9 research outputs found

    Resolución del Response Time Variability Problem mediante tabu search

    Get PDF
    El Response Time Variability Problem (RTVP) es un problema combinatorio de scheduling publicado recientemente en la literatura. Dicho problema de optimización combinatoria es muy fácil de formular pero muy difícil de resolver de forma exacta (es NP-hard). El RTVP se presenta cuando productos, clientes o tareas se han de secuenciar minimizando la variabilidad entre los instantes de tiempo en los que reciben los recursos que ellos necesitan. Este problema tiene una gran cantidad de aplicaciones reales: secuenciación de modelos en líneas de montaje mixtas, asignación de recursos a sistemas multiprocesadores, mantenimiento continuo, recogida de basuras o la secuenciación de anuncios en televisión. La Inteligencia Artificial dispone de herramientas eficientes, tales como las metaheurísticas, para resolver problemas combinatorios de scheduling complejos. En trabajos previos, el RTVP ha sido resuelto mediantes varios algoritmos metaheurísticos provenientes de la Inteligencia Artificial (entre otros, las metaheurísticas multi-start, PSO y GRASP). En este trabajo se propone un algoritmo de búsqueda tabu (tabu seach), el cual mejora los mejores resultados referenciados en la literaturaPreprin

    A meta-heuristic method to design off-grid community electrification projects with renewable energies

    Get PDF
    The design of off-grid electrification projects considering hybrid systems and distribution microgrids is a complex task that requires the use of decision support tools. Most of existing tools focus on the design of hybrid systems without defining generator locations and microgrids configuration. Recently a deterministic heuristic was developed to solve the problem. In this study we present an enhanced deterministic heuristic and then a meta-heuristic procedure for designing community off-grid electrification projects based on renewable energies considering micro-scale resource variations and a combination of independent generation points and microgrids. Both new algorithms improve performance of the previous existing procedure. The new deterministic heuristic can rapidly (in a computational time lower than 1 min) obtain a good solution. On the other hand, the proposed meta-heuristic method considerably enhances solutions obtained by the deterministic heuristic with a computational time of 1 h on a standard PC. The improvement tends to raise as the complexity of the analyzed instance increases. The proposed algorithm is a complete design tool that can efficiently support the design of stand-alone community electrification projects requiring of low computational resourcesPeer ReviewedPostprint (author's final draft

    Exact and non-exact procedures for solving the response time variability problem (RTVP)

    Get PDF
    Premi extraordinari doctorat curs 2009-2010, àmbit d’Enginyeria IndustrialCuando se ha de compartir un recurso entre demandas (de productos, clientes, tareas, etc.) competitivas que requieren una atención regular, es importante programar el derecho al acceso del recurso de alguna forma justa de manera que cada producto, cliente o tarea reciba un acceso al recurso proporcional a su demanda relativa al total de las demandas competitivas. Este tipo de problemas de secuenciación pueden ser generalizados bajo el siguiente esquema. Dados n símbolos, cada uno con demanda di (i = 1,...,n), se ha de generar una secuencia justa o regular donde cada símbolo aparezca di veces. No existe una definición universal de justicia, ya que puede haber varias métricas razonables para medirla según el problema específico considerado. En el Problema de Variabilidad en el Tiempo de Respuesta, o Response Time Variability Problem (RTVP) en inglés, la injusticia o irregularidad de una secuencia es medida como la suma, para todos los símbolos, de sus variabilidades en las distancias en que las copias de cada símbolo son secuenciados. Así, el objetivo del RTVP es encontrar la secuencia que minimice la variabilidad total. En otras palabras, el objetivo del RTVP es minimizar la variabilidad de los instantes en que los productos, clientes o trabajos reciben el recurso necesario. Este problema aparece en una amplia variedad de situaciones de la vida real; entre otras, secuenciación en líneas de modelo-mixto bajo just-in-time (JIT), en asignación de recursos en sistemas computacionales multi-hilo como sistemas operativos, servidores de red y aplicaciones mutimedia, en el mantenimiento periódico de maquinaria, en la recolección de basura, en la programación de comerciales en televisión y en el diseño de rutas para agentes comerciales con múltiples visitas a un mismo cliente. En algunos de estos problemas la regularidad no es una propiedad deseable por sí misma, si no que ayuda a minimizar costes. De hecho, cuando los costes son proporcionales al cuadrado de las distancias, el problema de minimizar costes y el RTVP son equivalentes. El RTVP es muy difícil de resolver (se ha demostrado que es NP-hard). El tamaño de las instancias del RTVP que pueden ser resueltas óptimamente con el mejor método exacto existente en la literatura tiene un límite práctico de 40 unidades. Por otro lado, los métodos no exactos propuestos en la literatura para resolver instancias mayores consisten en heurísticos simples que obtienen soluciones rápidamente, pero cuya calidad puede ser mejorada. Por tanto, los métodos de resolución existentes en la literatura son insuficientes. El principal objetivo de esta tesis es mejorar la resolución del RTVP. Este objetivo se divide en los dos siguientes subobjetivos : 1) aumentar el tamaño de las instancias del RTVP que puedan ser resueltas de forma óptima en un tiempo de computación práctico, y 2) obtener de forma eficiente soluciones lo más cercanas a las óptimas para instancias mayores. Además, la tesis tiene los dos siguientes objetivos secundarios: a) investigar el uso de metaheurísticos bajo el esquema de los hiper-heurísticos, y b) diseñar un procedimiento sistemático y automático para fijar los valores adecuados a los parámetros de los algoritmos. Se han desarrollado diversos métodos para alcanzar los objetivos anteriormente descritos. Para la resolución del RTVP se ha diseñado un método exacto basado en la técnica branch and bound y el tamaño de las instancias que pueden resolverse en un tiempo práctico se ha incrementado a 55 unidades. Para instancias mayores, se han diseñado métodos heurísticos, metaheurísticos e hiper-heurísticos, los cuales pueden obtener soluciones óptimas o casi óptimas rápidamente. Además, se ha propuesto un procedimiento sistemático y automático para tunear parámetros que aprovecha las ventajas de dos procedimientos existentes (el algoritmo Nelder & Mead y CALIBRA).When a resource must be shared between competing demands (of products, clients, jobs, etc.) that require regular attention, it is important to schedule the access right to the resource in some fair manner so that each product, client or job receives a share of the resource that is proportional to its demand relative to the total of the competing demands. These types of sequencing problems can be generalized under the following scheme. Given n symbols, each one with demand di (i = 1,...,n), a fair or regular sequence must be built in which each symbol appears di times. There is not a universal definition of fairness, as several reasonable metrics to measure it can be defined according to the specific considered problem. In the Response Time Variability Problem (RTVP), the unfairness or the irregularity of a sequence is measured by the sum, for all symbols, of their variabilities in the positions at which the copies of each symbol are sequenced. Thus, the objective of the RTVP is to find the sequence that minimises the total variability. In other words, the RTVP objective is to minimise the variability in the instants at which products, clients or jobs receive the necessary resource. This problem appears in a broad range of real-world areas. Applications include sequencing of mixed-model assembly lines under just-in-time (JIT), resource allocation in computer multi-threaded systems such as operating systems, network servers and media-based applications, periodic machine maintenance, waste collection, scheduling commercial videotapes for television and designing of salespeople's routes with multiple visits, among others. In some of these problems the regularity is not a property desirable by itself, but it helps to minimise costs. In fact, when the costs are proportional to the square of the distances, the problem of minimising costs and the RTVP are equivalent. The RTVP is very hard to be solved (it has been demonstrated that it is NP-hard). The size of the RTVP instances that can be solved optimally with the best exact method existing in the literature has a practical limit of 40 units. On the other hand, the non-exact methods proposed in the literature to solve larger instances are simple heuristics that obtains solutions quickly, but the quality of the obtained solutions can be improved. Thus, the solution methods existing in the literature are not enough to solve the RTVP. The main objective of this thesis is to improve the resolution of the RTVP. This objective is split in the two following sub-objectives: 1) to increase the size of the RTVP instances that can be solved optimally in a practical computing time; and 2) to obtain efficiently near-optimal solutions for larger instances. Moreover, the thesis has the following two secondary objectives: a) to research the use of metaheuristics under the scheme of hyper-heuristics, and b) to design a systematic, hands-off procedure to set the suitable values of the algorithm parameters. To achieve the aforementioned objectives, several procedures have been developed. To solve the RTVP an exact procedure based on the branch and bound technique has been designed and the size of the instances that can be solved in a practical time has been increased to 55 units. For larger instances, heuristic, heuristic, metaheuristic and hyper-heuristic procedures have been designed, which can obtain optimal or near-optimal solutions quickly. Moreover, a systematic, hands-off fine-tuning method that takes advantage of the two existing ones (Nelder & Mead algorithm and CALIBRA) has been proposed.Award-winningPostprint (published version

    Estudo poliedral do problema da variabilidade do tempo de resposta

    Get PDF
    Given a set of copy of symbols and a set of slots, the Response Time Variability Problem (RTVP) is NP-hard and attempts to minimize the variability of the total response time, attributing to each slot one and only one copy of the symbol and, along, attributing each symbol in one and only one slot. This problem has a great number of applications, varying from automobile production on an assembly line to the collect of residues from a recipient in many hospital rooms. This work presents a polyhedral study associated to RTVP, describing it in linear equations and inequations. From this perspective, a descriptive research was done, in relation to the objectives, with bibliographic procedures. Furthermore, a description in a mathematical formulation was adapted based on Integer Linear Programming and it was compared to an exact method already consolidated on the literature, thus characterizing it as a research of applied nature to a quantitative approach. The computational results show that the proposed model worked well, highlighting the possibility that the inequalities really are polytope facets.Seja dado um conjunto de copias de símbolos e um conjunto de slots, o Problema da Variabilidade do Tempo de Resposta (RTVP) ´e NP-difícil e objetiva minimizar a variabilidade do tempo de resposta total, atribuindo para cada slot uma e somente uma copia de símbolo e, juntamente, atribuir cada símbolo em um e somente um slot. Este problema possui um grande numero de aplicações, que variam desde a produção de automóveis em uma linha de montagem a coleta de resíduos de recipientes de lixo colocados em varias salas de um hospital. Este trabalho apresenta um estudo poliédrico associado ao RTVP, descrevendo-o em equações e inequações lineares. Nessa perspectiva, realizou-se pesquisa descritiva, quanto aos objetivos, com procedimentos bibliográficos. Alem disso, adaptou a descrição em uma formulação matemática baseada em Programação Linear Inteira e comparou-o com um método exato já consolidado na literatura, caracterizando assim como pesquisa de natureza aplicada e abordagem quantitativa. Os resultados computacionais mostram que o modelo proposto sucedeu-se bem, destacando a possibilidade de que as inequações realmente são facetas do politopo

    Exact and non-exact procedures for solving the response time variability problem (RTVP)

    Get PDF
    Cuando se ha de compartir un recurso entre demandas (de productos, clientes, tareas, etc.) competitivas que requieren una atención regular, es importante programar el derecho al acceso del recurso de alguna forma justa de manera que cada producto, cliente o tarea reciba un acceso al recurso proporcional a su demanda relativa al total de las demandas competitivas. Este tipo de problemas de secuenciación pueden ser generalizados bajo el siguiente esquema. Dados n símbolos, cada uno con demanda di (i = 1,...,n), se ha de generar una secuencia justa o regular donde cada símbolo aparezca di veces. No existe una definición universal de justicia, ya que puede haber varias métricas razonables para medirla según el problema específico considerado. En el Problema de Variabilidad en el Tiempo de Respuesta, o Response Time Variability Problem (RTVP) en inglés, la injusticia o irregularidad de una secuencia es medida como la suma, para todos los símbolos, de sus variabilidades en las distancias en que las copias de cada símbolo son secuenciados. Así, el objetivo del RTVP es encontrar la secuencia que minimice la variabilidad total. En otras palabras, el objetivo del RTVP es minimizar la variabilidad de los instantes en que los productos, clientes o trabajos reciben el recurso necesario. Este problema aparece en una amplia variedad de situaciones de la vida real; entre otras, secuenciación en líneas de modelo-mixto bajo just-in-time (JIT), en asignación de recursos en sistemas computacionales multi-hilo como sistemas operativos, servidores de red y aplicaciones mutimedia, en el mantenimiento periódico de maquinaria, en la recolección de basura, en la programación de comerciales en televisión y en el diseño de rutas para agentes comerciales con múltiples visitas a un mismo cliente. En algunos de estos problemas la regularidad no es una propiedad deseable por sí misma, si no que ayuda a minimizar costes. De hecho, cuando los costes son proporcionales al cuadrado de las distancias, el problema de minimizar costes y el RTVP son equivalentes. El RTVP es muy difícil de resolver (se ha demostrado que es NP-hard). El tamaño de las instancias del RTVP que pueden ser resueltas óptimamente con el mejor método exacto existente en la literatura tiene un límite práctico de 40 unidades. Por otro lado, los métodos no exactos propuestos en la literatura para resolver instancias mayores consisten en heurísticos simples que obtienen soluciones rápidamente, pero cuya calidad puede ser mejorada. Por tanto, los métodos de resolución existentes en la literatura son insuficientes. El principal objetivo de esta tesis es mejorar la resolución del RTVP. Este objetivo se divide en los dos siguientes subobjetivos : 1) aumentar el tamaño de las instancias del RTVP que puedan ser resueltas de forma óptima en un tiempo de computación práctico, y 2) obtener de forma eficiente soluciones lo más cercanas a las óptimas para instancias mayores. Además, la tesis tiene los dos siguientes objetivos secundarios: a) investigar el uso de metaheurísticos bajo el esquema de los hiper-heurísticos, y b) diseñar un procedimiento sistemático y automático para fijar los valores adecuados a los parámetros de los algoritmos. Se han desarrollado diversos métodos para alcanzar los objetivos anteriormente descritos. Para la resolución del RTVP se ha diseñado un método exacto basado en la técnica branch and bound y el tamaño de las instancias que pueden resolverse en un tiempo práctico se ha incrementado a 55 unidades. Para instancias mayores, se han diseñado métodos heurísticos, metaheurísticos e hiper-heurísticos, los cuales pueden obtener soluciones óptimas o casi óptimas rápidamente. Además, se ha propuesto un procedimiento sistemático y automático para tunear parámetros que aprovecha las ventajas de dos procedimientos existentes (el algoritmo Nelder & Mead y CALIBRA).When a resource must be shared between competing demands (of products, clients, jobs, etc.) that require regular attention, it is important to schedule the access right to the resource in some fair manner so that each product, client or job receives a share of the resource that is proportional to its demand relative to the total of the competing demands. These types of sequencing problems can be generalized under the following scheme. Given n symbols, each one with demand di (i = 1,...,n), a fair or regular sequence must be built in which each symbol appears di times. There is not a universal definition of fairness, as several reasonable metrics to measure it can be defined according to the specific considered problem. In the Response Time Variability Problem (RTVP), the unfairness or the irregularity of a sequence is measured by the sum, for all symbols, of their variabilities in the positions at which the copies of each symbol are sequenced. Thus, the objective of the RTVP is to find the sequence that minimises the total variability. In other words, the RTVP objective is to minimise the variability in the instants at which products, clients or jobs receive the necessary resource. This problem appears in a broad range of real-world areas. Applications include sequencing of mixed-model assembly lines under just-in-time (JIT), resource allocation in computer multi-threaded systems such as operating systems, network servers and media-based applications, periodic machine maintenance, waste collection, scheduling commercial videotapes for television and designing of salespeople's routes with multiple visits, among others. In some of these problems the regularity is not a property desirable by itself, but it helps to minimise costs. In fact, when the costs are proportional to the square of the distances, the problem of minimising costs and the RTVP are equivalent. The RTVP is very hard to be solved (it has been demonstrated that it is NP-hard). The size of the RTVP instances that can be solved optimally with the best exact method existing in the literature has a practical limit of 40 units. On the other hand, the non-exact methods proposed in the literature to solve larger instances are simple heuristics that obtains solutions quickly, but the quality of the obtained solutions can be improved. Thus, the solution methods existing in the literature are not enough to solve the RTVP. The main objective of this thesis is to improve the resolution of the RTVP. This objective is split in the two following sub-objectives: 1) to increase the size of the RTVP instances that can be solved optimally in a practical computing time; and 2) to obtain efficiently near-optimal solutions for larger instances. Moreover, the thesis has the following two secondary objectives: a) to research the use of metaheuristics under the scheme of hyper-heuristics, and b) to design a systematic, hands-off procedure to set the suitable values of the algorithm parameters. To achieve the aforementioned objectives, several procedures have been developed. To solve the RTVP an exact procedure based on the branch and bound technique has been designed and the size of the instances that can be solved in a practical time has been increased to 55 units. For larger instances, heuristic, heuristic, metaheuristic and hyper-heuristic procedures have been designed, which can obtain optimal or near-optimal solutions quickly. Moreover, a systematic, hands-off fine-tuning method that takes advantage of the two existing ones (Nelder & Mead algorithm and CALIBRA) has been proposed
    corecore