

ADVERTIMENT. La consulta d’aquesta tesi queda condicionada a l’acceptació de les següents
condicions d'ús: La difusió d’aquesta tesi per mitjà del servei TDX (www.tesisenxarxa.net) ha
estat autoritzada pels titulars dels drets de propietat intel·lectual únicament per a usos privats
emmarcats en activitats d’investigació i docència. No s’autoritza la seva reproducció amb finalitats
de lucre ni la seva difusió i posada a disposició des d’un lloc aliè al servei TDX. No s’autoritza la
presentació del seu contingut en una finestra o marc aliè a TDX (framing). Aquesta reserva de
drets afecta tant al resum de presentació de la tesi com als seus continguts. En la utilització o cita
de parts de la tesi és obligat indicar el nom de la persona autora.

ADVERTENCIA. La consulta de esta tesis queda condicionada a la aceptación de las siguientes
condiciones de uso: La difusión de esta tesis por medio del servicio TDR (www.tesisenred.net) ha
sido autorizada por los titulares de los derechos de propiedad intelectual únicamente para usos
privados enmarcados en actividades de investigación y docencia. No se autoriza su reproducción
con finalidades de lucro ni su difusión y puesta a disposición desde un sitio ajeno al servicio TDR.
No se autoriza la presentación de su contenido en una ventana o marco ajeno a TDR (framing).
Esta reserva de derechos afecta tanto al resumen de presentación de la tesis como a sus
contenidos. En la utilización o cita de partes de la tesis es obligado indicar el nombre de la
persona autora.

WARNING. On having consulted this thesis you’re accepting the following use conditions:
Spreading this thesis by the TDX (www.tesisenxarxa.net) service has been authorized by the
titular of the intellectual property rights only for private uses placed in investigation and teaching
activities. Reproduction with lucrative aims is not authorized neither its spreading and availability
from a site foreign to the TDX service. Introducing its content in a window or frame foreign to the
TDX service is not authorized (framing). This rights affect to the presentation summary of the
thesis as well as to its contents. In the using or citation of parts of the thesis it’s obliged to indicate
the name of the author

Dissertation

Exact and non-exact procedures for solving the
Respone Time Variability Problem (RTVP)

by

Alberto García Villoria

Thesis advisors:

Dr. Albert Corominas
Dr. Rafael Pastor

Submitted to the Institut d’Organització i Control de Sistemes
Industrial in partial fulfillment of the requierements for the degree of

Doctor of Philosophy

at the

Universitat Politècnica de Catalunya

Barcelona, Spain. April 2010.

Abstract

When a resource must be shared between competing demands (of products, clients,
jobs, etc.) that require regular attention, it is important to schedule the access right to the
resource in some fair manner so that each product, client or job receives a share of the
resource that is proportional to its demand relative to the total of the competing
demands. These types of sequencing problems can be generalized under the following
scheme. Given n symbols, each one with demand di (i = 1,...,n), a fair or regular
sequence must be built in which each symbol appears di times. There is not a universal
definition of fairness, as several reasonable metrics to measure it can be defined
according to the specific considered problem.

In the Response Time Variability Problem (RTVP), the unfairness or the irregularity of
a sequence is measured by the sum, for all symbols, of their variabilities in the positions
at which the copies of each symbol are sequenced. Thus, the objective of the RTVP is to
find the sequence that minimises the total variability. In other words, the RTVP
objective is to minimise the variability in the instants at which products, clients or jobs
receive the necessary resource.

This problem appears in a broad range of real-world areas. Applications include
sequencing of mixed-model assembly lines under just-in-time (JIT), resource allocation
in computer multi-threaded systems such as operating systems, network servers and
media-based applications, periodic machine maintenance, waste collection, scheduling
commercial videotapes for television and designing of salespeople's routes with
multiple visits, among others. In some of these problems the regularity is not a property
desirable by itself, but it helps to minimise costs. In fact, when the costs are
proportional to the square of the distances, the problem of minimising costs and the
RTVP are equivalent.

The RTVP is very hard to be solved (it has been demonstrated that it is NP-hard). The
size of the RTVP instances that can be solved optimally with the best exact method
existing in the literature has a practical limit of 40 units. On the other hand, the non-
exact methods proposed in the literature to solve larger instances are simple heuristics
that obtains solutions quickly, but the quality of the obtained solutions can be improved.
Thus, the solution methods existing in the literature are not enough to solve the RTVP.

The main objective of this thesis is to improve the resolution of the RTVP. This
objective is split in the two following sub-objectives: 1) to increase the size of the
RTVP instances that can be solved optimally in a practical computing time; and 2) to
obtain efficiently near-optimal solutions for larger instances. Moreover, the thesis has
the following two secondary objectives: a) to research the use of metaheuristics under
the scheme of hyper-heuristics, and b) to design a systematic, hands-off procedure to set
the suitable values of the algorithm parameters.

To achieve the aforementioned objectives, several procedures have been developed. To
solve the RTVP an exact procedure based on the branch and bound technique has been
designed and the size of the instances that can be solved in a practical time has been
increased to 55 units. For larger instances, heuristic, heuristic, metaheuristic and hyper-
heuristic procedures have been designed, which can obtain optimal or near-optimal
solutions quickly. Moreover, a systematic, hands-off fine-tuning method that takes

advantage of the two existing ones (Nelder & Mead algorithm and CALIBRA) has been
proposed.

 1

Contents
Acknowledgments .. 3

Scientific/Technical support ... 3
Financial support .. 3

Acronyms and terminology .. 5
I. Preface ... 7
II. Introduction to the RTVP .. 9

II.1. Classification and formulation of the problem ... 9
II.2. Application in real-world contexts.. 11

II.2.1. RTVP in the context of mixed-model, just-in-time, assembly lines 12
II.2.2. RTVP in the context of computer multithreaded systems 15
II.2.3. Two case studies of the RTVP ... 15
II.2.4. RTVP in other contexts .. 15

III. State of the art ... 17
IV. Justification and objectives .. 19
V. Solution procedures ... 21

V.1. Introduction .. 21
V.2. An exact algorithm ... 21
V.3. Non-exact methods ... 22

V.3.1. An heuristic algorithm ... 22
V.3.2. Metaheuristic algorithms ... 22
V.3.3. Hyper-heuristic algorithms .. 23

V.4. Fine-tuning .. 24
VI. Discussion of the results ... 25

VI.1. Exact solution of the RTVP .. 25
VI.2. Non-exact solution of the RTVP ... 26

VI.2.1. The heuristic algorithm .. 27
VI.2.2. The metaheuristic algorithms ... 27
VI.2.3. The hyper-heuristic algorithms .. 31

VI.3. Fine-tuning .. 33
VII. Conclusions ... 35
References .. 37
References derived from the thesis ... 39
Annex A1. Articles published or accepted in journals included in the JCR index......... 41

Introducing dynamic diversity in a discrete Particle Swarm Optimization 41
Solving the Response Time Variability Problem by means of the Electromagnetism-
like Mechanism .. 65
Solving the Response Time Variability Problem by means of a psychoclonal
approach ... 79
Solving the Response Time Variability Problem by means of a genetic algorithm ... 95

Annex A2. Other works .. 111
A2.1. Articles submitted to journals included in the JCR index which are in process
of review ... 111

Hyper-heuristic Approaches for the Response Time Variability Problem 111
A systematic procedure based on CALIBRA and the Nelder & Mead algorithm for
fine-tuning metaheuristics .. 133

 2

An adaptive-based heuristic for the Response Time Variability Problem 145
Metaheuristic algorithms hybridized with variable neighbourhood search for
solving the response time variability problem .. 161

A2.2. Articles published in other international journals ... 179
Solving the Response Time Variability Problem by means of the Cross-Entropy
Method .. 179
Solving the Response Time Variability Problem by means of metaheuristics..... 189
Solving the Response Time Variability Problem by means of Multi-start and
GRASP metaheuristic ... 197
A Parametric Multi-start Algorithm for Solving the Response Time Variability
Problem ... 205

A2.3. Communications to international congresses ... 213
Solving the Response Time Variable Problem by means of a Variable
Neighbourhood Search Algorithm.. 213
Using Tabu Search for the Response Time Variability Problem 221
Resolución del response time variability problem mediante tabu search 231

A2.4. Technical reports .. 243
A branch and bound approach for the response time variability problem 243
Using an Ant Colony System to solve the Response Time Variability Problem . 261
An enhanced metaheuristic for solving the response time variability problem ... 271

 3

Acknowledgments

Scientific/Technical support

I would like to thank Albert Corominas and Rafael Pastor for their guidance, comments,
advices and corrections during the development of this thesis. Their support and
confidence on me have been a constant that I really appreciate. I would like also to
thank Ernest Benedito, Anna Coves, Laia Ferrer, Amaia Lusa and Jordi Olivella, stuff
of the Enginyeria d'Organització i Logística Industrial (EOLI) research group, part of
the Universitat Politècnica de Catalunya (UPC), for his helping in several technical
questions.

Part of the thesis work has been done during two research internships at the Centre of
Logistics & Heuristic Optimisation (CLHO) and the Centre Génie Industriel et
Informatique (G2I), respectively. I am very grateful to Said Salhi for his helping and
animosity during the research and development of heuristic and hyper-heuristic
algorithms for the problem of this thesis. I am also very grateful to the ideas contributed
by Alexandre Dolgui, Xavier Delorme and Wieslaw Kubiak when dealing the thesis
problem by means of the branch and bound technique; I think that the given ideas have
been the cornerstone of the achieved success.

Financial support

The development of this work has also been carried out with the partial financial
support of the Spanish government, by means of the projects:

• DPI2004-03472 with title Design and balanced of assembly lines in realistic
environments (DELIMER), 2005 to 2007.
Amount awarded: 74,060€
Principal investigator: Rafael Pastor.

• DPI2007-61905 with title Design and balanced of production and assembly
lines in realistic environments (DELIPYMER), 2008 to 2010.
Amount awarded: 99,099€
Principal investigator: Rafael Pastor.

An internship grant –Estades de recerca fora de Catalunya BE-DGR-2008 (3,300.00 €)–
supported by the Agència de Gestió d'Ajuts Universitaris i de Recerca (AGAUR) of the
Generalitat de Catalunya has been given for the internship at the CLHO, Kent Business
School, University of Kent, from 01/25/2009 to 04/25/2009.

Two financial helps –Mobilitat externa del PDI 2008 (1,400.00 € each one)– supported
by the Universitat Politècnica de Catalunya (UPC) have been given for the
aforementioned internship at CLHO and for the intenrship at G2I, l’Ecole Nationale
Supérieure des Mines de Saint-Etienne, from 05/01/2009 to 07/31/2009, respectively.

 5

Acronyms and terminology

Next the main acronyms used over the thesis text are listed:

ACO: Ant Colony Optimisation
B&B: Branch and Bound
CE: Cross-Entropy
EM: Electromagnetism-like Mechanism
GA: Genetic Algorithm
GRASP: Greedy Randomized Adaptive Search Procedure
JIT: Just-In-Time
MILP: Mixed-Integer Linear Programming
MS: Multi-Start
N&M: The Nelder and Mead algorithm
PSC: Psychoclonal
PSO: Particle Swarm Optimisation
RTV: Response Time Variability (metric)
RTVP: Response Time Variability Problem
RVNS: Reduced VNS
SA: Simulated Annealing
TS: Tabu Search
VNS: Variable Neighbourhood Search

The following terminology is used when referring the response time variability
problem:

n : Number of symbols to be sequenced (i = 1,...,n)

id : Number of copies to be sequenced of symbol i

1

n

i
i

D d
=

= ∑ : Total number of copies to be sequenced

i
i

Dt d= : Average or ideal distance between two consecutive copies of symbol i
i
kt : Distance between the positions in which the copies k and k + 1 of symbol i

are found (i = 1,...,n, k = 1,...,di - 1)

i

i
dt : Distance between the last copy of symbol i in the preceding cycle and the

first copy of the same symbol in the current symbol.

RTV 2

1 1
()

idn
i
k i

i k
t t

= =

= −∑∑

 7

I. Preface

This doctoral thesis deals with the hard sequencing problem known as response time
variability problem (RTVP). The Institute of Industrial and Control Engineering (IOC),
in which this thesis has been developed, met and was interested in the regularity
problem of the production scheduling of mixed-model assembly lines. There is not a
universal definition of regularity, as several reasonable metrics can be defined. In a visit
of Prof. Wieslaw Kubiak of the Memorial University of Newfoundland, he proposed the
response time variability metric. During the development of the thesis, it has been
brought to our notice that the same problem may appear in a wide range of
environments such as computer systems, maintenance problems, announcement
broadcasting and salespeople's routing, among others. In all these cases there may be the
necessity of obtaining fair or regular sequences. In the RTVP, the response time
variability metric is used to measure the fairness or regularity of a sequence.

The main objective of this thesis is to improve the solution of the RTVP, which is a NP-
hard problem, by means of exact and non-exact methods. Moreover, two other
additional objectives are pursued: to propose a systematic, hand-off procedure to fine-
tuning the algorithms and to contribute in the research of the use of meta-heuristics
under the hyper-heuristic scheme.

The thesis is presented in the form of a compendium of published or accepted articles
(together with other papers under the format of articles in review process, conference
communications and technical reports), which is taken under the doctorate studies
regulations of the Universitat Politècnica de Catalunya (UPC). This work is organised
as follows. Chapter II introduces the RTVP and real-life contexts in which may appear.
Chapter III reviews the state of the art of the problem. Chapter IV justifies the thesis and
its objectives are proposed. The procedures to achieve the objectives are explained in
Chapter V and the obtained results are discussed in Chapter VI. Finally, the conclusions
are given in Chapter VII. The four articles that have published or accepted in journals
included in the JCR index are annexed in Annex A1; other papers as four articles
submitted to journals included in the JCR index that are in process of review, four
articles published in other international journals, three communications to international
conferences and three technical reports are annexed in Annex A2.

 9

II. Introduction to the RTVP

II.1. Classification and formulation of the problem

The concept of fair sequence has emerged independently from scheduling problems in
diverse environments. The common aim of these scheduling problems, as defined in
Kubiak (2004), is to build a fair sequence using n symbols, where symbol i (i = 1,...,n)
must be copied di times in the sequence. The fair sequence is the one which allocates a
fair share of positions to each symbol i in any subsequence. This fair or ideal share of
positions allocated to symbol i in a subsequence of length k is proportional to the
relative importance (di) of symbol i with respect to the total copies of competing
symbols (equal to

1.. ii n
d

=∑). There is not a universal definition of fairness, as several
reasonable metrics can be defined according to the specific problem considered. For a
detailed introduction to fair sequences, it is recommended the book by Kubiak (2009).

The family of fair sequencing problems can be classified according to the following
characteristics (León et al., 2003):

− Cyclic vs Non-cyclic. The problem is cyclic if the sequence is the same for all
cycles and the distance, for each symbol i, between the first copy of i in a cycle and
the last copy of i in the preceding cycle is considered.

− Distance-constrained vs Not distance-constrained. The problem is distance-
constrained if the distance between two consecutive copies of the same symbol has
an upper bound and/or a lower bound.

− Optimality vs. Feasibility. If the aim is to find a solution that optimises an objective
function then we look for optimality. Instead, if the aim is to find a feasible
solution, then we look for feasibility.

The RTVP is a fair sequencing problem which is cyclic, not distance-constrained and its
aim is to optimise an objective function. Its formulation is the following. Let n be the
number of symbols to be sequenced, where symbol i (i = 1,...,n) is to be copied di times
in the sequence, and let D be the total number of copies (

1.. ii n
d

=∑). Let s be a solution
of an instance in the RTVP that consists of a circular sequence of copies
(Dssss 21=), where sj is the copy sequenced in position j of sequence s. For each
symbol i in which 2id ≥ , let i

kt be the distance between the positions in which the
copies k + 1 and k of symbol i are found. We consider the distance between two
consecutive positions to be equal to 1. Since the sequence is circular, position 1 comes
immediately after the last position D; therefore, i

di
t is the distance between the first

copy of symbol i in a cycle and the last copy of the same symbol in the preceding cycle.
For all symbol i in which 1=id , it1 is equal to it . Let it be the average or ideal

distance between two consecutive copies of symbol i (i
i

Dt d=). The aim is to

minimise the metric Response Time Variability (RTV), which is defined by the
following expression:

 10

 2

1 1
()

idn
i
k i

i k
RTV t t

= =

= −∑∑ (1)

The RTV metric is a weighted variance with weights equal to di. That is,

1.. i ii n
RTV d Var

=
= ⋅∑ , where ()2

1..
1

i

i
i k ik di

Var t td =
= ⋅ −∑ . Thus, the distance between

any two consecutive copies of the same symbol should be as regular as possible (ideally
constant).

It is worth to note that since the average distance it is equal to it1 for all symbol i such
that 1id = , these symbols do not intervene in the computation of the RTV metric. That
is, for all these symbols 0iVar = .

The RTVP has been proved to be NP-hard (Corominas et al., 2007).

Example

As an illustration, consider the following example. Let 3n = with symbols A, B and C.
Also consider 2Ad = , 3Bd = and 7Cd = . Thus, 12D = , 6At = , 4Bt = and 1.71Ct = .
Any sequence that contains symbol i exactly id times is a feasible solution. For
instance, a feasible solution is shown in Figure 1a.

Figure 1. A feasible solution of an RTVP instance

The distances between the copies of symbol A are 1 7At = and 2 5At = (Figure 1b); the
distances between the copies of symbol B are 1 4Bt = , 2 3Bt = and 3 5Bt = (Figure 1c); and
the distances between the copies of symbol C are 1 2Ct = , 2 2Ct = , 3 2Ct = , 4 1Ct = , 5 2Ct = ,

6 2Ct = and 7 1Ct = (Figure 1d). Therefore, the RTV value of this solution is the
following:

 11

() ()2 27 6 5 6RTV  = − + − + 

() () ()2 2 24 4 3 4 5 4 − + − + − + 

() () () () () () ()2 2 2 2 2 2 22 1.71 2 1.71 2 1.71 1 1.71 2 1.71 2 1.71 1 1.71 − + − + − + − + − + − + − 
 2 2 1.43 5.43= + + =

II.2. Application in real-world contexts

When a resource must be shared between competing demands that require regular
attention, it is important to schedule the access right to the resource in some fair manner
so that each demand receives a share of the resource that is proportional to its demand
relative to the competing demands (Herrmann, 2009). The objective in the RTVP is to
minimise variability in the time between the instants at which that products, clients or
jobs receive the necessary resources.

In the RTVP formulation introduced in the previous subsection, a symbol represents a
product, client or job that demands the resource; a position of the solution sequence
represents a times slot in which the symbol sequenced has access to the resource; and
the number of times that each symbol i has to occur in the sequence (di) represents the
number of time slots that each symbol has right. It is assumed that all time slots are the
same amount of time. Thus, we can ignore time and consider only the positions in the
sequence.

This problem appears in a broad range of real-world areas. Applications include
sequencing of mixed-model assembly lines under just-in-time (JIT), resource allocation
in computer multi-threaded systems such as operating systems, network servers and
media-based applications, periodic machine maintenance, waste collection, scheduling
commercial videotapes for television and designing of salespeople's routes with
multiple visits, among others.

In some of these problems the regularity is not a property desirable by itself, but it helps
to minimise costs. In fact, when the costs are proportional to the square of the distances,
the problem of minimising costs and the RTVP are equivalent as follows:

RTV 2

1 1
()

idn
i
k i

i k
t t

= =

= −∑∑ () ()2 2

1 1 1 1 1 1
2

i i id d dn n n
i i
k i i k

i k i k i k
t t t t

= = = = = =

 
= + − ⋅ ⋅ 

 
∑∑ ∑∑ ∑ ∑ ()2

1 1

idn
i
k

i k
t

= =

= +∑∑

()2

1 1 1
2

idn n

i i
i k i

t t D
= = =

− ⋅ ⋅∑∑ ∑

Since ()2

1 1

idn

i
i k

t
= =
∑∑ and

1
2

n

i
i

t D
=

⋅ ⋅∑ are constants, the problem of minimising RTV is

equivalent to minimising ()2

1 1

idn
i
k

i k
t

= =
∑∑ .

 12

II.2.1. RTVP in the context of mixed-model, just-in-time, assembly lines

One of the first situations in which the idea of the fair, regular sequences appeared was
the sequencing of mixed-model assembly lines at Toyota Motor Corporation under the
just-in-time (JIT) production system.

Mixed-model assembly lines are production lines that are able to produce small lots
(ideally of size one) of different models with negligible costs when changing over one
model to another. The effective utilization of mixed-model lines requires the solution of
the following two problems which depends on the company objectives (Korkmazel and
Meral, 2001):

1. Line design and balancing together with cycle times and sequence of
workstations.

2. Determination of the sequence of models to be produced.

This thesis deals with the second goal. Since Toyota Motor Corporation popularized the
just-in-time (JIT) production systems, the problem of sequencing on mixed-model
assembly lines has acquired high relevance. One of the most important JIT objectives is
to get rid of all kinds of waste and inefficiency and, according to Toyota, the main waste
is due to inventories. To reduce inventories, JIT production systems require producing
only the necessary components in the necessary quantities at the necessary time.
Because JIT is a pull production environment, the production schedule is focused on
sequencing the models in the final assembly process.

There are two typical possible goals in JIT systems when the final sequence is being
determined (Monden, 1983):

1. Smoothing the workload of the stations.

2. Keeping a regular rate of usage of every component used by the line.

The first goal is required when some models need more processing time than the cycle
time in some stations. Although assembly lines have usually the flexibility to adjust to
this situation without slowing down or stopping, if many units of models that require
much time are successively sequenced then delays, line stoppages or incomplete work
will occur. On the other hand, the second goal is vital to reduce component inventories.
Inventory is needed to face the fluctuations of the demand of the components consumed
by the line. The more regular the usage rate of the components, the smaller the
inventory (ideally, no inventory would be needed with a constant usage rate). According
to Monden (1983), the first goal is important, but the second goal is the cornerstone of
JIT production systems. The problem of minimising variations in the usage rate of
components is known as Output Rate Variation (ORV) problem (Kubiak, 1993).

An approximation for solving the ORV problem, which is NP-hard (Kubiak, 1993), is
considering only the demand rates for the models (Miltenburg, 1989; Kubiak, 1993;
Bautista et al., 1995) and obtaining a sequence that minimises variations in the
production rate of the models. This problem is known as the Product Rate Variation
(PRV) problem (Kubiak, 1993). Note that when models require exclusive components,
the PRV and the ORV problems are exactly equivalent. Anyway, the PRV problem can
be considered as a problem independent of the ORV problem.

 13

Miltenburg (1989) proposed a nonlinear formulation of the PRV problem. Consider n
models with demand of units for each model i equal to di (i = 1,…,n). The total number
of units to be produced is D (

1.. ii n
D d

=
= ∑). The time required to produce each unit

(regardless of the model) is constant; therefore, if we take the cycle time of the line as
the unit of time, it can be considered that one model unit is produced per time unit.
Thus, the production horizon is equal to D. The ideal production rate of model i for each
time period k (k = 1,…,D) is ri (i ir d D=). Let xik be the total produced units of model i
up to period k. Miltenburg suggested the following objective functions to be minimised:

2

1 1

D n
ik

i
k i

x rk
= =

 − 
 ∑∑ (2)

 ()2

1 1

D n

ik i
k i

x kr
= =

−∑∑ (3)

1 1

D n
ik

i
k i

x rk
= =

−∑∑ (4)

1 1

D n

ik i
k i

x kr
= =

−∑∑ (5)

Originally, Miltenburg (1989) focused the regularity of the PRV problem on the
variability of the production rate of the models. But the PRV problem can be
generalized for that concerning the regularity of appearance of the models in the line
(Bautista et al., 1997). For instance, Inman and Bulfin (1991) propose another objective
function in which is minimised variations with respect ideal production due dates for
each unit. It is worth to say that the distances between any two consecutive due dates
defined by Inman and Bulfin for units of the same model are equal. The RTVP is very
related with the PRV problem under the production context since the RTV measures the
regularity in terms of the variability, for each model i, of the distances between the
appearance of two consecutive units of model i (Equation 1).

Although the PRV problem has been usually discussed in the literature in terms of
regular production rate (Miltenburg, 1989; Kubiak, 1993), feedback received from the
manufacturing industry suggests that a good mixed-model sequence is one in which the
distances between units of the same model are as regular as possible. Moreover, one
drawback of the Miltenburg problem is that, on the contrary of the RTVP, it takes the
positions of the models with only one unit to be produced into account although the
positions of these models are irrelevant for the regularity of the consumption rates.

Example

The following example is to illustrate how the regularity in the production sequencing
has effect on the necessary inventory. Consider the following example shown in Table 1
(inspired in one example given in Bautista et al., 1995). In the daily production, 10 units
of model M1 and 10 units of model M2 have to be produced. Let's assume that 1 unit of
model M1 consumes 1 unit of component C1, and 1 unit of M2 consumes 1 unit of
component C2. Thus, the daily consumptions of C1 and C2 are 10 units, respectively,
and their ideal consumption rates are 0.5 units per cycle.

 14

Table 1. Example of a daily production

Model / Comp. C1 C2 Program

M1 1 0 10

M2 0 1 10

Consumption 10 10 20

Rate 0.5 0.5

Figure 2 shows the most irregular production sequence in terms of the RTV metric; that
is, sequencing the 10 units of one model and then sequencing the other 10 units of the
another model. We can see that the units C1 are consumed in the half of the horizon.
Thus, the production of the components should be double than their average
consumption rate during 10 cycles followed of 10 cycles of no components production.
Another alternative (shown in Figure 2) is to produce the components at their average
rate, but a coupling inventory is needed. The inventory will have, theoretically, between
0 and 5 units during the horizon. The same occurs to the units C2 but with a shift of 10
cycles.

Figure 2. Manufacturing lots of 10 units: (10·M1 + 10·M2)

On other hand Figure 3 shows the most regular sequence in terms of the RTV metric;
that is, a sequence in which the units of each model are allocated alternatively. The
consumption of the component C1 is very similar to the production rate (analogously
with the component C2). Thus, no inventory is needed theoretically.

Figure 3. Manufacturing lots of 1 unit: 10·times (M1 + M2)

 15

II.2.2. RTVP in the context of computer multithreaded systems

The need of fair sequencing also appeared in multithreaded computer systems
(Waldspurger and Weihl, 1994 and 1995; Dong et al., 1998; Bar-Noy et al., 2002).
Multithreaded systems (operating systems, network servers, media-based applications,
etc.) are computer systems that do different tasks to attend to the requests of client
programs that take place concurrently. These systems need to manage the scarce
resource in order to service the requests of n clients. For example, multimedia systems
should avoid presenting video frames too early or too late, which would result in jagged
motion perceptions (Corominas et al., 2007).

The first articles in which this problem is solved as a RTVP are Waldspurger and Weihl
(1994, 1995). The resource is allocated in discrete time slots (authors refer to the
duration of a standard time slice as a quantum). Resource rights are represented by
tickets and each client i has a given number di of tickets. Thus, a client with twice as
many tickets as another will receive twice as much of a resource in a given time
interval. Waldspurger and Weihl define the response time as the elapsed time from a
client’s completion of one quantum up to including its completion of next. Since the
quantum duration is fixed, this definition is equivalent to the number of quanta between
a client’s two consecutive quantum allocations plus one. The authors suggested the
RTV metric to evaluate the fairness of a sequence (that is, the variability of the response
times for each client).

II.2.3. Two case studies of the RTVP

Two case studies of RTVP applications were reported in the literature.

Hermann (2007, 2009) came up with the RTVP while working with a healthcare facility
that needed to schedule the collection of waste from waste collection rooms throughout
the building. Based on data about how often a waste collector had to visit each room
and in view of the fact that different rooms require a different number of visits per shift,
the facility manager wanted these visits to occur as regular as possible so that excessive
waste would not collected in any room. For instance, if a room needed four visits per
eight-hour shift, it would ideally be visited every two hours.

A study by Bollapragada et al. (2004) was motivated by a problem faced by the
National Broadcasting Company (BNC), which is one of the main American firms in
the television industry. Major advertisers buy hundreds of slots from the BNC to air
commercials. The advertisers request that the airings of their commercials are as evenly
spaced as possible over the broadcast season. The problem solved finally is not the
RTVP, but a non-cycling variant. This study is continued in Brusco (2008).

II.2.4. RTVP in other contexts

Other contexts in which the RTVP appears are the periodic machine maintenance
problem (Wei and Liu, 1983; Anily et al., 1998) as well as other distance-constrained
problems (e.g., see Han et al., 1996). Although the main objective of the distance-
constrained problem and the RTVP is to find a sequence as regular as possible, the

 16

advantage of the RTVP is that it will always come up with a feasible solution, contrary
to the distance-constrained problem.

The RTVP can also be applied in the design of sales catalogues (problem introduced in
Bollapragada et al., 2004), in the scheduling of display advertisements on dynamic
billboards at sport stadia and in the design of salespeople's routes with multiple visits, in
which the visits to the same client should be as spaced as possible among the temporal
horizon.

 17

III. State of the art

Although the RTVP is in general NP-hard, the two-symbol case can be optimally solved
with a polynomial algorithm proposed in Corominas et al. (2007). For a general case,
Corominas et al. (2007) proposed a mixed-integer linear programming (MILP) model
whose practical limit to obtain optimal solutions is 25 copies to be sequenced.
Corominas et al. (2010) proposed an improved MILP model and increased the practical
limit for obtaining optimal solutions from 25 to 40 copies to be sequenced.

For solving largest instances, heuristic methods have been proposed. This problem has
been first time solved in Waldspurger and Weihl (1994) using a method that authors
called lottery scheduling. This method is based on generating a solution at random as
follows. For each position of the sequence, the symbol to be sequenced is chosen at
random and the probability of each symbol is equal to the number of copies of this
symbol that remain to be sequenced divided by the total number of copies that remain to
be sequenced. The same authors proposed a greedy heuristic method that they called
stride scheduling (Waldspurger and Weihl, 1995) that obtains better results than the
lottery scheduling method. However, the stride scheduling method is, in fact,
Jefferson’s method originally designed to solve the apportionment problem (Balinski
and Young, 1982; Kubiak, 2004). The relation between fair sequences and the
apportionment problem was first time introduced in Bautista et al. (1996).

In Corominas et al. (2007) five heuristics were proposed to solve the RTVP: the
bottleneck algorithm used in Moreno (2002) to solve the minmax PRV problem, random
generation, two classical parametric methods for solving the apportionment problem
known as Webster’s method and Jefferson’s method (Balinski and Shahidi, 1998) and a
new heuristic called Insertion method by the authors; moreover, a local search
procedure is applied to the solutions obtained with the five heuristics. Parametric
methods are defined as follows. Let xik be the number of copies of symbol i that have
been already sequenced in the sequence of length k (assume xi0 = 0); the symbol to be
sequenced in position k + 1 is (){ }* arg maxi i iki d x δ= + , where (]0,1δ ∈ . Webster’s
and Jefferson’s methods are parametric methods that use a δ value equal to 0.5 and 1,
respectively. Insertion method is a recursive heuristic based on grouping symbols into
fictitious symbols until only two fictitious symbols remains and then solving optimally
the two-symbol case.

Other seven heuristics for the RTVP were proposed in Corominas et al. (2009) together
with twelve local search procedures. Six of these seven heuristics are three variants of
Webster's method, one variant of Jefferson's method and two variants of the Insertion
method. Another proposed heuristic is a greedy heuristic based, at each position k (k =
0... 2D −) of the sequence, on comparing for each symbol the cost of allocating a copy
of it to position k + 1 and the cost of allocating it to position k + 2. The twelve local
search procedures result from combining three neighbourhoods, two rules for replacing
the current solution with a new one and two stopping rules. The three neighbourhoods
are: 1) swapping two consecutive copies, 2) swapping any pair of copies, and 3) a copy
of a symbol i is removed from the position it occupies and inserted between a pair of
consecutive positions provided that there is no another copy of i between the initial
position of the unit and the position in which is inserted. The two rules for replacing the

 18

current solution are: 1) being replaced with the first neighbour that is better that current
solution, and 2) being replaced with the best neighbour, provided it is better than the
current solution. Finally, the two stopping rules are: 1) that there is not a neighbour
better than the current solution, or a neighbour for which the net improvement is 0 and,
to avoid cycling, such that the maximum distance is not increased for either of two
symbols being exchanged and at least one of the maximum distances actually decreases,
and 2) similar to the preceding stopping rule but differs only in that considers also as
candidates the neighbours for which the net improvement is 0 and such that the
minimum distance does not decrease for either of the two symbols being exchanged
and, moreover, at least one of the minimum distances actually increases.

In Herrmann (2007) was proposed an aggregation method based on grouping iteratively
the symbols with the same number of copies to be sequenced into fictitious symbols and
then applying a parametric method. The aggregation idea is extended in Herrmann
(2009).

To solve the non-cycling variant of the RTVP in which the television advertising slots
are scheduled, Bollapragada et al. (2004) developed two MILP models, a branch and
bound (B&B) algorithm and four heuristics. Later, Brusco (2008) propose an enhanced
B&B algorithm and a simulated annealing (SA) algorithm.

A lower bound of the RTVP has been proposed in Corominas et al. (2007). However,
this lower bound is, in general, not enough accurate and is not a good quality indicator
of the solution obtained by a heuristic method.

 19

IV. Justification and objectives

The size of the RTVP instances which can be solved optimally with the best exact
method has a practical limit of 40 copies. On the other hand, the non-exact methods
proposed in the literature to solve larger instances are simple heuristics that obtains
solutions quickly, but the quality of the obtained solutions can be improved. Thus, the
solution methods existing in the literature are not enough to solve the RTVP.

On the other hand, the RTVP and variants have emerged recently and independently
from different environments. This situation complicates to researchers and, especially,
practitioners of a certain area to know the literature existing about the RTVP. Thus, it is
observed in the state of the art that the researches and practitioners start from the scratch
when he/she needs to solve the RTVP or variants in his/her work context. This thesis
and the articles and communications that have been derived may help to announce the
problem and, therefore, to unify the efforts to solve it.

The main objective of this thesis is to improve the resolution of the RTVP. This
objective is split in the two following sub-objectives: 1) to increase the size of the
RTVP instances that can be solved optimally in a practical computing time; and 2) to
obtain efficiently near-optimal solutions for larger instances. To achieve this objective,
several methods to solve the RTVP have been developed.

Moreover, the thesis has other two secondary objectives.

Hyper-heuristics are an emerging methodology in search and optimisation which can be
defined as “heuristics to choose heuristics” (Burke et al., 2003; Ross, 2005). Hyper-
heuristics apply the right heuristic during the problem solving process, according to the
current state of the solution. Thus, an intelligent application of different heuristics at
different times in the search could lead to better performance than the application of
individual heuristics. This innovative methodology has been applied to solve several
optimisation problems: among others, timetabling, space allocation, flow-shop, job-
shop, bin-packing and vehicle routing problems. All hyper-heuristics proposed in the
literature work using simple heuristics, but very little work has still been done using
metaheuristics (Burke and Kendall, 2005). We propose in this thesis to develop several
hyper-heuristic algorithms to solve the RTVP that will use more complex, metaheuristic
methods. A first secondary objective is to contribute in the new research field thanks to
the development of the proposed hyper-heuristic algorithms.

The proposed methods have a set of parameters that need to be fine-tuned before the
execution. The values of the parameters have usually a strong influence in the
performance of algorithms. In non-exact methods, the performance is usually referred to
the quality of the solution obtained; instead, in exact methods, the performance is
usually referred to the computing time spent. Although the parameter values are
extremely important because of the performance of the algorithm is very sensitive to
them, the selection of parameter values is usually not enough justified (Eiben et al.,
1999; Adenso-Díaz and Laguna, 2006). Adenso-Díaz and Laguna (2006) reported that
“about 10% of the total time dedicated to designing and testing of a new heuristic or
metaheuristic is spent on development, and the remaining 90% is consumed fine-tuning
parameters”. This statement can be also extended to the development of exact and

 20

hyper-heuristic methods. The another secondary objective of this thesis is to propose a
systematic procedure for fine-tuning algorithms able to find good parameter values
which needs of little human intervention and to be applied in the designed methods.

 21

V. Solution procedures

V.1. Introduction

Different techniques and approaches have been applied in this thesis to solve the RTVP.
An exact method based on the B&B technique has been designed in order to increase
the size of the instances that can be optimally solved in a practical time with respect to
the best MILP model proposed in the literature.

However, efficient non-exact methods are still needed for solving large, real-life
instances. We have proposed heuristic, metaheuristic and hyper-heuristic methods.

An adaptive heuristic that incorporates a look-ahead strategy has been developed to
obtain quite good solutions and very quick.

More complex procedures as metaheuristics have been considered to obtain better
solutions. Some of the classical metaheuristics that have shown its efficiency to solve
combinatorial problems are multi-start (MS), greedy randomized adaptive search
procedure (GRASP), genetic algorithm (GA), simulated annealing (SA), tabu search
(TS), ant colony optimization (ACO), particle swarm optimisation (PSO) and variable
neighbourhood search (VNS). These metaheuristics are usually compiled in specialized
handbooks (Glover and Kochenberger, 2003; Burke and Kendall, 2005). Moreover, new
and promising metaheuristics have been proposed during the last decade: among others,
cross-entropy method (CE), electromagnetism-like mechanism (EM) and psychoclonal
(PSC). Algorithms based on all the mentioned metaheuristics have been developed.

Moreover, several hyper-heuristic approaches have been developed and some novel
research has been done about the inclusion of metaheuristics in the hyper-heuristic
scheme. The proposed hyper-heuristic methods have been tested solving the RTVP.

The fine-tuning of the parameters of the proposed B&B and metaheuristic methods have
done in a systematic way using CALIBRA (Adenso-Díaz and Laguna, 2006).
CALIBRA is a methods specially designed for fine-tuning the parameters of algorithms.
On the other hand, another possible choice for fine-tuning the algorithm parameters is
the Nelder and Mead algorithm (N&M) (Nelder and Mead, 1965). We have proposed a
fine-tuning procedure that takes advantage of the characteristics of CALIBRA and
N&M.

V.2. An exact algorithm

The best exact method proposed in the literature to solve the RTVP is a MILP model
(Corominas et al., 2010). MILP models use general software to solve problems; in
Corominas et al. (2010), the ILOG CPLEX 9.0 optimiser is used. The disadvantage of
the MILP approach is that general software is used to solve the MILP model and it
cannot take advantage of all characteristics of the problem.

 22

In order to solve optimally larger instances in a practical time, we propose to develop an
exact algorithm based on the B&B technique. We have analysed the characteristics of
the problem to propose a specially designed B&B algorithm. In particular, we have tried
to avoid exploring dominated and equivalent solutions as much as possible.

The proposed B&B algorithm and the results of a computational experiment are
reported in A branch and bound approach for the response time variability problem
(García-Villoria et al., 2009a)*

V.3. Non-exact methods

.

V.3.1. An heuristic algorithm

Several quick heuristics have been proposed in the literature to solve the RTVP. In
order to improve the obtained solutions using very little computing time, a new heuristic
has been designed.

The proposed heuristic allocates, at each iteration, a symbol into the first free position
of the sequence (let the position be called p). The main idea behind the heuristic is to
choose the symbol whose distance between position p and its last sequenced copy is the
most similar to its ideal distance. The ideal distance of each symbol is not static but it
changes dynamically according to the current state of the partial constructed sequence.
Moreover, a look ahead strategy is used in the decisions made by the algorithm.

The heuristic is used to solve the RTVP and also to solve a variant of the problem that
we called minmax RTVP. In this variant, the objective is to minimise the maximum
absolute discrepancy in the distances between any two consecutive copies of the same
symbol. The design of the heuristic and the results of the computational experiment are
reported in An adaptive-based heuristic for the Response Time Variability Problem
(Salhi and García-Villoria, 2009).

V.3.2. Metaheuristic algorithms

Metaheuristics are one of the most practical, non-exact approaches to solve hard
optimisation problems. As it is pointed in the Metaheuristic Network
(http://www.metaheuristics.net), "although metaheuristics are widely used techniques,
the how and why they work effectively for specific problems and for others not, is still
not well understood". Choosing the most suitable metaheuristic, or metaheuristic
components, to use when a new problem is attacked is a very interesting question that
remains still open. Given the lack of guidelines, the performance assessment of a
metaheuristic for solving a problem is best carried out by experimentation (Chiarandini
et al., 2007).

We have designed one CE algorithm (Solving the Response Time Variability Problem
by means of the Cross-Entropy Method (García-Villoria et al., 2010)), three MS, two

* The title of the works derived from the thesis are referenced using bold, italic letters during the
remaining document.

 23

GRASP and fourteen PSO algorithms (Solving the Response Time Variability Problem
by means of metaheuristics (García et al., 2006), Solving the Response Time
Variability Problem by means of Multi-start and GRASP metaheuristics (Corominas
et al., 2008), A Parametric Multi-start Algorithm for Solving the Response Time
Variability Problem (Corominas et al., 2010), Introducing dynamic diversity in a
discrete Particle Swarm Optimization (García-Villoria and Pastor, 2009a)), one ACO
algorithm (Using an Ant Colony System to solve the Response Time Variability
Problem (Corominas et al., 2009a)), one EM algorithm (Solving the Response Time
Variability Problem by means of the Electromagnetism-like Mechanism (García-
Villoria and Pastor, 2009b)), one PSC algorithm (Solving the Response Time
Variability Problem by means of a psychoclonal approach (García-Villoria and Pastor,
2008)), one GA (Solving the Response Time Variability Problem by means of a
genetic algorithm (García-Villoria and Pastor, 2010)), two VNS algorithms (Solving
the Response Time Variable Problem by means of a Variable Neighbourhood Search
Algorithm (Corominas et al., 2009b)), two TS algorithms (Using Tabu Search for the
Response Time Variability Problem (Corominas et al., 2009c), Resolución del
response time variability problem mediante tabu search (Corominas et al., 2009d)),
three hybrid algorithms (Metaheuristic algorithms hybridized with variable
neighbourhood search for solving the response time variability problem (Corominas et
al., 2009e)) and three SA-based algorithms (An enhanced metaheuristic for solving the
response time variability problem (Corominas et al., 2009f)).

V.3.3. Hyper-heuristic algorithms

Hyper-heuristics are an emerging methodology in search and optimisation. A short
definition of hyper-heuristic methods is “heuristics to choose heuristics”. Hyper-
heuristics apply the right heuristic during the problem solving process, according to the
current state of the solution. Hyper-heuristics operate indirectly on the solutions by
choosing the (meta)heuristic to be applied. They thus operate at a higher level than
classical heuristics and metaheuristics. In fact, hyper-heuristics have only access to a set
of low-level (meta)heuristics that are applied to the current solution.

Hyper-heuristics can be divided into two categories: constructive hyper-heuristics and
improvement hyper-heuristics. Constructive hyper-heuristics use a set of constructive
heuristics as low-level heuristics, in order to construct a full solution. In contrast,
improvement hyper-heuristics start from a complete initial solution and then improve on
it, using either simple refinement heuristics or even more sophisticated, but time-
consuming, metaheuristics.

We have proposed four constructive hyper-heuristics that use simple greedy heuristics
as low-level heuristics and three improvement hyper-heuristics that use local search
procedures as local search procedures. Both approaches are usual in the hyper-heuristic
literature. Moreover, we have proposed other three constructive hyper-heuristics that
use metaheuristics as low-level heuristics. To the best of our knowledge, there are not
such studies reported in the literature. We believe this is mainly because of the
excessive computational time that it may require. We have therefore put forward a
mechanism on how to deal with this issue. We have proposed appropriate schemes on
how to select the low-level metaheuristics based on the regular use of learning and

 24

launching stages at each cycle of the search. The goal is to control the computational
burden while guiding the search toward good solutions

All hyper-heuristic algorithms have been tested solving the RTVP. The research,
proposals and results are reported in Hyper-heuristic Approaches for the Response
Time Variability Problem (García-Villoria et al., 2009b)

V.4. Fine-tuning

We have observed in the literature that the selection of the parameter values is usually
not enough justified (even sometimes the parameter values used in the computational
experiment are missing), as Adenso-Díaz and Laguna (2006) and Eiben et al. (1999)
have also pointed.

We are aware of the difficulty of fine-tuning an algorithm due to the common non-linear
interdependence between the parameters and, in the case of stochastic algorithms as
most of metaheuristics, each execution may provide a different solution. Anyway,
nowadays there are hands-off tools that can provide right parameter values in a
reasonable computing time as, for example, CALIBRA and N&M.

CALIBRA has been specifically designed for fine-tuning algorithms and it is based on
using conjointly Taguchi’s fractional factorial experimental designs and a local search
procedure (Adenso-Díaz and Laguna, 2006). On the other hand, N&M (Nelder and
Mead, 1965) is a general direct optimisation algorithm (i.e., it only uses the values of
the function). The disadvantage of using N&M to fine-tune the parameters of an
algorithm is that good parameters values are needed at the beginning, which are not
usually available.

Thus, CALIBRA have been used to fine-tune the parameters of the proposed B&B and
metaheuristic methods. The systematic use of a hands-off procedure as CALIBRA to
find the parameter values not only allows to find right parameter values but also to do a
fair comparison between the results obtained with the metaheuristic methods.

Moreover, we have proposed a new hands-off, systematic fine-tuning procedure for
fine-tuning metaheuristics that takes the advantages of CALIBRA and N&M. In the
case that more fine-tuning time is available, the CALIBRA authors suggest applying
again CALIBRA in a narrow range around the obtained parameter values. However, we
suggest applying N&M instead. The explanation of this new procedure and the
computational experiment to validate the proposal is reported in the article A systematic
procedure based on CALIBRA and the Nelder & Mead algorithm for fine-tuning
metaheuristics (Corominas et al., 2009g).

 25

VI. Discussion of the results

VI.1. Exact solution of the RTVP

To fine-tune and test the B&B algorithm, 30 training and 320 test instances are used
(available at https://www.ioc.upc.edu/EOLI/research/). The first 120 test instances are
the same instances used to test the best MILP model (Corominas et al., 2010). The
instances were generated as follows. D was randomly selected with a discrete uniform
distribution between 20 and 30, between 30 and 35, between 35 and 40, between 40 and
45, between 45 and 50, between 50 and 55, between 55 and 60 and between 60 and 65
for instances 1 to 40, 41 to 80, 81 to 120, 121 to 160, 161 to 200, 201 to 240, 241 to 280
and 281 to 320, respectively. For instances 1 to 40, n and di were randomly selected
with a discrete uniform distribution between 3 and 2D   and between 1 and

()1 2D n − +  (with
1

n
ii

d D
=

=∑), respectively. For instances 41 to 320, n and di were
randomly selected with a discrete uniform distribution between 3 and 12 and between 1
and ()1 2.5D n − +  (with

1

n
ii

d D
=

=∑), respectively.

The B&B algorithm was coded and run under Java 2 Platform Standard Edition (J2SE)
1.4.2.14 and the computational experiment was carried out on a PC 3.00 GHz Intel
Pentium IV with 1.5 GB of RAM.

Table 2 summarises the results obtained with a maximum calculation time of 10,000
seconds for each instance. The columns #Opt and #Fea show the number of instances
that have been optimally solved and the number of instances in which a solution has
been found but its optimality has not been demonstrated, respectively. The average
computing time (in seconds) is shown in parentheses.

Table 2. Comparison between the best MILP and the proposed B&B algorithm

 #Opt #Fea

MILP 114 (278 s.) 6 (10,000 s.)

B&B
 114 (7.47 s.)

 +
6 (316.21 s.)

0

The best MILP model optimally solved 114 of the first 120 test instances whereas the
proposed B&B algorithm solved all 120 instances. Moreover, the computing time has
been considerably reduced; the MILP model needs an average time of 278 seconds to
solve the 114 instances versus the average time of 7.47 seconds needed by the B&B
algorithm to solve the same 114 instances.

Table 3 shows the results obtained for instances 1 to 320 with a maximum calculation
time of 10,000 seconds for each instance. Column D shows the range size of the
instances, column T shows the average time (in seconds) to solve an instance, column
TS0 shows the time (in seconds) to obtain the initial solution, column RTV shows the

 26

average of the best RTV values found and column #Opt shows the number of instances
that have been solved optimally.

Table 3. Results obtained with the B&B method

Instances D T TS0 RTV #Opt

1-40 20-30 2.15 2.08 6.23 40

41-80 30-35 5.89 2.83 9.24 40

81-120 35-40 60.69 3.05 13.47 40

121-160 40-45 785.98 2.08 14.43 38

161-200 45-50 1,589.13 2.83 16.49 37

201-240 50-55 2,973.90 3.06 18.51 34

241-280 55-60 5,090.25 3.60 20.48 23

281-320 60-65 5,910.49 4.00 24.87 18

Between 40 and 45 copies, 45 and 50 copies and 50 and 55 copies the B&B algorithm
solves the 95%, 92.5% and 85% of instances, respectively. For larger instances, the
number of solved instances decreases quickly. However, the algorithm is still able to
solve around 50% of instances that have between 55 and 65 copies to be sequenced.

Thus, we can say that the B&B algorithm is able to solve optimally in a practical time
instances up to 55 copies to be sequenced (that is, the size of the instances that can be
optimally solved has been increased 37.5% with respect to the best exact method
published in the literature). Not only larger instances can be optimally solved but also it
is useful to find new optimal solutions of the RTVP that can be used to compare the
results obtained with heuristic and metaheuristic methods.

VI.2. Non-exact solution of the RTVP

To test the algorithms, a set of benchmark instances is needed. Because there was not
any benchmark set published in the literature, a set of 740 testing instances generated at
random has been used together with a set of 60 training instances to fine-tune the
parameters of the algorithms (all instances can be found at
https://www.ioc.upc.edu/EOLI/research/). These instances were grouped into four
classes (from CAT1 to CAT4 with 15 training instances and 185 test instances in each
class) according to their size. The instances were generated using the random values of
D (number of copies) and n (number of symbols) shown in Table 4. For all instances
and for each symbol i = 1,…,n, a random value of di (number of copies of symbol i) is
between 1 and ()1 2.5D n− +   such that

1.. ii n
d D

=
=∑ .

Table 4. Uniform distributions for generating the D and n values

 CAT1 CAT2 CAT3 CAT4
D U(25, 50) U(50, 100) U(100, 200) U(200, 500)
n U(3, 15) U(3, 30) U(3, 65) U(3, 150)

 27

All algorithms were coded and run under Java 2 Platform Standard Edition (J2SE)
1.4.2.14 and all computational experiments were carried out on a 3.4 GHz Pentium IV
with 1.5 GB of RAM.

In most of the metaheuristics, one or more of the following three neighbourhoods are
used: 1) interchanging each pair of two consecutive copies of the sequence that
represents the current solution (N1), 2) interchanging each pair of consecutive or no-
consecutive copies of the sequence (N2), and 3) inserting each copy in each position of
the sequence (N3).

VI.2.1. The heuristic algorithm

The proposed heuristic (ENH-H) is compared with the five best existing heuristics
(Corominas et al., 2009). Those are known as Oc, AWe/dg, We/dg, Je/dg and In.

In the computational experiments all 800 testing and training instances are solved (since
the heuristics have not parameters, training instances are not needed for the fine-tune).
The results are analysed by considering all instances as well as each class of instances
(CAT1 to CAT4). The average RTV values of the solutions obtained with all heuristics
are given in Table 5.

Table 5. Average RTV values obtained by the classical heuristics

 Global CAT1 CAT2 CAT3 CAT4
ENH-H 144.30 26.96 60.85 135.45 353.92

Oc 215.61 28.96 74.20 198.61 560.68
Awe/dg 405.88 47.03 120.32 349.13 1,107.03
We/dg 434.56 50.93 129.62 376.27 1,181.43
Je/dg 594.51 57.52 164.19 499.72 1,656.61

In 778.51 121.16 308.45 658.21 2,026.21

We can see in Table 5 that Oc was the best existing heuristic in the literature. This
observation is valid for the overall RTV averages as well as in each class of instances
(CAT1 to CAT4). On the other hand, our heuristic (ENH-H) obtains, on average, better
solutions than Oc. If we consider the results by class, ENH-H is 6.91%, 17.99%,
31.80% and 36.88% better than Oc for CAT1, CAT2, CAT3 and CAT4 instances,
respectively. Thus, the results point that the larger the instance, the more competitive
our heuristic. Moreover, the design ENH-H is simpler and is much faster than Oc. On
average, ENH-H requires only 1.82 milliseconds to solve an instance, whereas Oc needs
1,479.99 milliseconds (i.e., nearly 810 times slower).

VI.2.2. The metaheuristic algorithms

In this thesis 34 metaheuristic-based algorithms has been designed and used to solve the
RTVP. All these metaheuristic algorithms, except one MS algorithm, have been tested
on the same set of 740 test instances introduced in Chapter VI.2.

 28

The RTV averages of the solutions obtained for 50 and 1,000 seconds of computing
time are shown in Table 6 and Table 7, respectively.

Table 6. RTV averages obtained for 50 computing seconds
 GLOBAL CAT1 CAT2 CAT3 CAT4
CE(a) 52,920.08 21.16 106.15 2,809.81 208,743.18

Multi-start MS-1(b) 21,390.39 12.08 44.36 226.90 85,278.25
MS-2(c) 2,106.01 11.56 38.02 154.82 8,219.65

GRASP Webster(b) 14,168.83 15.47 88.48 510.44 56,060.92
Greedy(c) 2,308.69 13.00 60.45 270.93 8,890.37

PSO

PSO-M1F(b) 8,502.83 66.45 424.59 3,000.52 30,519.76
PSO-M1T(b) 13,457.60 66.83 509.89 4,335.87 48,917.80
PSO-M2F(b) 10,778.40 83.14 604.27 4,488.44 37,937.76
PSO-M2T(b) 8,629.03 80.93 517.05 3,888.79 30,029.34
DPSOpoi-cpdyn(d) 4,625.54 16.42 51.34 610.34 17,824.04
PSO-c3dyn(d) 6,986.05 15.72 57.10 1,261.81 26,609.56
PSOCB(d) 8,316.51 73.79 433.98 3,106.96 29,651.33
DPSOvel(d) 8,686.47 19.28 179.60 2,287.05 32,259.96
CPSO(d) 8,774.06 74.51 478.13 3,478.72 31,064.89
DPSOpoi(d) 8,792.70 17.14 50.50 810.58 34,292.58
PSO-c3dyn’(d) 11,133.09 146.77 804.12 5,251.08 38,330.39
PSOPC(d) 14,579.82 82.03 563.05 4,021.67 53,652.54
PSO-c3stat(d) 18,707.12 40.41 853.26 7,959.23 65,975.58
PSOPC’(d) 19,626.03 145.26 1,178.29 9,086.24 68,094.33

ACO(e) 1,651.48 10.92 36.83 504.84 6,053.31
EM(f) 3,747.05 19.14 54.54 260.79 14,653.72
PSC(g) 235.68 14.92 44.25 137.07 746.50
GA(h) 186.94 11.65 29.41 84.54 622.16

VNS RVNS(1,2,3)
(i) 63.96 10.73 23.69 51.80 169.64

RVNS(2,3)
(i) 86.78 10.63 23.23 53.39 259.86

TS TSN2
(j)

 202.42 10.30 22.40 109.38 667.59
TSN3

(k) 210.47 10.26 22.56 73.26 735.78

VNS
hybrids

TS+VNS(l) 71.57 10.38 24.00 53.99 197.90
MS+VNS(l) 62.17 10.24 21.23 47.46 169.76
PSO+VNS(l) 60.03 10.47 22.42 49.37 157.86

SA
SAN1

(m) 50.87 10.26 21.67 44.57 126.98
MS+SAN1

(m) 51.84 10.24 21.19 43.57 132.35
MS+SAN1,2,3

(m) 73.12 10.24 21.52 47.37 213.37

(a) García-Villoria et al., 2010; (b) García et al., 2006; (c) Corominas et al., 2008; (d) García-Villoria and
Pastor, 2009a; (e) Corominas et al., 2009a; (f) García-Villoria and Pastor, 2009b; (g) García-Villoria and
Pastor, 2008; (h) García-Villoria and Pastor, 2010; (i) Corominas et al., 2009b; (j) Corominas et al.,
2009c; (k) Corominas et al., 2009d; (l) Corominas et al., 2009e; (m) Corominas et al., 2009f

The results point that simple metaheuristics based on replacing the current solution by
one of its neighbours selected at random from one or more neighbourhoods, SA and
RVNS, can work better than more complex algorithms like CE, PSO, ACO, EM and
GA, for instance. Moreover, the hybridization of SA and VNS with a simple exploration
mechanism like MS helps them to improve their performance.

 29

Table 7. RTV averages obtained for 1,000 computing seconds
 GLOBAL CAT1 CAT2 CAT3 CAT4
CE * * * * *

Multi-start MS-1 1,378.58 10.93 35.48 160.67 5,307.25
MS-2 169.25 10.51 31.21 123.27 512.02

GRASP Webster 1,495.12 13.59 75.08 428.86 5,462.95
Greedy 301.90 11.56 50.45 227.50 918.10

PSO

PSO-M1F 6,619.34 66.45 424.54 3,000.52 22,985.85
PSO-M1T * * * * *
PSO-M2F * * * * *
PSO-M2T * * * * *
DPSOpoi-cpdyn 1,537.34 14.35 46.55 143.95 5,944.51
PSO-c3dyn 1,980.20 14.63 46.13 142.58 7,717.47
PSOCB 3,696.44 13.83 42.18 391.54 14,338.20
DPSOvel 4,312.31 17.75 84.17 1,036.87 16,110.42
CPSO 6,731.24 73.79 433.98 3,106.96 23,310.24
DPSOpoi 7,746.85 74.51 478.13 3,478.72 26,956.02
PSO-c3dyn’ 8,838.70 82.03 563.05 4,021.67 30,688.03
PSOPC 11,133.09 146.77 804.12 5,251.08 38,330.39
PSO-c3stat 16,212.08 16.75 592.64 6,520.72 57,718.22
PSOPC’ 18,495.01 138.76 1,056.59 8,414.15 64,370.53

ACO 1,208.81 10.46 31.17 337.31 4,456.32
EM 330.29 18.64 52.97 157.20 1,092.36
PSC 161.60 14.90 36.90 122.38 469.23
GA 106.68 10.92 27.00 74.86 313.92

VNS RVNS(1,2,3) 62.24 10.73 23.29 51.40 163.15
RVNS(2,3) 62.06 10.63 23.19 51.46 162.95

TS TSN2 113.31 10.24 21.46 106.21 315.33
TSN3 78.62 10.24 21.16 48.12 234.96

VNS
hybrids

TS+VNS 55.05 10.24 22.48 47.66 139.84
MS+VNS 54.95 10.24 20.94 43.26 145.35
PSO+VNS 55.86 10.45 22.00 46.80 144.22

SA
SAN1 50.75 10.26 21.67 44.55 126.54
MS+SAN1 46.60 10.24 20.92 40.33 114.91
MS+SAN1,2,3 61.92 10.24 20.95 42.99 173.51

(*) The computational experiment has not been done.

For little computing time (50 seconds), the five best metaheuristic algorithms according
to the overall RTV value of their obtained solutions are, in the following order, SAN1,
MS+SAN1, PSO+VNS, MS+VNS and RVNS(1,2,3). On the other hand, if more computing
time is available (1,000 seconds) the best metaheuristic algorithms are, in the following
order, MS+SAN1, SAN1, MS+VNS, TS+VNS and PSO+VNS. After 1,000 computing
seconds, MS+SAN1 is able to obtain an RTV average 8.18%, 15.20%, 15.35% and
16.58% better than SAN1, MS+VNS, TS+VNS and PSO+VNS, respectively. Moreover,
MS+SAN1 converges very fast and it is able to obtain a better RTV average with 50
computing seconds (51.84) than the averages obtained with the third, four and fifth best
methods (MS+VNS, TS+VNS and PSO+VNS, respectively) with 1,000 computing
seconds (54.95, 55.05 and 55.86, respectively). Figure 4 shows the evolution of the
RTV averages over the computing time.

 30

Figure 4. Average of the RTV values obtained over the computing time

Observing the RTV average by class, we can see that MS+SAN1 is also the best for all
classes (CAT1 to CAT4) for 1,000 computing seconds. For CAT1 instances, MS+SAN1
obtains an optimal solution for all 185 instances (as it will be explained later in this
chapter). For CAT2 instances, the RTV average is 0.10% better than the average
obtained with the second best algorithm for these instances (MS+VNS). For CAT3
instances, the RTV average is 6.19% better than the average obtained with the second
best algorithm for these instances (MS+SAN1,2,3). Finally, for CAT4 instances, the RTV
average is 9.19% better than the average obtained with the second best algorithm for
these instances (SAN1).

To sum up, MS+SAN1 is the best choice to solve the RTVP because is the algorithm that
obtains the best solutions, on average, independently of the size of the instance to be
solved. Moreover, this algorithm is able to obtain better solutions than other algorithms
very quick.

Thus, the best solutions, on average, are obtained by MS+SAN1 among all metaheuristic
methods (and also all hyper-heuristic methods, as we can see in Chapter VI.2.3)
designed to solve the RTVP. However, is the quality of these solutions good? To
answer this question, we have tried find the optimal solutions by means of the proposed
B&B algorithm but only the smallest instances (CAT1 instances) were optimally solved.
For the remaining instances, the lower bound (LB) proposed in Corominas et al. (2007)
is used. Table 8 shows the averages of the LBs (LB), the average of the optimal RTV
values (*RTV) for the CAT1 instances and the averages obtained with MS+SAN1
(RTV) with 1,000 computing seconds.

Table 8. Averages of the optimal RTV values and the RTV lower bounds
 CAT1 CAT2 CAT3 CAT4
LB 5.35 10.95 21.15 48.15

*RTV 10.24 * * *

RTV 10.24 20.92 40.33 114.91

 31

For all 185 CAT1 instances, MS+SAN1 achieves the optimal solutions. We can see in
Table 8 that the LB calculated as proposed in Corominas et al. (2007) is not accurate.
For the smallest instances, the ratio between *RTV and LB is 1.914. It could seem
reasonable to assume that this ratio will remain equal or increase for larger instances.
Thus, if we assume that the ratio remains equal, a more accurate estimation of the
averages of the optimal values for CAT2, CAT3 and CAT4 instances are obtained by
multiplying their LB by 1.914; that is, 20.96, 40.48 and 92.16 for CAT2, CAT3 and
CAT4 instances, respectively. According to this assumption, we could say that the
solutions obtained by the hybrid algorithms for CAT2 and CAT3 instances are very
good.

VI.2.3. The hyper-heuristic algorithms

All hyper-heuristics have been tested using the set of 740 test instances introduced in
Chapter VI.2.

The four proposed constructive hyper-heuristics (CHH-1 to CHH-4) use as low-level
heuristics six greedy heuristics (Gr1 to Gr6). Two ways of fine-tuning the parameters of
CHH-2 and CHH-3 have been proposed (considering the overall instances or
considering the instances per class). Table 9 shows the average RTV values of the
obtained solutions, where the method BH consists of running the six greedy heuristics
and getting the best solution for each instance.

Table 9. Average RTV values for the constructive hyper-heuristics

 Global CAT1 CAT2 CAT3 CAT4
Gr1 22,822.01 121.84 933.41 8,502.80 81,730.00
Gr2 23,736.83 147.19 1,077.88 9,106.04 84,616.22
Gr3 22,513.37 120.09 915.74 8,347.60 80,670.03
Gr4 22,478.08 125.06 914.70 8,295.41 80,577.15
Gr5 8,851.46 88.02 553.06 3,894.31 30,870.45
Gr6 46,086.95 405.39 2,583.30 17,450.83 163,908.26
BH 8,430.34 79.45 510.93 3,745.39 29,385.59

CHH-1 7,664.60 68.78 440.00 3,335.37 26,814.25

CHH-2
Overall prob. 7,782.61 78.89 477.38 3,377.66 27,196.49
Per class prob. 7,556.80 83.19 522.98 3,297.68 26,323.33

CHH-3
Overall prob. 6,610.44 83.05 426.50 2,754.06 23,178.13
Per class prob. 6,358.27 104.53 599.37 3,186.30 21,542.86

CHH-4 5,735.42 118.75 500.76 2,716.69 19,605.49

Table 9 shows that the best individual greedy heuristic is clearly Gr5, which is much
better than the second best heuristic (Gr4). And BH is, obviously, better than Gr5. On
the other hand, all hyper-heuristic methods outperform, on average, BH. The best of the
hyper-heuristics is CHH-4, which use a random strategy for selecting the low-level
heuristic. CHH-4 obtains a RTV average 31.97% better than the average obtained by
BH. Moreover, the computing times of the hyper-heuristics were very small: for CHH-

 32

1, CHH-2, CHH-3 and CHH-4 it was 2.523, 0.590, 0.040 and 0.046 seconds,
respectively.

Three improvement hyper-heuristic methods (0- - IIHH 1 H , 0- - IIHH 2 H and 0- - IIHH 3 H ,
respectively) that use as low-level heuristics three local search procedures based on the
neighbourhoods N1, N2 and N3, respectively, are proposed. The hyper-heuristics are
compared with a composite hill-climbing method (CHC) that applies iteratively the
three local search procedures until a local optimum with respect the three
neighbourhoods is obtained. The results obtained when the maximum computing time is
set to 1,000 seconds are shown in Table 10.

Table 10. Average RTV values for the local search based hyper-heuristics

 Global CAT1 CAT2 CAT3 CAT4
CHC 124.49 16.39 39.91 101.90 339.75

0- - IIHH 1 H 119.60 15.71 38.99 102.51 321.20
0- - IIHH 2 H 117.55 15.71 38.99 100.44 315.05
0- - IIHH 3 H 116.40 15.71 38.99 96.55 314.33

The hyper-heuristics are able to decide intelligently when to use each local search
during the optimisation process, rather than systematically using them in a specific
order. All three hyper-heuristics outperformed CHC. The hyper-heuristics 0- - IIHH 1 H ,

0- - IIHH 2 H and 0- - IIHH 3 H were, on average, 3.93%, 5.57% and 6.50% better overall
than CHC, respectively.

Finally, three hyper-heuristics (1- - IIHH 1 H , 1- - IIHH 2 H and 1- - IIHH 3 H , respectively) are
proposed that use as low-level heuristics a TS algorithm, a VNS algorithm and CHC.
Table 11 shows the results obtained with 1,000 computing seconds.

Table 11. Average RTV values for the metaheuristic based hyper-heuristics

 Global CAT1 CAT2 CAT3 CAT4
CHC 124.49 16.39 39.91 101.90 339.75

TS 229.47 10.74 42.68 175.03 689.44
VNS 131.99 11.36 24.53 83.54 408.52

1- - IIHH 1 H 159.98 10.39 25.18 74.71 529.65
1-2- IIHH H 135.19 10.37 24.55 72.46 433.39
1- - IIHH 3 H 109.20 10.39 24.72 66.91 334.76

The best results shown in Table 11 are obtained, on average, by the hyper-heuristic

1- - IIHH 3 H , which are better than the results found by any of the low-level heuristics
when applied in isolation. The RTV average obtained by 1- - IIHH 3 H is 12.28%, 17.27%
and 52.41% better than the averages obtained by CHC, the TS algorithm and the VNS
algorithm, respectively.

 33

The results obtained in the experimentation are encouraging by two reasons. First, better
RTV values, on average, have been obtained within the hyper-heuristic scheme than
applying the low-level (meta-)heuristics in an isolate way. And second, improvements
are obtained although quite simple hyper-heuristic algorithms have been designed.

VI.3. Fine-tuning

During the development of this thesis, we have experienced the importance of setting
the parameter values of almost all algorithms proposed to solve the RTVP. In fact, this
stage is vital to decide if a proposed algorithm is good solving the RTVP since the
algorithm may be very sensitive to the parameter values. For example, we have noticed
when fine-tuning that an algorithm can perform even 10 times worse when wrong
parameter values are used.

CALIBRA has been used to fine-tuning the parameters of the proposed B&B and
metaheuristic methods. We think that not only is important using CALIBRA to obtain
good parameter values but also the systematic fine-tuning process has allowed to make
a fair comparison between the developed metaheuristic methods.

According to the fine-tuning procedure that we propose (that is, applying CALIBRA
followed by N&M) when enough fine-tuning time is available, the results of a
computational experiment show that our proposal is better than the proposal suggested
by the CALIBRA authors (that is, applying two times CALIBRA, the second one in a
narrow range around the obtained parameter values). We refer to our fine-tuning
procedure as CALIBRA+N&M and we refer to the alternative procedure as
CALIBRA+CALIBRA.

The two fine-tuning proposals were tested fine-tuning the parameters of three
metaheuristics developed during this thesis: a PSO algorithm (DPSOpoi-cpdyn), the EM
algorithm and the PSC algorithm. Table 12 shows average RTV values obtained by the
PSO, EM and PSC algorithms using the parameter values returned by CALIBRA,
CALIBRA+N&M and CALIBRA+CALIBRA) for the 740 test instances when the
algorithms are run 1,000 seconds.

Table 12. Average RTV values

 PSO EM PSC
CALIBRA 1,537.34 330.29 161.60
CALIBRA+N&M 794.93 295.31 160.72
CALIBRA+CALIBRA 1,115.72 426.58 208.49

We can see that the three metaheuristics perform better using the parameter values
returned by our proposed fine-tuning procedure than using the parameter values
returned by CALIBRA or by CALIBRA+CALIBRA. The RTV averages obtained by the
PSO, EM and PSC algorithms when using the CALIBRA+N&M parameter values are
48.29%, 10.59% and 0.30% better than the RTV averages obtained using the CALIBRA
parameter values, respectively. On the other hand, applying again CALIBRA may be

 34

detrimental. In the case of the EM and PSC algorithm, the RTV averages obtained when
using the CALIBRA+CALIBRA parameter values are around 22% worse than the
averages when using the CALIBRA parameters.

To sum up, CALIBRA is able to obtain in a reasonable time quite good parameter
values. However, if more fine-tuning time is available, the fine-tuning procedure that
we propose obtain parameter values that may help to the algorithm to perform still
better. Moreover, the proposed procedure, as well as CALIBRA, requires little human
intervention.

 35

VII. Conclusions

The objectives of this thesis have been successfully achieved:

1a. The exact solution of the RTVP has been improved with the proposed B&B
algorithm. The size of the instances that can be solved in a practical time has
been increased from 40 copies to 55 copies to be sequenced.

1b. Larger instances can be solved quickly using a robust non-exact algorithm called

MS+SAN1. We have evidences that this method may obtain optimal or near-
optimal solutions.

2. A contribution in the hyper-heuristic research has been done showing the

viability of working with metaheuristics under the hyper-heuristic methodology.

3. A systematic, hands-off fine-tuning procedure has been proposed. Moreover, in

the articles and communication derived from this thesis we have tried to make
aware of the importance of the fine-tuning.

The RTVP defined as a cyclic, not distance-constrained problem oriented to minimise
the RTV metric (Equation 1) has exhaustively studied and solved during the
development of this thesis. We think that the work developed here is a good starting
point to deal in a future other academic or real-life variants of this problem:

• The problem of scheduling the advertisements introduced in Bollapragada et al.
(2004), which is a non cyclic variant of the RTVP and the objective function is
to minimise the sum of the absolute value of the distance discrepancies instead
of the square value of the distance discrepancies.

• The minmax RTVP; that is, to minimise the maximum of the discrepancies.

• The other problems introduced in León et al. (2003) based on combining the
characteristics explained in Chapter II.1

• The commonly used measure between two successive symbols is one unit of
distances, but this could be generalised to be dependent on the type of symbols
and their relationships. For instance, in the Bollapragada et al. problem, each
advertisement lasts a different time, so a more realistic approximation would be
considering the allocation of the same commercials as evenly spaced in time
instead of spaced in positions.

It is worth to point that a feasible solution of the RTVP is also a feasible solution in all
aforementioned variants in which only the objective function changes. Thus, most of the
proposed methods can be easily adapted to solve these variants and it seems that their
efficiency will not be change perceptibly. For instance, the adaptation of the
metaheuristic and hyper-heuristic proposed methods is immediate since only the fitness
function has to be modified. It seems also that the developed heuristic proposed here
(ENH-H, see chapter V.3.1) can be applied to solve the non-cyclic variant and the

 36

minmax RTVP (in fact, the minmax RTVP is solved by the proposed heuristic to
provide the results as future benchmarking purposes). On the other hand, the B&B
algorithm would need more adaptations according to the variant to be solved since it
was designed taking the advantages of the special characteristics of the RTVP and these
characteristics may be change in the problem variant to be solved.

With respect to the hyper-heuristic field, a future study could investigate how to
enhance the different mechanisms of the proposed hyper-heuristics. For instance, the
amount of time used in the learning and launching stages of our hyper-heuristics
decreases/increases deterministically at each cycle of the search. However, it seems
better than this amount of time changes dynamically according to many attributes
including the running time, problem characteristics and individual performance of the
metaheuristics, among others.

Another future interesting research to solve the RTVP is adding the SA-based and the
VNS hybrid algorithms (which perform very well for solving the RTVP) as low-level
heuristics in the proposed hyper-heuristics.

 37

References

Adenso-Díaz, B. and Laguna, M. (2006) ‘Fine-tuning of algorithms using fractional

experimental designs and local search’, Operations Research, Vol. 54, pp. 99-114.
Anily, S., Glass, C.A. and Hassin, R. (1998) ‘The scheduling of maintenance service’,

Discrete Applied Mathematics, Vol. 82, pp. 27-42.
Balinski, M.L. and Young, H.P. (1982) Fair Representation, Yale University Press,

New Haven.
Balinski, M. and Shahidi, N. (1998) ‘A simple approach to the product rate variation

problem via axiomatics’, Operation Research Letters, Vol. 22, pp. 129-135.
Bar-Noy, A., Nisgav, A. and Patt-Shamir, B. (2002) ‘Nearly optimal perfectly-periodic

schedules’, Distributed Computing, Vol. 15, pp. 207–220.
Bautista, J., Companys, R. and Corominas, A. (1995) ‘Seqüenciació d’unitats en context

JIT’, TOE, Vol. 9, Edicions UPC, ISBN 84-7653-497-3.
Bautista, J., Companys, R. and Corominas, A. (1996) ‘A Note on the Relation between

the Product Rate Variation (PRV) Problem and the Apportionment Problem’,
Journal of the Operational Research Society, Vol. 47, pp. 1410-1414.

Bautista, J., Companys, R. and Corominas, A. (1997) ‘Modelling and solving the
production rate variation problem (PRVP)’, TOP, Vol. 5, pp. 221-239.

Bollapragada, S., Bussieck, M.R. and Mallik, S. (2004) ‘Scheduling Commercial
Videotapes in Broadcast Television’, Operations Research, Vol. 52, pp. 679-689.

Brusco, M.J. (2008) ‘Scheduling advertising slots for television’, Journal of the
Operational Research Society, Vol. 59, pp. 1363-1372.

Burke, E., Kendall, G., Newall, J., Hart, E., Ross, P. and Schulenburg, S. (2003)
‘Hyper-heuristics: An Emerging Direction in Modern Search Technology’, Chapter
16 in Handbook of Metaheuristics, Eds. Glover and Kochenberger, Kluwer
Academic Publishers, pp. 457-474.

Burke, E. and Kendall, G., Eds. (2005), Search Methodologies: Introductory Tutorials
in Optimization and Decision Support Techniques, Springer.

Chiarandini, M., Paquete, L., Preuss, M.. and Ridge, E. (2007), ‘Experiments on
metaheuristics: Methodological overview and open issues’, Technical Report DMF-
2007-03-003, The Danish Mathematical Society. Available at
http://bib.mathematics.dk/preprint.php?lang=en&id=IMADA-PP-2007-04.

Corominas, A., Kubiak, W. and Moreno, N. (2007) ‘Response time variability’, Journal
of Scheduling, Vol. 10, pp. 97-110.

Corominas, A., Kubiak, W. and Pastor, R. (2009) ‘Heuristics for the Response Time
Variability problem’, Technical report IOC-DT-P-2009-03, Universitat Politècnica
de Catalunya, Spain.

Corominas, A., Kubiak, W. and Pastor, R. (2010) ‘Mathematical programming
modeling of the Response Time Variability Problem’, European Journal of
Operational Research, Vol. 200, pp. 347-357.

Dong, L., Melhem, R. and Mosse, D. (1998) ‘Time slot allocation for real-time
messages with negotiable distance constrains requirements’, Fourth IEEE Real-
Time Technology and Applications Symposium (RTAS'98), Denver, CO. pp. 131-
136.

Eiben, A.E., Hinterding, R. and Michalewicz, Z. (1999) ‘Parameter control in
evolutionary algorithms’, IEEE Transactions on evolutionary computation, Vol. 3,
pp. 124-141.

 38

Glover, F. and Kochenberger, G., Eds. (2003), Handbook of Metaheuristics, Kluwer
Academic Publishers.

Han, C.C., Lin, K.J. and Hou, C.J. (1996) ‘Distance-constrained scheduling and its
applications in real-time systems’, IEEE Transactions on Computers, Vol. 45, pp.
814-826.

Herrmann, J.W. (2007) ‘Generating Cyclic Fair Sequences using Aggregation and
Stride Scheduling’, Technical Report, University of Maryland, USA. Available at
http://hdl.handle.net/1903/7082.

Herrmann, J.W. (2009) ‘Using aggregation to reduce response time variability in cyclic
fair sequences’, Journal of Scheduling, doi 10.1007/s10951-009-0127-7.

Inman, R.R. and Bulfin, R.L. (1991) ‘Sequencing JIT mix-model assembly lines’,
Management Science, Vol. 37, pp. 901-904.

Korkmazel, T. and Meral, S. (2001) ‘Bicriteria sequencing methods for the mixed-
model assembly line in just-in-time production systems’, European Journal of
Operational Research, Vol. 131, pp. 188-207.

Kubiak, W. (1993) ‘Minimizing variation of production rates in just-in-time systems: A
survey’, European Journal of Operational Research, Vol. 66, pp. 259-271.

Kubiak, W. (2004) ‘Fair Sequences’, Chapter 19 in Handbook of Scheduling:
Algorithms, Models and Performance Analysis, Chapman and Hall.

Kubiak, W. (2009) ‘Proportional optimization and fairness’, Springer.
León, D., Corominas, A. and Lusa, A. (2003) ‘Resolución del problema PRV min-var’,

Technical report IOC-DT-I-2003-03, Universitat Politècnica de Catalunya, Spain.
Miltenburg, J. (1989) ‘Level schedules for mixed-model assembly lines in just-in-time

production systems’, Management Science, Vol. 35, pp. 192-207.
Monden, Y. (1983) ‘Toyota Production Systems’, Industrial Engineering and

Management Press, Norcross, GA.
Moreno, N. (2002) ‘Solving the product rate variation problem (PRVP) of large

dimensions as an assignment problem’, Doctoral Thesis, DOE, ETSEIB-UPC.
Nelder, J.A. and Mead, R. (1965) ‘A simplex method for function minimization’, The

Computer Journal, Vol. 7, pp. 308-313.
Ross, P. (2005) ‘Hyper-heuristics’, Chapter 17 in Search Methodologies: Introductory

Tutorials in Optimization and Decision Support Techniques, Eds. Burke and
Kendall, Springer, pp. 529-556.

Waldspurger, C.A. and Weihl, W.E. (1994) ‘Lottery Scheduling: Flexible Proportional-
Share Resource Management’, First USENIX Symposium on Operating System
Design and Implementation, Monterey, California.

Waldspurger, C.A. and Weihl, W.E. (1995) ‘Stride Scheduling: Deterministic
Proportional-Share Resource Management’, Technical Report MIT/LCS/TM-528,
Massachusetts Institute of Technology, MIT Laboratory for Computer Science.
Available at https://eprints.kfupm.edu.sa/67117

Wei, W.D. and Liu, C.L. (1983) ‘On a periodic maintenance problem’, Operations
Research Letters, Vol. 2, pp. 90-93.

 39

References derived from the thesis

Corominas, A., García-Villoria, A. and Pastor, R. (2008) ‘Solving the Response Time

Variability Problem by means of Multi-start and GRASP metaheuristics’ Special
Issue of Frontiers in Artificial Intelligence and Applications on Artificial
Intelligence Research and Development, Vol. 184, pp. 128-137.

Corominas, A., García-Villoria, A., and Pastor, R. (2009a) ‘Using an Ant Colony
System to solve the Response Time Variability Problem’, Technical report IOC-DT-
P-2009-06, Universitat Politècnica de Catalunya, Spain.

Corominas, A., García-Villoria, A. and Pastor, R. (2009b) ‘Solving the Response Time
Variable Problem by means of a Variable Neighbourhood Search Algorithm’, 13th
IFAC Symposium of Information Control Problems in Manufacturing (INCOM
2009), Moscow, Russia.

Corominas, A., García-Villoria, A. and Pastor, R. (2009c) ‘Using Tabu Search for the
Response Time Variability Problem’, 3rd International Conference on Industrial
Engineering and Industrial Management (CIO 2009), Barcelona and Terrassa,
Spain.

Corominas, A., García-Villoria, A. and Pastor, R. (2009d) ‘Resolución del response
time variability problem mediante tabu search’, VIII Evento Internacional de
Matemática y Computación (COMAT’2009), Universidad de Matanzas, Cuba.

Corominas, A., García-Villoria, A. and Pastor, R. (2009e) ‘Metaheuristic algorithms
hybridized with variable neighbourhood search for solving the response time
variability problem’, Journal of Scheduling (1st review in progress).

Corominas, A., García-Villoria, A. and Pastor, R. (2009f) ‘An enhanced metaheuristic
for solving the response time variability problem’, Technical report IOC-DT-P-
2009-07, Universitat Politècnica de Catalunya, Spain.

Corominas, A., García-Villoria, A. and Pastor, R. (2009g) ‘A systematic procedure
based on CALIBRA and the Nelder & Mead algorithm for fine-tuning
metaheuristics’, Journal of the Operational Research Society (2nd review in progress).

Corominas, A., García-Villoria, A. and Pastor, R. (2010) ‘A Parametric Multi-start
Algorithm for Solving the Response Time Variability Problem’, Lecture Notes in
Computer Science, Vol. 5910, pp. 315-322.

García, A., Pastor, R. and Corominas, A. (2006) ‘Solving the Response Time
Variability Problem by means of metaheuristics’, Special Issue of Frontiers in
Artificial Intelligence and Applications on Artificial Intelligence Research and
Development, Vol. 146, pp. 187-194.

García-Villoria, A., Corominas, A., Delorme, X., Dolgui, A., Kubiak, W. and Pastor, R.
(2009a) ‘A branch and bound approach for the response time variability problem’,
Technical report IOC-DT-P-2009-05, Universitat Politècnica de Catalunya, Spain.

García-Villoria, A., Corominas, A. and Pastor, R. (2010) ‘Solving the Response Time
Variability Problem by means of the Cross-Entropy Method’, Special Issue on
,Production Line Systems: Concepts, Methods and Applications of the International
Journal of Manufacturing Technology and Management, Vol. 20, pp. 316-330.

García-Villoria, A. and Pastor, R. (2008) ‘Solving the Response Time Variability
Problem by means of a psychoclonal approach’, Special Issue on Advances in
Metaheuristics of the Journal of Heuristics, doi:10.1007/s10732-008-9082-2.

 40

García-Villoria, A. and Pastor, R. (2009a) ‘Introducing dynamic diversity in a discrete
Particle Swarm Optimization’, Computers & Operations Research, Vol. 36, pp.
951-966.

García-Villoria, A. and Pastor, R. (2009b) ‘Solving the Response Time Variability
Problem by means of the Electromagnetism-like Mechanism’, International
Journal of Production Research, doi: 10.1080/00207540902862545.

García-Villoria, A. and Pastor, R. (2010) ‘Solving the Response Time Variability
Problem by means of a genetic algorithm’, European Journal of Operational
Research, Vol. 202, pp. 320-327.

García-Villoria, A., Salhi, S., Corominas, A. and Pastor, R. (2009b) ‘Hyper-heuristic
Approaches for the Response Time Variability Problem’, European Journal of
Operational Research (2nd review in progress).

Salhi, S. and García-Villoria, A. (2009) ‘An adaptive-based heuristic for the Response
Time Variability Problem’, Operations Research (1st review in progress).

 41

Annex A1. Articles published or accepted in journals
included in the JCR index

Introducing dynamic diversity in a discrete Particle Swarm
Optimization

Article published as [Computers & Operations Research, Volume 36, Issue 3, March
2009, Pages 951-966] [DOI: http://dx.doi.org/10.1016/j.cor.2007.12.001] © [copyright
Elsevier]

Introducing dynamic diversity into a discrete
Particle Swarm Optimization

Alberto GARCÍA-VILLORIA and Rafael PASTOR*

Particle Swarm Optimization (PSO) is an evolutionary stochastic metaheuristic
designed by Kennedy and Eberhart (1995) that has been studied by several researchers
since its publication (Hu et al., 2004). PSO has been successfully applied to a variety of

Institute of Industrial and Control Engineering (IOC)

Technical University of Catalonia (UPC)
{alberto.garcia-villoria / rafael.pastor}@upc.edu

Abstract. Particle Swarm Optimization (PSO) is an evolutionary metaheuristic inspired by
the flocking behaviour of birds which has successfully been used to solve several kinds of
problems, although there are few studies aimed at solving discrete optimization problems.
One disadvantage of PSO is the risk of a premature search convergence. To prevent this, we
propose to introduce diversity into a discrete PSO by adding a random velocity. The degree of
the introduced diversity is not static (i.e., preset before running PSO) but instead changes
dynamically according to the heterogeneity of the population (i.e. if the search has converged
or not).We solve the Response Time Variability Problem (RTVP) to test these two new ideas.
The RTVP is an NP-hard combinatorial scheduling problem that has recently appeared in the
literature. It occurs whenever products, clients or jobs need to be sequenced in such a way that
the variability in the time between the instants at which they receive the necessary resources
is minimized. The most efficient algorithm for solving non-small instances of the RTVP
published to date is a classical PSO algorithm, referred to by the authors as PSO-M1F. In this
paper, we propose ten discrete PSO algorithms for solving the RTVP: one based on the ideas
described above (PSO-c3dyn) and nine based on strategies proposed in the literature and
adapted for solving a discrete optimization problem such as the RTVP. We compare all
eleven PSO algorithms and the computational experiment shows that, on average, the best
results obtained are due to our proposal of dynamic control mechanism for introducing
diversity.

Keywords: particle swarm optimization, adaptive parameters, response time variability,
scheduling

1. Introduction

* Corresponding author: Rafael Pastor, IOC – Institute of Industrial and Control Engineering, Av. Diagonal 647 (Edif. ETSEIB),
11th floor, 08028 Barcelona, Spain; Tel. + 34 93 401 17 01; Fax. + 34 93 401 66 05; e-mail: rafael.pastor@upc.edu

 42

problems such as artificial neural network training (Chau, 2006; Geethanjali et al.,
2007), combinatorial optimization problems (Andrés et al., 2004; Liao et al., 2007;
Secrest, 2001; Tasgetiren et al., 2007) and multiobjective optimization problems (Hu
and Eberhart, 2002; Yin et al., 2007). Most of the PSO applications published in the
literature were designed to solve continuous optimization problems, but there are few
PSO applications for discrete optimization problems. The applications of PSO on
combinatorial optimization problems are still considered limited, but the advantages of
PSO include a simple structure, immediately accessible for practical applications, easy
of implementation, speed to acquire solutions and robustness (Pan et al., 2007). In this
paper, we develop ten discrete PSO algorithms for solving an NP-hard scheduling
problem.

The core of PSO is based on an analogy of the social behaviour of flocks of birds when
they search for food. Since it is a population-based evolutionary metaheuristic, PSO has
a population (known as swarm in the PSO ambit) of particles. Each particle has an
associated point in the search space (which represents a solution) and an associated
velocity (which indicates how the point of the particle is moved in the search space).
The current velocity of a particle is typically a linear combination of three types of
velocity: 1) the inertia velocity (i.e. its previous velocity); 2) the velocity to the best
point found by the particle; and 3) the velocity to the best point found by the swarm.
The PSO algorithm iteratively modifies the point and the velocity of each particle as it
looks for the optimal solution.

The trade-off between the exploration (i.e. the global search) and the exploitation (i.e.
the local search) of the search space is critical to the success of an evolutionary
metaheuristic. Trelea (2003) demonstrated that PSO always converges at certain values
of its parameters but if the convergence is premature then several regions of the search
space will remain unexplored. Several strategies have been proposed in the literature for
correcting the tendency to converge prematurely on a local optimum.

Clerc (2004) suggested a PSO variant in which the velocity to the best point found by
the swarm is replaced by the velocity to the current best point of the swarm, although he
does not test this variant. The idea was later implemented in a discrete PSO for solving
the flowshop problem (Liao et al, 2007).

Several authors developed strategies based on dynamically modifying the value of the
PSO parameter called inertia weight, which weights the inertia velocity. Larger inertia
weight values facilitate a more global behaviour and smaller values facilitate a more
local behaviour. Therefore, the inertia weight is changed to achieve better balance
dynamics between the global and local search capabilities. Since exploration is more
important at the beginning of the search process and exploitation is more important at
the end, the usual strategy is to start with a large inertia weight value and then decrease
it over the iterations of the algorithm (Poli et al., 2007), which is the method adopted by
Eberhart and Shi (2001), He et al. (2004) and Shi and Eberhart (1998a).

Other authors introduce diversity into the swarm to escape from the current local
optimum. There are different ways of introducing diversity and controlling the degree of
diversity introduced. Clerc (2006) and Zhang et al. (2003) dynamically change the size
of the swarm according to the performance of the algorithm. The size of the swarm is
important because too few particles will cause the algorithm to converge prematurely to

 43

a local optimum, while too many particles will slow down the algorithm. Note that
adding new particles when the algorithm converges introduces diversity into the swarm.
He et al. (2004) developed a PSO variant, called PSO Passive Congregation (PSOPC),
which was inspired by the work of Parrish and Hamner (1997) in which spatial structure
of animal group organizations are modeled. PSOPC uses an analogy of passive
congregation, which describes a situation in which an individual is attracted to other
group members but there is no display of social behavior. Passive congregation is
expressed in PSOPC by adding a new term to the velocity at which the particle tends to
move toward the point of another particle in the swarm that is randomly selected at each
iteration of the PSOPC algorithm. This new term is weighted by a factor which is
initially set to a small value and then linearly increased over the iterations of the
algorithm. Xie et al. (2002) propose two Dissipative PSO (DPSO) algorithms: in the
first, for each particle some components of the velocity are chosen at random and
weighted by a random weight that is uniformly distributed between 0 and 1; in the
other, for each particle some components of the point are chosen at random and
weighted by a random weight that is uniformly distributed between 0 and 1. Fieldsend
and Singh (2002) add a new term to the velocity called turbulence, which represents a
random velocity. This idea was initially proposed in the early development of PSO
(Kennedy and Eberhart, 1995), which used a stochastic variable called craziness, but
this was soon omitted from the classical PSO algorithms.

Various other solutions have been proposed for preventing premature convergence:
objective functions which change over time (Hu and Eberhart, 2001); noisy evaluation
of the function objective (Parsopoulos and Vrahatis, 2001); repulsion to keep particles
away from the optimum (Parsopoulos and Vrahatis, 2004); dispersion between particles
that are too close to one another (Loøvbjerg and Krink, 2002); reduction of the
attraction of the swarm centre to prevent the particles clustering too tightly in one region
of the search space (Blackwell and Bentley, 2002); hybrids with other metaheuristic
such as genetic algorithms (Robinson et al., 2002; Angeline, 1998); or ant colony
optimization (Hendtlass, 2001), etc. For an up-to-date overview of the particle swarm
optimization, see Poli et al. (2007).

Finally, several researchers have experimented with the swarm topology. Mendes
(2004) carried out an in-depth study of the effect of static topologies. Clerc (2006) and
Liang and Suganthan (2005) conducted interesting research into dynamic topologies. In
the present study we consider a static fully connected graph, which is a static topology
(Poli et al., 2007).

The papers mentioned above are a sample of the wider research effort aimed at
preventing premature convergence and enabling the PSO algorithm to escape from a
local optimum. Although there are a lot of proposals for preventing premature
convergence (e.g. by modifying the value of the inertia weight; by introducing diversity
adding more particles, passive congregation or turbulence; hybridization, etc.), only
three types of feedback of the current state of the search are taken, which are used to
modify some of the parameter values accordingly: 1) no feedback, because all of the
parameter values are constant over the execution of the algorithm; 2) the current
iteration of the algorithm; and 3) the performance of the algorithm.

In the present study we propose a new method for introducing diversity into the swarm
by adding a term of randomness to the particle velocity. This term of randomness is

 44

weighted by a coefficient that we call the diversity coefficient. We take feedback of the
heterogeneity of the swarm to control the degree of diversity introduced (i.e. the value
of the diversity coefficient). To our knowledge, no PSO algorithm uses a measure of the
swarm heterogeneity to dynamically modify the values of its parameters. It seems
reasonable to assume that the value of the diversity coefficient should not to be set
before running the PSO algorithm. Instead, it is preferable to allow the value to change
dynamically during the execution of the algorithm according to the convergence of the
swarm (i.e. the convergence of the search): the more heterogeneous the population, the
smaller the value of the diversity coefficient, and vice versa.

We use the Response Time Variability Problem (RTVP) to test our proposal. The RTVP
is a scheduling problem that was recently defined in the literature (Corominas et al.,
2007) and is very difficult to solve optimally (it is NP-hard). This problem has a wide
range of real-life applications: it occurs whenever products, clients or jobs need to be
sequenced in such a way that the variability in the time between the instants at which
they receive the necessary resources is minimized. For example, it can be used to
regularly sequence models in the automobile industry (Monden, 1983), to broadcast
video and audio data frames of applications over asynchronous transfer mode networks
as constantly as possible (Dong et al., 1998), in the stride scheduling technique
(Waldspurger and Weihl, 1995) and in the periodic machine maintenance problem when
the distances between consecutive services of the same machine are equal (Anily et al.,
1998).

García et al. (2006) used the classical PSO metaheuristic to solve the RTVP and
proposed four PSO variations. The best of these, called PSO-M1F by the authors, is the
best heuristic method that has been published to date for solving non-small instances of
the RTVP.

In order to compare our PSO algorithm (that we call PSO-c3dyn), we have adapted a
representative set of PSO algorithms for solving the RTVP: the PSO with a velocity to
the best current point (Liao et al., 2007); the PSOPC (He et al., 2004); the two DPSO
(Xie et al., 2002); the PSO with turbulence (Fieldsend and Singh, 2002); and two
classical PSOs: the PSO-M1F adaptation (García et al., 2006) and a Constriction PSO
(Clerc and Kennedy, 2002)). Moreover, we propose some variants of these algorithms
that incorporate our proposed control mechanism of diversity or our proposed random
velocity.

A computational experiment is carried out and it is shown that the best results are
achieved when using the control mechanism of diversity proposed in this paper.

The remainder of the paper is organized as follows. Section 2 describes the scheme of
the classical PSO and our newly proposal for introducing diversity according to the
convergence of the population. Section 3 presents a formal definition of the Response
Time Variability Problem. Section 4 explains our PSO algorithm and the adaptation of
the mentioned PSO algorithms to solve the RTVP. Section 5 provides the results of the
computational experiment. Finally, some conclusions and suggestions for future
research are given in Section 6.

 45

2. Particle Swarm Optimization

First, the classical PSO is briefly explained in Section 2.1. Next, the method that we
propose for introducing diversity according to the convergence of the population is
presented in Section 2.2. Finally, how to set the value of the coefficient that weights the
diversity introduced into the population is discussed in Section 2.3.

2.1. Classical scheme of PSO

Particle Swarm Optimization (PSO) was first described by Kennedy and Eberhart
(1995). It is an evolutionary metaheuristic based on the behaviour of flocks of birds
when they look for food.

The population of PSO or swarm is composed of particles (birds), which have an
associated multi-dimensional real point in the search space (which represents a solution)
and an associated velocity (the movement of the point in the multi-dimensional real
space). The velocity of a particle is typically a linear combination of three types of
velocity: 1) the inertia velocity; 2) the velocity to the best point found by the particle;
and 3) the velocity to the best point found by the swarm. The point and the velocity of
each particle i of the population are iteratively modified by the algorithm as it looks for
an optimal solution. In the original PSO developed by Kennedy and Eberhart (1995),
the point and the velocity of the particles are modified according to the following two
equations:

 * *

1, , 1 , , 2 ,() ()t i t i t i t i t t iv v c P X c SP X+ = + ⋅ − + ⋅ − (1a)
 1, , 1,t i t i t iX X v+ += + (2)

where vt,i is the inertia velocity of the particle i at iteration t, Xt,i is the point of the
particle i at iteration t, *

,t iP is the best point found by the particle i up to iteration t, *
tSP

is the best point found by the swarm up to iteration t, and c1 and c2 are the coefficients,
called acceleration coefficients, that weight the relevance of the last two types of
velocity.

In the original PSO it was necessary to dampen the particle dynamics and the solution
proposed was to maintain the velocity within the range [-Vmax, + Vmax], where Vmax was a
parameter of the original PSO.

To find an appropriate value of Vmax according to the problem to be solved was a hard
task. Thus, Shi and Eberhart (1998b) proposed to modify the original first PSO equation
(Eq. 1a) to the following expression:

 * *

1, , 1 , , 2 ,() ()t i t i t i t i t t iv v c P X c SP Xω+ = ⋅ + ⋅ − + ⋅ − (1b)

where ω is the coefficient (called inertia weight) that weights the inertia velocity.
Equations (1b) and (2) are the core of the classical PSO.

At each iteration of the PSO algorithm, Equations (1b) and (2) reflect the compromise
of each particle between following its own exploration, moving towards the best point it

 46

has found by itself and moving towards the best point found by the swarm. Figure 1
shows the pseudocode of the classical PSO algorithm.

Figure 1. Pseudocode of the classical PSO algorithm

Clerc and Kennedy (2002) used a series of theoretical analyses to develop a strategy of
constriction coefficients. They proposed the Constriction PSO (CPSO), in which
Equation (1a) is modified to the following expression:

 ()* *

1, , 1 , , 2 ,() ()t i t i t i t i t t iv v c P X c SP Xχ+ = ⋅ + ⋅ − + ⋅ − (1c)

Although CPSO is algebraically equivalent to PSO with inertia weight, CPSO can
generate higher-quality solutions than PSO with inertia weight for some of the problems
studied in the literature (Eberhart and Shi, 2001).

2.2. Introducing a diversity factor into PSO

As mentioned above, Trelea (2003) demonstrated that the classical PSO metaheuristic
always converges for some values of its parameters. Although the convergence of the
metaheuristic is a desirable property, it can converge too fast and become trapped in a
local optimum, particularly when PSO deals with integer variables (Hu et al., 2004).

In Section 1 several ideas for preventing a premature convergence of the PSO algorithm
have been presented, including the introduction of diversity. In this paper we propose a
new way to introduce diversity into the population by adding a new type of velocity (a
random velocity) to the linear combination formulated in Equation (1b). The modified
equation is as follows:

 * *

1, , 1 , , 2 , 3 , ,() () ()t i t i t i t i t t i t i t iv v c P X c S PX c R Xω+ = ⋅ + ⋅ − + ⋅ − + ⋅ − (1d)

where ,t iR is a random point generated for the particle i at iteration t, and c3 (called the
diversity coefficient) is the coefficient that weights the relevance of the new type of

1. Set t = 0
2. Randomly initialize positions of all particles
3. Initialize velocities of all particles with void velocities
4. While stopping criteria is not reached do:
5. For each particle i in the swarm:
6. Calculate fitness: Set fi = fitness of Xt,i
7. Update *

,t iP : If fi is better than the fitness of *
,t iP , then set *

,t iP to Xt,i
8. End For
9. Update *

tSP : Set Xbestt = the best point of the current swarm

 If Xbestt is better than *
tSP , then set *

tSP to Xbestt
10. For each particle i in the swarm:
11. Update velocity: Calculate velocity Vt+1,i using Equation (1b)
12. Update point: Calculate point Xt+1,i using Equation (2)
13. End For
14. Set t = t + 1
15. End While

 47

velocity. Note that the random velocity introduces diversity into the movements of the
particles.

The value of the diversity coefficient is important in preventing PSO from converging
prematurely and leaving regions of the search space unexplored. A large value of the
diversity coefficient enables the PSO algorithm to carry out a wide-ranging exploration
of the search space and thereby look for new promising points in exchange for a small
exploitation; and vice versa for a small value of the diversity coefficient.

2.3. Parameter tuning versus parameter control

One laborious aspect of metaheuristics is choosing the right parameter values. This is a
difficult task which requires considerable effort. Eiben et al. (1999) draw a distinction
between two principal ways of setting parameter values: parameter tuning and
parameter control. Parameter tuning refers to finding and to setting the parameter values
before running the algorithm, whereas parameter control refers to using parameter
values that change during the execution of the algorithm.

Population-based metaheuristics such as PSO are intrinsically dynamic and the optimal
parameter values might depend on which search state the algorithm is in. Therefore, the
parameter values should be modified during the execution of the algorithm according to
the search state. According to Eiben et al. (1999), there are two ways of doing this: by
using adaptive parameter control or self-adaptive parameter control.

The parameter values in adaptive parameter control are explicitly adaptive: the changes
in values are given by a heuristic rule which takes feedback from the current search
state and modifies the parameter values accordingly. The input information for the
current state is usually the number of iterations of the algorithm (i.e. the current iteration
of the search), the performance of operators (i.e. the progress of the search) or the
diversity of the population (for more details, see Eiben et al., 1999).

In self-adaptive parameter control, the parameters of the metaheuristic are incorporated
into the representation of the solution. Thus, the parameter values are implicitly
adaptive because they evolve together with the solutions of the population. Self-
adaptive parameter control is more common in genetic algorithms in which the
parameters can be incorporated into the chromosomes, which renders them subject to
evolution (Angeline, 1996; Hinterding et al., 1996).

In Section 2.2, we proposed introducing diversity into the PSO population by adding a
random velocity weighted by the diversity coefficient (c3). The value of the diversity
coefficient may be static (i.e. its value is obtained by parameter tuning) or dynamic (i.e.
its value is obtained by adaptive parameter control). The main difficulty of using a static
diversity coefficient is to find a value that is (if possible) high enough to facilitate good
exploration but low enough to facilitate good exploitation. Alternatively, a dynamic
diversity coefficient can be used. We propose to use a control that changes the value of
the diversity coefficient according to the heterogeneity of the population: the more
heterogeneous the current population, the smaller the value of the diversity coefficient,
and the less heterogeneous the current population, the larger the value of the diversity
coefficient. To our knowledge, no PSO algorithm presented in the literature uses an
adaptive parameter control whose feedback is based on the heterogeneity of the swarm.

 48

3. The Response Time Variability Problem (RTVP)

The Response Time Variability Problem (RTVP) occurs whenever products, clients or
jobs need to be sequenced so as to minimize variability in the time between the instants
at which they receive the necessary resources. This combinatorial optimization problem
is easy to formulate, but Corominas et al. (2007) proved that it is NP-hard and,
therefore, very difficult to solve optimally.

The RTVP was recently defined in the literature and first presented by Corominas et al.
(2007). The RTVP is formulated as follows. Let p be the number of products, id the

number of units of product i (i = 1,…, p) and D the total number of units (∑
=

=
p

i
idD

1
). Let

s be a solution of an instance in the RTVP that consists of a circular sequence of units
(Dssss 21=), where sj is the unit sequenced in position j of sequence s. For all
product i in which 2id ≥ , let i

kt be the distance between the positions at which the units
k + 1 and k of product i are found (i.e. the number of positions between the units, where
the distance between two consecutive positions is considered equal to 1). As the
sequence is circular, position 1 comes immediately after position D; therefore, i

di
t is the

distance between the first unit of product i in a cycle and the last unit of the same
product in the preceding cycle. Let it be the average distance between two consecutive

units of product i (
i

i d
Dt =). For all product i in which 1=id , it1 is equal to it . The

objective is to minimize the ∑∑
= =

−=
p

i

d

k
i

i
k

i

ttRTV
1 1

2)(.

For example, let 3=p , 2=Ad , 2=Bd and 4=Cd ; thus, 8=D , 4=At , 4=Bt and

2.Ct = Any sequence is a feasible solution. For example, the sequence (C, A, C, B, C,
B, A, C) is a solution, where () ()() () ()()2 2 2 25 4 3 4 2 4 6 4RTV = − + − + − + −

() () () ()()2 2 2 22 2 2 2 3 2 1 2 2 8 2 1 2+ − + − + − + − = + + = .

There are only three published works that make reference to the RTVP. Corominas et al.
(2007) presented the RTVP and proposed a mixed integer linear programming (MILP)
model and five heuristic algorithms to solve it. Corominas et al. (2006) presented an
improved MILP model with a practical limit for obtaining optimal solutions of around
40 units to be scheduled. García et al. (2006) presented six metaheuristic algorithms: a
multi-start algorithm, a GRASP (Greedy Randomized Adaptive Search Procedure)
algorithm and four PSO algorithm variations. In order to solve non-small instances of
the RTVP, one of the PSO algorithm variations (referred to as PSO-M1F) is the method
published to date that obtains, on average, the best results.

4. PSO algorithms for solving the RTVP

 49

We propose eleven different PSO algorithms for solving the RTVP. The first approach,
PSO-M1F, is taken from García et al. (2006) and is based on the classical PSO. The
second algorithm, CPSO, is an adaptation of the Constriction PSO proposed by Clerc
and Kennedy (2002). The third algorithm, PSO-c3dyn, is our proposal in which the
random velocity is introduced together with the dynamic control mechanism of the
value of the diversity weight according to the heterogeneity of the swarm. The fourth
algorithm, PSOCB, incorporates the idea of replacing the velocity to the best point
found with the swarm by the velocity to the current best point of the swarm (Clerc,
2004). The fifth algorithm, PSOPC, is an adaptation of the PSO with passive
congregation proposed by He et al. (2004). The sixth and seventh algorithms, DPSOvel
and DPSOpoi, are adaptations of the two dissipative PSOs proposed by Xie et al. (2002)
in which the velocity or the point are randomly modified. The eighth algorithm, PSO-
c3stat, is an adaptation of the PSO with turbulence proposed by Fieldsend and Singh
(2002). Finally, the ninth, tenth and eleventh algorithm, PSO-c3dyn’, PSOPC’ and
DPSOpoi-cpdyn, are variations that we developed by merging ideas incorporated into
the designs of the previous algorithms.

In the next eleven sections, each PSO algorithm is explained. In Section 4.12 we explain
how the parameters of the eleven PSO algorithms were fine-tuned.

4.1. A classical PSO algorithm (PSO-M1F)

PSO was originally designed for working in multi-dimensional real spaces. The
representation of a solution of the RTVP (and many other combinatorial optimization
problems) consists of an ordered sequence of integer numbers. Therefore, the PSO
metaheuristic has to be adapted to work with this type of solution representation (i.e. the
point of a particle is now a sequence of integer numbers). This is done by redefining the
elements (point and velocity) and the operations (external multiplication of a coefficient
by a velocity, sum of velocities and sum of a velocity plus a point) of Equations (1b)
and (2). Moreover, it is also necessary to determinate how the initial population is set
and the stopping criteria

García et al. (2006) proposed four variations based on the classical PSO with inertia
weight (Shi and Eberhart, 1998b) for solving the RTVP. The differences between these
variations derive from the way in which the velocity is redefined. The PSO algorithm
that produces the best results is PSO-M1F. In the following sections, the elements and
the operations of PSO-M1F are briefly explained (for a more detailed explanation, see
García et al., 2006).

The definitions of elements and operations are the same for all eleven PSO algorithms.

4.1.1. Point of the particle

A point consists of a solution represented by a D-length array that contains the sequence
of D units to be scheduled. For example, a point could be the sequence (C, A, C, B, C,
B, A, C).

4.1.2. Velocity of the particle

 50

The expression (X2 – X1), where X2 and X1 are two points, represents the difference
between two points and the velocity needed to go from X1 to X2. This velocity is an
ordered list of transformations (called movements) that must be applied sequentially to
the particle so that its current point, X1, changes to the other one, X2. A movement is a
pair of values (α / j). For each position u in the sequence (point) X1, the algorithm
determines whether the unit that is in position u of sequence X1 is the same unit that is
in position u of sequence X2. If the units are different, α is the unit in position u of X2
and j is equal to position u. Thus, this movement denotes that to go from the sequence
X1 to the sequence X2, the unit in position j must be exchanged for the unit α.

For example, let X2 = (A1, C1, B2, C2, A2, C4, B1, C3) and X1 = (A1, B1, C2, C1, B2, C4,
A2, C3). The sub-indices of the units are fictitious identifiers used to distinguish between
the units of the same product. Thus, the velocity (X2 – X1) is formed by the list of
movements [(C1/2), (B2/3), (C2/4), (A2/5), (B1/7)], which are the movements for moving
X1 to X2:

 X1 = (A1, B1, C2, C1, B2, C4, A2, C3)
 (C1/2)  (A1, C1, C2, B1, B2, C4, A2, C3)
 (B2/3)  (A1, C1, B2, B1, C2, C4, A2, C3)
 (C2/4)  (A1, C1, B2, C2, B1, C4, A2, C3)
 (A2/5)  (A1, C1, B2, C2, A2, C4, B1, C3)
 (B1/7)  (A1, C1, B2, C2, A2, C4, B1, C3) = X2

 4.1.3. External multiplication of a coefficient by a velocity

The values of the coefficients ω, c1 and c2 in Equation (1b) are between 0 and 1. When a
coefficient is multiplied by a velocity, it indicates the probability of each movement to
be applied. For example, if we multiply the coefficient 0.6 by the velocity [(C1/2),
(B2/3), (C2/4), (A2/5), (B1/7)], five random numbers between 0 and 1 are generated for
comparison with the value 0.6. If the random number is lower than 0.6, the movement is
applied. Therefore, if the values of the random numbers are 0.8, 0.3, 0.7, 0.4 and 0.2,
movements (B2/3), (A2/5) and (B1/7) are applied, whereas movements (C1/2) and (C2/4)
are not. The resulting velocity of the multiplication is therefore [(B2/3), (A2/5), (B1/7)],
which, as previously stated, represents a list of movements to be applied to a point.

4.1.4 Sum of velocities

The sum of two velocities is simply the concatenation of their own list of movements.

4.1.5. Sum of a velocity plus a point

The sum of a velocity plus a point gives the result of sequentially applying each
movement of the velocity to the point.

4.1.6. Initial population

The initial population is generated by setting a void velocity and a random point for
each particle. As has been previously mentioned, each point consists of a solution
represented by a sequence of integer numbers. A random solution is generated as
follows: for each position in the sequence, a product to be sequenced is chosen at

 51

random. The probability of each product is equal to the number of units of this product
that remain to be sequenced divided by the total number of units that remain to be
sequenced.

4.1.7. Stopping criteria

The PSO algorithm stops after it has run for a preset time.

4.2. A Constriction PSO algorithm (CPSO)

As explained in Section 2.1, Clerc and Kennedy (2002) proposed a PSO algorithm
based on constriction coefficients, whose core is Equations (1c) and (2). We propose a
Constriction PSO algorithm (called CPSO) for solving the RTVP in which the particles
behave according to Equations (1c) and (2) and the parameter values (the size of the
swarm and the coefficients χ, c1, and c2) are preset.

4.3. A PSO algorithm with a dynamic value of the diversity coefficient (PSO-c3dyn)

As explained in Section 2.2, the diversity coefficient (parameter c3 in Equation (1d))
weights the relevance of the random velocity. This random velocity is important in
preventing PSO from converging prematurely and leaving regions of the search space
unexplored. A large value of the diversity coefficient enables to PSO algorithm to carry
out a wide-ranging exploration of the search space and, thereby look for new promising
points in exchange for a small exploitation; and vice versa for a small value of the
diversity coefficient. Therefore, we propose a new PSO algorithm (called PSO-c3dyn) in
which an adaptive parameter control dynamically changes the diversity coefficient.

A good heuristic rule for dynamically changing the value of the diversity coefficient
should be one in which the more heterogeneous the current population, the smaller the
value given to the diversity coefficient and vice versa. First, a measure of heterogeneity
of the population at iteration t is needed. The following expression is used:

,

()
t i

i P
v

het t
D P
∈=

⋅

∑
 (3)

where P is the population, ,t iv is the number of movements of the velocity of particle i

at iteration t, D is the number of units to be sequenced, and P is the size of the
population P. As the diversity is introduced into the movements of the particles, the
measure of heterogeneity het(t) records the movement of the particles.

Given a specific value of the population heterogeneity (het(t)) at iteration t, it is
necessary to set the corresponding value of the diversity coefficient (c3). There are
infinite possible heuristic rules for obtaining the value of the diversity coefficient
according to het(t). In the present study we used a set of rules according to which the
value of the diversity coefficient decreases exponentially with het(t) (let the set be
called êh). Set êh is formulated as { }()ˆ : 0K het t

eh e K− ⋅= ≥ . Figure 2 shows some heuristic

rules of êh in graph form.

 52

According to the value of K, a heuristic rule from set êh is used. Therefore, K is
considered to be one of the parameters of PSO-c3dyn in addition to the population size
and the coefficients ω, c1, and c2 that need to be fine-tuned.

0

0.2

0.4

0.6

0.8

1

0 0.4 0.8 1.2 1.6 2 2.4 2.8 3.2 3.6 4 4.4 4.8 5.2 5.6 6 6.4 6.8 7.2 7.6 8 8.4 8.8 9.2 9.6 10

het(t)

c3
 v

al
ue

K = 0.5 K = 1.5 K = 5

Figure 2. Examples of heuristic rules from
êh for obtaining the value of the diversity coefficient (c3)

4.4. A PSO algorithm with a current best swarm point (PSOCB)

Clerc (2004) suggested a possible classical PSO variant in which the velocity to the best
point found by the swarm is replaced by the velocity to the best current point. Thus,
Equation (1b) is replaced by the following equation:

 * *

1, , 1 , , 2 ,() ()t i t i t i t i t t iv v c P X c SCP Xω+ = ⋅ + ⋅ − + ⋅ − (1e)

where *

tSCP is the best point of the swarm at iteration t.

We propose a discrete version (that we call PSOCB) in which the parameter values (the
size of the swarm and the coefficients ω, c1, and c2) are preset.

4.5. A PSO algorithm with passive congregation (PSOPC)

He et al. (2004) developed a PSO called PSOPC which models passive congregation
behaviour. In PSOPC, Equation (1b) is changed to the following equation:

 * *

1, , 1 , , 2 , 3 , ,() () ()R
t i t i t i t i t t i t i t iv v c P X c S PX c P Xω+ = ⋅ + ⋅ − + ⋅ − + ⋅ − (1f)

where ,

R
t iP is the point of a particle selected at random for the swarm for the particle i at

iteration t. Note that the fourth terms of Equation (1d) (PSO-c3dyn) and Equation (1f)
(PSOPC) are different: Equation (1f) uses a point of an existing particle (,

R
t iP), whereas

Equation (1d) uses a randomly generated point (,t iR).

 53

He et al. (2004) used an adaptive parameter control according to the current iteration of
the algorithm to dynamically set the values of the coefficients ω and c3: ω decreases
linearly and c3 increases linearly when the number of iterations increases. We adopt the
same strategy in the PSOPC algorithm.

Thus, the parameter values that need to be preset are the size of the swarm, the
coefficients c1 and c2, the starting values of ω and c3 and their deceasing and increasing
slopes.

4.6. A PSO algorithm with dissipative velocity (DPSOvel)

Xie et al. (2002) added the following equation to the classical PSO algorithm which is
applied after Equations (1b) and (2) to introduce additional diversity into the velocity of
the particles:

 IF (rand() < cv) THEN , ,()*d

t i max dv rand v= (3a)

where cv is a factor between 0 and 1, ,

d
t iv is the component d of the velocity ,t iv , rand()

is a random value between 0 and 1 and vmax,d is an upper bound of the component d of
the velocity.

This PSO algorithm was developed to solve continuous optimization problems, so the
way of introducing additional diversity has to be adapted to our discrete PSO algorithm
(DPSOvel). Each movement of a velocity (which is a list of movements) has a
probability cv of been swapped with another, randomly selected movement.

The parameter values (the size of the swarm, the coefficients ω, c1, and c2 and the factor
cv) are preset.

4.7. A PSO algorithm with dissipative point (DPSOpoi)

Xie et al. (2002) added the following equation to the classical PSO algorithm which is
applied after Equations (1b) and (2) to introduce additional diversity into the point of
the particles:

 IF (rand() < cp) THEN (), ,d

t i d dx Random l u= (3b)

where cp is a factor between 0 and 1, ,

d
t ix is the component d of the point ,t iX ,

(),d dRandom l u is a random value between ld and ud, ld is a lower bound of the
component d of the point and ud is an upper bound of the component d of the point.

This PSO algorithm was developed to solve continuous optimization problems, so the
way of introducing additional diversity has to be adapted to our discrete PSO algorithm
(DPSOpoi). For each position of the point (which is a sequence), the position has a
probability cp of being swapped with another, randomly selected position.

The parameters values (the size of the swarm, the coefficients ω, c1, and c2 and the
factor cp) are preset.

 54

4.8. A PSO algorithm with turbulence (PSO-c3stat)

Fieldsend and Singh (2002) introduced a random velocity (that they call turbulence)
into the classical PSO for solving continuous optimization problems. In this PSO
algorithm, Equation (1b) is replaced by the following equation:

 * *

1, , 1 , , 2 , 3 ,() ()t i t i t i t i t t i t iv v c P X c S PX c RVω+ = ⋅ + ⋅ − + ⋅ − + ⋅ (1g)

where ,t iRV is a random velocity generated for the particle i at iteration t.

In our adaptation we propose to generate the random velocity so that the particle moves
to a randomly generated point, i.e. our proposal to introduce diversity into the swarm
(see Section 2.2). The value of c3 is static in the Fieldsend and Singh algorithm, so we
call our adaptation PSO-c3stat.

The parameters values of PSO-c3stat (the size of the swarm, the coefficients ω, c1, c2,
and c3) are preset.

4.9. A PSO-c3dyn variant (PSO-c3dyn’)

We propose to vary PSO-c3dyn (see Section 4.3) by introducing diversity with passive
congregation (i.e. as in PSOPC (see Section 4.5)) instead of random velocity. We call
this variant PSO-c3dyn’.

4.10. A PSOPC variant (PSOPC’)

We propose to vary PSOPC (see Section 4.5) by introducing diversity with random
velocity (i.e. as in PSO-c3dyn (see Section 4.3)) instead of passive congregation. We
call this variant PSOPC’.

4.11. A DPSOpoi variant (DPSOpoi-cpdyn)

We propose to vary DPSOpoi (see Section 4.7) by using our adaptive control based on
the population heterogeneity to dynamically change the value of the parameter cp (i.e.,
the diversity control mechanism used in PSO-c3dyn (see Section 4.3)).

4.12. Fine-tuning of the PSO parameters

Fine-tuning the parameters of a metaheuristic algorithm is almost always a difficult
task. Although the parameter values are extremely important because the results of the
metaheuristic for each problem are very sensitive to them, the selection of parameter
values is commonly justified in one of the following ways (Eiben et al., 1999; Adenso-
Díaz and Laguna, 2006): 1) “by hand” on the basis of a small number of experiments
that are not specifically referenced; 2) by using the general values recommended for a
wide range of problems; 3) by using the values reported to be effective in other similar
problems; or 4) by choosing values without any explanation.

 55

Adenso-Díaz and Laguna (2006) proposed a new technique called CALIBRA for fine-
tuning the parameters of heuristic and metaheuristic algorithms. CALIBRA is based on
Taguchi’s fractional factorial experimental designs coupled with a local search
procedure. CALIBRA has been chosen for fine-tuning the PSO parameters using a set
of 60 representative training instances (generated as explained in Section 5).

García et al. (2006) used CALIBRA to fine-tune PSO-M1F. The same technique is also
used to fine-tune the other proposed PSO algorithms. The following parameter values
are obtained:

1. PSO-M1F: size of the swarm = 21, ω = 0.87, c1 = 0.87 and c2 = 0.37
2. CPSO: size of the swarm = 75, χ = 0.75, c1 = 0.75 and c2 = 0.75
3. PSO-c3dyn: size of the swarm = 13, ω = 0.87, c1 = 0.87, c2 = 0.87 and K = 3.80
4. PSOCB: size of the swarm = 25, ω = 0.87, c1 = 0.75 and c2 = 0.37
5. PSOPC: size of the swarm = 25, ω = 0.63, c1 = 0.37, c2 = 0.75, c3 = 0.63, ω slope =

-0.00250 and c3 slope = 0.00437
6. DPSOvel: size of the swarm = 25, ω = 0.37, c1 = 0.87, c2 = 0.25 and cv = 0.087
7. DPSOpoi: size of the swarm = 25, ω = 0.25, c1 = 0.75, c2 = 0.25 and cp = 0.050
8. PSO-c3stat: size of the swarm = 8, ω = 0.13, c1 = 0.75, c2 = 0.87 and c3 = 0.25
9. PSO-c3dyn’: size of the swarm = 13, ω = 0.87, c1 = 0.25, c2 = 0.87 and K = 6.30
10. PSOPC’: size of the swarm = 87, ω = 0.87, c1 = 0.87, c2 = 0.87, c3 = 0.25, ω slope =

-0.00625 and c3 slope = 0.00125
11. DPSOpoi-cpdyn: size of the swarm = 13, ω = 0.75, c1 = 0.13, c2 = 0.75 and K = 8.70

Sine CALIBRA cannot fine-tune more than five parameters, PSOPC and PSOPC’
(which have seven parameters) are fine-tuned in two steps. In the first step, the initial
values of ω and c3 are set to 0.9 and 0.4, respectively (as in He et al. (2004)) and the
remaining parameters (the size of the swarm, c1, c2, the ω slope and the c3 slope) are
fine-tuned. In the second step the values of c1 and c2 are set at the values obtained in the
first step and the remaining parameters (the size of the swarm, ω, c3, the ω slope and the
c3 slope) are fine-tuned.

5. Computational experiment

The computational experiment for the eleven proposed PSO algorithms was carried out
for the same instances and conditions used in García et al. (2006). That is, the
algorithms ran 740 instances which were grouped into four classes (185 instances in
each class) according to their size. The instances in the first class (CAT1) were
generated using a random value of D (number of units) uniformly distributed between
25 and 50, and a random value of p (number of products) uniformly distributed between
3 and 15; for the second class (CAT2), D was between 50 and 100 and p between 3 and
30; for the third class (CAT3), D was between 100 and 200 and p between 3 and 65; and
for the fourth class (CAT4), D was between 200 and 500 and p between 3 and 150. For
all instances and for each type of product i = 1,…,p, a random value of di (number of

units of the product i) was between 1 and 1
2.5

D p− + such that
1

p

i
i

d D
=

=∑ . All

algorithms were coded in Java and the computational experiment was carried out using
a 3.4 GHz Pentium IV with 512 Mb of RAM.

 56

The eleven algorithms were run for 50 seconds for each instance. Table 1 shows the
averages of the RTV values to be minimized for the global of 740 instances and for each
class of instances (CAT1 to CAT4) obtained with the PSO algorithms.

 Global CAT1 CAT2 CAT3 CAT4
DPSOpoi-cpdyn 4,625.54 16.42 51.34 610.34 17,824.04
PSO-c3dyn 6,986.05 15.72 57.10 1,261.81 26,609.56
PSOCB 8,316.51 73.79 433.98 3,106.96 29,651.33
PSO-M1F 8,502.83 66.44 424.60 3,000.52 30,519.76
DPSOvel 8,686.47 19.28 179.60 2,287.05 32,259.96
CPSO 8,774.06 74.51 478.13 3,478.72 31,064.89
DPSOpoi 8,792.70 17.14 50.50 810.58 34,292.58
PSO-c3dyn’ 11,133.09 146.77 804.12 5,251.08 38,330.39
PSOPC 14,579.82 82.03 563.05 4,021.67 53,652.54
PSO-c3stat 18,707.12 40.41 853.26 7,959.23 65,975.58
PSOPC’ 19,626.03 145.26 1,178.29 9,086.24 68,094.33

Table 1. Averages of the RTV values for 50 seconds

Table 1 shows that for the global of all instances, the results of PSO-M1F, which was
until now the best method proposed in the literature for solving the RTVP, are improved
on by the results of three PSO algorithms: DPSOpoi-cpdyn is 45.60% better, PSO-c3dyn
is 17.84% better and PSOCB is 2.19% better. There are three algorithms that obtain
slightly poorer results than PSO-M1F (DPSOvel, CPSO and DPSOpoi) and the four
remaining algorithms provide much poorer results (PSO-c3dyn’, PSOPC, PSO-c3stat
and PSOPC’). If we consider the results according to class, the three best algorithms for
CAT1 instances are PSO-c3dyn, DPSOpoi-cpdyn and DPSOpoi (76.34%, 75.29% and
74.20% better than PSO-M1F, respectively); the three best algorithms for CAT2
instances are DPSOpoi, DPSOpoi-cpdyn and PSO-c3dyn (88.11%, 87.91% and 86.55%
better than PSO-M1F, respectively); the three best algorithms for CAT3 instances are
DPSOpoi-cpdyn, DPSOpoi and PSO-c3dyn (79.66%, 72.98% and 57.95% better than
PSO-M1F, respectively); and the three best algorithms for CAT4 instances are
DPSOpoi-cpdyn, PSO-c3dyn and PSOCB (41.60%, 12.81% and 2.84% better than PSO-
M1F, respectively).

The results in Table 1 show that our proposed mechanism for controlling the degree of
diversity introduced into the swarm is very effective. The best and second best results
are obtained with two PSO algorithms that apply our control mechanism of diversity
(DPSOpoi-cpdyn and PSO-c3dyn, respectively). DPSOpoi-cpdyn produces an
improvement of 47.39% with respect to DPSOpoi, which is its static version, i.e. the
degree of diversity introduced into the swarm is preset and is not changed by the
proposed control mechanism. In addition, PSO-c3dyn produces an improvement of
62.66% with respect to PSO-c3stat, which is its static version. Our proposal of
introducing diversity through a random velocity works well when the degree of
diversity is dynamically controlled according to our proposal.

In Table 2 we compare the number of times that each PSO algorithm reaches the best
RTV value obtained with all eleven algorithms. The results are shown for the 740
instances overall and for each class of instances.

 57

 Global CAT1 CAT2 CAT3 CAT4
DPSOpoi-cpdyn 468 71 70 145 182
PSO-c3dyn 142 88 52 1 1
PSOCB 1 0 0 0 1
PSO-M1F 0 0 0 0 0
DPSOvel 60 50 9 0 1
CPSO 1 1 0 0 0
DPSOpoi 179 66 74 39 0
PSO-c3dyn’ 0 0 0 0 0
PSOPC 0 0 0 0 0
PSO-c3stat 46 46 0 0 0
PSOPC’ 0 0 0 0 0

Table 2. Number of times that the best solution is reached

As we expect from the results in Table 1, Table 2 shows that DPSOpoi-cpdyn reaches
the best solution the greatest number of times (in 63.24% for the global of all instances).
Surprisingly, although DPSOpoi is the seventh best algorithm according to the obtained
RTV values, it is the algorithm that reaches the best solution the second-highest number
of times (in 24.19% for the global of all instances) followed by PSO-c3dyn (in 19.19%
for the global of all instances). In addition, DPSOvel and PSO-c3stat reach the best
solution the fourth- and the fifth-highest number of times, respectively.

To complete the analysis of the results, their dispersion is observed. We use the
following expression to define a measure of the dispersion (let it be called σ) of the
RTV values obtained by each algorithm, alg, for a given instance, ins:

2() ()

()

RTV RTV(,)
RTV

alg best
ins ins

best
ins

alg insσ
 −

=  
 

 (4)

where ()RTV alg

ins is the RTV value of the solution obtained with the algorithm alg for the
instance ins, and)(RTV best

ins is the best RTV value of the solutions obtained with the
eleven algorithms for the instance ins. Table 3 shows the average σ dispersion for the
740 overall instances and for each class of instances.

 Global CAT1 CAT2 CAT3 CAT4 *
DPSOpoi-cpdyn 0.11 0.29 0.16 0.01 0.00 (1)
PSO-c3dyn 0.64 0.19 0.23 1.62 0.51 (3)
PSOCB 72.20 44.44 159.40 83.77 1.21 (6)
PSO-M1F 65.63 35.68 150.51 75.15 1.17 (5)
DPSOvel 10.87 0.97 18.44 22.96 1.10 (4)
CPSO 81.87 42.07 190.13 93.45 1.83 (7)
DPSOpoi 0.41 0.41 0.10 0.18 0.95 (2)
PSO-c3dyn’ 313.65 261.54 692.52 295.26 5.30 (10)
PSOPC 123.10 52.95 292.21 141.44 5.83 (8)
PSO-c3stat 302.44 8.73 613.62 566.83 20.58 (9)
PSOPC’ 622.75 199.92 1,394.34 874.23 22.52 (11)

* Order according to the average σ dispersion for the global of all instances

Table 3. Average σ dispersion with respect to the best solution found

 58

We can see from Table 3 that DPSOpoi-cpdyn, DPSOpoi and PSO-c3dyn have the
lowest average σ dispersion for the global of all instances. Therefore, the two algorithms
that apply the proposed mechanism for controlling the diversity introduced (DPSOpoi-
cpdyn and PSO-c3dy) not only produce the best RTV values but also exhibit very stable
behaviour, i.e. when they do not obtain the best result for a given instance, they obtain a
value that is very close to it. On the other hand, although DPSOpoi and DPSOvel
produce slightly worse RTV values than PSOCB and PSO-M1F, they exhibit much
more stable behaviour.

The results in Table 1 and 2 show that the main differences between the seven best PSO
algorithms (DPSOpoi-cpdyn, PSO-c3dyn, PSOCB, PSO-M1F, DPSOvel, CPSO and
DPSOpoi) are in the average values of the CAT1, CAT2 and CAT3 instances, whereas
the average values of the CAT4 instances are more similar (except for those obtained by
DPSOpoi-cpdyn). This may occur because, on average, some PSO algorithms may
converge to a local minimum on 50 seconds for small and medium instances (CAT1,
CAT2 and CAT3 instances), whereas other algorithms continue to explore the search
space. However, 50 seconds might not be enough time for the PSO algorithms to
converge for large instances (CAT4 instances). Figure 3 shows how the averages of the
RTV values for the global of all instances decrease over the computing time for the
seven best algorithms.

Figure 3. Average of the RTV values obtained over the computing time

Figure 3 shows that the RTV values of the seven algorithms decrease exponentially
during the first 110 seconds of computing time. At this point, the three algorithms into
which no diversity is introduced (PSOCB, PSO-M1F and CPSO) have converged for
almost all the instances and remain trapped in a local optimum during the remaining
computing time. In contrast, the other four algorithms (DPSOpoi-cpdyn, PSO-c3dyn,
DPSOvel and DPSOpoi) introduce diversity and are able to move away from the local
optimum. Therefore, these four algorithms continue to explore new regions of the
search space and find better local optima during the remaining computing time.

 59

Table 4 shows the averages of the RTV values for the global of all instances and for
each class of instances (CAT1 to CAT4) obtained with the eleven PSO algorithms when
they are run for 1,000 seconds.

 Global CAT1 CAT2 CAT3 CAT4
DPSOpoi-cpdyn 1,537.34 14.35 46.55 143.95 5,944.51
DPSOpoi 1,980.20 14.63 46.13 142.58 7,717.47
PSO-c3dyn 3,696.44 13.83 42.18 391.54 14,338.20
DPSOvel 4,312.30 17.75 84.17 1,036.87 16,110.42
PSO-M1F 6,619.34 66.44 424.54 3,000.51 22,985.85
PSOCB 6,731.24 73.79 433.98 3,106.96 23,310.24
CPSO 7,746.85 74.51 478.13 3,478.72 26,956.02
PSOPC 8,838.70 82.03 563.05 4,021.67 30,688.03
PSO-c3dyn’ 11,133.09 146.77 804.12 5,251.08 38,330.39
PSO-c3stat 16,212.08 16.75 592.64 6,520.72 57,718.22
PSOPC’ 18,495.01 138.76 1,056.59 8,414.15 64,370.53

Table 4. Averages of the RTV obtained values for 1,000 seconds

Table 4 shows that DPSOpoi-cpdyn also produces the best average for the global of all
instances when the algorithms are run for 1,000 seconds. However, the second best
algorithm is now DPSOpoi, followed by PSO-c3dyn. We can see from Figure 3 that the
results obtained by PSO-c3dyn are better than those obtained by DPSOpoi up to an
execution time of 130 seconds. Thus, it is recommended to use PSO-c3dyn instead of
DPSOpoi for execution times of less than two minutes. Anyway, Figure 3 shows that it
is always advisable to use DPSOpoi-cpdyn, in which the way of introducing diversity
into the swarm is based on one proposal by Xie et al (2002) and the degree of diversity
is regulated by the control mechanism that we propose in this paper.

There are four algorithms that improve on the results obtained by PSO-M1F when the
total computation time equals to 1,000 seconds: DPSOpoi-cpdyn (76.78% better),
DPSOpoi (70.08% better), PSO-c3dyn (44.16% better) and DPSOvel (34.85% better).
On the other hand, the poor results shown in Tables 1 and 3 for PSOPC and PSO-c3dyn’
show that proposal of using passive congregation to introduce diversity into the swarm
for a discrete optimization problem such as the RTVP is unsuccessful.

6. Conclusions and future research

PSO is an evolutionary metaheuristic proposed by Kennedy and Eberhart (1995) which
has achieved good results for several types of problems. The metaheuristic uses an
analogy of the flocking behaviour of birds to look for the optimal solution. PSO has the
desirable property of convergence, but this convergence can be premature, in which
case certain regions of the search space remain unexplored. To prevent this, several
strategies have been proposed in the literature, some of which are based on introducing
diversity into the swarm. Most published PSO applications are designed to solve
continuous optimization problems, but there are few PSO applications for solving
discrete optimization problems.

 60

We propose a PSO algorithm (which we call PSO-c3dyn) for solving a discrete
optimization problem. To develop PSO-c3dyn, two novel ideas are introduced: 1) a new
way of introducing diversity into the swarm, based on introducing a random velocity;
and 2) a mechanism for controlling the degree of diversity introduced into the swarm
that takes feedback from the heterogeneity of the swarm.

The algorithm is designed to solve the RTVP, which is a scheduling problem that occurs
whenever products, clients or jobs need to be sequenced in such a way that the
variability in the time between the instants at which they receive the necessary resources
is minimized. The PSO-M1F algorithm proposed by García et al. (2006) is currently the
best published algorithm for solving non-small instances of the RTVP.

We propose nine more PSO algorithms (in addition to PSO-M1F) for comparison with
PSO-c3dyn which are used to test the way of introducing diversity and the control
mechanism of the diversity that we propose. Eight of these nine algorithms are based on
PSO algorithms that have been tested in continuous optimization problems but not in
discrete optimization problems. Therefore, this paper tests the validity of these
algorithms when applied to discrete optimization problems such as the RTVP. In
addition, we demonstrate that CALIBRA is very useful for fine-tuning the parameters of
the PSO algorithms.

The results of the computational experiment show that the proposed mechanism for
controlling the degree of diversity introduced into the swarm works very well. The best
results obtained, on average, are obtained under this diversity control. Thus, this paper
presents a control mechanism that is very effective and contributes to improve the
performance of PSO. Moreover, in this paper is improved the previous results published
in the literature of the RTVP.

The two novel ideas proposed in our paper (random velocity and diversity control) are
very easy to adapt to a continuous space. Therefore, our future research will focus on
testing the proposed diversity control in PSO algorithms for solving continuous
optimization problems and determining whether it improves the overall results. Since
the proposed way of introducing diversity by using a random velocity works correctly,
we will also test it in continuous optimization problems.

ACKNOWLEDGEMENTS

The authors are very grateful to Professor Albert Corominas (Technical University of
Catalonia) and to the anonymous reviews for his valuable comments which have helped
to enhance this paper. The authors gratefully acknowledge the support of grant
DPI2007-61905 (Ministerio de Educación y Ciencia, Spain, and FEDER).

REFERENCES

Adenso-Díaz, B. and Laguna, M. (2006) ‘Fine-tuning of algorithms using fractional

experimental designs and local search’, Operations Research, Vol. 54, pp. 99-114.

 61

Andrés, C., Pastor, R. and Framiñán, J.M. (2004) ‘Optimización mediante cúmulo de
partículas del problema de secuenciación CONWIP’, Eighteenth Conference on
Statistics and Operations Research SEIO’04, Cádiz, Spain.

Angeline, P.J. (1996) ‘Two self-adaptive crossover operators for genetic programming’,
Advances in Genetic Programming, Vol. 2, pp. 89-109.

Angeline, P.J. (1998) ‘Evolutionary optimization versus particle swarm optimization:
Philosophy and performance differences’, In Proceeding s of evolutionary
programming VII, pp. 601-610.

Anily, S., Glass, C.A. and Hassin, R. (1998) ‘The scheduling of maintenance service’,
Discrete Applied Mathematics, Vol. 82, pp. 27-42.

Blackwell, T. and Bentley, P.J. (2002) ‘Don’t push me! Collision-avoiding swarms’, In
Proceedings of the IEEE congress on evolutionary computation, pp. 1691-1696.

Chau, K.W. (2006) ‘Particle swarm optimization training algorithm for ANNs in stage
prediction of Shing Mun River’, Journal of Hydrology, Vol. 329, pp. 363-367.

Clerc, M. (2004) ‘Discrete Particle Swarm Optimization, illustrated by the Traveling
Salesman Problem’, New Optimization Techniques in Engineering, Springer, pp.
219-239.

Clerc, M. (2006) ‘Particle Swarm Optimization’, ISTE.
Clerc, M. and Kennedy, J. (2002) ‘The particle swarm: explosion, stability, and

convergence in a multidimensional complex space’, IEEE Transactions on
Evolutionary Computation, Vol. 6 (1), pp. 58-73.

Corominas, A., Kubiak, W. and Moreno, N. (2007) ‘Response time variability’, Journal
of Scheduling, Vol. 10, pp. 97-110.

Corominas, A., Kubiak, W. and Pastor, R. (2006) ‘Solving the Response Time
Variability Problem (RTVP) by means of mathematical programming’, Working
paper IOC-DT, Universistat Politècnica de Catalunya, Spain.

Dong, L., Melhem, R. and Mossel, D. (1998) ‘Time slot allocation for real-time
messages with negotiable distance constraint requirements’, Real-time Technology
and Application Symposium, RTAS, Denver.

Eberhart, R.C. and Shi, Y. (2001) ‘Comparing inertia weights and constriction factors in
particle swarm optimization’, In IEEE International Conference on Evolutionary
Computation, pp. 81-86.

Eiben, A.E., Hinterding, R. and Michalewicz, Z. (1999) ‘Parameter control in
evolutionay algorithms’, IEEE Transactions on evolutionary computation, Vol. 3,
pp. 124-141.

Fieldsend, J.E. and Singh, S. (2002) ‘A Multi-Objective Algorithm based upon Particle
Swarm Optimisation, an Efficient Data Structure and Turbulence’, In Proceedings
of U.K. Workshop on Computational Intelligence (UKCI’02), United Kingdom, pp.
37-44.

García, A., Pastor, R. and Corominas, A. (2006) ‘Solving the Response Time
Variability Problem by means of metaheuristics’, Artificial Intelligence Research
and Development, Vol. 146, pp. 187-194.

Geethanjali, M., Mary Raja Slochanal, S. and Bhavani, R. (2007) ‘PSO trained ANN-
based differential protection scheme for power transformers’, Neurocomputing, In
Press, Corrected Proof.

He, S., Wu, Q.H., Wen J.Y., Saunders, J.R. and Paton, R.C. (2004) ‘A particle swarm
optimizer with passive congregation’, Biosystems, Vol. 78, pp. 135-147.

Hendtlass, T. (2001) ‘A combined swarm differential evolution algorithm for
optimization problems’, Lecture Notes in Computer Science, Vol. 2070, pp. 11-18.

 62

Hinterding, R., Michalewicz, Z. and Peachey, T.C. (1996) ‘Self-adaptive genetic
algorithm for numeric functions’, Proc. 4th Conf. Parallel Problem Solving from
Nature, Lecture Notes in Computer Science, Vol. 1141, pp. 420-429.

Hu, X. and Eberhart, R.C. (2001) ‘Tracking dynamic systems with PSO: where’s the
cheese?’, In Proceedings of the workshop on particle swarm optimization,
Indianapolis, USA.

Hu, X. and Eberhart, R.C. (2002) ‘Multiobjective Optimization Using Dynamic
Neighborhood Particle Swarm Optimization’, In IEEE Congress on Evolutionay
Computation, Honolulu, USA.

Hu, X., Eberhart, R.C. and Shi, Y. (2004) ‘Recent advances in particle swarm’, IEEE
Congress on Evolutionary Computation, Portland, Oregon, USA.

Kennedy, J. and Eberhart, R.C. (1995) ‘Particle swarm optimization’, In IEEE
International Conference on Neural Networks, Australia, pp. 1942-1948.

Liang, J.J., and Suganthan, P.N. (2005) ‘Dynamic multiswarm particle swarm optimizer
(DMS-PSO)’, Proceedings SIS 2005 IEEE swarm intelligence, pp. 124-129.

Liao, C.J., Tseng, C.T. and Luarn, P. (2007) ‘A discrete version of particle swarm
optimization for flowshop scheduling problems’, Computer & Operations Research,
Vol. 34, pp. 3099-3111.

Loøvbjerg, M. and Krink, T. (2002) ‘Extending particle swarms with self-.organized
criticality’, In Proceedings of the IEEE congress on evolutionary computation, pp.
1588-1593.

Mendes, R. (2004) ‘Population topologies and their influence in particle swarm
performance’, PhD thesis, Departamento de Informatica, Escola de Engenharia,
Universidade do Minho.

Monden, Y. (1983) ‘Toyota Production Systems’, Industrial Engineering and
Management Press, Norcross, GA.

Pan, Q-K., Tasgetiren, M.F. and Liang, Y-C. (2007) ‘A discrete particle swarm
optimization algorithm for the no-wait flowshop scheduling problem’, Computers &
Operations Research, In press, Corrected Proof.

Parrish, J.K. and Hamner, W.M. (1997) ‘Animal Groups in Three Dimensions’, In
Cambridge University Press, Cambridge, United Kingdom.

Parsopoulos, K.E. and Vrahatis, M.N. (2001) ‘Particle swarm optimizer in noisy and
continuously changing environments’, Artificial intelligence and soft computing, Ed.
M.H. Hamza, pp. 289-294.

Parsopoulos, K.E. and Vrahatis, M.N. (2004) ‘On the computation of all blobal
minimizers thorugh particle swarm optimization’, In IEEE Transactions on
Evolutionary Computation, Vol. 8, pp. 211-224.

Poli, R., Kennedy, J, and Blackwell, T. (2007) ‘Particle swarm optimization. An
overview’, Swarm Intelligence, Springer, Chapter 5.

Robinson, J., Sinton, S. and Rahmat-Samii, Y. (2002) ‘Particle swarm, genetic
algorithm, and their hybrids: optimization of a profiled corrugated horn antenna’, In
IEEE swarm intelligence symposium, pp. 314-317.

Secrest, B. (2001) ‘Travelling salesman problem for surveillance mission using PSO’,
PhD thesis, Air Force Institute of Technology, Ohio, USA.

Shi, Y. and Eberhart, R.C. (1998a) ‘Parameter selection in particle swarm optimization’,
In Proceedings 7th Annual Conference on Evolutionary Programming, pp. 591-600.

Shi, Y. and Eberhart, R.C. (1998b) ‘A modified particle swarm optimizer’, In IEEE
international conference of Evolutionary Computation, pp. 69-73.

Tasgetiren, M.F., Liang, Y-C., Sevkli, M. and Gencyilmaz, G. (2007) ‘A particle swarm
optimization algorithm for makespan and total flowtime minmization in permutation

 63

flowshop sequencing problem’, European Journal of Operational Research, Vol.
177, pp. 1930-1947.

Trelea, I.C. (2003) ‘The particle swarm optimization algorithm: convergence analysis
and parameter selection’, Information Processing Letters, Vol. 85, pp. 317-325.

Waldspurger, C.A. and Weilh, W.E. (1995) ‘Stride Scheduling: Deterministic
Proportional-Share Resource Management’, Technical Memorandum MIT/LCS/TM-
528, MIT, Laboratory for Computer Science, Cambridge.

Xie, X.F., Zhang, W.J. and Yang, Z.L. (2002) ‘A Dissipative Particle Swarm
Optmization’, In IEEE Congress on Evolutionary Computation (CEC’02), Hawai,
USA.

Yin, P.-Y., Yu, S.-S., Wang, P.-P. and Wang, Y.-T. (2007) ‘Multi-objective task
allocation in distributed computing systems by hybrid particle swarm optimization’,
Applied Mathematics and Computation, Vol. 184, pp. 407-420.

Zhang, W., Liu, Y. and Clerc, M. (2003) ‘An adaptive PSO algorithm for reactive
power optimization’, 6th International Conference on Advances in Power Control,
Operation and Management, Hong Kong.

 65

Solving the Response Time Variability Problem by means of the
Electromagnetism-like Mechanism

Article published as [International Journal of Production Research, First published on
11 December 2009] [DOI: http://dx.doi.org/10.1080/00207540902862545] ©
[copyright Taylor & Francis Group]

Solving the Response Time Variability Problem by
means of the Electromagnetism-like Mechanism

Alberto García-Villoria and Rafael Pastor

Institute of Industrial and Control Engineering (IOC), Department of
Management, Universitat Politècnica de Catalunya (UPC), Av.

Diagonal 647 (Edif. ETSEIB), 11th floor, 08028 Barcelona, Spain

The Response Time Variability Problem (RTVP) is an NP-hard combinatorial
scheduling problem that has been recently formalised in the literature. The RTVP
has a wide range of real-life applications such as in the automobile industry, when
models to be produced on a mixed-model assembly line have to be sequenced under
a just-in-time production. The RTVP occurs whenever products, clients or jobs need
to be sequenced so as to minimize variability in the time between the instants at
which they receive the necessary resources. In two previous studies, three
metaheuristic algorithms (a multi-start, a GRASP and a PSO algorithm) were
proposed to solve the RTVP. We propose solving the RTVP by means of the
electromagnetism-like mechanism (EM) metaheuristic algorithm. The EM algorithm
is based on an analogy with the attraction-repulsion mechanism of the
electromagnetism theory, where solutions are moved according to their associated
charges. In this paper we compare the proposed EM metaheuristic procedure with
the three metaheuristic algorithms aforementioned and it is shown that, on average,
the EM procedure improves strongly on the obtained results.

Keywords: response time variability; fair sequences; scheduling; just-in-time;
metaheuristics; electromagnetism-like mechanism

1. Introduction

The Response Time Variability Problem (RTVP) is a scheduling problem that has
recently been defined in the literature (Corominas et al. 2007). The RTVP occurs
whenever products, clients or jobs need to be sequenced so as to minimize variability in
the time between the instants at which they receive the necessary resources. Although
this combinatorial optimisation problem is easy to formulate, it is very difficult to solve
(it is NP-hard, Corominas et al. 2007).

The RTVP has a broad range of real-life applications. For example, it can be used
to sequence regularly models in the automobile industry (Ding and He 2007), to

 66

resource allocation in computer multi-threaded systems and network servers
(Waldspurger and Weihl 1995), to broadcast video and sound data frames of
applications over asynchronous transfer mode networks (Dong et al. 1998), in the
periodic machine maintenance problem when the distances between consecutive
services of the same machine are equal (Anily et al. 1998) and in the collection of waste
(Herrmann 2007).

One of the first problems in which has appeared the importance of sequencing
regularly is at the sequencing on the mixed-model assembly production lines at Toyota
Motor Corporation under the just-in-time (JIT) production system. One of the most
important JIT objectives is to get rid of all kinds of waste and inefficiency and,
according to Toyota, the main waste is due to the stocks. To reduce the stock, JIT
production systems require to producing only the necessary models in the necessary
quantities at the necessary time (Aigbedo 2004). To achieve this, one main goal, as
Monden (1983) says, is scheduling the units to be produced to keep a constant
consumption rates of the components involved in the production process. Miltenburg
(1989) deals with this scheduling problem considering only the demand rates of the
models. He proposed four metrics to measure the regularity of a sequence based on the
discrepancies, for each model, between the real production rate and the ideal one (i.e.,
the one that would correspond to a constant rate of production). This problem is known
as the Product Rate Variation (PRV) problem (Kubiak 1993). The PRV problem has
been reformulated by Kubiak and Sethi (1994) as an assignment problem and, therefore,
it can be solved efficiently.

Although the sequencing on the mixed-model assembly production lines is usually
considered in the literature as a PRV problem (Miltenburg 1989, Kubiak 1993, Steiner
and Yeomans 1993), in our experience with practitioners of manufacturing industries
we noticed that they usually refer to a good mixed-model sequence not in terms of ideal
production, but in terms of having distances between the units for the same model as
regular as possible. Therefore, the metric used in the RTVP reflects the way in which
practitioners refer to a desirable regular sequence.

In this paper, the electromagnetism-like mechanism (EM) metaheuristic is proposed
to solve the RTVP. EM is a recent population-based metaheuristic that was first
proposed by Birbil and Fang (2003). It is based on an analogy with the attraction-
repulsion mechanism of electromagnetism theory. Each solution is considered as a point
with an electrical charge that is measured by the objective function. This charge
determines the magnitude of attraction or repulsion of the other points for applying the
electromagnetism equations and EM iteratively calculates the movement of the points.

The EM metaheuristic has yielded good results when it has been used to solve
several combinatorial optimisation problems (Debels and Vanhoucke 2006, Debels et
al. 2006, Yuan et al. 2006, Maenhout and Vanhoucke 2007, Chang et al. 2009). The EM
algorithm proposed to solve the RTVP is compared with efficient procedures for
solving non-small instances: the multi-start and the GRASP algorithms proposed in
García et al. (2006) and the PSO algorithm called DPSOpoi-cpdyn proposed in García-
Villoria and Pastor (2009).

The remainder of this paper is organized as follows. Section 2 presents a formal
definition of the RTVP. Section 3 briefly exposes three metaheuristic algorithms
presented in García et al. (2006) and García-Villoria and Pastor (2009). Section 4
describes the basic scheme of the EM. Section 5 proposes a procedure an EM algorithm
for solving the RTVP. Section 6 provides the computational experiments and the
comparison with the other metaheuristic algorithms. Finally, some conclusions and
suggestions for future research are given in Section 7.

 67

2. The Response Time Variability Problem (RTVP)

The aim of the Response Time Variability Problem (RTVP) is to minimise variability in
the distances between any two consecutive units of the same model to be scheduled.

The RTVP is formulated as follows. Let n be the number of models, id the number
of units to be scheduled of model i (i = 1,…,n) and D the total number of units

()1.. ii n
D d

=
= ∑ . Let s be a solution of a RTVP instance that consists of a circular

sequence of units (1 2... Ds s s s=), where sj is the unit sequenced in position j of
sequence s. For all unit i in which 2id ≥ , let i

kt be the distance between the positions in
which the units k + 1 and k of the model i are found (i.e. the number of positions
between them, where the distance between two consecutive positions is considered
equal to 1). Since the sequence is circular, position 1 comes immediately after position
D; therefore, i

di
t is the distance between the first unit of the model i in a cycle and the

last unit of the same model in the preceding cycle. Let it be the average distance
between two consecutive units of the model i (

i
i d

Dt =). For all symbol i in which

1=id , it1 is equal to it . The objective is to minimize the metric Response Time
Variability (RTV) which is defined by the following expression:

 2

1 1
()

idn
i
k i

i k
RTV t t

= =

= −∑∑ (1)

For example, let 3n = , 2=Ad , 2=Bd and 4=Cd ; thus, 8=D , 4=At , 4=Bt and
2.Ct = Any sequence is a feasible solution. For example, the sequence (C, A, C, B, C,

B, A, C) is a solution, where
() ()() () ()() () () () ()()2 2 2 2 2 2 2 25 4 3 4 2 4 6 4 2 2 2 2 3 2 1 2 1 2 .RTV = − + − + − + − + − + − + − + − =

3. Three metaheuristic algorithms for the RTVP

Corominas et al. (2007) proposed a mixed integer lineal programming (MILP)
model to solve the RTVP. Corominas et al. (2006) improved the previous MILP model
but the practical limit to obtain optimal solutions is 40 units to be scheduled. Thus, the
use of heuristic or metaheuristic methods for solving real-life instances of the RTVP is
justified. Corominas et al. (2007) proposed five heuristic algorithms. García et al.
(2006) proposed six metaheuristic algorithms: a multi-start, a GRASP (Greedy
Randomized Adaptive Search Procedure) and four PSO (Particle Swarm Optimisation)
algorithms. Eleven variants of the PSO metaheuristic were also used to solve the RTVP
in García-Villoria and Pastor (2009).

The three most effective aforementioned procedures are the multi-start and the
GRASP algorithm proposed in García et al. (2006) and the PSO algorithm called
DPSOpoi-cpdyn proposed in García-Villoria and Pastor (2009). Next, the algorithms are
briefly explained (for more details of the three algorithm procedures, see García et al.
2006 and García-Villoria and Pastor 2009).

 68

3.1. The Multi-start algorithm

The multi-start method is based on generating initial random solutions and on
improving each of them to find a local optimum, which is usually done by means of a
local search procedure (Martí 2003). Random solutions are generated as follows. For
each position, a model to be sequenced is randomly chosen. The probability of each
model is equal to the number of units of this model that remain to be sequenced divided
by the total number of units that remain to be sequenced. The local search procedure
used is applied as follows. A local search is performed iteratively in a neighbourhood
that is generated by interchanging each pair of two consecutive units of the sequence
that represents the current solution; the best solution in the neighbourhood is chosen; the
optimisation ends when no neighbouring solution is better than the current solution.

3.2. The GRASP algorithm

GRASP, designed by Feo and Resende (1989), can be considered to be a variant of the
multi-start method in which the initial solutions are obtained using directed randomness.
The solutions are generated by means of a greedy strategy in which random steps are
added and the choice of elements to be included in the solution is adaptive. The random
step in the GRASP proposed by García et al. (2006) consists of selecting the next model
to be added to the solution; the probability of each candidate model is proportional to
the value of its Webster index, which is based on the parametric method of
apportionment with parameter 1

2δ = (Balinski and Young 1982). The Webster index

for model i (i = 1,…,n) is evaluated as
()

i

it

d
x δ+

, where xit is the number of units of

model i in the sequence of length t = 0,…,D (assume xi0 = 0). The local search
procedure applied to the initial solutions is the same local search as in the multi-start
method.

3.3. The PSO algorithm

PSO is a population-based metaheuristic designed by Kennedy and Eberhart (1995),
which is based on an analogy of the social behaviour of flocks of birds when they
search for food. The population or swarm is composed of particles (birds), which have
an m-dimensional real point (which represents a feasible solution) and a velocity (the
movement of the point in a m-dimensional real space). The velocity of a particle is
typically a combination of three kinds of velocities: 1) inertia velocity; 2) velocity to the
best point found by the particle; and 3) velocity to the best point found by the swarm.
These components of the particles are iteratively modified by the PSO algorithm as it
looks for an optimal solution.

In the DPSOpoi-cpdyn algorithm (García-Villoria and Pastor 2009), random
modifications to the points of the particles are introduced. The frequency of the
modifications changes dynamically according to the homogeneity of the swarm. The
aim is to prevent premature convergence and to enable the PSO algorithm to escape a
local optimum. Although the PSO metaheuristic was originally designed for working in
a m-dimensional real space, DPSOpoi-cpdyn is adapted to work with a sequence that
represents the solution. In this adaptation, a point is now the sequence of units of the
models that represents a solution, and the velocity is an ordered list of transformations
that must be applied to the particle so that it changes from its current point to another

 69

point; each transformation consists of a pair of positions of the point (sequence) that are
to be swapped. The velocity to the best point found by the particle is the list of
transformations needed to obtain the best particle point from the current position; the
same applies for the velocity to the best point found by the swarm.

4. The EM metaheuristic

The electromagnetism-like mechanism (EM) metaheuristic is a new population-based
metaheuristic created by Birbil and Fang (2003). The EM metaheuristic has been
applied successfully to the following problems: the project scheduling problem (Debels
and Vanhoucke 2006; Debels et al. 2006), neural network training (Wu et al. 2004), the
permutation flowshop scheduling problem (Yuan et al. 2006), the nurse scheduling
problem (Maenhout and Vanhoucke 2007), the single machine scheduling problem
(Chang et al. 2009) and multi-objective optimisation problems (Tsou and Kao 2008).
On the other hand, in the Birbil’s PhD thesis (Birbil 2002), the EM metaheuristic is
compared with other methods and shown to have substantial performance.

The EM metaheuristic operates basically as follows. EM starts with an initial
population of solutions that will be attracted to the deep valleys and repulsed from the
steep hills (if we wish to minimise the value of the solutions). Each solution can be
thought of as a particle charged according to its objective function value. Then, an
analogy of the attraction-repulsion mechanism of the electromagnetism theory can be
applied. Moreover, some solutions are improved by a local search.

Next, we present the framework of the EM metaheuristic; for further details, see
Birbil and Fang (2003). This algorithm works with a special class of optimisation
problems with bounded variables in the following form:

min (max) ()xf

subject to | , 1, ,m
j j jx l x u j m∈ℜ ≤ ≤ = 

where f is the function that evaluates a point (which represents a solution), m is the

dimension of the problem (in the case of the RTVP, m would be equal to D, which is the
total number of units) and xj is the coordinate of the jth dimension, which is lower
bounded by lj and upper bounded by uj.

The EM metaheuristic is divided into four phases (which are explained in
Subsections 4.1 to 4.4): 1) the initialization of the population of the points; 2) the
application of the local search; 3) the calculation of the total force vector; and 4) the
movement according to the total force. The pseudocode of the metaheuristic is shown in
Figure 1.

Figure 1. Pseudocode of the EM metaheuristic.

 1: P = initial population
 2: while the stopping criteria is not reached do
 4: xbest = best point of P
 3: Local search
 4: for each point x do: Fx = total force vector(x, P)
 5: for each point x do: Move(x, Fx)
 6: end while

 70

4.1. Initial population

The metaheuristic starts generating randomly the initial population, which consists of p
points of the feasible domain. Each coordinate of each point is uniformly distributed
between their upper and lower bounds.

4.2. Local search

The local search procedure provides the EM algorithm with a good balance between the
exploration and exploitation of the feasible region. Birbil and Fang (2003) propose two
approaches according to the points to which the local search can be applied: local search
applied to all points and local search applied only to the current best point.

Local search applied to all points promotes a more meticulous examination of the
region around the points. However local search applied only to the best point usually
gives as good results and less time is spent on the local search.

In both cases, a simple local search is recommended rather than a powerful one
because it is enough for a good convergence (Birbil and Fang 2003). The local search is
not applied until a local optimal point is reached; the local search stops when a number
of iterations (let it be called lsiter) is executed.

4.3. Calculation of the total force vector

The charge of each point x belonging to the population P (let it be called qx), which
determines the intensity of attraction or repulsion of the point, changes at each iteration
of the EM metaheuristic. The charge is first evaluated as follows:

()

() ()exp
() ()

best

x best

y P

f x f xq m
f y f x

∈

 
 −

= − − 
 

∑
 (2)

Note that, unlike electrical charges, no signs are associated with the charges. The

direction of a particular force between two points is determined when their objective
values have been compared. The total force for each point belonging to the population P
(let it be called xF) is evaluated as follows:

2

|
2

() () () (Attraction)

() () () (Repulsion)

x y

x
y P y x x y

q q
y x if f y f x

y x
F

q q
x y if f y f x

y x
∈ ≠

 
− < 

− =  
 − ≥ − 

∑ (3)

where xy − is the euclidean distance between the two points.

 71

4.4. Movement according to the total force

Each point x belonging to the population P is moved according to the next equation:

 x

x

Fx x
F

λ= + (4)

where λ denotes a random number uniformly distributed between 0 and 1 and xF is the
norm of the force vector. The parameter λ is used to ensure that the points have a
nonzero probability of moving to the unvisited regions in this direction. Furthermore,
the force applied to each point is normalized, so the feasibility is maintained (i.e., each
coordinate of each point will be between lj and uj).

5. The EM algorithm for the RTVP

The objective function and the equations of the EM metaheuristic work with points of a
region of the m-dimensional real space. Others procedures such as PSO algorithms or
other optimisation algorithms of real variables are also designed for working in an m-
dimensional real space. However, a solution of many combinatorial optimisation
problems is usually represented as an ordered sequence of integer numbers (as in the
RTVP), so these metaheuristics (EM, PSO and others) are incompatible with this
representation of the solution as an ordered sequence of integer numbers. There are two
ways of applying algorithms of this kind to the RTVP: to adapt the algorithm to work
with a sequence of integer numbers or to adapt the representation of the solution as an
m-dimensional real point.

To adapt the PSO algorithm to a sequence of integer numbers for the RTVP is done
in García-Villoria and Pastor (2009), as explained in Section 2. As would happen in the
EM algorithm, this way involves redefining several mathematical operators used by the
algorithm. For example, the difference between two points (()y x− and ()x y− in
Equation 3) would now be the difference between two sequences of integer numbers
and this new different operator should be defined.

On the other hand, a sequence of integer numbers can be represented by an m-
dimensional real point using random key representation (RK) (Bean 1994). The main
advantage of using RK is that each solution corresponds to a real point, so that
geometric operations (for example, the evaluation of a point charge (Equation 2)) can be
performed on its components. Since geometric operations are the cornerstone of several
metaheuristics (such as EM), RK allows a straightforward application of this type of
metaheuristics to solve combinatorial optimisation problems. Although there is
empirical evidence that Genetic Algorithms that applies RK may obtain slight worst
results that Genetic Algorithms adapted to the combinatorial problem (Bean 1994), in
other metaheuristics there is no conclusion about which approach is better. In the case
of EM algorithms, to the best of our knowledge, most of the papers in which an EM
algorithm is proposed to solve a combinatorial optimisation problem RK is used
(Debels and Vanhoucke 2006; Debels et al. 2006; Yuan et al. 2006; Chang et al. 2009)
and only one paper adapts EM (Maenhout and Banhoucke, 2007). Because RK have
been effectively applied to the EM metaheuristic to solve several combinatorial
problems, in this paper RK is also used in the EM algorithm for solving the RTVP.

 72

Random key representation for the RTVP is explained in Subsection 4.1. How the
initial population is generated is described in Subsection 4.2. The local search used in
our EM algorithm is explained in Subsection 4.3. The calculations of the total force
vectors and the movements according to the total force are directly implemented
according to Equations (2), (3) and (4). Finally, Subsection 4.4 explains the fine-tuning
of the parameter values of the EM algorithm: the size of the initial population (p) and
the maximum number of iterations of the local search procedure (lsiter).

5.1. Random key representation

Random key representation (Bean 1994) consists of an m-length sequence of different
real numbers called keys. Let the key sequence be r = r1, …, rm, where rj is the key of
the position j. In the context of the proposed EM algorithm, the key sequence has D
(number of units to be sequenced with di units of model i) keys. As the EM
metaheuristic works with bounded variables, the values of the keys are bounded
between 0 and 1.

Given a key sequence r, the solution s (sequence of models) that is represented by r
is as follows. First, for each position j = 1,...,D of r, key rj is associated with a model.
The association is done in a way that, for each model i, there are id consecutive keys
associated with model i. For each key sequence, the association for key rj will be always
done with the same model, i.e., if, for example, key r1 is associated with model A in
every key sequence r, r1 will be associated with this model. Next, a new key sequence,

,r′ is obtained by putting r (and therefore their associated models) in descending order
according to the values of the keys. Then, for each position j = 1,...,D, model js is the
model associated with key

j
r′ , i.e., the model sequenced in position j is the model

associated with key rj that is in the position j in the key sequence .r′
For example, let a RTVP instance be n = 3, 2=Ad , 2=Bd and 4=Cd . Given the

key sequence r = (0.12, 0.26, 0.67, 0.08, 0.14, 0.45, 0.87, 0.62), each key rj (j = 1,…,8)
is associated with a model as follows:

models A A B B C C C C
 ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑

keys 0.12 0.26 0.67 0.08 0.14 0.45 0.87 0.62

So, the descending ordered key sequence is r′ = (0.87, 0.67, 0.62, 0.45, 0.26, 0.14,
0.12, 0.08) and, therefore, the solution represented is (C, B, C, C, A, C, A, B).

5.2. Initial population

The initial population of points consists of p solutions generated randomly. As has been
introduced previously, each solution is represented by a key sequence where each key
value is bounded between 0 and 1. To get a solution, we generate a random value
uniformly distributed in [0,1] for each key.

 73

5.3. Local search

The local search procedure used in the EM algorithm is as follows. A local search is
performed iteratively in a neighbourhood that is generated by interchanging two units of
different consecutive and non-consecutive models; the first solution found in the
neighbourhood that is better than the current solution is selected; the optimisation ends
when the maximum number of iterations is reached or no neighbouring solution is better
than the current solution.

Local search applied to all points and local search applied only to the best point
were tested by an initial experiment. To apply the local search only to the best point
provided much better solutions for the RTVP, so the local search applied only to the
best point is used in the EM algorithm.

5.4. Fine-tuning of the EM parameters

Fine-tuning the parameters of a metaheuristic algorithm is almost always a difficult
task. Although parameter values are extremely important because the results of the
metaheuristic for each problem are highly sensitive to them, the selection of parameter
values is commonly justified in one of the following ways (Eiben et al. 1999, Adenso-
Díaz and Laguna 2006): 1) “by hand”, on the basis of a small number of experiments
that are not specifically referenced; 2) using the general values recommended for a wide
range of problems; 3) using the values reported to be effective in other similar
problems; or 4) choosing values without any explanation.

Adenso-Díaz and Laguna (2006) proposed a new technique called CALIBRA for
fine-tuning the parameters of heuristic and metaheuristic algorithms. CALIBRA is
based on Taguchi’s fractional factorial experimental designs coupled with a local search
procedure. The local search is applied to promising regions of the parameter values and
the promising regions are found by means of Taguchi’s experimental designs. One
assumption of Taguchi’s experimental designs is the linear interdependence between the
parameters, whereas the interdependence is usually non-linear (Adenso-Díaz and
Laguna 2006). CALIBRA uses the analysis of the factorial experiment results only as a
guideline to narrow the search and to initiate the next round of experiments. Because the
search focuses on narrower ranges for each parameter value, the linear assumption
becomes less restrictive and the predicted optimal values approach to the true optimal
values.

CALIBRA was chosen for fine-tuning the EM algorithm parameters. A set of 60
representative training instances, which were generated as explained in Section 5, was
used. The values obtained for the size of the population (p) and the maximum number
of iterations of the local search (lsiter) are shown in Table 1.

The GRASP and PSO algorithms (the multi-start algorithm does not have
parameters) were also fine-tuned using CALIBRA and the same 60 training instances.
GRASP only has one parameter, which is the size of the candidate list (CL). DPSOpoi-
cpdyn has five parameters: the size of the population (p), the coefficient that weights the
inertia velocity (ω), the coefficient that weights the velocity to the best particle point
(c1), the coefficient that weights the velocity to the best swarm point (c2) and the factor
of the degree of the random modifications introduced (K). The parameter values
obtained are shown in Table 1.

 74

Table 1. Parameter values obtained with CALIBRA
EM GRASP DPSOpoi-cpdyn
p = 25 CL size = 3 p = 13
lsiter = 5 ω = 0.75
 c1 = 0.13
 c2 = 0.75
 K = 8.70

6. Computational experiment

The computational experiment for the EM algorithm is carried out for the same
instances and conditions used in García et al. (2006) and in García-Villoria and Pastor
(2009). That is, the algorithms ran 740 instances, which were grouped into four classes
(from CAT1 to CAT4 with 185 instances in each class) according to their size. The
instances were generated using the random values of D (number of units) and n (number
of models) shown in Table 2. For all instances and for each model i = 1,…,n, a random

value of di (number of units of model i) is between 1 and 1
2.5

D n− + such that

1.. ii n
d D

=
=∑ . All algorithms were coded in Java and the computational experiment

was carried out using a 3.4 GHz Pentium IV with 512 Mb of RAM.

Table 2. Uniform distribution for the D and n values of the test instances
 CAT1 CAT2 CAT3 CAT4
D ~U(25, 50) ~U(50, 100) ~U(100, 200) ~U(200, 500)
n ~U(3, 15) ~U(3, 30) ~U(3, 65) ~U(3, 150)

For each instance, the four algorithms were run for 50 seconds. Table 3 shows the

averages of the RTV values to be minimized for the global of 740 instances and for each
class of instances (CAT1 to CAT4).

Table 3. Averages of the RTV values for 50 seconds
 EM Multi-start GRASP DPSOpoi-cpdyn
Global 3,747.05 21,390.40 14,168.83 4,625.54
CAT1 19.14 12.08 15.47 16.42
CAT2 54.54 44.36 88.48 51.34
CAT3 260.79 226.90 510.44 610.34
CAT4 14,653.72 85,278.25 56,060.92 17,824.04

For the global of all instances, the EM algorithm is 18.99% better than DPSOpoi-

cpdyn, 73.55% better than the GRASP algorithm and 82.48% better than the multi-start
algorithm. Observing the results in Table 3 by class, we can see that a simple algorithm
such as the multi-start algorithm obtains the best averages for small and medium
instances (CAT1, CAT2 and CAT3) but a very poor average for large instances (CAT4).
On the other hand, DPSOpoi-cpdyn works well for small and large instances (CAT1,
CAT2 and CAT4) but obtains bad results for medium instances (CAT3). Finally, the EM
algorithm works fine for small and medium instances; and for large instances, which are
the most difficult to solve, it obtains the best results.

To complete the analysis of the results, their dispersion is observed. A measure of
the dispersion (let it be called σ) of the RTV values obtained by each algorithm mh =

 75

{EM, multi-start, GRASP, DPSOpoi-cpdyn } for a given instance, ins, is defined as
follows:

2

)(

)()(

RTV
RTVRTV),(







 −
= best

ins

best
ins

mh
insinsmhσ (5)

where)(RTV mh

ins is the RTV value of the solution obtained with the algorithm mh for the
instance ins, and)(RTV best

ins is, for the instance ins, the best RTV value of the solutions
obtained with the four algorithms. Table 4 shows the average σ dispersion for the global
of 740 instances and for each class of instances.

Table 4. Average σ dispersion regarding the best solution found for 50 seconds
 EM Multi-start GRASP DPSOpoi-cpdyn
Global 10.45 50.56 81.88 4.79
CAT1 1.62 0.04 0.65 0.76
CAT2 0.49 0.09 4.38 0.34
CAT3 0.24 0.13 7.28 5.29
CAT4 39.45 201.96 315.20 12.78

For the global of all instances, the EM procedure has the second least average σ

dispersion: 87.24% better than the GRASP algorithm and 79.33% better than the multi-
start algorithm, but the DPSOpoi-cpdyn σ dispersion is better than the EM procedure σ
dispersion. Observing the results in Table 4 by class, we see that the EM, multi-start and
PSO algorithms have a very stable performance for small instances (CAT1 and CAT2).
For medium instances (CAT3), only the EM and multi-start algorithms shows a very
stable performance. Finally, no algorithm has a very stable performance for the largest
instances (CAT4). This may occur because 50 computing seconds are not be enough
time for the algorithms to converge for the CAT4 instances. Table 5 and Table 6 show
the averages of the RTV values and the σ dispersion, respectively, for all instances and
for each class of instance (CAT1 to CAT4) obtained with the four algorithms when they
are run for 1,000 seconds.

Table 5. Averages of the RTV values for 1,000 seconds
 EM Multi-start GRASP DPSOpoi-cpdyn
Global 330.29 1,378.58 1,495.12 1,537.34
CAT1 18.64 10.93 13.59 14.35
CAT2 52.97 35.48 75.08 46.55
CAT3 157.20 160.67 428.86 143.96
CAT4 1,092.36 5,307.25 5,462.95 5,944.51

Table 6. Average σ dispersion regarding the best solution found for 1,000 seconds

 EM Multi-start GRASP DPSOpoi-cpdyn
Global 0.79 4.80 14.47 7.61
CAT1 1.84 0.04 0.48 0.52
CAT2 1.03 0.04 5.29 0.53
CAT3 0.21 0.12 10.98 0.07
CAT4 0.08 18.98 41.06 29.27

When a computing time of 1,000 seconds is used—which seems to be long enough

for all algorithms to converge (see Figure 2)—the EM algorithm is clearly the best
algorithm: it is 76.04%, 77.91% and 78.52% better than the multi-start, GRASP and
PSO algorithm, respectively. Moreover, when the EM algorithm has converged, it has a

 76

very stable performance for all type of instances (CAT1 to CAT4). That is, when the
best solution is not obtained with the EM algorithm, the EM solution is always very
close to the best solution.

Figure 2. Average of the RTV values obtained during the execution time

7. Conclusions and future research

The EM metaheuristic is a population-based metaheuristic for optimisation recently
proposed by Birbil and Fang (2003). The method uses an attraction-repulsion
mechanism to move the points of the population towards the optimality. In this paper,
an EM algorithm is presented for solving the Response Time Variability Problem
(RTVP), which has been recently appeared in the literature.

This scheduling problem arises in a variety of real-life environments including
mixed-model assembly lines, multi-threaded computer systems, periodic machine
maintenance, and waste collection. The aim of the RTVP is to minimize the variability
in the distances between any two consecutive units of the same model. Since the RTVP
is an NP-hard problem, heuristic and metaheuristic methods are needed to solve real-life
instances. García et al. (2006) and García-Villoria and Pastor (2009) have proposed a
multi-start, a GRASP and several PSO algorithms for solving the RTVP. A
computational experiment was done and the results obtained with the EM algorithm are
better than the results of the aforementioned algorithms. Moreover, the EM algorithm
has a very stable performance when it has converged.

There are two approaches for applying a metaheuristic that works in a real space for
solving combinatorial optimisation problems: to adapt the algorithm for working with a
sequence of integer numbers or to adapt the representation of the solution as a real point
with a random key representation. One of the best referenced procedures is a PSO
algorithm (DPSOpoi-cpdyn) that follows the first approach; on the other hand, the
proposed EM algorithm follows the second approach. We propose as a future research
to develop a version of DPSOpoi-cpdyn following the second approach, and to develop
a version of the EM algorithm following the first approach. The objective is to obtain
better results for the RTVP.

 77

Acknowledgements

This paper was supported by the Spanish Ministry of Education and Science under
project DPI2007-61905 and co-funded by the European Regional Development Fund
(ERDF). The authors wish to express their gratitude to the anonymous reviewers for
their valuable comments and suggestions, which have improved the quality of this
paper.

References

Adenso-Díaz, B. and Laguna, M., 2006. Fine-tuning of algorithms using fractional

experimental designs and local search. Operations Research, 54, 99-114.
Aigbedo, Henry, 2004. Analysis of parts requirements variance for a JIT supply chain.

International Journal of Production Research, 42, 417-430.
Anily, S., Glass, C.A. and Hassin, R., 1998. The scheduling of maintenance service,

Discrete Applied Mathematics, 82, 27-42.
Balinski, M.L. and Young, H.P., 1982. Fair Representation: meeting the ideal of one

man, one vote. Yale University Press. New Haven CT.
Bean, J.C., 1994. Genetic Algorithms and Random Keys for Sequencing and

Optimization. ORSA Journal on Computing, 6, 154-160.
Birbil, S.I., 2002. Stochastic global optimization techniques. PhD Thesis, North

Carolina, State University, Raleigh, NC.
Birbil, S.I. and Fang, S.C., 2003. An Electromagnetism-like Mechanism for Global

Optimization. Journal of Global Optimization, 25, 263-282.
Chang, P.-C., Chen, S.-H and Fan, C.-Y, 2009. A hybrid electromagnetism-like

algorithm for single machine scheduling problem. Expert Systems with
Applications, 36, 1259-1267.

Corominas, A., Kubiak, W. and Pastor, R., 2006. Mathematical programming modelling
of the response time variability problem [online]. IOC, Universistat Politècnica
de Catalunya, Spain. Available from: http://hdl.handle.net/2117/408.

Corominas, A., Kubiak, W. and Moreno, N., 2007. Response time variability. Journal
of Scheduling, 10, 97-110.

Debels, D. and Vanhoucke, M., 2006. The Electromagnetism Meta-heuristic Applied to
the Resource-Constrained Project Scheduling Problem. Lecture Notes in
Computer Science, 3871, 259-270.

Debels, D., De Reyck, B., Leus, R. and Vanhoucke, M., 2006. A hybrid scatter
search/electromagnetism meta-heuristic for project scheduling Problem.
European Journal of Operational Research, 169, 638-653.

Ding, F.-Y. and He, J., 2007. A heuristic procedure for the automobile assembly-line
sequencing problem considering multiple product options. International Journal
of Production Research, doi: 10.1080/00207540701381291. Available online, 13
July 2007.

Dong, L., Melhem, R. and Mossel, D., 1998. Time slot allocation for real-time
messages with negotiable distance constraint requirements. Real-time
Technology and Application Symposium. RTAS, Denver.

Eiben, A.E., Hinterding, R. and Michalewicz, Z., 1999. Parameter control in
evolutionary algorithms. IEEE Transactions on evolutionary computation, 3,
124-141.

 78

Feo, T.A. and Resende, M.G.C., 1989. A probabilistic heuristic for a computationally
difficult set covering problem. Operations Research Letters, 8, 67-81.

García, A., Pastor, R. and Corominas, A., 2006. Solving the Response Time Variability
Problem by means of metaheuristics. Special Issue of Frontiers in Artificial
Intelligence and Applications on Artificial Intelligence Research and
Development, 146, 187-194.

García-Villoria, A. and Pastor, R., 2009. Introducing dynamic diversity into a discrete
particle swarm optimization. Computers & Operations Research, 36, 951-966.

Herrmann, J.W., 2007. Generating Cyclic Fair Sequences using Aggregation and Stride
Scheduling [online]. University of Maryland, USA. Available from:
http://hdl.handle.net/1903/7082

Kennedy, J. and Eberhart, R.C., 1995. Particle swarm optimization. IEEE International
Conference on Neural Networks,1942-1948.

Kubiak, W., 1993. Minimizing variation of production rates in just-in-time systems: A
survey. European Journal of Operational Research, 66, 259-271.

Kubiak, W. and Sethi, S.P., 1994. Optimal just-in-time schedules for flexible transfer
lines. The International Journal of Flexible Manufacturing Systems, 6, 137-154.

Maenhout, B. and Vanhoucke, M., 2007. An electromagnetic meta-heuristic for the
nurse scheduling problem. Journal of Heuristics, 13, 359-385.

Martí, R., 2003. Multi-start methods. In: Glover and Kochenberger, eds. Handbook of
Metaheuristics. Kluwer Academic Publishers, 355-368.

Miltenburg, J., 1989. Level schedules for mixed-model assembly lines in just-in-time
production systems. Management Science, 35, 192-207.

Monden, Y., 1983. Toyota Production Systems. Industrial Engineering and
Management Press. Norcross, GA.

Steiner, G. and Yeomans S., 1993. Level Schedules for Mixed-Model, Just-in-Time
Processes. Management Science, 39, 728-735.

Tsou, C.-S. and Kao, C.-H., 2008. Multi-objective inventory control using
electromagnetism-like meta-heuristic. International Journal of Production
Research, 46, 3859-3874.

Waldspurger, C.A. and Weihl, W.E., 1995. Stride Schedulling: Deterministic
Proportional-Share Resource Management [online]. Institute of Technology,
MIT Laboratory for Computer Science. Available from:
http://ebbets.poly.edu/wein/cs6243/stride.pdf.

Wu, P., Yang, K.-J. and Hung, Y.-Y., 2004. A study of electromagnetism-like
mechanism for training fuzzy neural network. In Proc. 1st Annu. Conf. OR
Society at Taiwan, 471-480.

Yuan, K., Hennequin, S., Wang, X. and Gao, L., 2006. A new heuristic-EM for
permutation flowshop scheduling. 12th IFAC Symposium on Information Control
Problems in Manufacturing.

 79

Solving the Response Time Variability Problem by means of a
psychoclonal approach

Article published as [Journal of Heuristics, Published online on 15 July 2008] [DOI:
http://dx.doi.org/ 10.1007/s10732-008-9082-2] © [copyright Springer]

Solving the Response Time Variability Problem by
means of a psychoclonal approach*

Alberto GARCÍA-VILLORIA

*

The concept of fair sequence has emerged independently from scheduling problems of
diverse environments, principally from manufacturing, hard real-time systems,
operating systems and networks environments. The common framework for these
scheduling problems is defined by Kubiak (2004) as to build a fair sequence using n
symbols, where symbol i = 1,...,n is to occur given number di of times in the sequence.
The fair sequence will be that one that allocates a fair share of positions in any prefix of
the sequence to each symbol i. This fair or ideal share of positions allocated to symbol i
in a sequence prefix of length k is proportional to a relative importance (di) of symbol i

with respect to the total copies of competing symbols (equal to

 and Rafael PASTOR
Institute of Industrial and Control Engineering

Technical University of Catalonia (UPC)
{alberto.garcia-villoria / rafael.pastor}@upc.edu

Abstract. The Response Time Variability Problem (RTVP) is a combinatorial scheduling
problem which has recently appeared in the literature. This problem has a wide range of real-
life applications in, for example, manufacturing, hard real-time systems, operating systems
and network environment. Originally, the RTVP occurs whenever products, clients or jobs
need to be sequenced in such a way that the variability in the time between the instants at
which they receive the necessary resources is minimized. Since RTVP is hard to solve,
heuristic techniques are needed for solving it. In two previous studies, three metaheuristic
algorithms (a multi-start, a GRASP and a PSO algorithm) were proposed to solve the RTVP.
These three metaheuristic algorithms have been the most efficient to date in solving non-small
instances of the RTVP. We propose solving the RTVP by means of a psychoclonal algorithm
based approach. The psychoclonal algorithm inherits its attributes from the need hierarchy
theory proposed by Maslow and the artificial immune system (AIS) approach, specifically the
clonal selection principle. In this paper we compare the proposed psychoclonal algorithm with
the other three metaheuristic algorithms previously mentioned and show that, on average, the
psychoclonal algorithm strongly improves the obtained results.

Keywords: response time variability, fair sequences, scheduling, psychoclonal algorithm,
clonal selection, metaheuristics

1. Introduction

1

n

i
i

d
=
∑). There is not a

* Sponsored by the Spanish Ministry of Education and Science’s project DPI2007-61905; co-funded by the FEDER.
* Corresponding author: Alberto García-Villoria, IOC – Institute of Industrial and Control Engineering, Av. Diagonal 647 (Edif.
ETSEIB), 11th floor, 08028 Barcelona, Spain; e-mail: alberto.garcia-villoria@upc.edu

 80

universally definition of fairness because several reasonable metrics of fairness can be
defined according to the specific problem.

The first problem in which seems to have appeared the idea of fair sequence is the
sequencing on the mixed-model assembly production lines at Toyota Motor Corporation
under the just-in-time (JIT) production system. One of the most important JIT
objectives is to get rid of all kinds of waste and inefficiency and, according to Toyota,
the main waste is due to the stocks. To reduce the stock, JIT production systems require
producing only the necessary models in the necessary quantities at the necessary time.
To achieve this, one main goal, as Monden (1983) says, is scheduling the units to be
produced to keep a constant consumption rates of the components involved in the
production process. Miltenburg (1989) deals with this scheduling problem and he
assumes that models require approximately the same number and mix of parts. Thus, he
considers only the demand rates for the models. Miltenburg proposes four objective
functions based on the fairness idea of scheduling the models so that the proportion of
model i produced, over each time period, to the total production is as close to its ideal
production as possible. That is, if the number of models is n (i = 1,...,n) and the units of
model i to be produced is di, then the total number of units to be produced (D) is equal

to
1

n

i
i

d
=
∑ and the ideal production of model i at the period time k (k = 1,...,D) is id k

D
.

This problem is known as Product Rate Variation (PRV) problem (Kubiak 1993).
Kubiak and Sethi (1991) reformulated the PRV problem as an assignment problem and,
therefore, it can be solved with an algorithm whose complexity is polynomial in D.

Independently of assembly lines, the fair sequencing idea has appeared in computer
multithreaded systems when Waldspurger and Weihl (1995) proposed the stride
scheduling to resource allocation in these systems. Multithreaded systems (operating
systems, network servers, media-based applications, etc.) need to manage the scarce
resources in order to service requests of n clients. Resources are allocated in discrete
time slices (authors refer to the duration of a standard time slice as a quantum).
Resource rights are represented by tickets and each client i has a given number di of
tickets. A fair scheduling is obtained when the resources that a client has received (i.e.
the number of quanta in which has been assigned) during the first k allocations, k =

1,...,D (where
1

n

i
i

D d
=

= ∑), are directly proportional to its ticket allocations. Thus, a

client with twice as many tickets as another will receive twice as much of a resource in
a given time interval. Waldspurger and Weihl suggest two metrics to evaluate the
fairness of a sequence: the throughput error and the response time variability. The
throughput error measures the maximum absolute deviation, for each client i and

allocation k, between the resources received and the ideal resources id k
D

 
 
 

. The

problem of minimizing the throughput error can be efficiently solved using the Earliest
Due Date rule defining fictitious earliest and latest due dates (see Kubiak 2004).

The problem of minimizing the response time variability is known as Response Time
Variability Problem (RTVP). Waldspurger and Weihl define the response time as the
elapsed time from a client’s completion of one quantum up to including its completion
of next. Since the quantum duration is fixed, this definition is equivalent to the number

 81

of quanta between a client’s two consecutive quantum allocations plus one. Thus, the
response time variability for a client is the variance of its response times.

This metric is not exclusively useful on computer system environments. For example, in
our experience with practitioners of manufacturing industries, we noticed that
practitioners usually refer to a good mixed-model sequence not in terms of ideal
production as it is usual in the literature (Miltenburg 1989), but in terms of having
distances between the units for the same model as regular as possible (i.e. there should
not be variance in the response times of the models). Herrmann (2007) found the RTVP
while was working with a healthcare facility that needed to schedule the collection of
waste from waste collection rooms throughout the building. Given data about how often
a trash handler needs to visit each room, the facilities manager wanted these visits to
occur as regularly as possible so that excessive waste would not collect in any room.
For instance, if a room needs four visits per eight-hour shift, then, ideally, it would be
visited every two hours. The problem is difficult because different rooms require a
different number of visits per shift. Herrmann proposed a heuristic algorithm based on
the stride scheduling for solving it.

The RTVP is, unfortunately, NP-hard (Corominas et al. 2007). To solve the RTVP,
Waldspurger and Weihl (1995) proposed the stride scheduling, which is a greedy
heuristic algorithm. Corominas et al. (2007) proposed a mixed integer linear
programming (MILP) model and five greedy heuristic algorithms. In Corominas et al.
(2006), an improved MILP model is proposed (the practical limit to obtain optimal
solutions is 40 units to be scheduled). García et al. (2006) proposed seven metaheuristic
algorithms: a multi-start, a GRASP (Greedy Randomized Adaptive Search Procedure)
and four variants of a discrete PSO (Particle Swarm Optimization) algorithm. Finally,
eleven variants of a discrete PSO algorithm were used in García-Villoria and Pastor
(2007).

In this paper, a psychoclonal algorithm based approach is proposed to solve the RTVP.
Psychoclonal is a very new population-based metaheuristic that was first proposed by
Tiwari et al. (2005). This metaheuristic inherits its attributes from the need hierarchy
theory of Maslow (1954) and the artificial immune system (AIS) approach, specifically
the clonal selection principle (Gaspar and Collard 2000; de Castro and von Zuben
2002). There are five levels of needs arranged in the Maslow’s hierarchy, named
physiological needs, safety needs, social needs, growth needs and self-actualization
needs. Clonal selection explains the response of immune systems to non-self antigens.
The cells (lymphocytes) that produce antibodies that can recognize the intruding
antigens are selected to proliferate by cloning and further are undergone to an affinity
maturation process that consists in hypermutations in order to obtain cells that produce
antibodies that can improve their affinities to the non-self antigens. The worst cells are
undergone receptor editing: cells are deleted and replaced by new ones. The whole
process continues until the self-actualization level is reached.

The psychoclonal metaheuristic has yielded very good results when it has been used to
solve several scheduling and combinatorial optimization problems (Prakash and Tiwari
2005; Tiwari et al. 2005; Kumar et al. 2006a, 2006b; Singh et al. 2006). The proposed
psychoclonal algorithm for solving the RTVP is compared with the most efficient
procedures for solving non-small instances published to date: the multi-start and the
GRASP algorithms proposed in García et al. (2006) and the PSO algorithm called

 82

DPSOpoi-cpdyn (García-Villoria and Pastor 2007). On average, the psychoclonal
algorithm improves strongly on previous results.

The rest of the paper is organized as follows. Section 2 presents a formal definition of
the RTVP and briefly exposes the three metaheuristic procedures presented by García et
al. (2006) and García-Villoria and Pastor (2007) for its solution. Section 3 describes the
basic scheme of the psychoclonal metaheuristic. Section 4 proposes a psychoclonal
algorithm based approach for solving the RTVP. Section 5 provides the computational
experiment and the comparison with the other metaheuristics. Finally, some conclusions
are given in Section 6.

2. The Response Time Variability Problem (RTVP)

The aim of the Response Time Variability Problem (RTVP) is to minimize variability in
the distances between any two consecutive copies of the same symbol.

The RTVP is formulated as follows. Let n be the number of symbols, id the number of
copies to be scheduled of the symbol i (i = 1,…,n) and D the total number of copies

(
1

n

i
i

D d
=

= ∑). Let s be a solution of an instance in the RTVP that consists of a circular

sequence of copies (Dssss 21=), where sj is the copy sequenced in position j of
sequence s. For all symbol i in which 2id ≥ , let i

kt be the distance between the positions
in which the copies k + 1 and k of the symbol i are found (where the distance between
two consecutive positions is considered equal to 1). Since the sequence is circular,
position 1 comes immediately after position D; therefore, i

di
t is the distance between the

first copy of the symbol i in a cycle and the last copy of the same symbol in the
preceding cycle. Let it be the average distance between two consecutive copies of the

symbol i (
i

i d
Dt =). For all symbol i in which 1=id , it1 is equal to it . The objective is

to minimize the metric Response Time Variability (RTV) which is defined by the
following expression:

 2

1 1
()

idn
i
k i

i k
RTV t t

= =

= −∑∑ (1)

For example, let 3n = , 2=Ad , 2=Bd and 4=Cd ; thus, 8=D , 4=At , 4=Bt and

2.Ct = Any sequence is a feasible solution. For example, the sequence (C, A, C, B, C,
B, A, C) is a solution, where () ()() () ()()2 2 2 25 4 3 4 2 4 6 4RTV = − + − + − + −

() () () ()()2 2 2 22 2 2 2 3 2 1 2 2 8 2 1 2+ − + − + − + − = + + = .

As has been introduced in Section 1, the best type of procedures to date for solving the
RTVP are three metaheuristics. Therefore, next the three best algorithms based on these
metaheuristics are briefly explained (for more details of the three algorithms, see García
et al. 2006 and García-Villoria and Pastor 2007).

 83

The multi-start method is based on generating initial random solutions and on
improving each of them to find a local optimum, which is usually done by means of a
local search procedure (Martí 2003). The multi-start proposed in García et al. (2006) is
as follows. Random solutions are generated as follows. For each position, a symbol to
be sequenced is chosen at random. The probability of each symbol is equal to the
number of copies of this symbol that remain to be sequenced divided by the total
number of copies that remain to be sequenced. The local search procedure used is
applied as follows. A local search is performed iteratively in a neighborhood that is
generated by interchanging each pair of two consecutive symbols of the sequence that
represents the current solution; the best solution in the neighborhood is chosen; the
optimization ends when no neighboring solution is better than the current solution.

GRASP, designed by Feo and Resende (1989), can be considered as a variant of the
multi-start method in which the initial solutions are obtained using directed randomness.
The solutions are generated by means of a greedy strategy in which random steps are
added and the choice of elements to be included in the solution is adaptive. The random
step in the GRASP proposed by García et al. (2006) consists of selecting the next
symbol to be sequenced from a set called candidate list; the probability of each
candidate symbol is proportional to the value of its Webster index, which is based on
the parametric method of apportionment with parameter 1

2δ = (Balinski and Young

1982). The Webster index for the symbol i (i = 1,…,n) is evaluated as
()

i

ik

d
x δ+

, where

xik is the number of copies of the symbol i in the sequence of length k = 0,…,D (assume
xi0 = 0). The candidate list is composed by the symbols with greater value of their
Webster index. The local search procedure applied to the initial solutions is the same
local search that is applied by the multi-start method.

PSO is a population-based metaheuristic algorithm designed by Kennedy and Eberhart
(1995), which is based on an analogy of the social behaviour of flocks of birds when
they search for food. The population or swarm is composed of particles (birds), which
have a multi dimensional real point (which represents a feasible solution) and a velocity
(the movement of the point in the n-dimensional real space). The velocity of a particle is
typically a linear combination of three types of velocity: 1) the inertia velocity; 2) the
velocity to the best point found by the particle; and 3) the velocity to the best point
found by the swarm. The PSO algorithm iteratively modifies the point and the velocity
of each particle as it looks for the optimal solution. In the DPSOpoi-cpdyn algorithm
(García-Villoria and Pastor 2007), random modifications to the points of the particles
are introduced. The frequency of the modifications changes dynamically according to
the homogeneity of the swarm. The aim is preventing a premature convergence and
enabling the PSO algorithm to escape from a local optimum. Although the PSO
algorithm was originally designed for working in an n-dimensional real space,
DPSOpoi-cpdyn is adapted to work with a sequence that represents the solution. In this
adaptation of the PSO algorithm, a point is now the sequence of copies of the symbols
that represents a solution and the velocity is an ordered list of transformations that must
be applied to the particle so it changes from its current point to another point; each
transformation consists of a pair of positions of the point (sequence) to be swapped. In
the case of the velocity to the best point found by the particle, this velocity is a list of
transformations needed to obtain the best particle point from the current position; the
case is the same for the velocity to the best point found by the swarm.

 84

3. The psychoclonal metaheuristic

The psychoclonal metaheuristic has been recently proposed by Tiwari et al. (2005)
which has been successfully used for solving the following scheduling and
combinatorial problems: the disassembly line balancing problem (Prakash and Tiwari
2005), the assembly configuration problem (Tiwari et al. 2005), the flow shop problem
(Kumar et al. 2006a), the make-to-stock inventory deployment problem (Kumar et al.
2006b) and the product mix decision problem (Singh et al. 2006).

This metaheuristic is inspired by the need hierarchy theory of Maslow (1954) and the
clonal selection principle developed by Gaspar and Collard (2000). First, the salient
concepts of these theories are briefly explained in Section 3.1. Next, the psychoclonal
metaheuristic scheme is described in Section 3.2.

3.1. Background theories of the psychoclonal metaheuristic

Psychologists have investigated the motivations of people behavior during their
lifetime. Maslow proposed a theory, known as need hierarchy theory, which
hypothesizes that the people behavior is motivated for satisfying their needs. These
needs are grouped into five sets that are hierarchically arranged according to the degree
of necessity. These levels are the following (Tiwari et al. 2005): A) physiological needs
(in optimization, this corresponds to the generation of possible sequences based upon
the problem environment), B) safety needs (evaluation of a particular entity or candidate
solution), C) social needs (selection and interaction between candidate solutions), D)
growth needs (candidate solutions diversify to extend the search space) and E) self-
actualization needs (a stop condition is required to decide the near-optimal solution). In
order to satisfy the upper levels, first the lowest levels have to be satisfied.

Artificial Immune Systems (AIS) are an emerging kind of computational intelligence
paradigm inspired by the biological immune system of vertebrate animals. Their
applications include optimization, anomaly detection, fault diagnosis and patter
recognition (de Castro and Timmis 2002). Wang et al. (2004) classify the methods
based in AIS in three main categories: clonal selection principle-based, Genetic
Algorithms (GA)-aided and immune networks-based approaches.

The clonal selection explains the response of the immune system of the vertebrate
animals when they are attacked by foreign antigens. Immune system has lymphocytes or
white cells that secrete antibodies that neutralize the foreign antigens (since a given
lymphocyte only produces a single type of antibodies, in AIS there is no distinction
between a lymphocyte and its antibodies). The effectiveness of the immune response
depends on the affinity that has the antibodies with the antigens. The first time that the
body is exposed to a given antigen, immune system has low affinity antibodies, each
one with different affinity. But immune system is able to learn how to produce high
affinity antibodies (it is known as reinforcement learning). The antibodies are selected
to proliferate according to their affinities (clonal selection). Next, antibody clones are
diversified by two mechanisms: hypermutation and receptor editing. This phenomenon
is referred as maturation of the immune response. The hypermutation introduces
random changes into an antibody inversely proportional to its affinity with the antigen.
A large proportion of the hypermuted clones becomes more dysfunctional but, however,
occasionally an effective hypermutation improves their affinity. The receptor editing

 85

deletes the lowest affinity antibodies and develops new ones through genetic
recombination; in AIS, the genetic recombination is modeled creating a new antibody at
random. Figure 1 illustrates hypermutation guides the affinity to a local optimum
whereas receptor editing escapes from the local optimum.

Figure 1. Representation of hypermutation and receptor editing

The reinforcement learning strategy makes that immune system continuously improving
its efficiency to block foreign antigens. Since the body would be expected a given
antigen more times during its lifespan, immune system keeps clones of the highest
affinity antibodies (immune memory). Therefore, immune system ensures speed and
accuracy in its responses across the time.

3.2. The psychoclonal metaheuristic scheme

The aim of Tiwari et al. (2005) when they developed the psychoclonal metaheuristic
was to obtain a generic scheme based on the need of explotation (i.e. the local search)
and the exploration (i.e. the global search) of the search space. The need hierarchy
theory of Maslow and the clonal selection principle were used by Tiwari et al. (2005) to
develop the psychoclonal metaheuristic, which scheme is as follows:

Need level A (physiological needs). Each antibody represents a solution. Thus, an

affinity function has to be defined based on the objective function. It is also
required an initial population of antibodies generated at random depending upon the
environment of the problem.

Need level B (safety needs). The antibodies are exposed to the antigen, i.e. the value of

their affinity function is calculated.

Need level C (social needs). An interaction is carried out between the antibodies to

identify the best antibodies of the population. The best antibodies are selected and
cloned proportionally to their affinity function value.

 86

Need level D (growth needs). The generated clones are submitted for hypermutation
with a rate inversely proportional to their affinity function value. After satisfaction
of need level D, it is necessary to check the needs of level B (i.e. to calculate the
affinity function values of the clones after hypermutation).

Need level E (self-actualization needs). The best clones are selected to be part of the

new population generation. In addition, new antibodies generated at random are
added to the new generation (receptor editing). The process repeats until the self-
actualization is reached (e.g. a maximum number of generation or a maximum
computing time).

4. The psychoclonal algorithm based approach for solving the RTVP

In Section 4.1 we design an algorithm based on the Pychoclonal metaheuristic for
solving the RTVP. The algorithm has several parameters that influence in its efficiency.
The selection of their values is discussed in Section 4.2.

4.1. Design of the psychoclonal algorithm

In this paper we propose an algorithm for solving the RTVP based on the psychoclonal
metaheuristic.

The first consideration is the choice of the antibody representation for a solution. For
the RTVP, the more intuitive representation consists in a D-length sequence of the

symbols (where
1

n

i
i

D d
=

= ∑). The design of algorithm is explained below:

A1. The affinity function f for the antibody ab is defined as ()

1() ()f ab RTV ab ε= +

where RTV(ab) is the RTV value of the solution represented by ab and ε is a small
value to avoid a division by zero.

A2. The initial population is set by antibodies that are generated as in the multi-start

algorithm. That is, for each position of the sequence (antibody), a symbol to be
sequenced is chosen at random. The probability of each symbol is equal to the
number of copies of this symbol that remain to be sequenced divided by the total
number of copies that remain to be sequenced. The total number of antibodies that
form the population is N.

B. For each antibody ab of the current population, f(ab) is evaluated.

C. The best n antibodies according to their affinity value are selected to be cloned. The

number of clones (NC) that are generated for each selected antibody is calculated
with the following expression:

 () round , 1, ,i
NNC ab i n

i
β ⋅ = = 

 
 (2)

 where abi is the ith best antibody of the current population, round is an operator
that rounds its argument toward the closest integer and β is a multiplying factor.

 87

D1. The clones are submitted for hypermutation with a rate inversely proportional to

their affinity value. The hypermutation rate (σ) for a clone ab is calculated with the
following expression:

*

()

() max 1, round
f abK

fab D eσ
−  

 = ⋅     
 (3)

where K is the control factor of decay and f* is the affinity value of the best
antibody of the current population. The hypermutation rate indicates how many
simple mutations are applied to the cloned antibodies. A simple mutation consists
in choosing randomly two positions of the sequence that represents the antibody
and swapping them. In order to maintain the best antibodies, we keep one original
(parent) antibody unhypermutated.

D2. For each cloned antibody ab, f(ab) is evaluated.

E1. The current population is set with the (N - d)th best cloned antibodies.

E2. The current population is completed adding d new antibodies generated at ramdon

as explained in step A2.

E3. Until the computing time of the algorithm does not reach a preset time go to step B.

The way that the number of clones (Equation 2) and the hypermutation rate (Equation 3)
are evaluated is based on the CLONALG algorithm (de Castro and von Zuben 2002),
which is one of the most widely applied method based on AIS (Wang et al. 2004).

The algorithm that we propose has 5 parameters: N (size of the population), n (number
of the best antibodies to be cloned), β (multiplying factor to calculate the number of
clones of a given antibody), K (control factor of decay of the hypermutation rate) and d
(the number of new generated antibodies to be added into the population). Their suitable
values are discussed in the next section.

4.2. Fine-tuning of the psychoclonal algorithm parameters

Fine-tuning the parameters of a metaheuristic algorithm is almost always a difficult
task. Although the parameter values are extremely important because the results of the
metaheuristic for each problem are very sensitive to them, the selection of parameter
values is commonly justified in one of the following ways (Eiben et al. 1999; Adenso-
Díaz and Laguna 2006): 1) “by hand” on the basis of a small number of experiments
that are not specifically referenced; 2) by using the general values recommended for a
wide range of problems; 3) by using the values reported to be effective in other similar
problems; or 4) by choosing values without any explanation.

Adenso-Díaz and Laguna (2006) proposed a new technique called CALIBRA for fine-
tuning the parameters of heuristic and metaheuristic algorithms. CALIBRA is based on
Taguchi’s fractional factorial experimental designs coupled with a local search
procedure.

 88

CALIBRA has been chosen for fine-tuning the psychoclonal algorithm parameters
using a set of 60 representative training instances (generated as explained in Section 5).
The following parameter values are obtained: N = 25, n = 3, β = 1.3, K = 7.6 and d = 3.

The GRASP and PSO algorithms (the multi-start algorithm has not parameters) are also
fine-tuned with CALIBRA and the same 60 training instances. GRASP has only one
parameter, which is the size of the candidate list; the obtained value is 3. DPSOpoi-
cpdyn has five parameters and the following values are obtained: size of the population
= 13, coefficient that weights the inertia velocity (ω) = 0.75, coefficient that weights the
velocity to the best particle point (c1) = 0.13, coefficient that weights the velocity to the
best swarm point (c2) = 0.75 and factor of the degree of the random modifications
introduced (K) = 8.70.

5. Computational experiment

The multi-start, GRASP and PSO algorithms explained in Section 2 are the most
efficient algorithms published to date for solving non-small RTVP instances. Therefore,
we compare our proposed psychoclonal algorithm with them.

The computational experiment for the four metaheuristic algorithms was carried out for
the same instances and conditions used in García et al. (2006). That is, the algorithms
ran 740 instances which were grouped into four classes (185 instances in each class)
according to their size. The instances in the first class (CAT1) were generated using a
random value of D (number of copies) uniformly distributed between 25 and 50, and a
random value of n (number of symbols) uniformly distributed between 3 and 15; for the
second class (CAT2), D was between 50 and 100 and n between 3 and 30; for the third
class (CAT3), D was between 100 and 200 and n between 3 and 65; and for the fourth
class (CAT4), D was between 200 and 500 and n between 3 and 150. For all instances
and for each type of symbol i = 1,…,n, a random value of di (number of copies of the

symbol i) was between 1 and 1
2.5

D n− + such that
1

n

i
i

d D
=

=∑ . All algorithms were

coded in Java and the computational experiment was carried out using a 3.4 GHz
Pentium IV with 512 MB of RAM.

For each instance, the four metaheuristics were run for 50 seconds. Table 1 shows the
averages of the RTV values to be minimized for the global of 740 instances and for each
class of instances (CAT1 to CAT4).

 Psychoclonal Multi-start GRASP DPSOpoi-cpdyn
Global 235.68 21,390.39 14,168.83 4,625.54
CAT1 14.92 12.08 15.47 16.42
CAT2 44.25 44.36 88.48 51.34
CAT3 137.07 226.90 510.44 610.34
CAT4 746.48 85,278.25 56,060.92 17,824.04

Table 1. Averages of the RTV values for 50 seconds

For the global of all instances, the psychoclonal algorithm is 94.90% better than
DPSOpoi-cpdyn, 98.34% better than the GRASP algorithm and 98.90% better than the
multi-start algorithm. Observing the results in Table 1 by class, we can see that a simple

 89

algorithm such as the multi-start algorithm obtains good averages for small instances
(CAT1 and CAT2) but a very poor average for large instances (CAT4). On the other
hand, DPSOpoi-cpdyn produces quite good results for small instances (CAT1 and
CAT2), worse results for medium instances (CAT3) and better results for large ones.
Finally, the psychoclonal algorithm works very well for all class of instances. For the
smallest instances (CAT1) it is the second best shortly overcome by the multi-start
algorithm. For the remaining classes, the psychoclonal algorithm obtains the best RTV
averages. For CAT2 instances, it is 0.25%, 49.99% and 13.81% better than the multi-
start, GRASP and PSO algorithms, respectively. For CAT3 instances, it is 39.59%,
73.15% and 77.54% better than the multi-start, GRASP and PSO algorithms,
respectively. Finally, for CAT4 instances, it is 99.12%, 98.67% and 95.81% better than
the multi-start, GRASP and PSO algorithms, respectively.

In Table 2 we compare the number of times that each algorithm reaches the best RTV
value obtained with all four algorithms. The results are shown for the 740 instances
overall and for each class of instances.

 Psychoclonal Multi-start GRASP DPSOpoi-cpdyn
Global 447 231 190 66
CAT1 61 147 102 37
CAT2 72 70 45 27
CAT3 148 14 24 2
CAT4 166 0 19 0

Table 2. Number of times that the best solution is reached

As we expect from the results in Table 1, Table 2 shows that the psychoclonal algorithm
reaches the best solution the greatest number of times (in 60.40% for the global of all
instances). Observing the results by class, we can see that for CAT3 instances, although
the multi-start algorithm obtains a better RTV average than the GRASP, the GRASP
algorithm reaches mores times the best solution. And for CAT4 instances the GRASP
algorithm reaches more times the best solution than DPSOpoi-cpdyn, although
DPSOpoi-cpdyn is better according to the RTV value average.

To complete the analysis of the results, their dispersion is observed. A measure of the
dispersion (let it be called σ) of the RTV values obtained by each algorithm alg =
{psychoclonal, multi-start, GRASP, DPSOpoi-cpdyn} for a given instance, ins, is
defined as follows:

2() ()

()

RTV RTV(,)
RTV

alg best
ins ins

best
ins

alg insσ
 −

=  
 

 (5)

where ()RTV alg

ins is the RTV value of the solution obtained with the algorithm alg for the
instance ins, and)(RTV best

ins is, for the instance ins, the best RTV value of the solutions
obtained with the four metaheuristics. Table 3 shows the average σ dispersion for the
global of 740 instances and for each class of instances.

 90

 Psychoclonal Multi-start GRASP DPSOpoi-cpdyn
Global 0.23 12,562.54 27,928.94 292.60
CAT1 0.79 0.05 0.71 0.78
CAT2 0.11 0.10 5.70 0.45
CAT3 0.02 0.75 17.74 21.13
CAT4 0.01 50,249.23 111,691.60 1,148.03

Table 3. Average σ dispersion regarding the best solution found

For the global of all instances, the psychoclonal algorithm has the least average σ
dispersion very far from the dispersion of the other algorithms. Observing the results in
Table 3 by class, we see that the behavior of the dispersions is almost analogous to the
behavior of the RTV values. For the smallest instances (CAT1 and CAT2), the multi-
start algorithm gives the smallest average dispersion and it is near followed by the
psychoclonal algorithm. For the medium and big instances (CAT3 and CAT4), the
psychconal algorithm shows clearly the least dispersion, followed by the multi-start
algorithm for the medium instances. Although the multi-start algorithm gives the worst
RTV solutions for the CAT4 instances, it has less dispersion than the GRASP algorithm;
this indicates that multi-start algorithm is more stable than the GRASP algorithm in this
case. To summarize, the results in Tables 1-3 show that the psychoclonal algorithms has
a very good performance in terms of the RTV values and also has a very stable behavior
for all classes of instances.

The bad results for the larger instances (CAT4) obtained by the multi-start, GRASP and
PSO algorithms may occur because 50 seconds might not be enough time for them to
converge. Table 4 shows the averages of the RTV values for the global of all instances
and for each class of instances (CAT1 to CAT4) obtained with the four algorithms when
they are run for 1,000 seconds.

 Psychoclonal Multi-start GRASP DPSOpoi-cpdyn
Global 161.60 1,378.58 1,495.12 1,537.34
CAT1 14.90 10.93 13.59 14.35
CAT2 39.90 35.48 75.08 46.55
CAT3 122.38 160.67 428.86 143.96
CAT4 469.23 5,307.25 5,462.95 5,944.51

Table 4. Averages of the RTV values for 1000 seconds

With 1000 seconds of execution time, which seems time enough for the convergence of
the four algorithms (see Figure 2), the psychoclonal algorithm is for the global of all
instances 88.28%, 88.19% and 89.49% better than the multi-start, GRASP and PSO
algorithms, respectively. Although the multi-start, GRASP and PSO algorithms improve
a lot their average results, the psychoclonal algorithm is clearly better. Indead, the
results obtained with the psychoclonal algorithm for 50 computing seconds are much
better than the results obtained with the other algorithms for 1000 computing seconds.

 91

Figure 2. Average of the RTV values obtained over the computing time

Finally, to show the strength of the psychoclonal algorithm, the best heuristics proposed
in Corominas et al. (2007) to solve the RTVP (the bottleneck, Webster, Jefferson and
insertion heuristics) are compared with the proposed psychoclonal algorithm. The
execution time of the heuristics for each instance was always close to 0.1 seconds. We
show in Table 5 the averages of the RTV values for the global of all instances and for
each class of instances obtained with the four heuristics and the psychoclonal for
different running times. With only 0.5 seconds of computing time, the average of the
RTV values obtained with the psychoclonal algorithm is 51.03% better than the average
of the RTV values obtained with the best heuristic (bottleneck heuristic); and with 5
seconds, it is 93.52% better..

 Psychoclonal
 Bottleneck Webster Jefferson Insertion (0.5 sec.) (1 sec.) (5 sec.)
Global 9,849.99 22,821.94 23,736.83 25,811.24 4,823.48 2,498.85 638.49
CAT1 107.09 121.84 147.19 172.69 16.35 15.61 15.24
CAT2 693.38 933.11 1,077.88 1,254.29 50.97 48.08 45.83
CAT3 4,369.44 8,502.80 9,106.04 10,248.21 593.01 316.82 145.90
CAT4 34,230.05 81,730.00 84,616.22 91,569.77 18,633.57 9,614.87 2,347.94

Table 5. Averages of the RTV values

6. Conclusions

In this paper, the Response Time Variability Problem (RTVP) is solved. This problem is
an NP-hard scheduling problem that proposes a new metric to measure the fairness of a
solution according to the relative importance of the different symbols to be sequenced.
In the RTVP, the aim is to minimize variability in the distances between any two
consecutive copies of the same symbol, i.e. to distribute the symbols the more regular
as possible.

 92

The RTVP occurs in diverse environments as manufacturing, hard real-time systems,
operating systems and networks environments. Since it is a NP-hard problem,
metaheuristic methods are needed for solving non-small instances. García et al. (2006)
have proposed a multi-start algorithm and a GRASP algorithm and García-Villoria and
Pastor (2007) have proposed a PSO algorithm called DPSOpoi-cpdyn, which are the
most efficient algorithms published to date for solving the RTVP. In order to improve
the published results, a psychoclonal algorithm based approach is proposed.

The psychoclonal metaheuristic inherits its attributes from the need hierarchy theory of
Maslow (1954) and the artificial immune system (AIS) approach, specifically the clonal
selection principle (Gaspar and Collard 2000). The main features of this metaheuristic
are various levels of needs, affinity maturation to guide the solution to a local optimum
and receptor editing to escape from local optima and to explore new regions of the
solution search space.

A computation experiment was carried out and its results show that the psychoclonal
algorithm that we propose improves strongly the previous results obtained with the
other three algorithms on average. In addition, the psychoclonal algorithm has a very
stable behavior for small, medium and large instances. The theoretical properties of the
psychoclonal metaheuristic have not been mathematically studied in the literature. This
is a future research topic.

ACKNOWLEDGEMENTS

The authors wish to express their gratitude to the anonymous reviewers for their
valuable comments and suggestions, which have improved the quality of this paper. The
authors are also grateful to Professor Albert Corominas (Technical University of
Catalonia) for his helpful assistance.

REFERENCES

Adenso-Díaz, B. and Laguna, M. (2006) ‘Fine-tuning of algorithms using fractional

experimental designs and local search’, Operations Research, Vol. 54, pp. 99-114.
Balinski, M.L. and Young, H.P. (1982) ‘Fair Representation: meeting the ideal of one

man, one vote’, Yale University Press, New Haven CT.
Corominas, A., Kubiak, W. and Pastor, R. (2006) ‘Solving the Response Time

Variability Problem (RTVP) by means of mathematical programming’, Working
paper IOC-DT, Universistat Politècnica de Catalunya, Spain.

Corominas, A., Kubiak, W. and Moreno, N. (2007) ‘Response time variability’, Journal
of Scheduling, Vol. 10, pp. 97-110.

De Castro, L.N. and Timmis, J. (2002) ‘Artificial Immune Systems: A New
Computational Intelligence Approach’, Springer-Verlag, London, United Kingdom.

De Castro, L.N. and von Zuben, F.J. (2002) ‘Learning and optimization using the clonal
selection principle’, IEEE Transactions on Evolutionary Computation , Vol. 6, No.
3, pp. 239-251.

Eiben, A.E., Hinterding, R. and Michalewicz, Z. (1999) ‘Parameter control in
evolutionay algorithms’, IEEE Transactions on evolutionary computation, Vol. 3,
pp. 124-141.

 93

Feo, T.A. and Resende, M.G.C (1989) ‘A probabilistic heuristic for a computationally
difficult set covering problem’, Operations Research Letters, Vol. 8, pp. 67-81.

García-Villoria, A. and Pastor, R. (2007) ‘Introducing dynamic diversity into a discrete
particle swarm optimization’, Computers & Operations Research, In Press,
Corrected Proof, Avalaible online 7 December 2007, doi:10.1016/j.cor.2007.12.001.

García, A., Pastor, R. and Corominas, A. (2006) ‘Solving the Response Time
Variability Problem by means of metaheuristics, Special Issue of Frontiers in
Artificial Intelligence and Applications on Artificial Intelligence Research and
Development, Vol. 146, pp.187-194.

Gaspar, A. and Collard, P. (2000) ‘Two models of immunization for time dependent
optimization’, in Proceeding of the IEEE International Conference on Systems
Manufacturing and Cybernetics, pp. 113-118.

Herrmann, J.W. (2007) ‘Generating Cyclic Fair Sequences using Aggregation and
Stride Scheduling’, Technical Report, University of Maryland, USA.

Kennedy, J. and Eberhart, R.C. (1995) ‘Particle swarm optimization’, IEEE
International Conference on Neural Networks, Australia.

Kubiak, W. (1993) ‘Minimizing variation of production rates in just-in-time systems: A
survey’, European Journal of Operational Research, Vol. 66, No. 3, pp. 259-271.

Kubiak, W. (2004) ‘Fair Sequences’, In Handbook of Scheduling: Algorithms, Models
and Performance Analysis, Chapman and Hall.

Kubiak, W. and Sethi, S.P. (1991) ‘A Note on Level schedules for mixed-model
assembly lines in just-in-time production systems’, Management Science, Vol. 37,
pp. 121-122.

Kumar, A., Prakash, A., Shankar, R. and Tiwari, M.K. (2006a) ‘Psycho-Clonal
algorithm based approach to solve continuous flow shop scheduling problem’,
Expert Systems with Applications, Vol. 31, No. 3, pp. 504-514.

Kumar, A., Prakash, A., Tiwari, M.K. and Chan, F.T.S. (2006b) ‘Stochastic make-to-
stock inventory deployment problem: an endosymbiotic psychoclonal algorithm
based approach’, International Journal of Production Research, Vol. 44, No. 11, pp.
2245-2263.

Martí, R. (2003) ‘Multi-start methods’, Handbook of Metaheuristics, Glover and
Kochenberger (eds.), Kluwer Academic Publishers, pp. 355-368.

Maslow, A.H. (1954) Motivation and personality, New York: Harper & Bros.
Miltenburg, J. (1989) ‘Level schedules for mixed-model assembly lines in just-in-time

production systems’, Management Science, Vol. 35, No. 2, pp. 192-207.
Monden, Y. (1983) ‘Toyota Production Systems’, Industrial Engineering and

Management Press, Norcross, GA.
Prakash, A. and Tiwari, M.K. (2005) ‘Solving a dissassembly line balancing problem

with task failure using a psycho-clonal algorithm’, International Design
Engineering Technical Conferences & Computers and Information in Engineering
Conference, California, USA.

Singh, R.K., Prakash, Kumar, S. and Tiwari, M.K. (2006) ‘Psycho-clonal based
approach to solve a TOC product mix decision problem’, International Journal of
Advanced Manufacturing Technology, Vol. 29, pp. 1194-1202.

Tiwari, M.K., Prakash, A., Kumar, A. and Mileham, A.R. (2005) ‘Determination of an
optimal sequence using the psychoclonal algorithm’, ImechE, Part B: Journal of
Engineering Manufacture, Vol. 219, pp. 137-149.

Waldspurger, C.A. and Weihl, W.E. (1995) ‘Stride Schedulling: Deterministic
Proportional-Share Resource Management’, Technical Report MIT/LCS/TM-528,
Massechusetts Institute of Technology, MIT Laboratory for Computer Science.

 94

Wang, X., Gao, X.Z. and Ovaska, S.J. (2004) ‘Artificial Immune Optimization Methods
and Applications – A Survey’, IEEE International Conference on Systems, Man and
Cybernetics, Vol. 4, pp. 3415-3420.

 95

Solving the Response Time Variability Problem by means of a
genetic algorithm

Article published as [European Journal of Operational Research, Volume 202, Issue 2,
16 April 2010, Pages 320-327] [DOI: http://dx.doi.org/10.1016/j.ejor.2009.05.024] ©
[copyright Elsevier]

Solving the response time variability problem by
means of a genetic algorithm†

Alberto GARCÍA-VILLORIA

*

1.. ii n
d

=∑

and Rafael PASTOR
Institute of Industrial and Control Engineering (IOC)

Universitat Politècnica de Catalunya (UPC)
{alberto.garcia-villoria / rafael.pastor}@upc.edu

Abstract. The response time variability problem (RTVP) is a hard scheduling problem that
has recently been defined in the literature and has a wide range of real-world applications in
mixed-model assembly lines, multithreaded computer systems, network environments and
others. The RTVP arises whenever products, clients or jobs need to be sequenced in such a
way that the variability in the time between the points at which they receive the necessary
resources is minimized. Since the RTVP is a complex problem, heuristic and metaheuristic
techniques are needed to solve it. The best results in the literature for the RTVP have been
obtained with a psychoclonal algorithm. We propose a genetic algorithm (GA) that is adapted
to solve the RTVP. A computational experiment is carried out and it is shown that, on
average, the GA produces better results than the psychoclonal algorithm.

Keywords: response time variability, fair sequences, scheduling, genetic algorithm, evolution
program, metaheuristics

1. Introduction

The concept of fair sequence has emerged independently from scheduling problems in
diverse environments, principally from manufacturing, hard real-time systems,
operating systems and network environments. The common aim of these scheduling
problems, as defined in Kubiak (2004), is to build a fair sequence using n symbols,
where symbol i (i = 1,...,n) must occur di times in the sequence. The fair sequence is the
one which allocates a fair share of positions to each symbol i in any subsequence. This
fair or ideal share of positions allocated to symbol i in a subsequence of length k is
proportional to the relative importance (di) of symbol i with respect to the total copies of
competing symbols (equal to). There is not a universal definition of fairness,
as several reasonable metrics can be defined according to the specific problem
considered.

† Supported by the Spanish Ministry of Education and Science under project DPI2007-61905, co-funded by the ERDF.
* Corresponding author: Alberto García-Villoria, Institute of Industrial and Control Engineering (IOC), Av. Diagonal 647 (Edif.
ETSEIB), 11th floor, 08028 Barcelona, Spain; Tel.: +34 93 4054010; E-mail: alberto.garcia-villoria@upc.edu

 96

Among the different definitions of fairness, the concept of Response Time Variability
(RTV) has emerged. In RTV, the ideal distance for symbol i between any two
consecutive copies of this symbol is equal to D/di, where D is the length of the sequence
()1.. ii n
D d

=
= ∑ . The RTV metric is the sum, for all symbols i, of the squares of the

differences between the ideal and the real distances corresponding to all pairs of
consecutive copies of symbol i. Thus, the RTV metric measures the non-fairness of a
sequence. The Response Time Variability Problem (RTVP) lies in finding the optimal
sequence according to the RTV metric, that is, the sequence that minimizes the response
time variability. Thus, the distance between any two consecutive copies of the same
symbol should be as regular as possible (ideally constant).

This problem has a broad range of real-world applications. One of the first situations in
which the idea of the fair sequence appeared was the sequencing of mixed-model
assembly lines at Toyota Motor Corporation under the just-in-time (JIT) production
system. One of the main aims of JIT is to eliminate sources of waste and inefficiency. In
the case of Toyota, the main source of waste was the production of excessive volumes
of stock. To solve this problem, JIT systems produce only the specific models required
and in the quantities needed at any given time. According to Monden (1983), in this
type of system the units should be scheduled in such a way that the consumption rates
of the components in the production process remain constant. Miltenburg (1989) also
studied this scheduling problem and considered only the demand rates for the models,
thus defining the product rate variation (PRV) problem (Miltenburg, 1989; Kubiak,
1993). The PRV problem is intended to minimize variations in the production rate of
different models. However, feedback from the manufacturing industry suggests that a
good mixed-model sequence is one in which the distances between units of the same
model are as regular as possible.

Apart from assembly lines, the fair sequencing idea has appeared in computer
multithreaded systems (Waldspurger and Weihl, 1995; Dong et al., 1998).
Multithreaded systems (operating systems, network servers, media-based applications,
etc.) do different tasks to attend to the requests of client programs that take place
concurrently. These systems need to manage scarce resources in order to service the
requests of n clients. For example, multimedia systems must not display video frames
too early or too late, as this would produce jagged motion perceptions (Corominas et al.,
2007). Waldspurger and Weihl considered that resource rights could be represented by
tickets and that each client i had a given number di of tickets. They suggested the
Response Time Variability (RTV) metric to evaluate the fairness of a sequence of
resource rights.

Other contexts in which the RTVP appears are the periodic machine maintenance
problem (Anily et al., 1998), the schedule of commercial videotapes for television
(Bollapragada et al., 2004; Brusco, 2008) and the schedule of waste collection
(Herrmann, 2007). A study by Bollapragada et al. (2004) was motivated by a problem
faced by the National Broadcasting Company (BNC), which is one of the main
American firms in the television industry. Major advertisers buy hundreds of slots from
the BNC to air commercials. The advertisers request that the airings of their
commercials are as evenly spaced as possible over the broadcast season. Hermann
(2007) came up with the RTVP while working with a healthcare facility that needed to
schedule the collection of waste from waste collection rooms throughout the building.
Based on data about how often a waste collector had to visit each room and in view of

 97

the fact that different rooms require a different number of visits per shift, the facility
manager wanted these visits to occur as regularly as possible, so that excessive waste
would not collect in any room. For instance, if a room needed four visits per eight-hour
shift, it ideally had to be visited every two hours.

The RTVP is NP-hard (Corominas et al., 2007). To solve the RTVP, Waldspurger and
Weihl (1995) used the Jefferson method of apportionment (Balinski and Young, 1982),
a greedy heuristic algorithm which they renamed as the stride scheduling technique.
Herrmann (2007) solved the RTVP by applying a heuristic algorithm based on the stride
scheduling technique. Corominas et al. (2007) proposed four other greedy heuristic
algorithms and a mixed-integer linear programming (MILP) model. Corominas et al.
(2009) proposed an improved MILP model and increased the practical limit for
obtaining optimal solutions from 25 to 40 copies to be scheduled. García et al. (2006)
proposed six metaheuristic algorithms: a multi-start, a greedy randomized adaptive
search procedure (GRASP) and four variants of a discrete particle swarm optimisation
(PSO) algorithm. Another ten discrete PSO algorithms were proposed in García-Villoria
and Pastor (2009a). A cross-entropy approach was used in García-Villoria et al. (2007).
The electromagnetism-like mechanism was proposed to solve the RTVP in García-
Villoria and Pastor (2009b). Finally, the best results recorded to date were obtained with
a psychoclonal algorithm (García-Villoria and Pastor, 2008).

To improve the results obtained in prior studies, we propose using a genetic algorithm
(GA)-based approach to solve the RTVP. GA is a well known metaheuristic that was
proposed in the 1970s (Holland, 1975) and has proved to be very effective in solving
hard optimisation problems. We adapt the GA by defining a suitable representation of
the solutions and genetic operators for the RTVP. The proposed GA algorithm is
compared with the most efficient procedure for solving non-small instances published in
the literature, which is a psychoclonal algorithm proposed in García-Villoria and Pastor
(2008). On average, the proposed GA algorithm improves the best previous results
reported in the literature by more than 20%.

The remainder of the paper is organized as follows: Section 2 presents a formal
definition of the RTVP and briefly describes the psychoclonal algorithm for solving the
problem. Section 3 contains an introduction to GAs. Section 4 proposes a GA procedure
for solving the RTVP. Section 5 presents the computational experiment and the
comparison between our algorithm and the psychoclonal algorithm. Finally, some
conclusions are given in Section 6.

2. The Response Time Variability Problem (RTVP)

The RTVP is designed to minimize variability in the distances between any two
consecutive copies of the same symbol and is formulated as follows. Let n be the
number of symbols, id the number of copies of the symbol i to be scheduled (i =
1,…,n), and D the total number of copies (

1.. ii n
D d

=
= ∑). Let s be a solution of an

instance in the RTVP. This consists of a circular sequence of copies (Dssss 21=),
where sj is the copy sequenced in position j of sequence s. For all symbols i such that

2id ≥ , let i
kt be the distance between the positions in which copies k + 1 and k of

symbol i are found (i.e. the number of positions between them, where the distance

 98

between two consecutive positions is considered equal to 1). Since the sequence is
circular, position 1 comes immediately after position D; therefore, i

di
t is the distance

between the first copy of symbol i in a cycle and the last copy of the same symbol in the
preceding cycle. Let it be the desired average distance between two consecutive copies

of symbol i (
i

i d
Dt =). For all symbols i such that 1=id , it1 is equal to it . The aim is

to minimize the metric RTV, which is defined by the following expression:

 2

1 1
()

idn
i
k i

i k
RTV t t

= =

= −∑∑ (1)

For example, let 3n = , 3Ad = , 2Bd = and 2Cd = ; thus, 7D = , 7

3At = , 7
2Bt = and

7
2Ct = . Any sequence that contains exactly id times the symbol i ()∀i is a feasible

solution. For example, the sequence (A, B, A, C, B, A, C) is a feasible solution, where:

() () () () () () ()2 2 2 2 2 2 27 7 7 7 7 7 7 52 3 2 3 4 3 43 3 3 2 2 2 2 3RTV      = − + − + − + − + − + − + − =     
     

As introduced in Section 1, the psychoclonal algorithm proposed in García-Villoria and
Pastor (2008) is the best procedure to date for solving the RTVP. This algorithm is an
evolutionary metaheuristic (as is the GA) that was first proposed in Tiwari et al. (2005).
According to the authors, this metaheuristic inherits its characteristics from the need
hierarchy theory of Maslow (1954) and the clonal selection principle (Gaspar and
Collard, 2000). The basic scheme of the psychoclonal metaheuristic is the following: 1)
an initial population of solutions is generated and a function is given to evaluate the
fitness of a solution; 2) the best solutions are selected and cloned in a number
proportional to their fitness; 3) the generated clones are hypermutated (hypermutation is
similar to the mutation operator of genetic algorithms, but the difference lies in the fact
that the modification rate of the hypermutation is inversely proportional to the fitness of
the solution); 4) the new generation is formed by the best clones and by new solutions
generated at random; 5) steps 2-4 are repeated until a stop condition is reached. This
metaheuristic was adapted to solve the RTVP (for a more detailed explanation, see
García-Villoria and Pastor, 2008).

3. Genetic Algorithms

Genetic algorithms (GAs) are metaheuristic procedures based on the principles of
natural selection and sexual reproduction. The first GA was proposed in Holland
(1975). Prior to that, in the 1960s, some optimisation techniques were proposed that
have in common the concepts of selection and mutation, which can be considered as
straightforward developments of hill-climbing methods. The new concept introduced by
Holland was the idea of recombination of solutions.

GAs are now commonly used to solve optimisation problems (Reeves, 2003), although
Holland's original work did not emphasize the use of GAs for optimising objective
functions. GAs have been applied successfully to all kind of optimisation problems
(Michalewicz, 1996) and the number of GA applications that have been reported in the

 99

literature to solve combinatorial optimisation problems (such as the RTVP) has grown
exponentially (Reeves, 2003).

The classical scheme of a GA is shown in Figure 1. First an initial population of
chromosomes is generated, each of which represents a solution of the problem. A
chromosome is composed of simple elements called genes. A fitness function is used to
evaluate the fitness of the chromosomes. Then, a new population that evolves towards
better chromosomes is iteratively generated from the current one until a stop condition
is reached (convergence of the population, maximum computing time, etc.). The key to
produce better chromosomes consists of two chromosome operators called crossover
and mutation. Crossover combines parent chromosomes to generate offspring
chromosomes that share some features taken from each parent. The selection of the
parents depends on their fitness. The aim of the crossover is to form a new population
with a higher proportion of the characteristics of the good chromosomes of the previous
population (Beasley et al., 1993a). Mutation is applied to the offspring chromosomes
and consists of modifications to the values of several genes selected at random.
Mutation diversifies the current population, and thus prevents premature convergence
(Bean, 1994; Carter and Ragsdale, 2006).

Figure 1. Scheme of a classical GA

In the early stages of GAs, they were designed as generic tools for solving complex
problems. To achieve this, the data structures of the chromosomes were fixed-length
binary strings (sequences of 0s and 1s) and standard genetic operators were used. The
advantages of this approach are problem domain independence, which allows
applications to be developed easily, and the existence of a theoretical basis
(Michalewicz, 1996). However, most researchers have used modified GAs with more
powerful data structures that are adapted for real problems (Koza, 1990). To use a
special representation, suitable genetic operators (crossover and mutation) must be
defined that are adapted to work with this structure. The adaptation is usually performed
by analogy with classical crossover and mutation. Although there is a poor theoretical
basis for modified GAs, the advantage of incorporating problem-specific knowledge
into the chromosomes representation and the genetic operators is that, in practice,
modified GAs outperform classical GAs when they are used in real-world problems
(Beasley et al., 1993b; Michalewicz, 1996).

1. Current population = Generate the initial population of chromosomes
2. Evaluate the fitness of each chromosome
3. While stopping condition is not reached do:
4. New population = Ø
5. While new population is not full do:
6. Select two parent chromosomes according to their fitness from the
 current population
7. Apply crossover to the parents to obtain two offspring chromosomes
8. Apply mutation to the obtained offspring chromosomes
9. Add the generated offspring to the new population
10. End While
11. Current population = new population
12. End While

 100

Thus, a modified GA is proposed in this paper to solve the RTVP (see Section 4). When
the designed algorithm uses a structure and operators that are different from the
classical ones, some authors call it an evolution program (EP) (Michalewicz, 1996). We
will consider our algorithm as a GA, only because the term GA is more popular (for a
broad explanation of GAs and EPs, see Michalewicz (1996)).

4. Using a GA to solve the RTVP

In this paper we propose a modified GA for solving the RTVP. Seven elements have to
be designed: 1) the representation of solutions (the data structure of the chromosomes);
2) the generation of the initial population of solutions; 3) the fitness function; 4)
crossover; 5) mutation; 6) the generation of the offspring population; and 7) the stop
condition. The proposed designs of these 7 elements are explained in the following
subsections. Moreover, the fine-tuning of the parameter values of the GA algorithm is
explained in Subsection 4.8.

4.1. Representation of solutions

A straightforward representation of a solution consists of the positions of the copies of
each symbol to be sequenced. Thus, each copy has a gene associated with it and the
value of each gene indicates the position of its associated copy. The building block
hypothesis (Goldberg, 1989) is considered to code the chromosomes. This hypothesis
states that a successful coding scheme is one that encourages the formation of building
blocks. A building block is a list of consecutive genes that work well together.

To code the chromosomes of our GA, we decided to have a building block for each
symbol i formed by the genes that indicate the positions in the sequence of the copies of
symbol i. We selected this method as the quality of a solution depends on the response
time variability for each symbol i (see Equation 1), which depends on the relative
distances between the units of symbol i. Therefore, the positions of the units of symbol i
have to be considered together.

Figure 2. Representation of a RTVP solution

We will explain the representation of a solution with the following example: 3n = ,

3Ad = , 2Bd = and 2Cd = . A feasible solution is (B, C, A, B, A, A, C). The first three
genes of a chromosome form the building block of symbol A, and their values are the

 101

positions of the first, second and third copies of symbol A (see Figure 2). The fourth
and fifth genes form the building block of symbol B, and their values are the positions
of the first and second copies of symbol B (see Figure 2). The sixth and seventh genes
form the building block of symbol C, and their values are the positions of the first and
second copies of symbol C (see Figure 2).

Note that the solution space using the proposed representation is not all the space of
permutations. For instance, using the same example, the chromosome (5,3,6 | 1,4 | 2,7)
is unfeasible, because it indicates that the position of the first copy of symbol A (which
is 5) is greater than the position of the second copy of symbol A (which is 3). That is,
the second copy of symbol A is sequenced before the first copy of symbol A, and this is
incoherent with the definition of first copy and second copy.

4.2. Generation of the initial population

The initial population is made up of the chromosomes that represent solutions generated
at random. Each solution is generated as follows. For each position of the sequence, a
symbol to be sequenced is chosen at random. The probability of each symbol is equal to
the number of copies of this symbol that remain to be sequenced, divided by the total
number of copies that remain to be sequenced. The total number of chromosomes that
make up the population is N (which is a parameter of the GA).

4.3. Fitness function

The fitness of a chromosome is only used in our GA to rank the chromosomes (see
Section 4.6). Thus, an easy implementation of the fitness function is the inverse of the
RTV value of the solution represented by the chromosome.

4.4. Crossover operator

The offspring obtained by applying the classical crossover operator in a permutation
search space is usually unfeasible. To solve this difficulty, the partially matched
crossover (PMX) has been successfully applied (e.g., Wu et al., 2007) since it was first
proposed in Goldberg and Lingle (1985).

PMX cross two parent chromosomes as follows. First, two cut points are chosen at
random along the chromosomes. Next, the section between these points defines an
interchange mapping. Figure 3 shows an example of the application of the standard
PMX.

Figure 3. Application of the standard PMX

 102

In this paper, a variation of the standard PMX is proposed that is adapted to the
representation of the solutions. The first difference is that the proposed PMX selects a
complete building block at random, instead of two random cut points, with the aim of
ensuring the preservation of a good building block. The second difference is that a
feasibility post-process is needed, as unfeasible offspring may be produced. As seen in
the example in Section 4.1, the chromosome (5,3,6 | 1,4 | 2,7) is unfeasible because the
second copy of symbol A is sequenced before the first copy of symbol A. To repair the
chromosome, the genes of each building block are arranged in increasing order. In this
example, the repaired chromosome is (3,5,6 | 1,4 | 2,7). Figure 4 shows a complete
example of the application of the proposed PMX variation.

Figure 4. Application of the adapted PMX

4.5. Mutation operator

The mutation operator designed for our GA is analogous to the classical GA mutation.
The proposed mutation operates as follows. Each gene has a probability p (which is a
parameter of the GA) to mutate. If a gene is mutated, then there is a probability of 0.5 to
increase its value by one (if the value is the length of the chromosome, then its value is
changed to 1) and there is a probability of 0.5 to decrease its value by one (if the value
is 1, then its value is changed to the length of the chromosome). Let v and v’ be the
original and the new value of the mutated gene, respectively. The value of the other
gene whose value is v’ is changed to v. After the mutations of the chosen genes, the
repairing post-process used in the proposed crossover operator (see Section 4.4) is also
needed. Figure 5 shows an example of the proposed mutation operator.

 103

Figure 5. Application of the mutation operator

4.6. Generation of the offspring population

The classical generation of the offspring population is shown in Steps 4-9 of Figure 1.
In this case, all chromosomes of the new population are obtained from the parent
population by crossover and mutation. Several new ideas have been introduced in the
literature to improve this traditional reproduction.

The elitist strategy proposed in Goldberg (1989) involves copying the best
chromosomes from the parent population to the offspring population. The advantage of
the elitist strategy is that the best solution monotonically improves from one generation
to the next (Bean, 1994). However, this strategy has the disadvantage of premature
convergence of the population. To avoid this, Bean (1994) employs the idea of
immigration. This consists of including several new chromosomes that are generated at
random in the offspring population.

The elitist strategy and the idea of immigration are used in our proposed GA. The
proportion of best parent chromosomes (B) and the proportion of new chromosomes (R)
introduced into the offspring population are parameters of our GA. Figure 6 shows a
scheme of the generation of the offspring.

Figure 6. Generation of the offspring population

 104

Parents are selected for the crossover as follows. One parent is chosen at random with a
uniform probability from the best chromosomes population and the other parent is
chosen at random with a uniform probability from the non-best population. The fitness
function defined in Section 4.3 has been used to rank the chromosomes of the current
population.

4.7. Stop condition

The GA algorithm stops once it has run for a preset time.

4.8. Fine-tuning the algorithm parameters

Fine-tuning the parameters of a metaheuristic algorithm is almost always a difficult
task. Although the parameter values may have a very strong effect on the results of the
metaheuristic for each problem, they are often selected using one of the following
methods, which are not sufficiently thorough (Eiben et al., 1999; Adenso-Díaz and
Laguna, 2006): 1) “by hand”, based on a small number of experiments that are not
referenced; 2) using the general values recommended for a wide range of problems; 3)
using the values reported to be effective in other similar problems; or 4) with no
apparent explanation.

Adenso-Díaz and Laguna (2006) proposed a new technique called CALIBRA for fine-
tuning the parameters of heuristic and metaheuristic algorithms. CALIBRA is based on
using conjointly Taguchi’s fractional factorial experimental designs and a local search
procedure.

García-Villoria and Pastor (2008) used CALIBRA to fine-tune their psychoclonal
algorithm, and we used the same technique to fine-tune our GA algorithm. The
following parameter values were obtained: N (size of the population) = 13, p (mutation
probability) = 0.013, B (proportion of best chromosomes) = 0.18 and R (proportion of
new chromosomes) = 0.12.

5. Computational experiment

The psychoclonal algorithm proposed in García-Villoria and Pastor (2008) is the most
efficient algorithm in the literature for solving non-small RTVP instances. Therefore,
we compared the performance of our proposed GA algorithm with that psychoclonal
algorithm. In the rest of this section, we refer to our GA algorithm as GA-RTVP and the
psychoclonal algorithm as Psycho-RTVP.

The computational experiment was carried out for the same instances and conditions
that were used in García-Villoria and Pastor (2008). That is, the algorithms were run for
740 instances, which were grouped into four classes (185 instances in each class)
according to size. The instances in the first class (CAT1) were generated using a random
value of D (number of copies) distributed uniformly between 25 and 50, and a random
value of n (number of symbols) distributed uniformly between 3 and 15; for the second
class (CAT2), D was between 50 and 100 and n between 3 and 30; for the third class
(CAT3), D was between 100 and 200 and n between 3 and 65; and for the fourth class
(CAT4), D was between 200 and 500 and n between 3 and 150. For all instances and for

 105

each symbol i = 1,…,n, a random value of di (number of copies of symbol i) was
between 1 and ()1 2.5D n− + so that 1.. ii n

d D
=

=∑ . The two algorithms were coded
in Java and the computational experiment was carried out using a 3.4 GHz Pentium IV
with 1.5 GB of RAM.

The algorithms were run for 50 seconds for each instance. Table 1 shows the average
RTV values to be minimized for the global of 740 instances and for each class of
instances (CAT1 to CAT4) obtained with the two algorithms.

Table 1. Average RTV values for a computing time of 50 seconds
 Global CAT1 CAT2 CAT3 CAT4
GA-RTVP 186.94 11.65 29.41 84.54 622.16
Psycho-RTVP 235.68 14.92 44.25 137.07 746.50

Table 1 shows that the global average results of the GA algorithm for all the instances
considered are 20.68% better than the results obtained using the best method proposed
in the literature. If we consider the results by class, the GA-RTVP also obtains better
results than Psycho-RTVP: the results obtained with the GA algorithm are 21.92%,
33.54%, 38.32% and 16.66% better for CAT1 instances, CAT2 instances, CAT3
instances and CAT4 instances, respectively. Considerable improvements are observed in
all classes. To analyse whether the differences are statistically significant we carried out
the two sample test using the statistical software package Minitab® 15.1.0.0. With a
confidence level above 99%, GA-RTVP is better than Psycho-RTVP, if we consider the
overall results and the results by class.

Table 2 shows the number of times that each algorithm reaches the best RTV value
obtained by either one. The results are shown for the total number of 740 instances and
for each class.

Table 2. Number of times that the best solution is reached
 Global CAT1 CAT2 CAT3 CAT4
GA-RTVP 663 171 175 172 145
Psycho-RTVP 148 72 23 13 40

As expected from the results in Table 1, Table 2 shows that GA-RTVP reaches the best
solution on more occasions than Psycho-RTVP. For the total number of instances, the
GA algorithm obtains the best solution in 89.59% of cases and the psychoclonal
algorithm in 20.00%.

To complete the analysis of the results, we examined the relative discrepancies between
the RTV values obtained for each algorithm and the best values obtained by both
algorithms. A measure of the discrepancies (let it be called σ) of the RTV values
obtained by each algorithm alg = {GA-RTVP, Psycho-RTVP} was defined for a given
instance, ins, according to the following expression:

2() ()

()

RTV RTV(,)
RTV

alg best
ins ins

best
ins

alg insσ
 −

=  
 

 (5)

 106

where ()RTV alg
ins is the RTV value of the solution obtained with the algorithm alg for the

instance ins, and)(RTV best
ins is the best RTV value of the solutions obtained with the two

algorithms for the instance ins. Table 3 shows the average σ values for the total number
of instances and for each class. Table 3 shows that both algorithms produce low average
σ values for the total number of cases and for each instance class. That is, when an
algorithm does not obtain the best RTV value for a given instance, it obtains a value that
is very close to it. Although the behaviour of Psycho-RTVP is very stable, GA-RTVP
improves it and has even more stable behaviour.

Table 3. Average σ values for the best solution found
 Global CAT1 CAT2 CAT3 CAT4
GA-RTVP 0.007 0.009 0.006 0.004 0.010
Psycho-RTVP 0.859 0.750 0.697 1.323 0.664

A computing time of 50 seconds may not be long enough for the algorithms to converge
for the largest instances. Table 4 shows the average RTV values for the total number of
instances and for each class of instances (CAT1 to CAT4) when the algorithms are run
for 200, 400, 800 and 1,000 seconds.

Table 4. Average RTV values for a computing time of 200, 400, 800 and 1,000 seconds
 Global CAT1 CAT2 CAT3 CAT4

200 s. GA-RTVP 131.81 11.34 28.26 77.81 409.84
Psycho-RTVP 172.07 14.92 41.54 131.67 500.16

400 s. GA-RTVP 117.93 11.10 27.72 76.21 356.69
Psycho-RTVP 164.96 14.92 40.61 128.03 476.28

600 s. GA-RTVP 112.28 10.95 27.56 75.53 335.06
Psycho-RTVP 163.19 14.92 40.22 125.85 471.80

800 s. GA-RTVP 109.00 10.95 27.18 75.17 322.70
Psycho-RTVP 162.28 14.92 40.01 123.89 470.29

1,000 s. GA-RTVP 106.68 10.92 27.00 74.86 313.92
Psycho-RTVP 161.60 14.90 39.90 122.38 469.23

When a computing time of 1,000 seconds is used—which seems to be long enough for
both algorithms to converge (see Figure 7)—the GA-RTVP algorithm is 33.99% better
than Psycho-RTVP for the total number of instances. If we consider the results by class,
GA-RTVP is 26.71%, 32.33%, 38.83% and 33.10% better than the Psycho-RTVP for
CAT1, CAT2, CAT3 and CAT4 instances, respectively. Again, GA-RTVP obtains better
results than Psycho-RTVP, considering the overall results and the results by class with a
confidence level above 99%.

 107

Figure 7. Average RTV values over the computing time

Finally, the real-life waste collection example presented by Herrmann (2007) was
solved using GA-RTVP and Psycho-RTVP. This example has the following
characteristics: n = 14, d = (2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5) and, therefore, D = 46.
This example was solved optimally with the MILP presented in Corominas et al. (2006).
Both algorithms were run ten times and they always found an optimal solution. The
minimum, average and maximum computing times needed by GA-RTVP to find the
optimum were 0.375, 0.994 and 3.234 seconds, respectively. The minimum, average
and maximum computing times needed by Psycho-RTVP to find the optimum were
0.687, 4.139 and 9.688 seconds, respectively.

6. Conclusions

In this paper, the response time variability problem (RTVP) is solved. This scheduling
problem arises in a variety of real-world environments, including mixed-model
assembly lines, multithreaded systems, network servers, periodic machine maintenance,
and waste collection. The aim of the RTVP is to minimize the variability in the
distances between any two consecutive copies of the same symbol.

Since the RTVP is an NP-hard problem, heuristic and metaheuristic methods are needed
to solve real-world instances. Several metaheuristic algorithms have been developed to
solve this hard combinatorial optimisation problem. The most efficient algorithm to date
for solving the RTVP was a psychoclonal algorithm (García-Villoria and Pastor, 2008).
A GA adapted to solve the RTVP was used to improve the published results. The
computational experiment showed that the proposed GA improves on the best results
obtained in the literature.

 108

ACKNOWLEDGEMENTS

The authors wish to express their gratitude to Professor Albert Corominas (Universitat
Politècnica de Catalunya) and to the anonymous reviewers for their valuable comments,
which have helped to improve the quality of this paper.

REFERENCES

Adenso-Díaz, B. and Laguna, M. (2006) ‘Fine-tuning of algorithms using fractional

experimental designs and local search’, Operations Research, Vol. 54, pp. 99-114.
Anily, S., Glass, C.A. and Hassin, R. (1998) ‘The scheduling of maintenance service’,

Discrete Applied Mathematics, Vol. 82, pp. 27-42.
Balinski, M.L. and Young, H.P. (1982) Fair Representation, Yale University Press,

New Haven.
Bean, J.C. (1994) ‘Genetic Algorithms and Random Keys for Sequencing and

Optimization’, ORSA Journal on Computing, Vol. 6, pp. 154-160.
Beasley, D., Bull, D.R. and Martin, R.R. (1993a) ‘An Overview of Genetic Algorithms:

Part 1, Fundamentals’, University Computing, Vol. 15, pp. 58-69.
Beasley, D., Bull, D.R. and Martin, R.R. (1993b) ‘An Overview of Genetic Algorithms:

Part 2, Research Topics’, University Computing, Vol. 15, pp. 170-181.
Bollapragada, S., Bussieck, M.R. and Mallik, S. (2004) ‘Scheduling Commercial

Videotapes in Broadcast Television’, Operations Research, Vol. 52, pp. 679-689.
Brusco, M.J. (2008) ‘Scheduling advertising slots for television’, Journal of the

Operational Research Society, Vol. 59, pp. 1363-1372.
Carter, A.E. and Ragsdale, C.T. (2006) ‘A new approach to solving the multiple

travelling salesperson problem using genetic algorithms’, European Journal of
Operational Research, Vol. 175, pp. 246-257.

Corominas, A., Kubiak, W. and Moreno, N. (2007) ‘Response time variability’, Journal
of Scheduling, Vol. 10, pp. 97-110.

Corominas, A., Kubiak, W. and Pastor, R. (2009) ‘Mathematical Programming
Modeling of the Response Time Variability Problem’, European Journal of
Operational Research, doi: 10.1016/j.ejor.2009.01.014.

Dong, L., Melhem, R. and Mosse, D. (1998) ‘Time slot allocation for real-time
messages with negotiable distance constrains requirements’, Fourth IEEE Real-
Time Technology and Applications Symposium (RTAS'98), Denver, CO. pp. 131-
136.

Eiben, A.E., Hinterding, R. and Michalewicz, Z. (1999) ‘Parameter control in
evolutionary algorithms’, IEEE Transactions on evolutionary computation, Vol. 3,
pp. 124-141.

García, A., Pastor, R. and Corominas, A. (2006) ‘Solving the Response Time
Variability Problem by means of metaheuristics’, Special Issue of Frontiers in
Artificial Intelligence and Applications on Artificial Intelligence Research and
Development, Vol. 146, pp. 187-194.

García-Villoria, A., Pastor, R. and Corominas, A. (2007) ‘Solving the Response Time
Variability Problem by means of the Cross-Entropy Method’, International Journal
of Manufacturing Technology and Management (to be published).

García-Villoria, A. and Pastor, R. (2008) ‘Solving the Response Time Variability
Problem by means of a psychoclonal approach’, Journal of Heuristics, in press,
corrected proof, available online, 16 July 2008, doi:10.1007/s10732-008-9082-2.

 109

Gaspar, A. and Collard, P. (2000) ‘Two models of immunization for time dependent
optimization’, in Proceeding of the IEEE International Conference on Systems
Manufacturing and Cybernetics, pp. 113-118.

García-Villoria, A. and Pastor, R. (2009a) ‘Introducing dynamic diversity into a discrete
particle swarm optimization’, Computers & Operations Research, Vol. 36, pp. 951-
966.

García-Villoria, A. and Pastor, R. (2009b) ‘Solving the Response Time Variability
Problem by means of the Electromagnetism-like Mechanism’, International Journal
of Production Research, doi: 10.1080/00207540902862545.

Goldberg, D.E. (1989) Genetic Algorithms in search, optimization and machine
learning, Addison-Wesley.

Goldberg, D.E. and Lingle, R. (1985) Alleles, Loci, and the Traveling Salesman
Problem, Proceeding of the First International Conference on Genetic Algorithms,
pp. 154-159.

Herrmann, J.W. (2007) ‘Generating Cyclic Fair Sequences using Aggregation and
Stride Scheduling’, Technical Report, University of Maryland, USA.

Holland, J.H. (1975) Adaptation in Natural and Artificial Systems, MIT Press.
Koza, J.R. (1990) ‘Genetic Programming: A Paradigm for Genetically Breeding

Populations of Computer Programs to Solve Problems’, Report STAN-CS-90-1314,
Stanford University.

Kubiak, W. (1993) ‘Minimizing variation of production rates in just-in-time systems: A
survey’, European Journal of Operational Research, Vol. 66, pp. 259-271.

Kubiak, W. (2004) ‘Fair Sequences’, Chapter 19 in Handbook of Scheduling:
Algorithms, Models and Performance Analysis, Chapman and Hall.

Maslow, A.H. (1954) Motivation and personality, New York: Harper & Bros.
Michalewicz, Z. (1996) Genetic Algorithms + Data Structures = Evolution Programs,

Springer Verlag. 3rd edition.
Miltenburg, J. (1989) ‘Level schedules for mixed-model assembly lines in just-in-time

production systems’, Management Science, Vol. 35, pp. 192-207.
Monden, Y. (1983) ‘Toyota Production Systems’, Industrial Engineering and

Management Press, Norcross, GA.
Reeves, C. (2003) ‘Genetic Algorithms’, Chapter 3 in Handbook of Metaheuristics, Eds.

Glover and Kochenberger, Kluwer Academic Publishers, pp. 56-82.
Tiwari, M.K., Prakash, A., Kumar, A. and Mileham, A.R. (2005) ‘Determination of an

optimal sequence using the psychoclonal algorithm’, ImechE, Part B: Journal of
Engineering Manufacture, Vol. 219, pp. 137-149.

Waldspurger, C.A. and Weihl, W.E. (1995) ‘Stride Scheduling: Deterministic
Proportional-Share Resource Management’, Technical Report MIT/LCS/TM-528,
Massachusetts Institute of Technology, MIT Laboratory for Computer Science.

Wu, X., Chu, C.-H., Wang, Y. and Yan, W. (2007) ‘A genetic algorithm for cellular
manufacturing design and layout’, European Journal of Operational Research, Vol.
181, pp. 156-167.

 111

Annex A2. Other works

A2.1. Articles submitted to journals included in the JCR index which
are in process of review

Hyper-heuristic Approaches for the Response Time Variability
Problem

Article submitted to European Journal of Operational Research (2nd review in progress)

Hyper-heuristic Approaches for the Response Time
Variability Problem†

Alberto GARCÍA-VILLORIAa

*

† Supported by the Spanish Ministry of Education and Science under project DPI2007-61905 and co-funded by the ERDF. In
addition, this study was supported by the Department of Innovation, Universities and Enterprise of the Generalitat de Catalunya,
under grant BE-DGR-2008.
* Corresponding author: Alberto García-Villoria, Institute of Industrial and Control Engineering (IOC), Av. Diagonal 647 (Edif.
ETSEIB), 11th floor, 08028 Barcelona, Spain; Tel.: (+34) 93 4054010; alberto.garcia-villoria@upc.edu. The research was conducted
while visiting CLHO at Kent University.

, Said SALHIb, Albert COROMINASa, and Rafael PASTORa
a Institute of Industrial and Control Engineering (IOC), Universitat Politècnica de Catalunya (UPC),

Barcelona, Spain
b The Centre for Logistics & Heuristic Optimisation (CLHO), Kent Business School, University of Kent

at Canterbury, Canterbury CT2 7PE, UK
s.salhi@kent.ac.uk, {alberto.garcia-villoria / albert.corominas / rafael.pastor}@upc.edu

Abstract. We propose two classes for the implementation of hyper-heuristic algorithms. The
first is based on constructive heuristics, whereas the second uses improvement methods.
Within the latter class, a general framework is designed for the use of local search procedures
and metaheuristics as low-level heuristics. A dynamic scheme to guide the use of these
approaches is also devised. These ideas are tested on a hard scheduling problem known as the
Response Time Variability Problem (RTVP). An intensive computational experiment shows
the effectiveness of the proposed hyper-heuristics and their ability to select the right low-level
heuristic at a given iteration during the search.

Keywords: hyper-heuristics, metaheuristics, response time variability, scheduling, fair
sequences

1. Introduction

One of the most commonly used approaches to NP-hard optimisation problems is
heuristics-based methods. Since each heuristic may have particular weaknesses and
strengths depending on the characteristics of the instance or scenario in which it is
applied (Bai et al., 2008), it seems reasonable to choose the right heuristic at a given
iteration during the search. This is the key idea of hyper-heuristic methods.

 112

Hyper-heuristics are an emerging methodology in search and optimisation (Burke et al.,
2003a). However, references to them can be found in the literature from the 1960s
onwards (Ross, 2005). A short definition of hyper-heuristic methods is “heuristics to
choose heuristics”. Hyper-heuristics apply the right heuristic during the problem solving
process, according to the current state of the solution. Thus, an intelligent application of
different heuristics at different times in the search could lead to better performance than
the application of individual heuristics (Burke et al., 2006). Some hyper-heuristics work
on rules that are often extracted from offline learning and knowledge acquisition. This
type of hyper-heuristics could be classified as an expert system.

Hyper-heuristics operate indirectly on the solutions by choosing the (meta)heuristic to
be applied. They thus operate at a higher level than classical heuristics and
metaheuristics. In fact, hyper-heuristics only have access to a set of low-level
(meta)heuristics that are applied to the current solution. The main advantage of this is
that hyper-heuristics can be designed independently of the problem domain. Thus, given
a problem, a set of (meta)heuristics and a suitable fitness function, the same hyper-
heuristic can be applied (Burke et al., 2003a). In other words, an existing hyper-
heuristic method can be applied to a new problem quickly and cheaply. For an overview
of hyper-heuristics, see Burke et al. (2003a), Ross (2005) and Özcan et al. (2008), and
for information on heuristics in general, see Salhi (2006).

Hyper-heuristics can be divided into two categories: constructive hyper-heuristics and
improvement hyper-heuristics. Constructive hyper-heuristics use a set of constructive
heuristics as the low-level heuristics, in order to construct a full solution. In contrast,
improvement hyper-heuristics start from a complete initial solution and then improve on
it, using either simple refinement heuristics or even more sophisticated, but time-
consuming, metaheuristics. An extended classification can be found in Burke et al.
(2009).

This paper proposes several constructive and improvement hyper-heuristics that can be
applied to a variety of hard combinatorial optimisation problems. We use the Response
Time Variability Problem (RTVP) as a platform to test this methodology. The RTVP is
an NP-hard scheduling problem that was first reported in Waldspurger and Weihl
(1994) and formally formulated by Corominas et al. (2007). This problem has a wide
range of real-world applications: it occurs whenever products, clients or jobs need to be
sequenced in such a way that there is minimal variability in the time between the
instants at which the necessary resources are received. Applications include sequencing
of mixed-model assembly lines under JIT (Kubiak, 1993; Miltenburg, 1989), resource
allocation in computer multi-threaded systems such as operating systems, network
servers and media-based applications (Dong et al., 1998; Waldspurger and Weihl, 1994,
1995), the periodic machine maintenance problem when the times between consecutive
services of the same machine are equal (Anily et al., 1998; Wei and Liu, 1983), waste
collection (Herrmann, 2007) and scheduling commercial videotapes for television
(Bollapragada et al., 2004; Brusco, 2008).

The set of low-level heuristics used in the proposed constructive hyper-heuristics
consists of several greedy heuristics put forward by Bollapragada et al. (2004) and
Corominas et al. (2007). For the improvement hyper-heuristic, we introduce local
search procedures that are commonly applied, as well as metaheuristics. To the best of

 113

our knowledge, there are no studies on the use of metaheuristics as low-level heuristics.
We understand the reason for this lack of interest, as metaheuristics are known to
consume a large amount of cpu time. However, since hyper-heuristics can select the
right heuristic during the solution generation process, it seems likely that they are also
able to select the most suitable metaheuristic, according to the current state of the
solution. In this paper, two sets of low-level heuristics are proposed for the
improvement hyper-heuristics. The first consists of the three local search methods used
in the classical improvement hyper-heuristics, whereas the second contains a composite
hill-climbing method, which is based on iteratively applying the three aforementioned
local search methods, one variant of tabu search (TS) and one variant of variable
neighbourhood search (VNS).

The remainder of the paper is organized as follows: Section 2 presents a formulation of
the RTVP and a brief state of the art in this area. Section 3 explains the heuristics and
metaheuristics that will be used in the proposed hyper-heuristics. Section 4 describes
our methodology for constructive hyper-heuristics. Section 5 deals with improvement
hyper-heuristics. Section 6 presents our computational experiments. Finally, some
conclusions and suggestions are given in Section 7.

2. The Response Time Variability Problem (RTVP)

The RTVP is formulated as follows. Let n be the number of symbols to be sequenced
(representing products, clients, jobs, etc.), where symbol i (i = 1,...,n) is to be copied di
times in the sequence (the number of times that symbol i has to receive the resource)
and D is the total number of copies (

1.. ii n
d

=∑). Let s be a solution of an instance in the

RTVP that consists of a circular sequence of copies (Dssss 21=), where sj is the copy
sequenced in position j of sequence s. For each symbol i in which 2id ≥ , let i

kt be the
distance between the positions in which the copies k + 1 and k of symbol i are found.
We consider that the distance between two consecutive positions is equal to 1. Since the
sequence is circular, position 1 comes immediately after the last position D. Therefore,

i
di

t is the distance between the first copy of symbol i in a cycle and the last copy of the
same symbol in the preceding cycle. Let it be the desired average distance between two

consecutive copies of symbol i (i
i

Dt d=). The objective is to minimise the metric

called the response time variability (RTV), which is defined by the sum of the square
errors with respect to the it distances. Since the symbols i such that 1id = do not

intervene in the computation of RTV, we assume that for each of these symbols 1
it is

equal to it . Thus, RTV is given by the following expression as 2

1 1
()

idn
i
k i

i k
RTV t t

= =

= −∑∑ .

As an illustration, consider the following example. Let 3n = with symbols A, B and C.
Also consider 2=Ad , 2=Bd and 4=Cd . Thus, 8=D , 4=At , 4=Bt and 2.Ct = Any
sequence that contains symbol i ()∀i exactly id times is a feasible solution. For

 114

example, the sequence (C, A, C, B, C, B, A, C) is a feasible solution, and has an
() ()() () ()() () () () ()()2 2 2 2 2 2 2 25 4 3 4 2 4 6 4 2 2 2 2 3 2 1 2 1 2 .RTV = − + − + − + − + − + − + − + − =

Corominas et al. (2007) proposed a mixed integer lineal programming (MILP) model to
solve the RTVP. Corominas et al. (2009a) then improved the previous MILP model to
obtain optimal sequences up to 40 copies. Bollapragada et al. (2004) proposed a simple
branch and bound algorithm and four heuristics. Five heuristics were presented in
Corominas et al. (2007), of which three were greedy. García et al. (2006) developed six
metaheuristic algorithms which include: a multi-start, a greedy randomized adaptive
search procedure (GRASP) and four variants of a discrete particle swarm optimization
(PSO) algorithm. Other discrete PSO algorithms were proposed in García-Villoria and
Pastor (2009a). A multi-start algorithm and a GRASP algorithm were given by
Corominas et al. (2008). Cross-entropy, psychoclonal and electromagnetism-like
mechanism approaches were used in García-Villoria et al. (2007), García-Villoria and
Pastor (2008) and García-Villoria and Pastor (2009b), respectively. The best results
have recently been achieved with three methods based on the TS metaheuristic
(Corominas et al., 2009b), the VNS metaheuristic (Corominas et al., 2009c) and the
genetic algorithm (GA) metaheuristic (García-Villoria and Pastor, 2009c).

3. Low-level heuristics for the RTVP

The heuristics and metaheuristics that will be used in our study to solve the RTVP are
briefly reviewed here. Section 3.1 presents six greedy heuristics for generating a
solution for the RTVP, whereas Section 3.2 describes three local search methods, one
composite hill-climbing method and two metaheuristic algorithms. These are our low-
level heuristics, which will be embedded into our hyper-heuristic approaches.

3.1. Greedy heuristics for the RTVP

3.1.1. Parametric methods of apportionment

The parametric method of apportionment is defined as follows (Balinski and Young,
1982). Let xil be the number of copies of symbol i that have already been sequenced in
the sequence of length l, l = 0, 1, … (assume xi0 = 0); the symbol to be sequenced in

position l + 1 is * arg max ,i
i

il

di
x δ

 
=  + 

 where δ (0,1]∈ . If there is a tie, then use

lexicographical order.

The Webster method (Gr1) consists of applying the above method with δ = 0.5, whereas
the Jefferson method (Gr2) uses δ = 1. We also propose an application of the parametric
method, with δ = 0.25 and δ = 0.75 (Gr3 and Gr4, respectively). Corominas et al.
(2007) used the Webster and Jefferson methods to solve the RTVP.

3.1.2. A priority-based rule heuristic (Gr5)

Let xil be the number of copies of symbol i that have already been sequenced in the
sequence of length l, l = 0, 1, … (assume xi0 = 0); the symbol to be sequenced in

 115

position l + 1 is ()* 1
arg max .i

i il

l d
i x

D
+ ⋅ 

= − 
 

 If there is a tie, then the symbol i with

the lowest di is sequenced. If this leads to another tie, then use lexicographical order.
This idea is taken from the priority rule used in the GRASP algorithm proposed in
Corominas et al. (2008).

3.1.3. A contribution-based rule (Gr6)

The symbol to be sequenced in position l (l = 1, 2, …) is the one that contributes least to
the objective function (the RTV value). If there is a tie, then use lexicographical order.
This method was proposed in Bollapragada et al. (2004).

3.2. Local search methods, a composite hill-climbing method and metaheuristics for
the RTVP

3.2.1. Local search methods

Three local search methods (LS-1, LS-2 and LS-3) are proposed. The LS-1
neighbourhood is generated by swapping each pair of two consecutive positions of the
sequence in the current solution. The LS-2 neighbourhood is a generalisation of LS-1, in
which the move is not restricted to consecutive positions. The LS-3 neighbourhood is
generated by removing each member of the sequence from its current position and
inserting it in all other possible positions in the sequence. These neighbourhoods are
proposed in Corominas et al. (2009c). All local search methods are performed
iteratively in their neighbourhood. The best solution in the neighbourhood is chosen at
each iteration and the optimisation ends when no neighbouring solution is better than
the current solution.

3.2.2. A composite hill-climbing method

The composite hill-climbing method (CHC) consists of applying iteratively the three
local search procedures (LS-1, LS-2 and LS-3) until there is no improvement in the
solution.

The order in which the three local search procedures make up the composite heuristic
CHC could be important in terms of solution quality and cpu time. The procedures are
ordered according to increasing neighbourhood complexity (that is, LS-1, LS-2 and LS-
3), as the solution is improved rapidly through LS-1 at the first iteration of CHC. Thus,
there will be generally fewer iterations in LS-2 and specifically in LS-3 (which
consumes much more cpu time than LS-1), given the good solution quality found by LS-
1 and LS-2, respectively. Consequently, the heuristic CHC can run using a relatively
larger number of iterations.

3.2.3. Tabu search

The disadvantage of local search methods is that they get trapped in a local optimum.
Tabu Search (TS) is one of the metaheuristics that has the power to overcome such a
limitation (Glover, 1986). TS is a deterministic and aggressive approach that is based on
applying a local search in which non-improving movements are also allowed. To avoid

 116

cycling back to visited solutions, the most recent history of the search is recorded in a
list of tabu (forbidden) solutions. A tabu solution can be overridden if a suitable
aspiration criterion is met (see Salhi (2002) for more details on this issue).

TS has been successfully applied to solve the RTVP (Corominas et al., 2009b). The
neighbourhood used is that of the LS-2 local search method. The aspiration criterion
relates to the move which produces a better solution than the best one found so far. A
forbidden move on the tabu list involves two pairs consisting of (position, symbol). For
instance, the move [(3, A), (5, B)] means that all solutions with the symbol A sequenced
in position 3 and symbol B sequenced in position 5 are considered tabu.

The TS algorithm has one parameter that is the size of its tabu list. The choice of the
parameter value may have a crucial effect on the results of the metaheuristic. Thus, it is
important to find a suitable value of the parameter. We used a new technique called
CALIBRA (Adenso-Díaz and Laguna, 2006), which is specifically designed for fine-
tuning the parameters of heuristic and metaheuristic algorithms. CALIBRA operates in
the same set of training instances as those used by the training stage of CHH-2 and
CHH-3 (see Subsection 4.2). The tabu list size found by CALIBRA was 75.

3.2.4. Variable neighbourhood search

The variable neighbourhood search (VNS) metaheuristic is based on applying a
systematic change of neighbourhood within a local search method (Mladenović and
Hansen, 1997).

The VNS metaheuristic has been shown to be very effective to solve the RTVP
(Corominas et al., 2009c). We propose a straightforward application of the VNS to
solve the RTVP. The neighbourhoods used, N1, N2 and N3, are those of LS-1, LS-2 and
LS-3, respectively. The local search method applied is the same as in the tabu search
proposed in Corominas et al. (2009b), that is, LS-2. The acceptance criterion is that the
RTV value of ' ()kS N S∈ is equal to or lower than the RTV value of S.

Note that the proposed VNS algorithm is different from the hill-climbing method
(CHC), although both algorithms employ the same neighbourhood operators. The
following aspects of the VNS algorithm differs from CHC: 1) a random neighbour is
obtained from the current one, according to the current neighbourhood structure, 2) LS-2
is applied to this random neighbour, 3) if the local optimum obtained after applying LS-
2 is not worse than the current solution, the current neighbourhood is not changed;
otherwise, the current neighbourhood is changed to the next one.

4. Constructive hyper-heuristic procedures

We propose four constructive hyper-heuristics, based on the general hyper-heuristic
framework presented by Burke et al. (2003a), see Figure 1.

 117

Figure 1. A general hyper-heuristic scheme

4.1. A crude constructive hyper-heuristic (CHH-1)

Our first hyper-heuristic procedure (CHH-1) is a straightforward design based on Figure
1. The set CH of low-level heuristics consists of the six greedy heuristics described in
Section 3.1 (Gr1 to Gr6). As it is a constructive hyper-heuristic, the initial problem
states that S0 is a void sequence. The aim of the algorithm is to decide which heuristic is
worth using at each position l (l = 1,...,D) of the sequence that represents the current
solution. The application of the selected heuristic at position l gives the symbol
sequenced at this position. To decide which heuristic to use at step l, the following
criterion is adopted. Based on the current partial solution (that is, the symbols selected
at positions 1,...,l-1), all heuristics are applied to complete their corresponding full
solutions. The heuristic that generates the best solution (according to the RTV value)
yields the symbol to be chosen at position l. The entire process is then repeated until the
position before last (i.e., D-1) is filled, as the last position is obviously known. The
pseudocode and a graphic illustration of the proposed hyper-heuristic are shown in
Figure 2 and Figure 3, respectively.

Figure 2. Pseudocode of the hyper-heuristic CHH-1

1. Start with a set of heuristics, each of which is applicable to a problem
state and transforms it to a new problem state.

2. Let the initial problem state be S0.
3. If the problem state is Si then find the heuristic that is in some sense the

most suitable for transforming that state. Apply it, to obtain a new state
of the problem Si+1.

4. If the problem is solved, stop; otherwise go to Step 3.

0. Let CH = {Gr1, Gr2, Gr3, Gr4, Gr5, Gr6};
Let S be the solution sequence, initially void;

1. l := 1;
2. While 1l D≤ − do:
3. For all Ch H∈ , apply h to obtain a full solution with positions

between [1...l-1] of the current S, which is considered fixed. Let
*
lh be the heuristic that obtains the best solution at step l;

4. Choose the symbol at position l identified by *
lh ;

5. l := l + 1;
6. End while;
7. Add the remaining symbol at position D and return to S

 118

Figure 3. An illustration of the hyper-heuristic CHH-1

4.2. A learning-based constructive hyper-heuristic (CHH-2)

The second constructive hyper-heuristic (CHH-2) is similar to CHH-1, except that the
set l

CH of low-level heuristics is slightly restricted, as it keeps changing dynamically at
each step l (l = 1,...,D-1) during the sequencing process. At step l, the heuristic h is
included in set l

CH if the probability (l
hα) of obtaining the best full solution with fixed

positions between [1...l-1] of the current subsequence is greater than or equal to a
threshold probability ()THα ; i.e., { }|l l

C C h THH h H α α= ∈ ≥ . We have considered two

ways of calculating these probabilities l
hα . A training stage is carried out from which

the l
hα values are derived. The idea of using a dynamic set l

CH is to consider the most
promising heuristics based on the training stage only. To decide which heuristic of

l
CH is selected at step l, the same criterion as in CHH-1 is adopted.

Training stage
The training stage consists of solving a training set of RTVP instances with the hyper-
heuristic CHH-1. The idea is to record the number of times each heuristic is selected at
each step l (l = 1,...,D-1) of CHH-1, to see whether some heuristics are more promising
than others when applied at the beginning, in the middle or at the end of the sequencing
process. Since each instance may have different D values (and, therefore, a different D-
length of its solution sequence), we decided to split the sequences into 20 slots, whose
size depends on the D value of the instance. By splitting the position into slots, we do
not look at the absolute position where the heuristics are used, but at the relative
position in the sequence (that is, at the beginning, middle or end of the sequence). The
training set has 60 instances, which were grouped into four classes (from CAT1 to
CAT4), according to their size. More details on these instances are given in the
computation results section (Section 6). Figure 4 shows the average percentage of times
that each heuristic has been selected at each slot for all training instances and for each
class of instances (CAT1 to CAT4). On average, Gr5 is the most frequently selected
heuristic during the first half of the sequencing process, Gr3 in the second half, and Gr1
at the end. This tendency is even more apparent for the largest instances (CAT4),
whereas for the smallest instances (CAT1) there is no clear tendency.

 119

Figure 4. Average percentage of times that a heuristic is selected

The two ways of setting the probabilities l

hα are given below:

(i) The probability l

hα of heuristic h being selected at position l is the overall average
percentage of times over all training instances that h has been selected in slot s

()()20 1 1s l D=  −  +  .

(ii) Analogous to (i): the probability l
hα of heuristic h being selected at position l is the

average percentage of times that h has been selected in slot s over the training
instances of the class in which the instance to be solved belongs to (CAT1, CAT2,
CAT3 or CAT4). An instance is classified into a class according to its size (see
Table 1 in Section 6).

Another interesting way of calculating these probabilities is proposed in Qu et al.
(2009). This is based on generating a set of solutions by randomly selecting the heuristic
to be applied at each step l (l = 1,...,D-1) and counting the number of times that each
heuristic has been applied in each slot s in the good solutions (see Qu et al. (2009) for
more details).

4.3. An elitist-based constructive hyper-heuristic (CHH-3)

The proposed elitist-based constructive hyper-heuristic (CHH-3) can be considered ea
special case of CHH-2 where l

CH is made up of one chosen heuristic only, which is the
best heuristic at step l. In other words, at step l (l = 1,...,D), the set l

CH is formed only

 120

by the most probable heuristic. That is, the heuristic applied is ()max arg
c

l
h

h H
h α

∈
= . The

two settings for generating the probabilities l
hα that are described in Subsection 4.2 are

also used here.

4.4. A random-based constructive hyper-heuristic (CHH-4)

The forth constructive hyper-heuristic (CHH-4) is similar to CHH-1, but the low-level
heuristic selection criterion used is a random one. At each position in the sequence, the
heuristic to be applied at each step is selected at random using equal probabilities (1/6)
for each heuristic.

5. Improvement hyper-heuristics

The performance of a hyper-heuristic may vary according to the available set of low-
level heuristics. In the hyper-heuristic literature, it is common to use local search
procedures as low-level heuristics in improvement hyper-heuristics (for example, Burke
et al., 2003b; Dowsland et al., 2007; Pisinger and Ropke, 2007).

Metaheuristics have been used in the hyper-heuristic literature as the main framework,
including TS (Burke et al., 2003b; Burke et al., 2007; Bai et al., 2008; Qu and Burke,
2009), VNS (Qu and Burke, 2009), genetic algorithm (Ho et al., 2007), ant algorithm
(Burke et al., 2005) and simulated annealing (Dowsland et al., 2007; Bai et al., 2008).
However, to the best of our knowledge, the use of metaheuristics in hyper-heuristics as
low-level heuristics has not been reported in the literature to date.

In this study, we propose to use two different sets of low-level heuristics. One set, 0

IH ,
consists of the local search procedures described in Section 3.2.1 (LS-1, LS-2 and LS-3).
Moreover, we also propose using the set 1

IH , which consists of the more sophisticated
heuristics given in Subsections 3.2.2 to 3.2.4 (HC, TS and VNS).

5.1. The general improvement-based hyper-heuristic framework

We propose a general improvement hyper-heuristic framework, based on that shown in
Figure 1. The improvement hyper-heuristics starts from a full initial solution which is
improved by iteratively performing several cycles, each of which consists of two stages:
a learning stage and a launching stage (see Figure 5). The hyper-heuristic stops when it
has run for a maximum preset available time (T). The pseudocode of the general
improvement-based hyper-heuristic is shown in Figure 6.

Figure 5. A graphical representation of the improvement hyper-heuristic scheme

 121

Learning stage
The learning stage consists of running all of the low-level heuristics from the current
solution. The objective is to see how many times each heuristic improves the current
solution. The time spent on each heuristic in this stage (0

itτ) depends on the current
iteration of the hyper-heuristic (it) and is defined as follows: 1

0 0 0
it itτ θ τ −= , where 1

0 Tτ α= ,
α (0 1α< ) is a coefficient that weights the time spent in the learning stage, and θ0
(00 1θ< ≤) is a non-increasing learning coefficient. Note that if 0 1θ = , the time spent in
the learning stage remains equal at each iteration of the hyper-heuristic, whereas if

0 1θ < , this time will decrease exponentially.

Launching stage
A low-level heuristic is selected to be used in the launching stage, according to the
improvement in the current solution obtained in the learning stage. The launching stage
consists of running the selected heuristic from the best solution obtained in the learning
stage. The time spent in this stage (1

itτ) also depends on the current iteration of the
hyper-heuristic, and is defined as follows: 1

1 1 1
it itτ θ τ −= , where 1

1 Tτ β= , β (0 1β< ) is a
coefficient that weights the time spent in the launching stage, and θ1 (1 1θ ≥) is a non-
decreasing launching coefficient. Analogous to θ0, if 1 1θ = , the time spent in the
launching stage remains equal at each iteration of the hyper-heuristic, whereas if 1 1θ > ,
this time will increase exponentially.

Figure 6. Pseudocode of the general improvement-based hyper-heuristic

5.2. The selection mechanisms

Based on the framework, three criteria are proposed for selecting the low-level heuristic
to be applied in the launching stage of each cycle for the improvement hyper-heuristics.
All three criteria are based on the performance obtained during the learning stage.

(i) Best performance-based hyper-heuristic. The heuristic selected is the one that most

improves the current solution during the learning stage.

0. Let IH be the set of low-level (meta)heuristics;
Let S be an initial solution;

1. it := 1;
2. While execution time < T do:

Learning stage:
3. For all Ih H∈ , apply h to S during the time 0

itτ to obtain an
improved solution;

4. Let S' be the best improved solution;
Launching stage:

5. Select a heuristic, *h , of IH according to the selection mechanism;
6. Apply *h to S' during the time 1

itτ ;
7. it := it + 1
8. S := S';
9. End while;
10. Return S

 122

(ii) Probability-based hyper-heuristic. The heuristic is selected in a pseudo-random

way, according to the RTV value obtained in the previous learning stage. The
probability of heuristic h being selected at iteration it, (,)p h it , is:

()

()
1 ,

(,)
1 ,

Ig H

RTV h it
p h it

RTV g it
∈

=
∑

,

where (),RTV g it is the RTV value obtained with heuristic g in the learning stage at
iteration it.

(iii) Threshold probability-based hyper-heuristic. At iteration it, only the heuristics that

have obtained an improvement close to the best improvement in the learning stage
are considered to be selected pseudo-randomly. That is,

() *

, if , ()
(,)

0
h it T TH TRTV h it RTV it

p h it
otherwise

γ β ≤ ⋅
= 



where ()
(),

1 ,
1 ,

it

T
h it

T
g S

RTV h it
RTV g it

γ

∈

=
∑

 and (){ }*| , ()it I T TH TS h H RTV h it RTV itβ= ∈ ≤ ⋅ .

* ()TRTV it is the best RTV value obtained in the learning stage at iteration it, THβ
(1THβ ≥) is the threshold used in the selection and T is the maximum preset
available time.

5.3. Local search based hyper-heuristic algorithms

We propose three hyper-heuristic algorithms that use a set of local search procedures as
the set of low-level heuristics (0

IH). We refer to them as 0- - IIHH 1 H , 0- - IIHH 2 H and
0- - IIHH 3 H on the basis of the selection criteria (i), (ii) and (iii), respectively.

Although the scheme of the hyper-heuristic is independent of the set of low-level
heuristics used, these three variants may finish their execution time before the
maximum preset available time (T). This can happen if a local optimum using LS-1, LS-
2 and LS-3 is found before the end of T.

5.4. Metaheuristic based hyper-heuristic algorithms

Three hyper-heuristic algorithms that use the set of the composite hill-climbing method
and metaheuristic algorithms as the set of low-level heuristics (1

IH) are presented,
which differ in the choice of the selection criteria defined earlier. We refer to these three
variants as 1- - IIHH 1 H , 1- - IIHH 2 H and 1- - IIHH 3 H , which use the selection criteria (i), (ii)
and (iii), respectively.

 123

6. Computational results

The proposed hyper-heuristics were coded in Java and executed on a PC 3.4 GHz Intel
Pentium IV with 1.5 GB of RAM. The 60 training instances and 740 test instances used
in Corominas et al. (2008, 2009b), García et al. (2006) and García-Villoria and Pastor
(2008, 2009a, 2009b) were also used in this paper (all instances can be found at
http://www.ioc.upc.edu/EOLI/research/). These instances were grouped into four
classes (from CAT1 to CAT4 with 15 training instances and 185 test instances in each
class) according to their size. The instances were generated using the random values of
D (number of units) and n (number of models) shown in Table 1. For all instances and
for each model i = 1,…,n, a random value of di (number of units of model i) is between
1 and ()1 2.5D n− + , such that

1.. ii n
d D

=
=∑ .

Table 1. Uniform distributions for generating the D and n values

 CAT1 CAT2 CAT3 CAT4
D U(25, 50) U(50, 100) U(100, 200) U(200, 500)
n U(3, 15) U(3, 30) U(3, 65) U(3, 150)

We report the results of the three classes of our proposed hyper-heuristics in the next
three sections.

6.1. Results of the constructive hyper-heuristics

The 740 test instances were solved with the six greedy heuristics (Gr1, Gr2, Gr3, Gr4,
Gr5 and Gr6) and the constructive hyper-heuristics CHH-1, CHH-2, CHH-3 and CHH-
4. The two probabilities settings presented in Section 4.2 were used. To run CHH-2, a
preliminary experiment was carried out to set the value of the threshold probability THα
to 0.2. The computing times were very small: for all greedy heuristics, the maximum
time for solving an instance was 0.070 cpu seconds, and for CHH-1, CHH-2, CHH-3
and CHH-4 it was 2.523, 0.590, 0.040 and 0.046 cpu seconds, respectively. Since the
computing times of the greedy heuristics is negligible, a better, fast heuristic (let it be
called BH) can be easily constructed by merely running the six heuristics and getting the
best solution. Table 2 shows the average RTV values to be minimised for each class of
instances (CAT1 to CAT4) obtained with all these greedy algorithms. For CHH-2 and
CHH-3, we show the results obtained by setting the α probabilities using the first way
(Overall prob.) or the second way (Per class prob.), as explained in the training stage in
Subsection 4.2.

Table 2 shows that the best individual greedy heuristic is clearly Gr5, which is much
better than the second best heuristic (Gr4). BH is, obviously, better than Gr5. If we
consider the results by class, BH is 9.74%, 7.62%, 3.82% and 4.81% better than Gr5 for
CAT1, CAT2, CAT3 and CAT4 instances, respectively. On the other hand, CHH-1 is
21.86%, 20.44%, 14.35% and 13.14% better than Gr5 for CAT1, CAT2, CAT3 and
CAT4 instances, respectively. In addition, CHH-1 is 13.43%, 13.88%, 10.95% and
8.75% better than BH for CAT1, CAT2, CAT3 and CAT4 instances, respectively. This
hyper-heuristic is the best for CAT1 instances and the second best for CAT2 instances,
as well as being very close to the best results for the CAT2 instances.

 124

Table 2. Average RTV values for the constructive hyper-heuristics

 CAT1 CAT2 CAT3 CAT4
Gr1 121.84 933.41 8,502.80 81,730.00
Gr2 147.19 1,077.88 9,106.04 84,616.22
Gr3 120.09 915.74 8,347.60 80,670.03
Gr4 125.06 914.70 8,295.41 80,577.15
Gr5 88.02 553.06 3,894.31 30,870.45
Gr6 405.39 2,583.30 17,450.83 163,908.26
BH 79.45 510.93 3,745.39 29,385.59

CHH-1 68.78 440.00 3,335.37 26,814.25

CHH-2
Overall prob. 78.89 477.38 3,377.66 27,196.49
Per class prob. 83.19 522.98 3,297.68 26,323.33

CHH-3
Overall prob. 83.05 426.50 2,754.06 23,178.13
Per class prob. 104.53 599.37 3,186.30 21,542.86

CHH-4 118.75 500.76 2,716.69 19,605.49

Note that although Gr1, Gr2, Gr3, Gr4 and Gr6 are poor quality heuristics by
themselves, the hyper-heuristic algorithms find their strengths and use them in the right
moment in the solution generation process. In fact, Figure 4 shows that CHH-1 found,
on average for the training instances, that Gr5 more suitable in the first half of the
sequence, Gr3 for almost all of the second half, and Gr1 for the last positions of the
sequence. Gr2, Gr4 and Gr6 were found to be dominated and inferior, except in the case
of CAT1 instances. This is an exciting and interesting observation of the behaviour of
these heuristics and deserves theoretical support in the future.

The results obtained by the two variants of CHH-2 are, on average, similar to those
found by CHH-1, except that CHH-2 is much faster than CHH-1. These results are
expected since, at each step, the heuristics that perform badly are not considered.

When a training stage was used to decide a priori which heuristic generated the best full
solution from a fixed current partial solution (i.e., the most likely heuristic to be selected
per position), better solutions than CHH-1 and CHH-2 are obtained. On average, the
best CHH-3 hyper-heuristic variant is the one whose probabilities are calculated per
instance class, which was found to be 14.94% and 26.69% better than BH for the
medium and large instances (CAT3 and CAT4 instances), respectively. However, for the
small instances (CAT1 and CAT2 instances), BH is 23.99% and 14.76% better,
respectively. The best results for the CAT2 instances are obtained, surprisingly, by the
CHH-3 variant whose probabilities are calculated based on all instances.

Finally, Table 2 shows that the random selection strategy (CHH-4) is the best for
solving medium and, particularly, large instances (CAT3 and CAT4 instances,
respectively). CHH-4 is 27.47% and 33.28% better than BH for CAT3 and CAT4
instances, respectively. These results may be surprising. However, the hyper-heuristic
literature shows that random selection strategies frequently yield good performances
(e.g., Burke et al., 2005; Bilgin et al., 2007).

 125

The results of CHH-1 are not necessary better than those from all variants of the other
CHH-2 and CHH-3. This could be considered surprising, as CHH-1 has all the low-
level heuristics available for use at each iteration, whereas CHH-2 and CHH-3 rely on a
subset only. This could be due to the lack of correlation between the qualities of the
solutions at different iterations.

6.2. Results of the local search based hyper-heuristics

All test instances were solved with the composite hill-climbing method (CHC) and the
three local search based hyper-heuristic algorithms (0- - IIHH 1 H , 0- - IIHH 2 H and

0- - IIHH 3 H). The initial solution used for all algorithms was obtained with the best
constructive hyper-heuristic. This is found by applying CHH-3 using the probabilities
calculated per instance class. The maximum time available to run all algorithms (T) was
set to 1,000 seconds. A preliminary experiment was conducted to set the values of the
following parameters, which were found to be α = 0.01, θ0 = 0.95, β = 0.02, θ1 = 1.2 and

THβ = 1.1.

Table 3 shows the average RTV values for each class of instances (CAT1 to CAT4)
obtained with CHC and with the three improvement hyper-heuristics that use the local
search methods as low-level heuristics (that is, 0- - IIHH 1 H , 0- - IIHH 2 H and 0- - IIHH 3 H).

Table 3. Average RTV values for the local search based hyper-heuristics

 CAT1 CAT2 CAT3 CAT4
CHC 16.39 39.91 101.90 339.75

0- - IIHH 1 H 15.71 38.99 102.51 321.20
0- - IIHH 2 H 15.71 38.99 100.44 315.05
0- - IIHH 3 H 15.71 38.99 96.55 314.33

A simple composite method such as CHC, which iteratively applies the three local
search methods LS-1, LS-2 and LS-3, is able to obtain very good solutions. In fact, as
shown in Table 4, CHC obtained better results than TS, which was previously the best at
solving the RTVP. However, hyper-heuristics decide intelligently when to use each
local search during the optimisation process, rather than systematically using them in a
specific order. All three hyper-heuristics outperformed CHC. The hyper-heuristics

0- - IIHH 1 H , 0- - IIHH 2 H and 0- - IIHH 3 H were, on average, 3.93%, 5.57% and 6.50% better
overall than CHC, respectively. Considering the best by class results, 0- - IIHH 3 H is
4.15%, 2.31%, 5.25% and 7.48% better than CHC for CAT1, CAT2, CAT3 and CAT4
instances, respectively.

6.3. Results of the metaheuristic based hyper-heuristics

All test instances were solved with the three metaheuristic based hyper-heuristic
algorithms (1- - IIHH 1 H , 1-2- IIHH H and 1- - IIHH 3 H), the composite hill-climbing method
(CHC) and TS and VNS, which are based on two of the metaheuristics that perform best
at solving the RTVP (Corominas et al., 2009b, 2009c). The initial solution used for all
algorithms was obtained with the best constructive hyper-heuristic (that is, CHH-3

 126

using the probabilities calculated per instance class). The same parameter values as in
the previous subsection are also used here. The time available to run all algorithms was
set to 1,000 seconds.

Table 4 shows the average RTV values for each class of instances (CAT1 to CAT4)
obtained with 1- - IIHH 1 H , 1-2- IIHH H and 1- - IIHH 3 H . The results obtained when using TS
and VNS directly are also included here for comparison. Since the initial solutions used
in Corominas et al. (2009b, 2009c) are different from the initial solutions used in this
paper, we solved the instances again with TS and VNS.

Table 4. Average RTV values for the metaheuristic based hyper-heuristics

 CAT1 CAT2 CAT3 CAT4
CHC 16.39 39.91 101.90 339.75

TS 10.74 42.68 175.03 689.44
VNS 11.36 24.53 83.54 408.52

1- - IIHH 1 H 10.39 25.18 74.71 529.65
1-2- IIHH H 10.37 24.55 72.46 433.39
1- - IIHH 3 H 10.39 24.72 66.91 334.76

The best results shown in Table 4 are obtained, on average, by the hyper-heuristic
algorithm 1- - IIHH 3 H and are 12.28% better than the results found by the best low-level
heuristic (CHC) when applied in isolation. If we consider the results by class, we can
see that TS performs better than CHC and VNS for the smallest instances (CAT1), VNS
outperforms CHC and TS for the next two larger sets of instances (CAT2 and CAT3) and
CHC was the best for the largest set of instances (CAT4). However, 1- - IIHH 3 H was
equally good or better than CHC, TS and VNS for all types of instances. In particular,

1- - IIHH 3 H is 3.26% better than TS for CAT1 instances, 0.77% worse and 19.91% better
than VNS for CAT2 and CAT3 instances, respectively, and 1.47% better than CHC for
CAT4 instances. Thus, we can confirm that low-level metaheuristic algorithms can yield
promising and excellent results when they are combined intelligently during the
improvement process, within a hyper-heuristic framework.

6.4. General discussion of the results

Although the goal of this study is not to improve the best results obtained in the
literature to solve the RTVP, several of the hyper-heuristics that we developed are very
competitive. We compile the averages of the RTV values together with the variance
within each set of instances to facilitate observations of the different approaches.
Moreover, the results obtained with the GA proposed in García-Villoria and Pastor
(2009c) have been added for comparison purposes (the GA was run in the same
conditions as the other algorithms; that is, it was executed on a PC 3.4 GHz Intel
Pentium IV with 1.5 GB of RAM and stopped after 1,000 cpu seconds per instance).

 127

Table 5. Averages of the RTV values (standard deviation of the RTV values)

 CAT1 CAT2 CAT3 CAT4

CHC 16.39
(8.28)

39.91
(17.47)

101.90
(38.15)

339.75
(257.47)

TS 10.74
(5.69)

42.68
(24.60)

175.03
(90.74)

689.44
(533.29)

VNS 11.36
(5.80)

24.53
(11.40)

83.54
(48.49)

408.52
(490.32)

GA 10.92
(5.83)

27.00
(14.28)

74.86
(43.92)

313.92
(233.03)

0- - IIHH 1 H 15.71
(8.18)

38.99
(16.39)

102.51
(43.23)

321.20
(156.19)

0- - IIHH 2 H 15.71
(8.18)

38.99
(16.39)

100.44
(40.47)

315.05
(158.86)

0- - IIHH 3 H 15.71
(8.18)

38.99
(16.39)

96.55
(41.13)

314.33
(141.08)

1- - IIHH 1 H 10.39
(5.54)

25.18
(11.34)

74.71
(35.16)

529.65
(585.64)

1-2- IIHH H 10.37
(5.48)

24.55
(11.33)

72.46
(43.02)

433.39
(396.44)

1- - IIHH 3 H 10.39
(5.47)

24.72
(11.47)

66.91
(33.58)

334.76
(359.41)

The number of times that each algorithm reaches the best RTV value obtained using all
algorithms are shown in Table 6. The results obtained with the constructive hyper-
heuristic algorithms have not been included in Table 5 or Table 6, because these
algorithms are only used to obtain an initial solution and the cpu times are negligible.

Table 6. Averages of the number of times that the best solution is reached

 CAT1 CAT2 CAT3 CAT4
CHC 0.23 0.07 0.01 0.05

TS 0.88 0.28 0.03 0.01
VNS 0.72 0.53 0.22 0.16
GA 0.80 0.39 0.36 0.45

0- - IIHH 1 H 0.26 0.10 0.02 0.06
0- - IIHH 2 H 0.26 0.10 0.02 0.07
0- - IIHH 3 H 0.26 0.10 0.02 0.09
1- - IIHH 1 H 0.97 0.55 0.18 0.05
1-2- IIHH H 0.97 0.61 0.31 0.09
1- - IIHH 3 H 0.95 0.62 0.34 0.15

Hyper-heuristics that use metaheuristic methods as low-level heuristics obtain the best
RTV average when solving the smallest instances (CAT1 instances), with no significant
differences between them (confidence level of 95%). Moreover, they obtain the best
solution for 95% (1- - IIHH 3 H) or 97% (1-1- IIHH H and 1-2- IIHH H) of the CAT1

 128

instances. For the CAT2 instances, the use of low-level metaheuristics also gives the
best RTV average with no significant difference between 1-2- IIHH H , 1- - IIHH 3 H and
VNS, although the two hyper-heuristics obtain the best solution more frequently (61%
and 62% of the instances, respectively) than the VNS (53% of the instances). In the case
of CAT3 instances, the RTV average obtained by 1- - IIHH 3 H is significantly the best,
although the GA algorithm is able to obtain the best solution slightly more times (36%
of times) than 1- - IIHH 3 H (34% of times). Finally, for the biggest instances (CAT4
instances), the GA algorithm obtains the best solutions the highest number of times
(45% of times) and also obtains the best RTV average, although there is no significant
difference between the RTV averages obtained by CHC, 0- - IIHH 1 H , 0- - IIHH 2 H and

0- - IIHH 3 H .

7. Conclusions

The overall goal of this paper is to propose schemes for implementing hyper-heuristics
within a general scheme that is general enough to be easily adapted to solve a variety of
hard combinatorial optimisation problems. In this paper, we have chosen a sequencing
NP-hard problem known as the Response Time Variability Problem (RTVP) to test the
efficiency of the proposed hyper-heuristic schemes. The hyper-heuristic algorithms
proposed in this study operate at a higher level of abstraction and have no knowledge of
the problem domain. The problem domain is in the low-level heuristics used by the
hyper-heuristic and in the evaluation function used to evaluate the goodness of a
solution. In other words, the same hyper-heuristic algorithms can solve other
combinatorial problems without too much extra effort by replacing the low level
heuristics and the evaluation function only.

Our first attempt is to design a constructive-based hyper-heuristic approach which is
based on the reuse of a set of existing greedy simple heuristics known in the literature.
Our goal was not to compete with the best results reported in the literature, but to check
whether reusing the six greedy simple heuristics reported in the literature produced
better solutions than those obtained when the heuristics were used in an isolated way.
Four constructive hyper-heuristic algorithms were designed by a straightforward
application of the general hyper-heuristic scheme shown in Figure 1. The difference
between the four algorithms is the low-level selection criterion. An extensive
experiment showed the ability of the hyper-heuristics to use each low-level heuristic at
the appropriate moment, according to the current state of the partial solution. On
average, the best proposed constructive hyper-heuristic is able to obtain approximately
35% improvement in the best low-level heuristic, if used in an isolated way. This
success is particularly remarkable, as the results show that the other five heuristics
obtained very bad solutions by themselves.

To investigate the impact of a relatively higher complexity to the low level heuristics,
local search methods were introduced instead of simple greedy ones. We have proposed
three local search methods based on three neighbourhoods for the RTVP that exist in
the literature. The improvement hyper-heuristic approach is found to be useful in
deciding the most suitable local search to be applied at a given time based on the current
state of the search. The computational experiment shows the success of this
implementation of hyper-heuristics that combines the use of the local search methods

 129

Our final exploration is to go one step further in terms of time complexity of the low-
level heuristics by introducing metaheuristics instead. Such an investigation, to the
authors knowledge, has not been reported in the literature. We believe this is mainly
because of the excessive computational time that these may require. Though we
appreciate this drawback our aim is to find a way of overcoming this problem. We have
therefore put forward a mechanism on how to deal with this issue. We presented
appropriate schemes on how to select low-level metaheuristics based on regular use of
learning and launching stages at each cycle of the search. The goal is to control the
computational burden while guiding the search toward good solutions. Encouraging
results show the usefulness of integrating more sophisticated low level algorithms such
as metaheuristics within the hyper-heuristic methodology. We believe this is a
challenging issue that merits further study. Future studies could investigate the design of
a mechanism to decide the amount of time used in the learning and launching stages in
each cycle of the search. This obviously will depend on many attributes including the
running time, problem characteristics and individual performance of the local searches
or the metaheuristics, among other factors. The design of robust mechanisms for
selecting the most appropriate low-level (meta)heuristic at a given iteration is an open
question that may not have an optimal answer in practice, but any insightful attempt
would, in our view and without doubt, be a step in the right direction.

ACKNOWLEDGEMENTS

The authors wish to express their gratitude to the anonymous reviewers for their
detailed and valuable comments, which have helped to improve the quality of this
paper.

REFERENCES

Adenso-Díaz, B. and Laguna, M. (2006) ‘Fine-tuning of algorithms using fractional

experimental designs and local search’, Operations Research, Vol. 54, pp. 99-114.
Anily, S., Glass, C.A. and Hassin, R. (1998) ‘The scheduling of maintenance service’,

Discrete Applied Mathematics, Vol. 82, pp. 27-42.
Bai, R., Burke, E.K. and Kendall, G. (2008) ‘Heuristic, meta-heuristic and hyper-

heuristic approaches for fresh produce inventory control and shelf space allocation’,
Journal of the Operational Research Society, Vol. 59, pp. 1387-1397.

Balinski, M.L. and Young, H.P. (1982) ‘Fair Representation: meeting the ideal of one
man, one vote’, Yale University Press, New Haven CT.

Bilgin, B., Özcan, E. and Korkmaz, E.E. (2007) ‘An Experiment Study on Hyper-
heuristics and Exam Timetabling’, Lecture Notes on Computer Science,
PATAT2006 selected papers, Springer-Verlag.

Bollapragada, S., Bussieck, M.R. and Mallik, S. (2004) ‘Scheduling Commercial
Videotapes in Broadcast Television’, Operations Research, Vol. 52, pp. 679-689.

Brusco, M.J. (2008) ‘Scheduling advertising slots for television’, Journal of the
Operational Research Society, Vol. 59, pp. 1363-1372.

Burke, E.K., Kendall, G., Newall, J., Hart, E., Ross, P. and Schulenburg, S. (2003a)
‘Hyper-heuristics: An Emerging Direction in Modern Search Technology’, Chapter

 130

16 in Handbook of Metaheuristics, Eds. Glover and Kochenberger, Kluwer
Academic Publishers, pp. 457-474.

Burke, E.K., Kendall, G. and Souibeiga, E. (2003b) ‘A Tabu-Search Hyperheuristic for
Timetabling and Rostering’, Journal of Heuristics, Vol. 9, pp. 451-470.

Burke, E.K., Kendall, G., Silva, D.L. and O'Brien, R. (2005) ‘An Ant Algorithm
Hyperheuristic for the Project Presentation Scheduling Problem’, 2005 IEEE
Congress on Evolutionary Computation, pp. 2263-2270.

Burke, E.K., Petrovic, S. and Qu, R. (2006) ‘Case-based heuristic selection for
timetabling problems’, Journal of Scheduling, Vol. 9, pp. 115-132.

Burke, E.K., McCollum, B., Meisels, A., Petrovic, S. and Qu, R. (2007) ‘A graph-based
hyper-heuristic for educational timetabling problems’, European Journal of
Operational Research, Vol. 176, pp. 177-192.

Burke, E.K., Hyde, M., Kendall, G., Ochoa, G., Özcan, E. and Woodward, J. (2009). ‘A
Classification of Hyper-heuristics Approaches’, Technical Report No. NOTTCS-TR-
SUB-0907061259-5808 (to appear in Handbook of Meta-heuristics), School of
Computer Science and Information Technology, University of Nottingham.

Corominas, A., Kubiak, W. and Moreno, N. (2007) ‘Response time variability’, Journal
of Scheduling, Vol. 10, pp. 97-110.

Corominas, A., García-Villoria, A. and Pastor, R. (2008) ‘Solving the Response Time
Variability Problem by means of Multi-start and GRASP metaheuristics’, Frontiers
in Artificial Intelligence and Applications, Vol. 184, pp. 128-137.

Corominas, A., Kubiak, W. and Pastor, R. (2009a) ‘Mathematical Programming
Modeling of the Response Time Variability Problem’, European Journal of
Operational Research, doi: 10.1016/j.ejor.2009.01.014.

Corominas, A., García-Villoria, A., Pastor, R. (2009b) ‘Using Tabu Search for the
Response Time Variability Problem’, 3rd International Conference on Industrial
Engineering and Industrial Management (CIO 2009), Barcelona and Terrassa,
Spain.

Corominas, A., García-Villoria, A., Pastor, R. (2009c) ‘Solving the Response Time
Variable Problem by means of a Variable Neighbourhood Search Algorithm’; 13th
IFAC Symposium of Information Control Problems in Manufacturing (INCOM
2009); Moscow, Russia.

Dong, L., Melhem, R. and Mosse, D. (1998) ‘Time slot allocation for real-time
messages with negotiable distance constrains requirements’, Fourth IEEE Real-
Time Technology and Applications Symposium (RTAS'98), Denver, CO. pp. 131-
136.

Dowsland, K.A., Soubeiga, E. and Burke, E.K. (2007) ’A simulated annealing based
hyperheuristic for determining shipper sizes for storage and transportation’,
European Journal of Operational Research, Vol. 179, pp. 759-774.

García-Villoria, A. and Pastor, R. (2008) ‘Solving the Response Time Variability
Problem by means of a psychoclonal approach’, Journal of Heuristics,
doi:10.1007/s10732-008-9082-2.

García-Villoria, A. and Pastor, R. (2009a) ‘Introducing dynamic diversity into a discrete
particle swarm optimization’, Computers & Operations Research, Vol. 36, pp. 951-
966.

García-Villoria, A. and Pastor, R. (2009b) ‘Solving the Response Time Variability
Problem by means of the Electromagnetism-like Mechanism’, International Journal
of Production Research, doi: 10.1080/00207540902862545.

 131

García-Villoria, A. and Pastor, R. (2009c) ‘Solving the response time variability
problem by means of a genetic algorithm’, European Journal of Operational
Research, doi:10.1016/j.ejor.2009.05.024.

García, A., Pastor, R. and Corominas, A. (2006) ‘Solving the Response Time
Variability Problem by means of metaheuristics, Frontiers in Artificial Intelligence
and Applications, Vol. 146, pp.187-194.

García-Villoria, A., Pastor, R. and Corominas, A. (2007) ‘Solving the Response Time
Variability Problem by means of the Cross-Entropy Method’, International Journal
of Manufacturing Technology and Management, forthcoming.

Glover, F., (1986) ‘Future paths for Integer Programming and Links to Artificial
Intelligence’, Computers and Operations Research, Vol. 5, pp. 533-549.

Herrmann, J.W. (2007) ‘Generating Cyclic Fair Sequences using Aggregation and
Stride Scheduling’, Technical Report TR 2007-12, University of Maryland, USA.
Available at http://hdl.handle.net/1903/7082.

Ho, N.B., Tay, J.C. and Lai, E.M.-K (2007) ‘An effective architecture for learning and
evolving flexible job-shop schedules’, European Journal of Operational Research,
Vol. 179, pp. 316-333.

Kubiak, W. (1993) ‘Minimizing variation of production rates in just-in-time systems: A
survey’, European Journal of Operational Research, Vol. 66, pp. 259-271.

Mladenović, N. and Hansen, P. (1997) ‘Variable neighbourhood search’, Computers &
Operations Research, Vol. 24, pp. 1097-1100.

Miltenburg, J. (1989) ‘Level schedules for mixed-model assembly lines in just-in-time
production systems’, Management Science, Vol. 35, pp. 192-207.

Özcan, E., Bilgin, B. and Korkmaz, E.E. (2008) ‘A comprehensive analysis of hyper-
heuristics’, Intelligent Data Analysis, Vol. 12, pp. 3-23.

Pisinger, D. and Ropke, S. (2007) ‘A general heuristic for vehicle routing problems’,
Computers and Operations Research, Vol. 34, pp. 2403-2435.

Qu, R. and Burke, E.K. (2009) ‘Hybridisations within a Graph Based Hyper-heuristic
Framework for University Timetabling Problems’, Journal of Operational Research
Society, doi: 10.1057/jors.2008.102.

Qu, R., Burke, E.K. and McCollum, B. (2009) ‘Adaptive automated construction of
hybrid heuristics for exam timetabling and graph colouring problems’, European
Journal of Operational Research, Vol. 198, pp 392-404.

Ross, P. (2005) ‘Hyper-heuristics’, Chapter 17 in Search Methodologies: Introductory
Tutorials in Optimization and Decision Support Techniques, Eds. Burke and
Kendall, Springer, pp. 529-556.

Salhi, S. (2002) ‘Defining tabu list size and aspiration criterion within tabu search
methods’, Computers and Operations Research, Vol. 29, pp. 67-86.

Salhi, S. (2006) ‘Heuristic Search in Action: the Science of Tomorrow’, In: Salhi S.
(Ed.) OR48 Keynote Papers, GORS, London, pp. 39-58.

Waldspurger, C.A. and Weihl, W.E. (1994) ‘Lottery Scheduling: Flexible Proportional-
Share Resource Management’, First USENIX Symposium on Operating System
Design and Implementation.

Waldspurger, C.A. and Weihl, W.E. (1995) ‘Stride Scheduling: Deterministic
Proportional-Share Resource Management’, Technical Report MIT/LCS/TM-528,
Massachusetts Institute of Technology, MIT Laboratory for Computer Science.
Available at https://eprints.kfupm.edu.sa/67117.

Wei, W.D. and Liu, C.L. (1983) ‘On a periodic maintenance problem’, Operations
Research Letters, Vol. 2, pp. 90-93.

 133

A systematic procedure based on CALIBRA and the Nelder & Mead
algorithm for fine-tuning metaheuristics

Article submitted to Journal of the Operational Research Society (2nd review in
progress)

A systematic procedure based on CALIBRA and the Nelder &

Mead algorithm for fine-tuning metaheuristics

Albert COROMINAS, Alberto GARCÍA-VILLORIA*

Over the last decades, metaheuristics have shown to be very useful to solve effectively

many types of complex problems. Most of the algorithms proposed in the literature have

a set of parameters whose values have to be set before their execution, although the

choice of their parameter values is not trivial (see, for instance, Altinel and Öncan,

2005; Battarra et al, 2008). The selection of the parameter values is an important task

because it may has a great influence in the performance of the algorithm. Much research

effort can be spent in fine-tuning an algorithm (Barr et al, 1995). The task of fine-tuning

 and Rafael PASTOR

Institute of Industrial and Control Engineering (IOC)

Technical University of Catalonia (UPC)

{albert.corominas / alberto.garcia-villoria / rafael.pastor}@upc.edu

Abstract. The problem of setting the parameter values of a metaheuristic algorithm that

optimise its performance is complex and time-consuming. Although the performance of a

metaheuristic can be very sensitive to the parameter values, it is usual in the literature that the

selection of the value parameters is not enough justified. There are in the literature two

procedures that facilitate the task of fine-tuning: CALIBRA and the Nelder & Mead

algorithm. We propose a hands-off systematic procedure for fine-tuning metaheuristics that

takes the advantages of CALIBRA and the Nelder & Mead algorithm.

Keywords: fine-tuning, parameter setting, metaheuristics, CALIBRA, Nelder and Mead.

1. Introduction

* Corresponding author: Alberto García-Villoria, Institute of Industrial and Control Engineering (IOC), Av. Diagonal 647 (Edif.
ETSEIB), 11th floor, 08028 Barcelona, Spain; e-mail: alberto.garcia-villoria@upc.edu

 134

is usually hard due to the following three reasons (Adenso-Díaz and Laguna, 2006): 1)

the algorithm may be very sensitive to the parameter values, 2) a non-linear

interdependence can be involved between the parameters, and 3) in stochastic

algorithms (as metaheuristic algorithms usually are) each execution may provide a

different solution.

Despite the relevance of the selection of parameter values, this selection is commonly

justified in one of the following ways (Adenso-Díaz and Laguna, 2006, Eiben et al,

1999): 1) "by hand" on the basis of a small number of experiments that are not

specifically referenced, 2) by using the general values of the method recommended for a

wide range of problems, 3) by using the values of the method reported to be effective in

other similar problems, and 4) without any explanation.

A right and well detailed practice for fine-tuning heuristics is described in Coy et al

(2001), but it has the disadvantage of being tedious and needing a lot of human time for

the experimental designs. The new systematic procedure that we propose in this paper is

a hands-off tool for fine-tuning metaheuristics based on CALIBRA (Adenso-Díaz and

Laguna, 2006) and the Nelder & Mead algorithm (N&M) (Nelder and Mead, 1965). It

should be taken into account that the evaluation of a calibration is usually very time

expensive in the case of metaheuristics. But the procedure proposed in this paper needs

few evaluations to find a good calibration.

The remainder of the paper is organized as follows: Section 2 and 3 introduce

CALIBRA and N&M, respectively. Section 4 explains the systematic procedure that we

propose for fine-tuning metaheuristics. We apply the proposed procedure for fine-tuning

three different metaheuristics in Section 5. Finally, some conclusions are given in

Section 6.

2. CALIBRA

CALIBRA is a tool proposed in Adenso-Díaz and Laguna (2006) specifically designed

for fine-tuning algorithms within a specified range of parameter values. CALIBRA is

based on using conjointly Taguchi’s fractional factorial experimental designs (Taguchi,

 135

1987) and a local search procedure. The maximum number of parameters supported by

the current version of CALIBRA is 5. If the algorithm has more than 5 parameters, its

authors suggest determining the 5 most significant parameters and fixing the others

(Adenso-Díaz and Laguna, 2006).

Notice that one assumption of Taguchi’s experimental designs is the linear

interdependence between the parameters but, as it has been mentioned in Section 1, the

interdependence is usually non-linear. CALIBRA uses the analysis of the experiment

results only as a guideline to narrow the search and to initiate the next round of

experiments. Because the search focuses on narrower ranges for each parameter value,

the linear assumption becomes less restrictive and the predicted optimal values can be

approached to the true optimal values.

The user has to provide CALIBRA with the number of iterations (whose minimal value

is 2k + 9, where k is the number of parameters to be fine-tuned) and with a

representative training set of instances. For a more detailed explanation of CALIBRA

see Adenso-Díaz and Laguna (2006).

3. The Nelder & Mead algorithm

The problem of fine-tuning k parameters of an algorithm can be approached as an

optimisation problem, in which the problem consists of finding the k parameter values

that optimise the algorithm performance. Let φ be a function whose variables are the

algorithm parameters and whose image is the performance of the algorithm. Therefore,

the fine-tuning optimisation problem is equivalent to the problem of optimising φ. Since

the set of instances of a problem is infinite, we must use a representative training set to

calculate the φ image.

Since φ is not expected to have any special or recognizable property, a direct

optimisation algorithm (i.e., it only uses the values of the function) is needed to solve

the fine-tuning optimisation problem. The Nelder & Mead algorithm (N&M) (Nelder

and Mead, 1965), also known as the flexible polyhedron algorithm, is a direct

optimisation algorithm that has offered and still offers good results in the literature

 136

(Chelouah and Siarry, 2005). N&M is based on k+1 points that are the vertex of a

hypertetrahedron (preferably regular) in a k-dimensional space. The coordinates of a

point represents the parameter values, and each point is evaluated with φ. Next, the

points are iteratively moved over the space according to their evaluations until a local

optimal point is reached. N&M is able to approach to the global optimal point whether

φ is unimodal; if φ is multimodal, then N&M approaches to one local optimum

depending on the initial hypertetrahedron. N&M was originally designed for working

with only real coordinates; however, it can be easily adapted to admit integer

coordinates. For a more detailed explanation of N&M, see Nelder and Mead (1965).

4. A systematic procedure for fine-tuning metaheuristics

The fine-tuning procedure that we propose takes the advantages of CALIBRA and

N&M. In a situation in which there is little knowledge about the right value of a

parameter, a wide range of values can be used in CALIBRA. For example, to fine-tune

the size of the population of a genetic algorithm, the range [1..200] can be specified in

CALIBRA. In this case, CALIBRA is able to return a good approximation of the right

calibration of the population size. On the other hand, N&M needs an initial point

(remind that, in the context of fine-tuning, the coordinates of a point represents the

parameter values of the algorithm to be fine-tuned) to build the initial hypertetrahedron.

It is advisable that the initial point used by N&M to build the initial hypertetrahedron is

a good point. The reason is that, for multimodal functions, N&M tends to approach to

one local optimal near from the initial point.

The fine-tuning procedure that we propose has two steps. First we can obtain a quite

good fine-tuning applying CALIBRA with wider or narrower ranges of the parameter

values according to the knowledge that we have. The narrower the ranges the better the

fine-tuning obtained by CALIBRA. Next, we can obtain a more precise calibration by

N&M using as the start point the values returned by CALIBRA.

In the conclusions given in Adenso-Díaz and Laguna (2006), its authors suggest that

CALIBRA can be used to search in a narrow range around parameters values that have

been tested. Thus, at the second step of our proposed procedure, CALIBRA could be

 137

used again instead of N&M. This alternative is compared with respect to our procedure

and with respect to using only one time CALIBRA in Section 5.

5. Computational experiment

In this section, we analyse the proposed fine-tuning procedure and the alternative

explained in Section 4. That is, first we obtain initial parameter values with CALIBRA.

Next, we can apply N&M using the initial values obtained at the first step or we can

apply again CALIBRA using narrower ranges around the values obtained at the first

step. In the remainder of this section, we refer to our fine-tuning procedure as

CALIBRA+N&M and we refer to the alternative procedure as CALIBRA+CALIBRA.

The set of the parameter values will be done in three metaheuristic algorithms proposed

in the literature for solving a new scheduling problem known as Response Time

Variability Problem (RTVP). The RTVP arises whenever products, clients or jobs need

to be sequenced in such a way that the variability in the time between the points at

which they receive the necessary resources is minimized. The variability is measured

with the RTV metric, which is a weighted variance. The objective of the RTVP is

obtaining a sequence with the minimal RTV value. This problem is NP-hard (for more

details, see Corominas et al (2007). The following metaheuristic algorithms have been

chosen to analyse the fine-tuning procedure: a particle swarm optimisation (PSO)

algorithm proposed in García-Villoria and Pastor (2009) called DPSOpoi-cpdyn by the

authors, the psychoclonal algorithm proposed in García-Villoria and Pastor (2008a) and

the electromagnetism-like mechanism (EM) algorithm proposed in García-Villoria and

Pastor (2008b).

CALIBRA and N&M evaluate the performance of the parameter values as follows. A

training set of 60 representative instances is solved with a computing time limit of 50

seconds for each instance. The performance is the average RTV values of the solutions

(sequences) obtained. The used training set is the training set used in García-Villoria

and Pastor (2008a, 2008b, 2009) for fine-tuning their algorithms. Since the evaluation

of each iteration of the calibration takes 50 minutes, we use CALIBRA in

CALIBRA+N&M and in CALIBRA+CALIBRA with the minimal number of iterations

 138

allowed by the tool (2k + 9, where k is the number of parameters to be fine-tuned). Thus,

in order to make a fair comparison, N&M is stopped after (2k + 9)*50 minutes although

it had not converged to a local optimum.

In order to test the obtained calibration, the algorithm run 740 test instances used in

García-Villoria and Pastor (2008a, 2008b, 2009) using the parameter values of the

calibration.

5.1. Fine-tuning of the PSO algorithm

Parameters N ω c1 c2 cp

 CALIBRA (Step 1)

Ranges [1..100] [0..1] [0..1] [0..1] [0..10]

Precision 0 2 2 2 1

Values 13 0.75 0.13 0.75 8.7

RTV
50 s. 4,625.54

1,000 s. 1,537.34

 CALIBRA + N&M (Step 2)

Start point (13, 0.75, 0.13, 0.75, 8.7)

Values 13 0.853 0.188 0.810 8.584

RTV
50 s. 3,992.28

1,000 s. 794.93

 CALIBRA+CALIBRA (Step 2)

Ranges [1..25] [0.6..0.9] [0..0.25] [0.6..0.9] [6..10]

Precision 0 2 2 2 1

Values 3 0.67 0.16 0.86 7.0

RTV
50 s. 4,063.69

1,000 s. 1,115.72

Table 1. Fine-tuning of the PSO algorithm

The DPSOpoi-cpdyn algorithm has 5 parameters: size of the population (N), ω, c1, c2

and cp. By definition, ω, c1, and c2 values are between 0 and 1. Table 1 shows the ranges

and their precision (in number of decimals) used in CALIBRA (Ranges and Precision,

 139

respectively), the start point used in N&M (Start point), the returned values of the

parameters (Values) and the average RTV values obtained by the PSO algorithm (using

the parameter values returned) for the 740 test instances when the algorithm is run 50

and 1,000 seconds (RTV).

It can be observed that the calibration obtained using two times CALIBRA

(CALIBRA+CALIBRA) improves the solutions 12.15% and 27.43% with respect to

using one time CALIBRA for 50 and 1,000 computing seconds, respectively. But the

improvement obtained using the proposed fine-tuning procedure, CALIBRA+N&M, is

still better: 13.69% and 48.29%.

5.2. Fine-tuning of the psychoclonal algorithm

Parameters N n β d K

 CALIBRA (Step 1)

Ranges [1..200] [1..200] [0..10] [1..200] [3..10]

Precision 0 0 1 0 1

Values 25 3 1.3 3 7.6

RTV
50 s. 235.68

1,000 s. 161.60

 CALIBRA + N&M (Step 2)

Start point (25, 3, 1.3, 3, 7.6)

Values 25 8 1.538 0 7.581

RTV
50 s. 188.86

1,000 s. 160.72

 CALIBRA+CALIBRA (Step 2)

Ranges [1..40] [0..10] [0..2.5] [0..10] [6..9]

Precision 0 0 1 0 1

Values 5 1 1.9 0 8.3

RTV
50 s. 208.49

1,000 s. 169.58

Table 2. Fine-tuning of the psychoclonal algorithm

 140

The psychoclonal algorithm has 5 parameters: size of the population (N), n, β, d, and K.

Table 2 shows the fine-tuning process of the psychoclonal algorithm.

The calibration obtained using CALIBRA+CALIBRA improves the solutions 11.54%

with respect to using one time CALIBRA for 50 executing seconds, whereas

CALIBRA+N&M improves 19.87%. On the other hand, for 1,000 computing seconds,

CALIBRA+CALIBRA get 4.94% worse with respect to using one time CALIBRA,

whereas CALIBRA+N&M improves slightly (0.54%).

5.3. Fine-tuning of the EM algorithm

The EM algorithm has 2 parameters: size of the population (N) and lsiter, both integers.

Table 3 shows the fine-tuning process of the EM algorithm.

Parameters N lsiter

CALIBRA (Step 1)

Ranges [1..100] [0..20]

Precision 0 0

Values 25 5

RTV
50 s. 3,747.05

1,000 s. 330.29

CALIBRA + N&M (Step 2)

Start point (25, 5)

Values 26 6

RTV
50 s. 3,683.46

1,000 s. 295.31

CALIBRA+CALIBRA (Step 2)

Ranges [10..40] [0..15]

Precision 0 0

Values 17 3

RTV
50 s. 3,930.48

1,000 s. 426.58

Table 3. Fine-tuning of the EM algorithm

 141

The results obtained using CALIBRA+CALIBRA are worse than the results obtained

using one time CALIBRA (4.90% and 29.15% worse for 50 and 1,000 computing

seconds, respectively). On the other hand, CALIBRA+N&M always improves the results

with respect to CALIBRA (1.70% and 10.59% better for 50 and 1,000 computing

seconds, respectively).

6. Conclusions

In this paper we propose a systematic procedure for fine-tuning metaheuristics. Even

though the performance of the metaheuristic algorithms proposed in the literature may

be very sensitive to the parameter values, the selection of the values is usually not

enough justified. The proposed procedure is able to find good parameter values for all

kind of instance of the problem spending little computing time.

Other fine-tuning designs have been proposed in the literature, but they have the

disadvantage of being very laborious and human-time consuming. Instead, the

procedure that we propose needs of little human intervention. Thus, we believe that the

proposed fine-tuning procedure can be very useful for researchers and practitioners.

CALIBRA is a valuable tool for a first and quick approximation to good parameter

values. In the case that more fine-tuning time is available, the CALIBRA authors

suggest applying again CALIBRA in a narrow range around the obtained parameter

values. The computational experience shows that the proposal introduced in this paper

is better. That is, applying the Nelder & Mead algorithm to fine-tuning the parameter

values is better than applying again CALIBRA.

Acknowledgements

The authors gratefully acknowledge the support of grant DPI2007-61905 (Ministry of

Education and Science, Spain, and FEDER).

 142

REFERENCES

Altinel IK and Öncan T (2005). A new enhancement of the Clarke and Wright savings

heuristic for the capacitated vehicle routing problem. Journal of the Operational

Research Society 56: 954-961.

Adenso-Díaz B and Laguna M (2006). Fine-tuning of algorithms using fractional

experimental designs and local search. Operations Research 54: 99-114.

Barr RS, Golden BL, Kelly JP, Resende MGC and Stewart WR (1995). Designing and

Reporting on Computational Experiments with Heuristic Methods. Journal of

Heuristics 1: 9-32.

Battarra M, Golden B and Vigo D (2008). Tuning a parametric Clarke-Wright heuristic

via a genetic algorithm. Journal of the Operational Research Society 59: 1568-

1572.

Chelouah R and Siarry P (2005). A hybrid method combining continuous tabu search

and Nelder-Mead simplex algorithms for the global minimization of multiminima

functions. European Journal of Operational Research 161: 636-654.

Corominas A, Kubiak W and Moreno N (2007). Response time variability. Journal of

Scheduling 10: 97-110.

Coy SP, Golden BL, Runger GC and Wasil EA (2001). Using Experimental Design to

Find Effective Parameter Settings for Heuristics. Journal of Heuristics 7: 77-97.

Eiben AE, Hinterding R and Michalewicz Z (1999). Parameter control in evolutionary

algorithms. IEEE Transactions on evolutionary computation 3: 124-141.

García-Villoria A and Pastor R (2009). Introducing dynamic diversity into a discrete

particle swarm optimization. Computers & Operations Research 36: 951-966.

García-Villoria A and Pastor R (2008a). Solving the Response Time Variability

Problem by means of a psychoclonal approach. Journal of Heuristics, In Press,

Corrected Proof, available online, 16 July 2008, doi:10.1007/s10732-008-9082-2.

García-Villoria A and Pastor R (2008b). Solving the Response Time Variability

Problem by means of the Electromagnetism-like Mechanism. Technical Report

IOC-DT-P-2008-03, Technical University of Catalonia (UPC), Spain. Available at

http://hdl.handle.net/2117/2013.

Nelder JA and Mead R (1965). A simplex method for function minimization. The

Computer Journal 7: 308-313.

 143

Taguchi G (1987). System of Experimental Design: Engineering Methods to Optimize

Quality and Minimize Costs. Vols. 1 & 2, UNIPUB/Kraus International

Publications: New York.

 145

An adaptive-based heuristic for the Response Time Variability Problem

Article submitted to Operations Research (1st review in progress)

An adaptive-based heuristic for the Response Time
Variability Problem†

Said SALHIa and Alberto GARCÍA-VILLORIAb

*

1

n

s
s

d
=

∑

a The Centre for Logistics & Heuristic Optimisation (CLHO), Kent Business School,

University of Kent at Canterbury, Canterbury CT2 7PE, UK
b Institute of Industrial and Control Engineering (IOC), Universitat Politècnica de Catalunya (UPC),

Barcelona, Spain
s.salhi@kent.ac.uk, alberto.garcia-villoria@upc.edu

Abstract. The Response Time Variability Problem (RTVP) is an NP-hard combinatorial
scheduling problem which has recently been reported and formalised in the literature. This
problem has a wide range of real-world applications in mixed-model assembly lines, multi-
threaded computer systems, broadcast of commercial videotapes and others. The RTVP arises
whenever products, clients or jobs need to be sequenced in such a way that the variability in
the time between the points at which they receive the necessary resources is minimised. We
propose a greedy but adaptive heuristic that avoids being trapped into a poor solution by
incorporating a look ahead strategy suitable for this particular scheduling problem. The
proposed heuristic outperforms the best existing methods, while being much faster and easier
to understand and to implement.

Keywords: response time variability, heuristics, adaptive search, scheduling, fair sequences

1. Introduction

The concept of a fair sequence has emerged independently from scheduling problems of
diverse environments. The common aim of these scheduling problems, as defined in
Kubiak (2004), is to build a fair sequence using n symbols, where symbol s (s = 1,...,n)
must occur ds times in the sequence. The fair sequence is the one which allocates a fair
share of positions to each symbol s in any subsequence. This fair or ideal share of
positions allocated to symbol s in a subsequence of length k is proportional to the
relative importance (ds) of symbol s with respect to the total copies of competing

symbols (equal to). There is no universal definition of fairness because several

reasonable metrics can be defined according to the specific problem considered.

Among the different definitions of fairness, several fair sequencing problems have
emerged, among them the Response Time Variability Problem (RTVP). This problem

† Supported by the Spanish Ministry of Education and Science under project DPI2007-61905; co-funded by the ERDF. And
supported by the Department of Innovationm, Universities and Enterprise of Generalitat de Catalunya under grant BE-DGR-2008.
* Corresponding author: Alberto García-Villoria, Institute of Industrial and Control Engineering (IOC), Av. Diagonal 647 (Edif.
ETSEIB), 11th floor, 08028 Barcelona, Spain; tel.: +34 93 4054010; e-mail: alberto.garcia-villoria@upc.edu. The research was
conducted while visiting CLHO at Kent.

 146

has been reported for the first time by Waldspurger and Weihl (1994) but formalised
several years later by Corominas et al. (2007). In the RTVP, the fair sequence is the one
which minimises the sum of the variability in the distances between any two
consecutive copies of the same symbol. In other words, the distance between any two
consecutive copies of the same symbol should be as regular as possible (i.e., ideally
constant).

In practice, the RTVP arises whenever products, clients or jobs need to be sequenced so
as to minimise the variability in the time between the instants at which they receive the
necessary resources (Corominas et al., 2007). This problem has a broad range of real-
world applications. These include, for instance, the sequencing of mixed-model
assembly lines under JIT (Kubiak, 1993; Miltenburg, 1989), the resource allocation in
computer multi-threaded systems such as operating systems, network servers and
media-based applications (Dong et al., 1998; Waldspurger and Weihl, 1994, 1995), the
periodic machine maintenance problem when the times between consecutive services of
the same machine are equal (Anily et al., 1998; Wei and Liu, 1983), the collection of
waste (Herrmann, 2007), the schedule of commercial videotapes for television
(Bollapragada et al., 2004; Brusco, 2008) and the design of sales catalogues
(Bollapragada et al., 2004).

Corominas et al. (2007) studied the computational complexity of the RTVP and proved
that it is NP-hard. Since this problem is a difficult combinatorial optimisation problem,
several heuristic and metaheuristic algorithms have been proposed for its solution.
Waldspurger and Weihl (1994) propose an algorithm that generates a solution
randomly. The same authors (Waldspurger and Weihl, 1995) improve their previous
results using the Jefferson method of apportionment (Balinski and Young, 1982), a
greedy heuristic algorithm which they renamed as the stride scheduling technique.
Herrmann (2007) solved the RTVP by applying a heuristic algorithm based on the stride
scheduling technique. Corominas et al. (2007) proposed the Jefferson method together
with other four constructive type heuristic algorithms. Seven new heuristics are also
given by Corominas et al. (2009). Metaheuristics for the RTVP were recently proposed
in García-Villoria and Pastor (2008, 2009, 2010) and these include a psychoclonal
algorithm, an electromagnetism-like mechanism (EM) algorithm, and a genetic
algorithm (GA) respectively.

The best five classical heuristics are described by (Corominas et al., 2009) and known
as Oc, AWe/dg, We/dg, Je/dg and In. On the other hand, the best results recorded to date
using relatively a larger computing time have been obtained with a GA (García-Villoria
and Pastor, 2010).

In this paper, a simple constructive greedy heuristic using an adaptive search based on a
look ahead strategy is proposed. The reasoning behind this approach and a couple of
theorems to support it are put forward. An extensive computational experiment is
carried out to assess the superiority of this heuristic over the aforementioned classical
heuristics for both solution quality and computational effort. Moreover, the solutions
obtained with the proposed heuristic are also found competitive when compared to the
GA while requiring a fraction of its cpu time.

In this study, we also introduce a new but related scheduling problem for the first time
that we call minmax RTV problem. In this problem, the objective is to minimise the

 147

maximum absolute discrepancy in the distances between any two consecutive copies of
the same symbol. Although the heuristic introduced in this paper has been specifically
designed to solve the RTVP, the way the look ahead strategy is defined led itself to
solve the minmax RTVP as well. The obtained results are reported here to provide a
platform for benchmarking purposes in the future.

The remainder of the paper is organised as follows: First, Section 2 presents a formal
definition of the RTVP. The next section represents the main body of the research and it
covers the new heuristic algorithm, the supporting theorems and the proposed
enhancements. The results of our computational experiment are presented in Section 4.
A new but related problem, the minmax RTVP, is briefly described and its results
summarised in Section 5. Finally, some conclusions and suggestions for future research
are provided in the last section.

2. The Response Time Variability Problem (RTVP)

The RTVP is formulated as follows. Let n be the number of symbols, sd the number of
copies to be sequenced of symbol s (s = 1,…,n) and D the total number of copies
(

1.. ss n
d

=∑). Let seq be a solution of an instance in the RTVP that consists of a circular

sequence of copies (1 2 Dseq s s s= ), where sj is the copy sequenced in position j of
sequence seq. For each symbol s in which 2sd ≥ , let s

kt be the distance between the
positions in which the copies k + 1 and k of symbol s are found. We consider the
distance between two consecutive positions to be equal to 1. Since the sequence is

circular, position 1 comes immediately after position D; therefore,
s

s
dt is the distance

between the first copy of symbol s in a cycle and the last copy of the same symbol in the
preceding cycle. Let st be the ideal average distance between two consecutive copies of

symbol s (s
s

Dt d=). Note that for each symbol s in which 1sd = , 1
st is equal to st . The

objective is to minimise the metric called response time variability (RTV), which is
defined by the sum of the square errors with respect to the st distances. This is defined

as 2

1 1
()

sdn
s
k s

s k
RTV t t

= =

= −∑∑ .

For an illustration, consider the following example. Let 3n = with symbols A, B and C.
Also consider 2=Ad , 2=Bd and 4=Cd ; thus, 8=D , 4=At , 4=Bt and 2.Ct = Any
sequence such that contains symbol s ()s∀ exactly sd times is a feasible solution. For
example, the sequence (C, A, C, B, C, B, A, C) is a feasible solution, and has an RTV
value = () ()() () ()() () () () ()()2 2 2 2 2 2 2 25 4 3 4 2 4 6 4 2 2 2 2 3 2 1 2− + − + − + − + − + − + − + − =

12.

 148

3. An adaptive heuristic for the RTVP

In this section we propose a constructive greedy heuristic to solve the RTVP which uses
a look ahead strategy. The heuristic has D (

1.. ss n
d

=∑) steps and at each step p (p =
1,…,D) it is decided which symbol is sequenced at position p of the sequence. In fact, it
could be considered that the heuristic has 1D − steps since the symbol to be sequenced
at the last step will be automatically determined. The reasoning behind the strategy to
select the symbol to be sequenced at each step is discussed in subsection 3.1 which also
contains two theorems to support our selection process. The initial implementation is
explained in subsection 3.2 and several enhancements are then proposed in subection
3.3.

3.1. The basic idea of the heuristic

Let first introduce some additional nomenclature:

seqp: The partial sequence obtained at step p; 0, , 1p D= − . Initially seq0 is a

void sequence
ˆ(,)d s p : The number of times left for symbol s to be sequenced in seqp; 1, ,s n=  ,

0, , 1p D= −
SS(p): The set of symbols that have been sequenced in seqp at least once;

0, , 1p D= −
lsp(s, p): The last position in which symbol s has been sequenced in seqp; ()s SS p∈ ,

0, , 1p D= −
t(s, p): (, 1)p lsp s p− − ; (1)s SS p∈ − , 1, ,p D= 

S+(p): The set of symbols { }ˆ(1) | (,) (, 1) 1ss S Sp t s p t d s p∈ − ≥ ∧ − ≥ ; 1, ,p D= 

S-(p): The set of symbols { }ˆ(1) | (,) (, 1) 1ss S Sp t s p t d s p∈ − < ∧ − ≥ ; 1, ,p D= 

Given a partial solution sequence seqp-1, the aim is to decide which symbol to be
sequenced at position p (p = 1,…,D). The symbols that still have copies to be sequenced
at step p (that is, all symbol s (s = 1,…,n) such as ˆ(, 1) 1d s p − ≥) can be grouped into
either the set S+(p) or the set S-(p). Given a symbol ()s S p+∈ and a symbol ' ()s S p−∈ ,
if one of them has to be sequenced at step p, then the decision that gives the lowest
increment to the RTV value of the partial solution for the symbols s and s’ is to
sequence the symbol s in position p and to sequence the symbol s’ in a later position.
The validity of this claim is shown in Theorem 1. The reasoning behind this argument is
that we try to avoid accumulating an excessive future increase in the distance between
the next copy to be sequenced of symbol s and its last sequenced copy. This is important
as the square error between ideal distances and real distances is used and this can be
amplified very quickly. On the other hand, we allow that the distance between the next
copy to be sequenced of symbol s’ and its last sequenced copy increases. Note that its
discrepancy between this distance and 'st will be reduced as shown in Figure 1.

 149

Figure 1. A graphical illustration of the sequencing distance concept

Theorem 1 Let seqp-1 be a partial sequence solution obtained at step p-1 (p = 1,…,D).
Given a symbol ()s S p+∈ and a symbol ' ()s S p−∈ , if one of them has to be sequenced
at step p, then the best decision is to sequence the symbol s in position p and the symbol
s’ in a later position p’ (p’ > p).

Proof. By definition of the sets S+(p) and S-(p), we have that '(,) (')s st s p t t s p t− > − or,
equivalently, '(,) (')s st s p t t s p t u− = − + where 0u > . Analogously, 'p p q= + where

1q ≥ . Consider the two possible options for sequencing the two symbols.

Option 1: The symbols s and s’ are sequenced in the positions p and p’, respectively.
The increment of the RTV value (1

RTV∆) is the following:
1
RTV∆ = ()() ()()2 2

', ', 's st s p t t s p t− + − = ()() ()()2 2
' '', ',s st s p t u t s p q t− + + + − =

()() ()()2 2
' '', ',s st s p t u t s p q t− + + + − .

Option 2: The symbols s and s’ are sequenced in the positions p’ and p, respectively.
The increment of the RTV value (2

RTV∆) is the following:
2
RTV∆ = ()() ()()2 2

', ' ',s st s p t t s p t− + − = ()() ()()2 2
', ',s st s p q t t s p t+ − + − =

()() ()()2 2
', ',s st s p q t t s p t+ − + − = ()() ()()2 2

' '', ',s st s p q t u t s p t+ − + + − .

Let '(') st s p tθ = − . Thus, () ()2 21 2 2 22 2 2RTV u q u q u qθ θ θ θ θ∆ = + + + = + + + + and

()()22 2 2 2 22 2 2 2RTV q u u q u q q uθ θ θ θ θ∆ = + + + = + + + + + .

Therefore, 2 1 2RTV RTV qu∆ = ∆ + . Since 1q ≥ and 0u > 1 2
RTV RTV⇒ ∆ < ∆ . ■

We can generalize Theorem 1 by extending it for any pair of symbols s and s’ without
considering if they are included in the set S+(p) or in the set S-(p).

Theorem 2 Let seqp-1 be a partial sequence solution obtained at step p-1 (p = 1,…,D).
Given the symbols , ' ()s s SS p∈ , when one of them has to be sequenced at step p, then
the best decision is to sequence the symbol

{ }
()

, '
* arg max (,) i

i s s
s t i p t

∈
= − in position p and

the other symbol s# { } { }()# , ' *s s s s= − in a later position p’ (p’ > p).

 150

Proof. By hypothesis, we have that #
#

*(*,) (,)s s
t s p t t s p t− ≥ − . If

#
#

*(*,) (,)s s
t s p t t s p t− > − then we can apply Theorem 1. In the other hand, if

#
#

*(*,) (,)s s
t s p t t s p t− = − then it is indifferent which of the two symbols is sequenced
first. ■

Lemma. When all symbols have been sequenced at least once, the symbol

{ }
ˆ()| (,) 1

* arg max (,) s
s SS p d s p

s t s p t
∈ ≥

= − is sequenced at step p.

The above lemma constitutes the cornerstone idea in which the proposed heuristic will
be based upon.

3.2. An initial implementation

We propose an initial heuristic based on Theorem 2 and the above lemma. At each step
p (p = 1,…,D) of the heuristic, the symbols that still have copies to be sequenced are
classified into the following three sets:

S1(p): The set of symbols { } () (){ }ˆ1, , | 1 (, 1) 1ss n d d s p∈ = ∧ − = ; 1, ,p D= 

S2(p): The set of symbols { } () (){ }ˆ1, , | 2 (, 1)s ss n d d s p d∈ ≥ ∧ − = ; 1, ,p D= 

S3(p): The set of symbols { } () (){ }ˆ1, , | 2 0 (, 1)s ss n d d s p d∈ ≥ ∧ < − < ; 1, ,p D= 

Note that the symbols with only one copy to be sequenced have the following
interesting property. All symbol s of S1(p) (and, therefore, 1

s
st t=), will never increase

the RTV value of the solution (this is explained in Section 2). The heuristic will
sequence these symbols (i.e., those in which 1sd =) whenever it is not suitable to
sequence any other symbol s from S2(p) or S3(p).

Let the function (,)s p∆ 1 3() ()s S p S p∀ ∈ ∪ and p∀ (p = 1,…,D) be defined as

follows:
(,) ,if 2

(,)
0 ,if 1

s s

s

t s p t d
s p

d
− ≥

∆ =  =

Note that, by definition, the symbols of the sets S+(p) have 0∆ ≥ , whereas those
symbols of the sets S-(p) have 0∆ < . Ideally, the remaining copies of the symbols that
have been sequenced at least once should be next sequenced at step p in which their Δ
value is 0. In general, however, this is not always possible, so the idea is to sequence the
symbols with the highest Δ value according to Theorem 2.

The pseudo-code of the proposed heuristic is shown in Figure 2. The algorithm has two
phases. Let R be the number of steps used by the algorithm to sequence all symbols s in
which ds ≥ 2 at least once. That is, R is the step in which ()2 1S R + = ∅ and

()2S R ≠ ∅ . The first phase applies during the first R steps (lines 2 to 4 of the pseudo-

 151

code) and the second phase uses the remaining D R− steps (lines 5 and 6 of the
pseudo-code).

Figure 2. The pseudocode of the initial heuristic

Figure 3. The tie breaker

Phase I. In this phase, all symbols s in which ds ≥ 2 are sequenced at least once. At each
step p (p = 1,…,R), only symbols of S2(p) or S3(p) are considered to be sequenced. The
symbols of S1(p) are not considered in this phase because they are kept for the second
phase to fill the positions which are not suitable for any other symbols. All symbols s in
which ds = 1 can be used as a wild card. The main objective of this phase is to sequence
at least the first copy of all symbols s in which ds ≥ 2. However, if there is one or more
symbols of S3(p) that have Δ ≥ 0, then the symbol with the highest value is selected.

Phase II. In this phase, all symbols s in which ds ≥ 2 have been sequenced at least once.
Thus, according to Theorem 2, at each step p (p = 1R + ,…,D), the symbol which has
the highest Δ value is chosen. Note that if all symbols of S3(p) have a negative Δ value,
then a symbol of S1(p) is sequenced (if S1(p) is not void), since its Δ value is 0. This
scheme is introduced to stop the Δ values of the symbols of S3(p) to be increased at the
next steps.

8. Let seq0 be a void sequence
9. For 1p = to D do:
10. If 2 ()S p ≠ ∅ then:
11. If 3: () | (,) 0s s S p s p∃ ∈ ∆ ≥ then *

ps is the symbol 3()s S p∈ with
the highest (,)s p∆ value. In case of tie, use the tie breaker of
Figure 3.

12. Otherwise *
ps is the symbol 2 ()s S p∈ with the highest sd value. If

there is a tie, use lexicographical order.
13. Otherwise (2 ()S p = ∅):
14. *

ps is the symbol 1 3() ()s S p S p∈ ∪ with highest (,)s p∆ value. In
case of tie, use the tie breaker of Figure 3.

15. seqp is obtained by sequencing *
ps in seqp-1

16. Next p
17. Return Dseq

• If there is a tie, select the symbol with the highest ˆ(,)d s p value.
• If there is again a tie, select the symbol with the highest sd value.
• Finally, if there is a tie, use lexicographical order.

 152

3.3. Enhancements

Three modifications to improve the performance of the initial heuristic are proposed in
the following three subsections (3.3.1 to 3.3.3). The pseudo-code of the enhanced
approach is given in the last subsection (3.3.4).

3.3.1. Effect of the distances between the first and last copies of the symbols

When the last copy of symbol s remains to be sequenced, only the distance between this
copy and its second to the last copy (i.e., 1s

s
dt −) is taken into account. However, the

distance between its last copy and its first copy in the preceding cycle (i.e.,
s

s
dt) should

also be taken into consideration. The function (,)s p∆ is therefore redefined to
overcome this discrepancy:

() ()
[] () () ()

ˆ(,) if 2 (, 1) 2

ˆ(,) (,) (if 2 (, 1) 1

0 if 1

s s

s s s

s

t s p t d d s p

s p t s p t t D fsp s p d d s p

d

 − ≥ ∧ − ≥

∆ = − + − + − ≥ ∧ − =   


=


where fsp(s) returns the first position in which symbol s has been sequenced.

3.3.2. Effect of the competition for the same position

The initial heuristic sequences, at each step p, a symbol of S2(p) (during the first phase)
or a symbol of S1(p) (during the second phase) when all symbols of S3(p) have negative
Δ values. However, there are situations in which it is better to sequence a symbol of
S3(p) though its Δ value is negative.

A counter-example
Let 5n = with symbols A, B, C, D and E in which 1Ad = , 5.7Bt = , 3.9Ct = , 2.6Dt =
and 2.8Et = , and let suppose that at step p the sequence seqp shown in Figure 4a has
been generated.

The initial proposed heuristic will produce the partial sequence shown in Figure 4b as
follows:

• At step p , (,) 0A p∆ = , (,) 1.7B p∆ = − , (,) 0.9C p∆ = − , (,) 0.6D p∆ = − and
(,) 1.8E p∆ = − ; thus, the symbol A is sequenced since it has the highest Δ value.

• At step 1p + , (, 1) 0.7B p∆ + = − , (, 1) 0.1C p∆ + = , (, 1) 0.4D p∆ + = and
(, 1) 0.8E p∆ + = − , so symbol D is sequenced.

• At step 2p + , (, 2) 0.3B p∆ + = , (, 2) 1.1C p∆ + = , (, 2) 1.6D p∆ + = − and
(, 2) 0.2E p∆ + = , so symbol C is sequenced.

• At step 3p + , (, 3) 1.3B p∆ + = , (, 3) 2.9C p∆ + = − , (, 3) 0.6D p∆ + = − and
(, 3) 1.2E p∆ + = , so symbol B is sequenced.

 153

• At step 4p + , (, 4) 4.7B p∆ + = − , (, 4) 1.9C p∆ + = − , (, 4) 0.4D p∆ + = and
(, 4) 2.2E p∆ + = , so symbol E is sequenced.

The increment of the RTV value obtained from the copies of the symbols B, C, D and E
sequenced from step 1p + to step 4p + is () () ()2 2 27 5.7 5 3.9 3 2.6− + − + − +

()25 2.8− = 7.9.

On the other hand, a lower RTV increment could be obtained with the sequence shown
in Figure 4c, which is () () () ()2 2 2 26 5.7 4 3.9 2 2.6 4 2.8− + − + − + − = 1.9. In this case,
the symbol D has been sequenced at step p although (,) 0.6D p∆ = − .

Figure 4. Different ways of sequencing

The proposed condition for sequencing at step p a symbol of S3(p) though all its
symbols have a negative Δ value is that there could be too many symbols that would be
sequenced during the next immediate positions of p. To overcome this shortcoming, the
following condition is introduced:

{ } 31 : (,) ()q p D S p q q p M∃ ∈ + ≥ − +

 ,

where M (1M ≥) is a parameter that quantifies the effect of the cardinality of the set

{ }3 3(,) () : (,) () 0S p q s S p s p q p= ∈ ∆ + − ≥ . The value of M that obtains the best
performance was found empirically to be 2.

3.3.3. Effect of dynamic ideal distances

In the initial heuristic, the ideal distance between two copies of symbol s is considered
to be equal to st in all steps of the construction of the solution. On the other hand, it
seems better to adjust dynamically the ideal distance of symbol s according to the
current partial solution. This aims to sequence the remaining copies of s more regularly

 154

among the remaining positions. The adjusted ideal distances ˆ(,)t s p are then defined for
all 3 ()s S p∈ and for all step p (p = 1,…,D) as follows:

(, 1) ()ˆ(,) ˆ(, 1) 1
D lsp s p fsp st s p

d s p
− − +

=
− +

3.3.4. The enhanced heuristic

The pseudo-code of our enhanced heuristic is shown in Figure 5, with the summary of
the modifications as explained in the last three subsections:

• 2M =

•

() ()
() () ()

ˆˆ(,) (,) , if 2 (,) 2

ˆˆ ˆ(,) (,) (,) (,) (, if 2 (,) 1

0 ,if 1

s

s

s

t s p t s p d d s p

s p t s p t s p t s p D fsp s p d d s p

d

 − ≥ ∧ ≥

   ∆ = − + − + − ≥ ∧ =   


=


1, ,p D=  , 1 3() ()s S p S p∀ ∈ ∪

• { }3 3(,) () : (,) () 0S p q s S p s p q p= ∈ ∆ + − ≥ ; 1, ,p D=  , 1, ,q p D= + 

Figure 5. The pseudocode of the enhanced heuristic

0. Let seq0 be a void sequence
1. For 1p = to D do:
2. If 2 ()S p ≠ ∅ then:
3. If ()3: () | (,) 0s s S p s p∃ ∈ ∆ ≥ ∨

{ }()31 : (,) ()q p D S p q q p M∃ ∈ + ≥ − +

 then *
ps is the symbol

3()s S p∈ with the highest (,)s p∆ value. In case of tie, use the
tie break procedure of Figure 3.

4. Otherwise *
ps is the symbol 2 ()s S p∈ with the highest sd value. If

there is a tie, use lexicographical order.
5. Otherwise (2 ()S p = ∅):

6. If { }()31 : (,) ()q p D S p q q p M∃ ∈ + ≥ − +

 then 3' ();S S p=

otherwise, 1 3' () ()S S p S p= ∪
7. *

ps is the symbol 's S∈ with highest (,)s p∆ value. In case of tie, use
the tie break procedure of Figure 3.

8. seqp is obtained by sequencing *
ps in seqp-1

9. Next p
10. Return Dseq

 155

4. Computational results for the RTVP

To assess the performance of our proposed heuristic we conduct a large experiment of
around 800 instances and compare our results against the best from the classical
heuristics as well as the metaheuristics. All algorithms are coded in Java and executed
on a 3.4 GHz Pentium IV with 1.5 GB of RAM.

4.1. Comparison vs. the best classical heuristics

The proposed heuristic is compared with the five best existing classical heuristics
proposed (Corominas et al., 2009). Those are known as Oc, AWe/dg, We/dg, Je/dg and
In. In their study, 600 test instances were used, which were grouped into three classes
according to size (classes CAT1 to CAT3, with 200 instances in each class). In this
study, we also add 200 other larger test instances under class CAT4. All instances were
generated using the random values of D (total number of copies) and n (number of
symbols) shown in Table 1. For all instances and for each symbol s = 1,…,n, a random
number of copies to be sequenced of model s (ds) is randomly generated between 1 and
()1 2.5D n− + such that

1.. ss n
d D

=
=∑ . The 800 instances are available at

http://www.ioc.upc.edu/EOLI/research.

Table 1. Uniform distribution for the D and n values of the test instances
 CAT1 CAT2 CAT3 CAT4
D U(25, 50) U(50, 100) U(100, 200) U(200, 500)
n U(3, 15) U(3, 30) U(3, 65) U(3, 150)

The results are analysed by considering all the sets of instances as well as in each class
of instances (CAT1 to CAT4). We show the results of the proposed initial heuristic (let it
be called IN-H) and those of the enhanced heuristic (let it be called ENH-H). The
average RTV values of the solutions obtained with all heuristics are given in Table 2.

Table 2. Average RTV values obtained by the classical heuristics

 Global CAT1 CAT2 CAT3 CAT4
ENH-H 144.30 26.96 60.85 135.45 353.92

IN-H 652.16 43.44 141.20 481.83 1,942.15
Oc 215.61 28.96 74.20 198.61 560.68

Awe/dg 405.88 47.03 120.32 349.13 1,107.03
We/dg 434.56 50.93 129.62 376.27 1,181.43
Je/dg 594.51 57.52 164.19 499.72 1,656.61

In 778.51 121.16 308.45 658.21 2,026.21

We can see in Table 2 that Oc was the best existing heuristic in the literature. This
observation is valid for the overall RTV averages as well as in each class of instances
(CAT1 to CAT4). Our initial heuristic (IN-H) performs well but not as competitive. On
the other hand, the enhanced heuristic (ENH-H) obtains, on average, better solutions
than Oc. If we consider the results by class, ENH-H is 6.91%, 17.99%, 31.80% and
36.88% better than Oc for CAT1, CAT2, CAT3 and CAT4 instances, respectively. Thus,

 156

the results point that the larger the instance, the more competitive is our heuristic.
Moreover, ENH-H is much faster than Oc as it is shown in Table 3. On average, ENH-H
requires only 1.82 milliseconds to solve an instance, whereas Oc needs 1,479.99
milliseconds (i.e., nearly 810 times slower).

Table 3. Average computing time (in milliseconds) used by the classical heuristics

 Global CAT1 CAT2 CAT3 CAT4
ENH-H 0.72 0.12 0.22 0.43 2.12

IN-H 0.63 0.11 0.20 0.38 1.82
Oc 1,479.99 13.38 83.32 511.66 5,311.62

Awe/dg 4.56 0.86 1.45 3.91 12.01
We/dg 4.42 0.65 1.35 4.27 11.41
Je/dg 3.47 0.15 0.55 4.06 9.12

In 0.48 0.30 0.30 0.40 0.90

Robustness of the solutions
The dispersion with respect to the best RTV value obtained is also recorded. A measure
of the dispersion (let it be σ) of the RTV values obtained by each algorithm, say alg, for

a given instance, say ins, is defined as ()()2() () ()(,) RTV RTV RTValg best best
ins ins insalg insσ = − ,

where ()RTV alg
ins is the RTV value of the solution obtained with the algorithm alg for the

instance ins, and)(RTV best
ins is, for the instance ins, the best RTV value of the solutions

obtained with all heuristics. Table 4 shows the average σ dispersion values.

Table 4. Average σ dispersion values regarding the best solution found by the classical heuristics

 Global CAT1 CAT2 CAT3 CAT4
ENH-H 0.11 0.26 0.07 0.03 0.07

IN-H 19.00 3.69 5.66 12.64 54.01
Oc 0.27 0.21 0.23 0.35 0.28

Awe/dg 7.15 4.01 3.50 4.89 16.21
We/dg 9.09 4.44 4.11 6.45 21.36
Je/dg 22.18 8.29 8.57 15.66 56.22

In 48.27 54.52 85.67 21.82 31.06

ENH-H and Oc both obtain low averages of the σ dispersion values. This indicates that
both algorithms are very stable especially our enhanced heuristic which besides
outperforming all the other heuristics, it is found to be extremely robust and consistent
in generating excellent results.

4.2. Comparison vs metaheuristics

We also compare the results of our heuristic with the best results obtained by the GA of
García-Villoria and Pastor (2010). In this scenario, a set of 740 test instances is used
instead. This is a subset of the 800 test instances (the other 60 instances were used to
calibrate the parameters of the GA in their study). As in the previous subsection, these

 157

740 instances are also grouped into four classes according to size (classes CAT1’ to
CAT4’, with 185 instances in each class). Table 5 shows the averages of the RTV values
obtained by our proposed heuristic and the GA with 10, 50, 200, 500 and 1,000 seconds
of computing time.

Table 5. Average RTV values for a computing time of 10, 50, 200, 500 and 1,000 seconds
 Global CAT1’ CAT2’ CAT3’ CAT4’
ENH-H 159.50 27.56 62.76 151.91 395.77

GA

10 s. 1,245.10 12.13 31.85 111.47 4,824.94
50 s. 186.94 11.65 29.41 84.54 622.16
200 s. 131.81 11.34 28.26 77.81 409.84
500 s. 114.39 11.00 27.63 75.59 343.33
1,000 s. 106.68 10.92 27.00 74.86 313.92

On average, the GA is able to improve ENH-H. Observing the results by class, the
metaheuristic algorithm obtains, on average, better solutions for all type of instances
(CAT1’ to CAT4’), though these results are not directly comparable due to the large
difference in the computing times. For instance, the GA needs more than 200 seconds to
obtains better results for the largest instances (CAT4’) while our heuristic requires tiny
fraction of a second (0.72 milliseconds) only. As our heuristic is so fast and generates
reasonably good solutions, it could be an invaluable tool to be incorporated within other
powerful meta-heuristics for the generation of the initial solution, or be part of some
exact methods for providing tighter upper bounds.

5. The minmax RTVP

As our approach is flexible enough to cater for other type objective functions, in this
paper we introduced a related RTVP which we refer to as the minmax RTVP. Here, the
objective is to minimise the metric that we call the maximum response time variability
(maxRTV). This is defined by the maximum of the absolute errors with respect to the st

distances, ()
1 1

max max
sdn

s
k ss k

maxRTV t t
= =

= − .

For an illustration, consider the same example introduced in Section 2. That is, let 3n =
with symbols A, B and C. Also consider 2=Ad , 2=Bd and 4=Cd ; thus, 8=D ,

4=At , 4=Bt and 2.Ct = Any sequence such that contains symbol s ()s∀ exactly sd
times is a feasible solution. For example, the sequence (C, A, C, B, C, B, A, C) is a
feasible solution. The maxRTV value of the illustrative example is, therefore,

() () ()()max max 5 4 , 3 4 ,max 2 4 , 6 4 , max 2 2 , 2 2 , 3 2 , 1 2 1 2− − − − − − − − = .

The minmax RTVP is solved for all 800 test instances using the original implementation
(IN-H) and its enhanced version ENH-H algorithm. Since this is the first time in the
literature this related problem is presented, there is obviously no comparison with other
existing results. In Table 6, we provide our results which can be used for future
benchmarking purposes which hopefully will entice other researchers to investigate this
or related scheduling problems.

 158

Table 6. Smallest, average and largest maxRTV value obtained with ENH-H and IN-H

 maxRTV Global CAT1 CAT2 CAT3 CAT4

ENH-H
Smallest 0.58 0.91 0.58 1.38 1.58
Average 3.17 2.19 2.72 3.43 4.33
Largest 10.18 4.00 5.14 7.55 10.18

IN-H
Smallest 0.91 0.91 1.69 2.04 3.66
Average 7.85 3.17 4.99 7.77 15.48
Largest 80.40 8.07 14.11 22.27 80.40

6. Conclusions and future research

This paper proposes a new constructive greedy heuristic based on an adaptive search to
solve the Response Time Variability Problem (RTVP). The RTVP is an NP-hard
scheduling problem that appears in a broad range of real-life applications. Several
heuristics and metaheuristic algorithms have been proposed in previous studies to solve
the RTVP. The best solutions have been achieved by means of metaheuristics, but they
need a lot of computing time (1,000 seconds). On the other hand, classical heuristics
only require a fraction of that amount, but the solutions were usually found to be
inferior.

The heuristic that we propose improves upon the performance of the best existing
classical heuristics in terms of solution quality and computing time. Moreover, the
solutions obtained are also competitive with the best solutions found by the existing
metaheuristics while requiring a fraction of their computing time especially for the
largest tested instances. In addition, we adopted this heuristic to tackle a related but a
new scheduling problem namely the minmax RTVP with computational results for
benchmarking purposes.

A promising line of research is to develop additional properties to make the enhanced
heuristic even more powerful. Another simple way is to incorporate post optimisation.
For instance partial enumeration can easily be implemented a few positions before the
end, local search procedures as well as metaheuristics such as tabu search or simulated
annealing can also be introduced. From a practical view point other metrics to define the
fairness could also be attempted for this exciting scheduling problem. The commonly
used measure between two successive symbols is one unit of distances, this could be
generalised to be dependent on the type of symbols and their relationships. This
additional feature will obviously make the problem more complex but practically
interesting and academically challenging.

REFERENCES

Anily, S., Glass, C.A. and Hassin, R. (1998) ‘The scheduling of maintenance service’,

Discrete Applied Mathematics, 82, 27-42.
Balinski, M.L. and Young, H.P. (1982) Fair Representation, Yale University Press,

New Haven.

 159

Bollapragada, S., Bussieck, M.R. and Mallik, S. (2004) ‘Scheduling Commercial
Videotapes in Broadcast Television’, Operations Research, 52, 679-689.

Brusco, M.J. (2008) ‘Scheduling advertising slots for television’, Journal of the
Operational Research Society, 59, 1363-1372.

Corominas, A., Kubiak, W. and Moreno, N. (2007) ‘Response time variability’, Journal
of Scheduling, 10, 97-110.

Corominas, A., Kubiak, W. and Pastor, R. (2009) ‘Heuristic algorithms for solving the
Response Time Variability problem’, Technical report IOC-DT-P-2009-03,
Universitat Politècnica de Catalunya, Spain.

Dong, L., Melhem, R. and Mosse, D. (1998) ‘Time slot allocation for real-time
messages with negotiable distance constrains requirements’, Fourth IEEE Real-
Time Technology and Applications Symposium (RTAS'98), Denver, CO., pp. 131-
136.

García-Villoria, A. and Pastor, R. (2008) ‘Solving the Response Time Variability
Problem by means of a psychoclonal approach’, Journal of Heuristics,
doi:10.1007/s10732-008-9082-2.

García-Villoria, A. and Pastor, R. (2009) ‘Solving the Response Time Variability
Problem by means of the Electromagnetism-like Mechanism’, International Journal
of Production Research, doi: 10.1080/00207540902862545.

García-Villoria, A. and Pastor, R. (2010) ‘Solving the response time variability problem
by means of a genetic algorithm’, European Journal of Operational Research, 202,
320-327.

Herrmann, J.W. (2007) ‘Generating Cyclic Fair Sequences using Aggregation and
Stride Scheduling’, Technical Report TR 2007-12, University of Maryland, USA.
Available at http://hdl.handle.net/1903/7082.

Kubiak, W. (1993) ‘Minimizing variation of production rates in just-in-time systems: A
survey’, European Journal of Operational Research, 66, 259-271.

Kubiak, W. (2004) ‘Fair Sequences’, Chapter 19 in Handbook of Scheduling:
Algorithms, Models and Performance Analysis, Chapman and Hall.

Miltenburg, J. (1989) ‘Level schedules for mixed-model assembly lines in just-in-time
production systems’, Management Science, 35, 192-207.

Waldspurger, C.A. and Weihl, W.E. (1994) ‘Lottery Scheduling: Flexible Proportional-
Share Resource Management’, First USENIX Symposium on Operating System
Design and Implementation, Monterey, California.

Waldspurger, C.A. and Weihl, W.E. (1995) ‘Stride Scheduling: Deterministic
Proportional-Share Resource Management’, Technical Report MIT/LCS/TM-528,
Massachusetts Institute of Technology, MIT Laboratory for Computer Science.
Available at https://eprints.kfupm.edu.sa/67117.

Wei, W.D. and Liu, C.L. (1983) ‘On a periodic maintenance problem’, Operations
Research Letters, 2, 90-93.

 161

Metaheuristic algorithms hybridized with variable neighbourhood
search for solving the response time variability problem

Article submitted to Journal of Scheduling (1st review in progress)

Metaheuristic algorithms hybridized with variable
neighbourhood search for solving the response time

variability problem†

Albert COROMINAS, Alberto GARCÍA-VILLORIA

*

1.. ii n
d

=∑

and Rafael PASTOR
Institute of Industrial and Control Engineering (IOC)

Universitat Politècnica de Catalunya (UPC)
{albert.corominas / alberto.garcia-villoria / rafael.pastor}@upc.edu

Abstract. The response time variability problem (RTVP) is a scheduling problem with a wide
range of real-world applications: mixed-model assembly lines, multi-threaded computer
systems, network environments, broadcast of commercial videotapes and machine
maintenance, among others. The RTVP arises whenever products, clients or jobs need to be
sequenced in such a way that the variability in the time between the points at which they
receive the necessary resources is minimised. Since the RTVP is NP-hard, several heuristic
and metaheuristic techniques are needed to solve non-small instances. The best procedure in
the literature for the RTVP is an algorithm based on a variant of the variable neighbourhood
search (NVS), called Reduced VNS (RVNS). We propose hybridizing with RVNS three
existing algorithms based on tabu search, multi-start and particle swarm optimisation. The
aim is to combine the strengths of the metaheuristics. A computational experiment is carried
out and it is shown that, on average, all proposed hybrid methods are able to improve the best
published solutions.

Keywords: response time variability, fair sequences, scheduling, just-in-time, variable
neighbourhood search, hybrid metaheuristics

1. Introduction

The concept of fair sequence has emerged independently from scheduling problems in
diverse environments. The common aim of these scheduling problems, as defined in
Kubiak (2004), is to build a fair sequence using n symbols, where symbol i (i = 1,...,n)
must occur di times in the sequence. The fair sequence is the one which allocates a fair
share of positions to each symbol i in any subsequence. This fair or ideal share of
positions allocated to symbol i in a subsequence of length k is proportional to the
relative importance (di) of symbol i with respect to the total copies of competing
symbols (equal to). There is not a universal definition of fairness, as several
reasonable metrics can be defined according to the specific problem considered. For a
detailed introduction to fair sequences, see Kubiak (2009).

† Supported by the Spanish Ministry of Education and Science under project DPI2007-61905; co-funded by the ERDF.
* Corresponding author: Alberto García-Villoria, Institute of Industrial and Control Engineering (IOC), Av. Diagonal 647 (Edif.
ETSEIB), 11th floor, 08028 Barcelona, Spain; tel.: +34 93 4054010; e-mail: alberto.garcia-villoria@upc.edu

 162

Among the different definitions of fairness, the concept of response time variability
(RTV) has emerged. In RTV, the ideal distance for symbol i between any two
consecutive copies of this symbol is equal to D/di, where D is the length of the sequence
()1.. ii n
D d

=
= ∑ . The RTV metric is the sum, for all symbols i, of the squares of the

differences between the ideal and the real distances corresponding to all pairs of
consecutive copies of symbol i. Thus, the RTV metric measures the non-fairness of a
sequence. The response time variability problem (RTVP) lies in finding the optimal
sequence according to the RTV metric, that is, the sequence that minimises the RTV.
Thus, the distance between any two consecutive copies of the same symbol should be as
regular as possible (ideally constant).

This problem has a broad range of real-world applications. One of the first situations in
which the idea of the regular sequence appeared was the sequencing of mixed-model
assembly lines at Toyota Motor Corporation under the just-in-time (JIT) production
system. Since Toyota popularized the just-in-time (JIT) production systems, the
problem of sequencing on mixed-model assembly lines has acquired high relevance.
One of the main aims of JIT is to eliminate sources of waste and inefficiency. In the
case of Toyota, the main source of waste was the production of excessive volumes of
stock. To solve this problem, JIT systems produce only the specific models required and
in the quantities needed at any given time. According to Monden (1983), in this type of
system the units should be scheduled in such a way that the consumption rates of the
components in the production process remain constant. Miltenburg (1989) also studied
this scheduling problem and considered only the demand rates for the models
(Miltenburg, 1989; Kubiak, 1993). The problem proposed by Miltenburg intended to
minimise variations in production rate in different models. However, feedback received
from the manufacturing industry suggests that a good mixed-model sequence is one in
which the distances between units of the same model are as regular as possible. One
drawback of the Miltenburg problem is that, on the contrary of the RTVP, it takes the
positions of the models with only one unit to be produced into account although the
positions of these models are irrelevant for the regularity of the consumption rates.

The RTVP also appears in computer multithreaded systems (Waldspurger and Weihl,
1994 and 1995; Dong et al., 1998; Bar-Noy et al., 2002). Multithreaded systems
(operating systems, network servers, media-based applications, etc.) do different tasks
to attend to the requests of client programs that take place concurrently. These systems
need to manage the scarce resources in order to service the requests of n clients. For
example, multimedia systems must not display video frames too early or too late,
because this would produce jagged motion perceptions (Kubiak, 2009). Waldspurger
and Weihl, considering that resource rights could be represented by tickets and that each
client i had a given number di of tickets, suggested the RTV metric to evaluate the
sequence of resource rights.

Other contexts in which the RTVP can be applied are the design of sales catalogues
(problem introduced in Bollapragada et al., 2004), the periodic machine maintenance
problem (Anily et al., 1998; Wei and Liu, 1983) as well as other distance-constrained
problems (e.g., see Han et al., 1996).

Two real-life cases of RTVP applications were reported in the literature. In
Bollapragada et al. (2004), the study is motivated by the problem faced by the National
Broadcasting Company (BNC) of U.S., one of the main firms in the television industry.

 163

Major advertisers buy to BNC hundreds of time slots to air commercials. The
advertisers ask to BNC that the airings of their commercials are evenly spaced as much
as possible over the broadcast season. The problem solved finally is not the RTVP, but a
non-cycling variant. This study is continued in Brusco (2008). In Herrmann (2007), the
author came up with the RTVP while working with a healthcare facility that needed to
schedule the collection of waste from waste collection rooms throughout the building.
Based on data about how often a waste collector had to visit each room and in view of
the fact that different rooms require a different number of visits per shift, the facility
manager wanted these visits to occur as regular as possible so that excessive waste
would not collect in any room. For instance, if a room needed four visits per eight-hour
shift, it should be ideally visited every two hours.

Although the RTVP is in general NP-hard (Corominas et al., 2007), the two-symbol
case can be optimally solved with a polynomial algorithm proposed in Corominas et al.
(2007). For the other cases, Corominas et al. (2007) proposed a mixed-integer linear
programming (MILP) model whose practical limit to obtain optimal solutions is 25
copies to be sequenced. Corominas et al. (2010) proposed an improved MILP model
and increased the practical limit for obtaining optimal solutions from 25 to 40 copies to
be sequenced.

For solving largest instances, heuristic methods have been proposed. This problem has
been first time solved in Waldspurger and Weihl (1994) using a method that authors
called lottery scheduling, which consists on generating a solution at random. Later,
Waldspurger and Weihl (1995) used the Jefferson method of apportionment (Balinski
and Young, 1982), a greedy heuristic algorithm which they renamed as the stride
scheduling technique. Herrmann (2007) solved the RTVP by applying a heuristic
algorithm based on the stride scheduling technique. An aggregation approach was used
in Herrmann (2009). Corominas et al. (2007) proposed also the Jefferson method
together with other four greedy heuristic algorithms and a local search method. García
et al. (2006) proposed six metaheuristic algorithms: a multi-start (MS), a greedy
randomized adaptive search procedure (GRASP) and four variants of a discrete particle
swarm optimisation (PSO) algorithm. An enhanced multi-start algorithm and an
enhanced GRASP algorithm were proposed in Corominas et al. (2008), and other ten
discrete PSO algorithms were proposed in García-Villoria and Pastor (2009a). A cross-
entropy method (CE) algorithm, a psychoclonal algorithm, an electromagnetism-like
mechanism (EM) algorithm, and a genetic algorithm (GA) were used in García-Villoria
et al. (2007) and García-Villoria and Pastor (2008, 2009b, 2010), respectively. Finally,
two tabu search (TS) algorithms and a variable neighbourhood search (VNS) algorithm
were proposed in Corominas et al. (2009a, 2009b, 2009c), respectively.

The best results when solving the RTVP has been achieved using the VNS
metaheuristic (Corominas et al., 2009c). In order to improve the solution of the RTVP,
we propose three hybrid solution approaches: an hybridization of TS with VNS
(TS+VNS), an hybridization of MS with VNS (MS+VNS) and an hybridization of PSO
with VNS (PSO+VNS). Hybrid frameworks can combine the strengths of different
metaheuristics to obtain a more efficient method. In the proposed TS+VNS, TS is used
as the main framework and the VNS principle of alternating dynamically between
neighbourhoods is incorporated. On the other hand, VNS is used as an intensification
phase in the proposed MS+VNS and PSO+VNS. A computational experiment shows the

 164

benefits of hybridizing with VNS since the obtained results are, on average, 11.71%
better with respect to the best results published in the literature.

The remainder of the paper is organized as follows. Section 2 presents a formal
definition of the RTVP. Section 3 justifies the hybrid algorithms proposed in this work
and gives a detailed explanation of their design. Section 4 presents the results of a
computational experiment. Finally, some conclusions are given in Section 5.

2. The Response Time Variability Problem (RTVP)

The RTVP is formulated as follows. Let n be the number of symbols to be sequenced
(that represent products, clients, jobs, …), where symbol i (i = 1,...,n) is to be copied di
times in the sequence (that represent the number of times that symbol i has to receive
the resource) and D is the total number of copies (

1.. ii n
d

=∑). Let s be a solution of an

instance in the RTVP that consists of a circular sequence of copies (Dssss 21=),
where sj is the copy sequenced in position j of sequence s. For each symbol i in which

2id ≥ , let i
kt be the distance between the positions in which the copies k + 1 and k of

symbol i are found. We consider the distance between two consecutive positions to be
equal to 1. Since the sequence is circular, position 1 comes immediately after the last
position D; therefore, i

di
t is the distance between the first copy of symbol i in a cycle

and the last copy of the same symbol in the preceding cycle. Let it be the desired

average distance between two consecutive copies of symbol i (i
i

Dt d=). The objective

is to minimise the metric called response time variability (RTV), which is defined by
the sum of the square errors with respect to the it distances. Since the symbols i such
that 1id = do not intervene in the computation of RTV, we assume that for each of

these symbols 1
it is equal to it . The aim is to minimise the metric RTV, which is

defined by the following expression:

 2

1 1
()

idn
i
k i

i k
RTV t t

= =

= −∑∑ (1)

For example, let 3n = , 3Ad = , 2Bd = and 2Cd = ; thus, 7D = , 7

3At = , 7
2Bt = and

7
2Ct = . Any sequence that contains exactly id times the symbol i ()∀i is a feasible

solution. For example, the sequence (A, B, A, C, B, A, C) is a feasible solution, where:

() () () () () () ()2 2 2 2 2 2 27 7 7 7 7 7 7 52 3 2 3 4 3 43 3 3 2 2 2 2 3RTV      = − + − + − + − + − + − + − =     
     

3. Hybrid algorithms for the RTVP

The best method to solve the RTVP is an algorithm proposed in Corominas et al.
(2009c) which is based on a variant of the VNS metaheuristic called Reduced VNS

 165

(RVNS). We propose three hybrid methods based on hybridizing RVNS with TS
(TS+VNS), MS (MS+VNS) and PSO (PSO+VNS).

The TS algorithm proposed in Corominas et al. (2009b) is the second best method to
solve the RTVP. On average, the TS algorithm slightly outperforms the VNS algorithm
when solving instances up to 200 copies to be sequenced whereas VNS clearly
outperforms TS when solving larger instances (Corominas et al., 2009c). Thus, it seems
natural to try combining the advantages of these two best metaheuristics to solve the
RTVP. We propose an hybrid method based on applying the main TS framework but
incorporating a mechanism that dynamically alters neighbourhood. This idea has been
successfully applied to solve other scheduling problems (Xu et al., 2006; Ekşioğlu et
al., 2008).

The RVNS algorithm has the following handicap. After certain computing time the
search will be trapped in a local optimum with respect all neighbourhoods which may
be not a global optimum. Thus, the multi-start technique (MS) could be applied in order
to escape from the local optimum. MS consists on iteratively generating a random
solution and then applying an intensification search. Two MS algorithms have been
proposed to solve the RTVP (García et al., 2006; Corominas et al., 2008). In both, a
local search is used in the intensification search. Although both MS algorithms have the
potential to find good solutions, the applied local search needs a lot of time to converge
to a local optimum when the initial random solution has a very bad quality. We propose
to use the RVNS in the intensification phase instead.

On the other hand, in the classical PSO the process of diversification is more taken into
account than the process of intensification (Tchomté and Gourgand, 2009). Maybe this
is the reason of the bad performance (compared to other metaheuristic algorithms) of
the PSO algorithms proposed in the literature to solve the RTVP (García et al., 2006;
García-Villoria and Pastor, 2009a). In order to overcome this shortcoming, Tasgetiren et
al. (2007) and Anghinolfi and Paolucci (2009) propose to improve the best solution of
the population at each iteration by means of a local search method and a stochastic local
search method to solve the permutation flowshop problem and a single-machine
tardiness problem, respectively. We propose to use the RVNS algorithm as the
improvement mechanism.

We first explain in Subsection 3.1 the RVNS algorithm in which is based the three
proposed hybrid algorithms. Then the TS, MS and PSO algorithms hybridized with
VNS (TS+VNS, MS+VNS and PSO+VNS, respectively) are explained in Subsections
3.2, 3.3 and 3.4, respectively. Finally, the selection of the parameter values of all hybrid
algorithms is explained in Subsection 3.5

3.1. A RVNS algorithm

Variable Neighbourhood Search (VNS) is a metaheuristic proposed in Mladenovic and
Hansen (1997) for combinatorial optimization. The basic idea of VNS is applying a
systematic change of neighbourhood within a local search method (Mladenovic and
Hansen, 1997). VNS is based on the following three simple facts (Hansen and
Mladenovic, 2003): 1) a local optimum with respect to one neighbourhood structure is
not necessarily so with another, 2) a global optimum is a local optimum with respect to
all possible neighbourhood structures, and 3) it has been observed empirically that for

 166

many problems local optima with respect to one or several neighbourhood structures are
relatively close to each other.

In the basic VNS proposed in (Mladenovic and Hansen, 1997) there is a local search
step, which can be costly in terms of cpu time for large instances of some problems
(Hansen and Mladenovic, 2003). In Hansen and Mladenovic (1999) is proposed the
Reduced VNS (RVNS), in which the local search step is removed. The general scheme
of RVNS is shown in Figure 1.

1. Select the set of neighbourhood structures Nk (k=1..kmax), where kmax is the
number of neighbourhoods

2. Let S an initial solution
3. While stopping condition is not reached do:
4. Set k := 1
5. While k ≤ kmax do:
6. Select a solution S’ at random from Nk(S)
7. If the acceptance criterion is satisfied, then S := S’ and k := 1;
 otherwise k := k + 1
8. End While
9. End While
10. Return S

Figure 1. General scheme of RVNS

Corominas et al. (2009c) proposed a RVNS-based algorithm for solving the RTVP
because it is shown that the local search step for large RTVP instances is very costly in
terms of computing time. The following three neighbourhood structures are used: 1)
interchanging each pair of two consecutive units of the sequence that represents the
current solution (N1), 2) interchanging each pair of consecutive or no-consecutive units
of the sequence (N2), and 3) inserting each unit in each position of the sequence (N3).
The acceptance criteria is that the neighbour solution S’ is better than or equal to the
current solution S.

3.2. TS+VNS

Local search methods have the great disadvantage that the local optimum found is often
a fairly mediocre solution (Gendreau, 2003). To overcome this limitation, the Tabu
Search metaheuristic (TS) has been proposed by Glover (1986). TS is based on applying
a local search in which non-improving movements are allowed. To avoid cycling back
to visited solutions, the most recent history of the search is recorded in a tabu list of
tabu (forbidden) solutions. The complete tabu solutions could be recorded in the tabu
list, but this may require a lot of memory, make it expensive to check whether a solution
is tabu or not and, above all, does not diversify sufficiently the search. Thus, it is
common to record only the last moves (transformations) performed on the current
solution and forbidding reverse transformations (Gendreau, 2003). The tabu lists are
usually implemented as a list of fixed length with a FIFO (First In, First Out) policy. A
tabu solution can be overridden if a suitable aspiration criterion is met.

Two straightforward applications of the TS classical scheme shown in Figure 2 has been
proposed in the literature to solve the RTVP (Corominas et al., 2009a and 2009b). The
only difference between both TS algorithms is the definition of the neighbourhood. In

 167

Corominas et al. (2009a), the neighbourhood N2 is used (see Subsection 3.1), whereas in
Corominas et al. (2009b), the neighbourhood N3 is used (see Subsection 3.1).

In the classical TS, the current solution is moved in an only neighbourhood structure. In
our paper, we propose a TS algorithm based on changing dynamically between the
neighbourhoods N1, N2 and N3. Note that N1 is included in N2 or N3, so it seems
unnecessary. However, the benefit of using N1 is that it helps to the algorithm to
converge very fast without detrimental of its performance (Corominas et al., 2009c).

Some of the benefits of altering neighbourhood can be the following (Xu et al., 2006):

• Different neighbourhood moves bring in various degrees of changes for the new
solution, so it carries diversification effects.

• Some neighbourhoods are harder to evaluate than others, but they are more
effective in locating better solutions. Dynamic neighbourhood moves can better
address the balance between the efficiency and effectiveness of the TS algorithm.

The mechanism of neighbourhood changing that we propose is the following. First, the
TS algorithm starts using N1. Each move that does not improve the best solution (S*) is
counted. When a maximum number of non-improvement moves is reached (max_nim1),
the next neighbourhood N2 is used. Similarly, when max_nim2 non-improvement moves
is reached using N2, the current neighbourhood is change to N3. Again, when max_nim3
non-improvement moves is reached using N3, the process continues iteratively using N1
again.

The scheme of TS+VNS is shown in Figure 2.

1. Select the set of neighbourhood structures Nk (k = 1..3)
2. Set the values of the parameters max_nimk (k = 1..3).
3. Let S an initial solution and S* := S
4. k := 1
5. ni := 0
6. While stopping condition is not reached do:
7. Let S’ the best solution from Nk(S) which is non-tabu or allowed by aspiration
8. Add the current move in the tabu list (removing its last move if the list is full)
9. If S’ is better than S*, then S* := S’
10. Otherwise: ni := ni + 1
 If ni = max_nimk, then k := (k mod 3) + 1 and ni := 0
11. S := S’
12. End While
13. Return S*

Figure 2. Scheme of TS+VNS

The elements of the proposed algorithm for solving the RTVP are defined as follows:

• Initial solution. The initial solution is obtained from the best solution returned by
the five heuristics proposed in Corominas et al. (2007).

 168

• Neighbourhoods. The neighbourhoods N1, N2 and N3 are the same neighbourhoods
explained in Subsection 3.1.

• Tabu moves. A forbidden move of the tabu list consists of two pairs of
position/symbol. For instance, the move [(3, A), (5, B)] means that all solutions
with the symbol A sequenced in position 3 and the symbol B sequenced in position
5 are considered tabu. In the case of the neighbourhood N3, if the symbol A is
inserted into position 3, then the move [(3, A), (3, A)] is recorded in the tabu list.

• Aspiration criterion. The aspiration criterion is that the move produces a solution
better than the best solution found in the past.

• Stopping condition. The algorithm stops once it has run for a preset time.

3.3. MS+VNS

The multi-start metaheuristic is a general scheme that consists of two phases. The first
phase obtains an initial solution and the second phase improves the obtained initial
solution. These two phases are applied iteratively until a stop condition is reached. This
scheme has been first used at the beginning of 80’s (Boender et al., 1982). The
generation of the initial solution, how to improve them and the stop condition can be
very simple or very sophisticated. The combination of these elements gives a wide
variety of multi-start methods. For a good review of multi-start methods, see Martí
(2003) and Hoos and Stützle (2005).

We propose the following multi-start VNS algorithm. At each iteration, a random initial
solution is obtained and then is improved by means of the RVNS algorithm explained in
Subsection 3.1. The random solutions are generated as it is done in García et al. (2006)
and Corominas et al. (2008). That is, for each position of the sequence, the symbol to be
sequenced is chosen at random. The probability of each symbol of being chosen is equal
to the number of its copies that remain to be sequenced divided by the total number of
copies that remain to be sequenced. The stopping condition of the RVNS algorithm
consists in reaching a maximum number of iterations without improving the current
solution. The maximum number of iterations is ms vnsD α +⋅   , where D is the total
number of copies to be sequenced and αms+vns is the parameter of the algorithm. The
multi-start VNS algorithm stops after it has run for a preset time. Figure 3 shows the
scheme of the proposed multi-start VNS algorithm.

1. Let S* be a random solution
2. While stopping condition is not reached do:
3. Let S be a random solution
4. Apply the RVNS algorithm to S and get S’
5. If S’ is better than S*, then S* := S’
6. End While
7. Return S*

Figure 3. Scheme of MS+VNS

 169

3.4. PSO+VNS

PSO is a population metaheuristic introduced by Kennedy and Eberhart (1995) which is
based on the social behaviour of flocks of birds when they search for food. The
population or swarm is composed of particles (birds), whose attributes are an m-
dimensional real point (which represents a feasible solution) and a velocity (the
movement of the point in the m-dimensional real space). The velocity of a particle is
typically a combination of three types of velocities: 1) the inertia velocity (i.e., the
previous velocity of the particle); 2) the velocity to the best point found by the particle;
and 3) the velocity to the best point found by the population. These components of the
particles are modified iteratively by the algorithm as it searches for an optimal solution.
These modifications are formalized with the following two equations:

 () ()1

1 1 2 2
t t t t t
i i i i iv v c r p x c r gbest xω+ = ⋅ + ⋅ − + ⋅ − , (2)

 1 1t t t
i i ix x v+ += + (3)

where t is the current iteration, t

iv is the current velocity of particle i at iteration t, ω is
the inertia parameter that weights the previous velocity of particle i, c1 and c2 are two
parameters multiplied by two random numbers, r1 and r2 respectively, uniformly
distributed in the range [0, 1], t

ix is the current point of particle i at iteration t, ()t t
i ip x−

is the velocity towards the best point found so far by the particle, and ()t
igbest x− is the

velocity towards the best point found so far by the whole swarm.

One of the first attempts to solve the RTVP through metaheuristics was by means of
PSO-based algorithms (García et al., 2006). Later, more sophisticated PSO algorithms
were proposed to solve the RTVP; the best of the PSO algorithms to solve the RTVP is
called DPSOpoi-cpdyn by its authors (García-Villoria and Pastor, 2009a). Although the
PSO metaheuristic was originally designed for m-dimensional real spaces, DPSOpoi-
cpdyn is adapted to work with the sequence that represents a solution (for details, see
García-Villoria and Pastor (2009a)). Moreover, DPSOpoi-cpdyn introduces random
modifications to the points of the particles after being applied Equations 2 and 3 with a
frequency that changes dynamically as follows. For each position of the point (which is
a sequence that represents a solution), the position has a probability cp (0 1pc≤ ≤) of
being swapped with another, randomly selected position. The parameter cp changes
dynamically according to the heterogeneity of the swarm at iteration t according to
Equation 4:

 ()K het t

pc e− ⋅= , (4)

where K is a parameter to be set, het(t) is a measure of the heterogeneity of the

population defined as ()

t
i

i P
v

het t D P
∈= ⋅

∑
, t

iv is the module of the velocity of particle

i at iteration t, D is the total number of copies to be sequenced, and P is the size of the
population P.

 170

We propose the following hybridization of DPSOpoi-cpdyn with the RVNS algorithm.
At each iteration, the best point (solution) found by the swarm, gbest, is improved by
applying the RVNS algorithm explained in Subsection 3.1. The stopping condition of
the RVNS algorithm consists on reaching a maximum number of iterations without
improving the current solution. The maximum number of iterations is  vnspsoD −⋅α ,
where D is the total number of copies to be sequenced and αpso+vns is a parameter of the
algorithm. The scheme of PSO+VNS is shown in Figure 4.

1. Initialize population
2. While stopping condition is not reached do:
3. For each particle i do:
4. Update velocity of i according to Equation 2
5. Update point of i according to Equation 3
6. For each position of the point i, swap it with another position selected at

random with a probability cp (Equation 4)
7. Update best point of particle i
8. End For
5. Update best point of the population
6. End While
7. Return best point of the population

Figure 4. Scheme of PSO+VNS

3.5. Fine-tuning the algorithm parameters

Fine-tuning the parameters of a metaheuristic algorithm is almost always a difficult
task. Although the parameter values may have a very strong effect on the results of the
metaheuristic for each problem, they are often selected using one of the following
methods, which are not sufficiently thorough (Eiben et al., 1999; Adenso-Díaz and
Laguna, 2006): 1) “by hand”, based on a small number of experiments that are not
referenced; 2) using the general values recommended for a wide range of problems; 3)
using the values reported to be effective in other similar problems; or 4) with no
apparent explanation.

Adenso-Díaz and Laguna (2006) proposed a new technique called CALIBRA for fine-
tuning the parameters of algorithms. CALIBRA is based on using conjointly Taguchi’s
fractional factorial experimental designs and a local search procedure. We propose to
use CALIBRA for setting the parameter values of our hybrid algorithms. CALIBRA
was applied to a representative training set of 60 instances which were generated as
explained in the Section 4. The following parameter values were obtained:

• TS+VNS: size of the tabu list = 127, max_nim1 = 751, max_nim2 = 8 and max_nim3
= 26.

• MS+VNS: αms+vns = 37.5.

• PSO+VNS: size of the population = 6, ω = 0.87, c1 = 0.75, c2 = 0.87, K = 27.5 and

αpso+vns = 9.4.

 171

Since CALIBRA cannot fine-tune more than five parameters, PSO+VNS (which have
six parameters) are fine-tuned in two steps. In the first step, the initial value of the size
of the population is set to 13 (which is the value used for DPSOpoi-cpdyn in García-
Villoria and Pastor, (2009)) and the remaining parameters (ω, c1, c2, K and αpso+vns) are
fine-tuned. In the second step the value of ω is set at the value obtained in the first step
and the remaining parameters (size of the population, c1, c2, K and αpso+vns) are fine-
tuned.

4. Computational experiment

In the computational experiment the three proposed hybrid algorithms (TS+VNS,
MS+VNS and PSO+VNS) and the four original metaheuristic algorithms –the RVNS
algorithm proposed in Corominas et al. (2009c) (let it be called RVNSRTVP), the TS
proposed in Corominas et al. (2009b) (let it be called TSRTVP), the MS proposed in
García et al. (2006) (let it be called MSRTVP) and the best PSO proposed in García-
Villoria and Pastor (2009a) (called DPSOpoi-cpdyn)– were run.

All algorithms are coded in Java and executed on a PC 3.4 GHz Intel Pentium IV with
1.5 GB of RAM. The same 60 training instances and 740 test instances used in García et
al. (2006), Corominas et al. (2009b, 2009c) and García-Villoria and Pastor (2009a) are
also used in this paper (all instances can be found at
http://www.ioc.upc.edu/EOLI/research/). These instances were grouped into four
classes (from CAT1 to CAT4 with 15 training instances and 185 test instances in each
class) according to their size. The instances were generated using the random values of
D (number of copies) and n (number of symbols) shown in Table 1. For all instances
and for each model i = 1,…,n, a random value of di (number of copies of symbol i) is
between 1 and ()1 2.5D n− + such that

1.. ii n
d D

=
=∑ .

Table 1. Uniform distributions for generating the D and n values

 CAT1 CAT2 CAT3 CAT4
D U(25, 50) U(50, 100) U(100, 200) U(200, 500)
n U(3, 15) U(3, 30) U(3, 65) U(3, 150)

The stop condition of all algorithms is to be run for a preset time. We run the algorithms
for 10, 50, 200, 500 and 1,000 seconds. The results obtained are shown and explained in
the following two subsections. In Subsection 4.1, the original metaheuristic algorithms
are compared with their hybrid version in order to show the benefits of hybridizing with
RVNSRTVP. In Subsection 4.2, the hybrid algorithms are compared with the two best
methods up to now (RVNSRTVP and TS+VNS) to solve the RTVP.

4.1. Original metaheuristics versus hybrid metaheuristics

Table 2 shows the results obtained with TSRTVP and its hybrid version, TS+VNS. The
addition of variable neighbourhood to the TS algorithm helps it to improve its
performance for the largest instances (CAT4 instances) and the hybrid version is able to
obtain solutions 40.48% better, on average, for these instances after 1,000 computing
seconds. With respect to the results obtained for small and medium instances (CAT1 to
CAT3 instances), for which TSRTVP was the best method after 1,000 computing seconds,

 172

no significant differences (according to the t-Test paired two sample for means with a
confidence level of 95%) in the quality of the solutions with respect to TS+VNS are
observed. Moreover, the hybrid version presents a faster convergence without or very
little losing quality at the solutions. This tendency to faster convergence is especially
observable in the medium and largest instances.

Table 2. Average RTV values for TSRTVP and TS+VNS
 Global CAT1 CAT2 CAT3 CAT4

10 s. TSRTVP 339.59 10.42 25.32 128.29 1,194.31
TS+VNS 87.18 10.63 25.43 60.67 251.99

50 s. TSRTVP 210.47 10.26 22.56 73.26 735.78
TS+VNS 71.57 10.38 24.00 53.99 193.83

200 s. TSRTVP 123.98 10.25 21.67 55.53 408.47
TS+VNS 63.60 10.27 23.08 50.57 170.49

500 s. TSRTVP 90.74 10.24 21.29 50.19 279.37
TS+VNS 58.35 10.24 22.74 49.04 151.38

1,000 s. TSRTVP 78.62 10.24 21.16 48.12 234.96
TS+VNS 55.05 10.24 22.48 47.66 139.84

Tables 3 shows the results obtained with MSRTVP and MS+VNS. The advantages of
incorporating RVNSRTVP in the MS algorithm are that much better solutions are obtained
with a very fast convergence. After 1,000 computing seconds, the results obtained with
MS+VNS are 6.31%, 40.98%, 73.08% and 97.26% better than the results of MSRTVP for
CAT1, CAT2, CAT3 and CAT4 instances, respectively. There is a clear tendency of the
performance improvement of the hybrid algorithm when the size of the instances
increases.

Table 3. Average RTV values for MSRTVP and MS+VNS
 Global CAT1 CAT2 CAT3 CAT4

10 s. MSRTVP 31,847.07 13.26 52.09 2,582.45 124,740.50
MS+VNS 71.07 10.24 21.58 51.07 201.39

50 s. MSRTVP 21,390.39 12.08 44.36 226.90 85,278.25
MS+VNS 62.17 10.24 21.23 47.46 169.76

200 s. MSRTVP 10,060.19 11.43 39.50 185.85 40,003.97
MS+VNS 58.45 10.24 21.01 45.54 158.10

500 s. MSRTVP 4,015.37 11.10 36.74 171.40 15,842.23
MS+VNS 56.25 10.24 20.97 43.97 149.83

1,000 s. MSRTVP 1,378.58 10.93 35.48 160.67 5,307.25
MS+VNS 54.95 10.24 20.94 43.26 145.35

Finally, the results obtained with DPSOpoi-cpdyn and PSO+VNS are shown in Table 4.
Similar to the comparison between the MS algorithm and its hybrid version, the benefits
of hybridizing the PSO algorithm with the VNS algorithms are clear. For all class of
instances, PSO+VNS has better performance. After 1,000 computing seconds, the
results obtained with PSO+VNS are 27.18%, 52.74%, 67.49% and 97.57% better than
the results of PSORTVP for CAT1, CAT2, CAT3 and CAT4 instances, respectively. The
convergence of PSO+VNS is also better.

 173

Table 4. Average RTV values for DPSOpoi-cpdyn and PSO+VNS
 Global CAT1 CAT2 CAT3 CAT4

10 s. DPSOpoi-cpdyn 9,108.66 17.36 82.37 1,512.67 34,822.26
PSO+VNS 81.84 10.49 22.65 51.18 243.04

50 s. DPSOpoi-cpdyn 4,625.46 16.42 51.34 610.34 17,824.04
PSO+VNS 60.03 10.47 22.42 49.57 161.91

200 s. DPSOpoi-cpdyn 2,757.89 15.47 48.88 262.78 10,704.43
PSO+VNS 57.37 10.46 22.26 48.07 148.68

500 s. DPSOpoi-cpdyn 1,964.62 14.61 48.18 168.82 7,626.87
PSO+VNS 56.31 10.45 22.03 47.55 145.22

1,000 s. DPSOpoi-cpdyn 1,537 14.35 46.55 143.95 5,944.51
PSO+VNS 55.86 10.45 22.00 46.80 144.22

4.2. Hybrid metaheuristics versus best methods

The two most efficient methods to solve the RTVP proposed in the literature up to now
are RVNSRTVP and TSRTVP. The TS algorithm is slightly better for solving small and
medium RTVP instances whereas the VNS algorithm is clearly the best for solving the
largest instances. Table 5 show the results obtained with these two algorithms and with
the three proposed hybrid algorithms for 10, 50 and 1,000 computing seconds.

Table 5. Average RTV values for RVNSRTVP, TSRTVP, TS+VNS, MS+VNS and PSO+VNS
 Global CAT1 CAT2 CAT3 CAT4

10 s.

RVNSRTVP 68.60 10.73 23.72 52.87 187.07
TSRTVP 339.59 10.42 25.32 128.29 1,194.31
TS+VNS 87.18 10.63 25.43 60.67 251.99
MS+VNS 71.07 10.24 21.58 51.07 201.39
PSO+VNS 81.84 10.49 22.65 51.18 243.04

50 s.

RVNSRTVP 63.69 10.73 23.69 51.80 169.64
TSRTVP 210.47 10.26 22.56 73.26 735.78
TS+VNS 71.57 10.38 24.00 53.99 193.83
MS+VNS 62.17 10.24 21.23 47.46 169.76
PSO+VNS 60.03 10.47 22.42 49.57 161.91

1,000 s.

RVNSRTVP 62.24 10.73 23.69 51.40 163.69
TSRTVP 78.62 10.24 21.16 48.12 234.96
TS+VNS 55.05 10.24 22.48 47.66 139.84
MS+VNS 54.95 10.24 20.94 43.26 145.35
PSO+VNS 55.86 10.45 22.00 46.80 144.22

Independently of the performance of the original metaheuristic algorithms, the solutions
obtained with the hybrid algorithms are very good. Anyway, significant differences
(with a confidence level of 95%) are observed after 1,000 computing seconds. For
CAT1 instances, TS+VNS and MS+VNS are 2.01% better than PSO+VNS. For CAT2
and CAT3 instances, MS+VNS is the algorithm that obtains best solution and is 4.82%
and 7.56% better, respectively, than PSO+VNS, which is the second best algorithm for
solving these instances. Finally, the best algorithm for the CAT4 instances is TS+VNS,
which is 3.04% better than the second best algorithm, PSO+VNS. With respect to the
convergence, all hybrid heuristics converge very fast.

Comparing the proposed hybrid algorithms with the two best methods published in the
literature, we can see that, on average, all proposed algorithms outperform them.

 174

Observing the results by class, MS+VNS is able to obtain equal or better results for the
best known results up to now of each class (for CAT1 to CAT3 instances, the best results
were obtained with TSRTVP; for CAT4 instances, the best results were obtained with
RVNSRTVP). For the smallest instances, MS+VNS obtains equal results than TSRTVP. For
CAT2 and CAT3 instances, MS+VNS results are, on average, 1.04% and 10.10% better
than the TSRTVP results. Finally, for CAT4 instances, MS+VNS is 11.20% better than
RVNSRTVP. And in global MS+VNS is 11.71% better than the best method published to
date.

Table 5 shows that the proposed hybrid algorithms are able to obtain better solutions
and faster than the previous methods proposed in the literature for solving the RTVP.
However, we cannot know if the solutions are good. Thus, we have tried to find the
optimal solutions but only the smallest instances (CAT1 instances) were optimally
solved. For the remaining instances, the lower bound (LB) proposed in Corominas et al.
(2007) is used. Table 6 shows the average of the optimal RTV values (*RTV) for CAT1
instances and the averages of the LBs (LB).

Table 6. Averages of the optimal RTV values and the RTV lower bounds
 Global CAT1 CAT2 CAT3 CAT4
LB 21.40 5.35 10.95 21.15 48.15

*RTV * 10.24 * * *
TS+VNS 55.05 10.24 22.48 47.66 139.84
MS+VNS 54.95 10.24 20.94 43.26 145.35
PSO+VNS 55.86 10.45 22.00 46.80 144.22

For all 185 CAT1 instances, MS+VNS and TS+VNS achieve the optimal solutions. We
can see in Table 6 that the LB calculated as proposed in Corominas et al. (2007) is not
accurate. For the smallest instances, the ratio between *RTV and LB is 1.914. It seems
reasonable to assume that this ratio will remain equal or increase for larger instances.
Thus, if we assume that the ratio remains equal, a more accurate estimation of the
averages of the optimal values for CAT2, CAT3 and CAT4 instances are obtained by
multiplying their LB by 1.914; that is, 20.96, 40.48 and 92.16 for CAT2, CAT3 and
CAT4 instances, respectively. According to this assumption, we can ensure that the
solutions obtained by the hybrid algorithms for CAT2 and CAT3 instances are very
good.

5. Conclusions

In this paper, the response time variability problem (RTVP) is solved. This scheduling
problem arises in a variety of real-life environments including mixed-model assembly
lines, multi-threaded systems, network servers, broadcast of commercial videotapes,
periodic machine maintenance and waste collection, among others. The aim of the
RTVP is to minimise the variability in the distances between any two consecutive
copies of the same symbol.

The RTVP is an NP-hard problem and heuristic and metaheuristic methods are needed
to solve real-life instances. Since the first method to solve the RTVP was proposed in

 175

1994, the solution of this problem has been improving. Up to date, the best solutions
have been obtained with a reduced variable neighbourhood search (RVNS) algorithm.
One of the main shortcoming of RVNS is that may be trapped in a local optimum with
respect all neighbourhoods. To overcome this situation, we propose three different
hybrid algorithms in which RVNS is hybridized with tabu search (TS), multi-start (MS)
and particle swarm optimisation (PSO). Thus, the diversification ability of TS, MS and
PSO is combined with the intensification ability of RVNS.

A computational experiment shows the success of our proposals. On average, all three
hybrid algorithms are able to improve the best solutions published in the literature.
Moreover, we have shown that two of the proposed algorithms obtain the optimal
solutions for all 185 smallest test instances (CAT1 instances) and we can reasonably
assume that optimal or near optimal solutions are obtained for small and medium
instances (CAT2 and CAT3 instances).

Very efficient non-exact methods have been designed in this work to solve the RTVP. A
future research can be focused on improving the exact solution of the RTVP by
increasing the size of the instances that can be solved in a practical time. In order to
achieve this goal, the following lines of research are promising: 1) To improve the best
MILP model which is proposed in Corominas et al. (2010), and 2) To specifically
design a branch and bound algorithm in order to take advantage of all characteristics of
the problem.

REFERENCES

Adenso-Díaz, B. and Laguna, M. (2006) ‘Fine-tuning of algorithms using fractional

experimental designs and local search’, Operations Research, Vol. 54, pp. 99-114.
Anghinolfi, D. and Paolucci, M. (2009) ‘A new discrete particle swarm optimization

approach for the single-machine total weighted tardiness scheduling problem with
sequence-dependent setup times’, European Journal of Operational Research, Vol.
193, pp. 73-85.

Anily, S., Glass, C.A. and Hassin, R. (1998) ‘The scheduling of maintenance service’,
Discrete Applied Mathematics, Vol. 82, pp. 27-42.

Balinski, M.L. and Young, H.P. (1982) Fair Representation, Yale University Press,
New Haven.

Bar-Noy, A., Nisgav, A. and Patt-Shamir, B. (2002) ‘Nearly optimal perfectly-periodic
schedules’, Distributed Computing, Vol. 15, pp. 207–220.

Boender, C.G.E., Rinnooy, A.H.G., Stougie, L. and Timmer, G.T. (1982) ‘A Stochastic
Method for Global Optimization’, Mathematical Programming, Vol. 22, pp. 125-
140.

Bollapragada, S., Bussieck, M.R. and Mallik, S. (2004) ‘Scheduling Commercial
Videotapes in Broadcast Television’, Operations Research, Vol. 52, pp. 679-689.

Brusco, M.J. (2008) ‘Scheduling advertising slots for television’, Journal of the
Operational Research Society, Vol. 59, pp. 1363-1372.

Corominas, A., Kubiak, W. and Moreno, N. (2007) ‘Response time variability’, Journal
of Scheduling, Vol. 10, pp. 97-110.

Corominas, A., García-Villoria, A. and Pastor, R. (2008) ‘Solving the Response Time
Variability Problem by means of Multi-start and GRASP metaheuristics’, Special

 176

Issue of Frontiers in Artificial Intelligence and Applications on Artificial
Intelligence Research and Development, Vol. 184, pp. 128-137.

Corominas, A., García-Villoria, A. and Pastor, R. (2009a) ‘Using Tabu Search for the
Response Time Variability Problem’, 3rd International Conference on Industrial
Engineering and Industrial Management (CIO 2009), Barcelona and Terrassa,
Spain.

Corominas, A., García-Villoria, A., Pastor, R. (2009b) ‘Resolución del response time
variability problem mediante tabu search’, VIII Evento Internacional de Matemática
y Computación (COMAT’2009), Universidad de Matanzas, Cuba.

Corominas, A., García-Villoria, A. and Pastor, R. (2009c) ‘Solving the Response Time
Variable Problem by means of a Variable Neighbourhood Search Algorithm’, 13th
IFAC Symposium of Information Control Problems in Manufacturing (INCOM
2009), Moscow, Russia.

Corominas, A., Kubiak, W. and Pastor, R. (2010) ‘Mathematical programming
modeling of the Response Time Variability Problem’, European Journal of
Operational Research, Vol. 200, pp. 347-357.

Dong, L., Melhem, R. and Mosse, D. (1998) ‘Time slot allocation for real-time
messages with negotiable distance constrains requirements’, Fourth IEEE Real-
Time Technology and Applications Symposium (RTAS'98), Denver, CO. pp. 131-
136.

Ekşioğlu, B., Ekşioğlu, S.D. and Pramod, J. (2008) ‘A tabu search algorithm for the
flowshop scheduling problem with changing neighborhoods’, Computers &
Industrial Engineering, Vol. 54, pp. 1-11.

Eiben, A.E., Hinterding, R. and Michalewicz, Z. (1999) ‘Parameter control in
evolutionary algorithms’, IEEE Transactions on evolutionary computation, Vol. 3,
pp. 124-141.

García, A., Pastor, R. and Corominas, A. (2006) ‘Solving the Response Time
Variability Problem by means of metaheuristics’, Special Issue of Frontiers in
Artificial Intelligence and Applications on Artificial Intelligence Research and
Development, Vol. 146, pp. 187-194.

García-Villoria, A., Pastor, R. and Corominas, A. (2007) ‘Solving the Response Time
Variability Problem by means of the Cross-Entropy Method’, International Journal
of Manufacturing Technology and Management (to be published).

García-Villoria, A. and Pastor, R. (2008) ‘Solving the Response Time Variability
Problem by means of a psychoclonal approach’, Journal of Heuristics, in press,
corrected proof, available online, 16 July 2008, doi:10.1007/s10732-008-9082-2.

García-Villoria, A. and Pastor, R. (2009a) ‘Introducing dynamic diversity into a discrete
particle swarm optimization’, Computers & Operations Research, Vol. 36, pp. 951-
966.

García-Villoria, A. and Pastor, R. (2009b) ‘Solving the Response Time Variability
Problem by means of the Electromagnetism-like Mechanism’, International Journal
of Production Research, doi: 10.1080/00207540902862545.

García-Villoria, A. and Pastor, R. (2010) ‘Solving the response time variability problem
by means of a genetic algorithm’, European Journal of Operational Research, Vol.
202, pp. 320-327.

Gendreau, M. (2003) ‘An Introduction to Tabu Search’, Chapter 2 in Handbook of
Metaheuristics, Kluwer Academic Publishers.

Glover, F. (1986) ‘Future paths for Integer Programming and Links to Artificial
Intelligence’, Computers & Operations Research, Vol. 5, pp. 533-549.

 177

Han, C.C., Lin, K.J. and Hou, C.J. (1996) ‘Distance-constrained scheduling and its
applications in real-time systems’, IEEE Transactions on Computers, Vol. 45, pp.
814-826.

Hansen, P. and Mladenovic, N. (1999) ‘An introduction to variable neighborhood
search’, In Meta-heuristics: Advances and Trends in Local Search Paradigms for
Optimization, pp. 433-458, Kluwer Academic Publishers.

Hansen, P. and Mladenovic, N. (2003) ‘Variable Neighborhood Search’, Chapter 6 in
Handbook of metaheuristics, Kluwer Academic Publishers

Herrmann, J.W. (2007) ‘Generating Cyclic Fair Sequences using Aggregation and
Stride Scheduling’, Technical Report, University of Maryland, USA. Available at
http://hdl.handle.net/1903/7082.

Herrmann, J.W. (2009) ‘Using aggregation to reduce response time variability in cyclic
fair sequences’, Journal of Scheduling, doi 10.1007/s10951-009-0127-7.

Hoos, H. and Stützle, T. (2005) Stochastic local research: foundations and applications,
Morgan Kaufmann Publishers, San Francisco.

Kennedy, J. and Eberhart, R.C. (1995) ‘Particle swarm optimization’, In IEEE
International Conference on Neural Networks, Australia, pp. 1942-1948.

Kubiak, W. (1993) ‘Minimizing variation of production rates in just-in-time systems: A
survey’, European Journal of Operational Research, Vol. 66, pp. 259-271.

Kubiak, W. (2004) ‘Fair Sequences’, Chapter 19 in Handbook of Scheduling:
Algorithms, Models and Performance Analysis, Chapman and Hall.

Kubiak, W. (2009) ‘Proportional optimization and fairness’, International Series in
Operations Research & Management Science, Springer.

Martí, R. (2003) ‘Multi-start methods’, Chapter 12 in Handbook of Metaheuristics,
Kluwer Academic Publishers.

Miltenburg, J. (1989) ‘Level schedules for mixed-model assembly lines in just-in-time
production systems’, Management Science, Vol. 35, pp. 192-207.

Mladenovic, N. and Hansen, P. (1997) ‘Variable neighbourhood search’, Computers &
Operations Research, Vol. 24, pp. 1097-1100.

Monden, Y. (1983) ‘Toyota Production Systems’, Industrial Engineering and
Management Press, Norcross, GA.

Tasgetiren, M.F., Liang, Y.C., Sevkli, M. and Gencyuilmaz, G. (2007) ‘A particle
swarm optimization algorithm for makespan and total flowtime minimization in the
permutation flowshop sequencing problem’, European Journal of Operational
Research, Vol. 177, pp. 1930-1947.

Tchomté, S.K. and Gourgand, M. (2009) ‘Particle swarm optimization: A study of
particle displacement for solving continuous and combinatorial optimization
problems’, International Journal of Production Economics, Vol. 121, pp. 57-67.

Waldspurger, C.A. and Weihl, W.E. (1994) ‘Lottery Scheduling: Flexible Proportional-
Share Resource Management’, First USENIX Symposium on Operating System
Design and Implementation, Monterey, California.

Waldspurger, C.A. and Weihl, W.E. (1995) ‘Stride Scheduling: Deterministic
Proportional-Share Resource Management’, Technical Report MIT/LCS/TM-528,
Massachusetts Institute of Technology, MIT Laboratory for Computer Science.
Available at https://eprints.kfupm.edu.sa/67117

Wei, W.D. and Liu, C.L. (1983) ‘On a periodic maintenance problem’, Operations
Research Letters, Vol. 2, pp. 90-93.

Xu, J., Sohoni, M, McCleery, M. and Bailey, T.G. (2006) ‘A dynamic neighbourhood
based tabu search algorithm for real-world flight instructor scheduling’, European
Journal of Operational Research, Vol. 169, pp. 978-993.

 178

 179

A2.2. Articles published in other international journals

Solving the Response Time Variability Problem by means of the Cross-
Entropy Method

Article published as [International Journal of Manufacturing Technology and
Management, Volume 20, 2010, Pages 316-330] © [copyright Inderscience Publishers]

Solving the Response Time Variability
Problem by means of the Cross-Entropy
Method†

Alberto García-Villoria

*

Keywords: response time variability, fair sequences, mixed-model assembly production line, just-in-
time, scheduling, cross-entropy, metaheuristics

Biographical notes: A. García-Villoria is an Informatics Engineer at the Technical University of
Catalonia (UPC). Since 2007 he is an assistant professor of the Department of Management (OE). He is
currently pursuing a PhD degree at the Advanced Automation and Robotics (AAR) doctoral programme
organised by the Institute of Industrial and Control Engineering (IOC) of the UPC and his research is focused
on the solution of a sequencing problem.

Institute of Industrial and Control Engineering (IOC),

Technical University of Catalonia (UPC), Barcelona, Spain
E-mail: alberto.garcia-villoria@upc.edu

Albert Corominas
Institute of Industrial and Control Engineering (IOC),

Technical University of Catalonia (UPC), Barcelona, Spain
E-mail: albert.corominas@upc.edu

Rafael Pastor
Institute of Industrial and Control Engineering (IOC),

Technical University of Catalonia (UPC), Barcelona, Spain
E-mail: rafael.pastor@upc.edu

Abstract: The Response Time Variability Problem (RTVP) is an NP-hard combinatorial scheduling
problem that has recently appeared in the literature. The RTVP has a wide range of production line
systems applications such as sequencing the models to be produced on a mixed-model assembly line in a
just-in-time context. This problem occurs whenever several units of different models need to be
sequenced so as to minimize the variability of the distance between any two consecutive units of the same
model. A mathematical mixed integer linear programming (MILP) model has been presented by another
study, but the practical limit for obtaining optimal solutions is around 40 units to be scheduled. Another
study has developed five heuristic algorithms to solve non-small RTVP instances. We propose to solve
the RTVP by means of the metaheuristic cross-entropy (CE) method, which has been developed recently.
We report on the computational experiments in which the CE method is compared with the five heuristic
algorithms proposed in the literature.

† Sponsored by the Spanish Ministry of Education and Science’s projects DPI2004-03472 and DPI2007-61905; co-funded by the
FEDER.
* Corresponding autor: Alberto García-Villoria, IOC – Institute of Industrial and Control Engineering, Av. Diagonal 647 (Edif.
ETSEIB), 11th floor, 08028 Barcelona, Spain; e-mail: alberto.garcia-villoria@upc.edu

 180

A. Corominas is a professor of industrial engineering and operational research at the Department of
Business Management and the Institute of Industrial and Control Engineering (IOC) at the Technical
University of Catalonia (UPC). He holds degrees in engineering from the University of País Vasco (UPV)
and in computer science from the Technical University of Madrid; his PhD is also from the UPV. His
academic and professional experience has focused on industrial engineering and especially on the
development and application of quantitative techniques to the design of production and logistic systems
and to operations management.

R. Pastor is a university lecturer of industrial engineering and operations research at the School of
Industrial Engineering of Barcelona of the Technical University of Catalonia (UPC). Previously, he
worked as a product production manager for Revlon. Dr. Pastor holds a PhD in industrial engineering and
a Master's Degree in Logistics Organization. His research focuses on the use of a variety of combinatorial
optimization techniques to model and solve real-world applications in production, scheduling and
manpower planning.

1 INTRODUCTION

Sequencing several units as regularly as possible in mixed-model assembly production lines is a major
problem ever since Toyota Motor Corporation developed and implemented the just-in-time (JIT)
production system (Monden, 1983). One of the most important JIT objectives is to get rid of all kinds of
waste and inefficiency and, according to Toyota, the main waste is due to the stocks.

The key to reducing stocks with JIT, as Monden (1983) says, is to have constant production rates and
constant consumption rates of the components involved in the production process. First, the number of
units of each model to be produced by the mixed-model assembly production line throughout the
production period must be decided. Next, these units must be sequenced as regularly as possible.
Regularity can be sought in the consumption of the components that arrive to the production line or in the
production of the models that leave the production line. Depending on the kind of regularity desired,
Kubiak (1993) classifies these sequencing problems into two categories: ORV (Output Rate Variation)
problems and PRV (Production Rate Variation) problems.

The ORV problem concentrates on the consumption of the components needed by the models and its
aim is to minimize the variations in this consumption in the production period.

On the other hand, the PRV problem concentrates on production rates of the models and its objective is
to minimize a function of the discrepancies between the real production rate and the ideal one (i.e., the
one that would correspond to a constant rate of production). This kind of regularity is important when
production needs to be adjusted to demand. Thus, according to the JIT system, it is possible to satisfy
demands for a variety of models without holding large inventories or incurring large waits.

Regularity in the PRV problem can be characterized at least in as many ways as discrepancy functions
are defined. The Response Time Variability Problem (RTVP) is a PRV problem in which the regularity
consists in preserving the distance between two consecutive units of the same model as constant as
possible. The RTVP occurs whenever products, clients or jobs need to be sequenced so as to minimize
variability in the time between the instants at which they receive the necessary resources. As it is usual in
the literature on regular sequences (Monden, 1983; Miltenburg, 1989), we assume in this paper that the
processing time of the units does not depend on the model and, therefore, is the same for all the units.

The RTVP was first presented by Corominas et al. (2007), who proposed a mixed integer lineal
programming (MILP) model and five greedy heuristic algorithms to solve this problem. An improved
MILP presented by Corominas et al. (2006) has a practical limit for obtaining optimal solutions of around
40 units to be scheduled.

In order to improve the results obtained in prior studies, an application based on the Cross Entropy (CE)
method is proposed. The CE method was originally created for rare-event simulation by Rubinstein
(1997). The new CE method provides an adaptive algorithm for estimating probabilities of rare events in,
for example, queuing models or complex stochastic networks (Rubinstein, 1997). Later it was observed
that the CE method can be easily adapted for other applications such as general combinatorial and multi-
extremal optimization, learning algorithms and neural computation (Rubinstein and Kroese, 2004).

The CE method involves an iterative procedure in which each iteration has two steps. Step 1 generates a
random sample of solutions according to a probability distribution. Step 2 modifies the probability
distribution according to the sample obtained in the previous step; this change in the probability
distribution will increase the probability of generating a better sample in the next iteration. For a discrete
optimization problem in which a deterministic objective function is optimized (this is the case of the

 181

RTVP), it is demonstrated that the CE method always converges and the probability of an optimal
solution being found can be made arbitrarily close to 1 (Costa et al., 2006).

This paper shows how CE method can be easily adapted to solve the combinatorial scheduling RTVP.
Moreover, the results obtained by the CE method and the five greedy heuristics proposed by Corominas et
al (2007) are compared and it is shown that the CE method outperforms them clearly.

The rest of this paper is organized as follows. Section 2 exposes a formal definition of the RTVP and
briefly explains the five heuristic algorithms presented by Corominas et al. (2007). Section 3 extends the
explanation of the CE method and proposes its application to the RTVP. Section 4 gives the results of the
computational experiment. Finally, some conclusions are presented in Section 5.

2 THE RESPONSE TIME VARIABILITY PROBLEM (RTVP)

In the Response Time Variability Problem (RTVP) the regularity of production in mixed-model assembly
production lines is measured in a new way. The idea is to arrange the units of each model as regularly as
possible.

Real-life examples do not occur only in the mixed-model assembly production line context. For
example, asynchronous transfer mode networks need to broadcast the video data frames and sound data
frames of the applications as constantly as possible (Dong et al., 1998); another example is the periodic
machine maintenance problem, if it is considered with equal distances between consecutive services of
the same machine (Anily et al., 1998).

 These problems are often faced as a distance-constrained scheduling problem, in which the distance
between any two given consecutive units of the same model is bounded. The difficulty lies in obtaining a
feasible solution which respects the distance constraints. On the other hand, the RTVP always obtains a
solution, preserving the main idea of having the distances between any two given consecutive units of the
same model as constant as possible.

The RTVP is formulated as follows. Let n be the number of models, di the number of units of model i (i

= 1,…,n) and D the total number of units (∑
=

=
n

i
idD

1
). Let s be a solution of an instance in the RTVP that

consists of a circular sequence of units (Dssss 21=), where sj is the unit sequenced in position j of

sequence s. For all models i in which 2≥id , let i
kt be the distance between the positions in which units k

+ 1 and k of model i are found (i.e., the number of positions between them, where the distance between
two consecutive positions is considered equal to 1). As the sequence is circular, position 1 comes
immediately after position D; therefore, i

di
t is the distance between the first unit of model i in a cycle and

the last unit of the same model in the preceding cycle. Let it be the average distance between two

consecutive units of model i (
i

i d
Dt =). For all models i in which 1=id , it1 is equal to it . The

objective is to minimize the ∑∑
= =

−=
n

i

d

k
i

i
k

i

ttRTV
1 1

2)(.

For example, let 3=n , 3Ad = , 2=Bd and 2Cd = ; thus, 7D = , 7
3At = , 7

2Bt = and 7
2Ct = . A

feasible solution is the sequence (A, B, A, C, B, A, C), where

() () ()2 2 27 7 72 3 23 3 3RTV  = − + − + − + 
 

() () () ()2 2 2 27 7 7 73 4 3 42 2 2 2
   − + − + − + − =   
   

52 1 1
3 2 2 3+ + = .

To solve non-small RTVP instances, five greedy heuristic algorithms were proposed by Corominas et al.
(2007): the bottleneck, random, Webster’s, Jefferson’s and insertion sequences. These five heuristic
algorithms, which are until now the only algorithms proposed in the literature, are compared with the
proposed CE method in Section 4. Next the heuristics are briefly described (for more details, see
Corominas et al., 2007).

The bottleneck sequence is obtained by solving the bottleneck problem optimally. Among the proposed
algorithms in the literature, the algorithm of Moreno (2002) (see also Moreno and Corominas, 2006) has
been chosen.

 182

The random sequence is obtained by randomizing the bottleneck sequence as follows. For each position
p = 1,...,D, a random number r between 1 and D is obtained; then, the units of the positions p and r are
swapped.

Webster’s sequence is obtained by applying the parametric method of apportionment (Balinski and
Young, 1982) with parameter 21=δ . Let xil be the number of model i units in the sequence of length l, l
= 0, 1, …; assume xi0 = 0, ni ,,1= . The model to be sequenced in position l + 1 can be computed as

follows: ()






+= δil

i
i x

di maxarg* .

Jefferson’s sequence is obtained by applying the parametric method of apportionment with 1=δ .
The insertion sequence is based on the idea of solving two-model problems. The two-model problems

are solved in a polynomial time using an exact algorithm presented by Corominas et al. (2007). Let

ndd ≤≤ ...1 and let n - 1 two-model problems),(11 nnn ddP −− = ,),(
1

22 ∑
−=

−− =
n

ni
inn ddP , …,),(

2
11 ∑

=

=
n

i
iddP .

In each of the problems Pn-2, Pn-3, …, P1, the second model will be the same fictitious model for all
problems, denoted by *. Let sequences Sn-1, Sn-2,…, S1 be the optimal solution to problems Pn-1, Pn-2,…, P1
respectively, which are obtained by the algorithm described by Corominas et al. (2007). Note that the
sequence Si, 1,2−= ni , is made up of the model i and the fictitious model *. Then the sequence for the
original problem is built recursively by first replacing * in S1 by S2 to obtain S1’. Next, * are replaced by
S3 in S1’ to obtain a sequence S1’’, and so on.

3 THE CROSS-ENTROPY METHOD

This section presents the CE method, the application based on this method to solve the RTVP and how
the parameters of the CE method have been fine-tuned.

3.1 The general CE method

The CE method was pioneered in 1997 when an adaptive algorithm for estimating probabilities of rare
events in complex stochastic networks was presented by Rubinstein (1997). There are a lot of real-life
applications in which rare events with very small probabilities need to be estimated: ruins in insurance
risk or finance, breakdowns of manufacturing systems, packet losses and buffer overflows in computer
and communication networks, false alarms in radar or similar security systems, technical defects, and
many others.

Simulating the system for a long time is not a practical way to estimate these small probabilities. A
better way is to use the importance sampling (IS) technique, in which the system is simulated under a
different probability distribution so that the rare event occurs more frequently. However, an important
disadvantage of the IS technique lies in determining the optimal parameters for the probability
distribution of the events. The CE method eliminates this disadvantage because it provides an adaptive
procedure to estimate the optimal parameters.

It was realized that the CE method could be adapted to solving difficult combinatorial and multi-
extremal optimization problems together with learning algorithms and neural computation applications
(Rubinstein and Kroese, 2004). The CE method provides a mathematical way which connects the
estimation of rare events in simulation to the combinatorial optimization problems (COP).

The CE method is based on an iterative procedure divided into two steps: 1) generate a random sample
of solutions according to a probability distribution; and 2) modify the probability distribution depending
on the sample obtained in the previous step. The change in the probability distribution will increase the
probability of generating a better sample in the next iteration.

To solve a COP with the CE method, the COP is associated with a stochastic optimization problem
represented with a weighted directed graph. Depending on the problem, the randomness will be: a) in the
nodes, in which case we call it a stochastic node network (SNN) problem; or b) at the edges, in which
case we call it a stochastic edge network (SEN) problem. Examples of SNN problems are the max-cut
problem and clustering problems; examples of SEN problems are the travelling salesman problem and the
quadratic assignment problem (Rubinstein and Kroese, 2004).

As the RTVP is an SEN problem, we will concentrate on the CE method algorithm for solving problems
of this type. We merely provide a practical explanation of this algorithm; for a formal definition and its

 183

mathematical justification, see the book by Rubinstein and Kroese (2004) or the tutorial by Boer et al.
(2005). A SEN problem consists in finding the optimal set of edges in the graph which represents the
optimal solution. To find an optimal solution, the algorithm works as follows:

1. Initialize the probabilities of the edges; 1=it .
2. Generate N candidate feasible solutions)(it

kX , Nk ,,1= according to the probabilities of the

edges at the iteration it,)(it
epr . Let)(itB be the set of the  N∗ρ best solutions according to the fitness

function at the iteration it, where ρ is between (0,1].
3. For each edge e, update its probability for the next iteration as

{ }
)(

)(
)1(

:
it

it
it

e B

XeBX
pr

∈∈
=+ .

4. If stopping criterion is reached then stop, otherwise set 1+= itit and go to Step 2.

To avoid a premature convergence, the smooth version of the CE method (Rubinstein and Kroese, 2004)

is used in the RTVP. Now, a new smoothing parameter α, whose value can be between 0 and 1, is used
for updating the probabilities as follows:

()
{ }













 ∈∈
+−=+

)(

)(
)()1(

:
1

it

it
it

e
it

e B

XeBX
prpr αα

The main reason why the smooth version updating procedure performs better is that it prevents

probabilities of 0s and 1s; once edge has a probability of 0 or 1, it will appear in solutions never or
forever, which is undesirable.

Although the CE method bears similarities with other algorithms that work with probabilities, as the Ant
Colony Optimization (ACO) method (Dorigo et al., 1999) and the Learning Automata Search Technique
(LAST) (Gosavi, 2003), specially when a SEN problem is solved, there are differences between them.
The main differences between the CE and the ACO method are: 1) CE uses only the best solutions of the
sample whereas ACO uses all the solutions (Kauppila, 2006), and 2) in CE, the generation of future
solutions is based on a generic calculation whereas in ACO the generation of solutions is also based on
problem dependent heuristics (Boer et al., 2005). The main differences between CE and LAST lies in: 1)
at each iteration, CE generates a set of solutions to calculate the probabilities of the next generation,
whereas LAST only generate one solution, and 2) CE calculates the probability for each edge e according
to the number of solutions in which edge e appears and to the fitness of the solutions, whereas LAST
calculates the probability of edge e according to the fitness of the historical best solution in which edge e
appears (for a detailed explanation, see Gosavi, 2003).

3.2 The application of the CE method to the RTVP

The general CE method algorithm for a SEN problem has been described in the previous subsection. For
the application of the CE method to the RTVP, four points of the algorithm need to be specified: 1) the
graph that represents the associated stochastic optimization problem, 2) the generation of a candidate
feasible solution sequence according to the probabilities, 3) the initial probabilities of the edges and 4) the
stopping criterion.

In order to make more understandable the explanation, the example introduced in Section 2 is used: n =
3; dA = 3, dB = 2 and dC = 2; and D = 7

3.2.1. Definition of the graph
Let the graph G = (N’, E). The set of nodes N’ is the union of the sets N1 and N2, where

()
1 { :1 1,1 1}i

k iN n i n k d= ≤ ≤ − ≤ ≤ − and }11:{2 −≤≤= DttN . Notice that the model n is not included in

N1 because the units of this model are fixed when the previous models are sequenced. The node)(i
kn

belonging to N1 represents the unit k of the model i; the node t belonging to N2 represents a distance t
between two units. Thus, in the example we have () () (){ }1 1 2 1, ,A A BN n n n= and { }2 1, 2,3, 4,5,6 .N = Let

21 NNE ×⊂ , where the edge eikt = ()(i
kn , t) represents that the unit k + 1 of the model i is sequenced at

distance t of the unit k of the model i.

 184

3.2.2. Generation of a feasible solution sequence

We start by setting unit 1 of model 1 to the first position of the sequence (example of the start sequence
shown in Figure 1a). Then, an edge has to be randomly chosen from the node)1(

1n of the set
}11:{ 1,1,1 +−≤≤ dDte t . For each unit, the sum of the probabilities of an eligible set of edges from this

unit is almost always different than one. The probabilities of the set are therefore normalized for each
selection. The initial probabilities of the example are generated as it is explained in Section 3.2.3 and they
are shown in Table 1 (before being normalized) and Table 2 (after being normalized). The choice of the
edge will fix the unit 2 position (let it be called)1(

2p) of model 1 to the value 1 t+ . Note that the biggest

possible position)1(
2p is 21 +− dD , which allows the rest of the units of model 1 to be sequenced at the

positions)1(
2p + 1,)1(

2p + 2, …, D. In the example, it is supposed that the edge randomly chosen is eA,1,2
(i.e., t = 2) and, therefore, ()

2 1 2 3Ap = + = (see Figure 1b).

Figure 1. Generation of a feasible solution sequence

 t=1 t=2 t=3 t=4 t=5
() ()
1 2

A An n= 3
4

 3 3
2

 3
5

 3
8

()
1

Bn 2
5

 2
3

 2 2 2
3

Table 1. Initial probabilities (before being normalized)

 t=1 t=2 t=3 t=4 t=5
() ()
1 2

A An n= 30
249

 120
249

 60
249

 24
249

 15
249

()
1

Bn 3
43

 5
43

 15
43

 15
43

 5
43

Table 2. Initial probabilities (after being normalized)

Now we choose an edge randomly from node)1(
2n of the set }1)2(1:{)1(

21,2,1 +−−−≤≤ pdDte t . This
process continues for units 3, 4, …,d1 – 1 of model 1. The set of eligible edges from unit k of model 1 is

}1)(1:{)1(
1,,1 +−−−≤≤ ktk pkdDte , where)1(

kp is the position at the sequence of unit k of model 1. In
the example the set would be ,2,{ :1 7 (3 2) 3 1}A te t≤ ≤ − − − + , i.e., {1, 2,3, 4}, and the probabilities of the

edges from ()
2

An are normalized (Table 3a); then, an edge is randomly chosen: for example, eA,2,3 (i.e., t =
3). Therefore, ()

3 3 3 6Ap = + = (see Figure 1c). Note that the distance between the first unit of model 1 and
the last unit of the same model in the preceding cycle is automatically determined when

1

(1)
dp is fixed.

When all units of model 1 are set, it is the turn of the units of model 2, then model 3, and so on until the
penultimate model. The first unit of each model is always set at the first free position of the sequence. The
distances between the remaining units must ensure that the units are not set at a taken position. Thus, in
the example the first unit of the model B is placed in the first free position of the sequence and, therefore,

()
1 2Bp = (see Figure 1d). Next, an edge from ()

1
Bn has to be chosen from the set {2,3,5} . Notice that the

distances 1 and 4 are not included in the set because if the edge eB,1,1 is chosen then ()
2 2 1 3Bp = + = and

the position 3 is already occupied by the model A (and analogous for the edge eB,1,4). The probabilities of
the edges from ()

1
Bn are normalized (Table 3b) and then the edge is randomly chosen: for example, the

A (a)

A A (b)

A A A (c)

A B A A (d)

A B A B A (e)

A B A C B A C (f)

 185

edge eB,1,3. Therefore, ()
2 2 3 5Bp = + = (see Figure 1e). Finally, the sequence is completed with the units

of the last model C (see Figure 1f).

 t=1 t=2 t=3 t=4
(a) ()

2
An 30

234
 120

234
 60

234
 24

234

 t=1 t=2 t=3 t=4 t=5

(b) ()
1

Bn 5
25

 15
25

 5
25

Table 3. Normalized probabilities

The distance between the last unit and the first unit of a majority model could be forced to be big by the
rule of setting the first unit of each model at the first free position of the sequence. To alleviate this, the
models are arranged decreasingly by their number of units before the CE method application starts.

3.2.3. Initial probabilities of the edges
The initial probabilities are set so that the nearer a distance is to the ideal distance, the more probable

the distance is. For each model i = 1,...,n, let tmaxi = D – di + 1 – (i – 1), where tmaxi is the maximal
theoretical distance between two consecutive units of model i. Notice that tmaxi depends on i because the
first unit of each sequenced model is set at the first free position of the sequence. For each node k of
model i,)(i

kn , the probabilities of the set of edges which go out from the node are set as follows:

ε+−
= ttpr

i
eikt

1)1(, t = 1,…, tmaxi, where 610−=ε is used to avoid a division by zero if t is equal to it .

Because (1)
1

i

ikt

tmax
t epr=∑ is greater than 1, the probabilities are next normalized (as it has been shown with the

previous example in Tables 1 and 2).

3.2.4. Stopping criterion
The CE algorithm stops running after 50 seconds.

3.3 Fine-tuning the CE parameters

Fine-tuning the parameters of a metaheuristic algorithm is almost always a difficult task. Although the
value of the parameters is vital because the results of the metaheuristic for each problem are very
sensitive to them, the fine-tuning is usually done by intuitively testing several values.

The problem of fine-tuning the parameters of a metaheuristic application can be approached as an
optimization problem, for which the solution consists of finding the parameter values that optimize the
running of the metaheuristic for the problem to solve. Since the set of instances of a problem is infinite,
we must resign ourselves to a representative training set for making the optimization.

The Nelder and Mead (N&M) algorithm (Nelder and Mead, 1965), also named the flexible polyhedron
algorithm, has been chosen for solving the fine-tuning problem because it is a direct one (i.e., it uses only
the values of the function). There are another algorithms that could be used to solve this fine-tuning
optimization problem, but the N&M algorithm has offered good results since its publication and it is
referenced by recent papers (Anjos et al., 2004; Chelouah and Siarry, 2005; Corominas, 2005). The N&M
algorithm starts from an v-dimensional point, whose coordinates are the v parameters of an objective
function, and an initial hyper-tetrahedron is formed. For the fine-tuning problem, the parameters of the
metaheuristic are used as the coordinates of the points. It is advisable for one of the initial vertices of the
hyper-tetrahedron to be a known good point since the N&M algorithm ensures that the solution found is
never worse than the best of the initial vertices. Then, the points of the hyper-tetrahedron are iteratively
moved in the v-dimensional space according to the values of the function of each point until a local
optimal point is reached. The function to be used by the N&M algorithm for the fine-tuning problem of a
metaheuristic is the sum of the objective function values corresponding to the solutions obtained with the
metaheuristic application at each instance of the training set. Usually, the bigger an instance is, the bigger
the objective function value of its optimal solution is. Therefore, the N&M algorithm will give more
relevance to the big instances for fine-tuning the parameters. To avoid this situation, the objective
function values are normalized by dividing them by a lower bound of the instance. The lower bound used
for the RTVP is the lower bound (let be called LBT) introduced by Corominas et al. (2007), which is
calculated as follows:

 186

2 2

1
(mod) (mod)

n

i i i i i
i i i

D DLBT D d t d D d t
d d=

        = ⋅ − + − ⋅ −                 
∑

The CE method needs fine-tuning of three parameters: the number of candidate solutions to be produced
at each iteration (N), the proportion of candidate solutions that is part of the best solutions (ρ) and the
smooth parameter (α). To set the initial point (initial values of the parameters) of the N&M algorithm, the
values recommended by Rubinstein and Kroese (2004) are considered: N bigger than D2 (D is the number
of units), ρ equal to the minimum of 0.01 and ln() ,D D and α between 0.7 and 1. Note that N could be
very big, so we limited this initial value to 500; ρ was initially set to 0124.0500)500ln(= and α to 0.8.
To know a good initial point to start the N&M algorithm is another reason to use it because, in this case,
the N&M algorithm ensures a good solution, i.e., a good fine-tuning of the CE parameters.

A set of 45 training instances (generated as explained in Section 4) was used to fine-tune the CE method
and, to value a point, the CE method was run for 50 seconds each instance. The N&M algorithm was
stopped after 42 hours. The fine-tuning values of the parameters are finally N=306, ρ = 0.0206 and α =
0.8868.

4 COMPUTATIONAL EXPERIMENTS

The computational experiments were performed by running 555 instances grouped into three classes (185
instances in each class) according to their size. The instances in the first class (called CAT1) were
generated using a random value of D (number of units) uniformly distributed between 25 and 50, and a
random value of n (number of models) uniformly distributed between 3 and 15; for the second class
(called CAT2), D was between 50 and 100, and n between 3 and 30; and for the third class (called CAT3),
D was between 100 and 200 and n between 3 and 65. For all instances and for each model i, a random

value of di (number of units of the model i) is between 1 and (1)
2.5

D n− + such that ∑
=

=
n

i
i Dd

1
. The

instances were randomly generated because there is not any set of benchmark instances published in the
literature since the problem is very new.

The CE and the heuristic algorithms were coded in Java and the computational experiments were
carried out using a 3.4 GHz Pentium IV with 512 Mb of RAM.

For each instance, the CE algorithm was run for 50 seconds. The time needed by the five heuristic
algorithms (H1 to H5) is negligible (always less than a second per instance). Table 4 shows the averages
of the RTV values for each class of instances (CAT1 to CAT3).

 CE H1 H2 H3 H4 H5
CAT1 21.16 107.09 932.13 121.84 147.19 172.69
CAT2 106.15 693.38 4741.55 933.11 1077.88 1254.29
CAT3 2809.81 4369.44 25157.87 8502.80 9106.04 10248.21

Table 4. Averages of the RTV values for each class of instance
H1 = Bottleneck; H2 = Random; H3 = Webster; H4 = Jefferson; H5=Insertion

The CE method gives much better results than the best of the heuristic algorithms (H1: bottleneck):
80.24% better for class CAT1, 84.69% better for class CAT2 and 35.69% better for class CAT3. However,
the improvement for class CAT3 is not as impressive as the improvement for the other two classes. Table
5 shows: the averages of the number of iterations that the CE algorithm does in 50 seconds, for each class
of instance, and the iteration in which the best solution was found.

 Average

number of
iterations

Best solution
iteration

CAT1 527.94 7.37
CAT2 103.57 15.94
CAT3 16.78 14.64

Table 5. Averages of number of iterations and iteration in which the best solution is found

The best solution for CAT1 and CAT2 instances is found long before the last iteration of the CE
algorithm. On the other hand, more than 70% of the CAT3 instances found their best solution at the last
or penultimate iteration (47% at the last and 23% at the penultimate iteration). This indicates that in many
CAT3 instances the CE algorithm stops before it finishes to converge, i.e., the probabilities of the edges

 187

are nearly to zero or to one. In spite of this, the CE algorithm improves by 35.69% for class CAT3 when
compared to the bottleneck heuristic.

Tables 5 and 6 show other characteristic of the CE method. As opposed to other metaheuristic methods
such as genetic algorithms, the CE method converges very fast (though it needs to generate a lot of
solutions at each iteration) (Rubinstein and Kroese, 2004). To see how many iterations (on average) the
CAT3 instances need in order to converge, these instances were also run for 100, 200 and 300 seconds.
The results are shown in Table 6.

Table 6. RTV value and averages of number of iterations and the best solution iteration of the CE application for the
CAT3 instances.

When the CAT3 instances are run for 100 seconds, there are still 51% of instances which found their best
solution at the last or penultimate iteration (31% at the last and 20% at the penultimate). However, the
results are 31,11% better than the 50-second results. For 200 seconds, there are 23% of instances which
found their best solution at the last or penultimate iteration (13% at the last and 10% at the penultimate).
These results are 53.01% better than the 50-second results. Finally, for 300 seconds, there are only 4% of
instances which found their best solution at the last or penultimate iteration (3% at the last and 1% at the
penultimate). These results are 57.89% better than the 50-second results and 72.92% better than the
bottleneck heuristic.

As the execution time of the greedy heuristics is negligible, a better heuristic (let it be called HB) can be
constructed by merely running the five heuristics and getting the best solution for each instance.
Moreover, to solve the RTVP in a real context, an application (let it be called CE-HB) can be constructed
by running the CE method (over 50 seconds, for example) and HB and getting the best solution for each
instance. Table 7 shows the averages of the RTV values for the CE application (run for 50 seconds), for
the bottleneck heuristic, for the HB and for the CE-HB.

 CE Bottleneck HB CE-HB
CAT1 21.16 107.09 98.40 19.97
CAT2 106.15 693.38 631.41 86.45
CAT3 2809.81 4369.44 4200.67 1534.16

Table 7. Averages of the RTV obtained values

Although HB, obviously, improves on the bottleneck heuristic, the CE application continues to give much
better results than HB: 78.45% better for class CAT1, 83.19% better for class CAT2 and 33.11% better for
class CAT3. Table 7 shows that it is a good idea to solve the RTVP with CE-HB, especially when the CE
application has no time to converge: for the CAT3 instances, CE-HB gets 45.40% better results than the
CE method. This is because the CE application needs to converge until the end to obtain good results.

5 CONCLUSIONS AND FUTURE RESEARCH

The RTVP proposes a new metric for measuring the regularity of production in a mixed-model assembly
production line. The RTVP tries to minimize the variability of distances between units of the same model.
This metric has the advantage that it is very easy to understand for the practitioners, which know the
importance of obtaining a good sequence in the mixed-model lines. Therefore, the efforts for minimizing
the response time variability are important.

A CE method application has been presented to solve the RTVP, an NP-hard combinatorial
optimization problem. The CE method has created recently for rare-event simulation but was soon
adapted to solving combinatorial optimization problems. The power and generality of this method consist
in the fact that the updating rules are often simple and fast. The first contribution of our paper shows how
the CE method is easily adapted to solve the scheduling problem RTVP. Moreover, this adaptation is a
good example of how the CE method can be used for other production scheduling problems.

The effectiveness of the CE method is demonstrated by the computational experiments. The CE
application is contrasted with the greedy heuristics proposed by Corominas et al. (2007) and the solutions
obtained with the CE application are considerably better. Thus, the second contribution of our paper

 RTV
value

Number of
iterations

Best solution
iteration

50 sec. 2809.81 16.78 14.64
100 sec. 1935.76 27.85 19.10
200 sec. 1320.24 54.57 25.73
300 sec. 1183.27 80.91 28.22

 188

consists in that the RTV values of the obtained sequences are improved. Although the computation times
needed by the heuristics are much less than the time needed by the CE application, it is not a disadvantage
in a production environment because the scheduled sequence is not updated frequently. Moreover, a
metaheuristic, as it is the CE method, has the advantage that the more time is running, better solutions
may found and, therefore, it is more probable to obtain the global optimal solution.

At present, we are developing two applications based on the metaheuristics Electromagnetism-like
Mechanism and Psycho-Clonal Algorithm in order to find one metaheuristic that improves the CE method
results.

As it is said in Section 1, this paper assumes that the processing time of the units does not depend on the
model. In a future research, different processing time of the units according to the model will be
considered.

ACKNOWLEDGMENTS

The authors wish to express their gratitude to the anonymous reviews for their valuable comments which
have improved the quality of this paper.

REFERENCES

Anily, S., Glass, C.A. and Hassin, R. (1998) ‘The scheduling of maintenance service’, Discrete Applied Mathematics,
Vol. 82, pp. 27-42.

Anjos, M.F.., Cheng, R.C.H. and Currie, C.S.M.. (2004) ‘Maximizing revenue in the airline industry under one-way
pricing’, SIAM Journal on Optimization, Vol. 9, pp. 535-541.

Balinski, M.L. and Young, H.P. (1982) ‘Fair Representation: meeting the ideal of one man, one vote’, Yale University
Press, New Haven CT.

Boer, P. de, Kroese, D.P., Mannor, S. and Rubinstein, R.Y. (2005) ‘A Tutorial of the Cross-Entropy Method’, Annals
of Operations Research, Vol. 134, pp. 19-67.

Chelouah, R. and Siarry, P. (2005) ‘A hybrid method combining continous tabu search and Nelder-Mead simplex
algorithms for the global minimization of multiminima functions’, European Journal of Operational Research,
Vol. 161, pp. 636-654.

Corominas, A. (2005) ‘Empirically Adjusted Greedy Algorithms (EAGH): A new approach to solving combinatorial
optimisation problems’, Working paper IOC-DT-P-2005-22, Universitat Politècnica de Catalunya.

Corominas, A., Kubiak, W. and Pastor, R. (2006) ‘Solving the Response Time Variability Problem (RTVP) by means
of mathematical programming’, Working paper IOC-DT, Universitat Politècnica de Catalunya.

Corominas, A., Kubiak, W. and Moreno, N. (2007) ‘Response time variability’, Journal of Scheduling, Vol. 10, pp.
97-110.

Costa, A., Jones, O.D. and Kroese, D. (2006) ‘Convergence properties of the cross-entropy method for discrete
optimization’, Operations Research Letters, In Press, Corrected Proof.

Dong, L., Melhem, R. and Mossel, D. (1998) ‘Time slot allocation for real-time messages with negotiable distance
constraint requirements’, Real-time Technology and Application Symposium, RTAS, Denver.

Dorigo, M., Di Caro, G. and Gambardella, L.M. (1999) ‘Ant Algorithms for Discrete Optimization’, Artificial Life,
Vol. 5, pp. 137-172.

Gosavi, A., (2003) ‘Simulation Based Optimization’, Kluwer Academic Publishers.
Kauppila, M. (2006) ‘Ant Colony Optimization as a Cross Entropy variant – a case study with DNA reconstruction’,

http://www.rawhed.com/uttumuttu/index.html.
Kubiak, W. (1993) ‘Minimizing variation of production rates in just-in-time systems: A survey’, European Journal of

Operational Research, Vol. 66, No. 3, pp. 259-271.
Miltenburg, J. (1989) ‘Level schedules for mixed-model assembly lines in just-in-time production systems’,

Management Science, Vol. 35, No. 2, pp. 192-207.
Monden, Y. (1983) ‘Toyota Production Systems’, Industrial Engineering and Management Press, Norcross, GA.
Moreno, N. (2002) ‘Solving the Product Rate Variation Problem (PRVP) of large dimensions as an assignment

problem’, Doctoral Thesis, DOE, Universitat Politècnica de Catalunya.
Moreno, N. and Corominas, A. (2006) ‘Solving the minmax product rate variation problem (PRVP) as a bottleneck

assignment problem’, Computers & Operations Research, Vol. 33, No. 4, pp. 928-939.
Nelder, J.A. and Mead, R. (1965) ‘A simplex method for function minimization’, The Computer Journal, Vol. 7, pp.

308-313.
Rubinstein, R.Y. (1997) ‘Optimization of Computer Simulation Models with Rare Events’, European Journal of

Operational Research, Vol. 99, No. 1, pp. 89-112.
Rubinstein, R.Y. and Kroese, D.P. (2004) ‘The Cross-Entropy Method: A Unified Approach to Combinatorial

Optimization, Monte-Carlo Simulation and Machine Learning’, Springer-Verlag, New York.

 189

Solving the Response Time Variability Problem by means of
metaheuristics

Article published as [Frontiers in artificial intelligence and applications, Volume 146,
2006, Pages 187-194] © [copyright IOS Press]

Solving the Response Time Variability Problem by
means of metaheuristics†

† Sponsored by the Spanish Ministry of Education and Science’s project DPI2004-03472; co-funded by the FEDER.

Alberto GARCÍA, Rafael PASTOR and Albert COROMINAS

Institut d’Organització i Control de Sistemes Industrials (IOC), Universitat Politècnica de Catalunya,
Barcelona, Spain.

Abstract. The Response Time Variability Problem (RTVP) is a combinatorial NP-hard problem which
has a wide range of real-life applications. It has recently appeared in the literature and has therefore not
been widely discussed to date. The RTVP has been solved in other works by mixed integer linear
programming (for small instances) and heuristics, but metaheuristic procedures have not previously been
used. In this paper, a solution to the RTVP by means of multi-start, GRASP and PSO procedures is
proposed. We report on our computational experiments and draw conclusions.

Keywords: response time variability, fair sequences, scheduling, metaheuristics.

Introduction

The Response Time Variability Problem (RTVP) consists in sequencing a list of products, events, clients
and jobs in such a way that the variability in the time they spend waiting for their next turn to obtain the
resources they need is minimized. This problem has recently been defined in the literature and to date
very few papers have been published on the subject [1], [2], [3].

Corominas et al. [2] have proved that the RTVP is a combinatorial NP-hard problem and, with the
exception of a few special cases, they have in fact found an optimum solution to the problem only for
small instances. Therefore, solving the problem by means of heuristic and metaheuristic procedures is
entirely justified. In this paper, a solution to the RTVP is put forward by applying the following three
procedures: multi-start, GRASP (Greedy Randomized Adaptive Search Procedure) and PSO (Particle
Swarm Optimization).

The multi-start method is based on generating initial random solutions and on improving each of them to
find a local optimum, which is usually done through a local search procedure.

GRASP, designed by Feo and Resende [5] in 1989, can be considered to be a variant of the multi-start
method in which the initial solutions are obtained using directed randomness. They are generated by
means of a greedy strategy in which random steps are added and the choice of the elements to be included
in the solution is adaptive.

PSO is a metaheuristic procedure designed by Kennedy and Eberhart [6] in 1995. The original algorithm
was designed for working with continuous functions of real variables and has obtained good results.
Furthermore, it has recently been adapted for the purposes of working with combinatorial problems such
as the travelling salesperson problem [7] or the flowshop problem [8]. In spite of these good results, there
are not many PSO methods for solving combinatorial optimization problems.

 190

The remainder of this paper is set out as follows: Section 1 presents a formal definition of the RTVP;
Section 2 briefly describes the methods used and how they were adapted to solve the RTVP; Section 3
explains how the values for the metaheuristic parameters were established; the computational results are
shown in Section 4; and finally, the conclusions are put forward in Section 5.

1. Response Time Variability Problem (RTVP)

The Response Time Variability Problem occurs whenever products, clients or jobs need to be sequenced
so as to minimize variability in the time between the instants at which they receive the necessary
resources.

The RTVP occurs in a wide range of real-life applications. For example, it is a common occurrence in the
automobile industry in the sequencing of models [9] and in the Asynchronous Transfer Mode (ATM)
when multimedia systems need to broadcast video or sound at a specific time [10].

These kinds of situations are often considered to be distance-constrained scheduling problems, in which
the distance between any two given consecutive units of the same product is bounded. However, in the
RTVP the aim is to minimize variability in the distances between any two consecutive units of the same
product and to find a feasible solution that optimizes this objective.

The RTVP is formulated as follows. Let n be the number of products, di the number of units of product i

and D the total number of units (∑
=

=
n

i
idD

1
). Let s be a solution of an instance in the RTVP that consists

of a circular sequence of units (Dssss 21=), where sj is the unit sequenced in position j of sequence s.

For all products i in which 2≥id , let i
kt be the distance between the positions in which the units k+1 and

k of product i are found (i.e., the number of positions between them). As the sequence is circular, position
1 comes immediately after position D; therefore, i

di
t is the distance between the first unit of product i in a

cycle and the last unit of the same product in the preceding cycle. Let it be the average distance between

two consecutive units of product i (
i

i d
Dt =). For all products i in which 1=id , it1 is equal to it . The

objective is to minimize the ∑∑
= =

−=
n

i

d

k
i

i
k

i

ttRTV
1 1

2)(.

For example, let 3=n , 2=Ad , 2=Bd and 4=Cd ; thus, 8=D , 4=At , 4=Bt and 2=Ct . A
feasible solution is the sequence (C, A, C, B, C, B, A, C) where

() ()[] () ()[] () () () ()[] 122822123222246424345 22222222 =++=−+−+−+−+−+−+−+−=RTV

Corominas et al. [2] proved that the RTVP is NP-hard. The RTVP was optimally solved by means of
mathematical programming, up to 40 units [3], and by means of heuristic procedures plus local
optimization [2].

2. Multi-start, GRASP and PSO metaheuristic methods

2.1. Multi-start method

The multi-start method consists in generating random solutions, applying local optimization methods and
preserving the best results.

The pseudocode of the adaptation of the multi-start method is

1. Let the value of the best solution found be ∞=Z .
2. While (actual time < execution time), do:
3. Get a random initial solution X
4. Apply the local optimization to X and get X’
5. If value (X’) < Z , then Z = value (X’)

 191

Random solutions are generated as follows. For each position from 1 to D in the sequence, we randomly
obtain which product will be sequenced with a probability equal to the number of units of that type of
product that remain to be sequenced divided by the total number of units that remain to be sequenced.

The local optimization is applied as follows. A local search is performed iteratively in a neighbourhood
that is generated by interchanging two consecutive units; the best solution in the neighbourhood is
chosen; the optimization ends when no neighbouring solution remains that is better than the current
solution.

2.2. Greedy Randomized Adaptive Search Procedure (GRASP) method

Like the multi-start method, GRASP consists in generating solutions, applying local optimizations and
preserving the best results. However, the generation of solutions is performed by applying a heuristic with
directed randomness, which is usually a random variation of a simple greedy heuristic. At each stage in
the heuristic, the next product to be added to the solution is randomly selected from a list of candidates
with a probability proportional to the value of an associated index.

The pseudocode of the GRASP adaptation is almost the same as that of the multi-start method: the only
difference is the way in which the initial solutions are obtained, which is as follows. For each position
from 1 to D in the sequence, the product to be sequenced is randomly selected from the candidate list with
a probability proportional to the value of its Webster index. This index, defined in [2], is as follows: let

2
1=δ and let ikx be the number of units of product i that have already been sequenced in the sequence

of length k, k = 0, 1, …; the value of the Webster index of product i to be sequenced in position 1+k is

δ+ik

i

x
d

.

The local optimization used is the same as the optimization used in the multi-start method.

The size of the candidate list was set to 5 candidates.

2.3. Particle Swarm Optimization (PSO) method

Kennedy and Eberhart designed the PSO metaheuristic by establishing an analogy to the social behaviour
of flocks of birds when they search for food. Originally, this metaheuristic was designed to optimize
continuous functions of real variables [6]. Due to its good performance, it has been adapted for the
purposes of working with combinatorial problems [7], [8], [11].

In this kind of algorithm, the particles, which correspond to the birds, have a position (a feasible solution)
and a velocity (the change in their position), and the set of particles form the swarm, which corresponds
to the flock.

At each step in the PSO algorithm, the behaviour of a particle is the result of the combination of the
following three factors: 1) to continue on the path that it is following, 2) to follow the best solution found
and 3) to go to the best position found by the swarm. The formalization of this behaviour is expressed in
the following two equations:

)()(3211 tttttt XBSPcXBPcvcv −⋅⊗−⋅⊗⋅=+ (1)

11 ++ += ttt vXX (2)

where tv is the velocity of the particle at time step t; tX is the position of the particle at time step t; tBP
is the best position of the particle up to time step t; tBSP is the best position of the swarm up to time step
t; and c1, c2 and c3 are the coefficients that weight the importance of the three types of decision.

The values of coefficients c1, c2 and c3 are usually fixed in advance.

 192

To apply the PSO algorithm to the RTVP, the elements and the operations of the equations (1) and (2)
have to be defined.

2.3.1. Position of the particle

As mentioned above, a position represents a feasible solution. The position is represented by a D-length
array that contains the sequence of D units.

2.3.2. Velocity of the particle

The expression (X2 – X1) represents the difference between two positions and it is the velocity needed to
go from position X1 to X2. This velocity is an ordered list of transformations (called movements) that must
be applied to the particle so that it changes from its current position to the other one. Two types of
movements, each of which had two variations, were considered.

The first type of movement, called M1, is a pair of values (α / j). For each position s in the sequence X1, a
check is conducted to determine whether the unit in this position s is equal to the unit in position s of
sequence X2. If they are different, α is the unit in position s of X2 and j is position s. Thus, this movement
denotes that the unit in position j must be exchanged for the first unit that is equal to α and that is to the
right of position s. This concept is used to solve the CONWIP problem [11].

The second type of movement, called M2, is a pair of positions (i, j). These values indicate that the units
that are sequenced in positions i and j have been exchanged.
Two examples of the movements that are needed to move to position X2 (A-B-C-A-B-C-A-B-C) from
position X1 (A-A-A-B-B-B-C-C-C) are shown below.

M1: movements (B/2), (C/3) and (C/6) are needed.
 A-A-A-B-B-B-C-C-C → (B/2) → A-B-A-A-B-B-C-C-C → (C/3) →
 A-B-C-A-B-B-A-C-C → (C/6) → A-B-C-A-B-C-A-B-C
M2: movements (2,4), (3,7) and (6,8) are needed.
 A-A-A-B-B-B-C-C-C → (2,4) → A-B-A-A-B-B-C-C-C → (3,7) →
 A-B-C-A-B-B-A-C-C → (6,8) → A-B-C-A-B-C-A-B-C

There would seem to be no difference between M1 and M2, but when two velocities are added (see
Section 2.3.4) then lists of movements that refute this may appear.

The two variations for each movement are: 1) if only the type of product is used to compare two units
(this variation is called T and it is used in examples above), and 2) if the unit number is used to compare
two units and therefore a unit is only equal to itself (this variation is called F). For example, in the case of
variation F, position A1-A2-A3-B1-B2-B3-C1-C2-C3 (in which the number next to each letter is a unit
identifier for each product) is different to position A2-A1-A3-B1-B3-B2-C1-C2-C3, but in variation T the
two positions are equal (they appear as A-A-A-B-B-B-C-C-C).

The difference between two positions using variation F will always be greater than or equal to the
difference when variation T is applied.

2.3.3. External multiplication of a coefficient by a velocity

The coefficients c1, c2 and c3 yield values of between 0 and 1. When a coefficient is multiplied by a
velocity, it indicates the probability of each movement that is to be applied. For example, if we multiply
velocity [(B/2), (C/3), (C/6)] by coefficient 0.6, three random numbers between 0 and 1 are generated for
comparison with coefficient 0.6; if the values are 0.3, 0.8 and 0.4, then movements (B/2) and (C/6) are
applied, whereas movement (C/3) is not. The resulting velocity of the multiplication is therefore [(B/2),
(C/6)].

2.3.4. Sum of velocities

The sum of two velocities is simply the concatenation of their own list of movements.

2.3.5. Sum of a velocity plus a position

 193

The sum of a velocity plus a position gives the same result as applying each movement of the velocity to
the position.

2.3.6. Pseudocode of the algorithm

1. Initiate the particles with random positions and empty velocities.
2. While (actual time < execution time), do:
3. Update the best swarm position.
4. For each particle:
5. update its best position and apply the two PSO equations.

The random positions are generated in the same way as the random solutions in the multi-start method.

3. Fine-tuning the PSO parameters

Adapting metaheuristics to a specific problem does not end with the definition of the space of solutions or
the local search; moreover, it is required to set the parameters. The value of the parameters is vital
because the results of the metaheuristic for each problem are very sensitive to them. To fine-tune is very
expensive and it is usually done by intuitively testing several values.

For the purposes of this paper, we fine-tuned the parameters using a recent technique called CALIBRA
[12]. CALIBRA is an automatic configuration procedure based on statistical analysis techniques
(Taguchi’s fractional factorial experimental designs) coupled with a local search procedure. A set of 60
representative instances was used to fine-tune the algorithms and a set of 740 units was used to test them.
The four parameters to be fine-tuned were the number of particles in the swarm and coefficients c1, c2 and
c3. The range of the values used to fine-tune the algorithms was [5,30] for the number of particles and
[0,1] for the coefficients. CALIBRA needed 35 hours to fine-tune each algorithm.

4. Computational results

As described in Section 2.3.2, depending on the type of movement (M1 or M2) and the variation (T or F),
we have four PSO algorithms (called M1-F, M1-T, M2-F and M2-T), as well as the multi-start algorithm
and the GRASP algorithm.

The algorithms ran 740 instances, which were grouped into four classes (185 instances in each class)
depending on their size. The instances in the first class (called CAT1) were generated using a random
value of D (number of units) between 25 and 50, and a random value of n (number of products) between 3
and 15; for the second class (called CAT2), D was between 50 and 100, and n between 3 and 30; for the
third class (called CAT3), D was between 100 and 200 and n between 3 and 65; and for the fourth class
(called CAT4), D was between 200 and 500 and n between 3 and 150.

The algorithms were coded in Java and the computational experiments were carried out using a 3.4 GHz
Pentium IV with 512 Mb of RAM.

Table 1. Averages of the RTV values to be minimized

 PSO
Multi-
start GRASP

 M1F M1T M2F M2T

CAT1 68.79 66.83 83.14 80.93 11.33 13.90

CAT2 445.55 509.89 604.27 517.05 48.10 91.64

CAT3 3050.38 4335.87 4488.44 3888.79 320.63 541.52

CAT4 28955.82 48917.80 37937.76 30029.34 79823.89 57041.74

 194

Firstly, the six algorithms were run for 50 seconds for each instance. Table 1 shows the averages of the
RTV values to be minimized for each class of instances.

In Table 1 it can be seen that the best results for the three first classes are given by the multi-start method,
followed by the GRASP method, whereas the PSO algorithm yields the worst results. However, in the
case of class CAT4, in which the instances are largest, the order is the reverse: the four PSO algorithms
yield better results than the GRASP method, and the multi-start method gives the worst results. The
reason for this is that the multi-start method does not have time to locally optimize a single solution for
87.57% of the instances in the CAT4 class; this happens in the GRASP method for 84.32% of the
instances.

The second computational experiment consisted in locally optimizing the solutions that were obtained
with the PSO algorithms in the first computational experiment. The optimization used was the same as the
multi-start optimization; it stops after 50 seconds if the optimization has not been completed. Table 2
shows the averages of the RTV values obtained for each class of instances.

Table 2. Averages of the RTV values of the PSO local optimized solutions

 M1F M1T M2F M2T

CAT1 21.61 24.43 23.61 25.65

CAT2 67.42 89.75 77.56 95.14

CAT3 229.32 406.63 302.06 427.09

CAT4 15842.12 29604.35 20560.1 15537.62

The results obtained using M1F for the instances in class CAT3 after local optimization are better than the
results obtained using the multi-start method. Moreover, the optimization times for the first two classes
are negligible and the average time for the third class is between 4.26 and 5.84 seconds (using M1F and
M1T, respectively). The instances in the first three classes were all locally optimized. However, there was
not enough time to optimize all the instances in class CAT4: only 60 instances (32.43%) were locally
optimized based on the solutions that were obtained using M1F.

Finally, the six procedures were re-run for 200 seconds using the instances in class CAT4, which are the
most difficult to solve. In the case of PSO algorithms, 100 seconds were spent on obtaining a solution and
a further 100 seconds, at the most, were spent on locally optimizing the previous solution. Table 3 shows
the average of the RTV values obtained for class CAT4 (the values in parenthesis were obtained using the
PSO algorithms before local optimization was applied).

Table 3. Average of the RTV values of the CAT4 instances

M1F M1T M2F M2T
multi-
start GRASP

(24022.52)
8782.07

(44697.30)
21432.13

(36445.60)
14892.35

(29838.01)
11984.25 39719.71 30020.35

The results show that all the PSO algorithms give better results than the multi-start and GRASP
algorithms. In this last experiment, 97 instances (52.43%) were locally optimized after applying the M1F
algorithm.

5. Conclusions and future lines of research

In this paper we have presented our solution to the RTVP (a problem that has not been widely researched
to date), to which six algorithms were applied: one multi-start, one GRASP and four PSO.

The results show that the best procedure is the multi-start for small instances (between 25 and 100 units
and between 3 and 30 products). However, for bigger instances (between 100 and 500 units and between
3 and 150 products) the search should be more specific as the four PSO algorithms are much better than

 195

the multi-start and GRASP methods and the latter are better than the multi-start methods. Moreover, as
was to be expected, there is a significant improvement in the solutions that were obtained using the PSO
algorithm to which local optimization had been applied.

Future research will consist in adapting new metaheuristic procedures, such as for example simulated
annealing and tabu search.

References

[1] D. León, A. Corominas, A. Lusa, Resolución del problema PRV min-var, Working paper IOC-DT-I-

2003-03, UPC, Barcelona, Spain, 2003.
[2] A. Corominas, W. Kubiak, N. Moreno, Response time variability, Working paper IOC-DT-P-2004-

08. UPC, Barcelona, Spain, 2004.
[3] A. Corominas, W. Kubiak, R. Pastor, Solving the Response Time Variability Problem (RTVP) by

means of mathematical programming, Working paper IOC-DT, UPC, Barcelona, Spain, 2006.
[4] R Martí, Multi-start methods, Handbook of Metaheuristics, Glover and Kochenberger (eds.), Kluwer

Academic Publishers, pp. 355-368, 2003.
[5] T.A. Feo, M.G.C. Resende, A probabilistic heuristic for a computationally difficult set covering

problem, Operations Research Letters, vol. 8, pp. 67-81, 1989.
[6] J. Kennedy, R.C. Eberhart, Particle swarm optimization, IEEE International Conference on Neural

Networks, Australia, 1995.
[7] B. Secrest, Travelling salesman problem for surveillance mission using PSO, PhD thesis, Air Force

Institute of Technology, Ohio, USA, 2001.
[8] C.J. Liao, C.T. Tseng, P. Luarn, A discrete version of PSO for flowshop scheduling problems,

Computers & Operations Research, in press, corrected proof available online, 5 December 2005.
[9] Y. Monden, Toyota Production Systems, Industrial Engineering and Management Press, Norcross,

GA, 1983.
[10] L. Dong, R. Melhem, D. Mossel, Time slot allocation for real-time messages with negotiable

distance constraint requirements, Real-time Technology and Application Symposium, RTAS,
Denver, 1998

[11] C. Andrés, R. Pastor, J.M. Framiñán, Optimización mediante cúmulos de partículas del problema de
secuenciación CONWIP, Eighteenth Conference on Statistics and Operations Research SEIO’04,
Cádiz, Spain, 2004.

[12] B. Adenso-Díaz, M. Laguna, Fine-tuning of algorithms using fractional experimental designs and
local search, Operations Research, vol. 54, no. 1, pp. 99-114, 2006.

http://biblioteques.upc.es/cgi-bin/vtls.web.gateway?searchtype=title&conf=080000++++++++++++++&searcharg=Response+time+variability+%3b+Albert+Corom�
http://biblioteques.upc.es/cgi-bin/vtls.web.gateway?searchtype=title&conf=080000++++++++++++++&searcharg=Response+time+variability+%3b+Albert+Corom�

 197

Solving the Response Time Variability Problem by means of Multi-start
and GRASP metaheuristic

Article published as [Frontiers in artificial intelligence and applications, Volume 184,
2008, Pages 128-137] © [copyright IOS Press]

Solving the Response Time Variability Problem by
means of Multi-start and GRASP metaheuristics†

Albert COROMINAS, Alberto GARCÍA-VILLORIA

*

One of the first problems in which has appeared the importance of sequencing regularly is the sequencing
on the mixed-model assembly production lines at Toyota Motor Corporation under the just-in-time (JIT)
production system. One of the most important JIT objectives is to get rid of all kinds of waste and
inefficiency and, according to Toyota, the main waste is due to the stocks. To reduce the stock, JIT
production systems require to producing only the necessary models in the necessary quantities at the
necessary time. To achieve this, one main goal, as Monden says [2], is scheduling the units to be
produced to keep constant consumption rates of the components involved in the production process.
Miltenburg [7] deals with this scheduling problem and he assumes that models require approximately the
same number and mix of parts. Thus, he considers only the demand rates for the models. In our
experience with practitioners of manufacturing industries, we noticed that they usually refer to a good
mixed-model sequence in terms of having distances between the units for the same model as regular as

, Rafael PASTOR
Institute of Industrial and Control Engineering (IOC), Technical University of Catalonia (UPC),

Barcelona, Spain

Abstract. The Response Time Variability Problem (RTVP) is an NP-hard scheduling optimization
problem that has recently appeared in the literature. This problem has a wide range of real-life
applications in, for example, manufacturing, hard real-time systems, operating systems and network
environments. The RTVP occurs whenever models, clients or jobs need to be sequenced to minimize
variability in the time between the instants at which they receive the necessary resources. The RTVP has
been already solved in the literature with a multi-start and a GRASP algorithm. We propose an improved
multi-start and an improved GRASP algorithm to solve the RTVP. The computational experiment shows
that, on average, the results obtained with our proposed algorithms improve on the best obtained results to
date.

Keywords. response time variability, regular sequences, scheduling, multi-start metaheuristic, grasp

Introduction

The Response Time Variability Problem (RTVP) is a scheduling problem that has recently been
formalized in [1]. The RTVP occurs whenever products, clients or jobs need to be sequenced so as to
minimize variability in the time between the instants at which they receive the necessary resources.
Although this optimization problem is easy to formulate, it is very difficult to solve optimally (it is NP-
hard [1]).

The RTVP has a broad range of real-life applications. For example, it can be used to regularly sequencing
models in the automobile industry [2], to allocating resources in computer multi-threaded systems and
network servers [3], to broadcasting video and sound data frames of applications over asynchronous
transfer mode networks [4], in the periodic machine maintenance problem when the distances between
consecutive services of the same machine are equal [5] and in the collection of waste [6].

† Sponsored by the Spanish Ministry of Education and Science’s project DPI2007-61905; co-funded by the FEDER.
* Corresponding author: Alberto García-Villoria, IOC – Institute of Industrial and Control Engineering, Av. Diagonal 647 (Edif.

ETSEIB), 11th floor, 08028 Barcelona, Spain; e-mail: alberto.garcia-villoria@upc.edu

 198

possible. Therefore, the metric used in the RTVP reflects the way in which practitioners refer to a
desirable regular sequence.

In [1], a mixed integer lineal programming (MILP) model to solve the RTVP has been proposed. The
previous MILP model has been improved in [8], but the practical limit to obtain optimal solutions is 40
units to be scheduled. Thus, the use of heuristic or metaheuristic methods for solving real-life RTVP
instances is justified. In [1], five greedy heuristic algorithms have been proposed. Seven metaheuristic
algorithms -one multi-start, one GRASP (Greedy Randomized Adaptive Search Procedure) and four PSO
(Particle Swarm Optimization) algorithms- have been proposed in [9]. Finally, eleven PSO metaheuristic
algorithms were used to solve the RTVP in [10].

The general scheme of the multi-start metaheuristic consists of two phases. In the first phase an initial
solution is generated. Then, the second phase improves the obtained initial solution. These two phases are
iteratively applied until a stop condition is reached. The GRASP metaheuristic can be considered a
variant of the multi-start metaheuristic in with the initial solutions are obtained using direct randomness.
They are generated by means of a greedy strategy in which random steps are added and the choice of the
elements to be included in the solution is adaptive.

This paper is an extension of the work initialized in [9]. The new research done with the PSO
metaheuristic was reported in [10] and the PSO algorithm called DPSOpoi-cpdyn by the authors is the
best algorithm to date for solving the RTVP. In this paper we propose an improved multi-start algorithm
and an improved GRASP algorithm. On average, the proposed algorithms improve strongly on previous
results.

The rest of this paper is organized as follows. Section 1 presents a formal definition of the RTVP. Section
2 explains the existing multi-start and GRASP for solving the RTVP and proposes two new improved
multi-start and GRASP algorithms. Section 3 provides the computational experiment and the comparison
with the best algorithm to solve the RTVP (DPSOpoi-cpdyn) and the existing multi-start and GRASP
algorithms. Finally, some conclusions are given in Section 4.

1. Response Time Variability Problem (RTVP)

The aim of the Response Time Variability Problem (RTVP) is to minimize the variability of the distances
between any two consecutive units of the same model in the sequence.

The RTVP is stated as follows. Let n be the number of models, id the number of units of the model i (i =

1,…,n) to be scheduled and D the total number of units (
1

n

i
i

D d
=

= ∑). Let s be a solution of an instance of

the RTVP. It consists in a circular sequence of units 1 2(...)Ds s s s= , where sj is the unit sequenced in
position j of sequence s. For all model i in which 2id ≥ , let i

kt be the distance between the positions in
which the units k + 1 and k of the model i are found (where the distance between two consecutive
positions is considered equal to 1). Since the sequence is circular, position 1 comes immediately after
position D; therefore,

i

i
dt is the distance between the first unit of the model i in a cycle and the last unit of

the same model in the preceding cycle. Let it be the average distance between two consecutive units of

the model i ()i
i

Dt d= . For all model i in which 1id = , 1
it is equal to it . The objective is to minimize the

metric Response Time Variability (RTV), which is defined by the following

expression: 2

1 1
()

idn
i
k i

i k
RTV t t

= =

= −∑∑ .

For example, let 3n = , 2Ad = , 2Bd = and 4Cd = ; thus, 8D = , 4At = , 4Bt = and 2Ct = . Any
sequence such that contains exactly di times the symbol i ()i∀ is a feasible solution. For example, the
sequence (C, A, C, B, C, B, A, C) is a solution, where

() ()() () ()() () () () ()()2 2 2 2 2 2 2 25 4 3 4 2 4 6 4 2 2 2 2 3 2 1 2 1 2 .RTV = − + − + − + − + − + − + − + − =

 199

As explained in the introduction, the best RTVP results recorded to date were obtained by using a PSO
algorithm called DPSOpoi-cpdyn [10]. PSO is a population metaheuristic algorithm based on the social
behaviour of flocks of birds when they search for food. The population or swarm is composed of particles
(birds), whose attributes are an n-dimensional real point (which represents a feasible solution) and a
velocity (the movement of the point in the n-dimensional real space). The velocity of a particle is
typically a combination of three types of velocities: 1) the inertia velocity (i.e., the previous velocity of
the particle); 2) the velocity to the best point found by the particle; and 3) the velocity to the best point
found by the swarm. These components of the particles are modified iteratively by the algorithm as it
searches for an optimal solution. Although the PSO algorithm was originally designed for n-dimensional
real spaces, DPSOpoi-cpdyn is adapted to work with a sequence that represents the solution. Moreover,
DPSOpoi-cpdyn introduces random modifications to the points of the particles with a frequency that
changes dynamically according to the homogeneity of the swarm (for more details, see [10]).

2. The multi-start and GRASP algorithms

2.1. The multi-start algorithm

The multi-start metaheuristic is a general scheme that consists of two phases. The first phase obtains an
initial solution and the second phase improves the obtained initial solution. These two phases are applied
iteratively until a stop condition is reached. This scheme has been first used at the beginning of 80’s [11].
The generation of the initial solution, how to improve them and the stop condition can be very simple or
very sophisticated. The combination of these elements gives a wide variety of multi-start methods. For a
good review of multi-start methods, see [12] and [13].

The multi-start algorithm proposed in [9] for solving the RTVP is based on generating, at each iteration, a
random initial solution and on improving it by means of a local search procedure. The algorithm stops
after it has run for a preset time. Random solutions are generated as follows. For each position, a model to
be sequenced is randomly chosen. The probability of each model is equal to the number of units of this
model that remain to be sequenced divided by the total number of units that remain to be sequenced. The
local search procedure used is applied as follows. A local search is performed iteratively in a
neighbourhood that is generated by interchanging each pair of two consecutive units of the sequence that
represents the current solution; the best solution in the neighbourhood is chosen; the optimization ends
when no neighbouring solution is better than the current solution.

If the quality of the initial solutions is low, the computing time required by the local search to find the
local optimum is increased. For big RTVP instances, few iterations may be done because of the available
execution time. An easy and fast way to obtain better initial solutions without giving up the simplicity of
the multi-start algorithm could be generating, at each iteration, P random solutions and get as the initial
solution the best of them, that is, applying the local search only for the best solution of the P random
solutions. In this paper we propose a parametric multi-start algorithm to solve the RTVP that has one
parameter: the number of random solutions generated at each iteration (P). Figure 1 shows the
pseudocode of our algorithm.

Figure 1. Pseudocode of the proposed multi-start algorithm

As it has been mentioned, when the execution time of the algorithm is reached, the algorithm is
immediately stopped (that is, the current local optimization is also stopped).

 1. Set the value of the parameter P
 2. Let the best solution found X initially be void
 3. Let the RTV value of the best solution found be Z = ∞
 4. While execution time is not reached do:
 5. Generate P random solutions
 6. Let X the best solution generated at step 5
 7. Apply the local optimization to X and get optX
 8. If ()optRTV X < Z , then optX X= and ()optZ RTV X=
 9. End While

 200

2.2. The GRASP algorithm

The GRASP metaheuristic was designed in 1989 by Feo and Resende [14] and can be considered as a
multi-start variant. However, the generation of the initial solution is performed by means of a greedy
strategy in which random steps are added and the choice of the elements to be included in the solution is
adaptive.

The random step in the GRASP proposed in [9] consists of selecting the next model to be sequenced from
a set called candidate list; the probability of each candidate model is proportional to the value of an
associated index. The index used in [9] is the Webster index, which is evaluated as follows. Let xik be the
number of units of model i that have been already sequenced in the sequence of length k, k = 0, 1, …
(assuming xi0 = 0); the value of the Webster index of model i to be sequenced in position k + 1 is

(0.5)
i

ik

d
x + . The local optimization used is the same as the optimization used in the multi-start

algorithm.

In this paper we propose to use another index that is evaluated as follows. Let xik be the number of units
of model i that have been already sequenced in the sequence of length k, k = 0, 1, … (assuming xi0 = 0), di
the number of units of the model i to be sequenced and D the total number of units to be sequenced; the
value of our index of the model i to be sequenced in position k + 1 is:

(1) i
ik

k d
x

D
+ ⋅

− (1)

If there is a tie, then the models with lower di are first added in the candidate list.

2.3. Fine-tuning of the algorithm parameters

Fine-tuning the parameters of a metaheuristic algorithm is almost always a difficult task. Although the
parameter values are extremely important because the results of the metaheuristic for each problem are
very sensitive to them, the selection of parameter values is commonly justified in one of the following
ways [15]: 1) “by hand” on the basis of a small number of experiments that are not specifically
referenced; 2) by using the general values recommended for a wide range of problems; 3) by using the
values reported to be effective in other similar problems; or 4) by choosing values without any
explanation.

Adenso-Díaz and Laguna [15] proposed a new technique called CALIBRA for fine-tuning the parameters
of heuristic and metaheuristic algorithms. CALIBRA is based on Taguchi’s fractional factorial
experimental designs coupled with a local search procedure.

CALIBRA has been chosen for fine-tuning the parameters of our proposed parametric multi-start
algorithm, our proposed GRASP algorithm and the GRASP algorithm proposed in [9] (the multi-start
algorithm proposed in [9] has not parameters) using a set of 60 representative training instances
(generated as explained in Section 3). The following parameter values are obtained: for the parametric
multi-start algorithm, P = 1,500, and for both GRASP algorithms, size of the candidate list = 3.

The size of the candidate list used in the GRASP algorithm proposed in [9] was 5, but the computational
experiment showed that slightly better results are obtained, on average, using the value returned by
CALIBRA. Thus, the results shown in the next section are referred only to the ones obtained using a size
of the candidate list equal to 3.

3. Computational experiment

Our two proposed algorithms are compared with the PSO algorithm called DPSOpoi-cpdyn [10], which is
the most efficient algorithm published to date to solve non-small RTVP instances. We compare also our
algorithms with the multi-start and the GRASP algorithms proposed in [9] in order to compare the
improvements achieved with the modifications that we have proposed. In what follows in this section, we

 201

refer to the multi-start and GRASP algorithms proposed in [9] as MS-old and GR-old, respectively; and
we refer to our proposed multi-start and GRASP algorithms as MS-new and GR-new, respectively.

The computational experiment was carried out for the same instances used in [9] and [10]. That is, the
algorithms ran 740 instances which were grouped into four classes (185 instances in each class) according
to their size. The instances in the first class (CAT1) were generated using a random value of D (total
number of units) uniformly distributed between 25 and 50, and a random value of n (number of models)
uniformly distributed between 3 and 15; for the second class (CAT2), D was between 50 and 100 and n
between 3 and 30; for the third class (CAT3), D was between 100 and 200 and n between 3 and 65; and
for the fourth class (CAT4), D was between 200 and 500 and n between 3 and 150. For all instances and
for each model i = 1,…,n, a random value of di (number of units of model i) was between 1 and

1
2.5

D n− + such that
1

n

i
i

d D
=

=∑ . All algorithms were coded in Java and the computational experiment

was carried out using a 3.4 GHz Pentium IV with 1.5 GB of RAM.

For each instance, all algorithms were run for 50 seconds. Table 1 shows the averages of the RTV values
to be minimized for the global of 740 instances and for each class of instances (CAT1 to CAT4).

Table 1. Averages of the RTV values for 50 seconds

 MS-new GR-new DPSOpoi-
cpdyn MS-old GR-old

Global 2,106.01 2,308.69 4,625.54 21,390.40 14,168.83

CAT1 11.56 13.00 16.42 12.08 15.47

CAT2 38.02 60.45 51.34 44.36 88.48

CAT3 154.82 270.93 610.34 226.90 510.44

CAT4 8,219.65 8,890.37 17,824.04 85,278.25 56,060.92

For the global of all instances, the results of our multi-start and GRASP algorithm are, on average,
54.47% and 50.09%, respectively, better than DPSOpoi-cpdyn, which was to date the best algorithm to
solve the RTVP. Moreover, MS-new is the best algorithm, on average, for small (CAT1 and CAT2),
medium (CAT3) and big (CAT4) instances. Comparing MS-new with MS-old by class, we can observe in
Table 1 that MS-new is 4.30%, 14.29%, 31.77% and 90.36% better than MS-old for CAT1, CAT2, CAT3
and CAT4 instances, respectively; and GR-new is 15.97%, 31.68%, 46.92% and 84.14% better than GR-
old for CAT1, CAT2, CAT3 and CAT4 instances, respectively. As we expected, the bigger are the
instances, the bigger is the improvement obtained.

To complete the analysis of the results, their dispersion is observed. A measure of the dispersion (let it be
called σ) of the RTV values obtained by each metaheuristic mh (mh = {MS-new, GR-new, DPSOpoi-
cpdyn, MS-old, GR-old}) for a given instance, ins, is defined as follows:

2() ()

()(,)
mh best

ins ins
best

ins

RTV RTV
mh ins

RTV
σ

 −
=  

 
 (2)

where ()mh
insRTV is the RTV value of the solution obtained with the metaheuristic mh for the instance ins,

and ()best
insRTV is, for the instance ins, the best RTV value of the solutions obtained with the four

metaheuristics. Table 2 shows the average σ dispersion for the global of 740 instances and for each class
of instances.

 202

Table 2. Average σ dispersion regarding the best solution found for 50 seconds

 MS-
new

GR-new DPSOpoi-
cpdyn MS-old GR-old

Global 2.55 6,650.83 4,931.36 202,910.13 268,299.58

CAT1 0.08 0.26 0.87 0.21 0.79

CAT2 0.03 1.94 0.56 0.18 6.26

CAT3 0.05 3.07 13.80 0.50 14.18

CAT4 10.06 26,598.04 19,710.23 811,639.64 1,073,177.09

Observing the results in Table 2 by class, we can see that MS-new has always a very small dispersion far
followed by the other algorithms. That means that MS-new has a very stable behaviour independently of
the size of the instances. For small and medium instances (CAT1, CAT2 and CAT3), GR-new has also a
stable behaviour, but for some big instances (CAT4) GR-new obtains very bad RTV values. Note that
although the RTV values of the CAT4 instances obtained with GR-new are, on average, better than the
values obtained with DPSOpoi-cpdyn, the dispersion of DPSOpoi-cpdyn is lower than the dispersion of
GR-new. But comparing the GR-new dispersion with the GR-old dispersion, we can see GR-new has a
much more stable behaviour than GR-old.

A computing time of 50 seconds may not be long enough to converge for the largest instances (CAT4
instances). Table 3 shows the averages of the RTV values for the global of all instances and for each class
of instances (CAT1 to CAT4) obtained when the algorithms are run for 1000 seconds.

Table 3. Averages of the RTV values for 1,000 seconds

 MS-
new

GR-new DPSOpoi-
cpdyn MS-old GR-old

Global 169.25 301.90 1,537.34 1,378.59 1,495.12

CAT1 10.51 11.56 14.34 10.93 13.59

CAT2 31.21 50.45 46.55 35.48 75.08

CAT3 123.27 227.50 143.96 160.67 428.86

CAT4 512.02 918.10 5,944.51 5,307.25 5,462.95

Figure 2. Average of the RTV values obtained over the computing time

With 1,000 seconds of execution time, which seems time enough for the convergence of the five
algorithms (see Figure 2), MS-new is for the global of all instances 43.94%, 88.99%, 87.72% and 88.68%
better than the GR-new, DPSOpoi-cpdyn, MS-old and GR-old, respectively; and GR-new is 80.36%,

 203

78.10% and 79.81% better than DPSOpoi-cpdyn, MS-old and GR-old, respectively. Although DPSOpoi-
cpdyn, MS-old and GR-old improve a lot their average results, MS-new and GR-new are clearly better.

Finally, the real-life industrial example presented in [6] was solved using MS-new, GR-new and
DPSOpoi-cpdyn. This example has the following characteristics: n = 14, d = (2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4,
4, 5, 5) and, therefore, D = 46. The three algorithms were run ten times with an execution time limit of
1,000 seconds. MS-new found the optimal solution in all cases and the minimum, average and maximum
computing times were 3.38, 8.74 and 25.03 seconds, respectively. GR-new found also the optimal
solution in all cases and the minimum, average and maximum computing times were 1.08, 26.53 and
101.86 seconds, respectively. In contrast, DPSOpoi-cpdyn found the optimal solution in only two cases, in
computing times of 593.94 and 960.25 seconds.

4. Conclusions and future research

The RTVP occurs in diverse environments as manufacturing, hard real-time systems, operating systems
and networks environments. In the RTVP, the aim is to minimize variability in the distances between any
two consecutive units of the same model, i.e. to distribute the units as regular as possible. Since it is a NP-
hard scheduling optimization problem, heuristic and metaheuristic methods are needed.

This paper is an extension of the work started in [9], in which one multi-start, one GRASP and four PSO
algorithms were proposed. New PSO algorithms to solve the RTVP have been published in [10]. The best
of them, DPSOpoi-cpdyn, obtains the best results to date. In this paper, an improved multi-start algorithm,
MS-new, and an improved GRASP algorithm, GR-new, are proposed to solve the RTVP.

The computational experiment shows clearly that the proposed algorithms obtain, on average, strongly
better solutions than DPSOpoi-cpdyn independently of the size of the RTVP instance. Moreover, MS-new,
the proposed algorithm that obtains the best solutions, has always a very stable behaviour. Instead, GR-
new and DPSOpoi-cpdyn have not. Therefore, it is advisable to use always MS-new for solving the RTVP.

Although the RTVP is hard to solve, it is interesting to try to solve it by means of exact procedures to
know the largest size of the RTVP instances that can be solved optimally in a practical computing time.
The two exact procedures proposed in the literature are MILP models [1, 8]. Since the use of Constraint
Programming (CP) to solving the RTVP has not been proposed yet in the literature, applying CP to RTVP
seems a promising future line of research.

ACKNOWLEDGEMENTS

The authors wish to express their gratitude to two anonymous reviewers for their valuable comments,
which have improved the quality of this paper.

References

[1] Corominas, A., Kubiak, W. and Moreno, N. (2007) ‘Response time variability’, Journal of

Scheduling, Vol. 10, pp. 97-110.
[2] Monden, Y. (1983) ‘Toyota Production Systems’, Industrial Engineering and Management Press,

Norcross, GA.
[3] Waldspurger, C.A. and Weihl, W.E. (1995) ‘Stride Schedulling: Deterministic Proportional-Share

Resource Management’, Technical Report MIT/LCS/TM-528, Massechusetts Institute of Technology,
MIT Laboratory for Computer Science.

[4] Dong, L., Melhem, R. and Mosse, D. (1998) ‘Time slot allocation for real-time messages with
negotiable distance constrains requirements’, Fourth IEEE Real-Time Technology and Applications
Symposium (RTAS'98), Denver, CO. pp.131-136.

[5] Anily, S., Glass, C.A. and Hassin, R. (1998) ‘The scheduling of maintenance service’, Discrete
Applied Mathematics, Vol. 82, pp.27-42.

[6] Herrmann, J.W. (2007) ‘Generating Cyclic Fair Sequences using Aggregation and Stride
Scheduling’, Technical Report, University of Maryland, USA.

 204

[7] Miltenburg, J. (1989) ‘Level schedules for mixed-model assembly lines in just-in-time production
systems’, Management Science, Vol. 35, No. 2, pp. 192-207.

[8] Corominas, A., Kubiak, W. and Pastor, R. (2006) ‘Solving the Response Time Variability Problem
(RTVP) by means of mathematical programming’, Working paper IOC-DT, Universistat Politècnica
de Catalunya, Spain.

[9] García, A., Pastor, R. and Corominas, A. (2006) ‘Solving the Response Time Variability Problem by
means of metaheuristics, Special Issue of Frontiers in Artificial Intelligence and Applications on
Artificial Intelligence Research and Development, Vol. 146, pp.187-194.

[10] García-Villoria, A. and Pastor, R. (2007) ‘Introducing dynamic diversity into a discrete particle
swarm optimization’, Computers & Operations Research, In Press, Corrected Proof, Avalaible online
7 December 2007, doi:10.1016/j.cor.2007.12.001.

[11] Boender, C.G.E., Rinnooy, A.H.G., Stougie, L. and Timmer, G.T. (1982) ‘A Stochastic Method for
Global Optimization’, Mathematical Programming, Vol. 22, pp.125-140.

[12] Martí, R. (2003), ‘Multi-start methods’, Handbook of Metaheuristics, Glover and Kochenberger
(eds.), Kluwer Academic Publishers, pp.355-368.

[13] Hoos, H. and Stützle, T. (2005) Stochastic local research: foundations and applications, Morgan
Kaufmann Publishers, San Francisco.

[14] Feo, T.A. and Resende, M.G.C. (1989) ‘A probabilistic heuristic for a computationally difficult set
covering problem’, Operations Research Letters, Vol. 8, pp.67-81.

[15] Adenso-Díaz, B. and Laguna, M. (2006) ‘Fine-tuning of algorithms using fractional experimental
designs and local search’, Operations Research, Vol. 54, pp. 99-114.

 205

A Parametric Multi-start Algorithm for Solving the Response Time
Variability Problem

Article published as [Lecture Notes in Computer Science, Volume 5910, 2010, Pages
315-322] © [copyright Springer]

 206

 207

 208

 209

 210

 211

 212

 213

A2.3. Communications to international congresses

Solving the Response Time Variable Problem by means of a Variable
Neighbourhood Search Algorithm

In proceedings of the 13th IFAC Symposium of Information Control Problems in
Manufacturing (INCOM 2009), Moscow, Russia, June 3-5, 2009.

Solving the Response Time Variable Problem by means of a
Variable Neighbourhood Search Algorithm

Corominas, Albert*. García-Villoria, Alberto**.

Pastor, Rafael***

*Institute of Industrial and Control Engineering, Universitat Politècnica de Catalunya,
Spain; e-mail: albert.corominas@upc.edu

**Institute of Industrial and Control Engineering, Universitat Politècnica de Catalunya,
Spain; e-mail: alberto.garcia-villoria@upc.edu

***Institute of Industrial and Control Engineering, Universitat Politècnica de Catalunya,
Spain; e-mail: rafael.pastor@upc.edu

Abstract: The Response Time Variability Problem (RTVP) is a NP-hard
combinatorial scheduling problem which has recently reported and formalised in the
literature. This problem has a wide range of real-world applications in mixed-model
assembly lines, multi-threaded computer systems, network environments and others.
The RTVP arises whenever products, clients or jobs need to be sequenced in such a
way that the variability in the time between the points at which they receive the
necessary resources is minimized. The best results in the literature for the RTVP
were obtained with a psychoclonal algorithm. We propose a Variable
Neighbourhood Search (VNS) algorithm for solving the RTVP. The computational
experiment shows that, on average, the results obtained with the proposed algorithm
improve strongly on the best obtained results to date.

1. INTRODUCTION

The Response Time Variability Problem (RTVP) is a combinatorial scheduling problem that has been
first time reported in Waldspurger and Weihl (1994) and was first time formalised in Corominas et al.
(2007). The RTVP occurs whenever products, clients or jobs need to be sequenced so as to minimize
variability in the time between the instants at which they receive the necessary resources. Although this
combinatorial optimization problem is easy to formulate, it is NP-hard (Corominas et al., 2007).

The RTVP has a broad range of real-life applications. For example, it can be used to regularly sequence
models in the automobile industry (Monden, 1983), to resource allocation in computer multi-threaded
systems and network servers (Waldspurger and Weihl, 1994, 1995), to broadcast video and sound data
frames of applications over asynchronous transfer mode networks (Dong et al., 1998), in the periodic
machine maintenance problem when the distances between consecutive services of the same machine are
equal (Anily et al., 1998) and in the collection of waste (Herrmann, 2007).

One of the first problems in which has appeared the importance of sequencing regularly is at the
sequencing on the mixed-model assembly production lines at Toyota Motor Corporation under the just-in-
time (JIT) production system. One of the most important JIT objectives is to get rid of all kinds of waste
and inefficiency and, according to Toyota, the main waste is due to the stocks. To reduce the stock, JIT
production systems require to producing only the necessary models in the necessary quantities at the

 214

necessary time. To achieve this, one main goal, as Monden (1983) says, is scheduling the units to be
produced to keep constant consumption rates of the components involved in the production process.
Miltenburg (1989) deals with this scheduling problem and assumes that models require approximately the
same number and mix of parts. Thus, only the demand rates for the models are considered. In our
experience with practitioners of manufacturing industries, we noticed that they usually refer to a good
mixed-model sequence in terms of having distances between the units for the same model as regular as
possible. Therefore, the metric used in the RTVP reflects the way in which practitioners refer to a
desirable regular sequence

Corominas et al. (2007) proposed a mixed integer linear programming (MILP) model to solve the RTVP.
Corominas et al. (2009) proposed an improved MILP model and increased the practical limit for
obtaining optimal solutions from 25 to 40 units to be scheduled. Thus, the use of heuristic or
metaheuristic methods for solving real-life instances of the RTVP is justified. Waldspurger and Weihl
(1995) used the Jefferson method of apportionment (Balinski and Young, 1982), a greedy heuristic
algorithm which they renamed as the stride scheduling technique. Herrmann (2007) solved the RTVP by
applying a heuristic algorithm based on the stride scheduling technique. Corominas et al. (2007) proposed
four other greedy heuristic algorithms. García et al. (2006) proposed six metaheuristic algorithms: a
multi-start, a greedy randomized adaptive search procedure (GRASP) and four variants of a discrete
particle swarm optimization (PSO) algorithm. Other ten discrete PSO algorithms were proposed in
García-Villoria and Pastor (2007). A cross-entropy method approach was used in García-Villoria et al.
(2007). The Electromagnetism-like Mechanism (EM) was proposed to solve the RTVP in García-Villoria
and Pastor (2008a). Finally, the best results recorded to date have been obtained with a Psychoclonal
algorithm (García-Villoria and Pastor, 2008b).

To improve the results obtained in prior studies, we propose to use a Variable Neighbourhood Search
(VNS)-based algorithm for solving the RTVP. VNS is a metaheuristic used to solve combinatorial
optimization problems (Mladenović and Hansen, 1997), as it is the RTVP. This metaheuristic is based on
changing systematically the neighbourhood during a local search. The proposed VNS algorithm is
compared with the most efficient procedure for solving non-small instances published in the literature,
which is a psychoclonal algorithm proposed in García-Villoria and Pastor (2008b). On average, the
proposed VNS algorithm improves more than 61% on the best previous results reported in the literature.

The remainder of the paper is organized as follows: Section 2 presents a formal definition of the RTVP
and describes briefly the psychoclonal algorithm used for solving the problem. Section 3 proposes a VNS
algorithm for solving the RTVP. Section 4 presents the computational experiment and the comparison
between our algorithm and the psychoclonal algorithm. Finally, the conclusions are given in Section 5.

2. THE RESPONSE TIME VARIABILITY PROBLEM

The RTVP is designed to minimize variability in the distances between any two consecutive units of the
same model and is formulated as follows. Let n be the number of models, id the number of units of
model i to be scheduled (i = 1,…,n), and D the total number of units (

1.. ii n
D d

=
= ∑). Let s be a solution

of an instance in the RTVP. It consists in a circular sequence of units (1 2 ... Ds s s s=), where sj is the unit
sequenced in position j of sequence s. For each model i in which 2id ≥ , let i

kt be the distance between
the positions in which units k + 1 and k of model i are found. We consider the distance between two
consecutive positions to be equal to 1. Since the sequence is circular, position 1 comes immediately after
position D; therefore,

i

i
dt is the distance between the first unit of model i in a cycle and the last unit of the

same model in the preceding cycle. Let it be the average distance between two consecutive units of
model i (i it D d=). Note that for each model i in which 1id = , 1

it is equal to it . The aim is to minimize
the metric response time variability (RTV) which is defined by the following expression:

()2

1 1
.

idn
i
k i

i k
RTV t t

= =

= −∑∑ (1)

 215

For example, let n = 3, dA = 2, dB = 2 and dC = 4; thus, D = 8, 4At = , 4Bt = and 2Ct = . Any sequence
that contains model i ()i∀ exactly di times is a feasible solution. For example, the sequence (C, A, C, B,
C, B, A, C) is a feasible solution, where:

() ()() () ()() () () () ()()2 2 2 2 2 2 2 25 4 3 4 2 4 6 4 2 2 2 2 3 2 1 2 1 2 .RTV = − + − + − + − + − + − + − + − =

As has been introduced in Section 1, the psychoclonal algorithm proposed in García-Villoria and Pastor
(2008b) is the best procedure to date for solving the RTVP. Psychoclonal is an evolutionary metaheuristic
first time proposed in Tiwari et al. (2005). According to the authors, this metaheuristic inherits its
characteristics from the need hierarchy theory of Maslow (1954) and the clonal selection principle
(Gaspar and Collard, 2000). The basic scheme of the psychoclonal metaheuristic is the following: 1) An
initial population of solutions is generated and a function to evaluate the fitness of a solution is given; 2)
The best solutions are selected and cloned in a number proportional to their fitness; 3) The generated
clones are hypermutated (hypermutation is an operator that modifies the solution with a rate inversely
proportional to the fitness of the solution); 4) A new population is formed by the best clones and by new
solutions generated at random; 5) Steps 2-4 are repeated until a stop condition is reached. This
metaheuristic was adapted to solve the RTVP (for a more detailed explanation, see García-Villoria and
Pastor, 2008b).

3. A VNS ALGORITHM FOR SOLVING THE RTVP

Variable Neighbourhood Search (VNS) is a metaheuristic proposed recently in Mladenović and Hansen
(1997) for combinatorial optimization. The basic idea of VNS is applying a systematic change of
neighbourhood within a local search method (Mladenović and Hansen, 1997). According to the strategies
used in changing neighbourhoods and in selecting the neighbour to be the current solution, several
extensions have been proposed, but most of them keep the simplicity of the basic idea (Mladenović et al.,
2003). VNS is based on the following three simple facts (Hansen and Mladenović, 2003): 1) a local
minimum with respect to one neighbourhood structure is not necessarily so with another, 2) a global
minimum is a local minimum with respect to all possible neighbourhood structures, and 3) It have been
observed empirically that for many problems local minima with respect to one or several neighbourhood
structures are relatively close to each other.

In the basic VNS proposed in (Mladenović and Hansen, 1997) there is a local search step, which can be
costly for large instances of some problems (Hansen and Mladenović, 2003). In Hansen and Mladenović
(1998) is proposed the Reduced VNS (RVNS), in which the local search step is removed. In this paper we
propose a RVNS-based algorithm for solving the RTVP because it is shown in García et al. (2006) that
the local search proposed in their paper for large RTVP instances is very costly. The general scheme of
RVNS is shown in Fig. 1.

Fig. 1. General scheme of RVNS

For the proposed RVNS algorithm, we have selected the following three neighbourhood structures: 1)
interchanging each pair of two consecutive units of the sequence that represents the current solution (N1),
2) interchanging each

pair of consecutive or no-consecutive units of the sequence (N2), and 3) inserting each unit in each
position of the sequence (N3). Note that all local optima with respect N2 are always local optima with

1. Select the set of neighbourhood structures Nk
(k=1..kmax), where kmax is the cardinality of the set

2. Let S an initial solution
3. While stopping condition is not reached do:
4. Set k = 1
5. While k ≤ kmax do:
6. Select a solution S’ at random from Nk(S)
7. If the acceptance criteria is satisfied, then set S

= S’ and set k = 1; otherwise set k = k + 1
8. End While
9. End While
10. Return S

 216

respect N1 because the neighbourhood of a solution S with respect to N1 is a subset of the neighbourhood
of S with respect to N2. Therefore, if there is not a neighbour of S with respect to N2 that is better than S,
there is not either a neighbour of S with respect to N1 better than S. Thus, it seems that the first
neighbourhood is unnecessary according to the aforementioned first and second facts in which are based
VNS. To justify the addition of this neighbourhood, Section 4 will show the benefits of adding N1 to our
RNVS algorithm. The initial RTVP solution is generated as in the psychoclonal algorithm (García-
Villoria and Pastor, 2008b). That is, for each position, a model to be sequenced is randomly chosen. The
probability of each model is equal to the number of units of this model that remain to be sequenced
divided by the total number of units that remain to be sequenced. The stopping condition of the algorithm
is a preset time run. The original acceptance criteria used in Hansen and Mladenović (1998) is that the
neighbour solution S’ was better than the current solution S. But the chosen acceptance criteria for our
algorithm is that the neighbour solution S’ was better than or equal to the current solution S, as it is done
in Tasgetiren et al. (2007). Its aim is to facilitate escaping from local optima.

4. COMPUTATIONAL EXPERIMENT

The psychoclonal algorithm proposed in García-Villoria and Pastor (2008b) is the most efficient
algorithm in the literature for solving non-small RTVP instances. Therefore, we compared the
performance of our proposed RVNS algorithm with that psychoclonal algorithm. In what follows of this
section, we refer to our RVNS algorithm as RVNS(1,2,3) and the psychoclonal algorithm as Psycho. In
order to justify the use of the neighbourhood N1, we run also a RVNS algorithm without this
neighbourhood structure (i.e., only N2 and N3 are used); we refer to this algorithm as RVNS(2,3).

The computational experiment was carried out for the same instances and conditions that were used in
García-Villoria and Pastor (2008b). That is, the algorithms were run for 740 instances which were
grouped into four classes (185 instances in each class) according to size. The instances in the first class
(CAT1) were generated using a random value of D (number of units) distributed uniformly between 25
and 50, and a random value of n (number of models) distributed uniformly between 3 and 15; for the
second class (CAT2), D was between 50 and 100 and n between 3 and 30; for the third class (CAT3), D
was between 100 and 200 and n between 3 and 65; and for the fourth class (CAT4), D was between 200
and 500 and n between 3 and 150. For all instances and for each unit i = 1,…,n, a random value of di
(number of units of model i) was between 1 and ()1 2.5D n− + so that

1.. ii n
d D

=
=∑ . The two

algorithms were coded in Java and the computational experiment was carried out using a 3.4 GHz
Pentium IV with 1.5 GB of RAM.

All algorithms were run for 50 seconds for each instance. Table 1 shows the averages of the RTV values
to be minimized for the total of 740 instances and for each class of instances (CAT1 to CAT4) obtained
with the algorithms.

Table 1. Average RTV values for 50 seconds
 RVNS(1,2,3) RVNS(2,3) Psycho

Total 63.96 86.78 235.68
CAT1 10.73 10.63 14.92
CAT2 23.69 23.23 44.25
CAT3 51.80 53.39 137.07
CAT4 169.64 259.86 746.50

Table 1 shows that our proposed algorithm RVNS(1,2,3) is, on average,72.86% better than the results
obtained using the best method proposed in the literature. Moreover, for each type of class of instances,
the RVNS(1,2,3) algorithm always obtains better results than Psycho: 28.08%, 46.46%, 62.21% and 77.28%
for CAT1, CAT2, CAT3 and CAT4 instances, respectively. We can see that the larger is the RTVP instance
(and, therefore, harder to be solved), better is RVNS(1,2,3) compared with Psycho. Comparing RVNS(1,2,3)
with RVNS(2,3), it is observed in Table 1 that very similar results are obtained for the small and medium
instances (CAT1, CAT2 and CAT3 instances); on the other hand, an improvement of 34.72% is obtained
for the largest instances (CAT4 instances) when the neighbourhood N1 is used.

Table 2 shows the number of times that each algorithm reaches the best RTV value obtained by either
one. The results are shown for the total number of 740 instances and for each class.

 217

Table 2. Number of times that the best solution is reached for 50 seconds
 RVNS(1,2,3) RVNS(2,3) Psycho

Total 587 443 57
CAT1 162 168 51
CAT2 140 144 6
CAT3 124 94 0
CAT4 161 37 0

As expected from the results in Table 1, Table 2 shows that RVNS(1,2,3) reaches the best solution more
times. For the total number of instances, the best solution is obtained in 79.32%, 59.86% and 7.7% of
cases by RVNS(1,2,3), RVNS(2,3) and Psycho, respectively.

To complete the analysis of the results, their dispersion is observed. A measure of the dispersion (let it be
called σ) of the RTV values obtained by each algorithm alg = { RVNS(1,2,3), RVNS(2,3), Psycho } for a
given instance, ins, is defined as follows:

2() ()

()(,)
alg best

ins ins
best

ins

RTV RTValg ins
RTV

σ
 −

=  
 

 (2)

where ()alg

insRTV is the RTV value of the solution obtained with the algorithm alg for the instance ins, and
()best

insRTV is, for the instance ins, the best RTV value of the solutions obtained with the three algorithms.
Table 3 shows the average σ dispersion for the total of 740 instances and for each class of instances. The
low dispersion of the two RVNS algorithms for all classes of instances means that both algorithms have a
very stable behaviour. That is, when an RVNS algorithm does not obtain the best RTV value for a given
instance, it obtains a value that is close to it. Psycho-RTVP has a quite stable behaviour, but its dispersion
is much bigger than the dispersion of the RVNS algorithms because the Psycho performance is worse.

Table 3. Average σ dispersion regarding the best solution found for 50 seconds
 RVNS(1,2,3) RVNS(2,3) Psycho

Total 0.018 0.162 8.059
CAT1 0.030 0.020 1.003
CAT2 0.024 0.009 1.748
CAT3 0.015 0.029 5.442
CAT4 0.004 0.592 24.043

The difference of the results obtained with the three algorithms may be due to that 50 seconds is not time
enough for the convergence of the algorithms for all instances, especially the largest ones. Fig. 2 shows
that 1,000 computing seconds seems long enough for all algorithms to converge.

Fig. 2. Average RTV values over the computing time

 218

Tables 4 and 5 shows the average RTV values and the average σ dispersion, respectively, for the total of
740 instances and for each class of instances obtained for 1,000 seconds.

Table 4. Average RTV values for 1,000 seconds
 RVNS(1,2,3) RVNS(2,3) Psycho

Total 62.24 62.06 161.60
CAT1 10.73 10.63 14.90
CAT2 23.29 23.19 39.90
CAT3 51.40 51.46 122.38
CAT4 163.15 162.95 469.23

Table 5. Average σ dispersion regarding the best solution found for 1,000 seconds
 RVNS RVNS(2,3) Psycho

Total 0.026 0.019 4.100
CAT1 0.030 0.020 0.994
CAT2 0.024 0.008 1.256
CAT3 0.024 0.024 3.984
CAT4 0.026 0.026 10.166

Using 1,000 seconds of computing time, Psycho improves its average RTV value a 31.43% regarding the
values obtained with 50 computing seconds. Nevertheless, RVNS(1,2,3) is still 61.49% better on average
for all instances than Psycho, and 27.99%, 41.63%, 58.00% and 65.23% better for CAT1, CAT2, CAT3
and CAT4 instances, respectively. Moreover, we can see in Table 5 that RVNS(1,2,3) still obtains the best
solutions or solutions very close to the best. Note that 50 seconds is almost enough time for RVNS(1,2,3) to
converge, since it improves, on average, only 2.69% with 1,000 computing seconds.
Comparing RVNS(1,2,3) versus RVNS(2,3) for the total of all instances and for each class of instances, we
can see in Table 4 and 5 that there are not significant differences between the quality of the solutions
obtained with both algorithms. We expected that RVNS(1,2,3) and RVNS(2,3) give similar results when both
algorithms have time to converge. The reason is that the only difference between the two algorithms is
that the neighbourhood structure N1 is not included in RVNS(2,3) but, as it has been explained in Section 3,
all local optima with respect the neighbourhood structure N2 (used in both algorithms) are always local
optima with respect N1, that is, N1 is dominated by N2.

Thus, the great advantage of using N1 in RVNS(1,2,3) is that it helps to the algorithm to converge very fast
without detrimental of its performance. This is very useful for large instances or when little computational
time is available. For example, RVNS(1,2,3) obtains an average RTVP value for the largest instances
(CAT4) with 10 seconds equal to 187.07, whereas the average value obtained with RVNS(2,3) for CAT4
instances with 10 seconds is 550.50. The reason is because, at the beginning of the search, it is easier to
find a neighbour better than the current solution using the neighbourhood structure N1 instead of N2. To
demonstrate that, we run two times the VNS algorithm for 5 seconds for all 185 CAT4 instances. The first
time only N1 was used (RVNS(1)); the second time only N2 was used (RVNS(2)). During the 5 seconds,
RVNS(1) generated, on average, for the total of CAT4 instances 134,112.25 solutions, where 2.67%
(3,578.74), 16.32% (21,881.05) and 81.02% (108,652.46) were better, equal and worse than the current
solution, respectively. On the other hand, RVNS(2) generated, on average, for the total of CAT4 instances
145,364.11 solutions, where 0.42% (604.86), 6.43% (9,343.08) and 93.16% (135,416.17) were better,
equal and worse than the current solution, respectively.

Finally, we compare the MILP model proposed by Corominas et al. (2009) with our RVNS(1,2,3) algorithm
and with the psychoclonal algorithm. Corominas et al. (2009) solved 60 small RTVP instances, with a D
value of between 20 and 40 and a p value of between 3 and 15, with the MILP model. We have repeated
the experiment by setting the maximum execution time at 2,000 seconds and 55 instances were solved
optimally. The results obtained are shown in Table 6.

Table 6. Averages of the RTV values and the execution time (in seconds)

 MILP RVNS(1,2,3) Psychoclonal
RTV 9.86 10.06 10.06 14.49 12.49
Time 188.19 0.1 10 0.1 10

 219

Table 6 shows that RVNS(1,2,3) is able to converge very quickly to near optimal solutions for small
instances. With only 0.1 seconds of computing time, the quality of the solutions obtained with RVNS(1,2,3)
is very close to that obtained with MILP (only 1.99% worse). On the other hand, the psychoclonal
algorithm needs 10 seconds to obtain solutions that are, on average, 21.06% worse than those from MILP.

5. CONCLUSIONS

The Response Time Variability Problem is a scheduling problem that has been acquiring a greater
importance on the mixed-model assembly production lines since Toyota popularized the just-in-time
production system (Monden, 1983; Miltenburg, 1989). RTVP occurs whenever products, clients or jobs
need to be sequenced so as to minimize variability in the time between the instants at which they receive
the necessary resources. Other real-life applications of the RTVP shown in the literature are present in
computer multi-threaded systems and network servers (Waldspurger and Weihl, 1994, 1995; Dong et al.,
1998), in periodic machine maintenances (Anily et al., 1998) and in the collection of waste (Herrmann,
2007).

The computational experiment shows the following two points:

1. A straightforward implementation of an algorithm based on the simple metaheuristic RVNS
improves strongly all the methods published in the literature, including also the algorithms based
on more complex metaheuristics as Particle Swarm Optimization (García et al., 2006; García-
Villoria and Pastor, 2007), Cross-Entropy method (García-Villoria et al., 2007),
Electromagnetism-like Mechanism (García-Villoria and Pastor, 2008a) and Psychoclonal approach
(García-Villoria and Pastor, 2008b).

2. The addition of the dominated neighbourhood structure N1 in our RVNS algorithm makes it to
converge faster to solutions of good quality. This observation may be extended to other problems
and VNS algorithms, in which the addition of dominated neighbourhood structures can help them
to be more efficient.

The VNS metaheuristic is very easy to be hybridized with any another metaheuristic. Since the good
results obtained in the literature (Hansen and Mladenović, 2003), the hybridization of VNS with other
metaheuristics proposed in the literature to solve the RTVP as PSO (García-Villoria and Pastor, 2007),
EM (García-Villoria and Pastor, 2008a) or Psychoclonal (García-Villoria and Pastor, 2008b) seems a
promising future line of research.

ACKNOWLEDGEMENTS

The authors are grateful to the anonymous reviews for his valuable comments which have helped to
enhance this paper. This paper was supported by the Spanish Ministry of Education and Science under
project DPI2007-61905 and co-funded by the European Regional Development Fund (ERDF).

REFERENCES

S. Anily, C.A. Glass and R. Hassin (1998). The scheduling of maintenance service. Discrete Applied
Mathematics, 82, 27-42.

M.L. Balinski, and H.P. Young (1982). Fair Representation. Yale University, USA.
A. Corominas, W. Kubiak and N. Moreno (2007). Response time variability. Journal of Scheduling, 10,

97-110.
A. Corominas, W. Kubiak and R. Pastor (2009). Mathematical Programming Modeling of the Response

Time Variability Problem. European Journal of Operational Research. doi:
10.1016/j.ejor.2009.01.014

L. Dong, R. Melhem and D. Mosse (1998). Time slot allocation for real-time messages with negotiable
distance constrains requirements. Fourth IEEE Real-Time Technology and Applications Symposium,
131-136. Denver.

A. García, R. Pastor and A. Corominas (2006). Solving the Response Time Variability Problem by means
of metaheuristics. Special Issue of Frontiers in Artificial Intelligence and Applications on Artificial
Intelligence Research and Development, 146, 187-194.

A. García-Villoria and R. Pastor (2007). Introducing dynamic diversity into a discrete particle swarm
optimization. Computers & Operations Research, In Press, Corrected Proof, available online,
doi:10.1016/j.cor.2007.12.001.

 220

A. García-Villoria, R. Pastor and A. Corominas (2007). Solving the Response Time Variability Problem
by means of the Cross-Entropy Method. Special Issue on Production Line Systems: Concepts,
Methods and Applications of the International Journal of Manufacturing Technology and
Management, In Press, Corrected Proof, to be published.

A. García-Villoria and R. Pastor (2008a). Solving the Response Time Variability Problem by means of
the Electromagnetism-like Mechanism. Working paper IOC-DT-P-2008-03, Technical University of
Catalonia, Spain.

A. García-Villoria and R. Pastor (2008b). Solving the Response Time Variability Problem by means of a
psychoclonal approach. Journal of Heuristics, In Press, Corrected Proof, available online,
doi:10.1007/s10732-008-9082-2.

A. Gaspar and P. Collard (2000). Two models of immunization for time dependent optimization. In:
Proceeding of the IEEE International Conference on Systems Manufacturing and Cybernetics, 113-
118.

P. Hansen and N. Mladenović (1998). Meta-heuristics, Advances and Trends in Local Search Paradigms
for Optimization, 433-458. Kluwer Academic Publishers.

P. Hansen and N. Mladenović (2003). Handbook of metaheuristics, Chapter 6. Kluwer Academic
Publishers.

J.W. Herrmann (2007). Generating Cyclic Fair Sequences using Aggregation and Stride Scheduling.
Technical Report, University of Maryland. USA.

A.H. Maslow (1954). Motivation and personality. Harper & Bros, USA.
N. Mladenović and P. Hansen (1997). Variable neighbourhood search. Computers & Operations

Research, 24, 1097-1100.
N. Mladenović, J. Petrović, V. Kovačević-Vujčić and M. Čangalović (2003). Solving spread spectrum

radar polyphase code design problem by tabu search and variable neighbourhood search. European
Journal of Operational Research, 151, 389-399.

J. Miltenburg (1989). Level schedules for mixed-model assembly lines in just-in-time production
systems. Management Science, 35, 192-207.

Y. Monden (1983). Toyota Productions Systems. Industrial Engineering and Management Press.
Norcross.

M.F. Tasgetiren, Y-C. Liang, M. Sevkli and G. Gencyilmaz (2007). A particle swarm optimization
algorithm for makespan and total flowtime minimization in the permutation flowshop sequencing
problem. European Journal of Operational Research, 177, 1930-1947.

M.K. Tiwari, A. Prakash, A. Kumar and A.R. Mileham (2005). Determination of an optimal sequence
using the psychoclonal algorithm. ImechE, Part B: Journal of Engineering Manufacture, 219, 137-
149.

C.A. Waldspurger and W.E. Weihl (1995). Stride Scheduling: Deterministic Proportional-Share Resource
Management. Technical Report MIT/LCS/TM-528, Massachusetts Institute of Technology. USA.

C.A. Waldspurger and W.E. Weihl (1994). Lottery Scheduling: Flexible Proportional-Share Resource
Management. First USENIX Symposium on Operating System Design and Implementation.

 221

Using Tabu Search for the Response Time Variability Problem

In proceedings of the 3rd International Conference on Industrial Engineering and
Industrial Management (CIO 2009), Ed. IOS Press, ISBN 1-58603-925-7, Barcelona
and Terrassa, Spain, September 2-4, 2009.

Using Tabu Search for the Response Time Variability Problem∗

1.. ii n d
=∑

Albert Corominas1, Alberto García-Villoria1, Rafael Pastor1
1 Institute of Industrial and Control Engineering (IOC), Universitat Politècnica de Catalunya, Av.
Diagonal, 647, 08028. Barcelona, Spain. albert.corominas@upc.edu, alberto.garcia-villoria@upc.edu,
rafael.pastor@upc.edu

Keywords: response time variability, tabu search, scheduling, regular sequences

1. Introduction

The concept of fair sequence has emerged independently from scheduling problems of
diverse environments. The common aim of these scheduling problems, as defined in
Kubiak (2004), is to build a fair sequence using n symbols, where symbol i (i = 1,...,n)
must occur di times in the sequence. The fair sequence is the one which allocates a fair
share of positions to each symbol i in any subsequence. This fair or ideal share of
positions allocated to symbol i in a subsequence of length k is proportional to the
relative importance (di) of symbol i with respect to the total copies of competing
symbols (equal to). There is no a universal definition of fairness because
several reasonable metrics can be defined according to the specific problem considered.

Among the different definitions of fairness, several fair sequencing problems have
emerged, among them the Response Time Variability Problem (RTVP). This problem
has been first time reported in Waldspurger and Weihl (1994) and originally formalised
in Corominas et al. (2007). In the RTVP, the fair sequence is the one which minimises
the sum of the variability in the distances between any two consecutive copies of the
same symbol. In other words, the distance between any two consecutive copies of the
same symbol should be as regular as possible (ideally constant).

The RTVP arises whenever products, clients or jobs need to be sequenced so as to
minimize variability in the time between the instants at which they receive the necessary
resources (Corominas et al., 2007). This problem has a broad range of real-world
applications. These include, for instance, the sequencing on mixed-model assembly
lines under JIT (Kubiak, 1993; Miltenburg, 1989), the resource allocation in computer
multi-threaded systems such as operating systems, network servers and media-based
applications (Dong et al., 1998; Waldspurger and Weihl, 1995), the periodic machine
maintenance problem when the times between consecutive services of the same
machine are equal (Anily et al., 1998; Wei and Liu, 1983), the collection of waste

∗ Supported by the Spanish Ministry of Education and Science under project DPI2007-61905; co-funded
by the ERDF.

 222

(Herrmann, 2007) and the schedule of commercial videotapes for television
(Bollapragada et al., 2004; Brusco, 2008).

The RTVP is NP-hard (Corominas et al., 2007). Since this problem is a difficult
combinatorial optimisation problem, several heuristic and metaheuristic algorithms has
been proposed in the literature to solve it. Waldspurger and Weihl (1995) used the
Jefferson method of apportionment (Balinski and Young, 1982), a greedy heuristic
algorithm which they renamed as the stride scheduling technique. Herrmann (2007)
solved the RTVP by applying a heuristic algorithm based on the stride scheduling
technique. Corominas et al. (2007) proposed also the Jefferson method together with
other four greedy heuristic algorithms. García et al. (2006) proposed six metaheuristic
algorithms: a multi-start, a greedy randomized adaptive search procedure (GRASP) and
four variants of a discrete particle swarm optimization (PSO) algorithm. An enhanced
multi-start algorithm and an enhanced GRASP algorithm were proposed in Corominas
et al. (2008), and other ten discrete PSO algorithms were proposed in García-Villoria
and Pastor (2009a). A cross-entropy method approach was used in García-Villoria et al.
(2007) and a psychoclonal algorithm was used to solve the RTVP in García-Villoria and
Pastor (2008). Finally, an algorithm based on Electromagnetism-like Mechanism (EM)
was proposed in García-Villoria and Pastor (2009b). The best results recorded to date
have been obtained with the psychoclonal algorithm (García-Villoria and Pastor, 2008)
and the enhanced multi-start algorithm (Corominas et al., 2008).

To date, no tabu search (TS) approach has been proposed to solve the RTVP. In this
study we propose a TS algorithm for the RTVP which improves the best results reported
in the literature.

The remainder of the paper is organized as follows: Section 2 presents a formal
definition of the RTVP and describes briefly the two best algorithms up to now for
solving the problem. Section 3 proposes a TS algorithm to solve the RTVP. Section 4
presents the results of a computational experiment. Finally, some conclusions and
suggestions for future research are given in Section 5.

2. The Response Time Variability Problem

The RTVP is formulated as follows. Let n be the number of symbols, di the number of
copies to be sequenced of symbol i (i = 1,…,n) and D the total number of copies
(1.. ii n d

=∑). Let s be a solution of an instance in the RTVP that consists of a circular

sequence of copies (1 2 Ds s s s= ), where sj is the copy sequenced in position j of

sequence s. For each symbol i in which 2id ≥ , let i
kt be the distance between the

positions in which the copies k + 1 and k of symbol i are found. We consider the
distance between two consecutive positions to be equal to 1. Since the sequence is
circular, position 1 comes immediately after position D; therefore,

i

i
dt is the distance

between the first copy of symbol i in a cycle and the last copy of the same symbol in the
preceding cycle. Let it be the desired average distance between two consecutive copies

of symbol i (i
i

Dt d=). The objective is to minimise the metric called response time

variability (RTV), which is defined by the sum of the square errors with respect to the

 223

it distances. Since the symbols i such that 1id = do not intervene in the computation of

RTV, we assume that for each of these symbols 1
it is equal to it . Thus, RTV is given by

the following expression:

()2

1 1
.

idn
i
k i

i k
RTV t t

= =
= −∑∑ (1)

For example, let 3n = with symbols A, B and C. Also consider 2Ad = , 2Bd = and
4Cd = ; thus, 8D = , 4At = , 4Bt = and 2Ct = . Any sequence such that contains

symbol i (i∀) exactly id times is a feasible solution. For example, the sequence (C, A,
C, B, C, B, A, C) is a feasible solution, and has an

() ()() () ()() () () () ()()2 2 2 2 2 2 2 25 4 3 4 2 4 6 4 2 2 2 2 3 2 1 2RTV = − + − + − + − + − + − + − + −

 = 12.

As it has been introduced in Section 1, the psychoclonal algorithm proposed in García-
Villoria and Pastor (2008) and the multi-start algorithm proposed in Corominas et al.
(2008) are the best procedures to date to solve the RTVP.

Psychoclonal is an evolutionary metaheuristic first time proposed in Tiwari et al.
(2005). According to the authors, this metaheuristic inherits its characteristics from the
need hierarchy theory of Maslow (1954) and the clonal selection principle (Gaspar and
Collard, 2000). The basic scheme of the psychoclonal metaheuristic is the following: 1)
An initial population of solutions is generated and a function to evaluate the fitness of a
solution is given; 2) The best solutions are selected and cloned in a number proportional
to their fitness; 3) The generated clones are hypermutated (hypermutation is an operator
that modifies the solution with a rate inversely proportional to the fitness of the
solution); 4) A new population is formed by the best clones and by new solutions
generated at random; 5) Steps 2-4 are repeated until a stop condition is reached. This
metaheuristic was adapted to solve the RTVP (for a more detailed explanation, see
García-Villoria and Pastor, 2008).

The general scheme of the multi-start metaheuristic consists of two phases. In the first
phase an initial solution is generated. Then, the second phase improves the obtained
initial solution. These two phases are iteratively applied until a stop condition is
reached. Thus, the multi-start algorithm proposed in Corominas et al. (2008) to solve
the RTVP consists of, at each iteration, generating an initial solution by a random
mechanism (first phase) and then applying it a local search (second phase); the stop
condition consists in reaching a given computing time (for a more detailed explanation,
see Corominas et al., 2008)

3. A Tabu Search algorithm to solve the RTVP

Local search methods have the great disadvantage that the local optimum found is often
a fairly mediocre solution (Gendreau, 2003). To overcome this limitation, the Tabu
Search metaheuristic (TS) has been proposed by Glover (1986). TS is based on applying

 224

a local search in which non-improving movements are allowed. To avoid cycling back
to visited solutions, the most recent history of the search is recorded in a tabu list of
tabu (forbidden) solutions. The complete tabu solutions could be recorded in the tabu
list, but this may require a lot of memory, make it expensive to check whether a solution
is tabu or not and, above all, does not diversify sufficiently the search. Thus, it is
common to record only the last moves (transformations) performed on the current
solution and forbidding reverse transformations (Gendreau, 2003). The tabu lists are
usually implemented as a list of fixed length with a FIFO (First In, First Out) policy. A
tabu solution can be overridden if a suitable aspiration criterion is met. The general
scheme of TS is show in Figure 1.

Figure 1. General scheme of TS

We propose an algorithm based on the general scheme of TS to solve the RTVP. The
elements of the proposed TS algorithm are defined as follows:

− Initial solution. A solution is represented by the sequence of the copies of the
symbols to be sequenced. The initial solution is obtained from the best solution returned
by the five heuristics proposed in Corominas et al. (2007).

− Neighbourhood. The neighbourhood of a solution is obtained by swapping each pair
of consecutive or non-consecutive positions of the sequence that represents the solution.

− Tabu moves. A forbidden move of the tabu list consists of two pairs of
position/symbol. For instance, the move [(3, A), (5, B)] means that all solutions with the
symbol A sequenced in position 3 and the symbol B sequenced in position 5 are
considered tabu.

− Aspiration criterion. The aspiration criterion is that the move produces a solution
better than the best solution found in the past.

− Stopping condition. The TS algorithm stops once it has run for a preset time.

The TS algorithm has only one parameter whose value has to be set and it is the size of
the tabu list. Although the parameter values are extremely important because the results
of the metaheuristic for each problem are very sensitive to them, the selection of
parameter values is commonly justified in one of the following ways (Eiben et al., 1999;
Adenso-Díaz and Laguna, 2006): 1) "by hand" on the basis of a small number of
experiments that are not specifically referenced; 2) by using the general values

1. Define the neighbourhood structure N
2. Let S an initial solution and S* := S
3. While stopping condition is not reached do:
4. Let S’ the best solution from N(S) which is non-tabu or allowed by aspiration
5. If S’ is better than S*, then S* := S’
6. Add the current move in the tabu list (removing its last move if the list is full)
7. S := S’
8. End While
9. Return S*

 225

recommended for a wide range of problems; 3) by using the values reported to be
effective in other similar problems; or 4) by choosing values without any explanation.

Adenso-Díaz and Laguna (2006) proposed a new technique called CALIBRA
specifically designed for fine-tuning the parameters of heuristic and metaheuristic
algorithms. CALIBRA was used in García-Villoria and Pastor (2008) and in Corominas
et al. (2008) to set the parameter values of the psychoclonal and the multi-start
algorithms, respectively. We used also CALIBRA to set the size of the tabu list of our
TS algorithm. CALIBRA was applied to a training set. The training set has 60 instances
which were generated as explained in the introduction of Section 4. The optimal value
of the size tabu list returned by CALIBRA was 75.

4. Computational experiment

The psychoclonal and the multi-start algorithms proposed in García-Villoria and Pastor
(2008) and in Corominas et al. (2008), respectively, are the most efficient algorithms in
the literature to solve the RTVP. Therefore, we compare the performance of our
proposed TS algorithm with these two algorithms. In what follows of this section, we
refer to our TS algorithm as TS, the psychoclonal algorithm as Psycho and the multi-
start algorithm as MS.

All algorithms are coded in Java and executed on a 3.4 GHz Pentium IV with 1.5 GB of
RAM. The same 60 training instances and 740 test instances used in García-Villoria and
Pastor (2008) and in Corominas et al. (2008) are also used in this paper. These instances
were grouped into four classes (from CAT1 to CAT4 with 15 training instances and 185
test instances in each class) according to their size. The instances were generated using
the random values of D (total number of copies) and n (number of symbols) shown in
Table 1. For all instances and for each symbol i = 1,…,n, a random value of di (number
of copies to be sequenced of model i) is between 1 and ()1 2.5D n− + such that

1.. ii n
d D

=
=∑ .

Table 1. Uniform distribution for generating the D and n values

 CAT1 CAT2 CAT3 CAT4
D U(25, 50) U(50, 100) U(100, 200) U(200, 500)
n U(3, 15) U(3, 30) U(3, 65) U(3, 150)

The algorithms were run for 50 and 1,000 seconds for each instance. Table 2 and Table
3 shows the overall average RTV values for the 740 test instances and for each class of
instances (CAT1 to CAT4) obtained with the three algorithms, respectively.

Table 2. Average RTV values for a computing time of 50 seconds

 Global CAT1 CAT2 CAT3 CAT4
TS 202.42 10.30 22.40 109.38 667.59
Psycho 235.68 14.92 44.25 137.07 746.50
MS 2,106.01 11.56 38.02 154.82 8,219.65

Table 3. Average RTV values for a computing time of 1,000 seconds

 226

 Global CAT1 CAT2 CAT3 CAT4
TS 113.31 10.24 21.46 106.21 315.33
Psycho 161.60 14.90 39.90 122.38 469.23
MS 169.25 10.51 31.21 123.27 512.02

Tables 2 and 3 shows that the multi-start algorithm converges much slower than the
other two algorithms when big instances (CAT4 instances) are solved (Figure 2 shows
how the algorithms converge during the computing time). Therefore, we analyse the
results obtained by the algorithms after 1,000 seconds of computing time.

The global average RTV values of TS with 1,000 computing time seconds for all test
instances are 29.88% and 33.05% better than the results obtained using Psycho or MS,
respectively. If we consider the results by class, we can see that MS performs better than
Psycho for the two smallest instances (CAT1 and CAT2), both performs very similar for
the medium instances (CAT3) and Psycho performs better than MS for the biggest
instances (CAT4). On the other hand, TS performs better than the other two algorithms
for all type of instance: TS is 2.57% and 31.24% better than MS for CAT1 and CAT2
instances, respectively, and 13.21% and 32.80% better than Psycho for CAT3 and CAT4
instances, respectively.

Figure 2. Average RTV values over the computing time

Table 4 shows the number of times that each algorithm reaches the best RTV value for
each instance obtained using the three algorithms. The results are shown for the 740
instances overall and for each class of instance.

As could be expected from the results in Table 3, Table 4 shows that TS reaches the best
solution the greatest number of times (in 79.32% of the instances overall). Moreover, if
the results are observed by class, it can be seen that TS always obtains the best solution
for CAT1 and CAT2 instances. On the other hand, MS obtains more times the best
solution than Psycho, even for the CAT4 instances. This is surprising since MS obtains a
worst RTV values average for CAT4 instances than Psycho.

 227

Table 4. Number of times that the best solution is reached

 Global CAT1 CAT2 CAT3 CAT4
TS 587 185 185 113 104
Psycho 104 52 7 37 8
MS 305 164 18 48 75

To complete the analysis of the results, we examined the dispersion of the results. A
measure of the dispersion (let it be called σ) of the RTV values obtained by each
algorithm alg = {TS, Psycho, MS} is defined for a given instance, ins, according to the
following expression:

2() ()

()(,)
alg best

ins ins
best

ins

RTV RTValg ins
RTV

σ
 −

=   
 

 (2)

where ()alg

insRTV is the RTV value of the solution obtained with the algorithm alg for the

instance ins, and ()best
insRTV is the best RTV value of the solutions obtained with the

three algorithms for the instance ins. Table 5 shows the average σ dispersion for the
total number of instances and for each class.

Table 5. Average σ dispersion with respect to the best solution found

 Global CAT1 CAT2 CAT3 CAT4
TS 0.42 0.00 0.00 0.21 1.18
Psycho 1.90 1.08 1.68 0.19 4.63
MS 0.48 0.02 0.43 0.19 1.30

Table 5 shows that TS has the lowest average σ dispersions for the total number of cases
and for each instance class (except for CAT3, in which it is also low but slightly worse
than the dispersions of the other two algorithms). That is, when TS does not obtain the
best RTV value for a given instance, it obtains a value that is very close to it. MS has
also a low dispersion for each instance class. On the other hand, Psycho has a quite
worst dispersion for CAT4 instances than MS, although the RTV average obtained by
Psycho for the CAT4 instances is better than the RTV average obtained by MS. This
means that although Psycho obtains a better performance, on average, for the CAT4
instances, the MS is a more robust algorithm than Psycho. Anyway, the TS algorithm
that we propose is the one that obtains, on average, the better solutions and the one that
has the most stable behaviour.

5. Conclusions and future lines of research

The RTVP is a scheduling problem which has a broad range of real-world applications.
Since the RTVP is NP-hard, several heuristic and metaheuristics have been proposed to
solve it. Among them, the two algorithms with which the best results have been
achieved are the psychoclonal algorithm proposed in García-Villoria and Pastor (2008)

 228

and the multi-start algorithm proposed in Corominas et al. (2008). We propose a straight
application of the TS metaheuristics to solve the RTVP. The computational experiment
shows that the proposed TS algorithm improves by far the best results published in the
literature. Moreover, the TS algorithm is very stable; that is, when it does not obtain the
best RTV value for a given instance, it obtains a value that is very close to it.

The definition of the neighbourhood structure is a very critical decision in the design of
any TS algorithm (Gendreau et al., 2003). In this study we propose to generate the
neighbourhood of a solution by swapping each pair of consecutive or non-consecutive
positions of the solution sequence. Because of the good performance of the TS
algorithm, a promising line of research is testing other neighbourhood structures in the
proposed algorithm to solve the RTVP. Other candidate ways of generating the
neighbourhood of a solution are, for example: 1) by swapping each pair of only
consecutive positions of the sequence, and 2) by inserting each position in the sequence.

References

Adenso-Díaz, B., Laguna, M. (2006). Fine-tuning of algorithms using fractional
experimental designs and local search. Operations Research, Vol. 54, pp. 99-114.

Anily, S., Glass, C.A., Hassin, R. (1998). The scheduling of maintenance service.
Discrete Applied Mathematics, Vol. 82, pp. 27-42.

Balinski, M.L. and Young, H.P. (1982). Fair Representation: meeting the ideal of one
man, one vote. Yale University Press, New Haven CT.

Bollapragada, S., Bussieck, M.R., Mallik, S. (2004). Scheduling Commercial
Videotapes in Broadcast Television. Operations Research, Vol. 52, pp. 679-689.

Brusco, M.J. (2008). Scheduling advertising slots for television. Journal of the
Operational Research Society, Vol. 59, pp. 1363-1372.

Corominas, A., Kubiak, W., Moreno, N. (2007). Response time variability. Journal of
Scheduling, Vol. 10, pp. 97-110.

Corominas, A., García-Villoria, A., Pastor, R. (2008). Solving the Response Time
Variability Problem by means of Multi-start and GRASP metaheuristics. Special Issue
of Frontiers in Artificial Intelligence and Applications on Artificial Intelligence
Research and Development, Vol. 184, pp. 128-137.

Dong, L., Melhem, R., Mosse, D. (1998). Time slot allocation for real-time messages
with negotiable distance constrains requirements. Fourth IEEE Real-Time Technology
and Applications Symposium (RTAS'98), Denver, CO. pp. 131-136.

Eiben, A.E., Hinterding, R., Michalewicz, Z. (1999). Parameter control in evolutionary
algorithms. IEEE Transactions on evolutionary computation, Vol. 3, pp. 124-141.

 229

García, A., Pastor, R., Corominas, A. (2006). Solving the Response Time Variability
Problem by means of metaheuristics. Special Issue of Frontiers in Artificial Intelligence
and Applications on Artificial Intelligence Research and Development, Vol. 146,
pp.187-194.

García-Villoria, A., Pastor, R., Corominas, A. (2007). Solving the Response Time
Variability Problem by means of the Cross-Entropy Method. Special Issue on
Production Line Systems: Concepts, Methods and Applications of the International
Journal of Manufacturing Technology and Management, to be published.

García-Villoria, A., Pastor, R. (2008). Solving the Response Time Variability Problem
by means of a psychoclonal approach. Journal of Heuristics, doi:10.1007/s10732-008-
9082-2.

García-Villoria, A., Pastor, R. (2009a). Introducing dynamic diversity into a discrete
particle swarm optimization. Computers & Operations Research, Vol. 36, pp. 951-966.

García-Villoria, A., Pastor, R. (2009b). Solving the Response Time Variability Problem
by means of the Electromagnetism-like Mechanism. International Journal of Production
Research, doi: 10.1080/00207540902862545.

Gaspar, A., Collard, P. (2000). Two models of immunization for time dependent
optimization. IEEE International Conference on Systems Manufacturing and
Cybernetics, pp. 113-118.

Gendreau, M. (2003). An Introduction to Tabu Search. Chapter 2 in Handbook of
Metaheuristics, Eds. Glover and Kochenberger, Kluwer Academic Publishers, pp. 37-
54.

Glover, F., (1986). Future paths for Integer Programming and Links to Artificial
Intelligence. Computers and Operations Research, Vol. 5, pp. 533-549.
Herrmann, J.W. (2007). Generating Cyclic Fair Sequences using Aggregation and
Stride Scheduling. Technical Report TR 2007-12, University of Maryland, USA.
Available at http://hdl.handle.net/1903/7082.

Kubiak, W. (1993). Minimizing variation of production rates in just-in-time systems: A
survey. European Journal of Operational Research, Vol. 66, pp. 259-271.

Kubiak, W. (2004). Fair Sequences. Chapter 19 in Handbook of Scheduling:
Algorithms, Models and Performance Analysis, Chapman and Hall.

Maslow, A.H. (1954). Motivation and personality. New York: Harper & Bros.

Miltenburg, J. (1989). Level schedules for mixed-model assembly lines in just-in-time
production systems. Management Science, Vol. 35, pp. 192-207.

Tiwari, M.K., Prakash, A., Kumar, A., Mileham, A.R. (2005). Determination of an
optimal sequence using the psychoclonal algorithm. ImechE, Part B: Journal of
Engineering Manufacture, Vol. 219, pp. 137-149.

 230

Waldspurger, C.A., Weihl, W.E. (1994). Lottery Scheduling: Flexible Proportional-
Share Resource Management. First USENIX Symposium on Operating System Design
and Implementation.

Waldspurger, C.A., Weihl, W.E. (1995). Stride Scheduling: Deterministic Proportional-
Share Resource Management. Technical Report MIT/LCS/TM-528, Massachusetts
Institute of Technology, MIT Laboratory for Computer Science. Available at
https://eprints.kfupm.edu.sa/67117.

Wei, W.D., Liu, C.L. (1983). On a periodic maintenance problem. Operations Research
Letters, Vol. 2, pp. 90-93.

 231

Resolución del response time variability problem mediante tabu
search

In proceedings of the VIII International Event of Mathematics and Computation
(COMAT’2009) of the IV International Scientific Convention of the Universidad de
Matanzas (CIUM’09), Universidad de Matanzas, Cuba, June 16-18, 2009.

RESOLUCIÓN DEL RESPONSE TIME VARIABILITY PROBLEM
MEDIANTE TABU SEARCH*

* Investigación subvencionada por el Ministerio de Educación y Ciencia de España, proyecto
DPI2007-61905, cofinanciado por FEDER.

Dr. Albert Corominas, Ing. Alberto García-Villoria y Dr. Rafael Pastor
Profesor Catedrático, Ayudante y Titular, respectivamente

Instituto de Organización y Control de Sistemas Industriales (IOC).
Universidad Politécnica de Cataluña (UPC).

Av. Diagonal, 647, 08028. Barcelona.
{albert.corominas/alberto.garcia-villoria/rafael.pastor@upc.edu}

Resumen

El Response Time Variability Problem (RTVP) es un problema combinatorio de
scheduling publicado recientemente en la literatura. Dicho problema de
optimización combinatoria es muy fácil de formular pero muy difícil de resolver
de forma exacta (es NP-hard). El RTVP se presenta cuando productos, clientes
o tareas se han de secuenciar minimizando la variabilidad entre los instantes
de tiempo en los que reciben los recursos que ellos necesitan. Este problema
tiene una gran cantidad de aplicaciones reales: secuenciación de modelos en
líneas de montaje mixtas, asignación de recursos a sistemas
multiprocesadores, mantenimiento continuo, recogida de basuras o la
secuenciación de anuncios en televisión. La Inteligencia Artificial dispone de
herramientas eficientes, tales como las metaheurísticas, para resolver
problemas combinatorios de scheduling complejos. En trabajos previos, el
RTVP ha sido resuelto mediantes varios algoritmos metaheurísticos
provenientes de la Inteligencia Artificial (entre otros, las metaheurísticas multi-
start, PSO y GRASP). En este trabajo se propone un algoritmo de búsqueda
tabu (tabu seach), el cual mejora los mejores resultados referenciados en la
literatura.

Palabras clave: response time variability, metaheurísticas, tabu search,
scheduling

 232

SOLVING THE RESPONSE TIME VARIABILITY PROBLEM
BY MEANS OF A TABU SEARCH APPROACH

1.. ii n d
=∑

Abstract

The Response Time Variability Problem (RTVP) is a combinatorial scheduling
problem that has recently appeared in the literature. Although this combinatorial
optimisation problem is easy to formulate, it is very difficult to solve (it is NP-
hard).The RTVP occurs whenever products, clients or jobs need to be
sequenced so as to minimize variability in the time between the instants at
which they receive the necessary resources. This problem has a broad range of
real-world applications: to sequence on mixed-model assembly lines, to
resource allocation in computer multi-threaded systems, in the periodic machine
maintenance problem, in the collection of waste and in the schedule of
commercial videotapes for television. The field of Artificial Intelligence has
provided us with efficient tools such as metaheuristic techniques for solving
complex combinatorial scheduling problems. In previous studies, several
metaheuristic algorithms (among others, a multi-start, a PSO and a GRASP
algorithm) were proposed to solve the RTVP. In this study we propose a tabu
search algorithm for the RTVP which improves the best results reported in the
literature.

Keywords: response time variability, metaheuristics, tabu search, scheduling

1. Introducción

El concepto de secuencia fair (secuencia justa, imparcial, buena, ideal, regular)
ha surgido de forma independiente en problemas de scheduling de diversos
entornos. El objetivo común de ese tipo de problemas de scheduling, como es
definido en Kubiak (2004), consiste en construir una secuencia fair utilizando n
símbolos, de forma que el símbolo i (i = 1,...,n) se presente di veces en la
secuencia. Una secuencia fair es aquella que asigna, repartiendo de forma fair,
las posiciones a cada símbolo i en cualquier subsecuencia. Este reparto fair o
ideal de posiciones asignadas al símbolo i en una subsecuencia de longitud k
es proporcional a la importancia relativa del símbolo i (di) respecto al total de
copias de los diferentes símbolos a repartir (que, obviamente, es igual a

). No existe una definición universal de fairness, ya que se pueden
definir diversas métricas razonables en función del problema específico que se
está considerando.

Considerando las diferentes definiciones de fairness, varios problemas de
secuenciación fair han sido propuestos en la literatura, entre ellos el Response
Time Variability Problem (RTVP). Este problema fue expuesto por primera vez
en Waldspurger and Weihl (1994) y formalizado en Corominas et al. (2007). En
el RTVP, la secuencia fair es aquella que minimiza la suma de la variabilidad

 Supported by the Spanish Ministry of Education and Science under project DPI2007-61905;
co-funded by the ERDF.

 233

de las distancias entre cualquier pareja de copias consecutivas de un mismo
símbolo. En otras palabras, la distancia entre cualquier pareja de copias
consecutivas de un mismo símbolo debería ser tan regular como sea posible
(e, idealmente, constante).

El RTVP se presenta cuando productos, clientes o tareas se han de secuenciar
minimizando la variabilidad entre los instantes de tiempo en los que reciben los
recursos que ellos necesitan (Corominas et al., 2007). Este problema tiene una
gran cantidad de aplicaciones reales: la secuenciación de modelos en líneas de
montaje mixtas (Kubiak, 1993; Miltenburg, 1989); la asignación de recursos en
sistemas multiprocesadores, tales como los servidores de redes o las
aplicaciones de transmisión de videos (Dong et al., 1998; Waldspurger and
Weihl, 1995); el mantenimiento continuo, cuando el tiempo entre servicios
consecutivos en una misma máquina debe ser el mismo (Anily et al., 1998; Wei
and Liu, 1983); la recogida de basuras (Herrmann, 2007); o la secuenciación de
anuncios en prensa o televisión (Bollapragada et al., 2004; Brusco, 2008).

El RTVP es un problema NP-hard (Corominas et al., 2007). Debido a que es un
problema de optimización combinatoria difícil de resolver de forma óptima, en la
literatura se han propuesto para su resolución diversos procedimientos
heurísticos y metaheurísticos. Waldspurger and Weihl (1995) utilizan el método
de distribución de escaños de Jefferson (Balinski and Young, 1982), un
algoritmo heurístico greedy que ellos denominan como la técnica stride
scheduling. Herrmann (2007) resuelve el RTVP aplicando un algoritmo
heurístico basado en la técnica stride scheduling. Corominas et al. (2007)
también proponen el método de Jefferson junto a otros cuatro algoritmos
heurísticos. García et al. (2006) diseñan seis algoritmos metaheurísticos: un
multi-start, un greedy randomized adaptive search procedure (GRASP) y cuatro
variantes de un algoritmo basado en el particle swarm optimization (PSO)
discreto. Un algoritmo multi-start mejorado, así como un nuevo algoritmo
GRASP, también mejorado, son propuestos en Corominas et al. (2008); y otros
diez algoritmos PSO discretos son propuestos en García-Villoria and Pastor
(2009a). Un procedimiento cross-entropy es utilizado en García-Villoria et al.
(2007). Un algoritmo basado en Electromagnetism-like Mechanism (EM) es
propuesto en García-Villoria and Pastor (2009b). Finalmente, un algoritmo
Psychoclonal es utilizado para resolver el RTVP en García-Villoria and Pastor
(2008). Los mejores resultados reportados en la literatura hasta el momento se
han conseguido con el algoritmo psychoclonal (García-Villoria and Pastor,
2008) y el algoritmo multi-start mejorado (Corominas et al., 2008).

Hasta la fecha, ningún algoritmo tabu search (TS) ha sido propuesto para
resolver el RTVP. En este trabajo se propone un algoritmo TS para el RTVP
que mejora los mejores resultados publicados hasta el momento en la
literatura.

El resto del artículo está organizado como sigue: la Sección 2 presenta una
definición formal del RTVP y describe, brevemente, los dos mejores
procedimientos metaheurísticos publicados hasta el momento para resolver el
problema de estudio; la Sección 3 propone un algoritmo TS para resolver el
RTVP; la Sección 4 presenta el resultado del experimento computacional

 234

realizado; finalmente, varias conclusiones y sugerencias de trabajo futuro son
expuestas en la Sección 5.

2. El Response Time Variability Problem

El RTVP puede ser formulado como sigue. Sea n el número de símbolos, di el
número de copias a ser secuenciadas del símbolo i (i = 1,…,n) y D en número
total de copias a secuenciar (1.. ii n d

=∑). Sea s una solución de un ejemplar del

RTVP, que consiste en una secuencia circular de copias (1 2 Ds s s s= ), donde
sj es la copia secuenciada en la posición j de la secuencia s. Para cada símbolo
i con 2id ≥ , sea i

kt la distancia entre las posiciones en las que se encuentran
las copias k + 1 y k del símbolo i (considerando que la distancia entre dos
posiciones consecutivas de la secuencia es igual a 1). Como se ha introducido,
la secuencia es circular, de esta forma la posición 1 viene inmediatamente
después de la posición D, y

i

i
dt es la distancia entre la primera copia del

símbolo i en un ciclo y la última copia de ese mismo símbolo en el ciclo
precedente. Sea it la distancia media deseada entre dos copias consecutivas

del símbolo i (i
i

Dt d=). El objetivo es minimizar la métrica llamada response

time variability (RTV), que se define como la suma de los cuadrados de los
errores respecto a las distancias it . Como los símbolos i con 1id = no
intervienen en el cálculo del RTV, se asume que para cada uno de esos
símbolo 1

it es igual a it . De esta forma, el RTV se obtiene con la expresión

()2

1 1
.

idn
i
k i

i k
RTV t t

= =
= −∑∑

Por ejemplo, sea 3n = y los símbolos A, B y C; considérese, adicionalmente,
que 2Ad = , 2Bd = y 4Cd = ; así, 8D = , 4At = , 4Bt = y 2Ct = . Cualquier
secuencia que contenga el símbolo i (i∀) exactamente id veces es una
solución factible. Por ejemplo, la secuencia (C, A, C, B, C, B, A, C) es una
solución factible con el siguiente valor:

() ()() () ()() () () () ()()2 2 2 2 2 2 2 25 4 3 4 2 4 6 4 2 2 2 2 3 2 1 2 1 2 .RTV = − + − + − + − + − + − + − + − =

Como se ha introducido en la Sección 1, el algoritmo psychoclonal propuesto
en García-Villoria and Pastor (2008) y el procedimiento multi-start presentado
en Corominas et al. (2008) son los mejores procedimientos publicados hasta la
fecha para resolver el RTVP.

El procedimiento psychoclonal es una metaheurística evolutiva propuesta por
primera vez en Tiwari et al. (2005). De acuerdo con los autores, esta
metaheurística obtiene sus fundamentos de la teoría de las necesidades
jerárquicas de Maslow (1954) y del principio de selección por clonación
(Gaspar and Collard, 2000). El esquema básico de la metaheurística

 235

psychoclonal es el siguiente: 1) Se genera una población inicial de soluciones y
se dispone de una función que evalúa el fitness (la adecuación) de cualquier
solución; 2) Las mejores soluciones son seleccionadas y clonadas un número
de veces que es proporcional a su propio fitness; 3) Los clones generados son
hipermutados (la hipermutación es un operador que modifica la solución con un
ratio inversamente proporcional a su fitness); 4) Se forma una nueva población
seleccionando los mejores clones e incorporando nuevas soluciones generadas
de forma aleatoria; 5) Se repiten las etapas 2 a 4 hasta que se cumple un
criterio de parada. Esta metaheurística fue adaptada y probada en la resolución
del RTVP (para un mayor detalle, se recomienda García-Villoria and Pastor,
2008).

El esquema general de la metaheurística multi-start consta de dos fases. En la
primera fase se genera una solución inicial, la cual es mejorada en la segunda
fase del procedimiento. Dichas dos fases se aplican de forma iterativa hasta
que se cumple un criterio de parada. En el algoritmo multi-start propuesto en
Corominas et al. (2008) para resolver el RTVP, la generación de la solución
inicial se realiza de forma alteatoria y la fase de mejora con un procedimiento
de optimización local; por otro lado, el criterio de parada consiste en alcanzar
un tiempo de computación preestablecido (para un mayor detalle, se
recomienda Corominas et al., 2008).

3. Un algoritmo Tabu Search para resolver el RTVP

Los métodos de búsqueda local presentan la gran desventaja que una vez se
alcanza el óptimo local, éste suele ser una solución mediocre (Gendreau, 2003)
y, además, el método finaliza la búsqueda y no permite evolucionar a nuevos
óptimos locales. Para superar estas limitaciones, Glover (1986) propone la
metaheurística Tabu Search (TS). TS se basa en aplicar una búsqueda local en
la cual se permiten movimientos de no- mejora (es decir, que proporcionan
soluciones con un valor peor que el valor de la solución de partida). Para evitar
que el procedimiento entre en un ciclo infinito entre soluciones ya generadas, la
historia más reciente de la búsqueda es guardada en una lista de soluciones
tabu (prohibidas). En la lista tabu se podrían guardar las soluciones tabú
completas (toda la secuencia que, en el RTVP, las identifica), pero esta
estrategia podría necesitar mucha memoria de ordenador, podría hacer lento el
comprobar si una solución es o no tabu y, sobretodo, podría no diversificar
suficientemente la búsqueda. De esta forma, es común guardar únicamente los
últimos movimientos (transformaciones) realizados en la solución de partida y
prohibir las transformaciones inversas que, nuevamente, llevarían a
(generarían) la solución de partida (Gendreau, 2003). La lista tabu usualmente
es implementada como una lista de longitud fija con una política FIFO (First In,
First Out). Una solución tabu puede ser utilizada (es decir, se cancela la
prohibición de ser considerada) si satisface un criterio de aspiración (que,
habitualmente, suele ser que proporcione un valor de la función de evaluación
mejor que el valor de la mejor solución generada hasta el momento en todo el
proceso de búsqueda). La Figura 1 muestra el esquema general del
procedimiento TS.

 236

Figura 1. Esquema general del procedimiento TS

En este trabajo se propone un algoritmo basado en el esquema anterior de TS
para resolver el RTVP. A continuación se especifican los elementos del TS
propuesto:

− Solución inicial. Una solución es representada por la secuencia de copias

de los símbolos a ser secuenciados. Se toma como solución inicial la mejor
de las proporcionadas por los cinco procedimientos heurísticos propuestos
en Corominas et al. (2007).

− Vecindario. El vecindario de una solución se obtiene insertando el símbolo

asignado a cada posición entre el resto de posiciones de la secuencia que
representa a dicha solución.

− Movimientos tabu. Un movimiento prohibido de la lista tabu consiste en una

pareja “posición/símbolo”. Por ejemplo, el movimiento (3, A) significa que
se consideran tabu todas las soluciones con el símbolo A secuenciado en
la posición 3 de la secuencia.

− Criterio de aspiración. El criterio de aspiración consiste en que el

movimiento proporcione una solución que sea mejor que la mejor solución
generada hasta el momento en todo el proceso de búsqueda.

− Condición de parada. El algoritmo TS finaliza la búsqueda cuando se

alcanza un tiempo de computación preestablecido (como en los algoritmos
psychoclonal y multi-start propuestos en García-Villoria and Pastor (2008) y
Corominas et al. (2008), respectivamente).

El algoritmo TS presenta un único parámetro cuyo valor ha de ser fijado de
partida: el tamaño de la lista tabu. Aunque el valor de este tipo de parámetros
es extremadamente importante, ya que los resultados de las metaheurísticas
para cada problema son muy sensibles a ellos, la decisión de cómo
determinarlos es comúnmente justificada de una de las siguiente maneras
(Eiben et al., 1999; Adenso-Díaz and Laguna, 2006): 1) "a mano", en base a un
pequeño número de experimentos que no son específicamente referenciados;
2) utilizando valores generales, recomendados para un amplio rango de
diferentes tipos de problemas; 3) utilizando los valores que han sido efectivos
en otros problema similares; o 4) seleccionando dichos valores sin ninguna
explicación.

Sea S una solución inicial
Definir la estructura de vecindario N
Mientras no se cumpla la condición de parada hacer:
 Sea S’ la mejor solución de N que cumple el criterio de aspiración o no tabu
 Si S’ es mejor que la mejor generada hasta el momento S*, hacer S* := S’
 Hacer S := S’
 Añadir el movimiento actual a la lista tabu (y, tal vez, borrar el último)
Fin mientras
Devolver S*

 237

Adenso-Díaz and Laguna (2006) proponen una nueva técnica, llamada
CALIBRA, diseñada específicamente para ajustar el valor de los parámetros de
algoritmos heurísticos y metaheurísticos. CALIBRA es utilizada en García-
Villoria and Pastor (2008) y en Corominas et al. (2008) para determinar los
valores de los parámetros de los algoritmos psychoclonal y multi-start,
respectivamente. En este trabajo también se ha utilizado CALIBRA para decidir
el valor de la lista tabu del algoritmo TS propuesto: CALIBRA fija el valor de la
lista tabu en 38.

4. Experimento computacional

Los algoritmos psychoclonal y multi-start, propuestos en García-Villoria and
Pastor (2008) y en Corominas et al. (2008), son los algoritmos más eficientes
publicados en la literatura hasta el momento para resolver el RTVP. De esta
forma, se compara la calidad del algoritmo TS propuesto con la de dichos dos
algoritmos. En lo que resta de esta sección, el algoritmo TS será referido como
TS, el algoritmo psychoclonal como Psycho y el algoritmo multi-start como MS.

Los tres algoritmos han sido codificados en Java y han sido ejecutados en un
ordenador Pentium IV de 3.4 GHz con 1.5 GB de memoria RAM. En este
trabajo se utilizan los mimos 60 ejemplares de entrenamiento y los 740
ejemplares de prueba que son utilizados en García-Villoria and Pastor (2008) y
Corominas et al. (2008). Los 60 ejemplares de entrenamiento son utilizados por
CALIBRA para fijar el valor de los parámetros de los algoritmos. Todos los
ejemplares pueden ser agrupados en cuatro clases (de la CAT1 a la CAT4, con
15 ejemplares de entrenamiento y 185 de prueba en cada clase) de acuerdo a
su tamaño. Los ejemplares fueron generados utilizando las distribuciones
uniformes mostradas en la Tabla 1 para generar, de forma aleatoria, los valores
de D (número total de copias) y n (número de símbolos). Para todos los
ejemplares y para cada símbolo i = 1,…,n, se generó un valor aleatorio de di
(número de copias del símbolo i a ser secuenciadas) entre 1 y ()1 2.5D n− + ,

cumpliendo, obviamente, que
1.. ii n

d D
=

=∑ .

 CAT1 CAT2 CAT3 CAT4
D U(25, 50) U(50, 100) U(100, 200) U(200, 500)
n U(3, 15) U(3, 30) U(3, 65) U(3, 150)

Tabla 1. Distribución uniforme para generar los valores de D y de n

Los tres algoritmos fueron ejecutados, para cada ejemplar, durante 50 y 1000
segundos. Las Tablas 2 y 3 muestran los valores promedio del RTV, obtenidos
con cada uno de los tres algoritmos, para el total de los 740 ejemplares de
prueba (Global) y para cada clase de ejemplares (CAT1 a CAT4)

 238

 Global CAT1 CAT2 CAT3 CAT4
TS 210.47 10.26 22.56 73.26 735.78
Psycho 235.68 14.92 44.25 137.07 746.50
MS 2106.01 11.56 38.02 154.82 8219.65

Tabla 2. Valor promedio del RTV con 50 segundos de tiempo de computación

 Global CAT1 CAT2 CAT3 CAT4
TS 78.62 10.24 21.16 48.12 234.96
Psycho 161.60 14.90 39.90 122.38 469.23
MS 169.25 10.51 31.21 123.27 512.02

Tabla 3. Valor promedio del RTV con 1000 segundos de tiempo de computación

Las Tablas 2 y 3 muestran que el algoritmo multi-start converge más
lentamente que los otros dos algoritmos, en global y cuando se resuelven
ejemplares de gran tamaño, los de la categoría CAT4 (la Figura 2 muestra la
convergencia de los algoritmos en función del tiempo de computación). De esta
manera, se analizan los resultados obtenidos por los algoritmos después de
1000 segundos de tiempo de computación.

El valor promedio del RTV para TS, con 1000 segundos de tiempo de cálculo y
para el conjunto de los 740 ejemplares (Global), es un 51.35% y un 53.55%
mejor que los valores obtenidos utilizando los algoritmos Psycho y MS,
respectivamente. Si se consideran los resultados por clases, MS presenta
mejores resultados que Psycho para las clases de ejemplares de menor
tamaño (CAT1 y CAT2), resultados muy semejantes para los ejemplares de
tamaño medio (CAT3) y peores resultados para la clase de ejemplares de
mayor tamaño (CAT4). De todas formas, el algoritmo TS obtiene mejores
resultados que los otros dos algoritmos en todas las clases de ejemplares: TS
es un 2.57% y un 32.21% mejor que MS para las clases CAT1 y CAT2,
respectivamente, y un 60.68% y un 49.93% mejor que Psycho para las clases
CAT3 y CAT4, respectivamente.

Figura 2. Valor promedio del RTV en función del tiempo de computación

 239

La Tabla 4 muestra el número de veces que cada algoritmo obtiene el mejor
valor RTV para cada ejemplar, considerando los tres algoritmos. Los resultados
se presentan para el total de los 740 ejemplares (Global) y para cada clase de
ejemplares.

 Global CAT1 CAT2 CAT3 CAT4
TS 678 185 185 185 123
Psycho 58 51 7 0 0
MS 244 163 17 1 63

Tabla 4. Número de veces en que se obtiene la mejor solución

Como se podría esperar de los resultados de la Tabla 3, la Tabla 4 muestra
que TS obtiene la mejor solución el mayor número de veces (en un 91.62% de
ejemplares en global). Además, si se analizan los resultados por clases, se
observa que TS siempre obtiene las mejores soluciones en las clases CAT1,
CAT2 y CAT3. Por otro lado, MS obtiene más veces que Psycho la mejor
solución, incluso para los ejemplares de la clase CAT4. Este resultado puede
sorprender ya que, para esta clase de ejemplares, MS obtiene un valor
promedio del RTV peor que el obtenido por el algoritmo Psycho.

Para completar el análisis de los resultados, se calcula su dispersión. Se define
una medida de dispersión (aquí denominada σ) del valor del RTV obtenido por
cada algoritmo, alg = {TS, Psycho, MS}, en cada ejemplar, ins, según la

expresión
2() ()

()(,)
alg best

ins ins
best

ins

RTV RTValg ins
RTV

σ
 −

=   
 

; donde ()alg
insRTV es el valor del

RTV de la solución obtenida con el algoritmo alg para el ejemplar ins, y
()best

insRTV es el mejor valor del RTV, para el ejemplar ins, de las soluciones
obtenidas con los tres algoritmos. La Tabla 5 expone la dispersión σ promedio
para el total de ejemplares y por clases.

 Global CAT1 CAT2 CAT3 CAT4
TS 0.10 0.00 0.00 0.00 0.39
Psycho 3.00 1.08 1.76 3.67 5.49
MS 1.77 0.02 0.47 3.47 3.11

Tabla 5. Dispersión σ promedio

La Tabla 5 muestra que TS presenta la menor dispersión promedio para el total
de ejemplares y para cada una de las clases. Para las tres primeras clases
(CAT1, CAT2 y CAT3), la dispersión es nula ya que siempre obtiene las
mejores soluciones. En cambio, para los ejemplares más grandes (CAT4) la
dispersión ya no es nula aunque continúa siendo muy baja. Este resultado
significa que cuando TS no obtiene el mejor valor del RTV para un ejemplar,
obtiene un valor muy cercano. MS también obtiene una baja dispersión para las
dos clases más pequeñas (CAT1 y CAT2). Por otro lado, Psycho presenta una
dispersión peor que MS para todas las clases, aunque los valores promedios
del RTV obtenidos por Psycho para CAT3 y CAT4 es mejor que el obtenido por
MS; esto indica que aunque Psycho obtiene un mejor funcionamiento para
CAT3 y CAT4, en promedio, MS es un algoritmo más robusto que Psycho. De

 240

todas formas, el algoritmo TS propuesto en este trabajo es el que obtiene, en
promedio, las mejores soluciones con un comportamiento muy estable.

5. Conclusiones y futuras líneas de investigación

El RTVP es un problema de scheduling que se presenta en una gran cantidad
de aplicaciones reales. Como el RTVP es un problema NP-hard, varios
procedimientos heurísticos y metaheurísticos han sido propuestos para su
resolución. Entre ellos, los dos algoritmos que han obtenido mejores resultados
son el algoritmo psychoclonal propuesto en García-Villoria and Pastor (2008) y
el algoritmo multi-start presentado en Corominas et al. (2008). En este trabajo
se presenta una aplicación basada en la metaheurística tabu search (TS) para
la resolución del RTVP. Los resultados del experimento computacional
realizado muestran que el algoritmo TS propuesto mejora los mejores
resultados publicados en la literatura hasta el momento. Además se comprueba
que el algoritmo TS es muy estable: cuando no obtiene el mejor resultado para
un ejemplar del RTVP, obtiene un valor muy cercano al mejor.

La definición del vecindario es una decisión crítica en el diseño de cualquier
metaheurística, en general, y del algoritmo TS, en particular (Gendreau et al.,
2003). En este trabajo se genera el vecindario de una solución insertando el
símbolo asignado a cada posición entre el resto de posiciones de la secuencia
que representa a dicha solución. Debido al buen funcionamiento del algoritmo
TS, se pretende seguir investigando para intentar mejorarlo. Para ello se
propone diseñar y probar nuevas definiciones del vecindario de una solución;
por ejemplo intercambiado los símbolos asignados a cada pareja de posiciones
consecutivas de la secuencia que representa a una solución o intercambiando
los símbolos asignados a cada pareja de posiciones consecutivas y no
consecutivas de la secuencia.

Bibliografía

1. Kubiak, W. Fair Sequences. Chapter 19 in Handbook of Scheduling:

Algorithms, Models and Performance Analysis, Chapman and Hall, 2004.
2. Waldspurger, C.A.; Weihl, W.E. Lottery Scheduling: Flexible Proportional-

Share Resource Management. First USENIX Symposium on Operating
System Design and Implementation, 1994.

3. Corominas, A.; Kubiak, W.; Moreno, N. Response time variability. Journal
of Scheduling 10: 97-110, 2007.

4. Kubiak, W. Minimizing variation of production rates in just-in-time systems:
A survey. European Journal of Operational Research 66: 259-271, 1993.

5. Miltenburg, J. Level schedules for mixed-model assembly lines in just-in-
time production systems. Management Science 35: 192-207, 1989.

6. Dong, L.; Melhem, R.; Mosse, D. Time slot allocation for real-time
messages with negotiable distance constrains requirements. Fourth IEEE
Real-Time Technology and Applications Symposium (RTAS'98), Denver,
CO, 131-136, 1998.

 241

7. Waldspurger, C.A.; Weihl, W.E. Stride Scheduling: Deterministic
Proportional-Share Resource Management. Technical Report
MIT/LCS/TM-528, Massachusetts Institute of Technology, 1995.

8. Anily, S.; Glass, C.A.; Hassin, R. The scheduling of maintenance service.
Discrete Applied Mathematics 82: 27-42, 1998.

9. Wei, W.D.; Liu, C.L. On a periodic maintenance problem. Operations
Research Letters 2: 90-93, 1983.

10. Herrmann, J.W. Generating Cyclic Fair Sequences using Aggregation and
Stride Scheduling. Technical Report TR 2007-12, University of Maryland,
USA, 2007.

11. Bollapragada, S.; Bussieck, M.R.; Mallik, S. Scheduling Commercial
Videotapes in Broadcast Television. Operations Research 52: 679-689,
2004.

12. Brusco, M.J. Scheduling advertising slots for television. Journal of the
Operational Research Society 59: 1363-1372, 2008.

13. Balinski, M.L.; Young, H.P. Fair Representation: meeting the ideal of one
man, one vote. Yale University Press, New Haven CT, 1982.

14. García, A.; Pastor, R.; Corominas, A. Solving the Response Time
Variability Problem by means of metaheuristics. Frontiers in Artificial
Intelligence and Applications 146: 187-194, 2006.

15. Corominas, A.; García-Villoria, A.; Pastor, R. Solving the Response Time
Variability Problem by means of Multi-start and GRASP metaheuristics.
Frontiers in Artificial Intelligence and Applications 184: 128-137, 2008.

16. García-Villoria, A.; Pastor, R. Introducing dynamic diversity into a discrete
particle swarm optimization. Computers and Operations Research 36:
951-966, 2009a.

17. García-Villoria, A.; Pastor, R.; Corominas, A. Solving the Response Time
Variability Problem by means of the Cross-Entropy Method. International
Journal of Manufacturing Technology and Management, to be published,
2007.

18. García-Villoria, A.; Pastor, R. Solving the Response Time Variability
Problem by means of the Electromagnetism-like Mechanism. International
Journal of Production Research, doi: 10.1080/00207540902862545,
2009b.

19. García-Villoria, A.; Pastor, R. Solving the Response Time Variability
Problem by means of a psychoclonal approach. Journal of Heuristics,
doi:10.1007/s10732-008-9082-2, 2008.

20. Tiwari, M.K.; Prakash, A.; Kumar, A.; Mileham, A.R. Determination of an
optimal sequence using the psychoclonal algorithm. ImechE, Part B:
Journal of Engineering Manufacture 219: 137-149, 2005.

21. Maslow, A.H. Motivation and personality. New York: Harper & Bros, 1954.
22. Gaspar, A.; Collard, P. Two models of immunization for time dependent

optimization. IEEE International Conference on Systems Manufacturing
and Cybernetics, 113-118, 2000.

23. Gendreau, M. An Introduction to Tabu Search. Chapter 2 in Handbook of
Metaheuristics, Eds. Glover and Kochenberger, Kluwer Academic
Publishers, 37-54, 2003.

24. Glover, F. Future paths for Integer Programming and Links to Artificial
Intelligence. Computers and Operations Research 5: 533-549, 1986.

 242

25. Eiben, A.E.; Hinterding, R.; Michalewicz, Z. Parameter control in
evolutionary algorithms. IEEE Transactions on evolutionary computation 3:
124-141, 1999.

26. Adenso-Díaz, B.; Laguna, M. Fine-tuning of algorithms using fractional
experimental designs and local search. Operations Research 54:, 99-114,
2006.

 243

A2.4. Technical reports

A branch and bound approach for the response time variability
problem

Technical report IOC-DT-P-2009-05, Digital version available at UPCommons
(http://upcommons.upc.edu), 2009.

A branch and bound approach for the response time
variability problem†

Alberto GARCÍA-VILLORIAa

*

† Supported by the Spanish Ministry of Education and Science under project DPI2007-61905; co-funded by the ERDF.
* Corresponding author: Alberto García-Villoria, Institute of Industrial and Control Engineering (IOC), Av. Diagonal 647 (Edif.
ETSEIB), 11th floor, 08028 Barcelona, Spain; tel.: +34 93 4054010; e-mail: alberto.garcia-villoria@upc.edu.

, Albert COROMINASa, Xavier DELORMEb, Alexandre DOLGUIb,
Wieslaw KUBIAKc, and Rafael PASTORa

a Institute of Industrial and Control Engineering (IOC), Universitat Politècnica de Catalunya (UPC), 647,
Av. Diagonal, 08028, Barcelona, Spain

b Centre for Industrial Engineering and Computer Science, Ecole des Mines de Saint Etienne, 158, Cours
Fauriel, 42023 Saint Etienne Cedex, France

c Faculty of Business Administration, Memorial University, St. John’s, Canada
{alberto.garcia-villoria / albert.corominas / rafael.pastor}@upc.edu, {delorme / dolgui }@emse.fr,

wkubiak@mun.ca

Abstract. The response time variability problem (RTVP) is a NP-hard scheduling problem
which has recently formalised in the literature. This problem has a wide range of real-world
applications in mixed-model assembly lines, multi-threaded computer systems, network
environments and others. The RTVP arises whenever products, clients or jobs need to be
sequenced in such a way that the variability in the time between the points at which they
receive the necessary resources is minimised. The best exact method to solve this problem is a
mixed integer linear programming (MILP) which is able to solve optimally instances up to 40
units to be scheduled in a practical time. The objective of this work is to increase the size of
the instances that can be solved optimally. We propose a branch and bound (B&B) algorithm
that takes advantage of the characteristics of the problem. In particular, several dominated and
equivalent solutions are detected to avoid exploring them. A computational experiment shows
that the proposed B&B algorithm is able to solve larger instances up to 55 units to optimally.

Keywords: response time variability, scheduling, fair sequences, branch and bound

1. Introduction

The Response Time Variability Problem (RTVP) is an optimisation sequencing problem
which was first reported in Waldspurger and Weihl (1994) and formally formulated by
Corominas et al. (2007). This problem occurs in real-life situations in which jobs,
clients, products or events need to be sequenced in such a way that the variability in the
time between the turns at which they receive their necessary resources is minimised.

 244

One of the first situations in which the idea of the regular sequence appeared was the
sequencing on mixed-model assembly lines at Toyota Motor Corporation under the just-
in-time (JIT) production system. Since Toyota popularized the JIT production systems,
the problem of sequencing on mixed-model assembly lines has acquired high relevance.
One of the main aims of JIT is to eliminate sources of waste and inefficiency. In the
case of Toyota, the main source of waste was the production of excessive volumes of
stock. To solve this problem, JIT systems produce only the specific models required and
in the quantities needed at any given time. According to Monden (1983), in this type of
system the units should be scheduled in such a way that the consumption rates of the
components in the production process remain constant. Under certain assumptions
introduced in Miltenburg (1989), this scheduling problem can be solved considering
only the demand rates for the models (Miltenburg, 1989; Kubiak, 1993).

The RTVP also appears in computer multithreaded systems (Waldspurger and Weihl,
1994 and 1995; Dong et al., 1998). Multithreaded systems (operating systems, network
servers, media-based applications, etc.) do different tasks to attend to the requests of
client programs that take place concurrently. These systems need to manage the scarce
resources in order to service the requests of n clients. For example, multimedia systems
must not display video frames too early or too late, because this would produce jagged
motion perceptions (Corominas et al., 2007). Waldspurger and Weihl, considering that
resource rights could be represented by tickets and that each client had its own number
of tickets, suggested the RTV metric to evaluate the sequence of resource rights.

Two real-life cases of RTVP applications were reported in the literature. In
Bollapragada et al. (2004), the study is motivated by the problem faced by the National
Broadcasting Company (BNC) of U.S., one of the main firms in the television industry.
Major advertisers buy to BNC hundreds of time slots to air commercials. The
advertisers ask to BNC that the airings of their commercials are evenly spaced as much
as possible over the broadcast season. The same problem is also solved in Brusco
(2008). In Herrmann (2007), the author came up with the RTVP while working with a
healthcare facility that needed to schedule the collection of waste from waste collection
rooms throughout the building. Based on data about how often a waste collector had to
visit each room and in view of the fact that different rooms require a different number of
visits per shift, the facility manager wanted these visits to occur as regular as possible so
that excessive waste would not collect in any room. For instance, if a room needed four
visits per eight-hour shift, it should be ideally visited every two hours.

Other contexts in which the RTVP can be applied are the design of sales catalogs
(Bollapragada et al., 2004), the periodic machine maintenance problem (Wei and Liu,
1983; Anily et al., 1998) as well as other distance-constrained problems (e.g., see Han
et al., 1996).

The abovementioned applications are examples of a very common situation, in
manufacturing and in services, in which a resource must be used successively by
different units and it is important to schedule them in such a way that the different types
of units share the resource in some fair manner (see Kubiak (2009) who provides an
extensive overview on fair sequences). The RTVP proposes a new universal measure of
fairness: to minimise the variability of the distance (measured, for example, in number
of slot times) between any two consecutive units of the same product, event, job or
client; i.e., to have the distances between any two given consecutive units of the same

 245

product as constant as possible. Several other measures have been proposed for the
fairness of the sequence of models on assembly lines, either based on the difference
between ideal and actual productions (Miltenburg, 1989; Kubiak, 1993; Steiner and
Yeomans, 1993) or on the difference between ideal and actual production dates (Inman
and Bulfin, 1991; Bautista et al., 1997). The new measure of fairness is easier to
understand by practitioners, since it only uses a simple concept: the distance. Moreover
it has the characteristic that the value of the measure does not depend on the position of
those products with only one unit to be sequenced.

The RTVP has been demonstrated to be NP-hard (Corominas et al., 2007). Thus, this
problem has been mostly solved by means of heuristic procedures (Waldspurger and
Weihl, 1994, 1995; Corominas et al., 2007; Herrmann, 2007, 2009) as well as
metaheuristic procedures (García et al., 2006; Corominas et al., 2008, 2009a, 2009b,
2009c, 2009d; García-Villoria and Pastor, 2008, 2009a, 2009b, 2010; García-Villoria et
al., 2010).

Anyway, there are two works in which the RTVP is solved optimally for small instances
(Corominas et al., 2007, 2010). In both works a Mixed Integer Linear Programming
(MILP) approach is used. The best MILP model (Corominas et al., 2010) obtains
optimal solutions with a practical time of 40 units to be sequenced.

The disadvantage of the MILP approach is that general software is used to solve the
MILP model and it is difficult to take advantage of all characteristics of the problem. In
order to solve optimally larger instances in a practical time, we suggest using the branch
and bound (B&B) approach. In this paper we proposed an algorithm based on the B&B
technique that is specifically designed to solve the RTVP. A computational experiment
shows that the proposed B&B algorithm is able to solve optimally instances up to 55
copies to be sequenced (that is, the size of the instances that can be optimally solved has
been increased 37.5% with respect to the best exact method published in the literature).

The remainder of the paper is organized as follows. Section 2 presents a formal
definition of the RTVP. Section 3 proposes our B&B algorithm to solve the RTVP.
Section 4 presents the results of a computational experiment. Finally, some concluding
remarks are given in Section 5.

2. The Response Time Variability Problem (RTVP)

The RTVP is formulated as follows. Let n be the number of symbols to be sequenced
(that represent products, jobs, clients, events, …), where symbol i (i = 1,...,n) is to be
copied di times in the sequence. Let D be the total number of copies to be sequenced
(

1.. ii n
D d

=
= ∑). Let s be a solution of an instance in the RTVP that consists of a

circular sequence of copies (Dssss 21=), where sj is the copy sequenced in position j
of sequence s. For each symbol i in which 2id ≥ , let i

kt be the distance between the
positions in which the copies k + 1 and k of symbol i are found. We consider the
distance between two consecutive positions to be equal to 1. Since the sequence is
circular, position 1 comes immediately after the last position D; therefore, i

di
t is the

distance between the first copy of symbol i in a cycle and the last copy of the same

 246

symbol in the preceding cycle. Let it be the desired average distance between two

consecutive copies of symbol i (i
i

Dt d=). Note that for each symbol i in which 1id = ,

1
it is equal to it . The objective is to minimise the metric called response time variability

(RTV), which is defined by the sum of the square errors with respect to the it distances.
This is given in the following expression:

 2

1 1
()

idn
i
k i

i k
RTV t t

= =

= −∑∑ (1)

For example, let 3n = with symbols A, B and C, and consider, 3Ad = , 2Bd = and

2Cd = ; thus, 7D = , 7
3At = , 7

2Bt = and 7
2Ct = . Any sequence such that contains

symbol i (i∀) exactly id times is a feasible solution. For instance, the sequence (A, B,
A, C, B, A, C) is a feasible solution, where:

() () () () () () ()2 2 2 2 2 2 27 7 7 7 7 7 7 52 3 2 3 4 3 43 3 3 2 2 2 2 3RTV      = − + − + − + − + − + − + − =     
     

3. A Branch and Bound algorithm for the RTVP

Branch and Bound (B&B) is a general technique for solving combinatorial optimisation
problems, as it is the RTVP. B&B is based on dividing (branching) a feasible region of
the solution space into several subregions. The divisions of the (sub)regions of the
solution space are represented in a tree, in which each node represents a (sub)region of
the space. The terminal nodes of the tree are regions of the space that contains only one
solution. To avoid examining all (sub)regions of the space of solutions, the tactics of
pruning the nodes with not better bounds than the value of the best current solution
found, and eliminating dominated or equivalent nodes are usually used. For a good
overview of enumerative procedures in tree representations, see Pastor and Corominas
(2000).

We propose an algorithm based on the B&B technique. In Sections 3.1 to 3.12 the
characteristics of the proposed algorithm are explained. Finally, in Section 3.13 the fine-
tuning of the algorithm parameters is shown.

3.1. Objective

The objective is to obtain one solution that minimises the RTV value defined by Eq. 1

3.2. Initial solution

The RTV value of an initial solution is used as an initial upper bound of the optimal
solution. The initial solution is generated as follows.

First, a solution is obtained by applying the Reduced Variable Neighbourhood Search
(RVNS) algorithm proposed in Corominas et al. (2009b), which is the best heuristic

 247

method published in the literature to solve the RTVP. The RVNS algorithm works as
follows. The start solution is generated using the lottery scheduling (Waldspurger and
Weihl, 1994) as it is done in previous works published in the literature when an start
solution is required. That is, for each position, a symbol to be sequenced is randomly
chosen. The probability of each symbol is equal to the number of copies of this symbol
that remain to be sequenced divided by the total number of units that remain to be
sequenced. The neighbourhoods (N1, N2 and N3) used in this RVNS algorithm are the
following. N1 is generated by swapping each pair of two consecutive positions of the
sequence. N2 is a generalisation of N1 where the move is not restricted to consecutive
positions. N3 is generated by inserting each position in the sequence. At each iteration, a
neighbour of the current solution is obtained at random from the current neighbourhood.
If the neighbour is worse, then the neighbourhood is changed to the following
neighbourhood; otherwise, the current neighbourhood is changed to the first one (N1).
The stop condition of the RVNS algorithm used in this paper is that the current solution
does not improve in a certain number of consecutive iterations. A previous
computational experiment has shown that 500.000 iterations are far enough for the
convergence of the RVNS algorithm. The pseudo-code of the algorithm is shown in
Figure 1.

1. Let S an initial solution
2. k := 1
3. it := 0
4. While it < 500.000 do:
5. it := it + 1
6. Select a solution S’ at random from Nk
7. If RTV(S) ≤ RTV(S’) then:
 S := S’ and k := 1;
 If RTV(S) < RTV(S’) then it := 0

Otherwise:
 k := (k mod 3) + 1
8. End While
9. Return S

Figure 1. Pseudo-code of the RVNS algorithm

The RVNS algorithm is able to obtain a good solution very quickly, although it does not
ensure that the returned solution is a local optimum with respect to the neighbourhoods
N1, N2 and N3. Thus, we apply a composite hill climbing method to improve (if
possible) the solution returned by the RVNS algorithm. The composite hill climbing
method consists of applying iteratively three local search procedures (LS1, LS2 and
LS3) to the solution until there is no improvement of the solution (i.e., until a local
optimum with respect all three neighbourhoods is reached). The local searches are
performed iteratively as follows: the best solution in the neighbourhood is chosen at
each iteration; the optimisation ends when no neighbouring solution is better than the
current solution. The neighbourhoods used by LS1, LS2 and LS3 are N1, N2 and N3,
respectively.

3.3. Nodes of the tree

The algorithm starts from an empty sequence and, at each iteration, allocates a copy of
one symbol that still has unallocated copies to the first empty position. Therefore, at

 248

each node of the tree we have a partially filled sequence, excepting at the terminal
nodes, where we have a complete sequence.

3.4. Preprocessing to avoid examining equivalent nodes

Note that a RTVP solution is defined by the relative distances, for each symbol i,
between the consecutive copies of symbol i instead of the absolute positions in which
the copies are sequenced. The two following preprocesses are applied to avoid
examining equivalent nodes.

a) A copy of the symbol i with the largest di (number of copies to be sequenced), i*, is

fixed in the first position of the sequence. The aim is to avoid some equivalent
isomorphic solutions. Two solutions are isomorphic if one sequence can be reduced
to the other by means of a partial rotation or if considering one of them clockwise is
equal to the other considered counterclockwise.

For example, let symbol A the one with the largest number of copies to be
sequenced (i* = A). Then, the sequence (A, B, A, C, B, A, C) will be generated, but
not the sequences (B, A, C, B, A, C, A) and (C, A, B, C, A, B, A). Note that the
second one can be reduced to the first one by means of a partial rotation, and the
third one can be reduced to the first one considered counterclockwise.

b) To replace the symbols that have only one copy to be sequenced by a fictitious

symbol. The number of times that the fictitious symbol is sequenced is equal to the
number of symbols that have only one copy to be sequenced. The copies of the
fictitious symbol will not contribute in the RTV value of the sequence.

For example, the sequences (A, B, D, A, C, B, E, A, C) and (A, B, E, A, C, B, D, A,
C) are equivalent. But if the suggested preprocess is applied, only the equivalent
sequence (A, B, *, A, C, B, *, A, C) will be generated, where * is the fictitious
symbol.

3.5. Branching

Given a non terminal node, its child nodes are generated by allocating one copy of the
symbols that still have unallocated copies at the first free position of the sequence.

3.6. Node selection

A dynamic search strategy is used for selecting the next node to be explored (Pastor and
Corominas, 2000). According to the current available RAM memory, the following two
possibilities are applied:

a) If the available RAM is over than certain threshold, the search strategy consists of
selecting the node that has the minimum value according to the following expression:

 · · ·LB UBη λ µ υ+ + (2)

 249

where , ,η λ µ are parameters, LB is the lower bound of the node, UB is the upper bound
of the node and υ is the number of empty positions in the partial sequence
corresponding to the node.

b) If the available RAM is below than certain threshold, the search strategy consists of
selecting the node that has the minimum value according to Eq. 2 and then applying a
depth-first search in the subtree that has the selected node as root (i.e., in the exploration
of that subtree the values of the parameters are 0η λ= = and 1µ =).

3.7. Bounding

A node is pruned when the following condition is true:

 ()2* −> RTVLB (3)

where RTV* is the RTV value of the current best solution found (i.e., the global upper
bound of the problem). The reason is because the difference between the RTV values
corresponding to any pair of feasible solutions is an even integer number (see
Corominas et al., 2007).

3.8. Lower bound (LB)

The following lower bound was suggested in Corominas et al. (2007). Let a
decomposition vector of D into id components be defined as follows: ()1,..., ii dλ λ λ=

of id positive integers that add up to D and 1 ...
idλ λ≥ ≥ . The components of vector iλ

are the distances between the id copies of symbol i . Thus, the minimum RTV value for
symbol i , iRTV , can be obtained when mod iD d and modi id D d− components of iλ

are equal to
i

D
d

 
 
 

 and
i

D
d

 
 
 

, respectively. For example, let 24D = , 4n = ,

()9,7,5,3d = and ()2.67,3.43,4.8,8t = . The decomposition vectors

()1 3,3,3,3,3,3,2,2,2λ = , ()2 4,4,4,3,3,3,3λ = , ()3 5,5,5,5,4λ = and ()4 8,8,8λ = provide

the minimum values of iRTV ()1,..., 4i = . A lower bound on the value of iRTV ,

iRTVLB , and a lower bound on the value of RTV , RTVLB , can be defined as follows:

() ()
22

modmod 









−








⋅−+










−








⋅= i

i
iii

i
ii t

d
DdDdt

d
DdDRTVLB and

∑
=

=
n

i
iRTVLBRTVLB

1
:

() () () ()

() () () ()

2 2 2 2

2 2 2 2

6 3 2.67 3 2 2.67 3 4 3.43 4 3 3.43

4 5 4.8 1 4 4.8 0 8 8 3 8 8 4.51

RTVLB    = ⋅ − + ⋅ − + ⋅ − + ⋅ −   
   + ⋅ − + ⋅ − + ⋅ − + ⋅ − =   

 250

In this case, however, a lower bound, PLB , is needed for a partial solution, that is, a
solution in which the first k positions of the sequence has been filled.

A lower bound for a partial solution, PS , can be obtained by adding, for all symbols in
which 2id ≥ , the sum of RTVPS (the value associated with the distances between the
copies of the symbols allocated in [1,…, k], if any) and REMRTV (a bound
corresponding to the assignment of the remaining copies, if any, to the free positions).

Let i be a non-fictitious symbol whose copies have not all been assigned in the partial
solution PS . Three cases must be distinguished:

- Case 1. No copy of symbol i has been assigned in the k positions: We must

distribute D positions among id distances (between two copies of symbol i),
guaranteeing that one distance be greater than or equal to 1+k .

- Case 2. Only one copy of symbol i has been assigned to position h (≤ k): We must
distribute D positions among id distances, guaranteeing that one distance be
greater than or equal to 1+− hk and another be greater or equal to h.

- Case 3. p copies of symbol i have been assigned in the k positions, the first in the
sequence in position hf and the last one in position hl: We must distribute

fl hhD +− positions among 1+− pdi distances, guaranteeing that one distance be
greater than or equal to 1+− lhk and another be greater than or equal to hf. Case 2
can be reduced to Case 3 taking into account that hhh lf == and 1=p . Case 1 can
be reduced to Case 3 taking into account that 0=== hhh lf and 1=p .

Thus, the problem consists in distributing fl hhD +− “units of distance” among

1+− pdi distances () 1,..., 1i
j it j d p= − + , taking into account that two distances are

lower bounded by 1+− lhk and hf, respectively, and the others are lower bounded by 1,
with the objective of minimising a function of the discrepancy between the distances
and the average distance it . That is, it is the apportionment problem with lower bounds.
Bautista et al. (2001) propose a general optimisation procedure for a convex,
nonnegative (symmetric or not) discrepancy function and such that ()0 0f = . For the
discrepancy function considered here (the quadratic discrepancy), the resulting
procedure is as follows:

11 +−= l
i hkt

f
i ht =2

for 3j = to 1+− pdi
1i

jt =
next j
for 1j = to idpkD −+− ())1()()1(−−−−−+−+−= pdhhhkhD ifllf

find ()*
* mini i

ss s
s t t= ; malot * * 1i i

s s
t t= +

next j

 251

For the instance defined by 4n = and ()9,7,5,3d = and the partial solution

()A,C,B,A,A,C,C,C,A,,,,,,,,,,,,,,,PS = , we have:

() () () () () ()2 2 2 2 2 23 2.67 1 2.67 4 2.67 4 4.8 1 4.8 1 4.8 34.19PSRTV    = − + − + − + − + − + − =   

And, applying the procedure described above, the distances (3,3,3,3,2,2), (7,3,3,3,3,3,2),
(9,9) and (10,7,7) are obtained for the symbols A, B, C and D, respectively. The value
corresponding to these distances, REMRTV , is:

() () () () ()

() () ()

2 2 2 2 2

2 2 2

4 3 2.67 2 2 2.67 1 7 3.43 5 3 3.43 1 2 3.43

2 9 4.8 1 10 8 2 7 8 58.33

REMRTV    = ⋅ − + ⋅ − + ⋅ − + ⋅ − + ⋅ −   
   + ⋅ − + ⋅ − + ⋅ − =   

And, finally, 34.19 58.33 92.52PS REMPLB RTV RTV= + = + =

3.9. Upper bound (UB)

To calculate the upper bound of a node, the partial solution associated to the node is
completed applying a constructive heuristic based on the priority rule proposed in
Corominas et al. (2008), and the RTV value of the completed solution is taken as the
upper bound.

The constructive heuristic that we propose works as follows. Let xik be the number of
copies of symbol i that have been already sequenced in the sequence of length k, k = 0,
1, … (asumme xi0 = 0); the symbol to be sequenced in position k + 1 is

()* 1
arg max .i

i ik

k d
i x

D
+ ⋅ 

= − 
 

 If there is a tie, then the symbol i with the lowest di is

sequenced. If there is also a tie, then use lexicographical order.

In the case that the obtained full solution is better than the best current solution found,
then the global upper bound (RTV*) is updated.

3.10. Improving the solutions of terminal nodes

When a terminal node is examined, the composite hill climbing method explained in
Section 3.2 is applied to the solution associated with the node. In the case that the
obtained improved solution is better than the best current solution found, then the global
upper bound (RTV*) is updated.

3.11. Dominances

We will say that a node A dominates another node B if all the following conditions are
fulfilled:

a) The partial sequences of both nodes contain the same total number of copies.

 252

b) The partial sequences of both nodes contain the same number of copies of the
fictitious symbol.

c) Excluding the fictitious symbol and the symbols such that all their copies are
included in the partial sequence: the first and last positions occupied for each
symbol present in the partial sequences coincide in both nodes.

d) The partial RTV value (RTVPS) for node A is less (strict dominance) or equal
(non-strict dominance) than for node B.

Note that the definition includes the possibility of mutual (non-strict) dominance.

When A dominates strictly B, the latter can be fathomed. When there is a mutual
dominance between A and B, any of them (but not both, of course) can be fathomed.

3.12. Avoiding examining equivalent isomorphic nodes

A first preprocess method to avoid examining equivalent solutions is proposed in
Section 3.4. In this section, we propose a method to avoid examining other isomorphic
solutions during the search.

In order to make more understandable the explanation, the following simple example is
introduced: let n = 3; dA = 5, dB = 4 and dC = 3; thus, D = 12. The exploration tree that
will be generated (taking into account the preprocess methods explained in Section 3.4)
is shown in Figure 2.

Figure 2. Exploration tree example

All sequences that start with subsequence (A, A) are generated (explicitly or implicitly)
from the subtree that has the node AA as its root (Subtree 1 in Figure 2).

Thus, there is not necessity to generate any sequence that contains the subsequence (A,
A) from the subtree that has the node AB as its root (Subtree 2 in Figure 2). The reason
is that each one of these type of solutions is symmetric with respect of one of the
solutions generated in Subtree 1. For example, the sequence (A, B, ?, ?, ?, A, A, ?, ?, ?,
?, ?) is symmetric with respect to the sequence (A, A, ?, ?, ?, ?, ?, A, B, ?, ?, ?), which
could be generated in Subtree 1, where ? is a copy of symbols A, B or C.

 253

Similarly, there is not necessity to generate any sequence that contains any of the
sequences (A, A), (A, B) or (B, A) from the subtree that has the node AC as its root
(Subtree 3 in Figure 2). For example, the sequence (A, ?, ?, ?, ?, ?, ?, B, A, ?, ?, ?) is
symmetric with respect the sequence (A, B, ?, ?, ?, ?, ?, ?, A, ?, ?, ?), which could be
generated in Subtree 2.

The idea to avoid generating symmetries has been exemplified using tabu subsequences
with a length equal to 2. This idea can be generalized for a length equal to or greater
than 2.

Before formalizing the introduced idea, let first introduce some additional
nomenclature. Let 1 2 Ls s s s=  and 1 2' ' ' 'Ls s s s=  be two (sub)sequences of length L,
where sj and ' js are the copies sequenced in position j of sequences s and s',
respectively. We define

SYM
< and

SYM
= as two comparison operators between symbols,

where j kSYM
s s< returns if symbol sj is less than sk, and j kSYM

s s= returns if symbol sj is the

same symbol than sk; the order of the symbol set used is the lexicographical order (the
order criterion will not have influence in the performance of the algorithm). We also
define

SEQ
< as a comparison operator between two (sub)sequences of the same length,

where '
SEQ

s s< is defined as follows:

() ()

() ()() ()
1 1

1 1 2 3 2 3

, if 0

''
, if 1

' ' ' '

SYM
SEQ

L LSYM SEQ

false L

SYM s SYM ss s
L

SYM s SYM s s s s s s s

= 
 

 < ∨  < =  ≥  = ∧ <    
 

,

where SYM(sj) returns the symbol of copy sj.

Let suppose that the length of the tabu subsequences is L. Given a node N of the
exploration tree of the level L, let its associated partial sequence be 1 2 Lsn sn sn sn=  ,
where sn1 is a copy of the symbol with the largest number of copies to be sequenced, i*
(see Section 3.4). The set of tabu subsequences of node N, TS(N), is defined as follows:

 1 2() () ()TS N TS N TS N= ∪ (4)

{ }
()

()

1 2 2.. 1.. : *
2.. :

1

* 1 2 1 2
2.. : *

: () 1.. 1

()

1 1

j

j

L j ij L i n i i
j L SYM s i

i L LSEQ
j L SYM s i

sn s s SYM s n d

TS N

d sn s s sn sn sn

= = ≠
= =

= =

       ∀ ∈ ∧ ∀ ≤ ∧          =  
    + ≤ ∧ <       

∑

∑



 

 (4')

 [] []{ }2 1 2 1 1 2 1 1() : () *L L L L LTS N s s s sn sn s s s TS N s i− −= ∈ ∧ ≠  (4'')

 254

The definition of the set TS1(N) includes as tabu subsequences all subsequences that are
feasible (that is, the symbols allocated are comprised between 1 and n, and the number
of times that each symbol i is sequenced is not greater than di) and are lower (according
to the operator

SEQ
<) than the partial sequence sn. The definition of the set TS2(N)

includes all sequences of TS1(N) considered counterclockwise in which the symbol of
its last copy is different of symbol i*.

For example, let L = 4, n = 3,

SYM SYM
A B C< < and dA = 10, dB = 6, dC = 9; thus, i* = A.

The set of tabu subsequences of node ABAC is {(A, A, A, A), (A, A, A, B), (A, A, A,
C), (A, A, B, A) , (A, A, B, B), (A, A, B, C), (A, A, C, A) , (A, A, C, B), (A, A, C, C),
(A, B, A, A) , (A, B, A, B)} ∪ {(B, A, A, A), (C, A, A, A), (B, B, A, A), (C, B, A, A),
(B, C, A, A), (C, C, A, A), (B, A, B, A)}

During the branching procedure, only the child nodes whose associated sequence has
not any tabu subsequence are examined. The more greater is the value of L, the less
equivalent solutions will be examined although the cpu time needed to check if a partial
solution contains a tabu subsequence increases exponentially. Thus, the suitable value
of the parameter L has to be set empirically.

3.13. Fine-tuning the algorithm parameters

Fine-tuning the parameters of an algorithm is almost always a difficult task. Although
the parameter values may have a very strong effect on the performance of the algorithm
for each problem, they are often selected using one of the following methods, which are
not sufficiently thorough (Eiben et al., 1999; Adenso-Díaz and Laguna, 2006): 1) “by
hand”, based on a small number of experiments that are not referenced; 2) using the
general values recommended for a wide range of problems; 3) using the values reported
to be effective in other similar problems; or 4) with no apparent explanation.

Adenso-Díaz and Laguna (2006) proposed a new technique called CALIBRA for fine-
tuning the parameters of algorithms. CALIBRA is based on using conjointly Taguchi’s
fractional factorial experimental designs and a local search procedure.

We propose to use CALIBRA for setting the parameter values of our algorithm.
CALIBRA was applied to a training set of 30 instances. These instances were generated
as follows (the same way that is used in the literature; e.g., Corominas et al., 2010). D
was randomly selected with a discrete uniform distribution between 20 and 30, between
30 and 35 and between 35 and 40, for instances T1 to T10, T11 to T20 and T21 to T30,
respectively. For instances T1 to T10, n and di were randomly selected with a discrete
uniform distribution between 3 and 2D   and between 1 and ()1 2D n − +  (with

1

n
ii

d D
=

=∑), respectively. For instances T11 to T30, n and di were randomly selected
with a discrete uniform distribution between 3 and 12 and between 1 and

()1 2.5D n − +  (with
1

n
ii

d D
=

=∑), respectively. To evaluate the effectiveness of a
given set of parameter values we consider the number of the training instances that can
be solved optimally within 2,000 seconds. To break the tie the average computing time

 255

spent for solving all training instances is used. The following parameter values were
returned by CALIBRA:

• η = 1, λ = 0, μ = 675 (parameters defined in Section 3.6)
• L = 3 (parameter defined in Section 3.12)

CALIBRA points that the UB value is useless for the node selection. With the values of
the parameters returned by CALIBRA, Eq. 2 takes the form 675·LB υ+ . Thus, in the
final proposed B&B algorithm the UB of each node is not calculated to save cpu time.
Notice that using the η, λ and μ values returned by CALIBRA is almost equivalent to
use a depth-first node selection strategy breaking the ties with the LB value.

4. Computational experiment

We first solved the 120 instances used in Corominas et al. (2010). These instances were
generated as follows. D was randomly selected with a discrete uniform distribution
between 20 and 30, between 30 and 35 and between 35 and 40, for instances 1 to 40, 41
to 80 and 81 to 120, respectively. For instances 1 to 40, n and di were randomly selected
with a discrete uniform distribution between 3 and 2D   and between 1 and

()1 2D n − +  (with
1

n
ii

d D
=

=∑), respectively. For instances 41 to 120, n and di were
randomly selected with a discrete uniform distribution between 3 and 12 and between 1
and ()1 2.5D n − +  (with

1

n
ii

d D
=

=∑), respectively.

The B&B algorithm was coded in Java and the computational experiment was carried
out on a PC 3.00 GHz Intel Pentium IV with 1.5 GB of RAM. Because the Corominas
et al. (2010) computational experiment was carried out in a slower machine, their
computing times showed in this paper are multiplied by a corrective factor in order to be
compared fairly with our computing times. The applied corrective factor is 0.5 and it is
calculated according to the public CPU benchmark provided by PassMark Software
(http://www.cpubenchmark.net/).

Table 1 summarises the results obtained with a maximum calculation time of 10,000
seconds for each instance. The columns #Opt and #Fea show the number of instances
that have been solved optimally and the number of instances in which a solution has
been found but its optimality has not been demonstrated, respectively. The average
computing time (in seconds) is shown between parentheses.

Table 1. Comparison between the MILP and the proposed B&B method

 #Opt #Fea

MILP 114 (278 s.) 6 (10,000 s.)

B&B
 114 (7.47 s.)

 +
6 (316.21 s.)

0

The results show that the B&B algorithm is able to solve all 120 instances including the
six ones that could not be solved with the MILP method. Moreover, the computing time
needed to solve the instances presents a huge improvement. For the 116 instances that

 256

has been solved by the two methods, the MILP method needs, on average, 278 seconds
whereas the proposed B&B method only needs 7.47 seconds. On the other hand, the 6
instances solved by the B&B algorithm but not by the MILP model need, on average,
316.21 computing seconds.

We have expanded the computational experiment solving larger instances with the B&B
algorithm. The instances were generated as follows. D was randomly selected with a
discrete uniform distribution between 40 and 45, between 45 and 50, between 50 and
55, between 55 and 60 and between 60 and 65 for instances 121 to 160, 161 to 200, 201
to 240, 241 to 280 and 281 to 320, respectively. The n and di values are generated as it
was done for instances 41 to 120 (all test and training instances can be downloaded at
https://www.ioc.upc.edu/EOLI/research/)

Table 2 shows the results obtained for instances 1 to 320 with a maximum calculation
time of 10,000 seconds for each instance. Column D shows the range size of the
instances, column T shows the average time (in seconds) to solve an instance, column
TS0 shows the time (in seconds) to obtain the initial solution (see Section 3.2), column
RTV shows the average of the best RTV values found and column #Opt shows the
number of instances that have been solved optimally.

Table 2. Results obtained with the B&B method

Instances D T TS0 RTV #Opt

1-40 20-30 2.15 2.08 6.23 40

41-80 30-35 5.89 2.83 9.24 40

81-120 35-40 60.69 3.05 13.47 40

121-160 40-45 785.98 2.08 14.43 38

161-200 45-50 1,589.13 2.83 16.49 37

201-240 50-55 2,973.90 3.06 18.51 34

241-280 55-60 5,090.25 3.60 20.48 23

281-320 60-65 5,910.49 4.00 24.87 18

As it has been mentioned before, the B&B algorithm is able to solve all instances up to
40 copies to be sequenced. Between 40 and 45 copies, 45 and 50 copies and 50 and 55
copies the B&B algorithm solves the 95%, 92.5% and 85% of instances, respectively.
For larger instances, the number of solved instances decrease quickly. However, the
algorithm is still able to solve around 50% of instances that has between 55 and 65
copies to be sequenced.

Table 3 shows the results focused on the instances that have been optimally solved
within 10,000 computing seconds, where column TB shows the instant at which the best
solution was found (in seconds) and column RTV* shows the average of the optimal
RTV values. As it is usual in exact methods, we can see that the most computing time
for non-small instances is spent not on finding an optimal solution but on ensuring its
optimality.

 257

Table 3. Optimal results obtained with the B&B method

Instances T TB TS0 RTV* #Opt

1-40 2.15 2.08 2.08 6.23 40

41-80 5.89 2.83 2.83 9.24 40

81-120 60.69 12.49 3.05 13.47 40

121-160 301.03 19.83 2.08 14.38 38

161-200 907.17 232.26 2.81 16.21 37

201-240 1,734.00 442.36 3.03 17.34 34

241-280 1,461.30 3.62 3.61 18.17 23

281-320 912.21 142.91 4.00 19.17 18

5. Conclusions

This paper deals with the exact solution of the response time variability problem
(RTVP) by means of a branch and bound (B&B) algorithm. The RTVP is a scheduling
problem that arises in a wide range of real-life problems. The exact solution of this
problem is, in general, very difficult because it is NP-hard. A mathematical
programming model proposed in Corominas et al. (2010) was the best exact method to
solve it with a practical limit for obtaining optimal solution of 40 copies to be
sequenced.

We have analysed the characteristics of the problem to propose a specially designed
B&B algorithm. In particular, we have tried to avoid exploring dominated and
equivalent solutions as much as possible. The proposed algorithm improves the best
published exact method. All instances proposed in Corominas et al. (2010) are solved
optimally and much faster. Moreover, the size of the instances that can be solved to
optimality increased from 40 to 55 units. Thus, not only larger instances can be
optimally solved but also it is useful to found new optimal solutions to the RTVP that
can be used to compare the results obtained with heuristic and metaheuristic methods.

REFERENCES

Adenso-Díaz, B. and Laguna, M. (2006) ‘Fine-tuning of algorithms using fractional

experimental designs and local search’, Operations Research, Vol. 54, pp. 99-114.
Anily, S., Glass, C.A. and Hassin, R. (1998) ‘The scheduling of maintenance service’,

Discrete Applied Mathematics, Vol. 82, pp. 27-42.
Bautista, J., Companys, R. and Corominas, A. (1997) ‘Modelling and solving the

production rate variation problem (PRVP)’, TOP, Vol. 5, pp. 221-239.
Bautista, J., Companys, R. and Corominas, A. (2001) ‘Solving the generalized

apportionment problem through the optimization of discrepancy functions’,
European Journal of Operational Research, Vol. 131, pp. 676-684.

Bollapragada, S., Bussieck, M.R. and Mallik, S. (2004) ‘Scheduling Commercial
Videotapes in Broadcast Television’, Operations Research, Vol. 52, pp. 679-689.

 258

Brusco, M.J. (2008) ‘Scheduling advertising slots for television’, Journal of the
Operational Research Society, Vol. 59, pp. 1363-1372.

Corominas, A., García-Villoria, A. and Pastor, R. (2008) ‘Solving the Response Time
Variability Problem by means of Multi-start and GRASP metaheuristics’, Special
Issue of Frontiers in Artificial Intelligence and Applications on Artificial
Intelligence Research and Development, Vol. 184, pp. 128-137.

Corominas, A., García-Villoria, A. and Pastor, R. (2009a) ‘A Parametric Multi-start
Algorithm for Solving the Response Time Variability Problem’, 7th International
Conference Large-Scale Scientific Computations (LSSC 2009), Sozopol, Bulgaria.

Corominas, A., García-Villoria, A. and Pastor, R. (2009b) ‘Solving the Response Time
Variable Problem by means of a Variable Neighbourhood Search Algorithm’, 13th
IFAC Symposium of Information Control Problems in Manufacturing (INCOM
2009), Moscow, Russia.

Corominas, A., García-Villoria, A. and Pastor, R. (2009c) ‘Using Tabu Search for the
Response Time Variability Problem’, 3rd International Conference on Industrial
Engineering and Industrial Management (CIO 2009), Barcelona and Terrassa,
Spain.

Corominas, A., García-Villoria, A., Pastor, R. (2009d) ‘Resolución del response time
variability problem mediante tabu search’, VIII Evento Internacional de Matemática
y Computación (COMAT’2009), Universidad de Matanzas, Cuba.

Corominas, A., Kubiak, W. and Moreno, N. (2007) ‘Response time variability’, Journal
of Scheduling, Vol. 10, pp. 97-110.

Corominas, A., Kubiak, W. and Pastor, R. (2010) ‘Mathematical programming
modeling of the Response Time Variability Problem’, European Journal of
Operational Research, Vol. 200, pp. 347-357.

Dong, L., Melhem, R. and Mosse, D. (1998) ‘Time slot allocation for real-time
messages with negotiable distance constrains requirements’, Fourth IEEE Real-
Time Technology and Applications Symposium (RTAS'98), Denver, CO. pp. 131-
136.

Eiben, A.E., Hinterding, R. and Michalewicz, Z. (1999) ‘Parameter control in
evolutionary algorithms’, IEEE Transactions on evolutionary computation, Vol. 3,
pp. 124-141.

García, A., Pastor, R. and Corominas, A. (2006) ‘Solving the Response Time
Variability Problem by means of metaheuristics’, Special Issue of Frontiers in
Artificial Intelligence and Applications on Artificial Intelligence Research and
Development, Vol. 146, pp. 187-194.

García-Villoria, A. and Pastor, R. (2008) ‘Solving the Response Time Variability
Problem by means of a psychoclonal approach’, Journal of Heuristics, in press,
corrected proof, available online, 16 July 2008, doi:10.1007/s10732-008-9082-2.

García-Villoria, A. and Pastor, R. (2009a) ‘Introducing dynamic diversity into a discrete
particle swarm optimization’, Computers & Operations Research, Vol. 36, pp. 951-
966.

García-Villoria, A. and Pastor, R. (2009b) ‘Solving the Response Time Variability
Problem by means of the Electromagnetism-like Mechanism’, International Journal
of Production Research, doi: 10.1080/00207540902862545.

García-Villoria, A. and Pastor, R. (2010) ‘Solving the response time variability problem
by means of a genetic algorithm’, European Journal of Operational Research, Vol.
202, pp. 320-327.

 259

García-Villoria, A., Pastor, R. and Corominas, A. (2010) ‘Solving the Response Time
Variability Problem by means of the Cross-Entropy Method’, International Journal
of Manufacturing Technology and Management, Vol. 20, pp. 316-330.

Han, C.C., Lin, K.J. and Hou, C.J. (1996) ‘Distance-Constrained Scheduling and Its
Applications in Real-Time Systems’ IEEE Trans. on Computers, Vol. 45, pp. 814-
826.

Herrmann, J.W. (2007) ‘Generating Cyclic Fair Sequences using Aggregation and
Stride Scheduling’, Technical Report TR 2007-12, University of Maryland, USA.
Available at http://hdl.handle.net/1903/7082.

Herrmann, J.W. (2009) ‘Using aggregation to reduce response time variability in cyclic
fair sequences’, Journal of Scheduling, doi 10.1007/s10951-009-0127-7.

Inman R.R. and Bulfin, R.L. (1991) ‘Sequencing JIT mixed-model assembly lines’,
Management Science, Vol. 37, pp. 901-904.

Kubiak, W. (1993) ‘Minimizing variation of production rates in just-in-time systems: A
survey’, European Journal of Operational Research, Vol. 66, pp. 259-271.

Kubiak, W. (2009) ‘Proportional optimization and fairness’, Springer.
Miltenburg, J. (1989) ‘Level schedules for mixed-model assembly lines in just-in-time

production systems’, Management Science, Vol. 35, pp. 192-207.
Monden, Y. (1983) ‘Toyota Production Systems’, Industrial Engineering and

Management Press, Norcross, GA.
Pastor, R. and Corominas, A. (2000) ‘Branch and Win: OR Tree Search Algorithms for

Solving Combinatorial Optimisation Problems’, TOP, Vol. 12, pp. 169-191.
Steiner, G. and Yeomans S. (1993) ‘Level Schedules for Mixed-Model, Just-in-Time

Processes’, Management Science, Vol. 39, pp. 728-735.
Waldspurger, C.A. and Weihl, W.E. (1994) ‘Lottery Scheduling: Flexible Proportional-

Share Resource Management’, First USENIX Symposium on Operating System
Design and Implementation.

Waldspurger, C.A. and Weihl, W.E. (1995) ‘Stride Scheduling: Deterministic
Proportional-Share Resource Management’, Technical Report MIT/LCS/TM-528,
Massachusetts Institute of Technology, MIT Laboratory for Computer Science.

Wei, W.D. and Liu, C.L. (1983) ‘On a periodic maintenance problem’, Operations
Research Letters, Vol. 2, pp. 90-93.

 261

Using an Ant Colony System to solve the Response Time Variability
Problem

Technical report IOC-DT-P-2009-06, Digital version available at UPCommons
(http://upcommons.upc.edu), 2009.

Using an Ant Colony System to solve the Response Time Variability
Problem†

1..
i

i n
d

=
∑

Albert Corominas, Alberto García-Villoria and Rafael Pastor

Universitat Politècnica de Catalunya, IOC Research Institute, Av. Diagonal 647, Edif.

ETSEIB, p.11, 08028 Barcelona, Spain
{albert.corominas, alberto.garcia-villoria, rafael.pastor}@upc.edu

Abstract. The response time variability problem (RTVP) is a combinatorial optimization problem
which has recently appeared in the literature. This problem has a wide range of real-life applications
in mixed-model assembly lines, multi-threaded computer systems, network environments and others.
The RTVP arises whenever products, clients or jobs need to be sequenced in such a way that the
variability in the time between the points at which they receive the necessary resources is minimized.
This problem is very complex. Swarm intelligence research has proposed some metaheuristics for
solving complex optimization problems: among others, particle swarm optimization (PSO) and ant
colony optimization (ACO). A PSO algorithm called DPSOpoi-cpdyn has been proposed in the
literature to solve efficiently the RTVP. We propose an ACS algorithm—which is an ACO variant—
for solving the RTVP. A computational experiment is carried out and it is shown that, on average, the
ACS algorithm produces better results than DPSOpoi-cpdyn.

Keywords: response time variability, scheduling, ant colony optimization, ant colony system, swarm
intelligence

1. Introduction

The fair sequence concept emerged independently of scheduling problems in a range of environments
including, among others, mixed-model assembly lines, multi-threaded computer systems and network
environments. The common aim of these scheduling problems is to build a fair sequence using n symbols,
where symbol i (i = 1,...,n) must occur di times in the sequence. The fair sequence is the one which
allocates a fair share of positions to each symbol i in any subsequence. This fair or ideal share of positions
allocated to symbol i in a subsequence of length k is proportional to the relative importance (di) of symbol
i with respect to the total copies of competing symbols (equal to). There is no a universal

definition of fairness because several reasonable metrics can be defined according to the specific problem
considered.

In the response time variability problem (RTVP), the fair sequence is the one which minimizes variability
in the distances between any two consecutive copies of the same symbol [1]. In other words, the distance
between any two consecutive copies of the same symbol should be as regular as possible (ideally,
constant).

The RTVP has a broad range of real-life applications. For example, it can be used to regularly sequence
models in the automobile industry [2], to resource allocation in computer multi-threaded systems and

† Supported by the Spanish Ministry of Education and Science under project DPI2007-61905; co-funded by the FEDER.

 262

network servers [3, 4], in the periodic machine maintenance problem [5], in the collection of waste [6]
and to broadcast commercial videotapes in television [7].

The RTVP is NP-hard [1]. Eleven algorithms based on the particle swarm optimization (PSO)
metaheuristic have been proposed in the literature for solving the RTVP [8, 9]. The PSO metaheuristic (as
well as the ant colony optimization (ACO) metaheuristic) falls under the scope of swarm intelligence
research, which studies algorithms inspired by the observed behaviour of swarms [10]. Swarm behaviour
is determined by the interactions of single agents in the group who exchange information with the rest of
the group.

In this paper we propose to use an ACO approach to solve the RTVP. The ACO metaheuristic is inspired
by the behaviour of ants when searching for food and was introduced by Dorigo [11] as a tool for solving
hard combinatorial optimization problems (COPs) such as the RTVP. Real ants secrete pheromones that
they put on the ground as they move between the anthill and sources of food. Ants smell the pheromones
and tend to follow a trail according to its intensity. In ACO algorithms, artificial ants ‘walk’ over the COP
states which are visited by other ants while building solutions. The path taken by an ant is a sequence of
states that represents a solution to the problem. Each state is associated with a pheromone trail which is
represented by a numeric value. The pheromone trails for each state are modified iteratively according to
the fitness of the paths (solutions) built by the ants. At each step, an ant chooses a state of the problem
using a probability which depends on its associated pheromone trail.

Several variants of ACO have been developed in the literature, including Ant System [11], Ant-Q [12],
Ant Colony System [13], MAX-MIN Ant System [14], and Rank-Based Ant System [15]. These variants
differ principally in the procedure by which the pheromone trail is updated [16]. In this paper, the ant
colony system (ACS) is used to solve the RTVP because it is one of the most successful ACO variants in
practice [16].

The proposed ACS algorithm for solving the RTVP was compared with the best PSO algorithm published
in the literature, which is called DPSOpoi-cpdyn [9]. On average, the proposed ACS algorithm improves
on the best previous results.

The remainder of the paper is organized as follows: Section 2 presents a formal definition of the RTVP
and briefly presents the DPSOpoi-cpdyn algorithm. Section 3 describes the basic scheme of the ACS
metaheuristic. Section 4 proposes an ACS algorithm for solving the RTVP. Section 5 presents the
computational experiments and the comparison between our algorithm and DPSOpoi-cpdyn. Finally, some
conclusions are given in Section 6.

2. The Response Time Variability Problem (RTVP)

The RTVP is designed to minimize variability in the distances between any two consecutive copies of the
same symbol and is formulated as follows. Let n be the number of symbols, di the number of copies of the
symbol i to be scheduled (i = 1,…,n), and D the total number of copies (

1..
i

i n
D d

=

= ∑). Let s be a solution of

an instance in the RTVP that consists of a circular sequence of copies (s = s1s2…sD), where sj is the copy
sequenced in position j of sequence s. For all symbol i in which 2id ≥ , let i

kt be the distance between the
positions in which copies k + 1 and k of symbol i are found (i.e. the number of positions between them,
where the distance between two consecutive positions is considered equal to 1). Since the sequence is

circular, position 1 comes immediately after position D; therefore, i
di

t is the distance between the first

copy of symbol i in a cycle and the last copy of the same symbol in the preceding cycle. Let it be the

average distance between two consecutive copies of symbol i (
i

i d
Dt =). For all symbol i in which di

=1, it1 is equal to it . The aim is to minimize the metric response time variability (RTV) which is defined
by the following expression:

 263

2

1 1
()

idn
i
k i

i k
RTV t t

= =

= −∑∑ (1)

For example, let 3n = , 3Ad = , 2Bd = and 2Cd = ; thus, 7D = , 7

3At = , 7
2Bt = and 7

2Ct = . Any

sequence such that contains exactly di times the symbol i ()i∀ is a feasible solution. For example, the

sequence (A, B, A, C, B, A, C) is a feasible solution, where: () () ()2 2 27 7 72 3 23 3 3RTV  = − + − + − + 
 

() () () ()2 2 2 27 7 7 7 53 4 3 42 2 2 2 3
   − + − + − + − =   
   

.

As explained above, the best PSO algorithm for solving the RTVP is DPSOpoi-cpdyn [9]. PSO is a
populational metaheuristic algorithm designed by Kennedy and Eberhart [17] which is based on swarm
intelligence obtained from the observed social behaviour of flocks of birds when they search for food.
The population or swarm is composed of particles (birds), whose attributes are an m-dimensional real
point (which represents a feasible solution) and a velocity (the movement of the point in the m-
dimensional real space). The velocity of a particle is typically a combination of three types of velocities:
1) the inertia velocity (i.e., the previous velocity of the particle); 2) the velocity to the best point found by
the particle; and 3) the velocity to the best point found by the swarm. These components of the particles
are modified iteratively by the algorithm as it searches for an optimal solution. Although the PSO
algorithm was originally designed for m-dimensional real spaces, DPSOpoi-cpdyn is adapted to work with
a sequence that represents the solution. Moreover, DPSOpoi-cpdyn introduces random modifications to
the points of the particles with a frequency that changes dynamically according to the homogeneity of the
swarm (for more details, see [9]).

3. ACO and Ant Colony System

The ACO metaheuristic was initially designed by Dorigo to solve the traveling salesman problem [11].
ACO algorithms have been used to solve many combinatorial optimization problems (COPs) [10]. ACO
was initially inspired by the biological behaviour of ants but was soon modified to solve COPs more
efficiently. ACO differs from real ants in the following ways [10]: 1) artificial ants move through a
discrete environment (i.e., through a finite set of states of the problem); 2) heuristic information is also
considered when the solutions are being built; 3) the pheromone update is performed only by some ants
and often after a solution has been constructed; and 4) ACO may include artificial mechanisms such as
local search and look-ahead.

The first step in solving a COP with ACO is to associate a graph G = (N, E), called construction graph,
with the problem. The nodes in the set N are usually components of the solution, and the artificial ants
build a solution incrementally by moving from node to node along the edges of the set E. Each edge has
an associated pheromone trail value and a heuristic value. The ants combine the pheromone and the
heuristic information to select the next edge probabilistically. Fig. 1 shows a classical scheme of the ACO
metaheuristic, which consists in setting an initial value (τ0) for each pheromone trail and then looping
over the following three components until a stop condition is reached: 1) the construction of a solution by
the ants; 2) a local search from some or all the solutions (this component is optional); and 3) the update of
the pheromone trail values.

Fig. 1. Scheme of the ACO metaheuristic

1. Set the values of the ACO parameters
2. Initialize the pheromone trail values
3. While stopping condition is not reached do:
4. ConstructAntSolutions
5. ApplyLocalSearch [optional]
6. UpdatePheromones
7. End While

 264

The first ACO metaheuristic proposed in the literature was Ant System [11]. Several other ACO
metaheuristics have been introduced to improve the performance of Ant System. All ACO metaheuristics
use the scheme shown in Fig. 1, but they contain different definitions for constructing solutions and
updating pheromones (Steps 4 and 6 in Fig. 1). For more extensive information about ACO, see the book
by Dorigo and Stützle [18].

Dorigo and Blum [16] found that ACS is one of the most successful ACO metaheuristics in practice.
Therefore, we decided to use ACS to solve the RTVP. In the following sections we explain how the
solution construction, the local search and the pheromone update are applied in ACS [10].

ConstructAntSolutions. Given a construction graph G = (N, E), each ant constructs a solution starting
with an empty partial solution sp. Then, a component from N is added to sp at each construction step until
the solution is complete. The next component to be added is determined by selecting at random an edge
from the set E(sp), which is the subset of E composed of the eligible edges for the partial solution sp. The
probability that an edge eij (where i is the last component added to sp) will be chosen is given by the
following equation:

0
| ()

0
| ()

()

1 if and arg max ()

0 if and arg max ()(|)

()
 if

()

p
ik

p
ik

p
ik

ik ik
k N e E s

p ik ik
ij k N e E s

ij ij

ik ik
e E s

q q j e

q q j ep e s

e
q

e

α β

α β

α β

α β

τ η

τ η

τ η
τ η

∈ ∈

∈ ∈

∈

≤ = ⋅

≤ ≠ ⋅=

⋅
>

⋅∑ 0q













(2)

where q is a random number distributed uniformly over [0,1], q0 is a parameter of ACS, τij is the
pheromone trail values associated with the edge eij, η(eij) is the heuristic information that indicates how
desirable it is to choose the edge eij, and α and β are two positive parameters of ACS that weight the
importance of the pheromone value and the heuristic information, respectively.

ApplyLocalSearch. Optional actions called daemon actions could be performed once the solutions have
been constructed. The most commonly used daemon action is to apply a local search to the solutions.
Although this component is optional, ACO algorithms and their variants perform better if a local search is
applied [19].

UpdatePheromones. Pheromones are updated according to the locally optimized solutions. This
component is designed to increase the pheromone trail values associated with the edges used by good
solutions and to decrease the pheromone trail values associated with the edges used by bad solutions.
ACS applies two pheromone updates: the offline pheromone update and the local pheromone update. The
offline pheromone update is applied at the edges belonging to the best solution bs (either the best current
solution or the best solution found by the algorithm) using the following formula:

1(1) if belong to ()
 otherwise

ij ij
ij

ij

e bsf bsρ τ ρ
τ

τ

 − ⋅ + ⋅= 


(3)

where (0,1]ρ ∈ is a parameter called the evaporation rate and f is the objective function of the problem to
be minimized.
The local pheromone update is performed by all ants when an edge eij is chosen according to the
following formula:

0(1)ij ijτ ϕ τ ϕ τ= − ⋅ + ⋅ (4)

where (0,1)ϕ ∈ is a parameter called the pheromone decay coefficient and τ0 is the initial value of the
pheromone trails. The local update is intended to diversify the search performed by subsequent ants in the

 265

current iteration of ACS by reducing the pheromone value of the edges that are chosen by the previous
ants. Note that τij only decreases if τ0 is smaller than the current τij; consequently, τ0 is usually set to a low
value [20].

4. Using ACS to Solve the RTVP

The ACS scheme was described in the previous section. Five main points need to be specified when
applying ACS to the RTVP. Section 4.1 presents the construction graph associated with the RTVP and
explains how the graph is covered by the ants in order to build a solution. Section 4.2 explains the
heuristic information used in Equation (2). Section 4.3 describes the local search procedure. Section 4.4
gives the best solution used in Equation (3). Section 4.5 explains the stop condition. Finally, Section 4.6
explains the fine-tuning of the parameter values of the ACS algorithm.

4.1. Defining the Construction Graph and Building a Solution

In order to make the explanation more understandable, the example introduced in Section 2 is used: n = 3;
dA = 3, dB = 2, dC = 2; and D = 7.
Let the construction graph G = (N, E). The set of nodes N is the union of the sets N1 and N2, where

{ }1 :1 1, 1 1i
k iN n i n k d= ≤ ≤ − ≤ ≤ − and { }2 :1 1N t t D= ≤ ≤ − . Note that the symbol n is not included in

N1 because the positions of the copies of this symbol are fixed when the previous symbols are sequenced.
The node i

kn belonging to N1 represents the copy k of the symbol i; the node t belonging to N2 represents

a distance between two copies of the same symbol. Therefore, in the example we have { }1 1 2 1, ,A A BN n n n=

and { }2 1, 2,3, 4,5,6 .N = Let 1 2E N N⊂ × , where the edge (),i
ikt ke n t= represents that the copy k + 1 of

the symbol i is sequenced at distance t of the copy k of the symbol i.

An ant starts to generate a solution sequence by setting copy 1 of symbol 1 to the first position of the
sequence (see the current sp of the example in Fig. 2a). Then, an edge has to be chosen at random from
the set { }1,1, 1() :1 1p

tE s e t D d= ≤ ≤ − + using the probabilities defined by Equation (2). The choice of the

edge will fix the position (let it be called 1
2p) of the second copy of symbol 1 to the value 1 + t. Note that

the highest possible position 1
2p is 1 2D d− + , so the remaining copies of symbol 1 can be sequenced at

the positions 1 1
2 21, 2, ,p p D+ +  . In the example, let us suppose that the edge chosen at random is eA,1,2

(i.e., t = 2) and, therefore, 2 1 2 3Ap = + = (see current sp in Fig. 2b). The ant then chooses an edge at

random from the set { }1
1,2, 1 2() :1 (2) 1 .p

tE s e t D d p= ≤ ≤ − − − + This process continues for copies 3, 4,
…, d1 -1 of symbol 1. The set of eligible edges when copy k of symbol 1 has been sequenced is

{ }1
1, , 1() :1 () 1 ,p

k t kE s e t D d k p= ≤ ≤ − − − + where 1
kp is the position at the sequence of copy k of symbol

1. In the example, { },2,() :1 7 (3 2) 3 1 ,p
A tE s e t= ≤ ≤ − − − + i.e., { },2,1 ,2,2 ,2,3 ,2,4, , ,A A A Ae e e e . Next, an edge

is chosen at random: for example, ,2,3Ae (i.e., t = 3). Therefore, 3 3 3 6Ap = + = (see Fig. 2c). Note that the
distance between the first copy of symbol 1 and the last copy of the same symbol in the preceding cycle is
determined when

1

1
dp is fixed.

When all copies of symbol 1 have been sequenced, the process is repeated for the copies of symbol 2,
then symbol 3, and so on up to the penultimate symbol. The first copy of each symbol is always
sequenced at the first free position in the sequence. The other copies of each symbol are sequenced in the
same way as those of symbol 1, but the eligible edges must be chosen in such as way that the copies are
not sequenced at an occupied position. In the example, the first copy of symbol B is placed in the first free
position of the sequence, and therefore 1 2Bp = (see Fig. 2d). Next, an edge has to be chosen from

{ },1,2 ,1,3 ,1,5() , , .p
B B BE s e e e= Note that edges ,1,1Be and ,1,4Be are not eligible because if edge ,1,1Be is chosen

(i.e., t = 1), 2 2 1 3Bp = + = and position 3 is already occupied by symbol A (and analogously for edge

 266

,1,4Be). Let us suppose that edge ,1,3Be is chosen at random. Therefore, 2 2 3 5Bp = + = (see Fig. 2e).
Finally, the sequence is completed with the copies of symbol C (see Fig. 2f).

Fig. 2. Construction of a solution sequence

4.2. Heuristic Information

The heuristic information for the edge , ,i k te is given by the following equation:

, , 2

1()
()i k t

i

e
t t

η
ε

=
− +

 (5)

which expresses the desirability for distance t to be equal to the ideal distance of symbol i; ε is a small
value (10-6) to prevent a division by zero if the two distances are equal.

4.3. Local Search

The local search procedure is applied as follows. A local search is performed iteratively in a
neighbourhood that is generated by interchanging each pair of consecutive copies of the sequence that
represents the current solution. The best solution in the neighbourhood is then chosen, and the
optimization stops when a certain number of iterations are reached or when no neighbouring solution is
better than the current solution.

During the first iterations of the ACS algorithm we observed that the solutions constructed by the ants
were still relatively poor. Consequently, it may be very computationally expensive to apply a local search
until a local optimum is found when large instances are being solved, so only a few iterations of the ACS
algorithm can be run. Therefore, the number of iterations (which is a parameter of the algorithm that we
shall call lsiter) is limited to reduce the time spent on the local search.

4.4. Best Solution Used in the Offline Pheromone Update

Only the best solution is considered for the offline pheromone update (Equation (3)). This best solution
can be either the best solution obtained in the current iteration or the best solution obtained by the
algorithm during its execution. We conducted a brief experiment and found that the best solution obtained
in the current iteration is clearly the preferable option. Therefore, in this paper we only consider the ACS
algorithm that uses the first option.

4.5. Stop Condition

The ACS algorithm stops once it has run for a preset time.

A (a)

A A (b)

A A A (c)

A B A A (d)

A B A B A (e)

A B A C B A C (f)

 267

4.6. Fine-tuning the ACS Algorithm Parameters

Fine-tuning the parameters of a metaheuristic algorithm is almost always a difficult task. Although the
parameter values may have a very strong effect on the results of the metaheuristic for each problem, they
are often selected using one of the following methods, which are not sufficiently thorough [21, 22]: 1) “by
hand”, based on a small number of experiments that are not referenced; 2) using the general values
recommended for a wide range of problems; 3) using the values reported to be effective in other similar
problems; or 4) with no apparent explanation.

Adenso-Díaz and Laguna [22] proposed a new technique called CALIBRA for fine-tuning the parameters
of heuristic and metaheuristic algorithms. CALIBRA is based on using conjointly Taguchi’s fractional
factorial experimental designs and a local search procedure.

CALIBRA was used in [9] to fine-tune DPSOpoi-cpdyn, and we used the same technique to fine-tune our
ACS algorithm. The following parameter values were obtained: number of ants = 20, q0 = 0.9, α = 1.5, β
= 1.75, τ0 = 0.00013, ρ = 0.87, φ = 0.13 and lsiter = 50.

Since CALIBRA cannot fine-tune more than five parameters, the ACS algorithm was fine-tuned in two
steps. In the first step, α and β were set to 1 (that is, the pheromone and heuristic information had the
same weight), τ0 was set to a small value (0.01), as is commonly done in the literature [20], and the
remaining parameters (number of ants, q0, ρ, φ and lsiter) were fine-tuned. In the second step, the number
of ants, q0 and lsiter were set to the values obtained in the first step and the remaining parameters (α, β, τ0,
ρ, and φ) were fine-tuned.

5. Computational Experiment

The computational experiment was carried out for the same instances that were used in [9]. That is, the
algorithms were run for 740 instances which were grouped into four classes (185 instances in each class)
according to size. The instances in the first class (CAT1) were generated using a random value of D
(number of copies) distributed uniformly between 25 and 50, and a random value of n (number of
symbols) distributed uniformly between 3 and 15; for the second class (CAT2), D was between 50 and
100 and n between 3 and 30; for the third class (CAT3), D was between 100 and 200 and n between 3 and
65; and for the fourth class (CAT4), D was between 200 and 500 and n between 3 and 150. For all
instances and for each symbol i = 1,…,n, a random value of di (number of copies of symbol i) was

between 1 and 1
2.5

D n− + so that
1..

i
i n

d D
=

=∑ . Both algorithms were coded in Java and the

computational experiment was carried out using a 3.4 GHz Pentium IV with 1.5 GB of RAM.

The algorithms were run for 50 seconds for each instance. Table 1 shows the average RTV values to be
minimized for the global of 740 instances and for each class of instances (CAT1 to CAT4) obtained with
the two algorithms.

Table 1. Average RTV values for a computing time of 50 seconds
 Global CAT1 CAT2 CAT3 CAT4
ACS algorithm 1,651.48 10.92 36.83 504.84 6,053.31
DPSOpoi-cpdyn 4,625.54 16.42 51.34 610.34 17,824.04

Table 1 shows that the global average results of the ACS algorithm for all the instances considered are
64.23% better than the results of DPSOpoi-cpdyn. If we consider the results by class, the ACS algorithm
also obtains better results than DPSOpoi-cpdyn: the results obtained with the ACS algorithm are 33.50%,
28.26%, 17.29% and 66.04% better for CAT1 instances, CAT2 instances, CAT3 instances and CAT4
instances, respectively. Considerable improvements are observed in all classes, particularly for the biggest
instances (CAT4), which are the most difficult to solve.

We examined also the dispersion of the results. A measure of the dispersion (let it be called σ) of the RTV
values obtained by each algorithm alg = {ACS algorithm, DPSOpoi-cpdyn } was defined for a given
instance, ins, according to the following expression:

 268

2() ()

()

RTV RTV
(,)

RTV

alg best
ins ins

best
ins

alg insσ
 −

=  
 

 (6)

where ()RTV alg

ins is the RTV value of the solution obtained with the algorithm alg for the instance ins, and
()RTV best
ins is the best RTV value of the solutions obtained with the two algorithms for the instance ins.

Table 2 shows the average σ dispersion for the total number of instances and for each class.

Table 2. Average σ dispersion for the best solution found
 Global CAT1 CAT2 CAT3 CAT4
ACS algorithm 0.59 ≈ 0.00 0.03 2.22 0.11
DPSOpoi-cpdyn 2.66 0.82 0.61 1.70 7.53

Table 2 shows that the ACS algorithm produces the lowest average σ dispersion for the total number of
cases. That is, the ACS algorithm not only obtains the best RTV values but also exhibits more stable
behaviour. If we consider the results in Table 2 by class, we can see that the CAT3 instances are an
exception to this pattern. Surprisingly, the dispersion of results obtained with DPSOpoi-cpdyn for CAT3
instances is lower than that obtained with the ACS algorithm, although the ACS algorithm produces
better RTV values. This is due to the presence of an outlier, since the solution obtained with the ACS
algorithm is much worse than that obtained with DPSOpoi-cpdyn for only one CAT3 instance. If this
outlier is disregarded, the average σ dispersions of the produced by the ACS algorithm and DPSOpoi-
cpdyn are 0.89 and 1.70, respectively.

A computing time of 50 seconds may not be long enough for the algorithms to converge for the largest
instances (CAT4 instances). Table 3 shows the average RTV values for the total number of instances and
for each class of instances (CAT1 to CAT4) when the algorithms are run for 1,000 seconds.

Table 3. Average RTV values for a computing time of 1,000 seconds
 Global CAT1 CAT2 CAT3 CAT4
ACS algorithm 1,208.81 10.46 31.17 337.31 4,456.32
DPSOpoi-cpdyn 1,537.34 14.35 46.55 143.96 5,944.51

When a computing time of 1,000 seconds is used—which seems to be long enough for both algorithms to
converge (see Fig. 3)—the ACS algorithm is 21.37% better than DPSOpoi-cpdyn for the total number of
instances. If we consider the results by class, the ACS algorithm is 27.11%, 33.04% and 25.03% better
than DPSOpoi-cpdyn for CAT1, CAT2 and CAT4 instances, respectively. However, DPSOpoi-cpdyn
performs better for the CAT3 instances.

Fig. 3. Average RTV values over the computing time

 269

6. Conclusions

In this paper, the response time variability problem (RTVP) is solved. This scheduling problem arises in a
variety of real-life environments including mixed-model assembly lines, multi-threaded systems, network
servers, periodic machine maintenance, waste collection and television broadcast. The aim of the RTVP is
to minimize the variability in the distances between any two consecutive copies of the same symbol.

Since the RTVP is an NP-hard problem, heuristic and metaheuristic methods are needed to solve real-life
instances. Several metaheuristics have been developed for solving hard optimization problems based on
biological swarm intelligence, including the PSO and ACO metaheuristics. The best PSO algorithm for
solving the RTVO is called DPSOpoi-cpdyn [9]. An ant colony system (ACS), which is a variant of the
ACO metaheuristic, has been successfully applied to combinatorial optimization problems. We propose
an ACS algorithm for solving the RTVP, and the computational experiment showed that the ACS
algorithm improves DPSOpoi-cpdyn.

References

1. Corominas, A., Kubiak, W., Moreno, N.: Response time variability. Journal of Scheduling, 10, 97--
110 (2007)

2. Monden, Y.: Toyota Production Systems. Industrial Engineering and Management Press, Norcross,
GA (1983)

3. Waldspurger, C.A., Weihl, W.E.: Stride Scheduling: Deterministic Proportional-Share Resource
Management. Technical Report MIT/LCS/TM-528. Massachusetts Institute of Technology, USA
(1995)

4. Dong, L., Melhem, R., Mosse, D.: Time slot allocation for real-time messages with negotiable
distance constrains requirements, In: 4th IEEE Real-Time Technology and Applications Symposium,
131--136. Denver (1998)

5. Anily, S., Glass, C.A., Hassin, R.: The scheduling of maintenance service. Discrete Applied
Mathematics, 82, 27--42 (1998)

6. Herrmann, J.W.: Generating Cyclic Fair Sequences using Aggregation and Stride Scheduling.
Technical Report. University of Maryland, USA (2007)

7. Brusco, M.J.: Scheduling advertising slots for television. Journal of Operational Research Society,
59, 1363--1372 (2008)

8. García, A., Pastor, R., Corominas, A.: Solving the Response Time Variability Problem by means of
metaheuristics. Special Issue of Frontiers in Artificial Intelligence and Applications on Artificial
Intelligence Research and Development, 146, 187--194 (2006)

9. García-Villoria, A., Pastor, R.: Introducing dynamic diversity into a discrete particle swarm
optimization. Computers & Operations Research, 36, 951—966 (2009)

10. Dorigo, M., Socha, K.: An Introduction to Ant Colony Optimization. In: Handbook of
Approximation Algorithms and Metaheuristics. T. F. Gonzalez (2007)

11. Dorigo, M.: Optimization, learning and natural algorithms. Ph.D. Thesis. Department of Electronics,
Politecnico di Milano, Italy (1992)

12. Gambardella, L.M., Dorigo, M.: Ant-Q: A reinforcement learning approach to the traveling salesman
problem. In: 20th international conference on machine learning, 252--260 , Prieditis and Russell,
Palo Alto (1995)

13. Gambardella, L.M., Dorigo, M.: Solving symmetric and asymmetric TSPs by ant colonies. In: 1996
IEEE international conference on evolutionary computation, 622--627, IEEE Press, New York (1996)

14. Stützle, T., Hoos, H.: MAX-MIN Ant System. Future Generation Computer Systems, 16, 889--914
(1996)

15. Bullnheimer, B., Hartl, R.F., Strauss, C.: A new rank-based version of the ant system: A
computational study. Central European Journal of Operations Research and Economics, 7, 25--38
(1999)

16. Dorigo, M., Blum, C.: Ant colony optimization theory: A survey. Theoretical Computer Science,
344, 243--278 (2005)

17. Kennedy, J., Eberhart, R.C.: Particle swarm optimization. In: IEEE International Conference on
Neural Networks. Australia (1995)

18. Dorigo, M., Stützle, T.: Ant colony optimization. MIT Press, Cambridge (2004)

 270

19. Yagmahan, B., Yenisey, M.M.: Ant colony optimization for multi-objective flow shop scheduling
problem. Computer and Industrial Engineering, 58, 411--420 (2008)

20. Lo, S-T., Chen, R-M., Huang, Y-M., Wu C-L.: Multiprocessor system scheduling with precedence
and resource constraints using an enhanced and colony system. Expert Systems with Applications,
34, 2071--2081 (2008)

21. Eiben, A.E., Hinterding, R., Michalewicz, Z.: Parameter control in evolutionary algorithms. In: IEEE
Transactions on evolutionary computation, 3, 124--141 (1999)

22. Adenso-Díaz, B., Laguna, M.: Fine-tuning of algorithms using fractional experimental designs and
local search. Operations Research, 54, 99--114 (2006)

 271

An enhanced metaheuristic for solving the response time variability
problem

Technical report IOC-DT-P-2009-07, Digital version available at UPCommons
(http://upcommons.upc.edu), 2009.

An enhanced metaheuristic for solving the response
time variability problem†

Albert COROMINAS, Alberto GARCÍA-VILLORIA

*

The response time variability problem (RTVP) is a combinatorial optimisation problem
that occurs whenever products, clients or jobs need to be sequenced so as to minimise
variability in the time between the instants at which they receive the necessary
resources. This problem has a broad range of real-world applications: among others, to
sequencing on mixed-model assembly lines under JIT (Monden, 1983; Miltenburg,
1989; Kubiak, 1993), resource allocation in computer multi-threaded systems such as
operating systems, network servers and media-based applications (Waldspurger and
Weihl, 1994 and 1995; Dong et al., 1998; Bar-Noy et al., 2002), in the collection of
waste (Herrmann, 2007), in the schedule of commercial videotapes for television
(Bollapragada et al., 2004), in the design of sales catalogues (problem introduced in
Bollapragada et al., 2004),and in the periodic machine maintenance problem (Wei and
Liu, 1983; Anily et al., 1998). These real-life problems are usually considered as
distance-constrained scheduling problems (Han et al., 1996; Dong et al., 1998).
Although the main objective of the distance-constrained problem and the RTVP is to

and Rafael PASTOR
Institute of Industrial and Control Engineering (IOC)

Universitat Politècnica de Catalunya (UPC)
{albert.corominas / alberto.garcia-villoria / rafael.pastor}@upc.edu

Abstract. The response time variability problem (RTVP) is a hard scheduling problem which
has been recently formalised in the literature. This problem has a wide range of real-world
applications in mixed-model assembly lines, multi-threaded computer systems, machine
maintenance, waste collection and others. The RTVP arises whenever products, clients or jobs
need to be sequenced in such a way that the variability in the time between the points at which
they receive the necessary resources is minimised. The RTVP is a NP-hard problem, heuristic
and metaheuristic techniques are needed to solve it. The best results in the literature for the
RTVP were obtained with a hybrid metaheuristic. We propose three algorithms based on
simulated annealing to solve the RTVP. A computational experiment is carried out and it is
shown that, on average, two of the three proposed algorithms improve the best methods
published in the literature.

Keywords: response time variability, regular sequences, simulated annealing, multi-start,
metaheuristics

1. Introduction

† Supported by the Spanish Ministry of Education and Science under project DPI2007-61905; co-funded by the ERDF.
* Corresponding author: Alberto García-Villoria, Institute of Industrial and Control Engineering (IOC), Av. Diagonal 647 (Edif.
ETSEIB), 11th floor, 08028 Barcelona, Spain; tel.: +34 93 4054010; e-mail: alberto.garcia-villoria@upc.edu

 272

find as regular a sequence as possible, the advantage of the RTVP is that it will always
come up with a feasible solution, contrary to the distance-constrained problem as well
as other distance-constrained problems (e.g., see Han et al., 1996). For a good
introduction to the RTVP, see Corominas et al. (2009a)

The RTVP is formulated as follows. Let n be the number of symbols, id the number of
copies to be scheduled of symbol i (i = 1,…,n) and D the total number of copies
(

1.. ii n
D d

=
= ∑). Let s be a solution of a RTVP instance that consists of a circular

sequence of copies (Dssss 21=), where sj is the copy sequenced in position j of
sequence s. For all symbol i in which 2id ≥ , let i

kt be the distance between the positions
in which the copies k + 1 and k of symbol i are found (i.e. the number of positions
between them, where the distance between two consecutive positions is considered
equal to 1). Since the sequence is circular, position 1 comes immediately after position
D; therefore, i

di
t is the distance between the first copy of symbol i in a cycle and the last

copy of the same symbol in the preceding cycle. Let it be the average or ideal distance
between two consecutive copies of symbol i (

i
i d

Dt =). For all symbol i in which

1=id , it1 is equal to it . The objective is to minimise the metric response time
variability (RTV) which is defined by the following expression:

 2

1 1
()

idn
i
k i

i k
RTV t t

= =

= −∑∑ (1)

The RTVP has been demonstrated to be NP-hard (Corominas et al., 2007).

The objective of this work is to improve the solution of the RTVP. To achieve it, we
have used simulated annealing (SA). The remainder of the paper is organized as
follows. The state of the art with the methods proposed in the literature to solve the
RTVP is given in Section 3. Three SA-based algorithms are proposed in Section 3 to
improve the solution of the RTVP. A computational experiment is carried whose results
are shown and discussed in Section 4. Finally, some conclusions are given in Section 5.

2. State of the art

Although the RTVP is in general NP-hard, the two-symbol case can be optimally solved
with a polynomial algorithm proposed in Corominas et al. (2007). For the other cases,
Corominas et al. (2007) proposed a mixed-integer linear programming (MILP) model,
which was enhanced in Corominas et al. (2010). Anyway, only small instances can be
solved optimally in a practical time (the limit size is 40 copies to be sequenced).

The RTVP problem has been first time solved in Waldspurger and Weihl (1994) using a
method that authors called lottery scheduling, which consists on generating a solution at
random. Later, Waldspurger and Weihl (1995) used the Jefferson method of
apportionment (Balinski and Young, 1982), a greedy heuristic algorithm which they
renamed as the stride scheduling technique. Herrmann (2007) solved the RTVP by
applying a heuristic algorithm based on the stride scheduling technique. An aggregation

 273

approach was used in Herrmann (2009). Corominas et al. (2007) proposed also the
Jefferson method together with other four greedy heuristic algorithms and a local search
method.

Metaheuristic approaches have been intensively proposed during the last three years.
García et al. (2006) proposed a multi-start (MS), a greedy randomized adaptive search
procedure (GRASP) and four variants of a discrete particle swarm optimisation (PSO)
algorithm. An enhanced multi-start algorithm and an enhanced GRASP algorithm were
proposed in Corominas et al. (2008), and other ten discrete PSO algorithms were
proposed in García-Villoria and Pastor (2009a). A cross-entropy method (CE)
algorithm, a psychoclonal algorithm, an electromagnetism-like mechanism (EM)
algorithm, and a genetic algorithm (GA) were used in García-Villoria et al. (2007) and
García-Villoria and Pastor (2008, 2009b, 2010), respectively. Two tabu search (TS)
algorithms and a variable neighbourhood search (VNS) algorithm were proposed in
Corominas et al. (2009b, 2009c, 2009d), respectively. Finally, three hybrid algorithms
(MS+VNS, TS+VNS and PSO+VNS), have been proposed in Corominas et al. (2009e).

All these metaheuristic algorithms, except the CE algorithm, have been tested on the
same set of benchmark instances. The set is composed of 740 instances which were
grouped into four classes (from CAT1 to CAT4 with 185 test instances in each class),
where CAT1 instances are the smallest instances and CAT4 instances are the largest
instances. Tables 1 and 2 show the average RTV values of the solutions obtained with
the algorithms for 50 and 1,000 computing seconds, respectively (if there are more than
one algorithm based on the same metaheuristic, only the results of the best of them are
shown). The results are shown for the 740 instances and for each class of instances
(CAT1 to CAT4).

Table 1. Average RTV values for a computing time of 50 seconds

 Global CAT1 CAT2 CAT3 CAT4
MS+VNS 62.17 10.24 21.23 47.46 169.76
TS+VNS 71.57 10.38 24.00 53.99 197.90
PSO+VNS 60.03 10.47 22.42 49.37 157.86
VNS 63.96 10.73 23.69 51.80 169.64
TS 210.47 10.26 22.56 73.26 735.78
Psycho 235.68 14.92 44.25 137.07 746.50
MS 2,106.01 11.56 38.02 154.82 8,219.65
GRASP 2,308.69 13.00 60.45 270.93 8,890.37
EM 3,747.05 19.14 54.54 260.79 14,653.72
PSO 4,625.54 16.42 51.34 610.34 17,824.04

The best results have been achieved with the three hybrid algorithms Corominas et al.
(2009e). The algorithms are based on hybridizing the TS algorithm proposed in
Corominas et al. (2009c), the MS algorithm proposed in Corominas et al. (2008) and a
PSO algorithm proposed in García-Villoria and Pastor (2009a) with the VNS algorithm
proposed in Corominas et al. (2009d), respectively. All three algorithms obtain very
similar results, but the MS+VNS algorithm is slightly better than the TS+VNS and

 274

PSO+VNS algorithms. The MS+VNS algorithm consist on embedding the VNS
algorithm in a MS scheme. That is, several executions of the VNS algorithm proposed
in Corominas et al. (2009d) are done from a different initial, random starting solution.

Table 2. Average RTV values for a computing time of 1,000 seconds

 Global CAT1 CAT2 CAT3 CAT4
MS+VNS 54.95 10.24 20.94 43.26 145.35
TS+VNS 55.05 10.24 22.48 47.66 139.84
PSO+VNS 55.86 10.45 22.00 46.80 144.22
VNS 62.24 10.73 23.69 51.40 163.15
TS 78.62 10.24 21.16 48.12 234.96
Psycho 161.60 14.90 39.90 122.38 469.23
MS 169.25 10.51 31.21 123.27 512.02
GRASP 301.90 11.56 50.45 227.50 918.10
EM 330.29 18.64 52.97 157.20 1,092.36
PSO 1,537.34 14.35 46.55 143.96 5,944.51

3. Three SA-based algorithms for the RTVP

Bollapragada et al. (2004) presented a real-life case of a problem that can be considered
as a variant of the RTVP. There are two differences between this variant with respect to
the RTVP defined in the Introduction: 1) the problem faced by Bollapragada et al. is a
non-cyclic problem instead of a cyclic one; and 2) the discrepancies between real and
ideal distances is penalized linearly instead of using a square penalization. The metric to

be minimised in Bollapragada et al. (2004) is
1

1 1

idn
i
k i

i k
t t

−

= =

−∑∑ .

To solve the non-cycling variant of the RTVP in which the television advertising slots
are scheduled, Brusco (2008) proposed a SA algorithm. However, no SA approach has
been proposed to solve the RTVP to date. We propose three algorithms based on SA.
The first algorithm is a straightforward application of the classical SA. The second
algorithm is a hybridization of the first proposed SA algorithm with a MS scheme.
Finally, the third algorithm is an extension of the second one in which several
neighbourhood structures are used.

We first introduce in Subsection 3.1 the SA metaheuristic. Then the three SA-based
algorithms are explained in Subsections 3.2, 3.3 and 3.4, respectively. Finally, the fine-
tuning of the parameters of all algorithms is explained in Subsection 3.5.

3.1. Simulated Annealing

The Simulated Annealing metaheuristic (SA) was proposed in Kirkpatrick et al. (1983)
to solve complex combinatorial optimisation problems, as it is the RTVP. Since then,
SA has been successfully applied for solving a wide range of combinatorial
optimisation problems (Henderson et al., 2003).

 275

SA can be seen as a variant of a local search procedure in which is allowed moving to a
worse solution in small probability. The objective of accepting worse solutions is to
avoid being trapped into a local optimum. The metaheuristic starts from an initial
solution, which is initially the current solution. Then, at each iteration, a new solution
from the neighbourhood of the current solution is considered. If the neighbour is not
worse than the current solution, then the neighbour becomes the current solution; in the
case that is worse, the neighbour can become also the current solution with a probability
that depends on: 1) how worse is the neighbour, and 2) the value of a parameter called
temperature, which is decreased every certain number of iterations. The pseudo-code of
SA (when minimising the objective function) is shown in Figure 1.

Let f(s) be the objective function to be minimised of the solution s
Let N(s) the neighbourhood of the solution s
Let А(t) the new temperature calculated from the temperature t

0. Set the parameters:
 t0 (initial temperature)
 itt (number of iterations during the temperature remains equal)
1. t := t0;
2. s := Generation of the initial solution
3. While stopping criterion is not reached do:
4. i :=0
5. While i < itt do:
6. s’ := choose at random a solution from N(s)
7. Δ := f(s’) – f(s)
8. If Δ ≤ 0 Then s := s’
9. If Δ > 0 Then s := s’ with probability exp(-Δ/t)
10. i := i + 1
11. End while
12. t := А(t)
13. End while
14. Return the best solution found

Figure 1. Pseudo-code of SA

3.2. A straightforward SA algorithm (SAN1)

Several decisions have to be taken before applying the general scheme of SA to solve
the RTVP. Some of these decisions are general and the others are specific for the
problem to solve. Specific decisions for the RTVP are the representation of solutions
and the neighbourhood of each solution (N(s)), the generation of the initial solution and
the objective function (f(s)). General decisions are the way to decrease the temperature
(А(t)) and the stopping criterion of the algorithm. Moreover, the parameters of the
algorithm need to be fine-tuned before the execution (it is explained in Section 3.5).

3.1.1. Representation and neighbourhood of solutions

The representation of a solution is the sequence of symbols, in which each symbol i
appears di (the number of copies of symbol i to be sequenced) times. The
neighbourhood of a solution is generated interchanging each pair of two consecutive
units of the sequence that represents the solution (let this neighbourhood be called N1).
This neighbourhood has been successfully applied when solving the RTVP with a

 276

Multi-start and GRASP algorithm (Corominas et al., 2008) and a VNS algorithm
(Corominas et al., 2009d).

3.2.2. Initial solution

The initial solution is generated using the lottery scheduling (Waldspurger and Weihl,
1994) as it is done in previous works published in the literature when an initial solution
is required. That is, for each position, a symbol to be sequenced is randomly chosen.
The probability of each symbol is equal to the number of copies of this symbol that
remain to be sequenced divided by the total number of units that remain to be
sequenced. The random generation of the initial solution for a SA algorithm is usually
done in the literature (Dowsland and Adenso-Díaz, 2003).

3.2.3. Objective function

In the case of the RTVP, the objective function to be minimised is the RTV value of the
solution (Equation 1).

3.2.4. Decreasing the temperature

The temperature of the SA algorithm has influence on the probability of acceptance of
worse neighbouring solutions. The higher the temperature, the more probable; and vice
versa, the lower the temperature, the less probable (Step 9 in Figure 1). The most
popular way in the literature that obtains good results is the geometric reduction, that is,
А(t) = t.α, where α < 1 (Dowsland and Adenso-Díaz, 2003, Henderson et al., 2003). The
α value has to be set; thus, α becomes another parameter of the algorithm.

3.2.5. Stopping criterion

The algorithm stops when it has run for a preset available time (the same criterion has
been usually used in previous proposed metaheuristic methods for the RTVP).

3.3. A SA algorithm embedded in a multi-start scheme (MS+SAN1)

When the temperature is too low then the probability of accepting worse neighbour
solutions is negligible. Thus, in practice, the previous proposed SA algorithm may be
trapped in a local optimum after certain computing time. To overcome this situation, we
propose to embed a variant of the previous SA algorithm in a MS scheme as follows.
During a preset time, the SA variant algorithm is iteratively run. The variant is equal to
the previous SA algorithm, except for its stopping criterion. The embedded SA stops
when the current temperature is lower than a threshold (final temperature); then, and
according to the MS scheme, the SA is launched again. Although it seems natural to
apply a MS scheme to the SA metaheuristic after a certain computing time, up to our
knowledge this idea does not appear in the literature. The second proposed SA
algorithm is shown in Figure 2.

 277

0. Set the parameters:
 t0 (initial temperature)
 tf (final temperature)
 itt (number of iterations during the temperature remains equal)
1. While current runtime < maximum runtime do:
2. t := t0;
3. s := Generation of the initial solution
4. While t ≥ tf do:
5. i :=0
6. While i < itt do:
7. s’ := choose at random a solution from N1(s)
8. Δ := f(s’) – f(s)
9. If Δ ≤ 0 Then s := s’
10. If Δ > 0 Then s := s’ with probability exp(-Δ/t)
11. i := i + 1
12. End while
13. t := А(t)
14. End while
15. End while
16. Return the best solution found

Figure 2. Pseudo-code of MS+SAN1

3.4. A SA algorithm embedded in a multi-start scheme with multiple neighbourhoods
(MS+SAN1,2,3)

The previous second algorithm is extended with the following idea inspired from the SA
algorithm proposed in Brusco (2008) to solve the non-cyclic variant of the RTVP. He
defines two neighbourhoods, N2 and N3 (which are also used frequently in the
literature). N2 consists on interchanging each pair of consecutive or no-consecutive units
of the sequence. N3 consists on inserting each unit in each position of the sequence.
Then, at each iteration of the Brusco's algorithm, it is selected from which of the two
neighbourhoods will be obtained the neighbour of the current solution. The selection of
the neighbourhood is at random with equal probabilities.

We propose a new algorithm by incorporating the selection of the neighbourhood at the
algorithm explained in Section 4.3. The available neighbourhoods are N1, N2 and N3.
Moreover, instead of using equal probabilities for each neighbourhood, we put these
values as parameters of the algorithm because using non equal probabilities may
improve the performance of the algorithm. The third proposed SA algorithm is shown in
Figure 3.

 278

0. Set the parameters:
 t0 (initial temperature)
 tf (final temperature)
 itt (number of iterations during the temperature remains equal)
 p1, p2, p3 (probability of selection neighbourhood N1, N2, N3)
1. While current runtime < maximum runtime do:
2. t := t0;
3. s := Generation of the initial solution
4. While t ≥ tf do:
5. i :=0
6. While i < itt do:
7. Let N be the neighbourhood selected at random between N1, N2 and N3
8. s’ := choose at random a solution from N (s)
9. Δ := f(s’) – f(s)
10. If Δ ≤ 0 Then s := s’
11. If Δ > 0 Then s := s’ with probability exp(-Δ/t)
12. i := i + 1
13. End while
14. t := А(t)
15. End while
16. End while
17. Return the best solution found

Figure 3. Pseudo-code of MS+SAN1,2,3

3.5. Fine-tuning the algorithm parameters

Fine-tuning the parameters of a metaheuristic algorithm is almost always a difficult
task. Although the parameter values may have a very strong effect on the results of the
metaheuristic for each problem, they are often selected using one of the following
methods, which are not sufficiently thorough (Eiben et al., 1999; Adenso-Díaz and
Laguna, 2006): 1) “by hand”, based on a small number of experiments that are not
referenced; 2) using the general values recommended for a wide range of problems; 3)
using the values reported to be effective in other similar problems; or 4) with no
apparent explanation.

Adenso-Díaz and Laguna (2006) proposed a new technique called CALIBRA for fine-
tuning the parameters of algorithms. CALIBRA is based on using conjointly Taguchi’s
fractional factorial experimental designs and a local search procedure. We propose to
use CALIBRA for setting the parameter values of our algorithms. CALIBRA was
applied to a representative training set of 60 instances which were generated as
explained in the Section 4. The following parameter values were obtained:

• SAN1: t0 = 13, itt = 1762 and α = 0.9875.

• MS+SAN1: t0 = 25, tf = 0.008, itt = 1525 and α = 0.9875.

• MS+SAN1,2,3: t0 = 88, tf = 0.007, itt = 1750, α = 0.9875, p1 = 0.37 and p2 = 0.25.

Since CALIBRA cannot fine-tune more than five parameters, MS+SAN1,2,3 (which have
six parameters to be fine-tuned) is fine-tuned in two steps. Note that the value of p3 is
not calibrated because it depends on the values of p1 and p2 (p3 = 1 - p1 - p2). In the first
step, the value of tf is set to a small value (0.01), as it is usually done in the literature

 279

(e.g., Brusco, 2008), and the remaining parameters (t0, itt, α, p1 and p2) are fine-tuned.
In the second step the value of t0 is set at the value obtained in the first step and the
remaining parameters (tf, itt, α, p1 and p2) are fine-tuned.

4. Computational experiment

The MS+VNS hybrid algorithm proposed in Corominas et al. (2009e) is the most
efficient algorithm in the literature for solving non-small RTVP instances. Therefore,
we compare the performance of our proposed algorithms with that MS+VNS algorithm
(let it be called MS+VNS).

All algorithms are coded in Java and executed on a PC 3.4 GHz Intel Pentium IV with
1.5 GB of RAM. The same 60 training instances and 740 test instances used in
Corominas et al. (2009e) and in previous works are also used in this paper (all instances
can be found at https://www.ioc.upc.edu/EOLI/research/). These instances were
grouped into four classes (from CAT1 to CAT4 with 15 training instances and 185 test
instances in each class) according to their size. The instances were generated using the
random values of D (number of copies) and n (number of symbols) shown in Table 3.
For all instances and for each model i = 1,…,n, a random value of di (number of copies
of symbol i) is between 1 and ()1 2.5D n− +   such that

1.. ii n
d D

=
=∑ .

Table 3. Uniform distributions for generating the D and n values

 CAT1 CAT2 CAT3 CAT4
D U(25, 50) U(50, 100) U(100, 200) U(200, 500)
n U(3, 15) U(3, 30) U(3, 65) U(3, 150)

The stop condition of all algorithms is to be run for a preset time. We run the algorithms
for 10, 50, 200 and 1,000 seconds. Table 4 shows the average RTV values to be
minimised for the global of 740 instances and for each class of instances (CAT1 to
CAT4) obtained with the algorithms and Figure 4 shows the evolution of the average
RTV values for the global of all instances during the computing time.

After 1,000 computing seconds, the best overall RTV average is obtained with
MS+SAN1. It is worth to point that Corominas et al. (2009e) showed that the solutions
obtained with their MS+VNS algorithm for all CAT1 instances are optimal solutions.
Thus, we can see that MS+SAN1 and MS+SAN1,2,3 are also able to solve optimally all
CAT1 instances. For CAT2 instances, MS+SAN1 is 0.10%, 0.14% and 3.46% better than
MS+VNS, MS+SAN1,2,3 and SAN1, respectively, but without significant difference
between MS+VNS and MS+SAN1,2,3. For CAT3 instances, MS+SAN1 is 6.19.%, 6.77%
and 9.47% better than MS+SAN1,2,3, MS+VNS and SAN1, respectively. Finally, for CAT4
instances, MS+SAN1 is 9.19.%, 20.94% and 33.77% better than SAN1, MS+VNS and
MS+SAN1,2,3, respectively. To sum up, we can see that two of the SA algorithms, SAN1
and MS+SAN1, are able to obtain, on average, better solutions (7.64% and 15.20%
better, respectively) than VNS hybridises with MS (MS+VNS). This tendency grows
with the size of the instances to be solved.

 280

Table 4. Average RTV values for MS+VNS and SA based algorithms
 Global CAT1 CAT2 CAT3 CAT4

10 s.

MS+VNS 71.07 10.24 21.58 51.07 201.39
SAN1 108.46 10.26 21.67 45.68 356.24
MS+SAN1 278.53 10.25 22.03 91.88 989.95
MS+SAN1,2,3 144.21 10.35 22.72 55.61 488.17

50 s.

MS+VNS 62.17 10.24 21.23 47.46 169.76
SAN1 50.87 10.26 21.67 44.57 126.98
MS+SAN1 51.84 10.24 21.19 43.57 132.35
MS+SAN1,2,3 73.12 10.24 21.52 47.34 213.37

200 s.

MS+VNS 58.45 10.24 21.01 45.35 157.22
SAN1 50.78 10.26 21.67 44.56 126.62
MS+SAN1 48.52 10.24 20.95 41.59 121.30
MS+SAN1,2,3 66.60 10.24 21.15 44.84 190.17

1,000 s.

MS+VNS 54.95 10.24 20.94 43.26 145.35
SAN1 50.75 10.26 21.67 44.55 126.54
MS+SAN1 46.60 10.24 20.92 40.33 114.91
MS+SAN1,2,3 61.92 10.24 20.95 42.99 173.51

Figure 4. Average RTV values over the computing time

Table 5 shows the number of times that each algorithm reaches the best RTV value
obtained by either one after 1,000 computing seconds. The results are shown for the
total number of 740 instances and for each class. As expected from the results in Table
4, Table 5 shows that MS+SAN1 is the algorithm that more time reaches the best
solution. For the total number of instances, MS+SAN1 obtains the best solution in 97%
of times.

 281

Table 5. Number of times that the best solution is reached
 Global CAT1 CAT2 CAT3 CAT4
MS+VNS 458 185 183 70 20
SAN1 396 183 128 39 46
MS+SAN1 721 185 184 179 173
MS+SAN1,2,3 455 185 181 72 17

To complete the analysis of the results, we examined the dispersion of the results with
respect to the best solution obtained by either algorithm. A measure of the dispersion
(let it be called σ) of the RTV values obtained by each algorithm alg = {MS+VNS, SAN1,
MS+SAN1, MS+SAN1,2,3} was defined for a given instance, ins, according to the
following expression:

2() ()

()

RTV RTV(,)
RTV

alg best
ins ins

best
ins

alg insσ
 −

=  
 

 (2)

where ()RTV alg

ins is the RTV value of the solution obtained with the algorithm alg for the
instance ins, and)(RTV best

ins is the best RTV value of the solutions obtained with the four
algorithms for the instance ins. Table 6 shows the maximum σ dispersion for the total
number of instances and for each class. We can see that low dispersions are obtained for
the total number of cases and for each instance class with all algorithms (except for
MS+SAN1,2,3 when the largest instances are solved). That is, when an algorithm does not
obtain the best RTV value for a given instance, it obtains a value that is very close to it
(especially true for MS+SAN1).

Table 6. Maximum σ values with respect to the best solutions found
 Global CAT1 CAT2 CAT3 CAT4
MS+VNS 0.68 0.00 0.03 0.18 0.68
SAN1 0.34 0.09 0.34 0.17 0.26
MS+SAN1 0.02 0.00 0.02 0.01 ≈0.00
MS+SAN1,2,3 5.07 0.00 0.02 0.10 5.07

In order to see how close are the solutions obtained with the best method (MS+SAN1)
with respect to the optimal solutions, the lower bound (LB) proposed in Corominas et
al. (2007) is used. Table 6 shows the average of the RTV values obtained with
MS+SAN1 after 1,000 computing seconds (RTV) and the averages of the LBs (LB).

Table 7. Averages of the optimal RTV values and the RTV lower bounds
 Global CAT1 CAT2 CAT3 CAT4
LB 21.40 5.35 10.95 21.15 48.15

RTV 46.60 10.24 20.92 40.33 114.91

As it has been said, all 185 CAT1 instances were solved optimally with MS+SAN1. We
can see in Table 7 that the LB is not accurate. For the smallest instances, the ratio
between RTV and LB is 1.914. It seems reasonable to assume that this ratio will remain
equal or increase for larger instances. Thus, if we assume that the ratio remains equal, a
more accurate estimation of the averages of the optimal values for CAT2, CAT3 and
CAT4 instances are obtained by multiplying their LB by 1.914; that is, 20.96, 40.48 and

 282

92.16 for CAT2, CAT3 and CAT4 instances, respectively. According to this assumption,
we could ensure that the solutions obtained by the hybrid algorithms for CAT2 and
CAT3 instances are very good.

5. Conclusions

In this paper, the response time variability problem (RTVP) is solved. This scheduling
problem arises in a variety of real-world environments including mixed-model assembly
lines, multi-threaded systems, periodic machine maintenance and waste collection,
among others. The aim of the RTVP is to minimise the variability in the distances
between any two consecutive copies of the same symbol.

The RTVP is an NP-hard problem and heuristic and metaheuristic methods are needed
to solve real-world, large instances. Several metaheuristic algorithms have been
developed for solving this hard combinatorial optimization problem. The most efficient
algorithm to date for solving the RTVP was a hybrid algorithm in which VNS is
embedded in a MS scheme (Corominas et al., 2009e). The existing MS+VNS algorithm
is a very efficient one to solve the RTVP and it was shown that it was able to solve
optimally all test instances up to 50 copies to be sequenced.

In this study we propose three SA-based algorithms. The best of them, MS+SAN1,
improves on average the MS+VNS algorithm and obtains an average RTV value
15.20% better. Moreover, MS+SAN1 is very stable for all type of instances.

REFERENCES

Adenso-Díaz, B. and Laguna, M. (2006) ‘Fine-tuning of algorithms using fractional

experimental designs and local search’, Operations Research, Vol. 54, pp. 99-114.
Anily, S., Glass, C.A. and Hassin, R. (1998) ‘The scheduling of maintenance service’,

Discrete Applied Mathematics, Vol. 82, pp. 27-42.
Balinski, M.L. and Young, H.P. (1982) Fair Representation, Yale University Press,

New Haven.
Bar-Noy, A., Nisgav, A. and Patt-Shamir, B. (2002) ‘Nearly optimal perfectly-periodic

schedules’, Distributed Computing, Vol. 15, pp. 207–220.
Bollapragada, S., Bussieck, M.R. and Mallik, S. (2004) ‘Scheduling Commercial

Videotapes in Broadcast Television’, Operations Research, Vol. 52, pp. 679-689.
Brusco, M.J. (2008) ‘Scheduling advertising slots for television’, Journal of the

Operational Research Society, Vol. 59, pp. 1363-1372.
Corominas, A., Kubiak, W. and Moreno, N. (2007) ‘Response time variability’, Journal

of Scheduling, Vol. 10, pp. 97-110.
Corominas, A., Kubiak, W. and Pastor, R. (2010) ‘Mathematical programming

modeling of the Response Time Variability Problem’, European Journal of
Operational Research, Vol. 200, pp. 347-357.

Corominas, A., García-Villoria, A. and Pastor, R. (2008) ‘Solving the Response Time
Variability Problem by means of Multi-start and GRASP metaheuristics’, Special
Issue of Frontiers in Artificial Intelligence and Applications on Artificial
Intelligence Research and Development, Vol. 184, pp. 128-137.

 283

Corominas, A., García-Villoria, A. and Pastor, R. (2009a) ‘The Response Time
Variability Problem: A Review’, 3rd International Conference on Industrial
Engineering and Industrial Management (CIO 2009), Barcelona and Terrassa,
Spain.

Corominas, A., García-Villoria, A. and Pastor, R. (2009b) ‘Using Tabu Search for the
Response Time Variability Problem’, 3rd International Conference on Industrial
Engineering and Industrial Management (CIO 2009), Barcelona and Terrassa,
Spain.

Corominas, A., García-Villoria, A. and Pastor, R. (2009c) ‘Resolución del response
time variability problem mediante tabu search’, VIII Evento Internacional de
Matemática y Computación (COMAT’2009), Universidad de Matanzas, Cuba.

Corominas, A., García-Villoria, A. and Pastor, R. (2009d) ‘Solving the Response Time
Variable Problem by means of a Variable Neighbourhood Search Algorithm’, 13th
IFAC Symposium of Information Control Problems in Manufacturing (INCOM
2009), Moscow, Russia.

Corominas, A., García-Villoria, A. and Pastor, R. (2009e) ‘Metaheuristic algorithms
hybridized with variable neighbourhood search for solving the response time
variability problem’, Technical report IOC-DT-P-2009-04, Universitat Politècnica
de Catalunya, Spain.

Dong, L., Melhem, R. and Mosse, D. (1998) ‘Time slot allocation for real-time
messages with negotiable distance constrains requirements’, Fourth IEEE Real-
Time Technology and Applications Symposium (RTAS'98), Denver, CO. pp. 131-
136.

Dowsland, K.A. and Adenso-Díaz, B. (2003) ‘Heuristic design and fundamentals of the
Simulated Annealing’, Inteligencia Artificial, Vol. 19, pp. 93-102.

Eiben, A.E., Hinterding, R. and Michalewicz, Z. (1999) ‘Parameter control in
evolutionary algorithms’, IEEE Transactions on evolutionary computation, Vol. 3,
pp. 124-141.

García, A., Pastor, R. and Corominas, A. (2006) ‘Solving the Response Time
Variability Problem by means of metaheuristics’, Special Issue of Frontiers in
Artificial Intelligence and Applications on Artificial Intelligence Research and
Development, Vol. 146, pp. 187-194.

García-Villoria, A., Pastor, R. and Corominas, A. (2007) ‘Solving the Response Time
Variability Problem by means of the Cross-Entropy Method’, International Journal
of Manufacturing Technology and Management (to be published).

García-Villoria, A. and Pastor, R. (2008) ‘Solving the Response Time Variability
Problem by means of a psychoclonal approach’, Journal of Heuristics, in press,
corrected proof, available online, 16 July 2008, doi:10.1007/s10732-008-9082-2.

García-Villoria, A. and Pastor, R. (2009a) ‘Introducing dynamic diversity into a discrete
particle swarm optimization’, Computers & Operations Research, Vol. 36, pp. 951-
966.

García-Villoria, A. and Pastor, R. (2009b) ‘Solving the Response Time Variability
Problem by means of the Electromagnetism-like Mechanism’, International Journal
of Production Research, doi: 10.1080/00207540902862545.

García-Villoria, A. and Pastor, R. (2010) ‘Solving the response time variability problem
by means of a genetic algorithm’, European Journal of Operational Research, Vol.
202, pp. 320-327.

Han, C.C., Lin, K.J. and Hou, C.J. (1996) ‘Distance-constrained scheduling and its
applications in real-time systems’, IEEE Transactions on Computers, Vol. 45, pp.
814-826.

 284

Henderson, D., Jacobson, S.H. and Johnson, A.W. (2003) ‘The Theory and Practice of
Simulated Annealing’, Chapter 10 in Handbook of Metaheuristics, Eds. Glover and
Kochenberger, Kluwer Academic Publishers, pp. 287-319.

Herrmann, J.W. (2007) ‘Generating Cyclic Fair Sequences using Aggregation and
Stride Scheduling’, Technical Report, University of Maryland, USA. Available at
http://hdl.handle.net/1903/7082.

Herrmann, J.W. (2009) ‘Using aggregation to reduce response time variability in cyclic
fair sequences’, Journal of Scheduling, doi 10.1007/s10951-009-0127-7.

Kirkpatrick, S., Gelatt, C.D. and Vecchi, M.P. (1983) ‘Optimization by simulated
annealing’, Science, Vol. 220, pp. 671-680.

Kubiak, W. (1993) ‘Minimizing variation of production rates in just-in-time systems: A
survey’, European Journal of Operational Research, Vol. 66, pp. 259-271.

León, D., Corominas, A. and Lusa, A. (2003) ‘Resolución del problema PRV min-var’,
Technical report IOC-DT-I-2003-03, Universitat Politècnica de Catalunya, Spain.

Miltenburg, J. (1989) ‘Level schedules for mixed-model assembly lines in just-in-time
production systems’, Management Science, Vol. 35, pp. 192-207.

Monden, Y. (1983) ‘Toyota Production Systems’, Industrial Engineering and
Management Press, Norcross, GA.

Waldspurger, C.A. and Weihl, W.E. (1994) ‘Lottery Scheduling: Flexible Proportional-
Share Resource Management’, First USENIX Symposium on Operating System
Design and Implementation, Monterey, California.

Waldspurger, C.A. and Weihl, W.E. (1995) ‘Stride Scheduling: Deterministic
Proportional-Share Resource Management’, Technical Report MIT/LCS/TM-528,
Massachusetts Institute of Technology, MIT Laboratory for Computer Science.
Available at https://eprints.kfupm.edu.sa/67117

Wei, W.D. and Liu, C.L. (1983) ‘On a periodic maintenance problem’, Operations
Research Letters, Vol. 2, pp. 90-93.

	Acknowledgments
	Scientific/Technical support
	Financial support

	Acronyms and terminology
	I. Preface
	II. Introduction to the RTVP
	II.1. Classification and formulation of the problem
	II.2. Application in real-world contexts
	II.2.1. RTVP in the context of mixed-model, just-in-time, assembly lines
	II.2.2. RTVP in the context of computer multithreaded systems
	II.2.3. Two case studies of the RTVP
	II.2.4. RTVP in other contexts

	III. State of the art
	IV. Justification and objectives
	V. Solution procedures
	V.1. Introduction
	V.2. An exact algorithm
	V.3. Non-exact methods
	V.3.1. An heuristic algorithm
	V.3.2. Metaheuristic algorithms
	V.3.3. Hyper-heuristic algorithms

	V.4. Fine-tuning

	VI. Discussion of the results
	VI.1. Exact solution of the RTVP
	VI.2. Non-exact solution of the RTVP
	VI.2.1. The heuristic algorithm
	VI.2.2. The metaheuristic algorithms
	VI.2.3. The hyper-heuristic algorithms

	VI.3. Fine-tuning

	VII. Conclusions
	References
	References derived from the thesis
	Annex A1. Articles published or accepted in journals included in the JCR index
	Introducing dynamic diversity in a discrete Particle Swarm Optimization
	Solving the Response Time Variability Problem by means of the Electromagnetism-like Mechanism
	Solving the Response Time Variability Problem by means of a psychoclonal approach
	Solving the Response Time Variability Problem by means of a genetic algorithm

	Annex A2. Other works
	A2.1. Articles submitted to journals included in the JCR index which are in process of review
	Hyper-heuristic Approaches for the Response Time Variability Problem
	A systematic procedure based on CALIBRA and the Nelder & Mead algorithm for fine-tuning metaheuristics
	An adaptive-based heuristic for the Response Time Variability Problem
	Metaheuristic algorithms hybridized with variable neighbourhood search for solving the response time variability problem

	A2.2. Articles published in other international journals
	Solving the Response Time Variability Problem by means of the Cross-Entropy Method
	Solving the Response Time Variability Problem by means of metaheuristics
	Solving the Response Time Variability Problem by means of Multi-start and GRASP metaheuristic
	A Parametric Multi-start Algorithm for Solving the Response Time Variability Problem

	A2.3. Communications to international congresses
	Solving the Response Time Variable Problem by means of a Variable Neighbourhood Search Algorithm
	Using Tabu Search for the Response Time Variability Problem
	Resolución del response time variability problem mediante tabu search

	A2.4. Technical reports
	A branch and bound approach for the response time variability problem
	Using an Ant Colony System to solve the Response Time Variability Problem
	An enhanced metaheuristic for solving the response time variability problem

