

      
       

       
            

    
    

–      
    

    
    

   ,          

               ... (53) 

     
    

    
        

   ,                    ... (54) 

    
   

    
      

  ,              ... (55) 

    
     

    
     

   ,              ... (56) 

   
           

   ,            ... (57) 

   
              

   ,                     ... (58) 

   
           ,                  ... (59) 

            ... (non_12) 

   
    ,                  ... (non_13) 

   
    ,                   ... (non_14) 

   
     ,               ... (non_15) 



 76 

    
   ,                        ... (non_16) 

    
   ,                        ... (non_17) 

      ,                       ... (non_18) 

   
      and integer,                  ... (int_9) 

    
        and integer,                      ... (int_12) 

   
      and integer,                  ... (int_10) 

   
        and integer,                  ... (int_11) 

           ,                      ... (bin_6) 

         ,            ... (bin_7) 

In this model, constraints (41) – (57) are for purposes similar to those of 

constraints (1) – (17), respectively, in sub-model Ia. The main difference is that 

constraints here are for the whole region, while the constraints in sub-model Ia are 

for one sub-region r. Another difference between the two models is that sub-

model IIIa considers further resource availability. This is reflected by the Z 

variables in the above constraints and the additional constraints (58) and (59). The 

rest constraints are standard non-negativity and integer constraints. 

3.4.6 Sub-Model IIIb: Victim Evacuation 

Objective function: 

Objective expression (20) 

Subject to the following constraints: 

Constraints (21)-(26), (31), (32), (35), (non_8)-(non_11), (int_5)-(int_6), 

(bin_3), and 

        
   ,      

               ... (61) 

   
               

  
 
              

   
 
   ,                

        ... (62) 

     
               

  
 
              

   
 
   ,                

        ... (63) 

            
    

   ,                  ... (64) 
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–      
    

    
    

   ,        

        ... (65) 

      
       

       
           

    
    

–     
    

    
    

   ,          

               ... (66) 

    
   

    
      

  ,              ... (67) 

    
     

    
     

   ,              ... (68) 

   
           

   ,            ... (69) 

   
              

   ,                     ... (70) 

   
          

       ,                  ... (71) 

   
      and integer,                  ... (int_13) 

  
        and integer,          ... (int_14) 

   
        and integer,                  ... (int_15) 

          ,      
                   ...(bin_8) 

   
           ,                   ... (bin_9) 

Constraints (61) – (71) are similar to some constraints in sub-model Ib. 

However, the constraints here allow new resources to be deployed and existing 

resources to leave the scene at later time points after time point 0. 

3.5 Model II 

Similar to model III, model II is proposed to realize the potential for 

improvement in the presence of a National Board for Disaster Management and its 

derivatives at several levels. Again, this model is intended to improve the 

performance of the ‘current-practice’ location-allocation model. The model is 

mainly characterised by allowing commodity relief distribution and victim 

evacuation carried out jointly by sharing vehicles. 

3.5.1 Additional Assumptions 

Additional assumptions of model II are provided below. 
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The commodity demand in a particular disaster area can be fulfilled by any 

site with a distribution centre. Injured victims in the area, in the meantime, can be 

transported to any site with a medical facility. 

In most situations, existing sites with medical facilities have to provide 

medical services for regular medical problems. The addition of services for 

disaster victims raises a certain level of managerial and operational complexity. In 

this regard, this type of site only functions as destinations for injured victim 

evacuation. It is possible, nonetheless, for some sites with existing medical 

facilities to be capable of functioning as a distribution centre as well. This may be 

due to their wide area or the presence of a sports stadium nearby, for instance. 

Similarly, existing sites with distribution centres fall into two different 

categories, i.e. with and without the capability to host a temporary medical facility 

as well. 

The locations of all abovementioned sites are known. 

The potential sites for temporary facilities (which function either as 

distribution centres or provisional medical facilities or both) are known. 

Vehicles allocated to a site with a distribution centre in a time period are 

allowed to go through sites with a medical facility during their journey between a 

site and a disaster area. Vehicles allocated to a site with a medical facility only 

during a time period, on the other hand, are not permitted to go through any other 

sites during their journey. 

Model II still shares some features with model I. Among these features is 

the exclusion of future information. Similar to model I, model II is run repeatedly 

every time new information arises. Outputs resulting from the implementation of 

the model in the first run will be used as inputs for the second run, etc. 

3.5.2 Sets in Model II 

In addition to sets that have been defined in Section 3.3 and Section 3.4, the 

followings are other sets used in mathematical model II. 
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  Set of existing sites with distribution centres and allowed to have medical 

facilities; 

  Set of existing sites with medical facilities and allowed to have 

distribution centres; 

  Set of sites with both distribution centres and medical facilities; 

   Set of candidate sites for both temporary distribution centres and 

temporary medical facilities; 

   Set of all potential sites for new distribution centres in models II and IV, 

  =        ,         =  ; 

   Set of all potential sites for new medical facilities in models II and IV, 

  =        ,        =  ; 

   Set of all sites either with existing distribution centres or candidates for 

distribution centres in models II and IV,   =              

  ,                 =  ; 

   Set of all sites either with existing medical facilities or candidates for 

medical facilities in models II and IV,   =             

  ,                =  ; 

   Set of all sites with existing distribution centres in models II and IV, 

         ,          ; 

  Set of all sites in models II and IV,  =                

     ,                         =  ; 

3.5.3 Parameters in Model II 

What follow are parameters used in model II. Otherwise stated in this 

section, explanation on parameters appearing in the mathematical model 

formulation can be found in Section 3.3 and Section 3.4. 

    Number of new vehicles becoming available at the beginning of model 

implementation; 

     Number of vehicles leaving thedisaster sceneat the beginning of model 

implementation. 
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3.5.4 Variables in Model II 

The followings are decision variables used in model II along with their 

definitions. Some of the other variables in the model have already appeared in 

models I and III and, therefore, do not need any description. 

   Maximum among the sums of weighted number of un-evacuated injured 

victims and the weighted unmet commodity relief demands during the 

planning horizon; 

      Number of injured victims evacuated from area   directly to site   in the 

period from time point   to     ; 

      Number of injured victims evacuated from area   to site   by vehicles 

that are allocated to another site j but going through site   in the period 

from time point   to     ; 

     
  Total amount of type-1-commodity relief sent from site   directly to 

disaster area   in the period from time point   to     (in volume unit); 

     
  Total amount of type-1-commodity relief sent from site   to disaster area 

  by vehicles going through site   in the period from time point   to     

(in volume unit); 

     
  Total amount of type-2-commodity relief sent from site   directly to 

disaster area   in the period from time point   to     (in volume unit); 

     
  Total amount of type-2-commodity relief sent from site   to disaster area 

  by vehicles going through site   in period from time point   to     (in 

volume unit); 

3.5.5 Mathematical Model 

Objective function: 

                                 
     

     
       

  
  
        

        ... (80) 

The objective in the models is again to minimize the weighted sum of 

maximum suffering and total suffering with maximum suffering as the primary 
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concern. The suffering in this model considers both those due to waiting for 

evacuation and those due to commodity relief shortage. 

Subject to the following constraints: 

Constraints (22), (42), (non_9), (non_13)-(non_15), and 
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                     ,                     ... (90) 

           ,      
       ... (91) 
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   –      

    
       

   ,      ... (100) 

      
          

    
   –      

    
       

   ,                 ... (101) 

     
    

          
   ,                   ... (102) 

   
   

               ... (103) 

   
     

               ... (104) 

  
           

   ,           ... (105) 

   
            ,                  ... (106) 

   
             

        ,                 ... (107) 

            ... (non_19) 

      
   ,                        ... (non_20) 

      
   ,                        ... (non_21) 

      
   ,                        ... (non_22) 

      
   ,                        ... (non_23) 

        ,                       ... (non_24) 

        ,                       ... (non_25) 

      ,                      ... (non_26) 

   
      and integer,                 ... (int_16) 

    
        and integer,                   ... (int_17) 

  
      and integer,         ... (int_18) 

  
        and integer,         ... (int_19) 

           ,                       ... (bin_10) 

           ,                      ... (bin_11) 

         ,            ... (bin_12) 

  
           ,           ... (bin_13) 

          ,      
            ... (bin_14) 

The constraints in this model can be understood in a way similar to that for 

previous models. Similar to model III, this model allows relief goods to be 

distributed from any distribution centre to any disaster area in the whole region. 

Similar to model I, this model does not consider future information. Different 

from both models I and III, this model allows vehicle sharing for relief goods 
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distribution and victim evacuation. Therefore, this is an integrated model, rather 

than two parts (parts a and b). Due to vehicle sharing, the vehicle time 

requirements are calculated differently, considering both ways in a trip, and 

possible triangular trips – delivering relief goods from a distribution centre to a 

disaster area, then evacuating victims from this area to a medical facility at a 

different site and finally returning to the original distribution centre. This can be 

seen from constraints (85) and (86). 

3.6 Model IV 

Similar to models III and II, model IV is proposed to realize the potential for 

improvement in the presence of a National Board for Disaster Management and its 

derivatives at several levels. This model is also intended to improve the 

performance of the ‘current-practice’ location-allocation model. Model IV 

accommodates the possibility to jointly evacuate victims and distribute 

commodity relief and the consideration of future information. 

3.6.1 Additional Assumption 

Similar to the situation in model III, it is possible in model IV that the 

departing times of medical facilities (of which arrival times are known in 

advance) are either not known beforehand or uncertain. In this case, these 

incoming medical facilities are assumed to be able to stay in the disaster scene 

during the planning horizon. 

It is also highly likely that information on resources changes as time goes 

on. Examples of changes are numbers of vehicles becoming available at particular 

times, when and how many incoming medical facilities already considered arrive 

at and leave the disaster scene, and when and how many other incoming medical 

facilities will arrive at and depart from the scene. Model IV is therefore re-run 

every time these changes occur. 

3.6.2 Sets in Model IV 

Sets used in model IV are exactly the same with the sets appear in model II. 
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3.6.3 Parameters in Model IV 

In addition to parameters defined in previous sections, the following are 

parameters employed in model IV. 

  
   Number of new vehicles becoming available at time point  ; 

  
    Number of vehicles leaving the disaster scene at time point  ; 

3.6.4 Variables in Model IV 

Decision variables used in model IV are identical to the decision variables 

defined and used in model II. 

3.6.5 Mathematical Model 

Objective function: 

Objective expression (80) 

Subject to the following constraints: 

Constraints (22), (42), (81)-(90), (94)-(96), (98)-(99), (102), (105), (non_9), 

(non_13)-(non_15), (non_19)-(non_26), (int_16)-(int_17), (bin_10)-(bin_12), 

and 
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   ,              ... (117) 

   
           

   ,           ... (118) 

   
              

   ,                     ... (119) 

   
          

       ,                  ... (120) 

   
              

        ,                 ... (121) 

   
      and integer,                ... (int_20) 

   
        and integer,                ... (int_21) 

   
           ,                   ... (bin_15) 

Constraints in model IV are very similar to those in model II. The difference 

is that model IV considers future information on resource availability in the 

decisions, as can be seen from the constraints explicitly listed above. 

 



 86 

CHAPTER 4                                                                                     

ON MODEL TESTING WITH COMPUTATIONAL EXPERIMENTS 

In this chapter, the results from computational experimentation of the four 

models developed in the preceding chapter are presented. 

4.1 Justification of the Test Data 

Several computational experiments are carried out to test the applicability 

and performance of the models. In doing so, several factors are taken into account. 

These include total number of time points, total numbers of disaster areas and sub-

regions and maximum possible values of percent deviation of information about 

future resource availability from its real value. 

With regard to the number of time points, the research considers two cases. 

The first total number of time points taken into consideration is 10 and, along with 

other factors explained later, represents a small, but realistic problem size 

allowing the relative merits of the four models to be measured. In the second case, 

the number is extended to 15. With respect to West Sumatera earthquake, each 

time period represents one day of disaster management. In fact, the central 

government declared that the response would last for 2 months (this subsequently 

was revised as 1 month time periods). However, a 15 day period was adequate to 

perform the process of evacuation of injured victims to medical facilities. The 

research, therefore, uses this number of time points. 

Total number of sub-regions and total number of disaster areas are other 

factors considered in the experiments. According to the fieldwork performed by 

the author, there are 17 sub-districts and 47 nagaris – the latter is a regional unit 

within a sub-district - in the Padang Pariaman District. This is taken as the second 

case of the total numbers of sub-regions and disaster areas or, in other words, the 

17 sub-districts are used as sub-regions and the 47 nagaris are utilised as disaster 

areas in this second case of the total numbers of sub-regions and disaster areas. 

Data representing a smaller case (which from now on is used as the first case of 

the total numbers of sub-regions and disaster areas) have been created using 3 
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(hypothetical) sub-regions and 9 (hypothetical) disaster areas, but with the same 

number of people as in the larger case. Further detail about these two cases can be 

seen in Table 4.1 and Table 4.2. 

Possible maximum value of information deviation on resource availability at 

the forthcoming time points from its true value is another factor taken into 

account. Deviation of information reflects the fact that there is likely to be 

uncertainty/inaccuracy about information with regard to future resource 

availability. For instance, the number of vehicles available at particular time 

points, the numbers of incoming medical facilities already considered to arrive at 

and to leave from the disaster scene at future time points, and the numbers of 

other incoming medical facilities to arrive at and to depart from the scene may 

change as time progresses. In this matter, 3 cases are used: absolutely accurate 

information (i.e. 0% deviation of information), (up to) 5% information deviation, 

and (up to) 25% deviation of information. In this thesis, “deviation” or 

“information deviation” or “deviation of information” is frequently, but not 

always, used to describe this future-resource-availability-related information. 

Besides those previously mentioned factors, the computational experiments 

also include information on several parameter values and sets. Alternative sites 

either for medical facilities or for distribution centres or for both are examples of 

sets. Information on injured victims and injured-free sufferers in disaster areas, 

existing medical facilities, vehicle availability, incoming and outgoing temporary 

medical facilities, travelling times among sites and penalties for either not 

evacuating victims or not delivering relief goods is examples of parameter values. 

Again, information on the West Sumatera earthquake – especially that 

related to Padang Pariaman District - that was collected between November 2009 

and January 2010 is used as a basis. In cases where the necessary data are not 

available, they have been generated, details are provided below. 

In this research, there are several types of sites. These include existing 

medical facilities (if any), existing distribution centres (if any), alternative sites for 

temporary medical facilities and alternative sites for temporary distribution 
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centres. The fieldwork found that, during the earthquake upheaval, a government-

owned hospital at provincial level did serve the earthquake victims. With this 

regard, the research takes this existing hospital into consideration. Locations of 

distribution centres in each sub-region – in this case, sub-district –, meanwhile, 

need to be decided immediately after the arrival of the earthquake. 

Accommodating this situation, the research proposes two alternative sites for a 

distribution centre in each sub-region. In total, therefore, 34 alternative sites for 17 

distribution centres are proposed for the whole region, i.e. the whole district. Out 

of 24 medical centres in the region at that moment, only a small number were 

documented by the local authority as being only lightly damaged and able to 

provide service albeit at a significantly reduced level. The remaining medical 

centres, on the other hand, were more heavily damaged and, therefore, were only 

used to store goods. With this regard, the research uses 3 as the total number of 

alternative sites for temporary medical facilities. 

Other sites needed in model II and model IV – that is, existing sites with 

distribution centres and allowed to have medical facilities, existing sites with 

medical facilities and allowed to have distribution centres, sites with both 

distribution centres and medical facilities, alternative sites for temporary 

distribution centres, alternative sites for temporary medical facilities and 

alternative sites for both temporary distribution centres and temporary medical 

facilities - are derived from the sites selected previously. The existing hospital 

previously mentioned, for example, can stay as it is, i.e. an existing site with 

medical facilities, or become an existing site with medical facilities and allowed to 

have a distribution centre. 

Precise travel times - among sites and between sites and disaster areas – 

could not be determined and were generated by using approximate minimum and 

maximum travel times based on existing places in the Padang Pariaman District. 

Data on injured victims and injury-free sufferers also need to be supplied to 

the models. In the case of 47 disaster areas, the data originate from the population 

within each sub-district in Padang Pariaman District based on the registration 

process performed by the Central Agency on Statistics (Indonesian: Badan Pusat 
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Statistik (BPS)), Padang Pariaman District, at the end of year 2008. From this 

number, data on injured victims within each disaster area – i.e. the nagari - were 

firstly generated from the data on total population within the same disaster area. 

The data on injury-free sufferers within each of the disaster areas are subsequently 

acquired by subtracting these injured victim figures from the total population. The 

data in these disaster areas are subsequently pooled into 9 new data. These are 

then used as related data for the case of 9 disaster areas. The total population of 

each of the disaster area in the case of 47 disaster areas are provided in Table 4.1. 

Table 4.2, on the other hand, provides the total population in the case of 9 

(hypothetical) disaster areas.  
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Table 4.1 Sub-regions, disaster areas and total population in each disaster area, 

Padang Pariaman District, West Sumatera (source: BPS (2009)) 

No. Sub-region Disaster areas 
Total population in each disaster 

area (in persons) 

1. Batang Anai 

Ketaping 12,205 

Kasang 12,733 

Sungai Buluh 19,266 

2. Lubuk Alung Lubuk Alung 40,952 

3. Sintuk Toboh Gadang 
Toboh Gadang 8,388 

Sintuk 8,167 

4. Ulakan Tapakis 
Tapakis 5,901 

Ulakan 14,150 

5. Nan Sabaris 

Sunua 6,733 

Padang Bintungan 3,732 

Pauh Kamba 5,796 

Kapalo Koto 1,389 

Kurai Taji 8,725 

6. 2 x 11 Enam Lingkung 

Lubuk Pandan 5,119 

Sicincin 8,492 

Sungai Asam 3,703 

7. Enam Lingkung 

Koto Tinggi 3,434 

Gadua 2,758 

Toboh Ketek 1,685 

Pakandangan 5,295 

Parit Malintang 5,522 

8. 2 x 11 Kayu Tanam 

Kapalo Hilalang 5,779 

Kayu Tanam 4,953 

Guguk 5,919 

Anduring 7,584 

9. VII Koto Sungai Sarik 

Balai Aia 8,548 

Lareh Nan Panjang 3,953 

Lurah Ampalu 6,343 

SeiSarik 14,555 

10. Patamuan 
Sungai Durian 4,583 

Tandikat 11,011 

11. Padang Sago 

Koto Dalam 4,050 

Batu Kalang 2,335 

Koto Baru 1,933 

12. 
V Koto Kampung 

Dalam 

Campago 12,235 

Sikucur 10,441 

13. V Koto Timur 

Limau Puruik 3,173 

Kudu Gantiang 5,741 

Gunung Padang Alai 5,995 

14. Sungai Limau 
Pilubang 13,386 

Kuranji Hilir 15,702 

15. Batang Gasan 
Gasan Gadang 5,414 

Malai V Suku 5,926 

16. Sungai Geringging 
Kuranji Hulu 21,705 

Malai III Koto 5,613 

17. IV Koto Aur Malintang 
III Koto Aur Malintang 14,453 

Malai III Koto 4,772 

Total population in all disaster areas (in persons) 390,247 



 91 

Table 4.2 Sub-regions, disaster areas, and total population in each disaster area in 

the first case of total numbers of sub-regions and disaster areas 

No. Sub-region Disaster areas 
Total population in each 

disaster area (in persons) 

1. Sub-region I 
Area 1 93,544 
Area 2 38,683 
Area 3 33,224 

2. Sub-region II 
Area 4 29,426 
Area 5 51,485 
Area 6 42,005 

3. Sub-region III 
Area 7 28,295 
Area 8 48,747 
Area 9 24,838 

Total population in all disaster areas (in 

persons) 
390,247 

 

Some medical teams along with relatively complete medical equipment also 

came to Padang Pariaman District several days after the earthquake arrival (see 

Table 4.3). These, for instance, originated from centres for regional and sub-

regional health crisis response assistance around the affected area. Considering the 

medical equipment they brought in, the research makes the assumption that the 

medical teams can serve as temporary medical facilities, which the models are 

able to deploy to particular sites. 

Table 4.3 Arrival and departure of temporary medical teams (source: the 

fieldwork) 

No. 
Origin of temporary medical 

team 

Arrival Departure 

Date 
Time 

point 
Date 

Time 

point 

1. Region I (North Sumatera), 

Centre of Health Crisis 

Management, Ministry of 

Health, Republic of 

Indonesia 

03/10/2009 3 16/10/2009 16 
2. 03/10/2009 3 16/10/2009 16 
3. 03/10/2009 3 16/10/2009 16 
4. 03/10/2009 3 16/10/2009 16 
5. 03/10/2009 3 16/10/2009 16 

6. 
Medecins Sans Frontieres 

(MSF), Spain 
05/10/2009 5 16/10/2009 16 

 

Information on vehicle availability appears in two forms. Information on 

vehicles for transporting injured victims is obtained from the Ministry of Health 

Affairs, Padang Pariaman District (see Table 4.4). Information on vehicles for 

distributing relief, on the other hand, cannot be acquired from any sources and 
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therefore needs to be generated. Concerning the fact that a sub-region in Padang 

Pariaman District is relatively small, it is assumed that, at a certain time point, the 

maximum possible number of vehicles for distributing relief coming from other 

areas is 1. Using this value as an upper limit and 0 as a lower limit, the numbers of 

vehicles for relief distribution in each sub-region coming from other areas at a 

certain time point is then generated by using a uniform distribution. 

Table 4.4 Vehicles for transporting injured victims 

(source: the Ministry of Health Affairs, Padang Pariaman District) 

Time 

point 
Date 

Total number of arriving and departing 

vehicles 

Total arrival Total departure 

0 30/09/2009 24 0 
1 01/10/2009 1 0 
2 02/10/2009 3 0 
3 03/10/2009 24 0 
4 04/10/2009 11 0 
5 05/10/2009 25 0 
6 06/10/2009 19 2 
7 07/10/2009 5 1 
8 08/10/2009 8 3 
9 09/10/2009 4 10 

10 10/10/2009 2 1 
11 11/10/2009 2 2 
12 12/10/2009 5 1 
13 13/10/2009 4 2 
14 14/10/2009 2 1 
15 15/10/2009 1 8 

 

In performing the process of distributing relief and transporting victims, it is 

very highly likely that not all in need can be served immediately. In both cases of 

delay, the models impose particular penalties. Recognising the high importance of 

human life saving, the research takes a position that not evacuating victims 

sensibly should be penalised more heavily than not delivering relief supplies on 

time. In particular, the penalty value for not evacuating injured victims on time is 

uniformly generated from the value range of 10 to 20 whereas the penalty for 

shortages of once-for-all goods or repeatedly-needed commodities is uniformly 

generated from the value range of 1 to 10. 
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For the rest of the thesis, the following symbols are applied to represent 

those factors and problems. The total number of time points is represented by NT 

followed by the number of time points plus 1 (to represent the initial time point 0). 

For example, NT11 stands for 10 time points. The numbers of sub-regions and 

disasters areas, meanwhile, are signified by R and Na followed by the numbers of 

sub-regions and disaster areas. Three sub-regions and nine disaster areas, for 

instance, are presented as R3Na9. Finally, maximum values of percent deviation 

of information on future resource availability appear as themselves. With this 

regard, 5% stands for five percent deviation of information on future resource 

availability. Therefore, NT11R3Na9_5% should be read as follows: this is a 

problem with 10 time points, 3 sub-regions and 9 disaster areas, and the 

information on future resource availability may deviate up to 5% from its real 

value. 

Combining all of the abovementioned factors and symbols, 12 combinations 

of problem sizes are subsequently obtained.  For each problem size, the first 10 

uniformly generated data sets – including the aforementioned generated data such 

as sites, travel times between sites, number of injured victims and injury-free 

sufferers in disaster areas, vehicle availability, incoming and outgoing temporary 

medical facilities and penalty values – are obtained and used in the research. 

Computational experiments using Xpress MP Software are subsequently 

performed on all these problem instances. 

When a model is used to solve a problem instance in the computational 

experiments, the model is formulated and solved for each decision time point. For 

the R3Na9 problems, the solution time of the model at each time point is limited 

up to 1200 seconds. Because models III and I consist of two sub-models, this 

means that the time limit for solving the sub-models IIIa, IIIb and Ib at each time 

point is set to 600 seconds. For sub-model Ia, the time restriction for each sub-

region is 600 seconds divided by the number of sub-regions. In terms of Xpress 

MP Software, this means that XPRS_MAXTIME, a control parameter in Xpress 

optimizer, is put in place. 
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Problems R17Na47, in the meantime, have much bigger numbers of 

decision variables and, therefore, much higher dimensions of solution spaces. As a 

consequence, time required to reach an integer solution is much longer. It is also a 

matter of fact, however, that the size of model decreases at each successive time 

point. With this respect, the computational experiments for R17Na47 problems 

are carried out by allowing a much longer time limit for the first time point. This 

limit is decreased for each successive time point. The same idea is used for the 

maximum time allocated to the cutting process (i.e. by setting up 

XPRS_MAXCUTTIME, another control parameter in Xpress optimizer). More 

specifically, XPRS_MAXTIME and XPRS_MAXCUTTIME are set to 5400 – 

600*T and 600 – 60*T for models II and IV, 2700 – 300*T and 300-30*T for sub-

models Ib, IIIa and IIIb, and (2700 – 300*T)/ R and (300 – 30*T)/ R for sub-

model Ia, where T stands for decision time point and R represents the number of 

sub-regions. 

Another stopping criterion taken into consideration is related to the 

objective function of the mixed integer problems under concern. In this case, 

another control parameter in Xpress optimizer, XPRS_MIPRELSTOP, is set in 

place at a value of 0.05. This means that the global search will stop if a mixed 

integer solution has been found within 5% of the best bound of the optimum 

solution. 

The summary of all 12 problem sizes and their symbols can be seen in Table 

4.5. A short explanation about the table is provided afterwards. 
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Table 4.5 Summary of the problem sizes in computational experiments 

No. Problem size notation 
No. time 

points 

No. sub-

regions 

No. disaster 

areas 

Maximum 

% deviation 

1. NT11R3Na9_0% 10 3 9 0 

2. NT11R3Na9_5% 10 3 9 5 

3. NT11R3Na9_25% 10 3 9 25 

4. NT16R3Na9_0% 15 3 9 0 

5. NT16R3Na9_5% 15 3 9 5 

6. NT16R3Na9_25% 15 3 9 25 

7. NT11R17Na47_0% 10 17 47 0 

8. NT11R17Na47_5% 10 17 47 5 

9. NT11R17Na47_25% 10 17 47 25 

10. NT16R17Na47_0% 15 17 47 0 

11. NT16R17Na47_5% 15 17 47 5 

12. NT16R17Na47_25% 15 17 47 25 

 

The introduction of total number of disaster areas (and sub-regions) and 

total number of time points determine the total number of decision variables and, 

ultimately, the size of the problems. With this regard, it is clear that 

NT11R3Na9_0% has much fewer decision variables than NT16R17Na47_0%. 

Concerning model IV with   =0,   =1,  =0,  =0,  =0,   =34,   =3 and 

  =0, for instance, the total number of decision variables in NT11R3Na9_0% 

(35,840) is only around one fifth of the total number of decision variables in 

NT16R17Na47_0% (181,481). Regarding the fact that the mixed integer 

programming problems are NP-hard, the former problem size is much easier to 

solve and the second problem size needs much longer time to find its optimum 

solution. The deviation of information on future resource availability, on the other 

hand, will affect the accuracy of input to the models. It is hypothesised that the 

more accurate the information on resource availability, the better the outcome of 

the models will be. 

Section 4.2 presents output data from the computational experiments. 

Processed experimental data are provided in Section 4.3. The results of the 

experiments are further discussed and analysed, of which details are provided in 

Appendix E and of which summary is presented in Section 4.3. 
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4.2 Raw Data from Computational Experiments 

As already mentioned, 10 data sets were generated for each of the 12 

problem sizes and the results from these experiments are provided in the tables in 

Appendix A. 

During the process of solving each problem instance, accumulated objective 

values (maximum sufferings) up to each decision time point are produced. The 

accumulated objective values at the end of the planning horizon are presented in 

the 12 tables in Appendix A as the accumulated objective values, together with 

associated values for the average and standard deviation. These two descriptive 

statistics are calculated in aiding the analysis and discussion in the upcoming 

section. 

It is necessary to note that the results of model I and model II are not 

affected by the future information deviation (i.e. 0%, 5% or 25%). The objective 

value of model I for NT11R3Na9_0% data set 1, for instance, is 

27,496,072.739924. This value is exactly the same as those forNT11R3Na9_5% 

data set 1 and NT11R3Na9_25% data set 1.This is because both model I and 

model II are run with resources that are available at the decision time point of the 

running process and, as a result, there is no need to take information on resource 

availability at the upcoming time points into account. 

4.3 Analysis and Discussion 

A research problem has been identified and presented in Chapter 1. 

Following the problem, four different mathematical models have already been 

constructed. Each of the models includes a variety of decision variables and 

parameters. Many of the parameters have a large number of possible values. 

These lead to a very large number of combinations of inputs for the models. By 

considering this fact, 10 different inputs are chosen from within each problem 

size. In other words, computational experimentation for the model testing is 

performed by using 10 samples, with each sample data set applied to each of the 

four models. 
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As already mentioned, the computational experiments are intended to get 

insight about the performance of the models. The insight can be from a statistical 

point of view such that, statistically speaking, it can be inferred whether a 

particular model performs better than other models. This is what is called 

statistical significance of the results. A short note about tests of statistical 

significance employed in the thesis is provided in Appendix B. A brief overview 

on tests on assumptions of residuals of the original data and summary of the test 

results on the data are provided in Appendix C. 

An additional issue addressed in the analysis and discussion is the practical 

meaning, practical significance or usefulness of research results (for an advocacy 

that the usefulness of the research results should be examined, see e.g. Kirk 

(2007) and Hayat (2010)). With this motivation, effect sizes of the study are 

calculated and provided. The analysis and discussion are also carried out by taking 

the context of the study into account. 

Effect size (or ES in short) refers to the extent or strength of research results 

(Durlak, 2009) or, in other words, ES is the effect of a particular treatment on the 

result of research interest or the relationship between research variables (Berben et 

al., 2012). ES is a statistic that measures the magnitude to which sample statistics 

deviate from the null hypothesis (Thompson, 2006). A rule of thumb is that ESs of 

around 0.2 are small in size, those approximately 0.5 are medium, and those 

roughly or larger than 0.8 are of large magnitude (see, for example, Cohen (1992) 

and Durlak (2009)). Following Kirk (2007), a small effect size is one for which 

58% of resulted outputs with regard to a certain treatment exceed outputs with 

respect to the other treatment, a medium effect size is one for which 69% of 

resulted outputs concerning a certain treatment exceed outputs with regard to the 

other treatment, and a certain treatment of which 89% of its output exceeds the 

other treatment’s outputs has a large effect size. The formula for calculating the 

effect size in the current research thesis is provided in Appendix B. 

The contextualisation of the research is another practical significance issue 

of the current research (see, for instance, Buhi (2005) on contextualisation of 

study). For the purposes of this thesis, a measure referred to as suffering reduction 
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is calculated. Firstly, relative differences between objective values of different 

models are calculated. Secondly, the relative difference is multiplied by the total 

number of victims in Padang Pariaman District as a result of West Sumatera 

earthquake. The average and standard deviation of suffering reduction are also 

calculated. Calculation results of the suffering reduction concerning the original 

data are provided in Appendix D. 

4.3.1 Comparing Model Performance 

By mainly taking statistical significance and practical significance points of 

view, the raw output data from computational experiments are subsequently 

analysed and discussed. Detailed analysis and discussion on model performance is 

provided in Appendix E.1. 

In general, several insights with regard to model performance for the 

problem sizes under concern can be summarised as follows. Firstly, model I 

performance is surpassed by all other models in all problem sizes. Secondly, 

model II and model IV perform better than model III on R3Na9 problems. 

Thirdly, contrary to the second summary, model III performance goes beyond 

those of model II and model IV on NT16R17Na47 problems. Fourthly, all of 

model II, model III and model IV perform roughly equally on NT11R17Na47 

problems. Fifthly, the performances of model IV and model II are mostly very 

similar over problem sizes. 

Theoretically, it was expected that all the proposed models – i.e. model II, 

model III and model IV – would improve the relief distribution and victim 

evacuation in comparison with model I. It was also expected that model IV would 

perform the best amongst the four models over any problem size. Contrasting the 

performance of the four models between the theoretical patterns – as summarised 

above - and the real patterns – as summarised in the preceding paragraph - it is 

apparent that the real patterns represented by insight number one and number two 

do match the theoretical patterns. Insights three, four and five, meanwhile, show 

that the related real patterns do not follow the related theoretical patterns. This 

leads to the need to look further into the overall results of the computational 
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experiments and contrast them to both theoretical ideas and the way the 

computational experiments are performed, a matter which will be addressed in 

Sub-section 4.3.3. 

4.3.2 Comparison of the Impact of Information Deviation 

In addition to the tests on model performance for a variety of problems, tests 

and calculations that solely examine the impact of information deviation on model 

performance are also conducted. The tests and calculations are eventually 

analysed and discussed, of which details are presented in Appendix E.2. 

General insights on the effect of information deviation to problems under 

concern follow. Firstly, the tests confirm that information deviation under study 

does not affect model III performance for any of the problems under concern. 

Secondly, model IV with exactly accurate information performs the best among 

all alternatives only in the case of NT16R3Na9_0% over NT16R3Na9_25% and 

in the NT11R17Na47 problems. 

Theoretically speaking, it is anticipated that model inputs with more 

accurate future resource availability should make the model perform better than 

the inputs with less accurate values. Computational experiments performed so far, 

unfortunately, do not always support this premise. A further look, therefore, is 

needed and is provided in the next sub-section. 

4.3.3 A Further Look 

From all analyses and discussions in this chapter so far, it is obvious that all 

the proposed models are able to improve the process of delivering relief to the 

victims and transporting injured victims from the disaster areas in comparison 

with model I, both statistically and practically. It is also evident that, from a 

practical point of view, model II and model IV surpass model III in performing 

relief distribution and injured victim transportation for small problem sizes. With 

regard to the effect of information deviation on future resource availability, it is 

advised that model IV with 100% accurate information has a better performance 

over all of the other choices of delivering the relief and transporting the injured 
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victims in case of NT16R3Na9_25% and NT16R3Na9_0% problems and in 

NT11R17Na47 problems. These match what is expected from the results of the 

computational experiments. 

The experiments, nonetheless, suggest that, practically, model II and model 

IV conduct the process of relief distribution-victim evacuation worse than model 

III for large problem sizes. It is also found that the model inputs with perfectly 

accurate future information on resource availability do not always make the 

related model carry out the process of minimising the unmet demands better than 

those with inaccurate information. 

As mentioned previously, the complexity of the models increases from 

model I either by including information on resource availability in the future into 

the model(s) or by combining the relief distribution and the victim evacuation or 

both. As a consequence, the total number of variables in the models becomes 

larger than that in the model I. For 15 time points, the pattern of the total number 

of variables in the four models, in ascending order, is model I, model III, model II 

and model IV. This makes the solution spaces created by the implementation of 

the four models with regard to a particular set of inputs also become larger from 

model I to model IV, following the pattern of the total number of variables of each 

of the models. By allowing exactly the same time for all models, it is extremely 

likely that with time limits, the percentage of the solution space that can be 

explored for larger models will be far smaller than that for smaller models, 

leading to a likely degradation in terms of progress towards finding an optimal 

solution. This is confirmed by the experiments, wherein model I in most of 

problems under concern and model III in most of the small problems (i.e. R3Na9) 

need less than the time allowed to complete the running process for one time 

period, whilst execution of model II and model IV had to be terminated 

prematurely before completion of the running process for the same time period in 

all problems. Taking the fact that the total number of variables in model IV with 

regard to a particular problem is always greater than that in model II with respect 

to the same problem, it is likely that the solution resulting from the 
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implementation of model IV will be farther from optimality in comparison with 

the distance between the solution given by model II and its optimum value. 

Another issue worthy of discussion is the indication that information 

accuracy on future resource availability does not always guarantee a better result. 

The matter of the size of solution spaces – discussed above – is also likely to be 

relevant in this case. Another possibility is the effect of using a 5% cutoff in the 

branch-and-bound search, especially to those experiments relating to model I in 

all problem sizes and to model III in small problem sizes. Less than the maximum 

time allowed is needed by models I and III to complete the computational process 

for one period. Because of the presence of the cutoff, the solutions obtained from 

the previously mentioned computations may never reach optimality. This most 

likely explain why more accurate information on resource availability at the 

upcoming time points does not always make a model perform better than less 

accurate information. 

The next chapter presents research designed to cope with the problem of 

large solution spaces. The issue of information accuracy, for the reasons of its 

narrower scope of impact, on the other hand, is put aside and left for future 

research. 

In general, the idea of the research presented in the next chapter is to make 

the solution spaces smaller in order for the application of the proposed models – 

especially model II and model IV – to give better solutions contrary to the 

solutions resulted from the application of model I and model III. So-called 

heuristic approaches are proposed and tested with computational experiments. The 

heuristics along with their experimental results are subsequently analysed and 

discussed. 
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CHAPTER 5                                                                                     

ON HEURISTICS 

This chapter focuses on heuristics applied to the problems under study. In 

the chapter, a general introduction is presented first. Subsequently, an idea on how 

the solution spaces can be reduced is presented. The three ways to reduce the 

solution spaces applied in the research – including computational experiments that 

follow - are provided in the section after. The present chapter concludes with a 

summary of findings. 

5.1 Introduction 

In the previous chapter, it was argued that a potential reason for the relative 

performance of the four models not following the expected pattern might be the 

increase in solution space for models II, III and IV causing the solutions obtained 

at the end of the time limit to be far from optimal.  It is hoped that by reducing the 

size of the solution space, and thereby allowing later models to explore the 

solution space more fully in the time allowed, the expected improvement of model 

IV and model II in comparison with model I and model III will be realised. It is 

also expected that, with the application of the heuristics, the performance of 

model IV will prove to be better than the performance of model II. 

5.2 On How to Reduce Solution Spaces 

Regarding the result of computational experiments with 15 time points, 47 

disaster areas, 17 sub-regions, and 0% deviation of information about resource 

availability in the upcoming time periods, it seems that all the proposed models 

perform much better than model I. It is nonetheless apparent that model III 

outperforms model II and model IV. This is not in line with the result of previous 

computational experiments on smaller problems. 

One of the possible causes of this result is the conjecture that the total 

numbers of decision variables in model II and model IV are much larger than 

those in model I and model III. This leads to larger solution spaces. With limited 
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running time for each time point of model II and model IV, the obtained solutions 

are still very far from the optimum values. It might therefore be valuable to reduce 

the solution spaces. This can be done in many ways of which three are (1) 

reducing time points, (2) merging the total number of temporary distribution 

centres that have to be built into a smaller number, and (3) combining (1) and (2). 

The rest of this section briefly describes these three heuristic approaches. 

Time point reduction is presented first in Sub-section 5.2.1. Sub-section 5.2.2 

deals with the pooling of distribution centres. Time point reduction in 

combination with pooling of distribution centres is presented in Sub-section 5.2.3. 

The problems with 15 time points, 47 disaster areas, 17 sub-regions and zero 

percent deviation of information on future resource availability 

(NT16R17Na47_0% or the 0% problem in short) are used to test the various 

heuristic approaches. 

5.2.1 Time Point Reduction 

In this heuristic, the number of original time points is reduced. This 

reduction is realised in three ways, which are explained in the following 

paragraphs. 

The first way addresses the original problem by reducing the number of 

time points in such a way that the reduced time points are evenly spaced. The 

original time points are merged into the closest reduced time point. The time point 

reduction is performed at the very beginning of the problem solving process and 

these reduced time points are kept unchanged during the solving process. 

With respect to the 0% problem, the time points are reduced to 5 time 

points. The new time points are actually time points 0, 3, 6, 9, 12 and 15 in the 

original time point set. As a consequence, all related information with regard to 

resources is also updated. These 5 time points are subsequently treated as time 

points 0, 1, 2, 3, 4 and 5 in the set of new time points. Please see Figure 

5.1below.This heuristic will be referred to as redtime heuristic. 
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Figure 5.1 Time point reduction, redtime heuristic 

 

The updated information about resources leads to a new composition of 

resource availability. This sometimes leads to infeasibility. For example, the total 

number of vehicles leaving the disaster scene at a certain time point may be more 

than the number of vehicles actually available in sites at the same time point. In 

this case, the difference between these two numbers of vehicles at the time point is 

calculated. The number of vehicles resulting from this calculation is subsequently 

assumed to leave the disaster scene at the next time point. 

It is also apparent that the new time points of 0, 1, 2, 3, 4 and 5 are actually 

time points 0, 3, 6, 9, 12 and 15. Due to this fact, penalty functions for not sending 

relief distribution and not evacuating victims in a timely fashion, which involve 

the time duration of suffering, need to be adjusted as well. For example, if the 

number of periods in the original model is 15 and this becomes 5 after reduction, 

then one period in the reduced model represents 3 periods in the original time 

scale. Therefore, the coefficients of the S and W variables in the objective 

functions and constraints (1), (21), (41) and (81) in the reduced models need to be 

multiplied by 3, in order to reflect the real objective value. 

A computational experiment using this heuristic approach was applied to the 

0% problem. The results are presented in Table F.1 of Appendix F along with the 

average and standard deviation values. 

The second time point reduction heuristic differs from the first in that the 

number of time points is reduced dynamically. In the process of reducing time 

points, the present time point and the next time point as well as information on 
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resource availability at these two time points are kept unchanged. The period 

between these first two time points will remain as one time unit.  The future time 

points, on the other hand, change based on how far they are from the present time. 

The reduction of these later time points is performed by making the assumption 

that the further a time point is from the present point, the less accurate the related 

information is likely to be, and so the information needs to be considered in less 

detail. Under this assumption, therefore, the further ahead the time is from the 

present time, the longer the period between two adjacent new time points would 

be in the reduced model. The duration of each period is made one time unit longer 

than that of the previous period, or the same as the previous time period in cases 

where it is not possible to keep the period length increasing in the planning 

horizon. The process of reducing time points and updating related information is 

performed over the original time points. When applying the model in a rolling 

horizon fashion, time point reduction and information updating are performed 

every time there is a need to re-run the model. As in the first heuristic, the 

coefficients of the S and W variables in the objective functions and constraints (1), 

(21), (41) and (81) in the reduced models need to be multiplied by the 

corresponding period lengths. 

Figure 5.2 presents the abovementioned idea with respect to the time points 

in the 0% problem. Table F.2 of Appendix F presents results of computational 

experiments performed using this approach and is henceforth referred to as 

redtime_up. 
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Figure 5.2 Time point reduction, redtime_up heuristic 

 

As can be seen from Figure 5.2, in the reduced model at the decision time 

point 0 (T=0), the length of the period between the present and the next time point 

is one time unit, and the lengths of the following periods are 2, 3, 4, and 5, 

respectively. In the reduced model at the decision time point 1 (T=1), on the other 

hand, the lengths of the periods are 1, 2, 3, 4 and 4, respectively. In other words, 

the lengths of the last two periods are the same. It is also clear from Figure 5.2 

that the length of each period is always one time unit longer than or the same as 

that of the previous period. 



 107 

The third time point reduction heuristic always keeps the next four time 

points and their related information separate for as long as possible. The 

remaining time points (and related information on resource availability) are 

aggregated into the last time point. In this way, it is implied that information on 

resource availability at the fifth time point onwards is considered to be liable to a 

degree of doubt. Taking into account information about the first four time points 

as is, in the meantime, signifies the idea that more recent information is far more 

likely to prove reliable. This follows the idea on the criticality of a particular 

disaster during the early period of its onset suggested by, for example, Sheu 

(2007a, 2007b, 2010), Salmeron and Apte (2010) and Zeimpekis et al. (2013) and 

implied by, for instance, Ginzburg et al. (2010). 

Figure 5.3 below presents the abovementioned idea with respect to the 15 

time points in the 0% problem. Computational experiments with respect to the 0% 

problem using the notion presented above concerning 10 datasets are carried out, 

and the results are presented in Table F.3 of Appendix F. This heuristic is 

henceforth referred to as 4time. 
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Figure 5.3 Time point reduction, 4time heuristic 

5.2.2 Merging Temporary Distribution Centres 

As previously mentioned, model I tries to reflect, in many ways, the relief 

distribution and victim evacuation which took place in the Padang Pariaman 

District following the 30
th

 September 2009 earthquake. It addresses the relief 

distribution and victim evacuation separately. The relief distribution is performed 

separately within each sub-region, and sub-model Ia is concerned with the 

determination of temporary distribution centre location within the sub-regions and 

the allocation of disaster areas in the sub-region to the distribution centre. The 

victim evacuation, on the other hand, is performed for the whole district. 
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Models II, III and IV are built as an improvement to model I. The later 

models use the same approach in terms of establishing the exact number of 

temporary distribution centre locations as in model I. If, for instance, there are 17 

sub-regions in model I and each sub-region sets up one temporary distribution 

centre, then there will be 17 temporary distribution centres in total. The locations 

of these 17 temporary distribution centres are determined in each of the models II, 

III and IV and, as a result, there will be 17 temporary centres serving the victims 

in the disaster areas. 

Models II, III and IV, meanwhile, are proposed with an assumption that 

there is a particular agency which can serve as a command body during the 

response phase of disaster management. Considering this and taking the case of 

the 17 sub-regions mentioned in the prior paragraph into account, it seems to 

make sense to build only one temporary distribution centre instead of 17. By 

having to determine the location of only one temporary distribution centre, it is 

expected that the response could be given in a much more coordinated way. In 

terms of model issues, this is expected to lead to reduced solution spaces. 

Ultimately, the reduced temporary distribution centres are expected to lead to a 

more sensible performance of the models. 

Results of the application of this heuristic (henceforth referred to as redNdc) 

to the 0% problem are presented in Table F.4 of Appendix F. 

So far, computational experiments are performed by considering the arrivals 

of a particular number of temporary medical facilities at different time points. In 

this research, all medical facilities (either permanent or temporary) are assumed to 

have unlimited capacity to give service. Considering this assumption, it is 

therefore possible to deploy all these temporary medical facilities to different 

sites. At the same time, sites with a distribution centre and temporary medical 

facility are possible to establish in models II and IV. In this respect, it may be 

worthwhile to establish the number of distribution centres to be exactly the same 

as the number of temporary medical facilities available to deploy. The second part 

of experimentation in this category is carried out by using this second proposal of 

distribution centre pooling as a base. 
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Table F.5 of Appendix F presents the results of the computational 

experiments based on the abovementioned idea on the 0% problem. The heuristic 

is henceforth referred to as redNdc6, where the number 6 refers to the number of 

temporary medical facilities available to deploy during 15 days of disaster 

response in Padang Pariaman District after the West Sumatera earthquake. 

5.2.3 Time Point Reduction and Distribution Centre Pooling 

In this section, the idea is to explore whether combining the time point 

reduction and distribution centre pooling approaches might be worthwhile. 

By using this idea as a foundation, a computational experiment comprising 

the 10 data sets for the 0% problem is carried out and the results are presented in 

Table F.6 of Appendix F. Rather than explore all 6 potential heuristic 

combinations, it was decided to focus on combining 4time together with redNdc6. 

The combined heuristic is referred as redcomb from this point forward. 

5.3 Analysis and Discussion 

The analysis and discussion, similar to that in Chapter 4, is conducted from 

a statistical point of view as well as a practical one. Prior to the analysis, certain 

inferential statistical tests are employed and particular calculations are performed. 

In the first part of the analysis and discussion, results of the computational 

experiments with regard to the application of heuristics are analysed and 

discussed. Prior to the analysis, assumptions on residuals of the experimental data 

are tested and inferential statistical tests appropriate for the data are then 

employed; effect sizes of models within the heuristics are calculated, and the 

victim suffering reduction when applying a certain model over the other models 

using the heuristics proposed in the thesis are calculated. The result of the 

assumption tests on residuals with regard to the heuristics is summarised and 

provided in Table G.1 of Appendix G of the thesis; results from Kruskal-Wallis 

test, an inferential statistics, applied to heuristics-related data are given in Table 

J.1 of Appendix J; Table J.2 to Table J.7 of Appendix J present Mann-Whitney’s 

(MW’s) P, effect size (ES) and suffering reduction (SR) average and standard 
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deviation values obtained from related tests; and Table H.1 to Table H.6 of 

Appendix H of the thesis provide all results for the SR figures (average and 

standard deviation values are summarised in Tables J.2 to J.7 of Appendix J). 

Particular values of suffering reduction resulting from the application of certain 

heuristics are presented in Figures J.1 to J.4 of Appendix J, and are mainly 

intended to aid the analysis and discussion. 

The second part of the analysis deals with the sole performance of each of 

the models for each of the heuristic approaches. As already mentioned in the final 

part of Chapter 4 as well as at the beginning of the current chapter, all heuristics in 

the present chapter are proposed to improve the performance of model IV and 

model II relative to their performance on the 0% problem and in comparison to 

the performance of model I and model III. In particular, the heuristics are 

introduced to give evidence on the idea that model IV is anticipated to give better 

results than model II. In addition, the second part deals with insights about the 

performance of the heuristics with regard to a particular model. With this respect, 

required statistical tests are performed and particular ES values as well as the SR 

of each of the models compared with others are calculated. Test results on 

assumption of residuals related to this matter are provided in Table G.2 of 

Appendix G. Kruskal-Wallis test results of the related data, in the meantime, are 

provided in Tables J.8–J.11 of Appendix J. Tables J.12–J.15 of Appendix J, 

meanwhile, present MW’s P, ES figures, and SR average and standard deviation 

values. The complete SR figures can be found in Tables I.1.1–I.4.4 of Appendix I. 

Lastly, analysis is included which takes a further look at the performance of 

all four models over all approaches with a view to testing the hypothesis that, 

theoretically, model IV is expected to perform the best among the four models 

presented in the thesis. 

5.3.1 Model Performance with Proposed Heuristics 

Detailed analysis and discussion on model performance with the proposed 

heuristics is provided in Appendix J.1. The findings can be summarised as 

follows. Firstly, models II, III and IV perform better than model I both statistically 
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and practically for redtime heuristic. Secondly, the performance of models II, III 

and IV for redtime_up is better than that of model I; model II performs relatively 

the same as model III does; and model IV performs better than model III does. 

Thirdly, for 4time, model I is outperformed by models II, III and IV; model II and 

model IV, in the meantime, have relatively equal performances for the heuristic. 

Fourthly, model III, for the redNdc heuristic, performs worse than models II and 

IV. For redNdc6, model IV performs better than model III, model II and model IV 

have relatively the same performance and model I performs the worst among the 

four models. Lastly, models II, III and IV perform much better than model I for 

the redcomb and, still for the same heuristic, models II and IV perform better than 

model III does. 

5.3.2 Performance of the Heuristic Approaches for Each Model 

Besides model performance for particular heuristic approach, performance 

of the heuristic approaches for each model is also analyzed and discussed. 

Detailed analysis and discussion on this matter is provided in Appendix J.2. 

In summary, the performance of the heuristics is as follows. Firstly, model I 

is best approached with redtime. Secondly, redcomb performs the best for model 

II and model IV. Lastly, there is no clear indication about which approach 

performs the best for model III. 

5.3.3 A Further Observation on Model Performance 

From the analysis and discussion on model performance with heuristics and 

individual model performance across various approaches, it is clear that model I 

performance is dominated by the other three models consistently no matter which 

heuristic is used to solve the models. This insight matches the insight regarding 

model I within most problem sizes presented and discussed in Chapter 4. 

The results of each individual model solved by different approaches also 

show that the relative performance of solution approaches is different for different 

models. This means that the comparative results of the models are dependent on 

the approaches used if the same approach applies to all models. It will be more 
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meaningful, therefore, to compare the performance of the models by solving each 

model with the approach most favourable to this model. 

From discussion and analysis in Sub-section 5.3.2, it is clear that model I is 

best approached with redtime (see Sub-section J.2.1 of Appendix J) and redcomb 

performs the best for model II (see Sub-section J.2.2 of Appendix J) and model IV 

(see Sub-section J.2.4 of Appendix J). Despite no clear indication about which 

approach performs the best for model III (see Sub-section J.2.3 of Appendix J), it 

can be seen from Table J.14 that using redtime makes model III produce higher 

ES values relative to other approaches. For this reason, redtime is chosen as the 

best approach for model III. Based on the above choice of best approach for 

solving each model, assumption tests on residuals were performed and ES values 

and SR figures of a certain model relative to other models were calculated. The 

test results on the residuals are provided in Figure K.1 of Appendix K, the 

calculated ES values and SR averages and standard deviations are presented in 

Table 5.2 and Tables L.1-L.2 of Appendix L provide the calculated SR figures. 

Concerning the test results on residuals, Kruskal-Wallis tests were 

subsequently performed on the performance of models using their best approach 

(see Table 5.1). Regarding the very small P value in the table (i.e. 0.000), it can be 

statistically deduced that at least one model performs differently from the others. 

It is obvious from the figures in the middle columns of the table that model I 

performs worse than the other models. This is no surprise as all previous analysis 

has consistently confirmed this. 

Table 5.1 Kruskal-Wallis test results with regard to best approach for each model 

Model_Approach Average rank Median P value 

model_I_redtime 35.5 3,497,576 

0.000 
model_III_redtime 20.6 1,877,467 

model_II_redcomb 14.9 1,293,989 

model_II_redcomb 11.0 1,132,649 

 

To make pairwise comparisons between the model results obtained by their 

respective best approaches, a series of Mann-Whitney (MW) tests are conducted. 

MW’s P values of these tests are presented in Table 5.2. 
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Table 5.2 Values of MW’s P, ES, and SR average and standard deviation of the 

results of the best approach for each model 

Relative to 

approach …  
Value of … 

With respect to approach … 

model_III_ 
redtime 

model_II_ 
redcomb 

model_IV_ 
redcomb 

model_I_ 

redtime 

MW’s P 0.0002 0.0002 0.0002 
ES 1.40 1.59 1.66 
SR Average 223,695  276,370  283,569  
SR StdDev 99,873  44,016  53,188  

model_III_ 
redtime 

MW’s P  0.1212 0.0257 

ES  0.82 1.29 

SR Average  69,421  108,996  

SR StdDev  115,645  112,429  

model_II_ 
redcomb 

MW’s P   0.2730 

ES   0.53 

SR Average   31,423  

SR StdDev   115,460  

 

From the Table 5.2, performances of the models can be compared and, in 

turn, the research questions about the benefits of coordinating relief distribution 

and victim evacuation and of considering information on future research 

availability can be answered. 

The P values comparing models I and II and comparing models III and IV 

are small and the corresponding ES values are large. These indicate that 

coordinating the operations by sharing vehicles for relief distribution and victim 

evacuation significantly improves the performance as compared to conducting the 

two operations separately. 

Comparing models I and III, the small P value and large ES value 

demonstrate the significant benefit of considering information on future resource 

availability in the case where relief distribution and victim evacuation are 

conducted separately. The P value comparing models II and IV does not show 

statistically significant difference between the two models. This might be because 

after the improvement by coordinating the two operations, the results of model II 

have less room for further improvement. Nevertheless, a medium ES value does 

show a certain advantage of model IV over model II. Combining the results of the 
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above two pairwise comparisons, it can be concluded that considering information 

on future resource availability is beneficial. 

In summary, the results in this chapter show that the heuristics are effective 

in improving solution quality. Comparing the best solutions of the models 

obtained using their respective most favourable solution approaches, the benefits 

of coordinating relief distribution and victim evacuation and of considering 

information on future research availability become clear. Overall model IV 

performs the best. These are all in line with the conclusions from the small 

problem results in the previous chapter.  
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CHAPTER 6                                                              

CONCLUSIONS 

This final chapter presents overall conclusions, highlights limitations of the 

current research and considers future research directions in the area of the current 

research. 

6.1 Research Conclusions 

In order to deal with the problems of distributing relief, evacuating injured 

victims, and determining temporary sites following a sudden-onset, difficult-to-

predict natural disaster occurrence identified in the current research, four different 

mathematical location-allocation models are developed. The four models try to 

minimise the worst suffering of victims as well as total suffering over all disaster 

areas. Following model testing, analysis and discussion of results, several 

conclusions can be made: 

Conclusion 1: Models II-IV improve on current practice (model I) 

Contrasting the performance of model I to models II, III and IV, it is 

apparent that the last three models perform better in almost all of the problem 

sizes under concern. In other words, conducting relief distribution and victim 

evacuation after a sudden-onset, difficult-to-predict natural disaster by using 

shared vehicles and/or by taking future information on resource availability into 

account is proven to improve the “current practice”. 

Conclusion 2: Sharing vehicles is a good approach for small problems 

In terms of small problem sizes – i.e. those in which numbers of sub-regions 

and disaster areas are 3 and 9, respectively - model II and model IV perform better 

than model III. To put it in another way, the relief distribution and victim 

evacuation for small problem sizes is better performed by using shared vehicles or 

concurrently using shared vehicles and taking future information on resource 

availability into account rather than only taking into consideration future 

information on resource availability. 
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Conclusion 3: Taking account of future information works well for larger 

problems 

Combining relief distribution and victim evacuation using shared vehicles, 

models II and IV are much more complex and more difficult to solve than model 

III. With limited computation time as set in our experiment, in contrast to the 

previous conclusion, model III performance goes beyond those of model II and 

model IV for large problems where time points, number of sub-regions, and 

number of disaster areas are 15, 17 and 47, respectively. In other words, for these 

large problem sizes, better solutions can be found with the relief distribution and 

victim evacuation performed by only taking into consideration future information 

on resource availability rather than either by using shared vehicles or by 

simultaneously taking into account future information on resource availability and 

using shared vehicles. 

Conclusion 4: Model II works best in combination with the redcomb 

heuristic 

With respect to Model II, of all the heuristics developed in the current 

research, it can be concluded that the redcomb heuristic is the best. In other words, 

the process of distributing relief and evacuating injured victims by using the same 

vehicles for both activities and all resources available at hand is best carried out 

by, as long as possible, considering 5 time points only, where the fifth time point 

aggregates all information on resource availability beyond the four most current 

time points. 

Conclusion 5: Model III is adversely affected by the redNdc heuristic 

Model III’s performance in combination with the redNdc heuristic in 

conducting the relief distribution and victim evacuation is the worst. In other 

words, the idea of squeezing the total number of distribution centres to establish 

from 17 down to only 1 does not work for this model. 
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Conclusion 6: Model IV works best in combination with the redcomb 

heuristic 

Similarly to conclusion 4, the redcomb heuristic leads to the best 

performance for model IV relative to all other approaches. In other words, 

carrying out the relief distribution and victim evacuation by using the same 

vehicles and taking into account future information on resource availability for 

these activities is best done by taking into account information on the upcoming 3 

time points and pooling together information on resource availability at the 

remaining time points at the final time point and reducing the number of 

temporary distribution centres to be established from 17 to 6. 

Conclusion 7: Overall, model IV in combination with redcomb is the best 

approach 

Across all models in combination with all approaches, it can be seen that 

model IV approached with redcomb leads to the best overall performance. In other 

words, among all models approached with any methods either exact or heuristic, 

the process of distributing relief and evacuating injured victims is best performed 

by using vehicles shared for these activities, taking into account information on 

the upcoming 3 time points and pooling together information on resource 

availability at the remaining time points at the last time point and reducing the 

number of temporary distribution centres to be established from 17 to 6. 

Conclusion 8: Information deviation does not affect model performance 

Finally, it can be seen that deviation, within certain range, of future 

information on resource availability considered in the study does not affect the 

performance of model III and model IV in carrying out the relief distribution and 

victim evacuation after a sudden-onset, difficult-to-predict natural disaster. 

6.2 Research Limitations 

It is necessary to mention that the current research is carried out with several 

limitations. The limitations are highlighted in this section. 
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The first limitation stems from the maximum deviation of information on 

future resource availability considered in the current research, which are 0%, 5% 

and 25%. It is extremely likely that information on future resource availability in 

practice may deviate more than these values and, thus, the research findings in 

terms of the effect of information deviation factors (see conclusion 8) may not 

apply to these larger deviations. 

The second limitation concerns the implicit assumption about capacity of 

sites considered in the current research. Unlimited site capacity is not always the 

case in context of disaster management and hence it is possible that this may 

affect the applicability of the findings in the current research. 

It is also possible that, following the onset of a disaster, there will not 

always be an abundant supply of the relief needed by disaster victims. The models 

presented in this research would, therefore, not be suitable in this situation. 

Models II and IV in the current research are built with an assumption that 

there is a certain authoritative body with capability of giving command to all 

parties involved in the disaster response. The absence of such ability, therefore, 

affects the applicability of the models. 

6.3 Future Research Directions 

Four mathematical models have been built and tested. Performance of the 

models over various problem sizes has already been presented, many findings 

have been identified, and overall conclusions have been provided. Considering all 

of these issues, the following directions of future research can be identified: 

Firstly, only one of the six potential combinations of time point reduction 

heuristics and resource pooling heuristics was explored in the current research, i.e. 

redcomb heuristic. It might be worthwhile to explore and analyse the relative 

performance of the other combinations. 

Secondly, other near-optimal approaches might be needed to improve the 

model IV performance. Fixing a particular location-related variable at one and 
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setting the others to zero, for instance, will make the solution space much smaller. 

A second example would be aggregating the disaster areas into a smaller number, 

also leading to far smaller solution spaces. 

Thirdly, the location-allocation models in the current research are built by 

using a combination of a P-centre model and P-median model for the objective 

functions. In future, location-allocation models for relief distribution and victim 

evacuation following a sudden-onset, difficult-to-predict natural disaster where 

coverage to disaster areas is maximised given a particular number of sites (a 

coverage model) or where maximum value of unmet demands across disaster 

areas is minimised (a pure P-centre model) could be studied. Along with the 

results of the current research, the results of these last two could subsequently be 

compared with each other and insights about these approaches obtained. 

Fourthly, it is found in the current research that limited deviations of future 

information on resource availability allowed do not affect the performance of the 

models. In other words, the current research indicates that deviation of future 

information on resource availability is not a contributing factor to the four models. 

It is, nonetheless, a possibility that information on resource availability is not as 

accurate as that considered in the current research. For this reason, further 

research could be carried out by taking larger deviation of information into 

account. 

  



 121 

REFERENCES   

Ablanedo-Rosas, J. H., Gao, H., Alidaee, B. and Teng, W.-Y. (2009), "Allocation 

of emergency and recovery centres in Hidalgo, Mexico". International Journal 

of Services Sciences. 2(2): 206-218. 

Abolghasemi, H., Radfar, M. H., Khatami, M., Nia, S. M., Amid, A. and Briggs, 

S. M. (2006), "International medical response to a natural disaster respose: 

Lessons learned from the Bam earthquake experience". Prehospital and 

Disaster Medicine. 21(3): 141-147. 

Abounacer, R., Rekik, M. and Renaud, J. (2014), "An exact solution approach for 

multi-objective location–transportation problem for disaster response". 

Computers & Operations Research. 41: 83-93. 

Adıvar, B. and Mert, A. (2010), "International disaster relief planning with fuzzy 

credibility". Fuzzy Optimization and Decision Making. 9(4): 413-433. 

ADRC (2013). "Multi-language glossary on natural disasters". Retrieved April 13, 

2013 from 

http://image.adrc.or.jp/dbs/translate.asp?lang=en&query=disaster&qtype=1&s

ource=EN&target=EN. 

Afshar, A. and Haghani, A. (2012), "Modeling integrated supply chain logistics in 

real-time large-scale disaster relief operations". Socio-Economic Planning 

Sciences. 46(4): 327-338. 

Akhtar, P., Marr, N. E. and Garnevska, E. V. (2012), "Coordination in 

humanitarian relief chains: chain coordinators". Journal of Humanitarian 

Logistics and Supply Chain Management. 2(1): 85-103. 

Alcada-Almeida, L., Tralhao, L., Santos, L. and Coutinho-Rodrigues, J. (2009), 

"A multiobjective approach to locate emergency shelters and identify 

evacuation route in urban areas". Geographical Analysis. 41: 9-29. 

Allua, S. and Thompson, C. B. (2009), "Inferential statistics". Air Medical 

Journal. 28(4): 168-171. 

Altay, N. (2012), "Capability-based resource allocation for effective disaster 

response". IMA Journal of Management Mathematics. 

Altay, N. and Green, W. G. (2006), "OR/MS research in disaster operations 

management". European Journal of Operational Research. 175(1): 475-493. 

Ambrosino, D. and Grazia Scutellà, M. (2005), "Distribution network design: 

New problems and related models". European Journal of Operational 

Research. 165(3): 610-624. 

http://image.adrc.or.jp/dbs/translate.asp?lang=en&query=disaster&qtype=1&source=EN&target=EN
http://image.adrc.or.jp/dbs/translate.asp?lang=en&query=disaster&qtype=1&source=EN&target=EN


 122 

Ambrosino, D., Sciomachen, A. and Scutellà, M. G. (2009), "A heuristic based on 

multi-exchange techniques for a regional fleet assignment location-routing 

problem". Computers & Operations Research. 36(2): 442-460. 

An, S., Cui, N., Li, X. and Ouyang, Y. (2013), "Location planning for transit-

based evacuation under the risk of service disruptions". Transportation 

Research Part B: Methodological. 54: 1-16. 

Apte, A. (2009), "Humanitarian logistics: a new field of research and action". 

Foundations and Trends in Technology, Information and Operations 

Management. 3(1): 1-100. 

Apte, A. and Yoho, K. D. (2011), "Strategies for Logistics in Case of a Natural 

Disaster". Naval Postgraduate School, Graduate School of Business & Public 

Policy, Monterey, California. 

Arora, H., Raghu, T. S. and Vinze, A. (2010), "Resource allocation for demand 

surge mitigation during disaster response". Decision Support Systems. 50(1): 

304-315. 

Balcik, B., Beamon, B. and Smilowitz, K. (2008), "Last mile distribution in 

humanitarian relief". Journal of Intelligent Transportation Systems. 12(2): 51-

63. 

Balcik, B. and Beamon, B. M. (2008), "Facility location in humanitarian relief". 

International Journal of Logistics Research and Applications. 11(2): 101-121. 

Balcik, B., Beamon, B. M., Krejci, C. C., Muramatsu, K. M. and Ramirez, M. 

(2010), "Coordination in humanitarian relief chains: Practices, challenges and 

opportunities". International Journal of Production Economics. 126(1): 22-34. 

Baldini, G., Oliveri, F., Braun, M., Seuschek, H. and Hess, E. (2012), "Securing 

disaster supply chains with cryptography enhanced RFID". Disaster Prevention 

and Management. 21(1): 51-70. 

Baluch, I. (2007), "Delivering relief". ArabianBusiness.com. Retrieved April 16, 

2013 from 

http://www.fritzinstitute.org/PDFs/InTheNews/2007/ArabBus_052107.pdf. 

Barbarosoǧlu, G. and Arda, Y. (2004), "A two-stage stochastic programming 

framework for transportation planning in disaster response". Journal of the 

Operational Research Society. 55(1): 43-53. 

Barbarosoğlu, G., Ozdamar, L. and Cevik, A. (2002), "An interactive approach for 

hierarchical analysis of helicopter logistics in disaster relief operations". 

European Journal of Operational Research. 140: 118-133. 

Beamon, B. M. (2004), "Humanitarian relief chains: issues and challenges". 34th 

International Conference on Computers and Industrial Engineering. San 

Francisco: 1-6. 

http://www.fritzinstitute.org/PDFs/InTheNews/2007/ArabBus_052107.pdf


 123 

Beamon, B. M. and Balcik, B. (2008), "Performance measurement in 

humanitarian relief chains". International Journal of Public Sector 

Management. 21(1): 4-25. 

Beamon, B. M. and Kotleba, S. A. (2006), "Inventory management support 

systems for emergency humanitarian relief operations in South Sudan". The 

International Journal of Logistics Management. 17(2): 187-212. 

Below, R., Grover-Kopec, E. and Dilley, M. (2007), "Documenting drought-

related disasters: a global reassessment". The Journal of Environment 

Development. 16(3): 328-344. 

Ben-Tal, A., Chung, B. D., Mandala, S. R. and Yao, T. (2011), "Robust 

optimization for emergency logistics planning: Risk mitigation in humanitarian 

relief supply chains". Transportation Research Part B: Methodological. 45(8): 

1177-1189. 

Berben, L., Sereika, S. M. and Engberg, S. (2012), "Effect size estimation: 

methods and examples". Int J Nurs Stud. 49(8): 1039-1047. 

Berkoune, D., Renaud, J., Rekik, M. and Ruiz, A. (2012), "Transportation in 

disaster response operations". Socio-Economic Planning Sciences. 46(1): 23-

32. 

Berman, O., Drezner, Z. and Wesolowsky, G. O. (2007), "The transfer point 

location problem". European Journal of Operational Research. 179(3): 978-

989. 

Berman, O., Drezner, Z. and Wesolowsky, G. O. (2008), "The multiple location of 

transfer points". Journal of the Operational Research Society. 59(6): 805-811. 

Bischoff, M. and Dächert, K. (2009), "Allocation search methods for a 

generalized class of location–allocation problems". European Journal of 

Operational Research. 192(3): 793-807. 

Blum, C. (2005), "Ant colony optimization: Introduction and recent trends". 

Physics of Life Reviews. 2(4): 353-373. 

Blum, C. and Roli, A. (2003), "Metaheuristics in combinatorial optimization: 

overview and conceptual comparison". ACM Computing Surveys. 35(3): 268-

308. 

Boin, A., Kelle, P. and Clay Whybark, D. (2010), "Resilient supply chains for 

extreme situations: outlining a new field of study". International Journal of 

Production Economics. 126(1): 1-6. 

Boloori Arabani, A. and Farahani, R. Z. (2012), "Facility location dynamics: an 

overview of classifications and applications". Computers & Industrial 

Engineering. 62(1): 408-420. 



 124 

Bolsche, D. (2013), "Performance measurement in humanitarian logistics – a 

process-oriented perspective". POMS 2013: 24th Annual Conference of the 

Production and Operations Management Society. Denver, Colorado. 

Bozorgi-Amiri, A., Jabalameli, M. S., Alinaghian, M. and Heydari, M. (2012), "A 

modified particle swarm optimization for disaster relief logistics under 

uncertain environment". The International Journal of Advanced Manufacturing 

Technology. 60(1-4): 357-371. 

Bozorgi-Amiri, A., Jabalameli, M. S. and Mirzapour Al-e-Hashem, S. M. J. 

(2013), "A multi-objective robust stochastic programming model for disaster 

relief logistics under uncertainty". OR Spectrum. 35(4): 905-933. 

BPS (2009), Penduduk Padang Pariaman Hasil Registrasi Penduduk Akhir Tahun 

2008. Padang Pariaman: Badan Pusat Statistik (BPS) Kabupaten Padang 

Pariaman. 

Buhi, E. R. (2005), "The insignificance of “significance” tests: three 

recommendations for health education researchers". American Journal of 

Health Education. 36(2): 109-112. 

Bulbul, K., Ulusoy, G. and Sen, A., "Classic Transportation Problems". in Taylor, 

G. D. (Ed.) (2008), Logistics Engineering Handbook. Boca Raton: Taylor & 

Francis Group. 

Campbell, A. M. and Jones, P. C. (2011), "Prepositioning supplies in preparation 

for disasters". European Journal of Operational Research. 209(2): 156-165. 

Caunhye, A. M., Nie, X. and Pokharel, S. (2012), "Optimization models in 

emergency logistics: a literature review". Socio-Economic Planning Sciences. 

46(1): 4-13. 

Chaharsooghi, S. K. and Meimand Kermani, A. H. (2008), "An effective ant 

colony optimization algorithm (ACO) for multi-objective resource allocation 

problem (MORAP)". Applied Mathematics and Computation. 200(1): 167-177. 

Chan, Y., Mahan, J. M., Chrissis, J. W., Drake, D. A. and Wang, D. (2008), 

"Hierarchical maximal-coverage location–allocation: Case of generalized 

search-and-rescue". Computers & Operations Research. 35(6): 1886-1904. 

Chang, M.-S., Tseng, Y.-L. and Chen, J.-W. (2007), "A scenario planning 

approach for the flood emergency logistics preparation problem under 

uncertainty". Transportation Research Part E: Logistics and Transportation 

Review. 43(6): 737-754. 

Charles, A. and Lauras, M. (2011), "An enterprise modelling approach for better 

optimisation modelling: application to the humanitarian relief chain 

coordination problem". OR Spectrum. 33(3): 815-841. 



 125 

Chen, R., Sharman, R., Rao, H. R. and Upadhyaya, S. J. (2008), "Coordination in 

emergency response management". Communications of the ACM. 51(5): 66-73. 

Chern, C. C., Chen, Y. L. and Kung, L. C. (2010), "A heuristic relief 

transportation planning algorithm for emergency supply chain management". 

International Journal of Computer Mathematics. 87(7): 1638-1664. 

Chi, T.-H., Yang, H. and Hsiao, H.-M. (2011), "A new hierarchical facility 

location model and genetic algorithm for humanitarian relief". 5th 

International Conference on New Trends in Information Science and Service 

Science (NISS): 367-374. 

Chiu, Y.-C. and Mirchandani, P. B. (2008), "Online behavior-robust feedback 

information routing strategy for mass evacuation". IEEE Transactions on 

Intelligent Transportation Systems. 9(2): 264-274. 

Chiu, Y.-C. and Zheng, H. (2007), "Real-time mobilization decisions for multi-

priority emergency response resources and evacuation groups: Model 

formulation and solution". Transportation Research Part E: Logistics and 

Transportation Review. 43(6): 710-736. 

Chiu, Y.-C., Zheng, H., Villalobos, J. and Gautam, B. (2007), "Modeling no-

notice mass evacuation using a dynamic traffic flow optimization model". IIE 

Transactions. 39(1): 83-94. 

Cho, C.-J. (1998), "AN equity-efficiency trade-off model for the optimum 

location of medical care facilities". Socio-Economic Planning Sciences. 32(2): 

99-122. 

Chopra, S. (2003), "Designing the distribution network in a supply chain". 

Transportation REsearch part E. 39: 123-140. 

Chowdhury, J. U., Watkins, D. W., Rahman, M. R. and Karim, M. F. (1998), 

"Models for Cyclone Shelter Planning in Bangladesh". Water International. 

23(3): 155-163. 

Cigler, B. A. (2007), "The "big questions" of Katrina and the 2005 great flood of 

New Orleans". Public Administration Review. 67(s1): 64-76. 

Clay Whybark, D. (2007), "Issues in managing disaster relief inventories". 

International Journal of Production Economics. 108(1-2): 228-235. 

Clay Whybark, D., Melnyk, S. A., Day, J. and Davis, E. (2010), "Disaster relief 

supply chain management: new realities, management challenges, emerging 

opportunities". Decision Line. May 2010: 4-7. 

Cohen, J. (1992), "A power primer". Psychological Bulletin. 112(1): 155-159. 

Coppola, D. P. (2007), Introduction to International Disaster Management. 

Oxford: Butterworth-Heinemann. 



 126 

Current, J., Daskin, M. and Schilling, D., "Discrete Network Location Models". in 

Drezner, Z. and Hamacher, H. W. (Ed.) (2001), Facility Location: Applications 

and Theory. Berlin: Springer-Verlag. 

Daskin, M. S. (2008), "What you should know about location modeling". Naval 

Research Logistics. 55(4): 283-294. 

Davidson, A. L. (2006), Key Performance Indicators in Humanitarian Logistics. 

Master of Engineering in Logistics. Engineering Systems Division, 

Massachusetts Institute of Technology: 88. 

Davis, J. and Lambert, R. (Ed.) (2002), Engineering in Emergencies: A Practical 

Guide for Relief Workers. 2 edition. London: ITDG Publishing. 

Day, J. M., Junglas, I. and Silva, L. (2009), "Information flow impediments in 

disaster relief supply chains". Journal of the Association for Information 

Systems. 10(8): 637-660. 

Day, J. M., Melnyk, S. A., Larson, P. D., Davis, E. W. and Clay Whybark, D. 

(2012), "Humanitarian and disaster relief supply chains: a matter of life and 

death". Journal of Supply Chain Management. 48(2): 21-36. 

Dekle, J., Lavieri, M. S., Martin, E., Emir-Farinas, H. l. and Francis, R. L. (2005), 

"A Florida County locates disaster recovery centers". Interfaces. 35(2): 133-

139. 

Doerner, K. F., Gutjahr, W. J. and Nolz, P. C. (2009), "Multi-criteria location 

planning for public facilities in tsunami-prone coastal areas". OR Spectrum. 

31(3): 651-678. 

Döyen, A., Aras, N. and Barbarosoğlu, G. (2011), "A two-echelon stochastic 

facility location model for humanitarian relief logistics". Optimization Letters. 

6(6): 1123-1145. 

Drezner, T. (2004), "Location of casualty collection points". Environment and 

Planning C: Government and Policy. 22: 899-912. 

Drezner, T., Drezner, Z. and Salhi, S. (2006), "A multi-objective heuristic 

approach for the casualty collection points location problem". Journal of the 

Operational Research Society. 57(6): 727-734. 

Dudhia, J., "Fundamental Issues in Numerical Weather Prediction". in Gad-El-

Hak, M. (Ed.) (2008), Large-Scale Disasters: Prediction, Control, and 

Mitigation. New York: Cambridge University Press:447-452. 

Durlak, J. A. (2009), "How to select, calculate, and interpret effect sizes". J 

Pediatr Psychol. 34(9): 917-928. 



 127 

Eben-Chaime, M., Mehrez, A. and Markovich, G. (2002), "Capacitated location-

allocation problems on a line". Computers & Operations Research. 29: 459-

470. 

Edrissi, A., Poorzahedy, H., Nassiri, H. and Nourinejad, M. (2013), "A multi-

agent optimization formulation of earthquake disaster prevention and 

management". European Journal of Operational Research. 229(1): 261-275. 

Eikenberry, A. M., Arroyave, V. and Cooper, T. (2007), "Administrative failure 

and the international NGO response to Hurricane Katrina". Public 

Administration Review. 67(Supplement s1): 160-170. 

EM-DAT (2009), "Classification". EM-DAT: The OFDA/CRED International 

Disaster Database – www.emdat.be – Université catholique de Louvain – 

Brussels – Belgium. Retrieved April 15, 2013 from 

http://www.emdat.be/classification. 

EM-DAT (2009), "Explanatory Notes". EM-DAT: The OFDA/CRED 

International Disaster Database – www.emdat.be – Université catholique de 

Louvain – Brussels – Belgium. Retrieved November 6, 2013 from 

http://www.emdat.be/explanatory-notes. 

EM-DAT (2013), "Estimated damage (US$ billion) caused by reported 

technological disasters 1900-2011". EM-DAT: The OFDA/CRED International 

Disaster Database – www.emdat.be – Université catholique de Louvain – 

Brussels – Belgium. Retrieved June 13, 2013 from 

http://www.emdat.be/sites/default/files/Trends/technological/world_1900_2011

/tdamyr1.pdf. 

EM-DAT (2013), "Natural disaster summary 1900-2011 (linear-interpolated 

smoothed lines)". EM-DAT: The OFDA/CRED International Disaster 

Database – www.emdat.be – Université catholique de Louvain – Brussels – 

Belgium. Retrieved June 12, 2013 from 

http://www.emdat.be/sites/default/files/Trends/natural/world_1900_2011/kefyr

1.pdf. 

EM-DAT (2013), "Technological disaster summary 1900-2011 (linear-

interpolated smoothed lines)". EM-DAT: The OFDA/CRED International 

Disaster Database – www.emdat.be – Université catholique de Louvain – 

Brussels – Belgium. Retrieved June 13, 2013 from 

http://www.emdat.be/sites/default/files/Trends/technological/world_1900_2011

/tkefyr1.pdf. 

EMA (1998), "Australian Emergency Management Glossary". EMA. Retrieved 

April 14, 2013 from http://www.em.gov.au/Documents/Manual03-

AEMGlossary.PDF. 

Eshghi, K. and Larson, R. C. (2008), "Disasters: lessons from the past 105 years". 

Disaster Prevention and Management. 17(1): 62-82. 

http://www.emdat.be/
http://www.emdat.be/classification
http://www.emdat.be/
http://www.emdat.be/explanatory-notes
http://www.emdat.be/
http://www.emdat.be/sites/default/files/Trends/technological/world_1900_2011/tdamyr1.pdf
http://www.emdat.be/sites/default/files/Trends/technological/world_1900_2011/tdamyr1.pdf
http://www.emdat.be/
http://www.emdat.be/sites/default/files/Trends/natural/world_1900_2011/kefyr1.pdf
http://www.emdat.be/sites/default/files/Trends/natural/world_1900_2011/kefyr1.pdf
http://www.emdat.be/
http://www.emdat.be/sites/default/files/Trends/technological/world_1900_2011/tkefyr1.pdf
http://www.emdat.be/sites/default/files/Trends/technological/world_1900_2011/tkefyr1.pdf
http://www.em.gov.au/Documents/Manual03-AEMGlossary.PDF
http://www.em.gov.au/Documents/Manual03-AEMGlossary.PDF


 128 

Falasca, M. and Zobel, C. W. (2011), "A two-stage procurement model for 

humanitarian relief supply chains". Journal of Humanitarian Logistics and 

Supply Chain Management. 1(2): 151-169. 

Fang, Z., Zong, X., Li, Q., Li, Q. and Xiong, S. (2011), "Hierarchical multi-

objective evacuation routing in stadium using ant colony optimization 

approach". Journal of Transport Geography. 19(3): 443-451. 

Fiedrich, F., Gehbauer, F. and Rickers, U. (2000), "Optimized resource allocation 

for emergency response after earthquake disasters". Safety Science. 35: 41-57. 

Fischer, H. W. I. (2008), Response to Disaster: Fact versus Fiction and Its 

Perpetuation, The Sociology of Disaster. 3 edition. Maryland: University Press 

of America, Inc. 

Gad-El-Hak, M. (Ed.) (2008), Large-Scale Disasters: Prediction, Control, and 

Mitigation. New York: Cambridge University Press. 

Galindo, G. and Batta, R. (2013), "Prepositioning of supplies in preparation for a 

hurricane under potential destruction of prepositioned supplies". Socio-

Economic Planning Sciences. 47(1): 20-37. 

Gatignon, A., Van Wassenhove, L. N. and Charles, A. (2010), "The Yogyakarta 

earthquake: Humanitarian relief through IFRC's decentralized supply chain". 

International Journal of Production Economics. 126(1): 102-110. 

Ginzburg, E., O'Neill, W. W., Goldschmidt-Clermont, P. J., de Marcena, E., Pust, 

D. and Green, B. A. (2010), "Rapid medical relief - project Medishare and the 

Haitian earthquake". The New England Journal of Medicine. 362(e31): 1-3. 

Goetschalckx, M., "Distribution System Design". in Taylor, G. D. (Ed.) (2008), 

Logistics Engineering Handbook. Boca Raton: Taylor & Francis Group. 

Gong, B., Yang, Z. and Lin, C. (2009), "Dispatching optimization and routing 

guidance for emergency vehicles in disaster". IEEE International Conference 

on Automation and Logistics. Shenyang, China: 1121-1126. 

Gong, Q. and Batta, R. (2007), "Allocation and reallocation of ambulances to 

casualty clusters in a disaster relief operation". IIE Transactions. 39(1): 27-39. 

Guha-Sapir, D., Hargitt, D. and Hoyois, P. (2004), "Thirty Years of Natural 

Disasters 1974-2003: The Numbers". CRED: 1-188. Retrieved April 13, 2013 

from http://www.em-

dat.net/documents/Publication/publication_2004_emdat.pdf. 

Guha-Sapir, D., Hoyois, P. and Below, R. (2013), "Annual Disaster Statistical 

Review 2012: The Numbers and Trends". CRED. Retrieved November 6, 2013 

from http://cred.be/sites/default/files/ADSR_2012.pdf. 

http://www.em-dat.net/documents/Publication/publication_2004_emdat.pdf
http://www.em-dat.net/documents/Publication/publication_2004_emdat.pdf
http://cred.be/sites/default/files/ADSR_2012.pdf


 129 

Guha-Sapir, D., Vos, F., Below, R. and Ponserre, S. (2012), "Annual Disaster 

Statistical Review 2011: The Numbers and Trends". CRED. Retrieved October 

22, 2014 from http://www.preventionweb.net/files/27782_adsr2011.pdf. 

Haghani, A. and Oh, S.-C. (1996), "Formulation and solution of a multi-

commodity, multi-modal network flow model for disaster relief operations". 

Transportation Research Part A. 30(3): 231-250. 

Han, Y., Guan, X. and Shi, L. (2007), "Optimal supply location selection and 

routing for emergency material delivery". 3rd Annual IEEE Conference on 

Automation Science and Engineering. Scottsdale, AZ, USA: 1039-1044. 

Han, Y., Guan, X. and Shi, L. (2010), "Optimal supply location selection and 

routing for emergency material delivery with uncertain demands". 2010 

International Conference on Information, Networking and Automation 

(ICINA). Kunming, China: VI-87-VI-92. 

Han, Y., Guan, X. and Shi, L. (2011), "Optimization based method for supply 

location selection and routing in large-scale emergency material delivery". 

IEEE Transactions on Automation Science and Engineering. 8(4): 683-693. 

Harper, P. (2005), "Planning health services with explicit geographical 

considerations: a stochastic location-allocation approach". Omega. 33(2): 141-

152. 

Hayat, M. J. (2010), "Understanding statistical significance". Nursing Research. 

59(3): 219-223. 

Higgins, J. J. (2004), Introduction to Modern Nonparametric Statistics. 

California: Brooks/Cole. 

Holguín-Veras, J., Jaller, M., Van Wassenhove, L. N., Pérez, N. and Wachtendorf, 

T. (2012a), "On the unique features of post-disaster humanitarian logistics". 

Journal of Operations Management. 30(7-8): 494-506. 

Holguín-Veras, J., Jaller, M. and Wachtendorf, T. (2012b), "Comparative 

performance of alternative humanitarian logistic structures after the Port-au-

Prince earthquake: ACEs, PIEs, and CANs". Transportation Research Part A: 

Policy and Practice. 46(10): 1623-1640. 

Holguín-Veras, J., Jaller, M. and Wachtendorf, T. (2013), "Improving Postdisaster 

humanitarian logistics". TR News: 4-10. Retrieved November 9, 2013 from 

http://onlinepubs.trb.org/onlinepubs/trnews/trnews287Postdisaster.pdf. 

Hsieh, K.-H. and Tien, F.-C. (2004), "Self-organizing feature maps for solving 

location–allocation problems with rectilinear distances". Computers & 

Operations Research. 31(7): 1017-1031. 

Hsu, Y.-T. and Peeta, S. (2012), "An aggregate approach to model evacuee 

behavior for no-notice evacuation operations". Transportation. 40(3): 671-696. 

http://www.preventionweb.net/files/27782_adsr2011.pdf
http://onlinepubs.trb.org/onlinepubs/trnews/trnews287Postdisaster.pdf


 130 

Hsueh, C.-F., Chen, H.-K. and Chou, H.-W., "Dynamic Vehicle Routing for 

Relief Logistics in Natural Disasters". in Caric, T. and Gold, H. (Ed.) (2008), 

Vehicle Routing Problem. Croatia: In-Teh:71-84. 

Hu, F., Xu, W. and Li, X. (2012), "A modified particle swarm optimization 

algorithm for optimal allocation of earthquake emergency shelters". 

International Journal of Geographical Information Science. 26(9): 1643-1666. 

Huang, R., Kim, S. and Menezes, M. B. C. (2010), "Facility location for large-

scale emergencies". Annals of Operations Research. 181(1): 271-286. 

Hwang, H.-S. (1999), "A food distribution model for famine relief". Computers & 

Industrial Engineering. 37: 335-338. 

IFRC (2013). "What is a disaster?". Retrieved April 13, 2013 from 

http://www.ifrc.org/en/what-we-do/disaster-management/about-

disasters/what_Is-a-disaster/. 

Jargowsky, P. A. and Yang, R. (2005), "Descriptive and inferential statistics". 

Encyclopedia of Social Measurement. 1: 659-668. 

Jia, H., Ordóñez, F. and Dessouky, M. (2007a), "A modeling framework for 

facility location of medical services for large-scale emergencies". IIE 

Transactions. 39(1): 41-55. 

Jia, H., Ordóñez, F. and Dessouky, M. M. (2007b), "Solution approaches for 

facility location of medical supplies for large-scale emergencies". Computers 

& Industrial Engineering. 52(2): 257-276. 

Jing, W., Jianming, Z., Jun, H. and Min, Z. (2010), "Multi-level emergency 

resources location and allocation". IEEE International Conference on 

Emergency Management and Management Sciences (ICEMMS). Beijing, 

China: 202-205. 

Jotshi, A., Gong, Q. and Batta, R. (2009), "Dispatching and routing of emergency 

vehicles in disaster mitigation using data fusion". Socio-Economic Planning 

Sciences. 43(1): 1-24. 

Kandel, C., Abidi, H. and Klump, M. (2011), "Humanitarian logistics depot 

location model". The 2011 European Simulation and Modelling Conference. 

Guimaraes, Portugal: 288-293. 

Kapucu, N., Augustin, M.-E. and Garayev, V. (2009), "Interstate partnerships in 

emergency management: emergency management assistance compact in 

response to catastrophic disasters". Public Administration Review. 69(2): 297-

313. 

Keller, E. S. and DeVecchio, D. E. (2012), Natural Hazards: Earth’s Processes 

as Hazards, Disasters, and Catastrophes. 3 edition. New Jersey: Pearson 

Education, Inc. 

http://www.ifrc.org/en/what-we-do/disaster-management/about-disasters/what_Is-a-disaster/
http://www.ifrc.org/en/what-we-do/disaster-management/about-disasters/what_Is-a-disaster/


 131 

Kirk, R. E. (2007), "Effect magnitude: A different focus". Journal of Statistical 

Planning and Inference. 137(5): 1634-1646. 

Kongsomsaksakul, S., Yang, C. and Chen, A. (2005), "Shelter location-allocation 

model for flood evacuation planning". Journal of the Eastern Asia Society for 

Transportation Studies. 6: 4237-4252. 

Kovacs, G. and Spens, K. M. (2011), "Trends and developments in humanitarian 

logistics - a gap analysis". International Journal of Physical Distribution & 

Logistics Management. 41(1): 32-45. 

Kovács, G. and Spens, K. M. (2007), "Humanitarian logistics in disaster relief 

operations". International Journal of Physical Distribution & Logistics 

Management. 37(2): 99-114. 

Kovács, G. and Spens, K. M. (2009), "Identifying challenges in humanitarian 

logistics". International Journal of Physical Distribution & Logistics 

Management. 39(6): 506-528. 

Kovács, G. and Spens, K. M. (2011), "Humanitarian logistics and supply chain 

management: the start of a new journal". Journal of Humanitarian Logistics 

and Supply Chain Management. 1(1): 5-14. 

Kreiss, Y., Merin, O., Peleg, K., Levy, G., Vinker, S., Sagi, R., Abargel, A., 

Bartal, C., Lin, G., Bar, A., Bar-On, E., Schwaber, M. J. and Ash, N. (2010), 

"Early disaster response in Haiti: the Israeli field hospital experience". Annals 

of Internal Medicine. 153(1): 45-W-26. 

Kulshrestha, A., Wu, D., Lou, Y. and Yin, Y. (2011), "Robust shelter locations for 

evacuation planning with demand uncertainty". Journal of Transportation 

Safety & Security. 3(4): 272-288. 

Kusumastuti, R. D., Wibowo, S. S. and Insanita, R., "Modeling Facility Locations 

for Relief Logistics in Indonesia". in Zeimpekis, V., Ichoua, S. and Minis, I. 

(Ed.) (2013), Humanitarian and Relief Logistics: Research Issues, Case 

Studies and Future Trends. 54 edition. New York: Springer:183-206. 

Kuwata, Y. and Takada, S. (2004), "Effective emergency transportation for saving 

human lives". Natural Hazards. 33: 23-46. 

Laporte, G. (2007), "What you should know about the vehicle routing problem". 

Naval Research Logistics. 54(8): 811-819. 

Lee, E. K., Chen, C. H., Pietz, F. and Benecke, B. (2009a), "Modeling and 

optimizing the public-health infrastructure for emergency response". 

Interfaces. 39(5): 476-490. 

Lee, E. K., Maheshwary, S., Mason, J. and Glisson, W. (2006), "Large-scale 

dispensing for emergency response to bioterrorism and infectious-disease 

outbreaks". Interfaces. 36(6): 591-607. 



 132 

Lee, E. K., Smalley, H. N., Zhang, Y., Pietz, F. and Benecke, B. (2009b), "Facility 

location and multi-modality mass dispensing strategies and emergency 

response for biodefence and infectious disease outbreaks". International 

Journal of Risk Assessment and Management. 12(2/3/4): 311-351. 

Lei, F. (2007), "Dynamic multi-objective emergency relief logistics: A decision 

support system framework". Proceedings of 2007 IEEE International 

Conference on Grey Systems and Intelligent Services. Nanjing, China: 779-

783. 

Lettieri, E., Masella, C. and Radaelli, G. (2009), "Disaster management: findings 

from a systematic review". Disaster Prevention and Management. 18(2): 117-

136. 

Li, L. and Jin, M. (2010), "Sheltering planning and management for natural 

disasters". THC-IT-2010 Conference & Exhibition. Texas: 1-10. 

Li, S.-l., Ma, Z.-j., Zheng, B. and Dai, Y. (2011), "Multiobjective location-

transportation problem in post-earthquake delivery of relief materials". 2011 

IEEE 18Th International Conference on Industrial Engineering and 

Engineering Management (IE&EM). Changchun, China: 1468-1472. 

Lichterman, J. D. (1999), "Disasters to come". Futures. 31: 593-607. 

Lin, Y.-H., Batta, R., Rogerson, P. A., Blatt, A. and Flanigan, M. (2011), "A 

logistics model for emergency supply of critical items in the aftermath of a 

disaster". Socio-Economic Planning Sciences. 45(4): 132-145. 

Lin, Y.-H., Batta, R., Rogerson, P. A., Blatt, A. and Flanigan, M. (2012), 

"Location of temporary depots to facilitate relief operations after an 

earthquake". Socio-Economic Planning Sciences. 46(2): 112-123. 

Liu, F.-H. F., Teng, Y.-H. and Lai, C.-H. (2010), "The disaster response 

performance of hospitals in Taiwan: evaluation and classification". Quality & 

Quantity. 45(3): 495-511. 

Liu, M. and Zhao, L. (2007), "A composite weighted multi-objective optimal 

approach for emergency logistics distribution". 2007 IEEE International 

Conference on Industrial Engineering and Engineering Management. 

Singapore: 968-972. 

Lodree, E. J., Ballard, K. N. and Song, C. H. (2012), "Pre-positioning hurricane 

supplies in a commercial supply chain". Socio-Economic Planning Sciences. 

46(4): 291-305. 

Loghmani, A., Jafari, N. and Memarzadeh, M. (2008), "Determining the field 

hospital setting in earthquake: using RAND/UCLA appropriateness method". 

Iranian Red Crescent Medical Journal. 10(3): 181-189. 



 133 

Lu, Q., George, B. and Shekhar, S., "Evacuation Planning: A Capacity 

Constrained Routing Approach". in Chen, H., Miranda, R., Zeng, D. D., 

Demchak, C., Schoeder, J. and Madhusudan, T. (Ed.) (2003), Lecture Notes in 

Computer Science: Intelligence and Security Informatics. Berlin Heidelberg: 

Springer-Verlag. 2665:111-125. 

Lu, Q., George, B. and Shekhar, S., "Capacity Constrained Routing Algorithms 

for Evacuation Planning: A Summary of Results". in Medeiros, C. B., 

Egenhofer, M. and Bertino, E. (Ed.) (2005), Lecture Notes in Computer 

Science: Advances in Spatial and Temporal Databases. Berlin Heidelberg: 

Springer-Verlag. 3633:291-307. 

Mahecha, R. S. M. and Akhavan-Tabatabaei, R. (2012), "A location model for 

storage of emergency supplies to respond to technological accidents in 

Bogota". 2012 Winter Simulation Conference. Berlin, Germany: 1-12. 

Manzini, R. and Gebennini, E. (2008), "Optimization models for the dynamic 

facility location and allocation problem". International Journal of Production 

Research. 46(8): 2061-2086. 

Marshall, G. and Jonker, L. (2011), "An introduction to inferential statistics: A 

review and practical guide". Radiography. 17(1): e1-e6. 

McCoy, J. H. and Brandeau, M. L. (2011), "Efficient stockpiling and shipping 

policies for humanitarian relief: UNHCR’s inventory challenge". OR Spectrum. 

33(3): 673-698. 

McEntire, D. A. (1999), "Issues in disaster relief: progress, perpetual problems 

and prospective solutions". Disaster Prevention and Management. 8(5): 351-

361. 

McEntire, D. A. (2002), "Coordinating multi-organisational responses to disaster: 

lessons from the March 28, 2000, Fort Worth tornado ". Disaster Prevention 

and Management. 11(5): 369-379. 

Memarzadeh, M., Loghmani, A. and Jafari, N. (2004), "The field hospital setting 

in earthquake". Journal of Research in Medical Sciences. 5: 199-204. 

Merin, O., Ash, N., Levy, G., Schwaber, M. J. and Kreiss, Y. (2010), "The Israeli 

field hospital in Haiti - ethical dilemmas in early disaster response". the New 

England Journal of Medicine. 362(e38): e38(31)-e38(33). 

Mert, A. and Adivar, B. O. (2010), "Fuzzy disaster relief planning with credibility 

measures". 24th Mini Euro Conference "Continuous Optimization and 

Information-Based Technologies in the Financial Sector" (MEC EurOPT 

2010). Izmir, Turkey: 312-317. 

Mete, H. O. and Zabinsky, Z. B. (2010), "Stochastic optimization of medical 

supply location and distribution in disaster management". International 

Journal of Production Economics. 126(1): 76-84. 



 134 

Miller, H. E., Engemann, K. J. and Yager, R. R. (2005), "Disaster planning and 

management". Communications of the International Information Management 

Association. 6(2): 25-36. 

Min, H., Jayaraman, V. and Srivastava, R. (1998), "Combined location-routing 

problems: a synthesis and future research directions ". European Journal of 

Operational Research. 108: 1-15. 

Mitropoulos, P., Mitropoulos, I., Giannikos, I. and Sissouras, A. (2006), "A 

biobjective model for the locational planning of hospitals and health centers". 

Health Care Management Science. 9(2): 171-179. 

Moe, T. L., Gehbauer, F., Senitz, S. and Mueller, M. (2007), "Balanced scorecard 

for natural disaster management projects". Disaster Prevention and 

Management. 16(5): 785-806. 

Moe, T. L. and Pathranarakul, P. (2006), "An integrated approach to natural 

disaster management: public project management and its critical success 

factors". Disaster Prevention and Management. 15(3): 396-413. 

Murali, P., Ordóñez, F. and Dessouky, M. M. (2012), "Facility location under 

demand uncertainty: Response to a large-scale bio-terror attack". Socio-

Economic Planning Sciences. 46(1): 78-87. 

Nagy, G. and Salhi, S. (2007), "Location-routing: Issues, models and methods". 

European Journal of Operational Research. 177(2): 649-672. 

Najafi, M., Eshghi, K. and Dullaert, W. (2013), "A multi-objective robust 

optimization model for logistics planning in the earthquake response phase". 

Transportation Research Part E: Logistics and Transportation Review. 49(1): 

217-249. 

Nolte, I. M., Martin, E. C. and Boenigk, S. (2012), "Cross-sectoral coordination of 

disaster relief". Public Management Review. 14(6): 707-730. 

Norio, O., Ye, T., Kajitani, Y., Shi, P. and Tatano, H. (2012), "The 2011 Eastern 

Japan great earthquake disaster: overview and comments". International 

Journal of Disaster Risk Science. 2(1): 34-42. 

Oh, S. C. and Haghani, A. (1997), " Testing and evaluation of a multi-commodity 

multi-modal network flow model for disaster relief management". Journal of 

Advanced Transportation. 31(3): 249-282. 

Oloruntoba, R. (2005), "A wave of destruction and the waves of relief: issues, 

challenges and strategies". Disaster Prevention and Management. 14(4): 506-

521. 

Ortuño, M. T., Tirado, G. and Vitoriano, B. (2010), "A lexicographical goal 

programming based decision support system for logistics of Humanitarian 

Aid". Top. 19(2): 464-479. 



 135 

Owen, S. H. and Daskin, M. S. (1998), "Strategic facility location: a review". 

European Journal of Operational Research. 111: 423-447. 

Ozdamar, L. (2011), "Planning helicopter logistics in disaster relief". OR 

Spectrum. 33(3): 655-672. 

Özdamar, L. and Demir, O. (2012), "A hierarchical clustering and routing 

procedure for large scale disaster relief logistics planning". Transportation 

Research Part E: Logistics and Transportation Review. 48(3): 591-602. 

Ozdamar, L., Ekinci, E. and Kucukyazici, B. (2004), "Emergency logistics 

planning in natural disasters". Annals of Operations Research. 129: 217-245. 

Ozdamar, L. and Yi, W. (2008), "Greedy neighborhood search for disaster relief 

and evacuation logistics". IEEE Intelligent Systems. 23(1): 14-23. 

Park, S., van de Lindt, J. W., Gupta, R. and Cox, D. (2012), "Method to determine 

the locations of tsunami vertical evacuation shelters". Natural Hazards. 63(2): 

891-908. 

Paul, J. A. and Hariharan, G. (2012), "Location-allocation planning of stockpiles 

for effective disaster mitigation". Annals of Operations Research. 196(1): 469-

490. 

Paul, J. M. and Batta, R. (2008), "Models for hospital location and capacity 

allocation for an area prone to natural disasters". International Journal of 

Operational Research. 3(5): 473-496. 

Pedraza Martinez, A. J., Stapleton, O. and Van Wassenhove, L. N. (2011), "Field 

vehicle fleet management in humanitarian operations: A case-based approach". 

Journal of Operations Management. 29(5): 404-421. 

Perry, M. (2007), "Natural disaster management planning: a study of logistics 

managers responding to the tsunami". International Journal of Physical 

Distribution & Logistics Management. 37(5): 409-433. 

Pettit, S. and Beresford, A. (2005), "Emergency relief logistics: an evaluation of 

military, non-military and composite response models". International Journal 

of Logistics. 8(4): 313-331. 

Pettit, S. and Beresford, A. (2009), "Critical success factors in the context of 

humanitarian aid supply chains". International Journal of Physical Distribution 

& Logistics Management. 39(6): 450-468. 

Ponterotto, J. G. (2006), "Brief note on the origins, evolution, and meaning of the 

qualitative research concept "thick description"". The Qualitative Report. 

11(3): 538-549. 

Portilla, D., Shaffer, R. N., Okusa, M. D., Mehrotra, R., Molitoris, B. A., 

Bunchman, T. E. and Ibrahim, T. (2010), "Lessons from Haiti on disaster 



 136 

relief". Clinical Journal of the American Society of Nephrology. 5(11): 2122-

2129. 

Prizzia, R., "The Role of Coordination in Disaster Management". in Pinkowski, J. 

(Ed.) (2008), Disaster Management Handbook. Boca Raton: CRC Press. 

Pujawan, I. N., Kurniati, N. and Wessiani, N. A. (2009), "Supply chain 

management for Disaster Relief Operations: principles and case studies". 

International Journal of Logistics Systems and Management. 5(6): 679-692. 

Rachaniotis, N. P., Dasaklis, T., Pappis, C. P. and Van Wassenhove, L. N., 

"Multiple Location and Routing Models in Humanitarian Logistics". in 

Zeimpekis, V., Ichoua, S. and Minis, I. (Ed.) (2013), Humanitarian and Relief 

Logistics: Research Issues, Case Studies and Future Trends. New York: 

Springer Science. 54:43-57. 

Rath, S. and Gutjahr, W. J. (2014), "A math-heuristic for the warehouse location–

routing problem in disaster relief". Computers & Operations Research. 42: 25-

39. 

Ratick, S., Meacham, B. and Aoyama, Y. (2008), "Locating backup facilities to 

enhance supply chain disaster resilience". Growth and Change. 39(4): 642-666. 

Rawls, C. G. and Turnquist, M. A. (2010), "Pre-positioning of emergency supplies 

for disaster response". Transportation Research Part B: Methodological. 

44(4): 521-534. 

Rawls, C. G. and Turnquist, M. A. (2011), "Pre-positioning planning for 

emergency response with service quality constraints". OR Spectrum. 33(3): 

481-498. 

Rawls, C. G. and Turnquist, M. A. (2012), "Pre-positioning and dynamic delivery 

planning for short-term response following a natural disaster". Socio-Economic 

Planning Sciences. 46(1): 46-54. 

Rekik, M., Ruiz, A., Renaud, J., Berkoune, D. and Paquet, S., "A Decision 

Support System for Humanitarian Network Design and Distribution 

Operations". in Zeimpekis, V., Ichoua, S. and Minis, I. (Ed.) (2013), 

Humanitarian and Relief Logistics: Research Issues, Case Studies and Future 

Trends. New York: Springer Science. 54:1-20. 

ReVelle, C. S. and Eiselt, H. A. (2005), "Location analysis: A synthesis and 

survey". European Journal of Operational Research. 165(1): 1-19. 

ReVelle, C. S., Eiselt, H. A. and Daskin, M. S. (2008), "A bibliography for some 

fundamental problem categories in discrete location science". European 

Journal of Operational Research. 184(3): 817-848. 



 137 

Rosen, J., Grigg, E., Lanier, J., McGrath, S., Lillibridge, S., Sargent, D. and Koop, 

C. E. (2002), "The future of command and control for disaster response". IEEE 

Engineering in Medicine and Biology Magazine. 21(5): 56-68. 

Rottkemper, B., Fischer, K. and Blecken, A. (2012), "A transshipment model for 

distribution and inventory relocation under uncertainty in humanitarian 

operations". Socio-Economic Planning Sciences. 46(1): 98-109. 

Rottkemper, B., Fischer, K., Blecken, A. and Danne, C. (2011), "Inventory 

relocation for overlapping disaster settings in humanitarian operations". OR 

Spectrum. 33(3): 721-749. 

Russell, T. E. (2005), The Humanitarian Relief Supply Chain: Analysis of the 

2004 South East Asia Earthquake and Tsunami. Master of Engineering in 

Logistics, Massachusetts Institute of Technology: 117. 

Saadatseresht, M., Mansourian, A. and Taleai, M. (2009), "Evacuation planning 

using multiobjective evolutionary optimization approach". European Journal 

of Operational Research. 198(1): 305-314. 

Salmeron, J. and Apte, A. (2010), "Stochastic optimization for natural disaster 

asset prepositioning". Production and Operations Management. 19(5): 561-

574. 

Santarelli, G., Abidi, H., Regattieri, A. and Klumpp, M. (2013), "A performance 

measurement system for the evaluation of humanitarian supply chains". POMS 

2013: 24th Annual Conference of the Production and Operations Management 

Society. Denver, Colorado. 

Sayyady, F. and Eksioglu, S. D. (2010), "Optimizing the use of public transit 

system during no-notice evacuation of urban areas". Computers & Industrial 

Engineering. 59(4): 488-495. 

Schmid, V. and Doerner, K. F. (2010), "Ambulance location and relocation 

problems with time-dependent travel times". European Journal of Operational 

Research. 207(3): 1293-1303. 

Schulz, S. F. and Blecken, A. (2010), "Horizontal cooperation in disaster relief 

logistics: benefits and impediments". International Journal of Physical 

Distribution & Logistics Management. 40(8): 636-656. 

Schulz, S. F. and Heigh, I. (2009), "Logistics performance management in action 

within a humanitarian organization". Management Research News. 32(11): 

1038-1049. 

Segall, R. S. (2000), "Some quantitative methods for determining capacities and 

locations of military emergency medical facilities". Applied Mathematical 

Modelling. 24: 365-389. 



 138 

Sherali, H. D., Carter, T. B. and Hobeika, A. G. (1991), "A location-allocation 

model and algorithm for evacuation planning under hurricane/ flood 

conditions". Transportation Research Part B. 25B(6): 439-452. 

Sheu, J.-B. (2007a), "Challenges of emergency logistics management". 

Transportation Research Part E: Logistics and Transportation Review. 43(6): 

655-659. 

Sheu, J.-B. (2007b), "An emergency logistics distribution approach for quick 

response to urgent relief demand in disasters". Transportation Research Part 

E: Logistics and Transportation Review. 43(6): 687-709. 

Sheu, J.-B. (2010), "Dynamic relief-demand management for emergency logistics 

operations under large-scale disasters". Transportation Research Part E: 

Logistics and Transportation Review. 46(1): 1-17. 

Smith, H. K., Laporte, G. and Harper, P. R. (2009), "Locational analysis: 

highlights of growth to maturity". Journal of the Operational Research Society. 

60: S140-S148. 

Snyder, L. V., Daskin, M. S. and Teo, C.-P. (2007), "The stochastic location 

model with risk pooling". European Journal of Operational Research. 179(3): 

1221-1238. 

Stepanov, A. and Smith, J. M. (2009), "Multi-objective evacuation routing in 

transportation networks". European Journal of Operational Research. 198(2): 

435-446. 

Tatham, P. and Kovács, G. (2010), "The application of “swift trust” to 

humanitarian logistics". International Journal of Production Economics. 

126(1): 35-45. 

Telford, J. and Cosgrave, J. (2006), "Joint evaluation of the international response 

to the Indian Ocean tsunami: Synthesis Report". Tsunami Evaluation Coalition 

(TEC): 191. Retrieved October 28, 2013 from 

http://www.sida.se/Publications/Import/pdf/sv/Joint-Evaluation-of-the-

International-Response-to-the-Indian-Ocean-Tsunami_3141.pdf. 

Thévenaz, C. and Resodihardjo, S. L. (2010), "All the best laid plans…conditions 

impeding proper emergency response". International Journal of Production 

Economics. 126(1): 7-21. 

Thomas, A. (2005), "Improving aid effectiveness: two studies suggest solutions". 

UN Chronicle. 4: 61-63. 

Thomas, A. (2006), "The changing tide of aid provision". Georgetown Journal of 

International Affairs. Summer/Fall 2006: 83-89. 

Thomas, A. and Kopczak, L. R. (2005a), "From logistics to supply chain 

management: the path forward in the humanitarian sector". Fritz Institute. 

http://www.sida.se/Publications/Import/pdf/sv/Joint-Evaluation-of-the-International-Response-to-the-Indian-Ocean-Tsunami_3141.pdf
http://www.sida.se/Publications/Import/pdf/sv/Joint-Evaluation-of-the-International-Response-to-the-Indian-Ocean-Tsunami_3141.pdf


 139 

Retrieved April 15, 2013 from 

http://www.fritzinstitute.org/pdfs/whitepaper/fromlogisticsto.pdf. 

Thomas, A. S. and Kopczak, L. R. (2005b), "From logistics to supply chain 

management: the path forward in the humanitarian sector". Fritz Institute. 

Retrieved April 15, 2013 from 

http://www.fritzinstitute.org/pdfs/whitepaper/fromlogisticsto.pdf 

Thompson, B. (2006), Foundations of Behavioral Statistics: An Insight-Based 

Approach. New York: The Guilford Press. 

Tierney, K. J., Lindell, M. K. and Perry, R. W. (2003), Facing the Unexpected: 

Disaster Preparedness and Response in the United States. Washington, D.C.: 

Joseph Henry Press. 

Tomasini, R. and van Wassenhove, L. (2009), Humanitarian Logistics. London: 

Palgrave McMillan. 

Torabi, S. A. (2013), "A framework for performance measurement of 

humanitarian relief chains: a combined fuzzy DEMATEL-ANP approach". 

POMS 2013: 24th Annual Conference of the Production and Operations 

Management Society. Denver, Colorado. 

Tovia, F. (2007), "An emergency logistics response system for natural disasters". 

International Journal of Logistics Research and Applications. 10(3): 173-186. 

Tzeng, G.-H., Cheng, H.-J. and Huang, T. D. (2007), "Multi-objective optimal 

planning for designing relief delivery systems". Transportation Research Part 

E: Logistics and Transportation Review. 43(6): 673-686. 

Ukkusuri, S. V. and Yushimito, W. F. (2008), "Location routing approach for the 

humanitarian prepositioning problem". Transportation Research Record: 

Journal of the Transportation Research Board. 2089: 18-25. 

UNISDR (2004), Living with Risk: A Global Review of Disaster Reduction 

Initiatives. Geneva: United Nations. 

UNISDR (2009), "2009 UNISDR Terminology on Disaster Risk Reduction". 

United Nations: 01-30. Retrieved April 13, 2013 from 

http://www.unisdr.org/files/7817_UNISDRTerminologyEnglish.pdf. 

UNISDR (2013), "2012 Disasters in Numbers". UNISDR. Retrieved May 2, 2013 

from http://www.preventionweb.net/files/31685_factsheet2012.pdf. 

UNISDR (2013), "Disaster Impacts 2000-2012". UNISDR. Retrieved April 15, 

2013 from 

http://www.preventionweb.net/files/31737_20130312disaster20002012copy.pd

f. 

http://www.fritzinstitute.org/pdfs/whitepaper/fromlogisticsto.pdf
http://www.fritzinstitute.org/pdfs/whitepaper/fromlogisticsto.pdf
http://www.unisdr.org/files/7817_UNISDRTerminologyEnglish.pdf
http://www.preventionweb.net/files/31685_factsheet2012.pdf
http://www.preventionweb.net/files/31737_20130312disaster20002012copy.pdf
http://www.preventionweb.net/files/31737_20130312disaster20002012copy.pdf


 140 

ÜSter, H., Keskin, B. B. and ÇEtinkaya, S. (2008), "Integrated warehouse location 

and inventory decisions in a three-tier distribution system". IIE Transactions. 

40(8): 718-732. 

van Rossum, J. and Krukkert, R. (2010), "Disaster management in Indonesia: 

logistical coordination and cooperation to create effective relief operations". 

Jurnal Teknik Industri. 12(1): 25-32. 

Van Wassenhove, L. N. (2003), "New interesting POM cases from Europe: a 

message from POMS regional VP - Luk Van Wassenhove". POMS Cronicle. 2: 

19. Retrieved April 16, 2013 from 

http://www.poms.org/chronicle/vol10no2.pdf. 

Van Wassenhove, L. N. (2006), "Humanitarian aid logistics: supply chain 

management in high gear†". Journal of the Operational Research Society. 

57(5): 475-489. 

Vitoriano, B., Ortuño, M. T., Tirado, G. and Montero, J. (2010), "A multi-criteria 

optimization model for humanitarian aid distribution". Journal of Global 

Optimization. 51(2): 189-208. 

Vitoriano, B., Ortuño, T. and Tirado, G. (2009), "HADS, a goal programming-

based humanitarian aid distribution system". Journal of Multi-Criteria 

Decision Analysis. 16(1-2): 55-64. 

Wen, M. and Iwamura, K. (2008), "Fuzzy facility location-allocation problem 

under the Hurwicz criterion". European Journal of Operational Research. 

184(2): 627-635. 

Wenxue, C. and Zihui, Z. (2010), "Path selection evaluation for emergency 

transport vehicles". 2010 International Conference on Logistics Systems and 

Intelligent Management. Harbin, China: 1050-1054. 

Widener, M. J. and Horner, M. W. (2011), "A hierarchical approach to modeling 

hurricane disaster relief goods distribution". Journal of Transport Geography. 

19(4): 821-828. 

Wu, Y.-C. J. and Huang, I. C. (2007), "Operations research practice on logistics 

management in Taiwan: an academic view". European Journal of Operational 

Research. 182(1): 428-435. 

Xiang-lin, L. and Yun-xian, H. (2009a), "Ant colony optimization for facility 

location for large-scale emergencies". International Conference on 

Management and Service Science. Wuhan/ Beijing, China: 1-4. 

Xiang-lin, L. and Yun-xian, H. (2009b), "A grey degree model for facility 

location in large-scale emergencies". IEEE International Conference on Grey 

Systems. Nanjing, China: 1152-1157. 

http://www.poms.org/chronicle/vol10no2.pdf


 141 

Xiang-lin, L., Yun-xian, H. and Qiang, S. (2010), "A fuzzy queuing facility 

location model with ant colony optimization algorithm for large-scale 

emergencies". 7th International Conference on Service Systems and Service 

Management (ICSSSM). Tokyo: 1-6. 

Xue, H., Wei, S. and Yang, L. (2012), "Research on the locating model and 

algorithm of multiple relief centers". Journal of Convergence Information 

Technology. 7(15): 99-106. 

Yan, S. and Shih, Y.-L. (2009), "Optimal scheduling of emergency roadway 

repair and subsequent relief distribution". Computers & Operations Research. 

36(6): 2049-2065. 

Yao, Z., Lee, L. H., Jaruphongsa, W., Tan, V. and Hui, C. F. (2010), "Multi-

source facility location–allocation and inventory problem". European Journal 

of Operational Research. 207(2): 750-762. 

Yi, W. and Kumar, A. (2007), "Ant colony optimization for disaster relief 

operations". Transportation Research Part E: Logistics and Transportation 

Review. 43(6): 660-672. 

Yi, W. and Özdamar, L. (2007), "A dynamic logistics coordination model for 

evacuation and support in disaster response activities". European Journal of 

Operational Research. 179(3): 1177-1193. 

Yin, P.-Y. and Wang, J.-Y. (2006a), "Ant colony optimization for the nonlinear 

resource allocation problem". Applied Mathematics and Computation. 174(2): 

1438-1453. 

Yin, P.-Y. and Wang, J.-Y. (2006b), "A particle swarm optimization approach to 

the nonlinear resource allocation problem". Applied Mathematics and 

Computation. 183(1): 232-242. 

Yuan, Y. and Wang, D. (2009), "Path selection model and algorithm for 

emergency logistics management". Computers & Industrial Engineering. 

56(3): 1081-1094. 

Yushimito, W. F., Jaller, M. and Ukkusuri, S. (2010), "A Voronoi-based heuristic 

algorithm for locating distribution centers in disasters". Networks and Spatial 

Economics. 12(1): 21-39. 

Zeimpekis, V., Ichoua, S. and Minis, I. (Ed.) (2013), Humanitarian and Relief 

Logistics: Research Issues, Case Studies and Future Trends. New York: 

Springer Science. 

Zhan, S.-l. and Liu, N. (2011), "A multi-objective stochastic programming model 

for emergency logistics based on goal programming". 2011 Fourth 

International Joint Conference on Computational Sciences and Optimization. 

Yunnan, China: 640-644. 



 142 

Zhang, J., Dong, M. and Frank Chen, F. (2013), "A bottleneck Steiner tree based 

multi-objective location model and intelligent optimization of emergency 

logistics systems". Robotics and Computer-Integrated Manufacturing. 29(3): 

48-55. 

Zhou, J. and Liu, B. (2003), "New stochastic models for capacitated location-

allocation problem". Computers & Industrial Engineering. 45(1): 111-125. 

Zhou, J. and Liu, B. (2007), "Modeling capacitated location–allocation problem 

with fuzzy demands". Computers & Industrial Engineering. 53(3): 454-468. 

Zhu, J., Huang, J., Liu, D. and Han, J. (2008), "Resources allocation problem for 

local reserve depots in disaster management based on scenario analysis". 7th 

International Symposium on Operations Research and Its Applications 

(ISORA’08). Lijiang, China: 395–407. 

Zhu, J., Liu, D., Huang, J. and Han, J. (2010), "Determining storage locations and 

capacities for emergency response". The Ninth International Symposium on 

Operations Research and Its Applications (ISORA’10). Chengdu-Jiuzhaigou, 

China: 262-269. 

Zlochin, M., Birattari, M., Meuleau, N. and Dorigo, M. (2004), "Model-based 

search for combinatorial optimization: a critical survey". Annals of Operations 

Research. 131: 373-395. 

 

 



 143 

Appendix A  Computational Results of Various Problem Sizes with Regard to Models 

Table A.1 Maximum objective values of NT11R3Na9_0% 

Dataset 
Maximum Objective Value 

M_I M_II M_III M_IV 

1       27,496,072.739924     14,797,590.862604        21,148,781.340096     11,669,679.064412  

2       12,850,892.155994        7,925,306.849661        11,790,607.737319        7,865,795.879801  

3         9,308,047.914599        1,807,843.513970          3,491,390.822878        1,697,430.996012  

4       10,123,668.949215        3,561,886.964881          6,327,357.705672        2,730,133.730527  

5         7,299,454.766612        5,430,558.609666          8,433,567.384927        6,391,967.561995  

6       10,902,896.386778        4,650,579.334647          9,585,765.910113        4,802,707.250711  

7         8,135,652.649626        3,242,428.685901          5,715,355.433492        2,364,376.299961  

8       29,218,685.817938        6,278,197.803867        25,428,504.094245        8,031,270.587931  

9       29,650,660.924359        6,814,770.588185        16,175,249.043412        5,197,598.391291  

10       35,264,939.281235        3,579,559.854543        14,972,538.885377        3,282,783.035733  

Average       18,025,097.158628        5,808,872.306793        12,306,911.835753        5,403,374.279837  

StdDev       10,934,755.338177        3,660,705.145855          7,086,885.669887        3,131,010.533937  

 



 144 

Table A.2 Maximum objective values of NT11R3Na9_5% 

Dataset 
Maximum Objective Value 

M_I M_II M_III M_IV 

1       27,496,072.739924     14,797,590.862604        22,991,386.587297     11,380,897.704051  

2       12,850,892.155994        7,925,306.849661        11,198,873.458663        5,615,891.037599  

3         9,308,047.914599        1,807,843.513970          3,514,233.435463        1,806,746.754842  

4       10,123,668.949215        3,561,886.964881          6,661,750.339148        2,726,084.834423  

5         7,299,454.766612        5,430,558.609666          7,121,040.925222        4,797,457.092805  

6       10,902,896.386778        4,650,579.334647          9,675,266.985987        5,256,191.327832  

7         8,135,652.649626        3,242,428.685901          6,475,869.577779        3,024,789.632159  

8       29,218,685.817938        6,278,197.803867        26,311,558.617415        8,228,759.410218  

9       29,650,660.924359        6,814,770.588185        15,527,220.081441        4,496,071.535722  

10       35,264,939.281235        3,579,559.854543        16,856,045.899602        4,528,453.618110  

Average       18,025,097.158628        5,808,872.306793        12,633,324.590802        5,186,134.294776  

StdDev       10,934,755.338177        3,660,705.145855          7,590,303.328781        2,809,222.407836  
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Table A.3 Maximum objective values of NT11R3Na9_25% 

Dataset 
Maximum Objective Value 

M_I M_II M_III M_IV 

1       27,496,072.739924  14,797,590.862604 22,562,021.798995 9,287,419.827389 

2       12,850,892.155994  7,925,306.849661 12,370,567.184702 5,037,224.225881 

3         9,308,047.914599  1,807,843.513970 3,454,039.453198 1,531,216.205797 

4       10,123,668.949215  3,561,886.964881 6,392,158.104694 2,382,666.638338 

5         7,299,454.766612  5,430,558.609666 8,241,825.733995 5,725,194.729944 

6       10,902,896.386778  4,650,579.334647 9,689,406.566231 4,316,024.347895 

7         8,135,652.649626  3,242,428.685901 4,733,998.313075 2,711,623.191098 

8       29,218,685.817938  6,278,197.803867 23,867,922.982875 8,305,270.645346 

9       29,650,660.924359  6,814,770.588185 13,406,297.969237 6,881,823.939478 

10       35,264,939.281235  3,579,559.854543 16,156,512.636327 3,139,003.641372 

Average       18,025,097.158628  5,808,872.306793 12,087,475.074333 4,931,746.739254 

StdDev       10,934,755.338177  3,660,705.145855 7,058,940.757576 2,611,501.177777 
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Table A.4 Maximum objective values of NT16R3Na9_0% 

Dataset 
Maximum Objective Value 

M_I M_II M_III M_IV 

1       40,700,090.824330  6,463,730.436336 25,465,423.504612 4,784,372.666265 

2       21,649,322.410477  7,430,392.328165 20,705,820.710866 5,952,910.792351 

3       15,126,710.623879  2,676,209.909217 5,499,908.987310 1,889,494.790229 

4       11,305,275.565013  3,679,561.366851 6,479,564.105414 4,236,365.301081 

5       11,113,169.414756  7,269,280.261371 8,529,269.686760 6,104,356.949446 

6       18,763,045.948810  3,438,552.043719 14,368,031.030648 4,200,372.088441 

7       11,797,515.061305  2,407,531.080262 8,860,695.397658 1,302,947.327156 

8       55,154,998.286859  5,642,540.617233 38,147,411.176100 4,849,240.473492 

9       60,792,581.539081  5,869,604.961510 21,764,587.486102 4,865,901.584367 

10       64,306,464.706932  5,414,299.732272 13,884,059.952069 4,712,064.969867 

Average       31,070,917.438144  5,029,170.273694 16,370,477.203754 4,289,802.694270 

StdDev       21,897,912.325695  1,850,937.492401 10,268,167.451492 1,557,060.533469 
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Table A.5 Maximum objective values of NT16R3Na9_5% 

Dataset 
Maximum Objective Value 

M_I M_II M_III M_IV 

1       40,700,090.824330        6,463,730.436336       21,132,124.015056        8,465,770.509367  

2       21,649,322.410477        7,430,392.328165       20,629,674.607517        4,452,191.283850  

3       15,126,710.623879        2,676,209.909217         6,587,442.316373        1,254,619.821103  

4       11,305,275.565013        3,679,561.366851         8,006,048.692975        3,116,125.836945  

5       11,113,169.414756        7,269,280.261371         9,149,446.517002        7,863,363.331722  

6       18,763,045.948810        3,438,552.043719       15,405,014.020861        4,365,541.475853  

7       11,797,515.061305        2,407,531.080262         8,849,276.591830        1,973,135.030791  

8       55,154,998.286859        5,642,540.617233       36,884,260.782816        4,790,121.358347  

9       60,792,581.539081        5,869,604.961510       21,915,407.414311        6,132,095.031639  

10       64,306,464.706932        5,414,299.732272       13,515,758.884984        3,947,644.874863  

 Average        31,070,917.438144        5,029,170.273694       16,207,445.384373        4,636,060.855448  

StdDev       21,897,912.325695        1,850,937.492401         9,283,046.264188        2,327,622.425348  
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Table A.6 Maximum objective values of NT16R3Na9_25% 

Dataset 
Maximum Objective Value 

M_I M_II M_III M_IV 

1       40,700,090.824330  6,463,730.436336 25,239,212.976405 12,250,539.154052 

2       21,649,322.410477  7,430,392.328165 21,060,121.046579 4,663,712.950460 

3       15,126,710.623879  2,676,209.909217 5,224,007.979792 1,570,035.946555 

4       11,305,275.565013  3,679,561.366851 6,126,345.326964 3,755,086.824460 

5       11,113,169.414756  7,269,280.261371 6,091,125.089704 7,355,135.133507 

6       18,763,045.948810  3,438,552.043719 15,017,957.538736 4,503,993.359512 

7       11,797,515.061305  2,407,531.080262 8,303,390.208838 2,473,962.195141 

8       55,154,998.286859  5,642,540.617233 38,381,952.883687 5,727,640.678413 

9       60,792,581.539081  5,869,604.961510 22,753,162.681307 5,446,940.077235 

10       64,306,464.706932  5,414,299.732272 15,446,193.655336 6,560,522.914957 

 Average        31,070,917.438144  5,029,170.273694 16,364,346.938735 5,430,756.923429 

StdDev       21,897,912.325695  1,850,937.492401 10,690,095.048688 2,971,725.147855 
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Table A.7 Maximum objective values of NT11R17Na47_0% 

Dataset 
Maximum Objective Value 

M_I M_II M_III M_IV 

1       11,770,696.783953        2,040,220.824428         2,365,612.625714        2,695,292.333730  

2         4,176,392.930556        1,073,476.155677         1,214,832.020031        1,249,086.986735  

3         3,407,351.387036        1,602,558.137711         1,823,488.343422        1,338,713.913235  

4         3,185,464.524892        1,556,591.235850         1,842,592.642589           794,366.642666  

5         3,335,728.111255        1,277,832.770887         2,317,349.131628        1,004,738.706823  

6         3,474,015.140546           881,815.234512         2,174,769.823813        1,236,645.358194  

7         3,926,879.634802        1,290,944.221342         1,539,182.841400        1,221,631.809938  

8       16,042,396.850427        2,618,698.408712         2,063,471.661733        1,800,359.925294  

9         7,798,546.680230        2,920,322.214918         1,039,642.841582        1,771,716.937979  

10         8,154,479.741146        2,045,702.298207         2,004,274.642664        2,554,760.412222  

 Average          6,527,195.178484        1,730,816.150224         1,838,521.657458        1,566,731.302682  

StdDev         4,409,505.303549           666,377.290458            449,108.060652           635,939.903162  

 

  



 150 

Table A.8 Maximum objective values of NT11R17Na47_5% 

Dataset 
Maximum Objective Value 

M_I M_II M_III M_IV 

1       11,770,696.783953  2,040,220.824428 2,453,152.174958 3,181,723.079483 

2         4,176,392.930556  1,073,476.155677 1,069,559.846660 1,498,241.562424 

3         3,407,351.387036  1,602,558.137711 1,768,972.183566 1,231,496.757748 

4         3,185,464.524892  1,556,591.235850 1,869,963.912549 1,275,652.654880 

5         3,335,728.111255  1,277,832.770887 1,665,362.359842 1,607,842.834539 

6         3,474,015.140546  881,815.234512 1,833,958.960282 1,544,125.626526 

7         3,926,879.634802  1,290,944.221342 1,713,497.323002 1,508,600.644305 

8       16,042,396.850427  2,618,698.408712 1,519,462.821665 2,055,097.612756 

9         7,798,546.680230  2,920,322.214918 1,118,388.969060 1,851,015.292716 

10         8,154,479.741146  2,045,702.298207 2,121,536.228254 3,638,805.047886 

Average         6,527,195.178484  1,730,816.150224 1,713,385.477984 1,939,260.111326 

StdDev         4,409,505.303549  666,377.290458 416,924.050070 819,255.090089 
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Table A.9 Maximum objective values of NT11R17Na47_25% 

Dataset 
Maximum Objective Value 

M_I M_II M_III M_IV 

1       11,770,696.783953        2,040,220.824428          2,500,468.851719        3,447,826.759728  

2         4,176,392.930556        1,073,476.155677          1,601,946.599437           715,181.416597  

3         3,407,351.387036        1,602,558.137711          2,072,117.308556        1,138,194.608328  

4         3,185,464.524892        1,556,591.235850          1,991,723.885238        1,707,614.574457  

5         3,335,728.111255        1,277,832.770887          1,465,863.941672        2,400,471.082415  

6         3,474,015.140546           881,815.234512          1,955,079.632090        1,875,074.450099  

7         3,926,879.634802        1,290,944.221342          1,188,689.248871           577,684.303681  

8       16,042,396.850427        2,618,698.408712          1,764,008.447856        2,108,647.773121  

9         7,798,546.680230        2,920,322.214918          1,218,586.401854        1,563,612.607889  

10         8,154,479.741146        2,045,702.298207          2,026,141.608899        3,349,722.798291  

 Average          6,527,195.178484        1,730,816.150224          1,778,462.592619        1,888,403.037461  

StdDev         4,409,505.303549           666,377.290458             413,107.957876           981,697.815908  
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Table A.10 Maximum objective values of NT16R17Na47_0% 

Dataset 
Maximum Objective Value 

M_I M_II M_III M_IV 

1          15,940,298.888439        4,109,663.298415          2,968,072.739592        3,362,237.493048  

2             4,968,099.604964        1,990,637.994332             862,163.548929        4,294,379.565859  

3             3,205,787.471009        2,036,532.106949          1,898,448.429695        1,874,546.436309  

4             2,935,706.189094        1,492,224.961241          1,778,917.348305        2,128,097.362321  

5             4,623,659.767271        2,518,035.666899          1,942,710.103086        2,990,622.103603  

6             5,935,894.485852        3,788,185.011062          2,390,011.487930        3,039,828.967085  

7             5,212,942.865448        2,863,088.233767          1,568,108.981696        2,433,033.651523  

8          31,866,915.512386        2,733,763.586319          2,604,545.915556        3,162,028.931228  

9          12,575,514.930374        2,448,016.751797             913,690.729785        1,800,858.280938  

10          15,082,770.251549        2,140,497.812083          1,683,872.211070        2,266,259.296524  

 Average           10,234,758.996639        2,612,064.542286          1,861,054.149564        2,735,189.208844  

StdDev             9,037,510.437003           811,956.652944             673,743.167643           778,741.265913  
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Table A.11 Maximum objective values of NT16R17Na47_5% 

Dataset 
Maximum Objective Value 

M_I M_II M_III M_IV 

1       15,940,298.888439  4,109,663.298415 2,944,238.918354 4,338,602.209476 

2         4,968,099.604964  1,990,637.994332 1,089,987.594516 1,971,116.722639 

3         3,205,787.471009  2,036,532.106949 1,789,263.331464 1,566,146.813125 

4         2,935,706.189094  1,492,224.961241 2,205,880.777343 2,656,291.950534 

5         4,623,659.767271  2,518,035.666899 1,194,046.872159 2,482,018.029852 

6         5,935,894.485852  3,788,185.011062 2,499,306.782209 1,939,591.555800 

7         5,212,942.865448  2,863,088.233767 1,392,015.979507 2,880,135.774143 

8       31,866,915.512386  2,733,763.586319 2,212,565.966628 2,799,027.633121 

9       12,575,514.930374  2,448,016.751797 1,039,777.396222 1,501,827.714255 

10       15,082,770.251549  2,140,497.812083 1,793,905.359049 4,047,578.144981 

Average       10,234,758.996639  2,612,064.542286 1,816,098.897745 2,618,233.654793 

StdDev         9,037,510.437003  811,956.652944 645,196.732540 963,589.372983 
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Table A.12 Maximum objective values of NT16R17Na47_25% 

Dataset 
Maximum Objective Value 

M_I M_II M_III M_IV 

1       15,940,298.888439        4,109,663.298415          2,629,433.804096        3,304,310.151033  

2         4,968,099.604964        1,990,637.994332             920,044.897901        2,148,796.764682  

3         3,205,787.471009        2,036,532.106949          2,163,744.710639        2,442,061.355635  

4         2,935,706.189094        1,492,224.961241          1,356,399.579757        1,641,725.611882  

5         4,623,659.767271        2,518,035.666899          1,689,840.768122        2,250,003.416972  

6         5,935,894.485852        3,788,185.011062          2,185,581.053416        1,393,255.882212  

7         5,212,942.865448        2,863,088.233767          2,124,438.087910        1,776,576.381494  

8       31,866,915.512386        2,733,763.586319          1,933,338.841560        3,443,854.664635  

9       12,575,514.930374        2,448,016.751797             926,488.607686        2,070,410.999865  

10       15,082,770.251549        2,140,497.812083          1,977,397.864914        3,029,133.361595  

Average       10,234,758.996639        2,612,064.542286          1,790,670.821600        2,350,012.859001  

StdDev         9,037,510.437003           811,956.652944             564,588.533398           703,278.191808  
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Appendix B  A Note on Statistical Tests in the Thesis and the Effect Size 

Calculation 

Note on Statistical Tests 

Because data for testing the models for a certain problem (i.e. the 

maximum objective values resulting from the application of the models to the 

problem) are samples from a population (i.e. all possible maximum objective 

values resulting from the application of the models to the problem), insights can, 

therefore, be obtained by applying appropriate methods of inferential statistics 

(see, for instance, Allua and Thompson (2009) and Marshall and Jonker (2011) on 

inferential statistics). Insights about statistical significance of model performance 

is enriched by descriptive statistics of the experimental results (see, for example, 

Jargowsky and Yang (2005) on descriptive statistics). 

It is generally acknowledged that there are two different types of 

inferential statistics, that is, parametric inferential statistics and non-parametric 

inferential statistics. There is a wide agreement that parametric inferential 

statistics should be used as long as particular assumptions are met. When the 

assumptions are not met, non-parametric inferential statistics should be employed 

(see, for instance, Allua and Thompson (2009) and Marshall and Jonker (2011)). 

With respect to its purpose, inferential statistics can be divided into three 

categories: evaluating differences, studying relationships, and establishing 

predictions. The current research tries, among others, to obtain inferences about 

the performance of the models and whether the information accuracy on resource 

availability affects the performance of model III and model IV. The performance 

of the models is evaluated with regard to their maximum objective value. The 

inferential statistical test methods carried out in chapters 4 and 5 are, therefore, 

those which fall into the classification of difference evaluation. 

Considering the characteristics of the data to be tested, one-way analysis 

of variance (ANOVA), Tukey test, Kruskal-Wallis test and Mann-Whitney test 

are chosen as testing methods. One-way ANOVA or Kruskal-Wallis is intended to 
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provide general insights on model performance and effect of resource information 

accuracy. Tukey test or Mann-Whitney test, in the meantime, aims to find out 

which model(s) and level(s) of information accuracy differ(s) from others when it 

is found from previous evaluation that model performances differ or accuracy on 

resource information affects model performance. 

In conducting an ANOVA test, several assumptions should be met. Some 

of the assumptions are related to the error terms or residuals, i.e. they should 

(Higgins, 2004): (1) be normally distributed, (2) have zero means, (3) have equal 

variances (in other words, be homoscedastic) and (4) be mutually uncorrelated (in 

other words, their covariance equals 0). 

The statistical data processing with a predetermined value of α is 

conducted as follows. 

1. Firstly, conduct a one-way ANOVA and a Tukey test to the data under 

concern. Produce a plot of residuals versus order. 

2. A normality test to the residuals produced by the ANOVA test is subsequently 

applied.  

3. If the normality test suggests that the residuals are normally distributed, do an 

equality of variance test. Otherwise, go to step 7 onwards. 

4. If the equality of variance test indicates that the residuals have equal 

variances, do a 1-sample t test on residuals in order to see whether the 

residuals have zero mean. Otherwise, go to step 7 onwards. 

5. If it is indicated that the residuals have zero mean, check the plot of the 

residuals versus order. Otherwise, go to step 7 onwards. 

6. If the plot of the residuals versus order suggests that the related residuals are 

mutually uncorrelated, stop, and the ANOVA test and Tukey test results are 

analysed. The analysis on the ANOVA test results will tell whether the levels 

of factor under study are different from each other. If this is the case, which 

level of factor differ from which other levels can be obtained by analysing the 

Tukey test results. When the ANOVA test results indicate that there is no 

difference among levels of factor, then the Tukey test results will not tell any 

important insights. 
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7. If the plot of the residuals versus order indicates that the related residuals are 

mutually correlated, go to step 8 onwards. 

8. Apply a Kruskal-Wallis test on the data under concern. 

9. From the Kruskal-Wallis test, two possibilities emerge: (1) the levels of factor 

under study differ from each other, or (2) there is no difference on the levels 

of factor under concern. If alternative (1) is the case, apply Mann-Whitney test 

to pairs of factor level. Otherwise, stop. 

10. The Mann-Whitney test is carried out by using a new value of α proposed by 

Bonferroni (Higgins, 2004), as follows: 

    
 

 
      

 
 
 

Where: 

   = new value of α; and 

  = the total number of levels of factor under consideration 

In processing the data, Minitab 16 - a statistical software package – is 

used. The alpha value for the data processing is set to 0.05. This value of alpha 

simply means that the level of confidence is set to 0.95. In words, this means that 

the probability of deducing a conclusion that is really true is 95 percent. 

In doing ANOVA tests, Tukey tests, Kruskal-Wallis tests and Mann-

Whitney tests by using Minitab, many outputs and indicators can be produced. In 

this thesis, however, only the most relevant outputs of the aforementioned tests 

are presented. 

Outputs from the Kruskal-Wallis test provided in the test results are P 

value, average rank of each of the models and median of each of the models. With 

regard to the Mann-Whitney test, outputs presented are P value of the pairwise 

comparison and median values of each of the models. Because the median values 

in the two tests are identical, they are only provided once. The output of the 

ANOVA test presented in this thesis, meanwhile, is the P value. Finally, the 

output from the Tukey test that is provided in this thesis is the grouping level of 

factor. 
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From the abovementioned results on the four tests on residuals, two 

conditions emerge and need further action. The results from ANOVA and Tukey 

tests on data of which residuals are normally distributed, have equal variances, 

have zero mean and are mutually uncorrelated proceed to analysis and discussion. 

Other data, on the other hand, go to further data processing by the already-

determined non-parametric inferential statistics (i.e. Kruskal-Wallis test and 

Mann-Whitney test).  

Note on Effect Size Calculation 

The calculation of effect sizes in the thesis is performed by following 

Durlak (2009) on Cohen’s effect size d. By using the following notations: 

  = Cohen’s effect size 

   = mean of intervention group; 

   = mean of control group; 

  = total sample size; 

    = standard deviation of intervention group; 

    = standard deviation of control group; 

Then the Cohen’s effect size d is calculated as follows:  

   = 
      

Sample S  pooled
  

   

      
   

   

 
 

Where sample SD pooled is calculated as follows: 

 Sample S  pooled =  
    

      
  

 
 

Because the maximum objective values in the thesis is “the smaller the 

better”, the implementation of this effect size d needs a slight modification. For 

instance, if we want to calculate the effect size of model IV relative to model II 

with regard to redcomb (see Table F.6 of Appendix F),then the    represents the 

mean value of model II and the    represents the mean value of model IV. The 

effect size d is then calculated using the above formula.  
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Appendix C Summary of Tests on Assumption with Respect to Residuals - 

Original Data 

Normality Test on Residuals 

As has already been stated in the preceding parts of the thesis, parametric 

inferential statistical methods are used whenever possible. In applying the 

parametric inferential methods, however, particular assumptions need to be met. 

One of the conditions is that the variables of data population are normally 

distributed. With respect to samples of the population, it simply means that the 

residuals of the model of the samples need to be normally distributed. With this 

motivation, normality tests on residuals are carried out. 

The normality tests are performed by firstly determining a null hypothesis 

(and its counterpart, an alternative hypothesis). Regarding this, the null hypothesis 

(which is usually represented by symbol H0) is that the related variable under 

study has a normal distribution. The alternative hypothesis, in the meantime, is 

that the variable has a distribution other than normal. 

Each normality test performed in this study ends up with a probability plot 

graph. The graph contains information one of which is a P value. Using a specific 

value of a predetermined alpha (that is, the probability of rejecting H0 where, in 

reality, the H0 holds), the P figure can then be used to conclude whether the 

residual-related variable under study has a normal distribution or not. The tested 

variable is normally distributed if the resultant P value is greater than or equal to 

the predetermined alpha figure. Given an alpha figure of 0.05, for instance, a 

normality test on residuals of a particular variable which gives P value greater 

than or equal to 0.05 merely means that the variable has a normal distribution. If 

the resulting P value is less than 0.05, then it is concluded that the variable does 

not follow a normal distribution. 

Normality tests on residuals in the thesis are performed by carrying out the 

following two stages. Firstly, the data under consideration are tested by applying 
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one-way-analysis of variance (one-way ANOVA). Secondly, a normality test on 

residuals resulting from the one-way ANOVA test is conducted. 

Equality of Variance Test on Residuals 

The residuals with normal distribution are further tested with regard to the 

equality of their variances. The test is performed by using Minitab 16 and by 

setting the alpha value to 0.05. A P value greater than or equal to 0.05 indicates 

that the variances of the variables under concern are equal. Conversely, inequality 

among variances exists if the resulting P value is less than 0.05. 

Zero-Mean Test on Residuals 

The zero-mean test is applied to the residuals that are normally distributed 

and have equal variances. This is performed by carrying out a 1-sample t test on 

the related data. Suggestion that the means of the variables under concern equal 

zero is provided if the resultant P value is greater than or equal to 0.05. If, in 

contrast, the resultant P value is less than 0.05, the related means are suggested to 

be other than zero. 

Correlation of Residuals 

The presence of correlation in the residuals can be detected by observing 

the plot of the residuals versus order. 

By following the above mentioned guidelines, the assumptions are tested. 

What follows are the results of the tests. 
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Appendix C.1 Summary of tests on original data with regard to models 

No. Data P value, distribution 
P value, equality 

of variance 

P value, 

mean=0 or 

not 

1. NT11R3Na9_0% 0.068, not normal 0.001, not equal - 

2. NT11R3Na9_5% 0.034, not normal - - 

3. NT11R3Na9_25% 0.044, not normal - - 

4. NT16R3Na9_0% <0.005, not normal - - 

5. NT16R3Na9_5% <0.005, not normal - - 

6. NT16R3Na9_25% <0.005, not normal - - 

7. NT11R17Na47_0% <0.005, not normal - - 

8. NT11R17Na47_5% <0.005, not normal - - 

9. NT11R17Na47_25% <0.005, not normal - - 

10. NT16R17Na47_0% <0.005, not normal - - 

11. NT16R17Na47_5% <0.005, not normal - - 

12. NT16R17Na47_25% <0.005, not normal - - 

 

Appendix C.2 Summary of tests on original data with regard to information 

deviation in model III 

No. Data P value, distribution 
P value, equality 

of variance 
P value, 

mean=0 or not 

1. NT11R3Na9 0.032, not normal - - 

2. NT16R3Na9 0.008, not normal - - 

3. NT11R17Na47 0.297, normal 0.964, equal 1.000, yes 

4. NT16R17Na47 0.662, normal 0.868, equal 1.000, yes 

 

Appendix C.3 Summary of tests on original data with regard to information 

deviation in model IV 

No. Data P value, distribution 
P value, equality 

of variance 
P value, 

mean=0 or not 

1. NT11R3Na9 0.097, normal 0.866, equal 1.000, yes 

2. NT16R3Na9 0.268, normal 0.186, equal 1.000, yes 

3. NT11R17Na47 0.008, not normal - - 

4. NT16R17Na47 0.261, normal 0.635, equal 1.000, yes 
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Appendix C.4 Plot of residuals versus order of original data with regard to 

information deviation in model III  

 

Figure C.4.1 Max_NT11R17Na47  

 

Figure C.4.2 Max_NT16R17Na47 
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Appendix C.5  Plot of residuals versus order of original data with regard to 

information deviation in model IV 

 

Figure C.5.1 Max_NT11R3Na9 

 

Figure C.5.2 Max_NT16R3Na9 
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Figure C.5.3 Max_NT16R17Na47 
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Appendix D Suffering Reduction – Original Data 

Table D.1 Suffering reduction NT11R3Na9_0% 

Dataset 
Suffering reduction NT11R3Na9_0% 

M_II to 

M_I 
M_III to 

M_I 
M_IV to 

M_I 
M_II to 

M_III 
M_IV to 

M_III 
M_IV to 

M_II 

1 180,227  90,086  224,621  117,195  174,913  82,490  

2 149,577  32,198  151,384  127,934  129,904  2,930  

3 314,452  243,868  319,081  188,177  200,518  23,834  

4 252,943  146,340  285,006  170,564  221,863  91,128  

5 99,916  -60,632  48,517  138,958  94,471  -69,088  

6 223,789  47,144  218,344  200,917  194,724  -12,766  

7 234,716  116,096  276,834  168,853  228,806  105,679  

8 306,395  50,622  282,981  293,897  266,992  -108,969  

9 300,554  177,357  321,839  225,833  264,849  92,607  

10 350,635  224,559  353,919  296,949  304,684  32,355  

 Average  241,320  106,764  248,252  192,928  208,172  24,020  

StdDev 80,050  94,208  91,713  63,365  64,117  72,662  

 

Table D.2 Suffering reduction NT11R3Na9_5% 

Dataset 
Suffering reduction NT11R3Na9_5% 

M_II to 

M_I 
M_III to 

M_I 
M_IV to 

M_I 
M_II to 

M_III 
M_IV to 

M_III 
M_IV to 

M_II 

1 180,227  63,934  228,720  139,078  197,072  90,106  

2 149,577  50,167  219,708  114,074  194,550  113,717  

3 314,452  242,910  314,498  189,490  189,612  237  

4 252,943  133,450  285,162  181,591  230,552  91,572  

5 99,916  9,538  133,763  92,642  127,337  45,495  

6 223,789  43,940  202,112  202,668  178,241  -50,819  

7 234,716  79,616  245,155  194,853  207,968  26,194  

8 306,395  38,828  280,343  297,130  268,200  -121,245  

9 300,554  185,886  331,072  218,971  277,247  132,780  

10 350,635  203,716  340,134  307,374  285,405  -103,449  

Average 241,320  105,199  258,067  193,787  215,618  22,459  

StdDev 80,050  80,742  64,603  69,953  49,855  89,916  
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Table D.3 Suffering reduction NT11R3Na9_25% 

Dataset 
Suffering reduction NT11R3Na9_25% 

M_II to 

M_I 
M_III to 

M_I 
M_IV to 

M_I 
M_II to 

M_III 
M_IV to 

M_III 
M_IV to 

M_II 

1 180,227  70,028  258,432  134,299  229,606  145,316  

2 149,577  14,586  237,280  140,232  231,341  142,211  

3 314,452  245,434  326,050  185,992  217,246  59,714  

4 252,943  143,842  298,400  172,791  244,783  129,198  

5 99,916  -50,381  84,164  133,112  119,161  -21,173  

6 223,789  43,434  235,764  202,942  216,416  28,074  

7 234,716  163,169  260,177  122,957  166,714  63,886  

8 306,395  71,465  279,321  287,597  254,454  -126,001  

9 300,554  213,800  299,672  191,874  189,922  -3,840  

10 350,635  211,457  355,510  303,786  314,427  48,030  

 Average  241,320  112,683  263,477  187,558  218,407  46,541  

StdDev 80,050  97,553  73,643  63,427  52,542  83,966  

 

Table D.4 Suffering reduction NT16R3Na9_0% 

Dataset 
Suffering reduction NT16R3Na9_0% 

M_II to 

M_I 
M_III to 

M_I 
M_IV to 

M_I 
M_II to 

M_III 
M_IV to 

M_III 
M_IV to 

M_II 

1 328,270  146,075  344,373  291,193  316,928  101,391  

2 256,308  17,007  282,941  250,205  278,051  77,598  

3 321,205  248,357  341,501  200,356  256,178  114,719  

4 263,232  166,579  244,012  168,637  135,102  -59,054  

5 134,981  90,736  175,888  57,649  110,949  62,538  

6 318,730  91,411  302,885  296,853  276,162  -86,460  

7 310,609  97,146  347,147  284,213  332,862  179,047  

8 350,323  120,337  355,936  332,524  340,639  54,866  

9 352,568  250,533  359,011  285,003  303,000  66,732  

10 357,390  305,991  361,652  238,064  257,802  50,615  

 Average  299,362  153,417  311,535  240,470  260,767  56,199  

StdDev 67,322  89,810  61,313  80,564  78,399  78,056  
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Table D.5 Suffering reduction NT16R3Na9_5% 

Dataset 
Suffering reduction NT16R3Na9_5% 

M_II to 

M_I 
M_III to 

M_I 
M_IV to 

M_I 
M_II to 

M_III 
M_IV to 

M_III 
M_IV to 

M_II 

1 328,270  187,625  309,074  270,881  233,910  -120,873  

2 256,308  18,380  309,993  249,688  306,026  156,416  

3 321,205  220,301  357,880  231,706  315,922  207,297  

4 263,232  113,886  282,681  210,890  238,354  59,757  

5 134,981  68,958  114,119  80,194  54,855  -31,893  

6 318,730  69,843  299,449  303,140  279,657  -105,206  

7 310,609  97,524  324,978  284,077  303,233  70,413  

8 350,323  129,274  356,355  330,547  339,566  58,955  

9 352,568  249,565  350,883  285,727  281,053  -17,452  

10 357,390  308,226  366,291  233,917  276,265  105,712  

 Average  299,362  146,358  307,170  248,077  262,884  38,313  

StdDev 67,322  91,880  73,525  69,206  80,063  106,947  

 

Table D.6 Suffering reduction NT16R3Na9_25% 

Dataset 
Suffering reduction NT16R3Na9_25% 

M_II to 

M_I 
M_III to 

M_I 
M_IV to 

M_I 
M_II to 

M_III 
M_IV to 

M_III 
M_IV to 

M_II 

1 328,270  148,244  272,784  290,305  200,830  -349,378  

2 256,308  10,621  306,180  252,561  303,828  145,307  

3 321,205  255,475  349,742  190,327  272,961  161,303  

4 263,232  178,772  260,625  155,860  151,049  -8,010  

5 134,981  176,353  131,966  -75,482  -80,983  -4,609  

6 318,730  77,893  296,570  300,895  273,209  -120,919  

7 310,609  115,581  308,411  277,097  273,974  -10,768  

8 350,323  118,677  349,721  332,877  332,011  -5,886  

9 352,568  244,187  355,281  289,575  296,825  28,101  

10 357,390  296,511  350,434  253,455  224,496  -82,616  

 Average  299,362  162,231  298,172  226,747  224,820  -24,747  

StdDev 67,322  87,103  67,626  118,489  119,965  143,583  
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Table D.7 Suffering reduction NT11R17Na47_0% 

Dataset 
Suffering reduction NT11R17Na47_0% 

M_II to 

M_I 
M_III to 

M_I 
M_IV to 

M_I 
M_II to 

M_III 
M_IV to 

M_III 
M_IV to 

M_II 

1 322,605  311,817  300,887  53,679  -54,386  -125,300  

2 289,940  276,732  273,531  45,409  -11,004  -63,841  

3 206,705  181,401  236,923  47,282  103,747  64,250  

4 199,551  164,513  292,930  60,573  222,006  191,094  

5 240,753  119,140  272,703  175,057  221,047  83,402  

6 291,190  145,948  251,331  232,012  168,340  -157,030  

7 261,955  237,285  268,843  62,939  80,512  20,953  

8 326,545  340,051  346,451  -105,005  49,760  121,951  

9 244,111  338,222  301,589  -705,944  -274,796  153,490  

10 292,346  294,329  267,984  -8,066  -107,184  -97,110  

Average 267,570  240,944  281,317  -14,207  39,804  19,186  

StdDev 44,486  82,798  30,749  259,639  156,505  123,223  

 

Table D.8 Suffering reduction NT11R17Na47_5% 

Dataset 
Suffering reduction NT11R17Na47_5% 

M_II to 

M_I 
M_III to 

M_I 
M_IV to 

M_I 
M_II to 

M_III 
M_IV to 

M_III 
M_IV to 

M_II 

1 322,605  308,915  284,760  65,689  -115,901  -218,343  

2 289,940  290,306  250,250  -1,429  -156,412  -154,417  

3 206,705  187,645  249,203  36,712  118,571  90,359  

4 199,551  161,160  233,968  65,398  124,028  70,433  

5 240,753  195,416  202,145  90,810  13,479  -100,784  

6 291,190  184,233  216,791  202,606  61,673  -293,105  

7 261,955  219,962  240,325  96,236  46,665  -65,797  

8 326,545  353,285  340,255  -282,319  -137,568  83,990  

9 244,111  334,282  297,620  -628,761  -255,640  142,893  

10 292,346  288,717  216,106  13,949  -279,095  -303,907  

 Average  267,570  252,392  253,142  -34,111  -58,020  -74,868  

StdDev 44,486  70,155  42,709  243,151  149,818  166,273  
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Table D.9 Suffering reduction NT11R17Na47_25% 

Dataset 
Suffering reduction NT11R17Na47_25% 

M_II to 

M_I 
M_III to 

M_I 
M_IV to 

M_I 
M_II to 

M_III 
M_IV to 

M_III 
M_IV to 

M_II 

1 322,605  307,346  275,937  71,831  -147,854  -269,242  

2 289,940  240,559  323,420  128,740  216,023  130,253  

3 206,705  152,926  259,889  88,433  175,888  113,080  

4 199,551  146,244  181,049  85,257  55,667  -37,862  

5 240,753  218,756  109,416  50,058  -248,814  -342,851  

6 291,190  170,627  179,614  214,231  15,970  -439,566  

7 261,955  272,117  332,838  -33,570  200,593  215,615  

8 326,545  347,336  338,952  -189,081  -76,244  76,009  

9 244,111  329,268  312,002  -544,973  -110,493  181,299  

10 292,346  293,282  229,940  -3,768  -254,930  -248,761  

 Average  267,570  247,846  254,306  -13,284  -17,419  -62,203  

StdDev 44,486  73,724  77,795  215,341  177,932  241,010  

 

 

Table D.10 Suffering reduction NT16R17Na47_0% 

Dataset 
Suffering reduction NT16R17Na47_0% 

M_II to 

M_I 
M_III to 

M_I 
M_IV to 

M_I 
M_II to 

M_III 
M_IV to 

M_III 
M_IV to 

M_II 

1 289,635  317,583  307,933  -150,098  -51,825  70,974  

2 233,881  322,524  52,921  -510,789  -1,553,547  -451,628  

3 142,336  159,145  162,055  -28,385  4,913  31,040  

4 191,884  153,773  107,356  62,893  -76,601  -166,293  

5 177,719  226,278  137,832  -115,570  -210,502  -73,242  

6 141,198  233,119  190,398  -228,297  -106,104  77,093  

7 175,913  272,857  208,107  -322,275  -215,249  58,618  

8 356,769  358,351  351,524  -19,361  -83,529  -61,135  

9 314,279  361,893  334,362  -655,327  -378,919  103,166  

10 334,864  346,679  331,610  -105,826  -134,972  -22,928  

 Average  235,848  275,220  218,410  -207,303  -280,634  -43,434  

StdDev 81,705  78,851  106,600  228,233  460,098  166,135  
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Table D.11 Suffering reduction NT16R17Na47_5% 

Dataset 
Suffering reduction NT16R17Na47_5% 

M_II to 

M_I 
M_III to 

M_I 
M_IV to 

M_I 
M_II to 

M_III 
M_IV to 

M_III 
M_IV to 

M_II 

1 289,635  318,167  284,030  -154,472  -184,817  -21,740  

2 233,881  304,628  235,415  -322,459  -315,470  3,827  

3 142,336  172,436  199,597  -53,931  48,663  90,137  

4 191,884  97,017  37,143  126,254  -79,683  -304,427  

5 177,719  289,467  180,759  -432,716  -420,944  5,582  

6 141,198  225,934  262,731  -201,248  87,395  190,436  

7 175,913  286,039  174,637  -412,410  -417,189  -2,324  

8 356,769  363,152  355,970  -91,928  -103,439  -9,316  

9 314,279  357,980  343,642  -528,537  -173,416  150,835  

10 334,864  343,832  285,521  -75,398  -490,265  -347,691  

Average  235,848  275,865  235,944  -214,684  -204,916  -24,468  

StdDev 81,705  86,322  93,773  204,697  200,693  174,907  

 

Table D.12 Suffering reduction NT16R17Na47_25% 

Dataset 
Suffering reduction NT16R17Na47_25% 

M_II to 

M_I 
M_III to 

M_I 
M_IV to 

M_I 
M_II to 

M_III 
M_IV to 

M_III 
M_IV to 

M_II 

1 289,635  325,874  309,352  -219,688  -100,162  76,475  

2 233,881  317,977  221,458  -454,104  -521,188  -31,006  

3 142,336  126,850  92,970  22,944  -50,196  -77,709  

4 191,884  209,939  172,010  -39,078  -82,091  -39,097  

5 177,719  247,621  200,342  -191,261  -129,362  41,540  

6 141,198  246,559  298,649  -286,153  141,474  246,718  

7 175,913  231,209  257,250  -135,686  63,900  148,095  

8 356,769  366,571  348,073  -161,567  -304,900  -101,366  

9 314,279  361,496  325,997  -640,884  -481,832  60,195  

10 334,864  339,084  311,872  -32,188  -207,564  -162,012  

 Average  235,848  277,318  253,797  -213,767  -167,192  16,183  

StdDev 81,705  77,469  80,995  203,937  216,137  123,122  
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Appendix E Detailed Analysis and Discussion on Experimental Results 

E.1 Model Performance Comparison 

In order to check the statistical significance of the model performance, 

Kruskal-Wallis and Mann Whitney tests are performed. Results of these two tests 

are summarised in Tables E.1 and E.2. Practical significance of model 

performance, on the other hand, is presented as model effect sizes and suffering 

reduction. The effect sizes of various problem sizes with regard to models are 

presented in Table E.3. Tables E.4 and E.5, in the meantime, present averages and 

standard deviations of the suffering reductions relating to the models. Several 

figures in reference to data on suffering reduction (see Figures E.1-E.13 of this 

Appendix) are also produced to assist the analysis and discussion. 
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Table E.1 Kruskal-Wallis and Mann-Whitney tests with respect to models, R3Na9 problems 

No. Problem size 
Kruskal-Wallis 

Model 
P value of Mann-Whitney (α = 0.0083) 

P value Average rank Median II III IV 

1. NT11R3Na9_0% 0.000 

30.7  11,876,894  I 0.0013 0.2413 0.0013 

13.3    5,040,569  II  0.0173 0.8501 

25.5  10,688,187  III   0.0113 

12.5    5,000,153  IV    

2. NT11R3Na9_5% 0.000 

30.9  11,876,894  I 0.0013 0.1859 0.0013 

13.6    5,040,569  II  0.0173 0.6776 

25.4  10,437,070  III   0.0091 

12.1    4,662,955  IV    

3. NT11R3Na9_25% 0.000 

31.0  11,876,894  I 0.0013 0.2413 0.0006 

13.8    5,040,569  II  0.0257 0.6776 

25.3  11,029,987  III   0.0113 

11.9    4,676,624  IV    

4. NT16R3Na9_0% 0.000 

32.6  20,206,184  I 0.0002 0.1212 0.0002 

12.4    5,528,420  II  0.0013 0.3847 

27.5  14,126,045  III   0.0003 

9.5    4,748,219  IV    

5. NT16R3Na9_5% 0.000 

32.6  20,206,184  I 0.0002 0.1212 0.0002 

11.2    5,528,420  II  0.0003 0.7337 

27.9  14,460,386  III   0.0004 

10.3    4,408,866  IV    

6. NT16R3Na9_25% 0.000 

32.2  20,206,184  I 0.0002 0.1405 0.0004 

11.6    5,528,420  II  0.0046 0.9698 

26.1  15,232,076  III   0.0046 

12.1     ,055,327  IV    
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Table E.2 Kruskal-Wallis and Mann-Whitney tests with respect to models, R17Na47 problems 

No. Problem size 
Kruskal-Wallis 

Model 
P value of Mann-Whitney (α = 0.0083) 

P value Average rank Median II III IV 

7. NT11R17Na47_0% 0.000 

35.5    4,051,636  I 0.0002 0.0002 0.0002 

15.8    1,579,575  II  0.6232 0.4727 

17.8    1,923,434  III   0.2413 

12.9    1,293,900  IV    

8. NT11R17Na47_5% 0.000 

35.1    4,051,636  I 0.0002 0.0002 0.0006 

14.6    1,579,575  II  0.8501 0.6776 

15.9    1,741,235  III   0.9698 

16.4    1,575,984  IV    

9. NT11R17Na47_25% 0.000 

35.0    4,051,636  I 0.0002 0.0002 0.0008 

14.7    1,579,575  II  0.8501 0.7337 

15.8    1,859,544  III   1.0000 

16.5    1,791,345  IV    

10. NT16R17Na47_0% 0.000 

34.3    5,574,419  I 0.0006 0.0002 0.0013 

18.1    2,483,026  II  0.0452 0.7337 

9.7    1,838,683  III   0.0173 

19.9    2,711,828  IV    

11. NT16R17Na47_5% 0.000 

34.6    5,574,419  I 0.0006 0.0002 0.0006 

18.7    2,483,026  II  0.0452 0.9698 

10.4    1,791,584  III   0.0640 

18.3    2,569,155  IV    

12. NT16R17Na47_25% 0.000 

34.6    5,574,419  I 0.0006 0.0002 0.0008 

19.8    2,483,026  II  0.0257 0.5205 

10.4    1,955,368  III   0.1212 

17.2    2,199,400  IV    
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Table E.3 Effect sizes of model on various original problem sizes 

No. Problem size 
Relative to 

model … 
Effect size of model … 

II III IV 

1. NT11R3Na9_0% 

I 1.36 0.56 1.43 

II  -1.05 0.11 

III   1.14 

2. NT11R3Na9_5% 

I 1.36 0.52 1.46 

II  -1.04 0.17 

III   1.18 

3. NT11R3Na9_25% 

I 1.36 0.59 1.50 

II  -1.01 0.25 

III   1.22 

4. NT16R3Na9_0% 

I 1.52 0.78 1.57 

II  -1.40 0.39 

III   1.49 

5. NT16R3Na9_5% 

I 1.52 0.80 1.54 

II  -1.52 0.17 

III   1.55 

6. NT16R3Na9_25% 

I 1.52 0.78 1.49 

II  -1.34 -0.15 

III   1.27 

7. NT11R17Na47_0% 

I 1.38 1.36 1.43 

II  -0.17 0.23 

III   0.45 

8. NT11R17Na47_5% 

I 1.38 1.40 1.31 

II  0.03 -0.25 

III   -0.32 

9. NT11R17Na47_25% 

I 1.38 1.38 1.32 

II  -0.08 -0.17 

III   -0.13 

10. NT16R17Na47_0% 

I 1.08 1.19 1.06 

II  0.91 -0.14 

III   -1.09 

11. NT16R17Na47_5% 

I 1.08 1.19 1.08 

II  0.99 -0.01 

III   -0.89 

12. NT16R17Na47_25% 

I 1.08 1.20 1.12 

II  1.07 0.31 

III   -0.80 
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Table E.4 Averages and standard deviations of suffering reductions on R3Na9 

problems with respect to models 

Problem size 
Average and standard deviation of suffering reduction 

II to I III to I IV to I II to III IV to III IV to II 

NT11R3Na9 

_0% 

241,320  106,764  248,252  192,928  208,172  24,020  

80,050  94,208  91,713  63,365  64,117  72,662  

NT11R3Na9 

_5% 

241,320  105,199  258,067  193,787  215,618  22,459  

80,050  80,742  64,603  69,953  49,855  89,916  

NT11R3Na9 

_25% 

241,320  112,683  263,477  187,558  218,407  46,541  

80,050  97,553  73,643  63,427  52,542  83,966  

NT16R3Na9 

_0% 

299,362  153,417  311,535  240,470  260,767  56,199  

67,322  89,810  61,313  80,564  78,399  78,056  

NT16R3Na9 

_5% 

299,362  146,358  307,170  248,077  262,884  38,313  

67,322  91,880  73,525  69,206  80,063  106,947  

NT16R3Na9 

_25% 

299,362  162,231  298,172  226,747  224,820  -24,747  

67,322  87,103  67,626  118,489  119,965  143,583  

 

Table E.5 Averages and standard deviations of suffering reductions on R17Na47 

problems with respect to models 

Problem size 
Average and standard deviation of suffering reduction 

II to I III to I IV to I II to III IV to III IV to II 

NT11R17Na47 

_0% 

267,570  240,944  281,317  -14,207  39,804  19,186  

44,486  82,798  30,749  259,639  156,505  123,223  

NT11R17Na47 

_5% 

267,570  252,392  253,142  -34,111  -58,020  -74,868  

44,486  70,155  42,709  243,151  149,818  166,273  

NT11R17Na47 

_25% 

267,570  247,846  254,306  -13,284  -17,419  -62,203  

44,486  73,724  77,795  215,341  177,932  241,010  

NT16R17Na47 

_0% 

235,848  275,220  218,410  -207,303  -280,634  -43,434  

81,705  78,851  106,600  228,233  460,098  166,135  

NT16R17Na47 

_5% 

235,848  275,865  235,944  -214,684  -204,916  -24,468  

81,705  86,322  93,773  204,697  200,693  174,907  

NT16R17Na47 

_25% 

235,848  277,318  253,797  -213,767  -167,192  16,183  

81,705  77,469  80,995  203,937  216,137  123,122  
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The test results presented in the three tables provide a variety of interesting 

information. In short, Tables E.1 and E.2 show that, statistically speaking, at least 

one model performs differently from other models. This leads to the necessity to 

check which model(s) perform(s) differently from which model(s), for which the 

Mann-Whitney tests are performed. Along with the figures of the effect sizes and 

the suffering reduction, the Mann-Whitney test results are now examined. 

E.1.1 Performance of Model I in Comparison to Other Models 

The first interesting result obtained from the Mann-Whitney test is 

concerned with the performance of model I in comparison with other models 

within all problem sizes. It is apparent that model II, model III and model IV 

statistically outperform model I in all of the R17Na47 problems. This insight 

stems from the fact that the P values are much smaller than the alpha value of 

0.0083. For all R3Na9 problems, all related P values with regard to model I in 

contrast with model II and model IV are much smaller than 0.0083, suggesting 

that the performance of model I is statistically surpassed by the performance of 

model II and model IV. Still relating to R3Na9 problems, the related P values of 

model I and model III - which are higher than 0.0083 – implies that model I 

performs just as model III. 

The statistical insights highlighted above are mostly confirmed by the 

figures of effect sizes in Table E.3. With regard to R17Na47 problems, all related 

effect sizes of model I against other models are much larger than 0.8 and hence 

are of large magnitude. The figures of effect sizes of model I against model II and 

model IV with respect to R3Na9 problems also give confirmation about the 

dominance of the performance of model II and model IV over that of model I.  

Unlike Mann-Whitney tests, effect sizes of model III over model I in R3Na9 

problems, on the other hand, suggests that the effect magnitude ranges from 

around medium to approximately large. 

Regarding the reduction of suffering, it is apparent that the application of 

model II, model III or model IV can extensively reduce the suffering of the 

victims. The smallest figures of the average values of reduction, around one third 
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of the total amount of the victims of 390,247, are associated with the application 

of model III to R3Na9 problems. The employment of model II or model III or 

model IV instead of model I to R17Na47 problems, in the meantime, reduces the 

suffering up to around two thirds of the total number of victims. 

E.1.2 Performance of Models II, III and IV on NT11R3Na9 Problems 

Statistically speaking, the performances of all three models are not 

significantly different from each other for NT11R3Na9 problems. This can be 

seen by the P values which all fall above the testing P value of 0.0083. 

Considering the P values resulting from the Mann-Whitney test, model II and 

model IV seem to perform very closely. Model III, in the meantime, looks to 

perform a bit worse than model II and model IV. 

Practically speaking, nonetheless, the insights are not totally in line with 

those obtained from the statistical point of view. For example, it is obvious that 

model II or model IV performs better than that of model III. This is supported by 

the large value of effect sizes (more than 0.8) and large average value of suffering 

reduction (around 200,000 victims) of model IV or model II compared to model 

III. Small average values of suffering reduction in comparison with the standard 

deviations (see Table E.4) and the fact that the suffering reduction values fluctuate 

around zero over datasets (see Figures E.1-E.3) give indication that there is no 

clear dominance of model IV over model II. Fairly small effect sizes of model IV 

over model II also support the idea that model IV performs roughly the same as 

model II. 
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Figure E.1 Suffering reductions of M_IV to M_II – NT11R3Na9_0% 

 

Figure E.2 Suffering reductions of M_IV to M_II – NT11R3Na9_5% 
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Figure E.3 Suffering reductions of M_IV to M_II – NT11R3Na9_25% 

E.1.3 Performance of Models II, III and IV on NT16R3Na9 Problems 

Computational experiments related to NT16R3Na9 problems with regard to 

models II, III and IV provide another interesting comparison of the performance 

of the related models. 

From a statistical point of view, it is obvious that models II and IV perform 
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small effect (a positive value for NT16R3Na9_5% problems and a negative value 

for NT16R3Na9_25% problems) with suffering reduction slightly over 38,000 on 

average (for NT16R3Na9_5% problems) and a little more than -20,000 on 

average (for NT16R3Na9_25% problems). Relatively small averages in contrast 

to standard deviation figures and the following graphs (Figures E.4, E.5 and E.6) 

of suffering reduction over data sets suggest that the performances of model IV 

and model II for associated problems are comparatively equal. The effect size of 

0.39 of model IV over model II with regard to NT16R3Na9_0% problems, on the 

other hand, proposes caution about the idea of performance similarity between 

model IV and model II. The caution is supported by the information provided in 

Figure E.4 wherein 8 out of 10 values of suffering reduction lie above zero, 

suggesting that the possibility of model IV outperforming model II on 

NT16R3Na9_0% problems might be worthy of investigation. 

 

Figure E.4 Suffering reductions of M_IV to M_II – NT16R3Na9_0% 
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Figure E.5 Suffering reductions of M_IV to M_II – NT16R3Na9_5% 

 

 

Figure E.6 Suffering reductions of M_IV to M_II – NT16R3Na9_25% 
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E.1.4 Performance of Models II, III and IV on NT11R17Na47 Problems 

Neither the results from Mann-Whitney tests nor the effect size figures 

provide any indication about which model(s) perform(s) better than (an)other 

model(s). The related P values of the Mann-Whitney tests (see Table E.2) imply 

that the three models perform relatively the same. Similarly, the small figures of 

related effect sizes apart from that of model IV to model III on 

NT11R17Na47_0% problems (see Table E.3) also suggest that the three models 

under concern have similar performance on NT11R17Na47 problems. Average 

values of suffering reduction (see Table E.5) and the fluctuation of the suffering 

reduction around zero – see for example Figures E.7, E.8, E.9 and E.10 – support 

the performance similarity among the three models on NT11R17Na47 problems. 

 

Figure E.7 Suffering reductions of M_IV to M_III – NT11R17Na47_0% 
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Figure E.8 Suffering reductions of M_IV to M_II – NT11R17Na47_0% 

 

Figure E.9 Suffering reductions of M_IV to M_II – NT11R17Na47_5% 
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Figure E.10 Suffering reductions of M_IV to M_II – NT11R17Na47_25% 
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figures of suffering reduction of around 200,000 victims, it is unquestionable that 

model III performance is much better than that of model II and model IV. 

With respect to model II and model IV, it seems apparent that the two do 

not perform significantly differently on NT16R17Na47 problems. The magnitude 

of effect of model IV to model II adjusts from -0.14 (in NT16R17Na47_0%) to -

0.01 (in NT16R17Na47_5%) to 0.31 (in NT16R17Na47_25%). According to the 

previously mentioned rule of thumb, it can be seen that these last figures are of 

roughly small size. The average values of suffering reduction provide similar 

insights to those gained from the effect size figures. The average value of 

suffering reduction of model IV over model II in contrast to the standard deviation 

values suggest that the suffering reductions over data sets fluctuate around zero, as 

is confirmed by Figures E.11–E.13. 

 

Figure E.11 Suffering reductions of M_IV to M_II – NT16R17Na47_0% 
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Figure E.12 Suffering reductions of M_IV to M_II – NT16R17Na47_5% 

 

Figure E.13 Suffering reductions of M_IV to M_II – NT16R17Na47_25% 
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E.2 Comparing the Impact of Information Deviation 

In addition to the tests on model performance for a variety of problems, tests 

that solely examine the impact of information deviation on model performance are 

also conducted. Approximately half of the related data go to ANOVA and Tukey 

tests, and the test results are presented in Tables E.6 and E.7 of this appendix. The 

other half of the related data is tested by Kruskal-Wallis and Mann-Whitney 

methods, and the test results are provided in Tables E.8 and E.9 of this appendix. 

Effect sizes of the information deviation in various problems are also calculated 

and provided in Tables E.10 and E.15. Tables E.11–E.14 and Tables E.16–E.19 of 

this appendix present suffering reduction results for the problems under concern. 

 

Table E.6 One-way ANOVA and Tukey tests on the effect of information 

deviation, model III 

No. Problem 
ANOVA 

Deviation 
Tukey’s 

Grouping P value Mean 

1. NT11R17Na47 0.808 
1,838,522 0% A 
1,713,385 5% A 

1,778,463 25% A 

2. NT16R17Na47 0.968 

1,861,054 0% A 

1,816,099 5% A 

1,790,671 25% A 

 

Table E.7 One-way ANOVA and Tukey tests on the effect of information 

deviation, model IV 

No. Problem 
ANOVA 

Deviation 
Tukey’s 

Grouping  P value Mean 

1. NT11R3Na9 0.934 
5,403,374 0% A 
5,186,134 5% A 

4,931,747 25% A 

2. NT16R3Na9 0.548 

4,289,803 0% A 

4,636,061 5% A 

5,430,757 25% A 

3. NT16R17Na47 0.569 

2,735,189 0% A 

2,618,234 5% A 

2,350,013 25% A 
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Table E.8 Kruskal-Wallis and Mann-Whitney tests on the effect of information deviation, model III 

No. Problem 
Kruskal-Wallis 

Deviation 
P value of Mann-Whitney 

P value Average rank Median 5% 25% 

1. NT11R3Na9 0.953 

15.2 10,688,187 0% 0.7913 0.9698 

16.2 10,437,070 5%  0.8501 

15.1 11,029,987 25%   

2. NT16R3Na9 0.988 

15.5 14,126,045 0% 0.9698 0.9698 

15.8 14,460,386 5%  0.9097 

15.2 15,232,076 25%   

 

Table E.9 Kruskal-Wallis and Mann-Whitney tests on the effect of information deviation, model IV 

No. Problem 
Kruskal-Wallis 

Deviation 
P value of Mann-Whitney 

P value Average rank Median 5% 25% 

1. NT11R17Na47 0.514 

12.9 1,293,900 0% 0.1859 0.5708 

17.1 1,575,984 5%  0.9097 

16.5 1,791,345 25%   
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From Tables E.6-E.9 above, it is apparent that all P values for either 

ANOVA tests or Kruskal-Wallis tests are greater than the test P value (i.e. 0.05). 

The lowest P value, 0.514, is still very far from 0.05. There is, hence, no strong 

statistical evidence that model III and model IV perform differently when the 

maximum value of information deviation varies. In other words, the information 

deviation allowable in the research has an insignificant effect on model III and 

model IV performance. From a statistical point of view, therefore, which level of 

information deviation performs better or worse than other levels does not need to 

be examined further. 

Insights from a practical point of view concerning model III, in the 

meantime, seem different from those regarding model IV. These two groups of 

insights, therefore, are presented separately in the following short paragraphs. 

E.2.1 Effect of Information Deviation with Respect to Model III 

In light of model III, it is obvious from Table E.10 that the (absolute value 

of the) effect sizes of information deviation on resource availability at the 

upcoming time points within all problems under study are of small magnitude, 

from as small as 0.02 to 0.26. This is confirmed by suffering reduction (see Tables 

E.11–E.14) which, in any problems under discussion, fluctuate around zero and 

have a smaller average value than that of standard deviation. 

 

Table E.10 Effect size of information deviation with regard to model III 

No. Problem Deviation 
Effect size 

5% 25% 

1. NT11R3Na9 
0% -0.04 0.03 

5%  0.07 

2. NT16R3Na9 
0% 0.02 0.00 

5%  -0.01 

3. NT11R7Na47 
0% 0.26 0.13 

5%  -0.14 

4. NT16R7Na47 
0% 0.06 0.10 
5%  0.04 
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Table E.11 Suffering reduction with regard to information deviation concerning 

model III, NT11R3Na9 problem 

Dataset 
Suffering reduction_NT11R3Na9_Model III 

5% to 0% 25% to 0% 25% to 5% 

1 -34,001 -26,078 7,288 

2 19,585 -19,196 -40,830 

3 -2,553 4,175 6,684 

4 -20,624 -3,997 15,793 

5 60,735 8,872 -61,421 

6 -3,644 -4,219 -570 

7 -51,928 67,007 104,968 

8 -13,552 23,950 36,243 

9 15,634 66,804 53,305 

10 -49,092 -30,859 16,195 

Average -7,944 8,646 13,766 

StdDev 34,282 34,816 46,342 

 

Table E.12 Suffering reduction with regard to information deviation concerning 

model III, NT16R3Na9 problem 

Dataset 
Suffering reduction_NT16R3Na9_Model III 

5% to 0% 25% to 0% 25% to 5% 

1 66,406 3,467 -75,846 

2 1,435 -6,678 -8,143 

3 -77,166 19,577 80,771 

4 -91,936 21,273 91,624 

5 -28,375 111,555 130,445 

6 -28,165 -17,653 9,805 

7 503 24,545 24,073 

8 12,922 -2,399 -15,846 

9 -2,704 -17,726 -14,918 

10 10,352 -43,908 -55,738 

Average -13,673 9,205 16,623 

StdDev 45,740 41,702 66,036 

 

 

 



 191 

Table E.13 Suffering reduction with regard to information deviation concerning 

model III, NT11R17Na47 problem 

Dataset 
Suffering reduction_NT11R17Na47_Model III 

5% to 0% 25% to 0% 25% to 5% 

1 -14,441 -22,247 -7,527 

2 46,667 -124,355 -194,250 

3 11,667 -53,209 -66,876 

4 -5,797 -31,585 -25,410 

5 109,796 143,392 46,749 

6 61,156 39,422 -25,773 

7 -44,196 88,865 119,524 

8 102,884 56,635 -62,807 

9 -29,559 -67,169 -34,963 

10 -22,832 -4,258 17,547 

Average 21,535 2,549 -23,379 

StdDev 55,425 79,911 81,686 

 

Table E.14 Suffering reduction with regard to information deviation concerning 

model III, NT16R17Na47 problem 

Dataset 
Suffering reduction_NT16R17Na47_Model III 

5% to 0% 25% to 0% 25% to 5% 

1 3,134 44,525 41,726 

2 -103,122 -26,199 60,844 

3 22,444 -54,535 -81,676 

4 -93,664 92,689 150,284 

5 150,390 50,796 -162,039 

6 -17,846 33,380 48,986 

7 43,823 -138,451 -205,332 

8 58,732 100,569 49,249 

9 -53,853 -5,466 42,519 

10 -25,501 -68,026 -39,917 

Average -1,546 2,928 -9,536 

StdDev 75,831 75,853 110,772 

 

E.2.2 Effect of Information Deviation with Respect to Model IV 

For R3Na9 problems, most of the effects (see Table E.15) are of small sizes. 

The indication on effect magnitude is confirmed by the suffering reduction figures 

that fluctuate around zero (see Tables E.16 and E.17). The exception is the effect 
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size of NT16R3Na9_25% over NT16R3Na9_0%, -0.44, a medium magnitude. 

The average of the suffering reduction for this comparison is around one third of 

the total number of victims. Even though the related average value of suffering 

reduction is smaller than the standard deviation, the gap is not large. Among the 

10 values of suffering reduction, 7 of them have values less than zero. 

Table E.15 Effect size of information deviation with regard to model IV 

No. Problem Deviation 
Effect size 

5% 25% 

1. NT11R3Na9 
0% 0.07 0.15 

5%  0.09 

2. NT16R3Na9 
0% -0.16 -0.44 

5%  -0.27 

3. NT11R7Na47 
0% -0.46 -0.35 

5%  0.05 

4. NT16R7Na47 
0% 0.12 0.47 

5%  0.29 

 

Table E.16 Suffering reduction with regard to information deviation concerning 

model IV, NT11R3Na9 problem 

Dataset 
Suffering reduction_NT11R3Na9_Model IV 

5% to 0% 25% to 0% 25% to 5% 

1 9,657  79,665  71,785  

2 111,625  140,334  40,211  

3 -25,132  38,214  59,513  

4 579  49,667  49,161  

5 97,349  40,708  -75,466  

6 -36,848  39,546  69,803  

7 -109,003  -57,314  40,404  

8 -9,596  -13,314  -3,629  

9 52,672  -126,455  -207,077  

10 -148,081  17,092  119,738  

Average -5,678  20,814  16,444  

StdDev 81,904  73,486  93,960  
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Table E.17 Suffering reduction with regard to information deviation concerning 

model IV, NT16R3Na9 problem 

Dataset 
Suffering reduction_NT16R3Na9_Model IV 

5% to 0% 25% to 0% 25% to 5% 

1 -300,281 -608,993 -174,467 

2 98,381 84,514 -18,540 

3 131,124 65,979 -98,110 

4 103,195 44,335 -80,020 

5 -112,452 -79,961 25,223 

6 -15,346 -28,209 -12,377 

7 -200,729 -350,732 -99,054 

8 4,758 -70,690 -76,379 

9 -101,549 -46,599 43,603 

10 63,308 -153,087 -258,298 

Average -32,959 -114,344 -74,842 

StdDev 143,117 214,578 91,804 

 

For R17Na47 problems, the insights look slightly different to the R3Na9 

problems. The NT11R17Na47 problems, on one hand, show that both the effect 

sizes (see Table E.15) and averages of suffering reduction (Table E.18) suggest 

that model IV with 100% accurate information performs the best. The relatively 

large average values of suffering reduction indicate that inaccurate information on 

resource availability does have a rather serious effect on the model performance in 

minimising the unmet demands. With regard to 5% deviation and 0% deviation, 9 

out of 10 of the suffering reduction values are negative. The NT16R17Na47 

problems, on the other hand, suggest the opposite. Apart from the presence of 

0.47 and 0.29 effect sizes regarding 0% and 5% deviations in comparison with 

25% deviation (see Table E.15), the pattern of suffering reduction and the small 

values of the averages of the reductions suggest that the information deviation 

under concern does not affect model IV performance. 
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Table E.18 Suffering reduction with regard to information deviation concerning 

model IV, NT11R17Na47 problem 

Dataset 
Suffering reduction_NT11R17Na47_Model IV 

5% to 0% 25% to 0% 25% to 5% 

1 -70,430 -108,958 -32,638 

2 -77,842 166,806 203,964 

3 31,255 58,453 29,566 

4 -236,440 -448,650 -132,146 

5 -234,250 -542,111 -192,382 

6 -97,031 -201,468 -83,641 

7 -91,671 205,707 240,811 

8 -55,217 -66,825 -10,169 

9 -17,467 45,838 60,593 

10 -165,591 -121,433 31,003 

Average -101,468 -101,264 11,496 

StdDev 87,183 244,939 135,980 

 

Table E.19 Suffering reduction with regard to information deviation concerning 

model IV, NT16R17Na47 problem 

Dataset 
Suffering reduction_NT16R17Na47_Model IV 

5% to 0% 25% to 0% 25% to 5% 

1 -113,324 6,723 93,032 

2 211,124 194,977 -35,178 

3 64,203 -118,146 -218,257 

4 -96,859 89,190 149,054 

5 66,368 96,644 36,480 

6 141,246 211,384 109,923 

7 -71,713 105,293 149,528 

8 44,800 -34,782 -89,903 

9 64,800 -58,412 -147,745 

10 -306,741 -131,366 98,193 

Average 390 36,150 14,513 

StdDev 149,336 121,972 130,369 

 

From the discussion and analyses with reference to the effect of information 

deviation on model III and model IV, it is not always the case that the models 

with more accurate information on resource availability perform better than the 

same models with less accurate information. Hence, it might be valuable to re-
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examine the performance of the four models when information on resource 

availability deviates from its real value. With this motivation, the median values 

of approaches relevant to a particular problem are provided in Figure E.14 and 

Figure E.15 (recall that information deviation applies only to models III and IV). 

From Figure E.14, it is obvious that the fluctuation of median values with 

respect to model III and model IV as a result of the information deviation on 

resource availability does not change the position of the model performance 

relative to the other models. With respect to problems NT11R3Na9, for instance, 

it seems unambiguous that all three median values resulting from the application 

of model III (i.e. those with possible maximum information deviation 0%, 5% and 

25%) are close to that resulting from the application of model I to the same 

problem. Even though there is variation, none of the three values relating to model 

III goes above the median value relating to model I. The insight that the 

fluctuating values of medians with regard to model III or model IV does not 

change the model performance’s position relative to the others applies to all the 

R3Na9 problems. 

With regard to the R17Na47 problems, Figure E.15 tells a slightly different 

story from that of Figure E.14. As in the R3Na9 problems, the median values in 

reference to model III and model IV also fluctuate over the three possible 

maximum deviations of information. What is interesting is that the medians with 

regard to model IV in a given problem fluctuate around the median value with 

respect to model II in the same problem. This suggests the likelihood that 

whatever the information deviation is, model IV and model II perform roughly 

equally for each of the R17Na47 problems. To put it another way, it is likely that 

maximum deviations of information considered in this thesis do not affect model 

IV performance relative to the performance of model II for the R17Na47 

problems. 
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Figure E.14 Median values of various approaches in R3Na9 problems 
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Figure E.15 Median values of various approaches in R17Na47 problems 
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Appendix F Computational Results of Various Problem Sizes with Regard to Models – Heuristics-related Data 

 

Table F.1 Maximum objective value for redtime 

Dataset 
Maximum Objective Value 

M_I M_II M_III M_IV 

1 9,110,377.484934 2,412,929.054659 1,841,872.767773 2,113,481.809670 

2 3,137,938.206562 1,576,900.598279 897,527.211415 1,712,816.602937 

3 3,810,492.205599 1,196,472.808108 2,201,053.725137 2,145,087.285736 

4 3,184,659.870254 1,090,444.829048 2,599,405.318331 1,111,404.874006 

5 2,719,267.744584 2,682,665.189413 2,259,024.543225 1,733,103.228024 

6 2,915,033.504404 1,983,556.696780 1,201,772.496321 918,643.552237 

7 3,022,403.743986 1,106,160.292901 1,616,407.688234 1,058,054.473363 

8 12,283,649.148136 2,796,847.533877 1,913,060.711295 2,762,813.347849 

9 7,321,370.485474 2,199,449.626686 1,006,348.548579 1,885,608.857854 

10 7,099,664.229056 2,641,912.382270 2,234,887.085293 2,352,422.767250 

Average 5,460,485.662299 1,968,733.901202 1,777,136.009560 1,779,343.679893 

StdDev 3,320,993.875638 680,256.781017 581,659.860301 602,412.769173 
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Table F.2 Maximum objective value for redtime_up 

Dataset 
Maximum Objective Value 

M_I M_II M_III M_IV 

1 21,507,841.314477 2,907,461.450344 3,150,107.587679 1,944,661.206301 

2 6,524,736.895127 1,328,756.884277 920,561.197313 1,175,510.708435 

3 3,575,922.266625 2,003,195.023770 1,973,325.913181 1,122,033.799242 

4 3,653,057.377608 1,009,581.897656 1,564,246.268931 1,308,509.908973 

5 4,744,117.914957 1,472,061.748274 1,774,142.797639 1,658,400.129726 

6 5,687,951.151076 1,542,426.778922 1,517,497.159536 1,640,113.548699 

7 5,095,392.159699 1,634,008.825573 1,542,287.883353 1,068,930.057640 

8 28,736,974.137465 1,592,680.086969 2,091,138.685984 1,807,846.002608 

9 13,577,357.815814 1,543,421.147374 952,412.723784 1,640,228.212306 

10 15,830,203.487918 1,333,670.890265 2,326,085.453540 1,756,241.785461 

Average 10,893,355.452077 1,636,726.473342 1,781,180.567094 1,512,247.535939 

StdDev 8,731,906.260132 513,779.579946 658,711.444487 314,762.774789 
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Table F.3 Maximum objective value for 4time 

Dataset 
Maximum Objective Value 

M_I M_II M_III M_IV 

1 21,955,833.108536 2,539,782.206369 2,515,239.688947 1,906,337.699647 

2 6,784,008.718064 1,449,370.286285 1,091,790.029297 1,480,694.180485 

3 3,438,435.772361 1,816,848.858788 2,419,836.532804 2,089,580.437413 

4 4,159,700.576237 930,078.251493 2,358,721.110878 1,158,214.795408 

5 4,842,479.638134 1,516,670.122630 1,530,304.476321 1,288,592.372945 

6 6,256,487.842317 1,539,258.173173 2,197,715.531151 1,995,786.558592 

7 5,889,003.181436 1,241,957.182176 1,675,851.734599 1,550,434.015884 

8 29,245,355.455758 2,952,522.666404 2,295,360.645013 3,079,291.881278 

9 13,158,557.037926 1,020,131.575471 1,080,911.882342 885,321.432380 

10 16,287,140.683501 1,106,469.998692 1,740,571.439593 1,006,726.243093 

Average 11,201,700.201427 1,611,308.932148 1,890,630.307095 1,644,097.961713 

StdDev 8,777,556.326163 662,351.406879 541,570.248971 652,398.626166 
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Table F.4 Maximum objective value for redNdc 

Dataset 
Maximum Objective Value 

M_I M_II M_III M_IV 

1       15,940,298.888439  2,185,119.324047 3,909,736.713172 3,474,745.500391 

2         4,968,099.604964  1,352,791.520798 2,984,643.266058 1,050,533.791688 

3         3,205,787.471009  1,405,785.187246 2,270,839.987152 852,030.178982 

4         2,935,706.189094  818,973.914956 1,810,559.150984 960,743.589883 

5         4,623,659.767271  896,714.799912 2,104,720.297659 1,160,031.680170 

6         5,935,894.485852  1,498,106.830047 4,161,784.786566 1,091,380.416472 

7         5,212,942.865448  2,184,234.294521 2,199,091.186743 1,461,347.413700 

8       31,866,915.512386  2,647,531.618069 8,159,022.653893 3,284,024.663780 

9       12,575,514.930374  2,035,254.363751 6,397,028.747253 2,875,533.199808 

10       15,082,770.251549  2,145,810.835681 5,663,779.246511 1,796,820.721222 

Average       10,234,758.996639  1,717,032.268903 3,966,120.603599 1,800,719.115610 

StdDev         9,037,510.437003  609,665.900941 2,146,940.299778 1,019,529.452131 
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Table F.5 Maximum objective value for redNdc6 

Dataset 
Maximum Objective Value 

M_I M_II M_III M_IV 

1 15,940,298.888439 3,391,212.452467 1,891,379.974623 1,565,418.908656 

2 4,968,099.604964 1,625,672.837809 1,023,369.438955 1,268,511.398818 

3 3,205,787.471009 2,197,068.352809 1,811,693.599371 1,334,266.383224 

4 2,935,706.189094 984,887.943753 1,805,693.552199 1,094,358.585412 

5 4,623,659.767271 1,552,733.659419 2,036,602.899873 1,862,194.178934 

6 5,935,894.485852 905,892.150700 2,601,556.547739 1,414,959.599577 

7 5,212,942.865448 849,810.630799 1,684,824.311992 2,453,113.504206 

8 31,866,915.512386 2,069,181.331440 3,338,676.669935 1,353,044.676698 

9 12,575,514.930374 1,543,856.831577 1,514,701.196213 2,221,822.742238 

10 15,082,770.251549 942,094.033624 2,185,103.084709 1,963,848.818524 

Average 10,234,758.996639 1,606,241.022440 1,989,360.127561 1,653,153.879629 

StdDev 9,037,510.437003 792,078.309914 629,114.621624 449,683.789661 
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Table F.6 Maximum objective value for redcomb 

Dataset 
Maximum Objective Value 

M_I M_II M_III M_IV 

1 21,955,833.108536 1,862,006.650950 2,451,579.625750 1,406,296.448604 

2 6,784,008.718064 855,988.775460 1,365,762.686472 838,982.219597 

3 3,438,435.772361 1,224,167.271200 2,601,812.102088 1,230,004.630692 

4 4,159,700.576237 788,653.194940 2,306,008.034922 1,261,461.614685 

5 4,842,479.638134 1,348,525.180514 1,569,051.777618 1,079,394.577527 

6 6,256,487.842317 1,273,171.300940 2,366,360.158599 1,511,520.660489 

7 5,889,003.181436 1,123,684.549500 1,684,474.278752 822,728.015846 

8 29,245,355.455758 1,917,541.634026 2,634,161.675226 1,134,870.375450 

9 13,158,557.037926 1,314,806.848570 1,411,401.036999 1,130,428.126683 

10 16,287,140.683501 1,645,988.752765 2,207,200.187413 1,125,362.334178 

Average 11,201,700.201427 1,335,453.415887 2,059,781.156384 1,154,104.900375 

StdDev 8,777,556.326163 380,511.482369 498,586.478571 217,328.247205 
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Appendix G Summary of Tests on Assumption with Respect to Residuals – 

Heuristics-related Data 

 

Table G.1 Summary of tests on heuristics-related data with regard to models 

No. Data P value, distribution 
P value, equality 

of variance 

P value, 

mean=0 or not 

1. redtime <0.005, not normal - - 

2. redtime_up <0.005, not normal - - 

3. 4time <0.005, not normal - - 

4. redNdc <0.005, not normal - - 

5. redNdc6 <0.005, not normal - - 

6. redcomb <0.005, not normal - - 

 

Table G.2 Summary of tests on model-related data with regard to various 

approaches 

No. Data P value, distribution 
P value, equality 

of variance 

P value, 

mean=0 or 

not 

1. Var_appr_model I <0.005, not normal - - 

2. Var_appr_model II 0.042, not normal - - 

3. Var_appr_model III <0.005, not normal - - 

4. Var_appr_model IV 0.034, not normal - - 

 

Table G.3 Summary of tests on data related to models III and IV with regard to 

various approaches 

No. Data P value, distribution 
P value, equality 

of variance 

P value, mean=0 

or not 

1. model III <0.005, not normal - - 

2. model IV <0.005, not normal - - 
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Appendix H Suffering Reduction – Heuristics-related Data 

 

Table H.1 Suffering reduction: redtime 

Dataset 
Suffering reduction, redtime 

II to I III to I IV to I II to III IV to III IV to II 

1 286,888  311,350  299,715  -120,993  -57,547  48,430  

2 194,137  278,627  177,234  -295,393  -354,490  -33,636  

3 267,712  164,829  170,560  178,112  9,923  -309,404  

4 256,624  71,717  254,056  226,539  223,393  -7,501  

5 5,253  66,050  141,526  -73,184  90,853  138,133  

6 124,700  229,361  267,265  -253,866  91,939  209,512  

7 247,422  181,540  253,633  123,188  134,802  16,971  

8 301,392  329,470  302,473  -180,284  -173,342  4,749  

9 273,011  336,606  289,739  -462,667  -340,964  55,685  

10 245,029  267,402  260,941  -71,073  -20,524  42,762  

Average  220,217  223,695  241,714  -92,962  -39,596  16,570  

StdDev 91,148  99,873  57,675  219,877  195,762  135,292  

 

 

Table H.2 Suffering reduction: redtime_up 

Dataset 
Suffering reduction, redtime_up 

II to I III to I IV to I II to III IV to III IV to II 

1 337,493  333,090  354,962  30,060  149,335  129,230  

2 310,774  335,188  319,939  -173,044  -108,079  45,007  

3 171,635  174,894  267,797  -5,907  168,352  171,661  

4 282,396  223,142  250,462  138,377  63,801  -115,549  

5 269,156  244,308  253,828  66,447  25,459  -49,399  

6 284,422  286,132  277,720  -6,411  -31,533  -24,716  

7 265,101  272,126  308,380  -23,208  119,774  134,957  

8 368,618  361,849  365,697  93,022  52,868  -52,721  

9 345,885  362,872  343,103  -242,163  -281,829  -24,477  

10 357,369  332,904  346,952  166,497  95,603  -123,649  

Average  299,285  292,651  308,884  4,367  25,375  9,034  

StdDev 58,520  63,494  43,712  129,036  136,344  105,757  
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Table H.3 Suffering reduction: 4time 

Dataset 
Suffering reduction, 4time 

II to I III to I IV to I II to III IV to III IV to II 

1 345,104  345,541  356,363  -3,808  94,473  97,331  

2 306,873  327,442  305,071  -127,813  -139,009  -8,434  

3 184,043  115,606  153,089  97,244  53,260  -58,581  

4 302,991  168,961  281,588  236,367  198,622  -95,723  

5 268,021  266,922  286,402  3,477  61,640  58,686  

6 294,236  253,165  265,760  116,922  35,856  -115,743  

7 307,946  279,193  287,504  101,039  29,205  -96,929  

8 350,849  359,618  349,157  -111,728  -133,280  -16,756  

9 359,993  358,190  363,991  21,944  70,615  51,571  

10 363,735  348,542  366,125  142,170  164,533  35,179  

Average  308,379  282,318  301,505  47,581  43,591  -14,940  

StdDev 53,955  84,255  64,549  113,581  109,185  74,774  

 

 

Table H.4 Suffering reduction: redNdc 

Dataset 
Suffering reduction, redNdc 

II to I III to I IV to I II to III IV to III IV to II 

1 336,751  294,530  305,179  172,141  43,418  -230,318  

2 283,984  155,802  307,727  213,367  252,888  87,194  

3 219,118  113,813  286,528  148,661  243,824  153,723  

4 281,380  149,567  262,534  213,726  183,169  -67,554  

5 314,562  212,604  292,338  223,983  175,160  -114,595  

6 291,756  116,636  318,496  249,771  287,909  105,950  

7 226,733  225,620  280,849  2,636  130,919  129,155  

8 357,825  290,330  350,030  263,615  233,172  -93,819  

9 327,088  191,733  301,013  266,087  214,827  -161,118  

10 334,727  243,704  343,757  242,396  266,442  63,469  

 Average  297,392  199,434  304,845  199,638  203,173  -12,791  

StdDev 46,379  65,626  27,128  78,877  73,235  136,233  
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Table H.5 Suffering reduction: redNdc6 

Dataset 
Suffering reduction, redNdc6 

II to I III to I IV to I II to III IV to III IV to II 

1 307,224  343,943  351,923  -309,459  67,255  210,105  

2 262,549  309,861  290,605  -229,680  -93,481  85,738  

3 122,793  169,706  227,824  -83,011  102,840  153,252  

4 259,325  150,214  244,773  177,393  153,734  -43,376  

5 259,193  218,353  233,074  92,717  33,420  -77,776  

6 330,690  219,211  297,222  254,358  177,996  -219,300  

7 326,629  264,119  206,604  193,410  -177,955  -736,263  

8 364,907  349,361  373,677  148,387  232,094  135,063  

9 342,338  343,242  321,299  -7,512  -182,183  -171,372  

10 365,872  333,710  339,435  221,994  39,515  -423,245  

Average  294,152  270,172  288,644  45,860  35,323  -108,717  

StdDev 72,900  76,352  58,119  196,611  144,561  294,701  

 

 

Table H.6 Suffering reduction: redcomb 

Dataset 
Suffering reduction, redcomb 

II to I III to I IV to I II to III IV to III IV to II 

1 357,151  346,672  365,251  93,849  166,390  95,510  

2 341,007  311,682  341,985  145,661  150,520  7,753  

3 251,310  94,953  250,647  206,634  205,758  -1,861  

4 316,259  173,906  271,902  256,783  176,769  -233,958  

5 281,572  263,800  303,260  54,848  121,785  77,883  

6 310,833  242,646  295,966  180,283  140,975  -73,058  

7 315,784  278,622  335,727  129,920  199,643  104,520  

8 364,660  355,097  375,103  106,166  222,118  159,285  

9 351,253  348,389  356,722  26,708  77,688  54,725  

10 350,808  337,362  363,283  99,226  191,276  123,435  

Average  324,064  275,313  325,985  130,008  165,292  31,423  

StdDev 36,344  85,631  43,024  69,809  43,756  115,460  
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Appendix I  Suffering Reduction of Model across Various Approaches 

 

Table I.1.1 Suffering reduction of model I: heuristics vs. direct solution 

Dataset 

Suffering reduction with respect to direct solution 

redtime redtime_up  4time  redNdc redNdc6 redcomb 

1 167,209  -136,303  -147,271  0  0  -147,271  

2 143,760  -122,275  -142,641  0  0  -142,641  

3 -73,612  -45,057  -28,321  0  0  -28,321  

4 -33,094  -95,358  -162,707  0  0  -162,707  

5 160,735  -10,167  -18,469  0  0  -18,469  

6 198,602  16,301  -21,077  0  0  -21,077  

7 163,986  8,800  -50,611  0  0  -50,611  

8 239,820  38,330  32,104  0  0  32,104  

9 163,048  -31,089  -18,093  0  0  -18,093  

10 206,552  -19,339  -31,162  0  0  -31,162  

Average  133,701  -39,616  -58,825  0  0  -58,825  

StdDev 102,909  59,829  66,985  0  0  66,985  
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Table I.1.2 Suffering reduction of model I: other heuristics vs. redtime 

Dataset 

Suffering reduction with respect to redtime 

redtime_up 4time redNdc redNdc6 redcomb 

1 -531,051 -550,241 -292,563 -292,563 -550,241 

2 -421,196 -453,440 -227,606 -227,606 -453,440 

3 24,023 38,104 61,930 61,930 38,104 

4 -57,397 -119,481 30,507 30,507 -119,481 

5 -290,590 -304,706 -273,303 -273,303 -304,706 

6 -371,221 -447,334 -404,415 -404,415 -447,334 

7 -267,660 -370,130 -282,838 -282,838 -370,130 

8 -522,716 -538,867 -622,153 -622,153 -538,867 

9 -333,459 -311,136 -280,059 -280,059 -311,136 

10 -479,891 -505,008 -438,807 -438,807 -505,008 

Average  -325,116 -356,224 -272,931 -272,931 -356,224 

StdDev 187,054 190,704 203,730 203,730 190,704 
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Table I.1.3 Suffering reduction of model I: other heuristics vs. redtime_up 

Dataset 

Suffering reduction with respect to redtime_up 

4time  redNdc  redNdc6  redcomb  

1 -8,129 101,020 101,020 -8,129 

2 -15,507 93,103 93,103 -15,507 

3 15,004 40,393 40,393 15,004 

4 -54,123 76,633 76,633 -54,123 

5 -8,091 9,909 9,909 -8,091 

6 -39,007 -17,011 -17,011 -39,007 

7 -60,781 -9,003 -9,003 -60,781 

8 -6,904 -42,504 -42,504 -6,904 

9 12,037 28,795 28,795 12,037 

10 -11,264 18,426 18,426 -11,264 

Average -17,677 29,976 29,976 -17,677 

StdDev 25,684 48,115 48,115 25,684 
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Table I.1.4 Suffering reduction of model I: comparing different heuristics 

Dataset 

Suffering reduction with respect to 4time, reNdc and reNdc6 

redNdc to 4time redNdc6 to 4time redcomb to 4time 
redNdc6 to 

redNdc 
redcomb to 

redNdc 
redcomb to 

redNdc6 

1 106,921 106,921 0 0 -147,271 -147,271 

2 104,459 104,459 0 0 -142,641 -142,641 

3 26,405 26,405 0 0 -28,321 -28,321 

4 114,830 114,830 0 0 -162,707 -162,707 

5 17,634 17,634 0 0 -18,469 -18,469 

6 19,997 19,997 0 0 -21,077 -21,077 

7 44,801 44,801 0 0 -50,611 -50,611 

8 -34,982 -34,982 0 0 32,104 32,104 

9 17,291 17,291 0 0 -18,093 -18,093 

10 28,857 28,857 0 0 -31,162 -31,162 

Average  44,621 44,621 0 0 -58,825 -58,825 

StdDev 48,751 48,751 0 0 66,985 66,985 
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Table I.2.1 Suffering reduction of model II: heuristics vs. direct solution 

Dataset 

Suffering reduction with respect to direct solution  

Redtime redtime_up 4time redNdc redNdc6 redcomb 

1 161,119  114,159  149,073  182,752  68,223  213,434  

2 81,110  129,756  106,111  125,044  71,548  222,438  

3 160,975  6,388  42,096  120,866  -30,762  155,668  

4 105,074  126,221  147,013  176,069  132,679  183,998  

5 -25,514  162,106  155,192  251,273  149,603  181,252  

6 185,907  231,351  231,677  235,917  296,925  259,089  

7 239,474  167,527  220,965  92,530  274,415  237,086  

8 -9,005  162,891  -31,228  12,310  94,870  116,516  

9 39,625  144,205  227,624  65,800  144,135  180,649  

10 -91,416  147,097  188,520  -969  218,488  90,157  

Average  84,735  139,170  143,704  126,159  142,012  184,029  

StdDev 105,546  56,756  85,160  86,487  100,005  52,686  
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Table I.2.2 Suffering reduction of model II: other heuristics vs. redtime 

Dataset 

Suffering reduction with respect to redtime 

redtime_up 4time redNdc redNdc6 redcomb 

1 -79,982 -20,516 36,844 -158,219 89,102 

2 61,410 31,561 55,462 -12,070 178,409 

3 -263,124 -202,345 -68,270 -326,359 -9,033 

4 28,939 57,392 97,154 37,777 108,005 

5 176,106 169,617 259,802 164,371 194,077 

6 86,788 87,412 95,508 212,021 139,762 

7 -186,222 -47,908 -380,338 90,439 -6,182 

8 168,019 -21,722 20,834 101,532 122,690 

9 116,399 209,246 29,133 116,321 156,962 

10 193,245 226,806 73,281 251,087 147,112 

Average  30,158 48,954 21,941 47,690 112,090 

StdDev 157,583 131,695 163,859 175,565 70,271 
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Table I.2.3 Suffering reduction of model II: other heuristics vs. redtime_up 

Dataset 

Suffering reduction with respect to redtime_up 

4time redNdc redNdc6 redcomb 

1 49,351 96,955 -64,930 140,324 

2 -35,423 -7,059 -87,202 138,849 

3 36,303 116,383 -37,769 151,764 

4 30,732 73,678 9,545 85,398 

5 -11,826 152,526 -21,386 32,750 

6 802 11,213 161,049 68,124 

7 93,633 -131,409 187,288 121,880 

8 -333,196 -258,465 -116,755 -79,599 

9 132,311 -124,358 -110 57,804 

10 66,482 -237,641 114,580 -91,388 

Average  2,917 -30,818 14,431 62,591 

StdDev 128,115 148,446 105,138 87,379 
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Table I.2.4 Suffering reduction of model II: comparing different heuristics 

Dataset 

Suffering reduction with respect to 4time, redNdc and redNdc6 

redNdc to 4time 
redNdc6 to 

4time 
redcomb to 

4time 
redNdc6 to 

redNdc 
redcomb to 

redNdc 
redcomb to redNdc6 

1 54,495 -130,825 104,143 -215,400 57,706 273,105 

2 26,004 -47,470 159,770 -78,720 143,315 222,035 

3 88,294 -81,669 127,304 -219,661 50,417 270,078 

4 46,618 -22,997 59,340 -79,059 14,448 93,507 

5 159,518 -9,279 43,265 -285,497 -196,626 88,871 

6 10,433 160,577 67,461 154,268 58,594 -95,674 

7 -296,082 123,220 37,164 238,415 189,483 -48,932 

8 40,312 116,755 136,798 85,249 107,601 22,352 

9 -388,331 -200,349 -112,727 94,222 138,141 43,919 

10 -366,571 57,975 -190,286 218,913 90,900 -128,014 

Average  -62,531 -3,406 43,223 -8,727 65,398 74,125 

StdDev 203,997 117,680 111,978 192,224 105,816 144,871 
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Table I.3.1 Suffering reduction of model III: heuristics vs. direct solution 

Dataset 

Suffering reduction with respect to direct solution 

redtime redtime_up 4time redNdc redNdc6 redcomb 

1 148,075  -23,934  59,539  -123,812  141,565  67,909  

2 -16,007  -26,433  -103,937  -960,713  -72,968  -227,948  

3 -62,204  -15,392  -107,177  -76,549  17,833  -144,584  

4 -179,993  47,093  -127,193  -6,941  -5,874  -115,630  

5 -63,540  33,861  82,843  -32,544  -18,861  75,060  

6 194,019  142,466  31,399  -289,300  -34,542  3,862  

7 -12,020  6,426  -26,813  -157,029  -29,046  -28,959  

8 103,607  76,925  46,326  -832,244  -109,997  -4,437  

9 -39,575  -16,539  -71,422  -2,341,992  -256,698  -212,577  

10 -127,701  -148,837  -13,140  -922,366  -116,163  -121,284  

Average  -5,534  7,564  -22,958  -574,349  -48,475  -70,859  

StdDev 119,525  76,726  76,543  729,015  103,333  109,058  
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Table I.3.2 Suffering reduction of model III: other heuristics vs. redtime 

Dataset 

Suffering reduction with respect to redtime 

redtime_up 4time redNdc redNdc6 redcomb 

1 -277,182 -142,670 -438,129 -10,489 -129,182 

2 -10,015 -84,466 -907,483 -54,717 -203,590 

3 40,376 -38,790 -12,373 69,034 -71,054 

4 155,408 36,134 118,429 119,159 44,048 

5 83,763 125,887 26,656 38,423 119,193 

6 -102,524 -323,409 -961,194 -454,547 -378,172 

7 17,895 -14,351 -140,676 -16,518 -16,433 

8 -36,326 -77,986 -1,274,119 -290,813 -147,098 

9 20,916 -28,915 -2,090,426 -197,132 -157,073 

10 -15,925 86,315 -598,739 8,693 4,835 

Average  -12,362 -46,225 -627,805 -78,890 -93,453 

StdDev 115,971 126,468 697,966 180,031 142,055 
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Table I.3.3 Suffering reduction of model III: other heuristics vs. redtime_up 

Dataset 

Suffering reduction with respect to redtime_up 

4time redNdc redNdc6 redcomb 

1 78,650 -94,106 155,936 86,536 

2 -72,588 -875,012 -43,583 -188,731 

3 -88,302 -58,837 31,965 -124,290 

4 -198,205 -61,450 -60,236 -185,054 

5 53,636 -72,715 -57,732 45,113 

6 -174,928 -680,018 -278,782 -218,298 

7 -33,796 -166,192 -36,066 -35,978 

8 -38,112 -1,132,385 -232,815 -101,339 

9 -52,652 -2,230,908 -230,395 -188,068 

10 98,232 -559,964 23,653 19,945 

Average  -42,807 -593,159 -72,806 -89,016 

StdDev 99,279 693,742 136,649 110,846 
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Table I.3.4 Suffering reduction of model III: comparing different heuristics 

Dataset 

Suffering reduction with respect to 4time, redNdc and redNdc6 

redNdc to 4time redNdc6 to 4time redcomb to 4time 
redNdc6 to 

redNdc 
redcomb to 

redNdc 
redcomb to 

redNdc6 

1 -216,360 96,794 9,877 201,461 145,545 -55,916 

2 -676,577 24,456 -97,928 256,440 211,671 -44,768 

3 24,029 98,075 -29,347 78,905 -56,878 -135,783 

4 90,693 91,498 8,721 1,049 -106,789 -107,838 

5 -146,483 -129,113 -9,881 12,630 99,321 86,691 

6 -348,759 -71,710 -29,946 146,301 168,355 22,054 

7 -121,844 -2,089 -2,008 91,261 91,323 62 

8 -996,914 -177,380 -57,601 230,558 264,255 33,697 

9 -1,919,304 -156,613 -119,318 297,844 304,145 6,302 

10 -879,608 -99,667 -104,621 239,689 238,166 -1,523 

Average  -519,113 -32,575 -43,205 155,614 135,911 -19,702 

StdDev 617,144 108,058 48,827 105,214 133,963 67,077 
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Table I.4.1 Suffering reduction of model IV: heuristics vs. direct solution 

Dataset 

Suffering reduction with respect to direct solution 

redtime redtime_up 4time redNdc redNdc6 redcomb 

1 144,940  164,535  168,983  -13,059  208,553  227,021  

2 234,597  283,424  255,691  294,781  274,972  314,005  

3 -56,322  156,660  -44,766  212,870  112,477  134,182  

4 186,439  150,295  177,855  214,067  189,565  158,922  

5 164,094  173,842  222,098  238,874  147,249  249,397  

6 272,313  179,693  134,032  250,138  208,597  196,201  

7 220,540  218,796  141,565  155,854  -3,221  258,285  

8 49,270  167,129  10,211  -15,056  223,259  250,185  

9 -18,365  34,809  198,397  -232,883  -91,223  145,283  

10 -14,837  87,824  216,890  80,837  52,075  196,461  

Average  118,267  161,700  148,096  118,642  132,230  212,994  

StdDev 118,701  66,916  95,502  164,100  114,952  57,189  
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Table I.4.2 Suffering reduction of model IV: other heuristics vs. redtime 

Dataset 

Suffering reduction with respect to redtime 

redtime_up 4time redNdc redNdc6 redcomb 

1 31,172 38,248 -251,353 101,198 130,579 

2 122,419 52,887 150,894 101,230 199,094 

3 186,120 10,098 235,241 147,509 166,477 

4 -69,209 -16,436 52,902 5,985 -52,689 

5 16,821 100,092 129,040 -29,068 147,197 

6 -306,486 -457,579 -73,380 -210,839 -251,859 

7 -4,011 -181,607 -148,748 -514,546 86,797 

8 134,889 -44,703 -73,621 199,130 229,947 

9 50,784 207,020 -204,875 -69,583 156,293 

10 98,901 223,240 92,170 64,461 203,559 

Average  26,140 -6,874 -9,173 -20,452 101,539 

StdDev 138,782 197,549 164,416 209,975 147,366 
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Table I.4.3 Suffering reduction of model IV: other heuristics vs. redtime_up 

Dataset 

Suffering reduction with respect to redtime_up 

4time redNdc redNdc6 redcomb 

1 7,691 -307,051 76,105 108,037 

2 -101,315 41,490 -30,874 111,721 

3 -336,516 93,908 -73,815 -37,553 

4 44,824 103,717 63,868 14,032 

5 87,021 117,274 -47,956 136,249 

6 -84,628 130,565 53,573 30,597 

7 -175,788 -143,264 -505,340 89,884 

8 -274,458 -318,652 98,175 145,271 

9 179,609 -293,907 -138,374 121,293 

10 166,547 -9,017 -46,131 140,185 

Average  -48,701 -58,494 -55,077 85,972 

StdDev 177,269 188,765 175,560 62,268 
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Table I.4.4 Suffering reduction of model IV: comparing different heuristics 

Dataset 

Suffering reduction with respect to 4time, redNdc and redNdc6 

redNdc to 4time 
redNdc6 to 

4time 
redcomb to 

4time 
redNdc6 to 

redNdc 
redcomb to 

redNdc 
redcomb to 

redNdc6 

1 -321,069 69,790 102,364 214,436 232,307 17,871 

2 113,372 55,922 169,128 -80,973 78,586 159,559 

3 231,123 141,061 160,533 -220,874 -173,120 47,754 

4 66,536 21,516 -34,788 -54,273 -122,149 -67,876 

5 38,934 -173,714 63,355 -236,215 27,127 263,342 

6 176,843 113,572 94,691 -115,703 -150,230 -34,528 

7 22,423 -227,206 183,165 -264,847 170,541 435,388 

8 -25,946 218,772 246,422 229,462 255,388 25,926 

9 -877,279 -589,126 -108,042 88,717 236,833 148,116 

10 -306,272 -371,019 -45,988 -36,276 145,832 182,109 

Average  -88,134 -74,043 83,084 -47,655 70,111 117,766 

StdDev 332,247 258,375 114,540 177,241 166,949 152,700 
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Appendix J Detailed Analysis and Discussion on Heuristics-related 

Experiments 

J.1 Model Performance within Proposed Heuristics 

In this part, performance of the four location-allocation models in dealing 

with the relief distribution and victim evacuation for each of the proposed 

heuristics is compared and contrasted. The comparison is carried out by the aid of 

MW’s P value, ES and average and standard deviation of SR with respect to 

relevant data. The Mann-Whitney (MW) test in particular is included as it is 

suggested by the Kruskal-Wallis test, summarised in Table J.1, that at least one of 

the models perform differently from the other three within the context of each of 

the proposed heuristics. 

Table J.1 Kruskal-Wallis tests, heuristics-related data 

No. Heuristics approach Model Average rank Median P value 

1. redtime 

I 35.3   3,497,576  

0.000 
II 17.7   2,091,503  

III 14.6   1,877,467  

IV 14.4   1,809,356  

2. redtime_up 

I 35.5   6,106,344  

0.000 
II 14.5   1,542,924  

III 17.3   1,669,195  

IV 14.7   1,640,171  

3. 4time 

I 35.5   6,520,248  

0.000 
II 13.7   1,483,020  

III 18.5   1,969,143  

IV 14.3   1,515,564  

4. redNdc 

I 32.9   5,574,419  

0.000 
II 11.8   1,766,681  

III 25.2   3,447,190  

IV 12.1   1,310,690  

5. redNdc6 

I 35.1   5,574,419  

0.000 
II 13.0   1,548,295  

III 19.2   1,851,537  

IV 14.7   1,490,189  

6. redcomb 

I 35.5   6,520,248  

0.000 
II 13.1   1,293,989  

III 24.1   2,256,604  

IV 9.3   1,132,649  
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J.1.1 Model Performance for redtime 

With regard to the redtime heuristic, Table J.2 suggests that models II, III 

and IV perform better than model I does both statistically and practically. The 

same table, on the other hand, indicates that the performance of models II, III and 

IV for the redtime heuristic is not different from each other either statistically or 

practically. This means that the related heuristic does not make model II and 

model IV perform better than model III does, let alone model IV in contrast to 

model II. 

Table J.2 Mann-Whitney’s (MW’s) P value, effect size (ES), and suffering 

reduction (SR) average and standard deviation, redtime 

Relative to 

model … 
Value of … 

With respect to model … 

III II IV 

I 

MW’s P 0.0002 0.0002 0.0002 

ES 1.40 1.32 1.40 
SR Average 223,695  220,217  241,714  
SR StdDev 99,873  91,148  57,675  

III 

MW’s P  0.4727 0.9698 

ES  -0.28 0.00 

SR Average  -92,962  -39,596  

SR StdDev  219,877  195,762  

II 

MW’s P   0.4274 

ES   0.27 

SR Average   16,570  

SR StdDev   135,292  

J.1.2 Model Performance for redtime_up 

The MW’s P, ES, and SR average and standard deviation for the redtime_up 

heuristic can be seen in Table J.3. 

From Table J.3, there is strong statistical and practical evidence that the 

performance of models II, III and IV for redtime_up is better than that of model I. 

Model II performs relatively the same as model III does. The fact that the SR 

values related to models II and IV fluctuate around zero in a relatively balanced 

number (see Figure J.1), that the MW’s P value of model IV over model II is 

relatively large and that the related ES is of small size suggest that the two carry 

out unmet demand minimisation for redtime_up at relatively the same level of 
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performance. Contrasting model IV to model III, in the meantime, suggests that 

the former does the minimisation of unmet demand significantly better than the 

latter. This is supported by the medium size of related ES and the fact that, 

referring to Figure J.1, 7 out of 10 data sets of related SR lie above zero. 

Table J.3 Mann-Whitney’s (MW’s) P value, effect size (ES), and suffering 

reduction (SR) average and standard deviation, redtime_up 

Relative to 

model … 
Value of … 

With respect to model … 

III II IV 

I 

MW’s P 0.0002 0.0002 0.0002 

ES 1.34 1.36 1.38 

SR Average 292,651  299,285  308,884  

SR StdDev 63,494  58,520  43,712  

III 

MW’s P  0.5708 0.4727 

ES  0.22 0.47 

SR Average  4,367  25,375  

SR StdDev  129,036  136,344  

II 

MW’s P   0.9097 

ES   0.27 

SR Average   9,034  

SR StdDev   105,757  

 

 

 

 

 



 227 

 

 
 

Figure J.1 Suffering reduction of model IV relative to model II and model III – redtime_up 

1 2 3 4 5 6 7 8 9 10 

M-IV to M-II 129,230  45,007  171,661  -115,549  -49,399  -24,716  134,957  -52,721  -24,477  -123,649  

M-IV to M-III 149,335  -108,079  168,352  63,801  25,459  -31,533  119,774  52,868  -281,829  95,603  
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J.1.3 Model Performance for 4time 

Inference about performance of model I, model II, model III and model IV 

for the 4time heuristic is derived from Table J.4 and Figure J.2. 

Table J.4 Mann-Whitney’s (MW’s) P value, effect size (ES), and suffering 

reduction (SR) average and standard deviation, 4time 

Relative to 

model … 
Value of … 

With respect to model … 

III II IV 

I 

MW’s P 0.0002 0.0002 0.0002 

ES 1.36 1.40 1.40 
SR Average 282,318  308,379  301,505  
SR StdDev 84,255  53,955  64,549  

III 

MW’s P  0.3075 0.2413 

ES  0.42 0.37 

SR Average  47,581  43,591  

SR StdDev  113,581  109,185  

II 

MW’s P   0.7913 

ES   -0.05 

SR Average   -14,940  

SR StdDev   74,774  

 

From Table J.4 it is evident that, for the 4time heuristic, model I is 

outperformed by models II, III and IV. Model II and model IV, in the meantime, 

have relatively equal performances. In terms of models II, III and IV, the rather 

medium size of ES values proposes an idea that the performance of model II and 

model IV surpass that of model III. This proposal is confirmed by the plotted 

values of related SR (see Figure J.2), where 7 out of 10 datasets of model II-model 

III SR and 8 out of 10 datasets of model IV-model III SR lie above zero. 
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Figure J.2 Suffering reduction of model IV and model II to model III - 4time 

  

1 2 3 4 5 6 7 8 9 10 

M-II to M-III -3,808  -127,813 97,244  236,367  3,477  116,922  101,039  -111,728 21,944  142,170  

M-IV to M-III 94,473  -139,009 53,260  198,622  61,640  35,856  29,205  -133,280 70,615  164,533  
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J.1.4 Model Performance for redNdc 

The idea of reducing the distribution centres to establish from 17 to 1 only 

really affects the performance of model III. As can be seen from Table J.5, the ES 

values and the averages and standard deviations of SRs concerning model IV and 

model II in comparison with model III indicate that model III, for the redNdc 

heuristic, performs worse than models II and IV. Model II and model IV 

themselves, in the meantime, perform relatively equivalently. The table also 

suggests that the other three models have dominant performance over model I for 

the redNdc heuristic. 

 

Table J.5 Mann-Whitney’s (MW’s) P value, effect size (ES), and suffering 

reduction (SR) average and standard deviation, redNdc 

Relative to 

model … 
Value of … 

With respect to model … 

III II IV 

I 

MW’s P 0.0376 0.0002 0.0006 

ES 0.87 1.21 1.19 
SR Average 199,434  297,392  304,845  
SR StdDev 65,626  46,379  27,128  

III 

MW’s P  0.0036 0.0073 

ES  1.29 1.17 

SR Average  199,638  203,173  

SR StdDev  78,877  73,235  

II 

MW’s P   0.9097 

ES   -0.09 

SR Average   -12,791  

SR StdDev   136,233  

 

J.1.5 Model Performance for redNdc6 

Similar to redNdc, the redNdc6 heuristic also merges the distribution centres 

into a smaller number. Instead of 1, however, redNdc6 proposes 6 as the new 

number of distribution centres to establish. For redNdc6, the performance pattern 

of the four models is slightly different from that for redNdc. As can be seen from 

Figure J.3, 4 out of 10 datasets of SR values with respect to model II over model 

III lie below zero. In spite of a medium effect size (i.e. 0.46), this fact along with 

the related SW’s P value being higher than the critical P value indicate that model 
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II does not have dominant performance over model III. The indication that model 

IV, for redNdc6, performs better than model III, that model II and model IV have 

relatively the same performance and that the performance of model I is surpassed 

by the performance of the other three models is exactly the same as was witnessed 

for redNdc. 

Table J.6 Mann-Whitney’s (MW’s) P value, effect size (ES), and suffering 

reduction (SR) average and standard deviation, redNdc6 

Relative to 

model … 
Value of … 

With respect to model … 

III II IV 

I 

MW’s P 0.0003 0.0003 0.0002 

ES 1.17 1.22 1.22 
SR Average 270,172  294,152  288,644  
SR StdDev 76,352  72,900  58,119  

III 

MW’s P  0.1620 0.2413 

ES  0.49 0.56 

SR Average  45,860  35,323  

SR StdDev  196,611  144,561  

II 

MW’s P   0.5708 

ES   -0.07 

SR Average   -108,717  

SR StdDev   294,701  
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Figure J.3 Suffering reduction of model II and model IV to model III – redNdc6 

 

1 2 3 4 5 6 7 8 9 10 

M-II to M-III -309,459 -229,680 -83,011  177,393  92,717  254,358  193,410  148,387  -7,512  221,994  

M-IV to M-III 67,255  -93,481  102,840  153,734  33,420  177,996  -177,955 232,094  -182,183 39,515  
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J.1.6 Model Performance for redcomb 

From Table J.7, it is evident that models II, III and IV perform much better 

than model I does for the redcomb heuristic. It is also apparent that model II and 

model IV carry out the process of delivering relief and evacuating injured victims 

much better than model III does. The majority of SR values in terms of model IV 

over model II – 7 out of 10; see Figure J.4 - and the related ES of medium 

magnitude recommend that model IV, for redcomb, performs relatively better than 

model II. 

Table J.7 Mann-Whitney’s (MW’s) P value, effect size (ES), and suffering 

reduction (SR) average and standard deviation, redcomb 

Relative to 

model … 
Value of … 

With respect to model … 

III II IV 

I 

MW’s P 0.0002 0.0002 0.0002 

ES 1.34 1.44 1.47 
SR Average 275,313  324,064  325,985  
SR StdDev 85,631  36,344  43,024  

III 

MW’s P  0.0036 0.0004 

ES  1.48 2.14 

SR Average  130,008  165,292  

SR StdDev  69,809  43,756  

II 

MW’s P   0.2730 

ES   0.53 

SR Average   31,423  

SR StdDev   115,460  
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Figure J.4 Suffering reduction of model IV to model II – redcomb 

 

J.2 Performance of the Heuristic Approaches for Each Model 

Tables J.8 to J.11 show test results on the performance of different solution 

approaches for solving the four models respectively. These approaches include 

solving the models directly as described in Chapter 4 and the heuristic approaches 

proposed in Chapter 5 and this appendix.  Time limits for all approaches are set 

the same.  From Tables J.9 to J.11, it can be inferred that, statistically speaking, at 

least one heuristic performs differently compared to the others, for model II, 

model III and model IV. With regard to Table J.8, in the meantime, the P value 

(i.e. 0.409) which is greater than the critical P value (i.e. 0.05) suggests that there 

is no statistical evidence that one approach gives model I different performance in 

comparison to the other approaches. MW’s P values of various approaches with 

respect to each of the four models are presented in Tables J.12–J.15 along with ES 

values and SR average and standard deviation. These indicators are presented in 

order to give a starting point for the discussion on the performance of the 

heuristics presented in this appendix for solving each of the four models. 
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Table J.8 Kruskal-Wallis test results of model I with regard to all approaches 

Approach Average rank Median P value 

direct solution 35.5 5,574,419 

0.409 

redtime 21.8 3,497,576 

redtime_up 38.6 6,106,344 

4time 40.8 6,520,248 

redNdc 35.5 5,574,419 

redNdc6 35.5 5,574,419 

redcomb 40.8 6,520,248 

 

Table J.9 Kruskal-Wallis test result of model II with regard to all approaches 

Approach Average rank Median P value 

direct solution 55.3     2,483,026  

0.014 

redtime 41.8     2,091,503  

redtime_up 33.3     1,542,924  

4time 30.4     1,483,020  

redNdc 34.9     1,766,681  

redNdc6 30.4     1,548,295  

redcomb 22.4     1,293,989  

 

Table J.10 Kruskal-Wallis test result of model III concerning all approaches 

Approach Average rank Median P value 

direct solution 31.4     1,838,683  

0.033 

redtime 29.4     1,877,467  
redtime_up 27.0     1,669,195  

4time 32.8     1,969,143  

redNdc 56.0     3,447,190  

redNdc6 33.4     1,851,537  
redcomb 38.5     2,256,604  

 

Table J.11 Kruskal-Wallis test result of model IV regarding all approaches 

Approach Average rank Median P value 

direct solution 59.0     2,711,828  

0.001 

redtime 38.1     1,809,356  

redtime_up 31.7     1,640,171  

4time 33.7     1,515,564  

redNdc 32.0     1,310,690  
redNdc6 36.8     1,490,189  

redcomb 17.2 1,132,649 

J.2.1 Performance of All Approaches for Model I 

The Kruskal-Wallis test suggests that model I performs equally across the 

0% problem approached using an exact method (in this sense, a mixed integer 
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programming problem (MIP)) and the 0% problem approached using various 

heuristics. It is not surprising, therefore, that the MW’s P values in Table J.12 

give the same indication. Practically speaking, however, the ES values and the SR 

averages of model I with respect to redtime heuristic relative to other approaches 

(see Table J.12) and the fact that the majority of the related SR figures lie above 

zero (for SR values of redtime to direct solution; see Table I.1.1 of Appendix I) and 

below zero (for SR values of other approaches to redtime; see Table I.1.2 of 

Appendix I) provides sufficient evidence that redtime performance for model I is 

better than the other approaches (including direct solution). It is necessary to 

mention that the redNdc and redNdc6 approaches do not affect the total number of 

sub-regions as well as the total number of distribution centres needing to be 

established in model I. Consequently, model I performs exactly the same for direct 

solution, redNdc and redNdc6. With respect to redcomb, the inclusion of reducing 

the number of distribution centres to build and the idea of time point reduction as 

used in the 4time approach means model I performs exactly the same for redcomb 

and 4time. These all explain the presence of the 0.00 or 0 figures in Table J.12. 

J.2.2 Performance of All Approaches for Model II 

A numerical summary of the relative performance of all heuristics for model 

II can be seen in Table J.13 and Tables I.2.1-I.2.4 of Appendix I. Although the 

majority of MW’s P values are larger than the critical P value (i.e. 0.0024) (see 

Table J.13), the large size of ES and relative large SR averages (see Table J.13) 

and the fact that the majority of the related SR figures lie above zero (see Table 

I.2.1 of Appendix I of the thesis) provide strong evidence that for Model II all of 

the heuristics perform better than solving the model directly. Despite 

insignificance from a statistical viewpoint (see the MW’s values in Table J.13), 

ES values which are at least of medium size (see Table J.13) and SR figures 

which mostly lie above zero (see Table I.2.2 of Appendix I) suggest that 

redtime_up, redNdc, redNdc6 and redcomb improve model II performance in 

comparison with the performance of the same model resulting from the 

implementation of the redtime approach. Table J.13 (see the last column) and 

Tables I.2.1-I.2.4 also show that model II performance using redcomb is better 
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than that resulting from the other approaches. It is very likely that the last 

observation is due to the fact that redcomb reduces the solution space of model II 

the most as compared to the other approaches. 

J.2.3 Performance of All Approaches for Model III 

The idea of reducing the total number of distribution centres to build from 

17 to 1 negatively affects the performance of model III, as can be seen in Table 

J.14. The table shows that all approaches apart from redNdc lead to model III 

ending up with a level of performance similar to that of direct solution. 

J.2.4 Performance of All Approaches for Model IV 

With reference to Table J.15, there is strong evidence that for solving model 

IV, the performance of any of the heuristics is better than direct solution. 

Concerning the heuristics themselves, it is also evident from the same table that 

redcomb gives the best performance. Again, this is most likely due to its further 

reduction of solution space. 
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Table J.12 Values of MW’s P, ES, and SR average and standard deviation of  the results of various approaches for model I 

Relative to 

approach …  
Value of … 

With respect to approach … 

Redtime redtime_up 4time redNdc redNdc6 redcomb 

direct 

solution 

MW’s P 0.1212 0.7337 0.5708 1.0000 1.0000 0.5708 

ES 0.64 -0.07 -0.10 0.00 0.00 -0.10 

SR Average 133,701  -39,616  -58,825  0  0  -58,825  

SR StdDev 102,909  59,829  66,985  0  0  66,985  

redtime 

MW’s P  0.0757 0.0640 0.1212 0.1212 0.0640 

ES  -0.75 -0.79 -0.64 -0.64 -0.79 

SR Average  -325,116 -356,224 -272,931 -272,931 -356,224 

SR StdDev  187,054 190,704 203,730 203,730 190,704 

redtime_up 

MW’s P   0.7913 0.7337 0.7337 0.7913 

ES   -0.03 0.07 0.07 -0.03 

SR Average   -17,677 29,976 29,976 -17,677 

SR StdDev   25,684 48,115 48,115 25,684 

4time 

MW’s P    0.5708 0.5708 1.0000 

ES    0.10 0.10 0.00 

SR Average    44,621 44,621 0 

SR StdDev    48,751 48,751 0 

redNdc 

MW’s P     1.0000 0.5708 

ES     0.00 -0.10 

SR Average     0 -58,825 

SR StdDev     0 66,985 

redNdc6 

MW’s P      0.5708 

ES      -0.10 

SR Average      -58,825 

SR StdDev      66,985 
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Table J.13 Values of MW’s P, ES, and SR average and standard deviation of the results of various approaches for model II 

Relative to 

approach …  
Value of … 

With respect to approach … 

redtime redtime_up 4time redNdc redNdc6 redcomb 

direct 

solution 

MW’s P 0.1212 0.0073 0.0140 0.0312 0.0173 0.0004 

ES 0.78 1.30 1.23 1.13 1.14 1.83 

SR Average 84,735  139,170  143,704  126,159  142,012  184,029  

SR StdDev 105,546  56,756  85,160  86,487  100,005  52,686  

redtime 

MW’s P  0.3847 0.2730 0.3447 0.1405 0.0757 

ES  0.50 0.48 0.35 0.45 1.04 

SR Average  30,158 48,954 21,941 47,690 112,090 

SR StdDev  157,583 131,695 163,859 175,565 70,271 

redtime_up 

MW’s P   0.5205 0.7337 0.8501 0.1620 

ES   0.04 -0.13 0.04 0.61 

SR Average   2,917 -30,818 14,431 62,591 

SR StdDev   128,115 148,446 105,138 87,379 

4time 

MW’s P    0.7913 0.9698 0.5205 

ES    -0.15 0.01 0.46 

SR Average    -62,531 -3,406 43,223 

SR StdDev    203,997 117,680 111,978 

redNdc 

MW’s P     0.8501 0.0757 

ES     0.14 0.68 

SR Average     -8,727 65,398 

SR StdDev     192,224 105,816 

redNdc6 

MW’s P      0.5708 

ES      0.40 

SR Average      74,125 

SR StdDev      144,871 
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Table J.14 Values of MW’s P, ES, and SR average and standard deviation of the results of various approaches for model III 

Relative to 

approach …  
Value of … 

With respect to approach … 

redtime redtime_up 4time redNdc redNdc6 redcomb 

direct 

solution 

MW’s P 0.9097 0.7337 1.0000 0.0073 0.7337 0.6232 

ES 0.12 0.11 -0.04 -1.20 -0.18 -0.30 

SR Average -5,534  7,564  -22,958  -574,349  -48,475  -70,859  

SR StdDev 119,525  76,726  76,543  729,015  103,333  109,058  

redtime 

MW’s P  0.7913 0.6232 0.0091 0.7913 0.2123 

ES  -0.01 -0.18 -1.26 -0.32 -0.47 

SR Average  -12,362 -46,225 -627,805 -78,890 -93,453 

SR StdDev  115,971 126,468 697,966 180,031 142,055 

redtime_up 

MW’s P   0.4727 0.0036 0.4274 0.2413 

ES   -0.16 -1.25 -0.29 -0.43 

SR Average   -42,807 -593,159 -72,806 -89,016 

SR StdDev   99,279 693,742 136,649 110,846 

4time 

MW’s P    0.0173 0.9698 0.4274 

ES    -1.20 -0.15 -0.30 

SR Average    -519,113 -32,575 -43,205 

SR StdDev    617,144 108,058 48,827 

redNdc 

MW’s P     0.0073 0.0452 

ES     1.14 1.11 

SR Average     155,614 135,911 

SR StdDev     105,214 133,963 

redNdc6 

MW’s P      0.6776 

ES      -0.11 

SR Average      -19,702 

SR StdDev      67,077 
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Table J.15 Values of MW’s P, ES, and SR average and standard deviation of the results of various approaches for model IV 

Relative to 

approach …  
Value of … 

With respect to approach … 

redtime redtime_up 4time redNdc redNdc6 redcomb 

direct 

solution 

MW’s P 0.0113 0.0004 0.0058 0.0376 0.0036 0.0002 

ES 1.25 1.87 1.38 0.94 1.55 2.51 

SR Average 118,267  161,700  148,096  118,642  132,230  212,994  

SR StdDev 118,701  66,916  95,502  164,100  114,952  57,189  

redtime 

MW’s P  0.3075 0.5205 0.7337 0.7337 0.0452 

ES  0.50 0.20 -0.02 0.22 1.25 

SR Average  26,140 -6,874 -9,173 -20,452 101,539 

SR StdDev  138,782 197,549 164,416 209,975 147,366 

redtime_up 

MW’s P   0.9097 0.7337 0.5205 0.0312 

ES   -0.23 -0.35 -0.33 1.20 

SR Average   -48,701 -58,494 -55,077 85,972 

SR StdDev   177,269 188,765 175,560 62,268 

4time 

MW’s P    0.8501 0.7913 0.0452 

ES    -0.17 -0.01 0.92 

SR Average    -88,134 -74,043 83,084 

SR StdDev    332,247 258,375 114,540 

redNdc 

MW’s P     0.5708 0.3075 

ES     0.17 0.80 

SR Average     -47,655 70,111 

SR StdDev     177,241 166,949 

redNdc6 

MW’s P      0.0073 

ES      1.28 

SR Average      117,766 

SR StdDev      152,700 
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Appendix K Assumption Tests on Residuals – Best Approach for Each 

Model 

 

Figure K.1 Normality plot of residuals – best approach for each model  

7500000500000025000000-2500000-5000000

99

95

90

80

70

60

50

40

30

20

10

5

1

RESI_Bestapproaches

P
e

rc
e

n
t

Mean 6.402843E-11

StDev 1633261

N 40

AD 2.629

P-Value <0.005

Max_P-centre_Best approach for each model
Normal 



 243 

Appendix L Suffering Reduction with Regard to the Best Approach for 

Each Model 

 

Table L.1 Suffering reduction of models with their best approach relative to model 

I_redtime 

Dataset 
M_III_redtime 

to  
M_I_redtime 

M_II_redcomb 
to  

M_I_redtime 

M_IV_redcomb 
to  

M_I_redtime 

1 311,350  310,487  330,008  

2 278,627  283,793  285,908  

3 164,829  264,875  264,278  

4 71,717  293,606  235,668  

5 66,050  196,718  235,341  

6 229,361  219,803  187,894  

7 181,540  245,159  284,018  

8 329,470  329,327  354,193  

9 336,606  320,165  329,992  

10 267,402  299,772  328,389  

Average  223,695  276,370  283,569  

StdDev 99,873  44,016  53,188  

 

 

Table L.2 Suffering reduction of models with their best approach relative to 

models other than model I 

Dataset 
M_II_redcomb 

to  
M_III_redtime 

M_IV_redcomb 
to  

M_III_redtime 

M_IV_redcomb 
to  

M_II_redcomb 

1 -4,266  92,288  95,510  

2 18,061  25,456  7,753  

3 173,202  172,167  -1,861  

4 271,847  200,865  -233,958  

5 157,289  203,781  77,883  

6 -23,185  -100,583  -73,058  

7 118,957  191,617  104,520  

8 -914  158,744  159,285  

9 -119,616  -48,116  54,725  

10 102,831  193,741  123,435  

Average  69,421  108,996  31,423  

StdDev 115,645  112,429  115,460  

 


