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Abstract 
 
When a resource must be shared between competing demands (of products, clients, 
jobs, etc.) that require regular attention, it is important to schedule the access right to the 
resource in some fair manner so that each product, client or job receives a share of the 
resource that is proportional to its demand relative to the total of the competing 
demands. These types of sequencing problems can be generalized under the following 
scheme. Given n symbols, each one with demand di (i = 1,...,n), a fair or regular 
sequence must be built in which each symbol appears di times. There is not a universal 
definition of fairness, as several reasonable metrics to measure it can be defined 
according to the specific considered problem. 
 
In the Response Time Variability Problem (RTVP), the unfairness or the irregularity of 
a sequence is measured by the sum, for all symbols, of their variabilities in the positions 
at which the copies of each symbol are sequenced. Thus, the objective of the RTVP is to 
find the sequence that minimises the total variability. In other words, the RTVP 
objective is to minimise the variability in the instants at which products, clients or jobs 
receive the necessary resource. 
 
This problem appears in a broad range of real-world areas. Applications include 
sequencing of mixed-model assembly lines under just-in-time (JIT), resource allocation 
in computer multi-threaded systems such as operating systems, network servers and 
media-based applications, periodic machine maintenance, waste collection, scheduling 
commercial videotapes for television and designing of salespeople's routes with 
multiple visits, among others. In some of these problems the regularity is not a property 
desirable by itself, but it helps to minimise costs. In fact, when the costs are 
proportional to the square of the distances, the problem of minimising costs and the 
RTVP are equivalent. 
 
The RTVP is very hard to be solved (it has been demonstrated that it is NP-hard). The 
size of the RTVP instances that can be solved optimally with the best exact method 
existing in the literature has a practical limit of 40 units. On the other hand, the non-
exact methods proposed in the literature to solve larger instances are simple heuristics 
that obtains solutions quickly, but the quality of the obtained solutions can be improved. 
Thus, the solution methods existing in the literature are not enough to solve the RTVP. 
 
The main objective of this thesis is to improve the resolution of the RTVP. This 
objective is split in the two following sub-objectives: 1) to increase the size of the 
RTVP instances that can be solved optimally in a practical computing time; and 2) to 
obtain efficiently near-optimal solutions for larger instances. Moreover, the thesis has 
the following two secondary objectives: a) to research the use of metaheuristics under 
the scheme of hyper-heuristics, and b) to design a systematic, hands-off procedure to set 
the suitable values of the algorithm parameters. 
 
To achieve the aforementioned objectives, several procedures have been developed. To 
solve the RTVP an exact procedure based on the branch and bound technique has been 
designed and the size of the instances that can be solved in a practical time has been 
increased to 55 units. For larger instances, heuristic, heuristic, metaheuristic and hyper-
heuristic procedures have been designed, which can obtain optimal or near-optimal 
solutions quickly. Moreover, a systematic, hands-off fine-tuning method that takes 



 

advantage of the two existing ones (Nelder & Mead algorithm and CALIBRA) has been 
proposed. 
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Acronyms and terminology 
 
Next the main acronyms used over the thesis text are listed: 
 
ACO: Ant Colony Optimisation 
B&B: Branch and Bound 
CE: Cross-Entropy 
EM: Electromagnetism-like Mechanism 
GA: Genetic Algorithm 
GRASP: Greedy Randomized Adaptive Search Procedure 
JIT: Just-In-Time 
MILP: Mixed-Integer Linear Programming 
MS: Multi-Start 
N&M: The Nelder and Mead algorithm 
PSC: Psychoclonal 
PSO: Particle Swarm Optimisation 
RTV: Response Time Variability (metric) 
RTVP: Response Time Variability Problem 
RVNS: Reduced VNS 
SA: Simulated Annealing 
TS: Tabu Search 
VNS: Variable Neighbourhood Search 
 
The following terminology is used when referring the response time variability 
problem: 
 
n : Number of symbols to be sequenced (i = 1,...,n) 

id : Number of copies to be sequenced of symbol i 

1

n

i
i

D d
=

= ∑ : Total number of copies to be sequenced 

i
i

Dt d= : Average or ideal distance between two consecutive copies of symbol i 
i
kt : Distance between the positions in which the copies k and k + 1 of symbol i 

are found (i = 1,...,n, k = 1,...,di - 1) 

i

i
dt : Distance between the last copy of symbol i in the preceding cycle and the 

first copy of the same symbol in the current symbol. 

RTV 2

1 1
( )

idn
i
k i

i k
t t

= =

= −∑∑  
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I. Preface 
 
This doctoral thesis deals with the hard sequencing problem known as response time 
variability problem (RTVP). The Institute of Industrial and Control Engineering (IOC), 
in which this thesis has been developed, met and was interested in the regularity 
problem of the production scheduling of mixed-model assembly lines. There is not a 
universal definition of regularity, as several reasonable metrics can be defined. In a visit 
of Prof. Wieslaw Kubiak of the Memorial University of Newfoundland, he proposed the 
response time variability metric. During the development of the thesis, it has been 
brought to our notice that the same problem may appear in a wide range of 
environments such as computer systems, maintenance problems, announcement 
broadcasting and salespeople's routing, among others. In all these cases there may be the 
necessity of obtaining fair or regular sequences. In the RTVP, the response time 
variability metric is used to measure the fairness or regularity of a sequence. 
 
The main objective of this thesis is to improve the solution of the RTVP, which is a NP-
hard problem, by means of exact and non-exact methods. Moreover, two other 
additional objectives are pursued: to propose a systematic, hand-off procedure to fine-
tuning the algorithms and to contribute in the research of the use of meta-heuristics 
under the hyper-heuristic scheme. 
 
The thesis is presented in the form of a compendium of published or accepted articles 
(together with other papers under the format of articles in review process, conference 
communications and technical reports), which is taken under the doctorate studies 
regulations of the Universitat Politècnica de Catalunya (UPC). This work is organised 
as follows. Chapter II introduces the RTVP and real-life contexts in which may appear. 
Chapter III reviews the state of the art of the problem. Chapter IV justifies the thesis and 
its objectives are proposed. The procedures to achieve the objectives are explained in 
Chapter V and the obtained results are discussed in Chapter VI. Finally, the conclusions 
are given in Chapter VII. The four articles that have published or accepted in journals 
included in the JCR index are annexed in Annex A1; other papers as four articles 
submitted to journals included in the JCR index that are in process of review, four 
articles published in other international journals, three communications to international 
conferences and three technical reports are annexed in Annex A2. 
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II. Introduction to the RTVP 

II.1. Classification and formulation of the problem 
 
The concept of fair sequence has emerged independently from scheduling problems in 
diverse environments. The common aim of these scheduling problems, as defined in 
Kubiak (2004), is to build a fair sequence using n symbols, where symbol i (i = 1,...,n) 
must be copied di times in the sequence. The fair sequence is the one which allocates a 
fair share of positions to each symbol i in any subsequence. This fair or ideal share of 
positions allocated to symbol i in a subsequence of length k is proportional to the 
relative importance (di) of symbol i with respect to the total copies of competing 
symbols (equal to 

1.. ii n
d

=∑ ). There is not a universal definition of fairness, as several 
reasonable metrics can be defined according to the specific problem considered. For a 
detailed introduction to fair sequences, it is recommended the book by Kubiak (2009). 
 
The family of fair sequencing problems can be classified according to the following 
characteristics (León et al., 2003): 

− Cyclic vs Non-cyclic. The problem is cyclic if the sequence is the same for all 
cycles and the distance, for each symbol i, between the first copy of i in a cycle and 
the last copy of i in the preceding cycle is considered. 

− Distance-constrained vs Not distance-constrained. The problem is distance-
constrained if the distance between two consecutive copies of the same symbol has 
an upper bound and/or a lower bound. 

− Optimality vs. Feasibility. If the aim is to find a solution that optimises an objective 
function then we look for optimality. Instead, if the aim is to find a feasible 
solution, then we look for feasibility. 
 

The RTVP is a fair sequencing problem which is cyclic, not distance-constrained and its 
aim is to optimise an objective function. Its formulation is the following. Let n be the 
number of symbols to be sequenced, where symbol i (i = 1,...,n) is to be copied di times 
in the sequence, and let D be the total number of copies (

1.. ii n
d

=∑ ). Let s be a solution 
of an instance in the RTVP that consists of a circular sequence of copies 
( Dssss 21= ), where sj is the copy sequenced in position j of sequence s. For each 
symbol i in which 2id ≥ , let i

kt  be the distance between the positions in which the 
copies k + 1 and k of symbol i are found. We consider the distance between two 
consecutive positions to be equal to 1. Since the sequence is circular, position 1 comes 
immediately after the last position D; therefore, i

di
t  is the distance between the first 

copy of symbol i in a cycle and the last copy of the same symbol in the preceding cycle. 
For all symbol i in which 1=id , it1  is equal to it . Let it  be the average or ideal 

distance between two consecutive copies of symbol i ( i
i

Dt d= ). The aim is to 

minimise the metric Response Time Variability (RTV), which is defined by the 
following expression: 
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 2

1 1
( )

idn
i
k i

i k
RTV t t

= =

= −∑∑  (1) 

 
The RTV metric is a weighted variance with weights equal to di. That is, 

1.. i ii n
RTV d Var

=
= ⋅∑ , where ( )2

1..
1

i

i
i k ik di

Var t td =
= ⋅ −∑ . Thus, the distance between 

any two consecutive copies of the same symbol should be as regular as possible (ideally 
constant). 
 
It is worth to note that since the average distance it  is equal to it1  for all symbol i such 
that 1id = , these symbols do not intervene in the computation of the RTV metric. That 
is, for all these symbols 0iVar = . 
 
The RTVP has been proved to be NP-hard (Corominas et al., 2007). 
 
Example 
 
As an illustration, consider the following example. Let 3n =  with symbols A, B and C. 
Also consider 2Ad = , 3Bd =  and 7Cd = . Thus, 12D = , 6At = , 4Bt =  and 1.71Ct = . 
Any sequence that contains symbol i exactly id  times is a feasible solution. For 
instance, a feasible solution is shown in Figure 1a. 
 

 
Figure 1. A feasible solution of an RTVP instance 

 
The distances between the copies of symbol A are 1 7At =  and 2 5At =  (Figure 1b); the 
distances between the copies of symbol B are 1 4Bt = , 2 3Bt = and 3 5Bt =  (Figure 1c); and 
the distances between the copies of symbol C are 1 2Ct = , 2 2Ct = , 3 2Ct = , 4 1Ct = , 5 2Ct = , 

6 2Ct =  and 7 1Ct =  (Figure 1d). Therefore, the RTV value of this solution is the 
following: 
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( ) ( )2 27 6 5 6RTV  = − + − +   

( ) ( ) ( )2 2 24 4 3 4 5 4 − + − + − +   

( ) ( ) ( ) ( ) ( ) ( ) ( )2 2 2 2 2 2 22 1.71 2 1.71 2 1.71 1 1.71 2 1.71 2 1.71 1 1.71 − + − + − + − + − + − + − 
 2 2 1.43 5.43= + + =  
 

II.2. Application in real-world contexts 
 
When a resource must be shared between competing demands that require regular 
attention, it is important to schedule the access right to the resource in some fair manner 
so that each demand receives a share of the resource that is proportional to its demand 
relative to the competing demands (Herrmann, 2009). The objective in the RTVP is to 
minimise variability in the time between the instants at which that products, clients or 
jobs receive the necessary resources.  
 
In the RTVP formulation introduced in the previous subsection, a symbol represents a 
product, client or job that demands the resource; a position of the solution sequence 
represents a times slot in which the symbol sequenced has access to the resource; and 
the number of times that each symbol i has to occur in the sequence (di) represents the 
number of time slots that each symbol has right. It is assumed that all time slots are the 
same amount of time. Thus, we can ignore time and consider only the positions in the 
sequence. 
 
This problem appears in a broad range of real-world areas. Applications include 
sequencing of mixed-model assembly lines under just-in-time (JIT), resource allocation 
in computer multi-threaded systems such as operating systems, network servers and 
media-based applications, periodic machine maintenance, waste collection, scheduling 
commercial videotapes for television and designing of salespeople's routes with 
multiple visits, among others. 
 
In some of these problems the regularity is not a property desirable by itself, but it helps 
to minimise costs. In fact, when the costs are proportional to the square of the distances, 
the problem of minimising costs and the RTVP are equivalent as follows: 
 

RTV  2

1 1
( )

idn
i
k i

i k
t t

= =

= −∑∑  ( ) ( )2 2

1 1 1 1 1 1
2

i i id d dn n n
i i
k i i k

i k i k i k
t t t t

= = = = = =

 
= + − ⋅ ⋅ 

 
∑∑ ∑∑ ∑ ∑  ( )2

1 1

idn
i
k

i k
t

= =

= +∑∑  

( )2

1 1 1
2

idn n

i i
i k i

t t D
= = =

− ⋅ ⋅∑∑ ∑   

 

Since ( )2

1 1

idn

i
i k

t
= =
∑∑  and 

1
2

n

i
i

t D
=

⋅ ⋅∑  are constants, the problem of minimising RTV is 

equivalent to minimising ( )2

1 1

idn
i
k

i k
t

= =
∑∑ . 
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II.2.1. RTVP in the context of mixed-model, just-in-time, assembly lines 
 
One of the first situations in which the idea of the fair, regular sequences appeared was 
the sequencing of mixed-model assembly lines at Toyota Motor Corporation under the 
just-in-time (JIT) production system.  
 
Mixed-model assembly lines are production lines that are able to produce small lots 
(ideally of size one) of different models with negligible costs when changing over one 
model to another. The effective utilization of mixed-model lines requires the solution of 
the following two problems which depends on the company objectives (Korkmazel and 
Meral, 2001): 
 

1. Line design and balancing together with cycle times and sequence of 
workstations. 

 

2. Determination of the sequence of models to be produced. 
 
This thesis deals with the second goal. Since Toyota Motor Corporation popularized the 
just-in-time (JIT) production systems, the problem of sequencing on mixed-model 
assembly lines has acquired high relevance. One of the most important JIT objectives is 
to get rid of all kinds of waste and inefficiency and, according to Toyota, the main waste 
is due to inventories. To reduce inventories, JIT production systems require producing 
only the necessary components in the necessary quantities at the necessary time. 
Because JIT is a pull production environment, the production schedule is focused on 
sequencing the models in the final assembly process. 
 
There are two typical possible goals in JIT systems when the final sequence is being 
determined (Monden, 1983): 
 

1. Smoothing the workload of the stations. 
 

2. Keeping a regular rate of usage of every component used by the line. 
 
The first goal is required when some models need more processing time than the cycle 
time in some stations. Although assembly lines have usually the flexibility to adjust to 
this situation without slowing down or stopping, if many units of models that require 
much time are successively sequenced then delays, line stoppages or incomplete work 
will occur. On the other hand, the second goal is vital to reduce component inventories. 
Inventory is needed to face the fluctuations of the demand of the components consumed 
by the line. The more regular the usage rate of the components, the smaller the 
inventory (ideally, no inventory would be needed with a constant usage rate). According 
to Monden (1983), the first goal is important, but the second goal is the cornerstone of 
JIT production systems. The problem of minimising variations in the usage rate of 
components is known as Output Rate Variation (ORV) problem (Kubiak, 1993). 
 
An approximation for solving the ORV problem, which is NP-hard (Kubiak, 1993), is 
considering only the demand rates for the models (Miltenburg, 1989; Kubiak, 1993; 
Bautista et al., 1995) and obtaining a sequence that minimises variations in the 
production rate of the models. This problem is known as the Product Rate Variation 
(PRV) problem (Kubiak, 1993). Note that when models require exclusive components, 
the PRV and the ORV problems are exactly equivalent. Anyway, the PRV problem can 
be considered as a problem independent of the ORV problem.  
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Miltenburg (1989) proposed a nonlinear formulation of the PRV problem. Consider n 
models with demand of units for each model i equal to di (i = 1,…,n). The total number 
of units to be produced is D (

1.. ii n
D d

=
= ∑ ). The time required to produce each unit 

(regardless of the model) is constant; therefore, if we take the cycle time of the line as 
the unit of time, it can be considered that one model unit is produced per time unit. 
Thus, the production horizon is equal to D. The ideal production rate of model i for each 
time period k (k = 1,…,D) is ri ( i ir d D= ). Let xik be the total produced units of model i 
up to period k. Miltenburg suggested the following objective functions to be minimised:  
 

 
2

1 1

D n
ik

i
k i

x rk
= =

 − 
 ∑∑  (2) 

 ( )2

1 1

D n

ik i
k i

x kr
= =

−∑∑  (3) 

 
1 1

D n
ik

i
k i

x rk
= =

−∑∑  (4) 

 
1 1

D n

ik i
k i

x kr
= =

−∑∑  (5) 

 
Originally, Miltenburg (1989) focused the regularity of the PRV problem on the 
variability of the production rate of the models. But the PRV problem can be 
generalized for that concerning the regularity of appearance of the models in the line 
(Bautista et al., 1997). For instance, Inman and Bulfin (1991) propose another objective 
function in which is minimised variations with respect ideal production due dates for 
each unit. It is worth to say that the distances between any two consecutive due dates 
defined by Inman and Bulfin for units of the same model are equal. The RTVP is very 
related with the PRV problem under the production context since the RTV measures the 
regularity in terms of the variability, for each model i, of the distances between the 
appearance of two consecutive units of model i (Equation 1). 
 
Although the PRV problem has been usually discussed in the literature in terms of 
regular production rate (Miltenburg, 1989; Kubiak, 1993), feedback received from the 
manufacturing industry suggests that a good mixed-model sequence is one in which the 
distances between units of the same model are as regular as possible. Moreover, one 
drawback of the Miltenburg problem is that, on the contrary of the RTVP, it takes the 
positions of the models with only one unit to be produced into account although the 
positions of these models are irrelevant for the regularity of the consumption rates. 
 
Example 
 
The following example is to illustrate how the regularity in the production sequencing 
has effect on the necessary inventory. Consider the following example shown in Table 1 
(inspired in one example given in Bautista et al., 1995). In the daily production, 10 units 
of model M1 and 10 units of model M2 have to be produced. Let's assume that 1 unit of 
model M1 consumes 1 unit of component C1, and 1 unit of M2 consumes 1 unit of 
component C2. Thus, the daily consumptions of C1 and C2 are 10 units, respectively, 
and their ideal consumption rates are 0.5 units per cycle. 
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Table 1. Example of a daily production 

 

Model / Comp.  C1  C2  Program  

M1  1  0  10  

M2  0  1  10  

Consumption  10  10  20  

Rate  0.5  0.5   

 
Figure 2 shows the most irregular production sequence in terms of the RTV metric; that 
is, sequencing the 10 units of one model and then sequencing the other 10 units of the 
another model. We can see that the units C1 are consumed in the half of the horizon. 
Thus, the production of the components should be double than their average 
consumption rate during 10 cycles followed of 10 cycles of no components production. 
Another alternative (shown in Figure 2) is to produce the components at their average 
rate, but a coupling inventory is needed. The inventory will have, theoretically, between 
0 and 5 units during the horizon. The same occurs to the units C2 but with a shift of 10 
cycles. 
 

 
Figure 2. Manufacturing lots of 10 units: (10·M1 + 10·M2) 

 
On other hand Figure 3 shows the most regular sequence in terms of the RTV metric; 
that is, a sequence in which the units of each model are allocated alternatively. The 
consumption of the component C1 is very similar to the production rate (analogously 
with the component C2). Thus, no inventory is needed theoretically. 
 

 
Figure 3. Manufacturing lots of 1 unit: 10·times (M1 + M2) 
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II.2.2. RTVP in the context of computer multithreaded systems 
 
The need of fair sequencing also appeared in multithreaded computer systems 
(Waldspurger and Weihl, 1994 and 1995; Dong et al., 1998; Bar-Noy et al., 2002). 
Multithreaded systems (operating systems, network servers, media-based applications, 
etc.) are computer systems that do different tasks to attend to the requests of client 
programs that take place concurrently. These systems need to manage the scarce 
resource in order to service the requests of n clients. For example, multimedia systems 
should avoid presenting video frames too early or too late, which would result in jagged 
motion perceptions (Corominas et al., 2007).  
 
The first articles in which this problem is solved as a RTVP are Waldspurger and Weihl 
(1994, 1995). The resource is allocated in discrete time slots (authors refer to the 
duration of a standard time slice as a quantum). Resource rights are represented by 
tickets and each client i has a given number di of tickets. Thus, a client with twice as 
many tickets as another will receive twice as much of a resource in a given time 
interval. Waldspurger and Weihl define the response time as the elapsed time from a 
client’s completion of one quantum up to including its completion of next. Since the 
quantum duration is fixed, this definition is equivalent to the number of quanta between 
a client’s two consecutive quantum allocations plus one. The authors suggested the 
RTV metric to evaluate the fairness of a sequence (that is, the variability of the response 
times for each client). 
 

II.2.3. Two case studies of the RTVP 
 
Two case studies of RTVP applications were reported in the literature. 
 
Hermann (2007, 2009) came up with the RTVP while working with a healthcare facility 
that needed to schedule the collection of waste from waste collection rooms throughout 
the building. Based on data about how often a waste collector had to visit each room 
and in view of the fact that different rooms require a different number of visits per shift, 
the facility manager wanted these visits to occur as regular as possible so that excessive 
waste would not collected in any room. For instance, if a room needed four visits per 
eight-hour shift, it would ideally be visited every two hours. 
 
A study by Bollapragada et al. (2004) was motivated by a problem faced by the 
National Broadcasting Company (BNC), which is one of the main American firms in 
the television industry. Major advertisers buy hundreds of slots from the BNC to air 
commercials. The advertisers request that the airings of their commercials are as evenly 
spaced as possible over the broadcast season. The problem solved finally is not the 
RTVP, but a non-cycling variant. This study is continued in Brusco (2008). 
 

II.2.4. RTVP in other contexts 
 
Other contexts in which the RTVP appears are the periodic machine maintenance 
problem (Wei and Liu, 1983; Anily et al., 1998) as well as other distance-constrained 
problems (e.g., see Han et al., 1996). Although the main objective of the distance-
constrained problem and the RTVP is to find a sequence as regular as possible, the 
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advantage of the RTVP is that it will always come up with a feasible solution, contrary 
to the distance-constrained problem. 
 
The RTVP can also be applied in the design of sales catalogues (problem introduced in 
Bollapragada et al., 2004), in the scheduling of display advertisements on dynamic 
billboards at sport stadia and in the design of salespeople's routes with multiple visits, in 
which the visits to the same client should be as spaced as possible among the temporal 
horizon. 
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III. State of the art 
 
Although the RTVP is in general NP-hard, the two-symbol case can be optimally solved 
with a polynomial algorithm proposed in Corominas et al. (2007). For a general case, 
Corominas et al. (2007) proposed a mixed-integer linear programming (MILP) model 
whose practical limit to obtain optimal solutions is 25 copies to be sequenced. 
Corominas et al. (2010) proposed an improved MILP model and increased the practical 
limit for obtaining optimal solutions from 25 to 40 copies to be sequenced. 
 
For solving largest instances, heuristic methods have been proposed. This problem has 
been first time solved in Waldspurger and Weihl (1994) using a method that authors 
called lottery scheduling. This method is based on generating a solution at random as 
follows. For each position of the sequence, the symbol to be sequenced is chosen at 
random and the probability of each symbol is equal to the number of copies of this 
symbol that remain to be sequenced divided by the total number of copies that remain to 
be sequenced. The same authors proposed a greedy heuristic method that they called 
stride scheduling (Waldspurger and Weihl, 1995) that obtains better results than the 
lottery scheduling method. However, the stride scheduling method is, in fact, 
Jefferson’s method originally designed to solve the apportionment problem (Balinski 
and Young, 1982; Kubiak, 2004). The relation between fair sequences and the 
apportionment problem was first time introduced in Bautista et al. (1996). 
 
In Corominas et al. (2007) five heuristics were proposed to solve the RTVP: the 
bottleneck algorithm used in Moreno (2002) to solve the minmax PRV problem, random 
generation, two classical parametric methods for solving the apportionment problem 
known as Webster’s method and Jefferson’s method (Balinski and Shahidi, 1998) and a 
new heuristic called Insertion method by the authors; moreover, a local search 
procedure is applied to the solutions obtained with the five heuristics. Parametric 
methods are defined as follows. Let xik be the number of copies of symbol i that have 
been already sequenced in the sequence of length k (assume xi0 = 0); the symbol to be 
sequenced in position k + 1 is ( ){ }* arg maxi i iki d x δ= + , where ( ]0,1δ ∈ . Webster’s 
and Jefferson’s methods are parametric methods that use a δ value equal to 0.5 and 1, 
respectively. Insertion method is a recursive heuristic based on grouping symbols into 
fictitious symbols until only two fictitious symbols remains and then solving optimally 
the two-symbol case. 
 
Other seven heuristics for the RTVP were proposed in Corominas et al. (2009) together 
with twelve local search procedures. Six of these seven heuristics are three variants of 
Webster's method, one variant of Jefferson's method and two variants of the Insertion 
method. Another proposed heuristic is a greedy heuristic based, at each position k (k = 
0... 2D − ) of the sequence, on comparing for each symbol the cost of allocating a copy 
of it to position k + 1 and the cost of allocating it to position k + 2. The twelve local 
search procedures result from combining three neighbourhoods, two rules for replacing 
the current solution with a new one and two stopping rules. The three neighbourhoods 
are: 1) swapping two consecutive copies, 2) swapping any pair of copies, and 3) a copy 
of a symbol i is removed from the position it occupies and inserted between a pair of 
consecutive positions provided that there is no another copy of i between the initial 
position of the unit and the position in which is inserted. The two rules for replacing the 



 18 

current solution are: 1) being replaced with the first neighbour that is better that current 
solution, and 2) being replaced with the best neighbour, provided it is better than the 
current solution. Finally, the two stopping rules are: 1) that there is not a neighbour 
better than the current solution, or a neighbour for which the net improvement is 0 and, 
to avoid cycling, such that the maximum distance is not increased for either of two 
symbols being exchanged and at least one of the maximum distances actually decreases, 
and 2) similar to the preceding stopping rule but differs only in that considers also as 
candidates the neighbours for which the net improvement is 0 and such that the 
minimum distance does not decrease for either of the two symbols being exchanged 
and, moreover, at least one of the minimum distances actually increases. 
 
In Herrmann (2007) was proposed an aggregation method based on grouping iteratively 
the symbols with the same number of copies to be sequenced into fictitious symbols and 
then applying a parametric method. The aggregation idea is extended in Herrmann 
(2009). 
 
To solve the non-cycling variant of the RTVP in which the television advertising slots 
are scheduled, Bollapragada et al. (2004) developed two MILP models, a branch and 
bound (B&B) algorithm and four heuristics. Later, Brusco (2008) propose an enhanced 
B&B algorithm and a simulated annealing (SA) algorithm. 
 
A lower bound of the RTVP has been proposed in Corominas et al. (2007). However, 
this lower bound is, in general, not enough accurate and is not a good quality indicator 
of the solution obtained by a heuristic method. 
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IV. Justification and objectives 
 
The size of the RTVP instances which can be solved optimally with the best exact 
method has a practical limit of 40 copies. On the other hand, the non-exact methods 
proposed in the literature to solve larger instances are simple heuristics that obtains 
solutions quickly, but the quality of the obtained solutions can be improved. Thus, the 
solution methods existing in the literature are not enough to solve the RTVP. 
 
On the other hand, the RTVP and variants have emerged recently and independently 
from different environments. This situation complicates to researchers and, especially, 
practitioners of a certain area to know the literature existing about the RTVP. Thus, it is 
observed in the state of the art that the researches and practitioners start from the scratch 
when he/she needs to solve the RTVP or variants in his/her work context. This thesis 
and the articles and communications that have been derived may help to announce the 
problem and, therefore, to unify the efforts to solve it. 
 
The main objective of this thesis is to improve the resolution of the RTVP. This 
objective is split in the two following sub-objectives: 1) to increase the size of the 
RTVP instances that can be solved optimally in a practical computing time; and 2) to 
obtain efficiently near-optimal solutions for larger instances. To achieve this objective, 
several methods to solve the RTVP have been developed. 
 
Moreover, the thesis has other two secondary objectives. 
 
Hyper-heuristics are an emerging methodology in search and optimisation which can be 
defined as “heuristics to choose heuristics” (Burke et al., 2003; Ross, 2005). Hyper-
heuristics apply the right heuristic during the problem solving process, according to the 
current state of the solution. Thus, an intelligent application of different heuristics at 
different times in the search could lead to better performance than the application of 
individual heuristics. This innovative methodology has been applied to solve several 
optimisation problems: among others, timetabling, space allocation, flow-shop, job-
shop, bin-packing and vehicle routing problems. All hyper-heuristics proposed in the 
literature work using simple heuristics, but very little work has still been done using 
metaheuristics (Burke and Kendall, 2005). We propose in this thesis to develop several 
hyper-heuristic algorithms to solve the RTVP that will use more complex, metaheuristic 
methods. A first secondary objective is to contribute in the new research field thanks to 
the development of the proposed hyper-heuristic algorithms. 
 
The proposed methods have a set of parameters that need to be fine-tuned before the 
execution. The values of the parameters have usually a strong influence in the 
performance of algorithms. In non-exact methods, the performance is usually referred to 
the quality of the solution obtained; instead, in exact methods, the performance is 
usually referred to the computing time spent. Although the parameter values are 
extremely important because of the performance of the algorithm is very sensitive to 
them, the selection of parameter values is usually not enough justified (Eiben et al., 
1999; Adenso-Díaz and Laguna, 2006). Adenso-Díaz and Laguna (2006) reported that 
“about 10% of the total time dedicated to designing and testing of a new heuristic or 
metaheuristic is spent on development, and the remaining 90% is consumed fine-tuning 
parameters”. This statement can be also extended to the development of exact and 
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hyper-heuristic methods. The another secondary objective of this thesis is to propose a 
systematic procedure for fine-tuning algorithms able to find good parameter values 
which needs of little human intervention and to be applied in the designed methods. 
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V. Solution procedures 
 

V.1. Introduction 
 
Different techniques and approaches have been applied in this thesis to solve the RTVP. 
An exact method based on the B&B technique has been designed in order to increase 
the size of the instances that can be optimally solved in a practical time with respect to 
the best MILP model proposed in the literature. 
 
However, efficient non-exact methods are still needed for solving large, real-life 
instances. We have proposed heuristic, metaheuristic and hyper-heuristic methods. 
 
An adaptive heuristic that incorporates a look-ahead strategy has been developed to 
obtain quite good solutions and very quick. 
 
More complex procedures as metaheuristics have been considered to obtain better 
solutions. Some of the classical metaheuristics that have shown its efficiency to solve 
combinatorial problems are multi-start (MS), greedy randomized adaptive search 
procedure (GRASP), genetic algorithm (GA), simulated annealing (SA), tabu search 
(TS), ant colony optimization (ACO), particle swarm optimisation (PSO) and variable 
neighbourhood search (VNS). These metaheuristics are usually compiled in specialized 
handbooks (Glover and Kochenberger, 2003; Burke and Kendall, 2005). Moreover, new 
and promising metaheuristics have been proposed during the last decade: among others, 
cross-entropy method (CE), electromagnetism-like mechanism (EM) and psychoclonal 
(PSC). Algorithms based on all the mentioned metaheuristics have been developed. 
 
Moreover, several hyper-heuristic approaches have been developed and some novel 
research has been done about the inclusion of metaheuristics in the hyper-heuristic 
scheme. The proposed hyper-heuristic methods have been tested solving the RTVP. 
 
The fine-tuning of the parameters of the proposed B&B and metaheuristic methods have 
done in a systematic way using CALIBRA (Adenso-Díaz and Laguna, 2006). 
CALIBRA is a methods specially designed for fine-tuning the parameters of algorithms. 
On the other hand, another possible choice for fine-tuning the algorithm parameters is 
the Nelder and Mead algorithm (N&M) (Nelder and Mead, 1965). We have proposed a 
fine-tuning procedure that takes advantage of the characteristics of CALIBRA and 
N&M. 
 

V.2. An exact algorithm 
 
The best exact method proposed in the literature to solve the RTVP is a MILP model 
(Corominas et al., 2010). MILP models use general software to solve problems; in 
Corominas et al. (2010), the ILOG CPLEX 9.0 optimiser is used. The disadvantage of 
the MILP approach is that general software is used to solve the MILP model and it 
cannot take advantage of all characteristics of the problem.  
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In order to solve optimally larger instances in a practical time, we propose to develop an 
exact algorithm based on the B&B technique. We have analysed the characteristics of 
the problem to propose a specially designed B&B algorithm. In particular, we have tried 
to avoid exploring dominated and equivalent solutions as much as possible. 
 
The proposed B&B algorithm and the results of a computational experiment are 
reported in A branch and bound approach for the response time variability problem 
(García-Villoria et al., 2009a)*

V.3. Non-exact methods 

. 
 

V.3.1. An heuristic algorithm 
 
Several quick heuristics have been proposed in the literature to solve the RTVP. In 
order to improve the obtained solutions using very little computing time, a new heuristic 
has been designed. 
 
The proposed heuristic allocates, at each iteration, a symbol into the first free position 
of the sequence (let the position be called p). The main idea behind the heuristic is to 
choose the symbol whose distance between position p and its last sequenced copy is the 
most similar to its ideal distance. The ideal distance of each symbol is not static but it 
changes dynamically according to the current state of the partial constructed sequence. 
Moreover, a look ahead strategy is used in the decisions made by the algorithm. 
 
The heuristic is used to solve the RTVP and also to solve a variant of the problem that 
we called minmax RTVP. In this variant, the objective is to minimise the maximum 
absolute discrepancy in the distances between any two consecutive copies of the same 
symbol. The design of the heuristic and the results of the computational experiment are 
reported in An adaptive-based heuristic for the Response Time Variability Problem 
(Salhi and García-Villoria, 2009). 
 

V.3.2. Metaheuristic algorithms 
 
Metaheuristics are one of the most practical, non-exact approaches to solve hard 
optimisation problems. As it is pointed in the Metaheuristic Network 
(http://www.metaheuristics.net), "although metaheuristics are widely used techniques, 
the how and why they work effectively for specific problems and for others not, is still 
not well understood". Choosing the most suitable metaheuristic, or metaheuristic 
components, to use when a new problem is attacked is a very interesting question that 
remains still open. Given the lack of guidelines, the performance assessment of a 
metaheuristic for solving a problem is best carried out by experimentation (Chiarandini 
et al., 2007). 
 
We have designed one CE algorithm (Solving the Response Time Variability Problem 
by means of the Cross-Entropy Method (García-Villoria et al., 2010)), three MS, two 

                                                 
* The title of the works derived from the thesis are referenced using bold, italic letters during the 
remaining document. 
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GRASP and fourteen PSO algorithms (Solving the Response Time Variability Problem 
by means of metaheuristics (García et al., 2006), Solving the Response Time 
Variability Problem by means of Multi-start and GRASP metaheuristics (Corominas 
et al., 2008), A Parametric Multi-start Algorithm for Solving the Response Time 
Variability Problem (Corominas et al., 2010), Introducing dynamic diversity in a 
discrete Particle Swarm Optimization (García-Villoria and Pastor, 2009a)), one ACO 
algorithm (Using an Ant Colony System to solve the Response Time Variability 
Problem (Corominas et al., 2009a)), one EM algorithm (Solving the Response Time 
Variability Problem by means of the Electromagnetism-like Mechanism (García-
Villoria and Pastor, 2009b)), one PSC algorithm (Solving the Response Time 
Variability Problem by means of a psychoclonal approach (García-Villoria and Pastor, 
2008)), one GA (Solving the Response Time Variability Problem by means of a 
genetic algorithm (García-Villoria and Pastor, 2010)), two VNS algorithms (Solving 
the Response Time Variable Problem by means of a Variable Neighbourhood Search 
Algorithm (Corominas et al., 2009b)), two TS algorithms (Using Tabu Search for the 
Response Time Variability Problem (Corominas et al., 2009c), Resolución del 
response time variability problem mediante tabu search (Corominas et al., 2009d)), 
three hybrid algorithms (Metaheuristic algorithms hybridized with variable 
neighbourhood search for solving the response time variability problem (Corominas et 
al., 2009e)) and three SA-based algorithms (An enhanced metaheuristic for solving the 
response time variability problem (Corominas et al., 2009f)). 
 

V.3.3. Hyper-heuristic algorithms 
 
Hyper-heuristics are an emerging methodology in search and optimisation. A short 
definition of hyper-heuristic methods is “heuristics to choose heuristics”. Hyper-
heuristics apply the right heuristic during the problem solving process, according to the 
current state of the solution. Hyper-heuristics operate indirectly on the solutions by 
choosing the (meta)heuristic to be applied. They thus operate at a higher level than 
classical heuristics and metaheuristics. In fact, hyper-heuristics have only access to a set 
of low-level (meta)heuristics that are applied to the current solution.  
 
Hyper-heuristics can be divided into two categories: constructive hyper-heuristics and 
improvement hyper-heuristics. Constructive hyper-heuristics use a set of constructive 
heuristics as low-level heuristics, in order to construct a full solution. In contrast, 
improvement hyper-heuristics start from a complete initial solution and then improve on 
it, using either simple refinement heuristics or even more sophisticated, but time-
consuming, metaheuristics. 
 
We have proposed four constructive hyper-heuristics that use simple greedy heuristics 
as low-level heuristics and three improvement hyper-heuristics that use local search 
procedures as local search procedures. Both approaches are usual in the hyper-heuristic 
literature. Moreover, we have proposed other three constructive hyper-heuristics that 
use metaheuristics as low-level heuristics. To the best of our knowledge, there are not 
such studies reported in the literature. We believe this is mainly because of the 
excessive computational time that it may require. We have therefore put forward a 
mechanism on how to deal with this issue. We have proposed appropriate schemes on 
how to select the low-level metaheuristics based on the regular use of learning and 
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launching stages at each cycle of the search. The goal is to control the computational 
burden while guiding the search toward good solutions 
 
All hyper-heuristic algorithms have been tested solving the RTVP. The research, 
proposals and results are reported in Hyper-heuristic Approaches for the Response 
Time Variability Problem (García-Villoria et al., 2009b) 
 

V.4. Fine-tuning 
 
We have observed in the literature that the selection of the parameter values is usually 
not enough justified (even sometimes the parameter values used in the computational 
experiment are missing), as Adenso-Díaz and Laguna (2006) and Eiben et al. (1999) 
have also pointed. 
 
We are aware of the difficulty of fine-tuning an algorithm due to the common non-linear 
interdependence between the parameters and, in the case of stochastic algorithms as 
most of metaheuristics, each execution may provide a different solution. Anyway, 
nowadays there are hands-off tools that can provide right parameter values in a 
reasonable computing time as, for example, CALIBRA and N&M. 
 
CALIBRA has been specifically designed for fine-tuning algorithms and it is based on 
using conjointly Taguchi’s fractional factorial experimental designs and a local search 
procedure (Adenso-Díaz and Laguna, 2006). On the other hand, N&M (Nelder and 
Mead, 1965) is a general direct optimisation algorithm (i.e., it only uses the values of 
the function). The disadvantage of using N&M to fine-tune the parameters of an 
algorithm is that good parameters values are needed at the beginning, which are not 
usually available. 
 
Thus, CALIBRA have been used to fine-tune the parameters of the proposed B&B and 
metaheuristic methods. The systematic use of a hands-off procedure as CALIBRA to 
find the parameter values not only allows to find right parameter values but also to do a 
fair comparison between the results obtained with the metaheuristic methods. 
 
Moreover, we have proposed a new hands-off, systematic fine-tuning procedure for 
fine-tuning metaheuristics that takes the advantages of CALIBRA and N&M. In the 
case that more fine-tuning time is available, the CALIBRA authors suggest applying 
again CALIBRA in a narrow range around the obtained parameter values. However, we 
suggest applying N&M instead. The explanation of this new procedure and the 
computational experiment to validate the proposal is reported in the article A systematic 
procedure based on CALIBRA and the Nelder & Mead algorithm for fine-tuning 
metaheuristics (Corominas et al., 2009g).  
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VI. Discussion of the results 
 

VI.1. Exact solution of the RTVP 
 
To fine-tune and test the B&B algorithm, 30 training and 320 test instances are used 
(available at https://www.ioc.upc.edu/EOLI/research/). The first 120 test instances are 
the same instances used to test the best MILP model (Corominas et al., 2010). The 
instances were generated as follows. D was randomly selected with a discrete uniform 
distribution between 20 and 30, between 30 and 35, between 35 and 40, between 40 and 
45, between 45 and 50, between 50 and 55, between 55 and 60 and between 60 and 65 
for instances 1 to 40, 41 to 80, 81 to 120, 121 to 160, 161 to 200, 201 to 240, 241 to 280 
and 281 to 320, respectively. For instances 1 to 40, n and di were randomly selected 
with a discrete uniform distribution between 3 and 2D    and between 1 and 

( )1 2D n − +   (with 
1

n
ii

d D
=

=∑ ), respectively. For instances 41 to 320, n and di were 
randomly selected with a discrete uniform distribution between 3 and 12 and between 1 
and ( )1 2.5D n − +   (with 

1

n
ii

d D
=

=∑ ), respectively.  
 
The B&B algorithm was coded and run under Java 2 Platform Standard Edition (J2SE) 
1.4.2.14 and the computational experiment was carried out on a PC 3.00 GHz Intel 
Pentium IV with 1.5 GB of RAM.  
 
Table 2 summarises the results obtained with a maximum calculation time of 10,000 
seconds for each instance. The columns #Opt and #Fea show the number of instances 
that have been optimally solved and the number of instances in which a solution has 
been found but its optimality has not been demonstrated, respectively. The average 
computing time (in seconds) is shown in parentheses. 
 

Table 2. Comparison between the best MILP and the proposed B&B algorithm 
 

  #Opt #Fea 

MILP  114 (278 s.) 6 (10,000 s.) 

B&B 
 114 (7.47 s.) 

        + 
6 (316.21 s.) 

0 

 
The best MILP model optimally solved 114 of the first 120 test instances whereas the 
proposed B&B algorithm solved all 120 instances. Moreover, the computing time has 
been considerably reduced; the MILP model needs an average time of 278 seconds to 
solve the 114 instances versus the average time of 7.47 seconds needed by the B&B 
algorithm to solve the same 114 instances. 
 
Table 3 shows the results obtained for instances 1 to 320 with a maximum calculation 
time of 10,000 seconds for each instance. Column D shows the range size of the 
instances, column T shows the average time (in seconds) to solve an instance, column 
TS0 shows the time (in seconds) to obtain the initial solution, column RTV shows the 
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average of the best RTV values found and column #Opt shows the number of instances 
that have been solved optimally. 
 

Table 3. Results obtained with the B&B method 
 

Instances  D T TS0 RTV #Opt 

1-40  20-30 2.15 2.08 6.23 40 

41-80  30-35 5.89 2.83 9.24 40 

81-120  35-40 60.69 3.05 13.47 40 

121-160  40-45 785.98 2.08 14.43 38 

161-200  45-50 1,589.13 2.83 16.49 37 

201-240  50-55 2,973.90 3.06 18.51 34 

241-280  55-60 5,090.25 3.60 20.48 23 

281-320  60-65 5,910.49 4.00 24.87 18 

 
Between 40 and 45 copies, 45 and 50 copies and 50 and 55 copies the B&B algorithm 
solves the 95%, 92.5% and 85% of instances, respectively. For larger instances, the 
number of solved instances decreases quickly. However, the algorithm is still able to 
solve around 50% of instances that have between 55 and 65 copies to be sequenced. 
 
Thus, we can say that the B&B algorithm is able to solve optimally in a practical time 
instances up to 55 copies to be sequenced (that is, the size of the instances that can be 
optimally solved has been increased 37.5% with respect to the best exact method 
published in the literature). Not only larger instances can be optimally solved but also it 
is useful to find new optimal solutions of the RTVP that can be used to compare the 
results obtained with heuristic and metaheuristic methods. 
 

VI.2. Non-exact solution of the RTVP 
 
To test the algorithms, a set of benchmark instances is needed. Because there was not 
any benchmark set published in the literature, a set of 740 testing instances generated at 
random has been used together with a set of 60 training instances to fine-tune the 
parameters of the algorithms (all instances can be found at 
https://www.ioc.upc.edu/EOLI/research/). These instances were grouped into four 
classes (from CAT1 to CAT4 with 15 training instances and 185 test instances in each 
class) according to their size. The instances were generated using the random values of 
D (number of copies) and n (number of symbols) shown in Table 4. For all instances 
and for each symbol i = 1,…,n, a random value of di (number of copies of symbol i) is 
between 1 and ( )1 2.5D n− +    such that 

1.. ii n
d D

=
=∑ . 

 
Table 4. Uniform distributions for generating the D and n values 

 

  CAT1 CAT2 CAT3 CAT4 
D  U(25, 50) U(50, 100) U(100, 200) U(200, 500) 
n  U(3, 15) U(3, 30) U(3, 65) U(3, 150) 
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All algorithms were coded and run under Java 2 Platform Standard Edition (J2SE) 
1.4.2.14 and all computational experiments were carried out on a 3.4 GHz Pentium IV 
with 1.5 GB of RAM. 
 
In most of the metaheuristics, one or more of the following three neighbourhoods are 
used: 1) interchanging each pair of two consecutive copies of the sequence that 
represents the current solution (N1), 2) interchanging each pair of consecutive or no-
consecutive copies of the sequence (N2), and 3) inserting each copy in each position of 
the sequence (N3). 

VI.2.1. The heuristic algorithm 
 
The proposed heuristic (ENH-H) is compared with the five best existing heuristics 
(Corominas et al., 2009). Those are known as Oc, AWe/dg, We/dg, Je/dg and In.  
 
In the computational experiments all 800 testing and training instances are solved (since 
the heuristics have not parameters, training instances are not needed for the fine-tune). 
The results are analysed by considering all instances as well as each class of instances 
(CAT1 to CAT4). The average RTV values of the solutions obtained with all heuristics 
are given in Table 5. 
 

Table 5. Average RTV values obtained by the classical heuristics 
 

  Global CAT1 CAT2 CAT3 CAT4 
ENH-H  144.30 26.96 60.85 135.45 353.92 

Oc  215.61 28.96 74.20 198.61 560.68 
Awe/dg  405.88 47.03 120.32 349.13 1,107.03 
We/dg  434.56 50.93 129.62 376.27 1,181.43 
Je/dg  594.51 57.52 164.19 499.72 1,656.61 

In  778.51 121.16 308.45 658.21 2,026.21 
 
We can see in Table 5 that Oc was the best existing heuristic in the literature. This 
observation is valid for the overall RTV averages as well as in each class of instances 
(CAT1 to CAT4). On the other hand, our heuristic (ENH-H) obtains, on average, better 
solutions than Oc. If we consider the results by class, ENH-H is 6.91%, 17.99%, 
31.80% and 36.88% better than Oc for CAT1, CAT2, CAT3 and CAT4 instances, 
respectively. Thus, the results point that the larger the instance, the more competitive 
our heuristic. Moreover, the design ENH-H is simpler and is much faster than Oc. On 
average, ENH-H requires only 1.82 milliseconds to solve an instance, whereas Oc needs 
1,479.99 milliseconds (i.e., nearly 810 times slower). 
 

VI.2.2. The metaheuristic algorithms 
 
In this thesis 34 metaheuristic-based algorithms has been designed and used to solve the 
RTVP. All these metaheuristic algorithms, except one MS algorithm, have been tested 
on the same set of 740 test instances introduced in Chapter VI.2. 
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The RTV averages of the solutions obtained for 50 and 1,000 seconds of computing 
time are shown in Table 6 and Table 7, respectively. 
 

Table 6. RTV averages obtained for 50 computing seconds 
  GLOBAL CAT1 CAT2 CAT3 CAT4 
CE(a)  52,920.08 21.16 106.15 2,809.81 208,743.18 

Multi-start MS-1(b) 21,390.39 12.08 44.36 226.90 85,278.25 
MS-2(c) 2,106.01 11.56 38.02 154.82 8,219.65 

GRASP Webster(b) 14,168.83 15.47 88.48 510.44 56,060.92 
Greedy(c) 2,308.69 13.00 60.45 270.93 8,890.37 

PSO 

PSO-M1F(b) 8,502.83 66.45 424.59 3,000.52 30,519.76 
PSO-M1T(b) 13,457.60 66.83 509.89 4,335.87 48,917.80 
PSO-M2F(b) 10,778.40 83.14 604.27 4,488.44 37,937.76 
PSO-M2T(b) 8,629.03 80.93 517.05 3,888.79 30,029.34 
DPSOpoi-cpdyn(d) 4,625.54 16.42 51.34 610.34 17,824.04 
PSO-c3dyn(d) 6,986.05 15.72 57.10 1,261.81 26,609.56 
PSOCB(d) 8,316.51 73.79 433.98 3,106.96 29,651.33 
DPSOvel(d) 8,686.47 19.28 179.60 2,287.05 32,259.96 
CPSO(d) 8,774.06 74.51 478.13 3,478.72 31,064.89 
DPSOpoi(d) 8,792.70 17.14 50.50 810.58 34,292.58 
PSO-c3dyn’(d) 11,133.09 146.77 804.12 5,251.08 38,330.39 
PSOPC(d) 14,579.82 82.03 563.05 4,021.67 53,652.54 
PSO-c3stat(d) 18,707.12 40.41 853.26 7,959.23 65,975.58 
PSOPC’(d) 19,626.03 145.26 1,178.29 9,086.24 68,094.33 

ACO(e)  1,651.48 10.92 36.83 504.84 6,053.31 
EM(f)  3,747.05 19.14 54.54 260.79 14,653.72 
PSC(g)  235.68 14.92 44.25 137.07 746.50 
GA(h)  186.94 11.65 29.41 84.54 622.16 

VNS RVNS(1,2,3)
(i) 63.96 10.73 23.69 51.80 169.64 

RVNS(2,3)
(i) 86.78 10.63 23.23 53.39 259.86 

TS TSN2
(j)

 202.42 10.30 22.40 109.38 667.59 
TSN3

(k) 210.47 10.26 22.56 73.26 735.78 

VNS 
hybrids 

TS+VNS(l) 71.57 10.38 24.00 53.99 197.90 
MS+VNS(l) 62.17 10.24 21.23 47.46 169.76 
PSO+VNS(l) 60.03 10.47 22.42 49.37 157.86 

SA 
SAN1

(m) 50.87 10.26 21.67 44.57 126.98 
MS+SAN1

(m) 51.84 10.24 21.19 43.57 132.35 
MS+SAN1,2,3

(m) 73.12 10.24 21.52 47.37 213.37 
 

(a) García-Villoria et al., 2010; (b) García et al., 2006; (c) Corominas et al., 2008; (d) García-Villoria and 
Pastor, 2009a; (e) Corominas et al., 2009a; (f) García-Villoria and Pastor, 2009b; (g) García-Villoria and 
Pastor, 2008; (h) García-Villoria and Pastor, 2010; (i) Corominas et al., 2009b; (j) Corominas et al., 
2009c; (k) Corominas et al., 2009d; (l) Corominas et al., 2009e; (m) Corominas et al., 2009f 
 
 
The results point that simple metaheuristics based on replacing the current solution by 
one of its neighbours selected at random from one or more neighbourhoods, SA and 
RVNS, can work better than more complex algorithms like CE, PSO, ACO, EM and 
GA, for instance. Moreover, the hybridization of SA and VNS with a simple exploration 
mechanism like MS helps them to improve their performance. 
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Table 7. RTV averages obtained for 1,000 computing seconds 
  GLOBAL CAT1 CAT2 CAT3 CAT4 
CE  * * * * * 

Multi-start MS-1 1,378.58 10.93 35.48 160.67 5,307.25 
MS-2 169.25 10.51 31.21 123.27 512.02 

GRASP Webster 1,495.12 13.59 75.08 428.86 5,462.95 
Greedy 301.90 11.56 50.45 227.50 918.10 

PSO 

PSO-M1F 6,619.34 66.45 424.54 3,000.52 22,985.85 
PSO-M1T * * * * * 
PSO-M2F * * * * * 
PSO-M2T * * * * * 
DPSOpoi-cpdyn 1,537.34 14.35 46.55 143.95 5,944.51 
PSO-c3dyn 1,980.20 14.63 46.13 142.58 7,717.47 
PSOCB 3,696.44 13.83 42.18 391.54 14,338.20 
DPSOvel 4,312.31 17.75 84.17 1,036.87 16,110.42 
CPSO 6,731.24 73.79 433.98 3,106.96 23,310.24 
DPSOpoi 7,746.85 74.51 478.13 3,478.72 26,956.02 
PSO-c3dyn’ 8,838.70 82.03 563.05 4,021.67 30,688.03 
PSOPC 11,133.09 146.77 804.12 5,251.08 38,330.39 
PSO-c3stat 16,212.08 16.75 592.64 6,520.72 57,718.22 
PSOPC’ 18,495.01 138.76 1,056.59 8,414.15 64,370.53 

ACO  1,208.81 10.46 31.17 337.31 4,456.32 
EM  330.29 18.64 52.97 157.20 1,092.36 
PSC  161.60 14.90 36.90 122.38 469.23 
GA  106.68 10.92 27.00 74.86 313.92 

VNS RVNS(1,2,3) 62.24 10.73 23.29 51.40 163.15 
RVNS(2,3) 62.06 10.63 23.19 51.46 162.95 

TS TSN2 113.31 10.24 21.46 106.21 315.33 
TSN3 78.62 10.24 21.16 48.12 234.96 

VNS 
hybrids 

TS+VNS 55.05 10.24 22.48 47.66 139.84 
MS+VNS 54.95 10.24 20.94 43.26 145.35 
PSO+VNS 55.86 10.45 22.00 46.80 144.22 

SA 
SAN1 50.75 10.26 21.67 44.55 126.54 
MS+SAN1 46.60 10.24 20.92 40.33 114.91 
MS+SAN1,2,3 61.92 10.24 20.95 42.99 173.51 

(*) The computational experiment has not been done. 
 
 
For little computing time (50 seconds), the five best metaheuristic algorithms according 
to the overall RTV value of their obtained solutions are, in the following order, SAN1, 
MS+SAN1, PSO+VNS, MS+VNS and RVNS(1,2,3). On the other hand, if more computing 
time is available (1,000 seconds) the best metaheuristic algorithms are, in the following 
order, MS+SAN1, SAN1, MS+VNS, TS+VNS and PSO+VNS. After 1,000 computing 
seconds, MS+SAN1 is able to obtain an RTV average 8.18%, 15.20%, 15.35% and 
16.58% better than SAN1, MS+VNS, TS+VNS and PSO+VNS, respectively. Moreover, 
MS+SAN1 converges very fast and it is able to obtain a better RTV average with 50 
computing seconds (51.84) than the averages obtained with the third, four and fifth best 
methods (MS+VNS, TS+VNS and PSO+VNS, respectively) with 1,000 computing 
seconds (54.95, 55.05 and 55.86, respectively). Figure 4 shows the evolution of the 
RTV averages over the computing time. 
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Figure 4. Average of the RTV values obtained over the computing time 

 
Observing the RTV average by class, we can see that MS+SAN1 is also the best for all 
classes (CAT1 to CAT4) for 1,000 computing seconds. For CAT1 instances, MS+SAN1 
obtains an optimal solution for all 185 instances (as it will be explained later in this 
chapter). For CAT2 instances, the RTV average is 0.10% better than the average 
obtained with the second best algorithm for these instances (MS+VNS). For CAT3 
instances, the RTV average is 6.19% better than the average obtained with the second 
best algorithm for these instances (MS+SAN1,2,3). Finally, for CAT4 instances, the RTV 
average is 9.19% better than the average obtained with the second best algorithm for 
these instances (SAN1). 
 
To sum up, MS+SAN1 is the best choice to solve the RTVP because is the algorithm that 
obtains the best solutions, on average, independently of the size of the instance to be 
solved. Moreover, this algorithm is able to obtain better solutions than other algorithms 
very quick. 
 
Thus, the best solutions, on average, are obtained by MS+SAN1 among all metaheuristic  
methods (and also all hyper-heuristic methods, as we can see in Chapter VI.2.3) 
designed to solve the RTVP. However, is the quality of these solutions good? To 
answer this question, we have tried find the optimal solutions by means of the proposed 
B&B algorithm but only the smallest instances (CAT1 instances) were optimally solved. 
For the remaining instances, the lower bound (LB) proposed in Corominas et al. (2007) 
is used. Table 8 shows the averages of the LBs ( LB ), the average of the optimal RTV 
values ( *RTV ) for the CAT1 instances and the averages obtained with MS+SAN1 
( RTV ) with 1,000 computing seconds. 
 

Table 8. Averages of the optimal RTV values and the RTV lower bounds 
 CAT1 CAT2 CAT3 CAT4 
LB  5.35 10.95 21.15 48.15 

*RTV  10.24 * * * 

RTV  10.24 20.92 40.33 114.91 
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For all 185 CAT1 instances, MS+SAN1 achieves the optimal solutions. We can see in 
Table 8 that the LB calculated as proposed in Corominas et al. (2007) is not accurate. 
For the smallest instances, the ratio between *RTV and LB is 1.914. It could seem 
reasonable to assume that this ratio will remain equal or increase for larger instances. 
Thus, if we assume that the ratio remains equal, a more accurate estimation of the 
averages of the optimal values for CAT2, CAT3 and CAT4 instances are obtained by 
multiplying their LB  by 1.914; that is, 20.96, 40.48 and 92.16 for CAT2, CAT3 and 
CAT4 instances, respectively. According to this assumption, we could say that the 
solutions obtained by the hybrid algorithms for CAT2 and CAT3 instances are very 
good. 
 

VI.2.3. The hyper-heuristic algorithms 
 
All hyper-heuristics have been tested using the set of 740 test instances introduced in 
Chapter VI.2. 
 
The four proposed constructive hyper-heuristics (CHH-1 to CHH-4) use as low-level 
heuristics six greedy heuristics (Gr1 to Gr6). Two ways of fine-tuning the parameters of 
CHH-2 and CHH-3 have been proposed (considering the overall instances or 
considering the instances per class). Table 9 shows the average RTV values of the 
obtained solutions, where the method BH consists of running the six greedy heuristics 
and getting the best solution for each instance. 
 

Table 9. Average RTV values for the constructive hyper-heuristics  
 

  Global CAT1 CAT2 CAT3 CAT4 
Gr1  22,822.01 121.84 933.41 8,502.80 81,730.00 
Gr2  23,736.83 147.19 1,077.88 9,106.04 84,616.22 
Gr3  22,513.37 120.09 915.74 8,347.60 80,670.03 
Gr4  22,478.08 125.06 914.70 8,295.41 80,577.15 
Gr5  8,851.46 88.02 553.06 3,894.31 30,870.45 
Gr6  46,086.95 405.39 2,583.30 17,450.83 163,908.26 
BH  8,430.34 79.45 510.93 3,745.39 29,385.59 

CHH-1  7,664.60 68.78 440.00 3,335.37 26,814.25 

CHH-2 
Overall prob. 7,782.61 78.89 477.38 3,377.66 27,196.49 
Per class prob. 7,556.80 83.19 522.98 3,297.68 26,323.33 

CHH-3 
Overall prob. 6,610.44 83.05 426.50 2,754.06 23,178.13 
Per class prob. 6,358.27 104.53 599.37 3,186.30 21,542.86 

CHH-4  5,735.42 118.75 500.76 2,716.69 19,605.49 
 
Table 9 shows that the best individual greedy heuristic is clearly Gr5, which is much 
better than the second best heuristic (Gr4). And BH is, obviously, better than Gr5. On 
the other hand, all hyper-heuristic methods outperform, on average, BH. The best of the 
hyper-heuristics is CHH-4, which use a random strategy for selecting the low-level 
heuristic. CHH-4 obtains a RTV average 31.97% better than the average obtained by 
BH. Moreover, the computing times of the hyper-heuristics were very small: for CHH-
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1, CHH-2, CHH-3 and CHH-4 it was 2.523, 0.590, 0.040 and 0.046 seconds, 
respectively. 
 
Three improvement hyper-heuristic methods ( 0- - IIHH 1 H , 0- - IIHH 2 H  and 0- - IIHH 3 H , 
respectively) that use as low-level heuristics three local search procedures based on the 
neighbourhoods N1, N2 and N3, respectively, are proposed. The hyper-heuristics are 
compared with a composite hill-climbing method (CHC) that applies iteratively the 
three local search procedures until a local optimum with respect the three 
neighbourhoods is obtained. The results obtained when the maximum computing time is 
set to 1,000 seconds are shown in Table 10. 
 

Table 10. Average RTV values for the local search based hyper-heuristics 
 

  Global CAT1 CAT2 CAT3 CAT4 
CHC  124.49 16.39 39.91 101.90 339.75 

0- - IIHH 1 H   119.60 15.71 38.99 102.51 321.20 
0- - IIHH 2 H   117.55 15.71 38.99 100.44 315.05 
0- - IIHH 3 H   116.40 15.71 38.99 96.55 314.33 

 
The hyper-heuristics are able to decide intelligently when to use each local search 
during the optimisation process, rather than systematically using them in a specific 
order. All three hyper-heuristics outperformed CHC. The hyper-heuristics 0- - IIHH 1 H , 

0- - IIHH 2 H  and 0- - IIHH 3 H  were, on average, 3.93%, 5.57% and 6.50% better overall 
than CHC, respectively. 
 
Finally, three hyper-heuristics ( 1- - IIHH 1 H , 1- - IIHH 2 H  and 1- - IIHH 3 H , respectively) are 
proposed that use as low-level heuristics a TS algorithm, a VNS algorithm and CHC. 
Table 11 shows the results obtained with 1,000 computing seconds. 
 

Table 11. Average RTV values for the metaheuristic based hyper-heuristics 
 

  Global CAT1 CAT2 CAT3 CAT4 
CHC  124.49 16.39 39.91 101.90 339.75 

TS  229.47 10.74 42.68 175.03 689.44 
VNS  131.99 11.36 24.53 83.54 408.52 

1- - IIHH 1 H   159.98 10.39 25.18 74.71 529.65 
1-2- IIHH H   135.19 10.37 24.55 72.46 433.39 
1- - IIHH 3 H   109.20 10.39 24.72 66.91 334.76 

 
The best results shown in Table 11 are obtained, on average, by the hyper-heuristic 

1- - IIHH 3 H , which are better than the results found by any of the low-level heuristics 
when applied in isolation. The RTV average obtained by 1- - IIHH 3 H  is 12.28%, 17.27% 
and 52.41% better than the averages obtained by CHC, the TS algorithm and the VNS 
algorithm, respectively. 
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The results obtained in the experimentation are encouraging by two reasons. First, better 
RTV values, on average, have been obtained within the hyper-heuristic scheme than 
applying the low-level (meta-)heuristics in an isolate way. And second, improvements 
are obtained although quite simple hyper-heuristic algorithms have been designed. 
 

VI.3. Fine-tuning 
 
During the development of this thesis, we have experienced the importance of setting 
the parameter values of almost all algorithms proposed to solve the RTVP. In fact, this 
stage is vital to decide if a proposed algorithm is good solving the RTVP since the 
algorithm may be very sensitive to the parameter values. For example, we have noticed 
when fine-tuning that an algorithm can perform even 10 times worse when wrong 
parameter values are used.  
 
CALIBRA has been used to fine-tuning the parameters of the proposed B&B and 
metaheuristic methods. We think that not only is important using CALIBRA to obtain 
good parameter values but also the systematic fine-tuning process has allowed to make 
a fair comparison between the developed metaheuristic methods.  
 
According to the fine-tuning procedure that we propose (that is, applying CALIBRA 
followed by N&M) when enough fine-tuning time is available, the results of a 
computational experiment show that our proposal is better than the proposal suggested 
by the CALIBRA authors (that is, applying two times CALIBRA, the second one in a 
narrow range around the obtained parameter values). We refer to our fine-tuning 
procedure as CALIBRA+N&M and we refer to the alternative procedure as 
CALIBRA+CALIBRA. 
 
The two fine-tuning proposals were tested fine-tuning the parameters of three 
metaheuristics developed during this thesis: a PSO algorithm (DPSOpoi-cpdyn), the EM 
algorithm and the PSC algorithm. Table 12 shows average RTV values obtained by the 
PSO, EM and PSC algorithms using the parameter values returned by CALIBRA, 
CALIBRA+N&M and CALIBRA+CALIBRA) for the 740 test instances when the 
algorithms are run 1,000 seconds. 
 

Table 12. Average RTV values 
 

  PSO EM PSC 
CALIBRA  1,537.34 330.29 161.60 
CALIBRA+N&M  794.93 295.31 160.72 
CALIBRA+CALIBRA  1,115.72 426.58 208.49 

 
 
We can see that the three metaheuristics perform better using the parameter values 
returned by our proposed fine-tuning procedure than using the parameter values 
returned by CALIBRA or by CALIBRA+CALIBRA. The RTV averages obtained by the 
PSO, EM and PSC algorithms when using the CALIBRA+N&M parameter values are 
48.29%, 10.59% and 0.30% better than the RTV averages obtained using the CALIBRA 
parameter values, respectively. On the other hand, applying again CALIBRA may be 
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detrimental. In the case of the EM and PSC algorithm, the RTV averages obtained when 
using the CALIBRA+CALIBRA parameter values are around 22% worse than the 
averages when using the CALIBRA parameters. 
 
To sum up, CALIBRA is able to obtain in a reasonable time quite good parameter 
values. However, if more fine-tuning time is available, the fine-tuning procedure that 
we propose obtain parameter values that may help to the algorithm to perform still 
better. Moreover, the proposed procedure, as well as CALIBRA, requires little human 
intervention. 
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VII. Conclusions 
 
The objectives of this thesis have been successfully achieved: 
 

1a. The exact solution of the RTVP has been improved with the proposed B&B 
algorithm. The size of the instances that can be solved in a practical time has 
been increased from 40 copies to 55 copies to be sequenced. 

 
1b. Larger instances can be solved quickly using a robust non-exact algorithm called 

MS+SAN1. We have evidences that this method may obtain optimal or near-
optimal solutions. 

 
2. A contribution in the hyper-heuristic research has been done showing the 

viability of working with metaheuristics under the hyper-heuristic methodology. 
 
3. A systematic, hands-off fine-tuning procedure has been proposed. Moreover, in 

the articles and communication derived from this thesis we have tried to make 
aware of the importance of the fine-tuning. 

 
The RTVP defined as a cyclic, not distance-constrained problem oriented to minimise 
the RTV metric (Equation 1) has exhaustively studied and solved during the 
development of this thesis. We think that the work developed here is a good starting 
point to deal in a future other academic or real-life variants of this problem: 
 

• The problem of scheduling the advertisements introduced in Bollapragada et al. 
(2004), which is a non cyclic variant of the RTVP and the objective function is 
to minimise the sum of the absolute value of the distance discrepancies instead 
of the square value of the distance discrepancies. 
 

• The minmax RTVP; that is, to minimise the maximum of the discrepancies. 
 

• The other problems introduced in León et al. (2003) based on combining the 
characteristics explained in Chapter II.1 
 

• The commonly used measure between two successive symbols is one unit of 
distances, but this could be generalised to be dependent on the type of symbols 
and their relationships. For instance, in the Bollapragada et al. problem, each 
advertisement lasts a different time, so a more realistic approximation would be 
considering the allocation of the same commercials as evenly spaced in time 
instead of spaced in positions.  
 

 
It is worth to point that a feasible solution of the RTVP is also a feasible solution in all 
aforementioned variants in which only the objective function changes. Thus, most of the 
proposed methods can be easily adapted to solve these variants and it seems that their 
efficiency will not be change perceptibly. For instance, the adaptation of the 
metaheuristic and hyper-heuristic proposed methods is immediate since only the fitness 
function has to be modified. It seems also that the developed heuristic proposed here 
(ENH-H, see chapter V.3.1) can be applied to solve the non-cyclic variant and the 
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minmax RTVP (in fact, the minmax RTVP is solved by the proposed heuristic to 
provide the results as future benchmarking purposes). On the other hand, the B&B 
algorithm would need more adaptations according to the variant to be solved since it 
was designed taking the advantages of the special characteristics of the RTVP and these 
characteristics may be change in the problem variant to be solved. 
 
With respect to the hyper-heuristic field, a future study could investigate how to 
enhance the different mechanisms of the proposed hyper-heuristics. For instance, the 
amount of time used in the learning and launching stages of our hyper-heuristics 
decreases/increases deterministically at each cycle of the search. However, it seems 
better than this amount of time changes dynamically according to many attributes 
including the running time, problem characteristics and individual performance of the 
metaheuristics, among others.  
 
Another future interesting research to solve the RTVP is adding the SA-based and the 
VNS hybrid algorithms (which perform very well for solving the RTVP) as low-level 
heuristics in the proposed hyper-heuristics. 
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problems such as artificial neural network training (Chau, 2006; Geethanjali et al., 
2007), combinatorial optimization problems (Andrés et al., 2004; Liao et al., 2007; 
Secrest, 2001; Tasgetiren et al., 2007) and multiobjective optimization problems (Hu 
and Eberhart, 2002; Yin et al., 2007). Most of the PSO applications published in the 
literature were designed to solve continuous optimization problems, but there are few 
PSO applications for discrete optimization problems. The applications of PSO on 
combinatorial optimization problems are still considered limited, but the advantages of 
PSO include a simple structure, immediately accessible for practical applications, easy 
of implementation, speed to acquire solutions and robustness (Pan et al., 2007). In this 
paper, we develop ten discrete PSO algorithms for solving an NP-hard scheduling 
problem. 
 
The core of PSO is based on an analogy of the social behaviour of flocks of birds when 
they search for food. Since it is a population-based evolutionary metaheuristic, PSO has 
a population (known as swarm in the PSO ambit) of particles. Each particle has an 
associated point in the search space (which represents a solution) and an associated 
velocity (which indicates how the point of the particle is moved in the search space). 
The current velocity of a particle is typically a linear combination of three types of 
velocity: 1) the inertia velocity (i.e. its previous velocity); 2) the velocity to the best 
point found by the particle; and 3) the velocity to the best point found by the swarm. 
The PSO algorithm iteratively modifies the point and the velocity of each particle as it 
looks for the optimal solution. 
 
The trade-off between the exploration (i.e. the global search) and the exploitation (i.e. 
the local search) of the search space is critical to the success of an evolutionary 
metaheuristic. Trelea (2003) demonstrated that PSO always converges at certain values 
of its parameters but if the convergence is premature then several regions of the search 
space will remain unexplored. Several strategies have been proposed in the literature for 
correcting the tendency to converge prematurely on a local optimum. 
 
Clerc (2004) suggested a PSO variant in which the velocity to the best point found by 
the swarm is replaced by the velocity to the current best point of the swarm, although he 
does not test this variant. The idea was later implemented in a discrete PSO for solving 
the flowshop problem (Liao et al, 2007). 
 
Several authors developed strategies based on dynamically modifying the value of the 
PSO parameter called inertia weight, which weights the inertia velocity. Larger inertia 
weight values facilitate a more global behaviour and smaller values facilitate a more 
local behaviour. Therefore, the inertia weight is changed to achieve better balance 
dynamics between the global and local search capabilities. Since exploration is more 
important at the beginning of the search process and exploitation is more important at 
the end, the usual strategy is to start with a large inertia weight value and then decrease 
it over the iterations of the algorithm (Poli et al., 2007), which is the method adopted by 
Eberhart and Shi (2001), He et al. (2004) and Shi and Eberhart (1998a). 
 
Other authors introduce diversity into the swarm to escape from the current local 
optimum. There are different ways of introducing diversity and controlling the degree of 
diversity introduced. Clerc (2006) and Zhang et al. (2003) dynamically change the size 
of the swarm according to the performance of the algorithm. The size of the swarm is 
important because too few particles will cause the algorithm to converge prematurely to 
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a local optimum, while too many particles will slow down the algorithm. Note that 
adding new particles when the algorithm converges introduces diversity into the swarm. 
He et al. (2004) developed a PSO variant, called PSO Passive Congregation (PSOPC), 
which was inspired by the work of Parrish and Hamner (1997) in which spatial structure 
of animal group organizations are modeled. PSOPC uses an analogy of passive 
congregation, which describes a situation in which an individual is attracted to other 
group members but there is no display of social behavior. Passive congregation is 
expressed in PSOPC by adding a new term to the velocity at which the particle tends to 
move toward the point of another particle in the swarm that is randomly selected at each 
iteration of the PSOPC algorithm. This new term is weighted by a factor which is 
initially set to a small value and then linearly increased over the iterations of the 
algorithm. Xie et al. (2002) propose two Dissipative PSO (DPSO) algorithms: in the 
first, for each particle some components of the velocity are chosen at random and 
weighted by a random weight that is uniformly distributed between 0 and 1; in the 
other, for each particle some components of the point are chosen at random and 
weighted by a random weight that is uniformly distributed between 0 and 1. Fieldsend 
and Singh (2002) add a new term to the velocity called turbulence, which represents a 
random velocity. This idea was initially proposed in the early development of PSO 
(Kennedy and Eberhart, 1995), which used a stochastic variable called craziness, but 
this was soon omitted from the classical PSO algorithms. 
 
Various other solutions have been proposed for preventing premature convergence: 
objective functions which change over time (Hu and Eberhart, 2001); noisy evaluation 
of the function objective (Parsopoulos and Vrahatis, 2001); repulsion to keep particles 
away from the optimum (Parsopoulos and Vrahatis, 2004); dispersion between particles 
that are too close to one another (Loøvbjerg and Krink, 2002); reduction of the 
attraction of the swarm centre to prevent the particles clustering too tightly in one region 
of the search space (Blackwell and Bentley, 2002); hybrids with other metaheuristic 
such as genetic algorithms (Robinson et al., 2002; Angeline, 1998); or ant colony 
optimization (Hendtlass, 2001), etc. For an up-to-date overview of the particle swarm 
optimization, see Poli et al. (2007). 
 
Finally, several researchers have experimented with the swarm topology. Mendes 
(2004) carried out an in-depth study of the effect of static topologies. Clerc (2006) and 
Liang and Suganthan (2005) conducted interesting research into dynamic topologies. In 
the present study we consider a static fully connected graph, which is a static topology 
(Poli et al., 2007). 
 
The papers mentioned above are a sample of the wider research effort aimed at 
preventing premature convergence and enabling the PSO algorithm to escape from a 
local optimum. Although there are a lot of proposals for preventing premature 
convergence (e.g. by modifying the value of the inertia weight; by introducing diversity 
adding more particles, passive congregation or turbulence; hybridization, etc.), only 
three types of feedback of the current state of the search are taken, which are used to 
modify some of the parameter values accordingly: 1) no feedback, because all of the 
parameter values are constant over the execution of the algorithm; 2) the current 
iteration of the algorithm; and 3) the performance of the algorithm. 
 
In the present study we propose a new method for introducing diversity into the swarm 
by adding a term of randomness to the particle velocity. This term of randomness is 
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weighted by a coefficient that we call the diversity coefficient. We take feedback of the 
heterogeneity of the swarm to control the degree of diversity introduced (i.e. the value 
of the diversity coefficient). To our knowledge, no PSO algorithm uses a measure of the 
swarm heterogeneity to dynamically modify the values of its parameters. It seems 
reasonable to assume that the value of the diversity coefficient should not to be set 
before running the PSO algorithm. Instead, it is preferable to allow the value to change 
dynamically during the execution of the algorithm according to the convergence of the 
swarm (i.e. the convergence of the search): the more heterogeneous the population, the 
smaller the value of the diversity coefficient, and vice versa. 
 
We use the Response Time Variability Problem (RTVP) to test our proposal. The RTVP 
is a scheduling problem that was recently defined in the literature (Corominas et al., 
2007) and is very difficult to solve optimally (it is NP-hard). This problem has a wide 
range of real-life applications: it occurs whenever products, clients or jobs need to be 
sequenced in such a way that the variability in the time between the instants at which 
they receive the necessary resources is minimized. For example, it can be used to 
regularly sequence models in the automobile industry (Monden, 1983), to broadcast 
video and audio data frames of applications over asynchronous transfer mode networks 
as constantly as possible (Dong et al., 1998), in the stride scheduling technique 
(Waldspurger and Weihl, 1995) and in the periodic machine maintenance problem when 
the distances between consecutive services of the same machine are equal (Anily et al., 
1998). 
 
García et al. (2006) used the classical PSO metaheuristic to solve the RTVP and 
proposed four PSO variations. The best of these, called PSO-M1F by the authors, is the 
best heuristic method that has been published to date for solving non-small instances of 
the RTVP. 
 
In order to compare our PSO algorithm (that we call PSO-c3dyn), we have adapted a 
representative set of PSO algorithms for solving the RTVP: the PSO with a velocity to 
the best current point (Liao et al., 2007); the PSOPC (He et al., 2004); the two DPSO 
(Xie et al., 2002); the PSO with turbulence (Fieldsend and Singh, 2002); and two 
classical PSOs: the PSO-M1F adaptation (García et al., 2006) and a Constriction PSO 
(Clerc and Kennedy, 2002)). Moreover, we propose some variants of these algorithms 
that incorporate our proposed control mechanism of diversity or our proposed random 
velocity. 
 
A computational experiment is carried out and it is shown that the best results are 
achieved when using the control mechanism of diversity proposed in this paper. 
 
The remainder of the paper is organized as follows. Section 2 describes the scheme of 
the classical PSO and our newly proposal for introducing diversity according to the 
convergence of the population. Section 3 presents a formal definition of the Response 
Time Variability Problem. Section 4 explains our PSO algorithm and the adaptation of 
the mentioned PSO algorithms to solve the RTVP. Section 5 provides the results of the 
computational experiment. Finally, some conclusions and suggestions for future 
research are given in Section 6. 
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2. Particle Swarm Optimization 
 
First, the classical PSO is briefly explained in Section 2.1. Next, the method that we 
propose for introducing diversity according to the convergence of the population is 
presented in Section 2.2. Finally, how to set the value of the coefficient that weights the 
diversity introduced into the population is discussed in Section 2.3. 
 
2.1. Classical scheme of PSO 
 
Particle Swarm Optimization (PSO) was first described by Kennedy and Eberhart 
(1995). It is an evolutionary metaheuristic based on the behaviour of flocks of birds 
when they look for food. 
 
The population of PSO or swarm is composed of particles (birds), which have an 
associated multi-dimensional real point in the search space (which represents a solution) 
and an associated velocity (the movement of the point in the multi-dimensional real 
space). The velocity of a particle is typically a linear combination of three types of 
velocity: 1) the inertia velocity; 2) the velocity to the best point found by the particle; 
and 3) the velocity to the best point found by the swarm. The point and the velocity of 
each particle i of the population are iteratively modified by the algorithm as it looks for 
an optimal solution. In the original PSO developed by Kennedy and Eberhart (1995), 
the point and the velocity of the particles are modified according to the following two 
equations: 
 
 * *

1, , 1 , , 2 ,( ) ( )t i t i t i t i t t iv v c P X c SP X+ = + ⋅ − + ⋅ −  (1a) 
 1, , 1,t i t i t iX X v+ += +  (2) 
 
where vt,i is the inertia velocity of the particle i at iteration t, Xt,i is the point of the 
particle i at iteration t, *

,t iP  is the best point found by the particle i up to iteration t, *
tSP  

is the best point found by the swarm up to iteration t, and c1 and c2 are the coefficients, 
called acceleration coefficients, that weight the relevance of the last two types of 
velocity. 
 
In the original PSO it was necessary to dampen the particle dynamics and the solution 
proposed was to maintain the velocity within the range [-Vmax, + Vmax], where Vmax was a 
parameter of the original PSO.  
 
To find an appropriate value of Vmax according to the problem to be solved was a hard 
task. Thus, Shi and Eberhart (1998b) proposed to modify the original first PSO equation 
(Eq. 1a) to the following expression: 
 
 * *

1, , 1 , , 2 ,( ) ( )t i t i t i t i t t iv v c P X c SP Xω+ = ⋅ + ⋅ − + ⋅ −  (1b) 
 
where ω is the coefficient (called inertia weight) that weights the inertia velocity. 
Equations (1b) and (2) are the core of the classical PSO. 
 
At each iteration of the PSO algorithm, Equations (1b) and (2) reflect the compromise 
of each particle between following its own exploration, moving towards the best point it 
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has found by itself and moving towards the best point found by the swarm. Figure 1 
shows the pseudocode of the classical PSO algorithm. 
 

 
Figure 1. Pseudocode of the classical PSO algorithm 

 
Clerc and Kennedy (2002) used a series of theoretical analyses to develop a strategy of 
constriction coefficients. They proposed the Constriction PSO (CPSO), in which 
Equation (1a) is modified to the following expression: 
 
 ( )* *

1, , 1 , , 2 ,( ) ( )t i t i t i t i t t iv v c P X c SP Xχ+ = ⋅ + ⋅ − + ⋅ −  (1c) 
 
Although CPSO is algebraically equivalent to PSO with inertia weight, CPSO can 
generate higher-quality solutions than PSO with inertia weight for some of the problems 
studied in the literature (Eberhart and Shi, 2001). 
 
2.2. Introducing a diversity factor into PSO 
 
As mentioned above, Trelea (2003) demonstrated that the classical PSO metaheuristic 
always converges for some values of its parameters. Although the convergence of the 
metaheuristic is a desirable property, it can converge too fast and become trapped in a 
local optimum, particularly when PSO deals with integer variables (Hu et al., 2004). 
 
In Section 1 several ideas for preventing a premature convergence of the PSO algorithm 
have been presented, including the introduction of diversity. In this paper we propose a 
new way to introduce diversity into the population by adding a new type of velocity (a 
random velocity) to the linear combination formulated in Equation (1b). The modified 
equation is as follows: 
 
 * *

1, , 1 , , 2 , 3 , ,( ) ( ) ( )t i t i t i t i t t i t i t iv v c P X c S PX c R Xω+ = ⋅ + ⋅ − + ⋅ − + ⋅ −  (1d) 
 
where ,t iR  is a random point generated for the particle i at iteration t, and c3 (called the 
diversity coefficient) is the coefficient that weights the relevance of the new type of 

1. Set t = 0 
2. Randomly initialize positions of all particles 
3. Initialize velocities of all particles with void velocities 
4. While stopping criteria is not reached do: 
5. For each particle i in the swarm: 
6.  Calculate fitness: Set fi = fitness of Xt,i 
7.  Update *

,t iP : If fi is better than the fitness of *
,t iP , then set *

,t iP  to Xt,i 
8. End For 
9. Update *

tSP : Set Xbestt = the best point of the current swarm 

   If Xbestt is better than *
tSP , then set *

tSP  to Xbestt  
10. For each particle i in the swarm: 
11.  Update velocity: Calculate velocity Vt+1,i using Equation (1b) 
12.  Update point: Calculate point Xt+1,i using Equation (2) 
13. End For 
14. Set t = t + 1 
15. End While 
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velocity. Note that the random velocity introduces diversity into the movements of the 
particles. 
 
The value of the diversity coefficient is important in preventing PSO from converging 
prematurely and leaving regions of the search space unexplored. A large value of the 
diversity coefficient enables the PSO algorithm to carry out a wide-ranging exploration 
of the search space and thereby look for new promising points in exchange for a small 
exploitation; and vice versa for a small value of the diversity coefficient. 
 
2.3. Parameter tuning versus parameter control 
 
One laborious aspect of metaheuristics is choosing the right parameter values. This is a 
difficult task which requires considerable effort. Eiben et al. (1999) draw a distinction 
between two principal ways of setting parameter values: parameter tuning and 
parameter control. Parameter tuning refers to finding and to setting the parameter values 
before running the algorithm, whereas parameter control refers to using parameter 
values that change during the execution of the algorithm. 
 
Population-based metaheuristics such as PSO are intrinsically dynamic and the optimal 
parameter values might depend on which search state the algorithm is in. Therefore, the 
parameter values should be modified during the execution of the algorithm according to 
the search state. According to Eiben et al. (1999), there are two ways of doing this: by 
using adaptive parameter control or self-adaptive parameter control. 
 
The parameter values in adaptive parameter control are explicitly adaptive: the changes 
in values are given by a heuristic rule which takes feedback from the current search 
state and modifies the parameter values accordingly. The input information for the 
current state is usually the number of iterations of the algorithm (i.e. the current iteration 
of the search), the performance of operators (i.e. the progress of the search) or the 
diversity of the population (for more details, see Eiben et al., 1999). 
 
In self-adaptive parameter control, the parameters of the metaheuristic are incorporated 
into the representation of the solution. Thus, the parameter values are implicitly 
adaptive because they evolve together with the solutions of the population. Self-
adaptive parameter control is more common in genetic algorithms in which the 
parameters can be incorporated into the chromosomes, which renders them subject to 
evolution (Angeline, 1996; Hinterding et al., 1996). 
 
In Section 2.2, we proposed introducing diversity into the PSO population by adding a 
random velocity weighted by the diversity coefficient (c3). The value of the diversity 
coefficient may be static (i.e. its value is obtained by parameter tuning) or dynamic (i.e. 
its value is obtained by adaptive parameter control). The main difficulty of using a static 
diversity coefficient is to find a value that is (if possible) high enough to facilitate good 
exploration but low enough to facilitate good exploitation. Alternatively, a dynamic 
diversity coefficient can be used. We propose to use a control that changes the value of 
the diversity coefficient according to the heterogeneity of the population: the more 
heterogeneous the current population, the smaller the value of the diversity coefficient, 
and the less heterogeneous the current population, the larger the value of the diversity 
coefficient. To our knowledge, no PSO algorithm presented in the literature uses an 
adaptive parameter control whose feedback is based on the heterogeneity of the swarm. 
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3. The Response Time Variability Problem (RTVP) 
 
The Response Time Variability Problem (RTVP) occurs whenever products, clients or 
jobs need to be sequenced so as to minimize variability in the time between the instants 
at which they receive the necessary resources. This combinatorial optimization problem 
is easy to formulate, but Corominas et al. (2007) proved that it is NP-hard and, 
therefore, very difficult to solve optimally. 
 
The RTVP was recently defined in the literature and first presented by Corominas et al. 
(2007). The RTVP is formulated as follows. Let p be the number of products, id  the 

number of units of product i (i = 1,…, p) and D the total number of units ( ∑
=

=
p

i
idD

1
). Let 

s be a solution of an instance in the RTVP that consists of a circular sequence of units 
( Dssss 21= ), where sj is the unit sequenced in position j of sequence s. For all 
product i in which 2id ≥ , let i

kt  be the distance between the positions at which the units 
k + 1 and k of product i are found (i.e. the number of positions between the units, where 
the distance between two consecutive positions is considered equal to 1). As the 
sequence is circular, position 1 comes immediately after position D; therefore, i

di
t  is the 

distance between the first unit of product i in a cycle and the last unit of the same 
product in the preceding cycle. Let it  be the average distance between two consecutive 

units of product i (
i

i d
Dt = ). For all product i in which 1=id , it1  is equal to it . The 

objective is to minimize the ∑∑
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For example, let 3=p , 2=Ad , 2=Bd  and 4=Cd ; thus, 8=D , 4=At , 4=Bt  and 

2.Ct =  Any sequence is a feasible solution. For example, the sequence (C, A, C, B, C, 
B, A, C) is a solution, where ( ) ( )( ) ( ) ( )( )2 2 2 25 4 3 4 2 4 6 4RTV = − + − + − + −  

( ) ( ) ( ) ( )( )2 2 2 22 2 2 2 3 2 1 2 2 8 2 1 2+ − + − + − + − = + + = . 

 
There are only three published works that make reference to the RTVP. Corominas et al. 
(2007) presented the RTVP and proposed a mixed integer linear programming (MILP) 
model and five heuristic algorithms to solve it. Corominas et al. (2006) presented an 
improved MILP model with a practical limit for obtaining optimal solutions of around 
40 units to be scheduled. García et al. (2006) presented six metaheuristic algorithms: a 
multi-start algorithm, a GRASP (Greedy Randomized Adaptive Search Procedure) 
algorithm and four PSO algorithm variations. In order to solve non-small instances of 
the RTVP, one of the PSO algorithm variations (referred to as PSO-M1F) is the method 
published to date that obtains, on average, the best results. 
 
 
4. PSO algorithms for solving the RTVP 
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We propose eleven different PSO algorithms for solving the RTVP. The first approach, 
PSO-M1F, is taken from García et al. (2006) and is based on the classical PSO. The 
second algorithm, CPSO, is an adaptation of the Constriction PSO proposed by Clerc 
and Kennedy (2002). The third algorithm, PSO-c3dyn, is our proposal in which the 
random velocity is introduced together with the dynamic control mechanism of the 
value of the diversity weight according to the heterogeneity of the swarm. The fourth 
algorithm, PSOCB, incorporates the idea of replacing the velocity to the best point 
found with the swarm by the velocity to the current best point of the swarm (Clerc, 
2004). The fifth algorithm, PSOPC, is an adaptation of the PSO with passive 
congregation proposed by He et al. (2004). The sixth and seventh algorithms, DPSOvel 
and DPSOpoi, are adaptations of the two dissipative PSOs proposed by Xie et al. (2002) 
in which the velocity or the point are randomly modified. The eighth algorithm, PSO-
c3stat, is an adaptation of the PSO with turbulence proposed by Fieldsend and Singh 
(2002). Finally, the ninth, tenth and eleventh algorithm, PSO-c3dyn’, PSOPC’ and 
DPSOpoi-cpdyn, are variations that we developed by merging ideas incorporated into 
the designs of the previous algorithms. 
 
In the next eleven sections, each PSO algorithm is explained. In Section 4.12 we explain 
how the parameters of the eleven PSO algorithms were fine-tuned. 
 
4.1. A classical PSO algorithm (PSO-M1F) 
 
PSO was originally designed for working in multi-dimensional real spaces. The 
representation of a solution of the RTVP (and many other combinatorial optimization 
problems) consists of an ordered sequence of integer numbers. Therefore, the PSO 
metaheuristic has to be adapted to work with this type of solution representation (i.e. the 
point of a particle is now a sequence of integer numbers). This is done by redefining the 
elements (point and velocity) and the operations (external multiplication of a coefficient 
by a velocity, sum of velocities and sum of a velocity plus a point) of Equations (1b) 
and (2). Moreover, it is also necessary to determinate how the initial population is set 
and the stopping criteria 
 
García et al. (2006) proposed four variations based on the classical PSO with inertia 
weight (Shi and Eberhart, 1998b) for solving the RTVP. The differences between these 
variations derive from the way in which the velocity is redefined. The PSO algorithm 
that produces the best results is PSO-M1F. In the following sections, the elements and 
the operations of PSO-M1F are briefly explained (for a more detailed explanation, see 
García et al., 2006). 
 
The definitions of elements and operations are the same for all eleven PSO algorithms. 
 
4.1.1. Point of the particle 
 
A point consists of a solution represented by a D-length array that contains the sequence 
of D units to be scheduled. For example, a point could be the sequence (C, A, C, B, C, 
B, A, C). 
 
4.1.2. Velocity of the particle 
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The expression (X2 – X1), where X2 and X1 are two points, represents the difference 
between two points and the velocity needed to go from X1 to X2. This velocity is an 
ordered list of transformations (called movements) that must be applied sequentially to 
the particle so that its current point, X1, changes to the other one, X2. A movement is a 
pair of values (α / j). For each position u in the sequence (point) X1, the algorithm 
determines whether the unit that is in position u of sequence X1 is the same unit that is 
in position u of sequence X2. If the units are different, α is the unit in position u of X2 
and j is equal to position u. Thus, this movement denotes that to go from the sequence 
X1 to the sequence X2, the unit in position j must be exchanged for the unit α. 
 
For example, let X2 = (A1, C1, B2, C2, A2, C4, B1, C3) and X1 = (A1, B1, C2, C1, B2, C4, 
A2, C3). The sub-indices of the units are fictitious identifiers used to distinguish between 
the units of the same product. Thus, the velocity (X2 – X1) is formed by the list of 
movements [(C1/2), (B2/3), (C2/4), (A2/5), (B1/7)], which are the movements for moving 
X1 to X2: 
 
        X1 = (A1, B1, C2, C1, B2, C4, A2, C3)  
 (C1/2)  (A1, C1, C2, B1, B2, C4, A2, C3) 
 (B2/3)  (A1, C1, B2, B1, C2, C4, A2, C3) 
 (C2/4)  (A1, C1, B2, C2, B1, C4, A2, C3) 
 (A2/5)  (A1, C1, B2, C2, A2, C4, B1, C3) 
 (B1/7)  (A1, C1, B2, C2, A2, C4, B1, C3) = X2 
 
 4.1.3. External multiplication of a coefficient by a velocity 
 
The values of the coefficients ω, c1 and c2 in Equation (1b) are between 0 and 1. When a 
coefficient is multiplied by a velocity, it indicates the probability of each movement to 
be applied. For example, if we multiply the coefficient 0.6 by the velocity [(C1/2), 
(B2/3), (C2/4), (A2/5), (B1/7)], five random numbers between 0 and 1 are generated for 
comparison with the value 0.6. If the random number is lower than 0.6, the movement is 
applied. Therefore, if the values of the random numbers are 0.8, 0.3, 0.7, 0.4 and 0.2, 
movements (B2/3), (A2/5) and (B1/7) are applied, whereas movements (C1/2) and (C2/4) 
are not. The resulting velocity of the multiplication is therefore [(B2/3), (A2/5), (B1/7)], 
which, as previously stated, represents a list of movements to be applied to a point. 
 
4.1.4 Sum of velocities 
 
The sum of two velocities is simply the concatenation of their own list of movements. 
 
4.1.5. Sum of a velocity plus a point 
 
The sum of a velocity plus a point gives the result of sequentially applying each 
movement of the velocity to the point. 
 
4.1.6. Initial population 
 
The initial population is generated by setting a void velocity and a random point for 
each particle. As has been previously mentioned, each point consists of a solution 
represented by a sequence of integer numbers. A random solution is generated as 
follows: for each position in the sequence, a product to be sequenced is chosen at 
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random. The probability of each product is equal to the number of units of this product 
that remain to be sequenced divided by the total number of units that remain to be 
sequenced. 
 
4.1.7. Stopping criteria 
 
The PSO algorithm stops after it has run for a preset time. 
 
4.2. A Constriction PSO algorithm (CPSO) 
 
As explained in Section 2.1, Clerc and Kennedy (2002) proposed a PSO algorithm 
based on constriction coefficients, whose core is Equations (1c) and (2). We propose a 
Constriction PSO algorithm (called CPSO) for solving the RTVP in which the particles 
behave according to Equations (1c) and (2) and the parameter values (the size of the 
swarm and the coefficients χ, c1, and c2) are preset. 
 
4.3. A PSO algorithm with a dynamic value of the diversity coefficient (PSO-c3dyn) 
 
As explained in Section 2.2, the diversity coefficient (parameter c3 in Equation (1d)) 
weights the relevance of the random velocity. This random velocity is important in 
preventing PSO from converging prematurely and leaving regions of the search space 
unexplored. A large value of the diversity coefficient enables to PSO algorithm to carry 
out a wide-ranging exploration of the search space and, thereby look for new promising 
points in exchange for a small exploitation; and vice versa for a small value of the 
diversity coefficient. Therefore, we propose a new PSO algorithm (called PSO-c3dyn) in 
which an adaptive parameter control dynamically changes the diversity coefficient. 
 
A good heuristic rule for dynamically changing the value of the diversity coefficient 
should be one in which the more heterogeneous the current population, the smaller the 
value given to the diversity coefficient and vice versa. First, a measure of heterogeneity 
of the population at iteration t is needed. The following expression is used: 
 

 
,

( )
t i

i P
v
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∈=

⋅

∑
 (3) 

 
where P is the population, ,t iv  is the number of movements of the velocity of particle i 

at iteration t, D is the number of units to be sequenced, and P  is the size of the 
population P. As the diversity is introduced into the movements of the particles, the 
measure of heterogeneity het(t) records the movement of the particles. 
 
Given a specific value of the population heterogeneity (het(t)) at iteration t, it is 
necessary to set the corresponding value of the diversity coefficient (c3). There are 
infinite possible heuristic rules for obtaining the value of the diversity coefficient 
according to het(t). In the present study we used a set of rules according to which the 
value of the diversity coefficient decreases exponentially with het(t) (let the set be 
called êh ). Set êh  is formulated as { }( )ˆ : 0K het t

eh e K− ⋅= ≥ . Figure 2 shows some heuristic 

rules of êh  in graph form. 
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According to the value of K, a heuristic rule from set êh  is used. Therefore, K is 
considered to be one of the parameters of PSO-c3dyn in addition to the population size 
and the coefficients ω, c1, and c2 that need to be fine-tuned. 
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Figure 2. Examples of heuristic rules from 
êh  for obtaining the value of the diversity coefficient (c3) 

 
4.4. A PSO algorithm with a current best swarm point (PSOCB) 
 
Clerc (2004) suggested a possible classical PSO variant in which the velocity to the best 
point found by the swarm is replaced by the velocity to the best current point. Thus, 
Equation (1b) is replaced by the following equation: 
 
 * *

1, , 1 , , 2 ,( ) ( )t i t i t i t i t t iv v c P X c SCP Xω+ = ⋅ + ⋅ − + ⋅ −  (1e) 
 
where *

tSCP  is the best point of the swarm at iteration t. 
 
We propose a discrete version (that we call PSOCB) in which the parameter values (the 
size of the swarm and the coefficients ω, c1, and c2) are preset. 
 
4.5. A PSO algorithm with passive congregation (PSOPC) 
 
He et al. (2004) developed a PSO called PSOPC which models passive congregation 
behaviour. In PSOPC, Equation (1b) is changed to the following equation: 
 
 * *

1, , 1 , , 2 , 3 , ,( ) ( ) ( )R
t i t i t i t i t t i t i t iv v c P X c S PX c P Xω+ = ⋅ + ⋅ − + ⋅ − + ⋅ −  (1f) 

 
where ,

R
t iP  is the point of a particle selected at random for the swarm for the particle i at 

iteration t. Note that the fourth terms of Equation (1d) (PSO-c3dyn) and Equation (1f) 
(PSOPC) are different: Equation (1f) uses a point of an existing particle ( ,

R
t iP ), whereas 

Equation (1d) uses a randomly generated point ( ,t iR ). 
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He et al. (2004) used an adaptive parameter control according to the current iteration of 
the algorithm to dynamically set the values of the coefficients ω and c3: ω decreases 
linearly and c3 increases linearly when the number of iterations increases. We adopt the 
same strategy in the PSOPC algorithm. 
 
Thus, the parameter values that need to be preset are the size of the swarm, the 
coefficients c1 and c2, the starting values of ω and c3 and their deceasing and increasing 
slopes. 
 
4.6. A PSO algorithm with dissipative velocity (DPSOvel) 
 
Xie et al. (2002) added the following equation to the classical PSO algorithm which is 
applied after Equations (1b) and (2) to introduce additional diversity into the velocity of 
the particles: 
 
 IF (rand() < cv) THEN , ,()*d

t i max dv rand v=  (3a) 
 
where cv is a factor between 0 and 1, ,

d
t iv  is the component d of the velocity ,t iv , rand() 

is a random value between 0 and 1 and vmax,d is an upper bound of the component d of 
the velocity. 
 
This PSO algorithm was developed to solve continuous optimization problems, so the 
way of introducing additional diversity has to be adapted to our discrete PSO algorithm 
(DPSOvel). Each movement of a velocity (which is a list of movements) has a 
probability cv of been swapped with another, randomly selected movement. 
 
The parameter values (the size of the swarm, the coefficients ω, c1, and c2 and the factor 
cv) are preset. 
 
4.7. A PSO algorithm with dissipative point (DPSOpoi) 
 
Xie et al. (2002) added the following equation to the classical PSO algorithm which is 
applied after Equations (1b) and (2) to introduce additional diversity into the point of 
the particles: 
 
 IF (rand() < cp) THEN ( ), ,d

t i d dx Random l u=  (3b) 
 
where cp is a factor between 0 and 1, ,

d
t ix  is the component d of the point ,t iX , 

( ),d dRandom l u  is a random value between ld and ud, ld is a lower bound of the 
component d of the point and ud is an upper bound of the component d of the point. 
 
This PSO algorithm was developed to solve continuous optimization problems, so the 
way of introducing additional diversity has to be adapted to our discrete PSO algorithm 
(DPSOpoi). For each position of the point (which is a sequence), the position has a 
probability cp of being swapped with another, randomly selected position. 
 
The parameters values (the size of the swarm, the coefficients ω, c1, and c2 and the 
factor cp) are preset. 
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4.8. A PSO algorithm with turbulence (PSO-c3stat) 
 
Fieldsend and Singh (2002) introduced a random velocity (that they call turbulence) 
into the classical PSO for solving continuous optimization problems. In this PSO 
algorithm, Equation (1b) is replaced by the following equation: 
 
 * *

1, , 1 , , 2 , 3 ,( ) ( )t i t i t i t i t t i t iv v c P X c S PX c RVω+ = ⋅ + ⋅ − + ⋅ − + ⋅  (1g) 
 
where ,t iRV  is a random velocity generated for the particle i at iteration t. 
 
In our adaptation we propose to generate the random velocity so that the particle moves 
to a randomly generated point, i.e. our proposal to introduce diversity into the swarm 
(see Section 2.2). The value of c3 is static in the Fieldsend and Singh algorithm, so we 
call our adaptation PSO-c3stat.  
 
The parameters values of PSO-c3stat (the size of the swarm, the coefficients ω, c1, c2, 
and c3) are preset. 
 
4.9. A PSO-c3dyn variant (PSO-c3dyn’) 
 
We propose to vary PSO-c3dyn (see Section 4.3) by introducing diversity with passive 
congregation (i.e. as in PSOPC (see Section 4.5)) instead of random velocity. We call 
this variant PSO-c3dyn’. 
 
4.10. A PSOPC variant (PSOPC’) 
 
We propose to vary PSOPC (see Section 4.5) by introducing diversity with random 
velocity (i.e. as in PSO-c3dyn (see Section 4.3)) instead of passive congregation. We 
call this variant PSOPC’. 
 
4.11. A DPSOpoi variant (DPSOpoi-cpdyn) 
 
We propose to vary DPSOpoi (see Section 4.7) by using our adaptive control based on 
the population heterogeneity to dynamically change the value of the parameter cp (i.e., 
the diversity control mechanism used in PSO-c3dyn (see Section 4.3)). 
 
4.12. Fine-tuning of the PSO parameters 
 
Fine-tuning the parameters of a metaheuristic algorithm is almost always a difficult 
task. Although the parameter values are extremely important because the results of the 
metaheuristic for each problem are very sensitive to them, the selection of parameter 
values is commonly justified in one of the following ways (Eiben et al., 1999; Adenso-
Díaz and Laguna, 2006): 1) “by hand” on the basis of a small number of experiments 
that are not specifically referenced; 2) by using the general values recommended for a 
wide range of problems; 3) by using the values reported to be effective in other similar 
problems; or 4) by choosing values without any explanation. 
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Adenso-Díaz and Laguna (2006) proposed a new technique called CALIBRA for fine-
tuning the parameters of heuristic and metaheuristic algorithms. CALIBRA is based on 
Taguchi’s fractional factorial experimental designs coupled with a local search 
procedure. CALIBRA has been chosen for fine-tuning the PSO parameters using a set 
of 60 representative training instances (generated as explained in Section 5). 
 
García et al. (2006) used CALIBRA to fine-tune PSO-M1F. The same technique is also 
used to fine-tune the other proposed PSO algorithms. The following parameter values 
are obtained: 
 
1. PSO-M1F: size of the swarm = 21, ω = 0.87, c1 = 0.87 and c2 = 0.37 
2. CPSO: size of the swarm = 75, χ = 0.75, c1 = 0.75 and c2 = 0.75 
3. PSO-c3dyn: size of the swarm = 13, ω = 0.87, c1 = 0.87, c2 = 0.87 and K = 3.80 
4. PSOCB: size of the swarm = 25, ω = 0.87, c1 = 0.75 and c2 = 0.37 
5. PSOPC: size of the swarm = 25, ω = 0.63, c1 = 0.37, c2 = 0.75, c3 = 0.63, ω slope = 

-0.00250 and c3 slope = 0.00437 
6. DPSOvel: size of the swarm = 25, ω = 0.37, c1 = 0.87, c2 = 0.25 and cv = 0.087 
7. DPSOpoi: size of the swarm = 25, ω = 0.25, c1 = 0.75, c2 = 0.25 and cp = 0.050 
8. PSO-c3stat: size of the swarm = 8, ω = 0.13, c1 = 0.75, c2 = 0.87 and c3 = 0.25 
9. PSO-c3dyn’: size of the swarm = 13, ω = 0.87, c1 = 0.25, c2 = 0.87 and K = 6.30 
10. PSOPC’: size of the swarm = 87, ω = 0.87, c1 = 0.87, c2 = 0.87, c3 = 0.25, ω slope = 

-0.00625 and c3 slope = 0.00125 
11. DPSOpoi-cpdyn: size of the swarm = 13, ω = 0.75, c1 = 0.13, c2 = 0.75 and K = 8.70 
 
Sine CALIBRA cannot fine-tune more than five parameters, PSOPC and PSOPC’ 
(which have seven parameters) are fine-tuned in two steps. In the first step, the initial 
values of ω and c3 are set to 0.9 and 0.4, respectively (as in He et al. (2004)) and the 
remaining parameters (the size of the swarm, c1, c2, the ω slope and the c3 slope) are 
fine-tuned. In the second step the values of c1 and c2 are set at the values obtained in the 
first step and the remaining parameters (the size of the swarm, ω, c3, the ω slope and the 
c3 slope) are fine-tuned. 
 
 
5. Computational experiment 
 
The computational experiment for the eleven proposed PSO algorithms was carried out 
for the same instances and conditions used in García et al. (2006). That is, the 
algorithms ran 740 instances which were grouped into four classes (185 instances in 
each class) according to their size. The instances in the first class (CAT1) were 
generated using a random value of D (number of units) uniformly distributed between 
25 and 50, and a random value of p (number of products) uniformly distributed between 
3 and 15; for the second class (CAT2), D was between 50 and 100 and p between 3 and 
30; for the third class (CAT3), D was between 100 and 200 and p between 3 and 65; and 
for the fourth class (CAT4), D was between 200 and 500 and p between 3 and 150. For 
all instances and for each type of product i = 1,…,p, a random value of di (number of 

units of the product i) was between 1 and 1
2.5

D p− +  such that 
1

p

i
i

d D
=

=∑ . All 

algorithms were coded in Java and the computational experiment was carried out using 
a 3.4 GHz Pentium IV with 512 Mb of RAM. 
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The eleven algorithms were run for 50 seconds for each instance. Table 1 shows the 
averages of the RTV values to be minimized for the global of 740 instances and for each 
class of instances (CAT1 to CAT4) obtained with the PSO algorithms. 
 

 Global CAT1 CAT2 CAT3 CAT4 
DPSOpoi-cpdyn 4,625.54 16.42 51.34 610.34 17,824.04 
PSO-c3dyn 6,986.05 15.72 57.10 1,261.81 26,609.56 
PSOCB 8,316.51 73.79 433.98 3,106.96 29,651.33 
PSO-M1F 8,502.83 66.44 424.60 3,000.52 30,519.76 
DPSOvel 8,686.47 19.28 179.60 2,287.05 32,259.96 
CPSO 8,774.06 74.51 478.13 3,478.72 31,064.89 
DPSOpoi 8,792.70 17.14 50.50 810.58 34,292.58 
PSO-c3dyn’ 11,133.09 146.77 804.12 5,251.08 38,330.39 
PSOPC 14,579.82 82.03 563.05 4,021.67 53,652.54 
PSO-c3stat 18,707.12 40.41 853.26 7,959.23 65,975.58 
PSOPC’ 19,626.03 145.26 1,178.29 9,086.24 68,094.33 

Table 1. Averages of the RTV values for 50 seconds 
 
Table 1 shows that for the global of all instances, the results of PSO-M1F, which was 
until now the best method proposed in the literature for solving the RTVP, are improved 
on by the results of three PSO algorithms: DPSOpoi-cpdyn is 45.60% better, PSO-c3dyn 
is 17.84% better and PSOCB is 2.19% better. There are three algorithms that obtain 
slightly poorer results than PSO-M1F (DPSOvel, CPSO and DPSOpoi) and the four 
remaining algorithms provide much poorer results (PSO-c3dyn’, PSOPC, PSO-c3stat 
and PSOPC’). If we consider the results according to class, the three best algorithms for 
CAT1 instances are PSO-c3dyn, DPSOpoi-cpdyn and DPSOpoi (76.34%, 75.29% and 
74.20% better than PSO-M1F, respectively); the three best algorithms for CAT2 
instances are DPSOpoi, DPSOpoi-cpdyn and PSO-c3dyn (88.11%, 87.91% and 86.55% 
better than PSO-M1F, respectively); the three best algorithms for CAT3 instances are 
DPSOpoi-cpdyn, DPSOpoi and PSO-c3dyn (79.66%, 72.98% and 57.95% better than 
PSO-M1F, respectively); and the three best algorithms for CAT4 instances are 
DPSOpoi-cpdyn, PSO-c3dyn and PSOCB (41.60%, 12.81% and 2.84% better than PSO-
M1F, respectively). 
 
The results in Table 1 show that our proposed mechanism for controlling the degree of 
diversity introduced into the swarm is very effective. The best and second best results 
are obtained with two PSO algorithms that apply our control mechanism of diversity 
(DPSOpoi-cpdyn and PSO-c3dyn, respectively). DPSOpoi-cpdyn produces an 
improvement of 47.39% with respect to DPSOpoi, which is its static version, i.e. the 
degree of diversity introduced into the swarm is preset and is not changed by the 
proposed control mechanism. In addition, PSO-c3dyn produces an improvement of 
62.66% with respect to PSO-c3stat, which is its static version. Our proposal of 
introducing diversity through a random velocity works well when the degree of 
diversity is dynamically controlled according to our proposal. 
 
In Table 2 we compare the number of times that each PSO algorithm reaches the best 
RTV value obtained with all eleven algorithms. The results are shown for the 740 
instances overall and for each class of instances. 
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 Global CAT1 CAT2 CAT3 CAT4 
DPSOpoi-cpdyn 468 71 70 145 182 
PSO-c3dyn 142 88 52 1 1 
PSOCB 1 0 0 0 1 
PSO-M1F 0 0 0 0 0 
DPSOvel 60 50 9 0 1 
CPSO 1 1 0 0 0 
DPSOpoi 179 66 74 39 0 
PSO-c3dyn’ 0 0 0 0 0 
PSOPC 0 0 0 0 0 
PSO-c3stat 46 46 0 0 0 
PSOPC’ 0 0 0 0 0 

Table 2. Number of times that the best solution is reached 
 
As we expect from the results in Table 1, Table 2 shows that DPSOpoi-cpdyn reaches 
the best solution the greatest number of times (in 63.24% for the global of all instances). 
Surprisingly, although DPSOpoi is the seventh best algorithm according to the obtained 
RTV values, it is the algorithm that reaches the best solution the second-highest number 
of times (in 24.19% for the global of all instances) followed by PSO-c3dyn (in 19.19% 
for the global of all instances). In addition, DPSOvel and PSO-c3stat reach the best 
solution the fourth- and the fifth-highest number of times, respectively. 
 
To complete the analysis of the results, their dispersion is observed. We use the 
following expression to define a measure of the dispersion (let it be called σ) of the 
RTV values obtained by each algorithm, alg, for a given instance, ins: 
 

 
2( ) ( )

( )
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alg insσ
 −

=  
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where ( )RTV alg

ins  is the RTV value of the solution obtained with the algorithm alg for the 
instance ins, and )(RTV best

ins  is the best RTV value of the solutions obtained with the 
eleven algorithms for the instance ins. Table 3 shows the average σ dispersion for the 
740 overall instances and for each class of instances. 
 

 Global CAT1 CAT2 CAT3 CAT4 * 
DPSOpoi-cpdyn 0.11 0.29 0.16 0.01 0.00 (1) 
PSO-c3dyn 0.64 0.19 0.23 1.62 0.51 (3) 
PSOCB 72.20 44.44 159.40 83.77 1.21 (6) 
PSO-M1F 65.63 35.68 150.51 75.15 1.17 (5) 
DPSOvel 10.87 0.97 18.44 22.96 1.10 (4) 
CPSO 81.87 42.07 190.13 93.45 1.83 (7) 
DPSOpoi 0.41 0.41 0.10 0.18 0.95 (2) 
PSO-c3dyn’ 313.65 261.54 692.52 295.26 5.30 (10) 
PSOPC 123.10 52.95 292.21 141.44 5.83 (8) 
PSO-c3stat 302.44 8.73 613.62 566.83 20.58 (9) 
PSOPC’ 622.75 199.92 1,394.34 874.23 22.52 (11) 

* Order according to the average σ dispersion for the global of all instances 
 

Table 3. Average σ dispersion with respect to the best solution found 
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We can see from Table 3 that DPSOpoi-cpdyn, DPSOpoi and PSO-c3dyn have the 
lowest average σ dispersion for the global of all instances. Therefore, the two algorithms 
that apply the proposed mechanism for controlling the diversity introduced (DPSOpoi-
cpdyn and PSO-c3dy) not only produce the best RTV values but also exhibit very stable 
behaviour, i.e. when they do not obtain the best result for a given instance, they obtain a 
value that is very close to it. On the other hand, although DPSOpoi and DPSOvel 
produce slightly worse RTV values than PSOCB and PSO-M1F, they exhibit much 
more stable behaviour. 
 
The results in Table 1 and 2 show that the main differences between the seven best PSO 
algorithms (DPSOpoi-cpdyn, PSO-c3dyn, PSOCB, PSO-M1F, DPSOvel, CPSO and 
DPSOpoi) are in the average values of the CAT1, CAT2 and CAT3 instances, whereas 
the average values of the CAT4 instances are more similar (except for those obtained by 
DPSOpoi-cpdyn). This may occur because, on average, some PSO algorithms may 
converge to a local minimum on 50 seconds for small and medium instances (CAT1, 
CAT2 and CAT3 instances), whereas other algorithms continue to explore the search 
space. However, 50 seconds might not be enough time for the PSO algorithms to 
converge for large instances (CAT4 instances). Figure 3 shows how the averages of the 
RTV values for the global of all instances decrease over the computing time for the 
seven best algorithms. 
 

 
Figure 3. Average of the RTV values obtained over the computing time 

 
Figure 3 shows that the RTV values of the seven algorithms decrease exponentially 
during the first 110 seconds of computing time. At this point, the three algorithms into 
which no diversity is introduced (PSOCB, PSO-M1F and CPSO) have converged for 
almost all the instances and remain trapped in a local optimum during the remaining 
computing time. In contrast, the other four algorithms (DPSOpoi-cpdyn, PSO-c3dyn, 
DPSOvel and DPSOpoi) introduce diversity and are able to move away from the local 
optimum. Therefore, these four algorithms continue to explore new regions of the 
search space and find better local optima during the remaining computing time. 
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Table 4 shows the averages of the RTV values for the global of all instances and for 
each class of instances (CAT1 to CAT4) obtained with the eleven PSO algorithms when 
they are run for 1,000 seconds. 
 

 Global CAT1 CAT2 CAT3 CAT4 
DPSOpoi-cpdyn 1,537.34 14.35 46.55 143.95 5,944.51 
DPSOpoi 1,980.20 14.63 46.13 142.58 7,717.47 
PSO-c3dyn 3,696.44 13.83 42.18 391.54 14,338.20 
DPSOvel 4,312.30 17.75 84.17 1,036.87 16,110.42 
PSO-M1F 6,619.34 66.44 424.54 3,000.51 22,985.85 
PSOCB 6,731.24 73.79 433.98 3,106.96 23,310.24 
CPSO 7,746.85 74.51 478.13 3,478.72 26,956.02 
PSOPC 8,838.70 82.03 563.05 4,021.67 30,688.03 
PSO-c3dyn’ 11,133.09 146.77 804.12 5,251.08 38,330.39 
PSO-c3stat 16,212.08 16.75 592.64 6,520.72 57,718.22 
PSOPC’ 18,495.01 138.76 1,056.59 8,414.15 64,370.53 

Table 4. Averages of the RTV obtained values for 1,000 seconds 
 
Table 4 shows that DPSOpoi-cpdyn also produces the best average for the global of all 
instances when the algorithms are run for 1,000 seconds. However, the second best 
algorithm is now DPSOpoi, followed by PSO-c3dyn. We can see from Figure 3 that the 
results obtained by PSO-c3dyn are better than those obtained by DPSOpoi up to an 
execution time of 130 seconds. Thus, it is recommended to use PSO-c3dyn instead of 
DPSOpoi for execution times of less than two minutes. Anyway, Figure 3 shows that it 
is always advisable to use DPSOpoi-cpdyn, in which the way of introducing diversity 
into the swarm is based on one proposal by Xie et al (2002) and the degree of diversity 
is regulated by the control mechanism that we propose in this paper. 
 
There are four algorithms that improve on the results obtained by PSO-M1F when the 
total computation time equals to 1,000 seconds: DPSOpoi-cpdyn (76.78% better), 
DPSOpoi (70.08% better), PSO-c3dyn (44.16% better) and DPSOvel (34.85% better). 
On the other hand, the poor results shown in Tables 1 and 3 for PSOPC and PSO-c3dyn’ 
show that proposal of using passive congregation to introduce diversity into the swarm 
for a discrete optimization problem such as the RTVP is unsuccessful. 
 
 
6. Conclusions and future research 
 
PSO is an evolutionary metaheuristic proposed by Kennedy and Eberhart (1995) which 
has achieved good results for several types of problems. The metaheuristic uses an 
analogy of the flocking behaviour of birds to look for the optimal solution. PSO has the 
desirable property of convergence, but this convergence can be premature, in which 
case certain regions of the search space remain unexplored. To prevent this, several 
strategies have been proposed in the literature, some of which are based on introducing 
diversity into the swarm. Most published PSO applications are designed to solve 
continuous optimization problems, but there are few PSO applications for solving 
discrete optimization problems. 
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We propose a PSO algorithm (which we call PSO-c3dyn) for solving a discrete 
optimization problem. To develop PSO-c3dyn, two novel ideas are introduced: 1) a new 
way of introducing diversity into the swarm, based on introducing a random velocity; 
and 2) a mechanism for controlling the degree of diversity introduced into the swarm 
that takes feedback from the heterogeneity of the swarm. 
 
The algorithm is designed to solve the RTVP, which is a scheduling problem that occurs 
whenever products, clients or jobs need to be sequenced in such a way that the 
variability in the time between the instants at which they receive the necessary resources 
is minimized. The PSO-M1F algorithm proposed by García et al. (2006) is currently the 
best published algorithm for solving non-small instances of the RTVP. 
 
We propose nine more PSO algorithms (in addition to PSO-M1F) for comparison with 
PSO-c3dyn which are used to test the way of introducing diversity and the control 
mechanism of the diversity that we propose. Eight of these nine algorithms are based on 
PSO algorithms that have been tested in continuous optimization problems but not in 
discrete optimization problems. Therefore, this paper tests the validity of these 
algorithms when applied to discrete optimization problems such as the RTVP. In 
addition, we demonstrate that CALIBRA is very useful for fine-tuning the parameters of 
the PSO algorithms. 
 
The results of the computational experiment show that the proposed mechanism for 
controlling the degree of diversity introduced into the swarm works very well. The best 
results obtained, on average, are obtained under this diversity control. Thus, this paper 
presents a control mechanism that is very effective and contributes to improve the 
performance of PSO. Moreover, in this paper is improved the previous results published 
in the literature of the RTVP. 
 
The two novel ideas proposed in our paper (random velocity and diversity control) are 
very easy to adapt to a continuous space. Therefore, our future research will focus on 
testing the proposed diversity control in PSO algorithms for solving continuous 
optimization problems and determining whether it improves the overall results. Since 
the proposed way of introducing diversity by using a random velocity works correctly, 
we will also test it in continuous optimization problems. 
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The Response Time Variability Problem (RTVP) is an NP-hard combinatorial 
scheduling problem that has been recently formalised in the literature. The RTVP 
has a wide range of real-life applications such as in the automobile industry, when 
models to be produced on a mixed-model assembly line have to be sequenced under 
a just-in-time production. The RTVP occurs whenever products, clients or jobs need 
to be sequenced so as to minimize variability in the time between the instants at 
which they receive the necessary resources. In two previous studies, three 
metaheuristic algorithms (a multi-start, a GRASP and a PSO algorithm) were 
proposed to solve the RTVP. We propose solving the RTVP by means of the 
electromagnetism-like mechanism (EM) metaheuristic algorithm. The EM algorithm 
is based on an analogy with the attraction-repulsion mechanism of the 
electromagnetism theory, where solutions are moved according to their associated 
charges. In this paper we compare the proposed EM metaheuristic procedure with 
the three metaheuristic algorithms aforementioned and it is shown that, on average, 
the EM procedure improves strongly on the obtained results. 

Keywords: response time variability; fair sequences; scheduling; just-in-time; 
metaheuristics; electromagnetism-like mechanism 

 
 
1. Introduction 
 
The Response Time Variability Problem (RTVP) is a scheduling problem that has 
recently been defined in the literature (Corominas et al. 2007). The RTVP occurs 
whenever products, clients or jobs need to be sequenced so as to minimize variability in 
the time between the instants at which they receive the necessary resources. Although 
this combinatorial optimisation problem is easy to formulate, it is very difficult to solve 
(it is NP-hard, Corominas et al. 2007). 

The RTVP has a broad range of real-life applications. For example, it can be used 
to sequence regularly models in the automobile industry (Ding and He 2007), to 
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resource allocation in computer multi-threaded systems and network servers 
(Waldspurger and Weihl 1995), to broadcast video and sound data frames of 
applications over asynchronous transfer mode networks (Dong et al. 1998), in the 
periodic machine maintenance problem when the distances between consecutive 
services of the same machine are equal (Anily et al. 1998) and in the collection of waste 
(Herrmann 2007). 

One of the first problems in which has appeared the importance of sequencing 
regularly is at the sequencing on the mixed-model assembly production lines at Toyota 
Motor Corporation under the just-in-time (JIT) production system. One of the most 
important JIT objectives is to get rid of all kinds of waste and inefficiency and, 
according to Toyota, the main waste is due to the stocks. To reduce the stock, JIT 
production systems require to producing only the necessary models in the necessary 
quantities at the necessary time (Aigbedo 2004). To achieve this, one main goal, as 
Monden (1983) says, is scheduling the units to be produced to keep a constant 
consumption rates of the components involved in the production process. Miltenburg 
(1989) deals with this scheduling problem considering only the demand rates of the 
models. He proposed four metrics to measure the regularity of a sequence based on the 
discrepancies, for each model, between the real production rate and the ideal one (i.e., 
the one that would correspond to a constant rate of production). This problem is known 
as the Product Rate Variation (PRV) problem (Kubiak 1993). The PRV problem has 
been reformulated by Kubiak and Sethi (1994) as an assignment problem and, therefore, 
it can be solved efficiently. 

Although the sequencing on the mixed-model assembly production lines is usually 
considered in the literature as a PRV problem (Miltenburg 1989, Kubiak 1993, Steiner 
and Yeomans 1993), in our experience with practitioners of manufacturing industries 
we noticed that they usually refer to a good mixed-model sequence not in terms of ideal 
production, but in terms of having distances between the units for the same model as 
regular as possible. Therefore, the metric used in the RTVP reflects the way in which 
practitioners refer to a desirable regular sequence. 

In this paper, the electromagnetism-like mechanism (EM) metaheuristic is proposed 
to solve the RTVP. EM is a recent population-based metaheuristic that was first 
proposed by Birbil and Fang (2003). It is based on an analogy with the attraction-
repulsion mechanism of electromagnetism theory. Each solution is considered as a point 
with an electrical charge that is measured by the objective function. This charge 
determines the magnitude of attraction or repulsion of the other points for applying the 
electromagnetism equations and EM iteratively calculates the movement of the points. 

The EM metaheuristic has yielded good results when it has been used to solve 
several combinatorial optimisation problems (Debels and Vanhoucke 2006, Debels et 
al. 2006, Yuan et al. 2006, Maenhout and Vanhoucke 2007, Chang et al. 2009). The EM 
algorithm proposed to solve the RTVP is compared with efficient procedures for 
solving non-small instances: the multi-start and the GRASP algorithms proposed in 
García et al. (2006) and the PSO algorithm called DPSOpoi-cpdyn proposed in García-
Villoria and Pastor (2009). 

The remainder of this paper is organized as follows. Section 2 presents a formal 
definition of the RTVP. Section 3 briefly exposes three metaheuristic algorithms 
presented in García et al. (2006) and García-Villoria and Pastor (2009). Section 4 
describes the basic scheme of the EM. Section 5 proposes a procedure an EM algorithm 
for solving the RTVP. Section 6 provides the computational experiments and the 
comparison with the other metaheuristic algorithms. Finally, some conclusions and 
suggestions for future research are given in Section 7. 
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2. The Response Time Variability Problem (RTVP) 
 
The aim of the Response Time Variability Problem (RTVP) is to minimise variability in 
the distances between any two consecutive units of the same model to be scheduled. 

The RTVP is formulated as follows. Let n be the number of models, id  the number 
of units to be scheduled of model i (i = 1,…,n) and D the total number of units 

( )1.. ii n
D d

=
= ∑ . Let s be a solution of a RTVP instance that consists of a circular 

sequence of units ( 1 2... Ds s s s= ), where sj is the unit sequenced in position j of 
sequence s. For all unit i in which 2id ≥ , let i

kt  be the distance between the positions in 
which the units k + 1 and k of the model i are found (i.e. the number of positions 
between them, where the distance between two consecutive positions is considered 
equal to 1). Since the sequence is circular, position 1 comes immediately after position 
D; therefore, i

di
t  is the distance between the first unit of the model i in a cycle and the 

last unit of the same model in the preceding cycle. Let it  be the average distance 
between two consecutive units of the model i (

i
i d

Dt = ). For all symbol i in which 

1=id , it1  is equal to it . The objective is to minimize the metric Response Time 
Variability (RTV) which is defined by the following expression: 
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For example, let 3n = , 2=Ad , 2=Bd  and 4=Cd ; thus, 8=D , 4=At , 4=Bt  and 
2.Ct =  Any sequence is a feasible solution. For example, the sequence (C, A, C, B, C, 

B, A, C) is a solution, where  
( ) ( )( ) ( ) ( )( ) ( ) ( ) ( ) ( )( )2 2 2 2 2 2 2 25 4 3 4 2 4 6 4 2 2 2 2 3 2 1 2 1 2 .RTV = − + − + − + − + − + − + − + − =  

 
3. Three metaheuristic algorithms for the RTVP 
 

Corominas et al. (2007) proposed a mixed integer lineal programming (MILP) 
model to solve the RTVP. Corominas et al. (2006) improved the previous MILP model 
but the practical limit to obtain optimal solutions is 40 units to be scheduled. Thus, the 
use of heuristic or metaheuristic methods for solving real-life instances of the RTVP is 
justified. Corominas et al. (2007) proposed five heuristic algorithms. García et al. 
(2006) proposed six metaheuristic algorithms: a multi-start, a GRASP (Greedy 
Randomized Adaptive Search Procedure) and four PSO (Particle Swarm Optimisation) 
algorithms. Eleven variants of the PSO metaheuristic were also used to solve the RTVP 
in García-Villoria and Pastor (2009).  

The three most effective aforementioned procedures are the multi-start and the 
GRASP algorithm proposed in García et al. (2006) and the PSO algorithm called 
DPSOpoi-cpdyn proposed in García-Villoria and Pastor (2009). Next, the algorithms are 
briefly explained (for more details of the three algorithm procedures, see García et al. 
2006 and García-Villoria and Pastor 2009). 
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3.1. The Multi-start algorithm 
 
The multi-start method is based on generating initial random solutions and on 
improving each of them to find a local optimum, which is usually done by means of a 
local search procedure (Martí 2003). Random solutions are generated as follows. For 
each position, a model to be sequenced is randomly chosen. The probability of each 
model is equal to the number of units of this model that remain to be sequenced divided 
by the total number of units that remain to be sequenced. The local search procedure 
used is applied as follows. A local search is performed iteratively in a neighbourhood 
that is generated by interchanging each pair of two consecutive units of the sequence 
that represents the current solution; the best solution in the neighbourhood is chosen; the 
optimisation ends when no neighbouring solution is better than the current solution. 
 
3.2. The GRASP algorithm 
 
GRASP, designed by Feo and Resende (1989), can be considered to be a variant of the 
multi-start method in which the initial solutions are obtained using directed randomness. 
The solutions are generated by means of a greedy strategy in which random steps are 
added and the choice of elements to be included in the solution is adaptive. The random 
step in the GRASP proposed by García et al. (2006) consists of selecting the next model 
to be added to the solution; the probability of each candidate model is proportional to 
the value of its Webster index, which is based on the parametric method of 
apportionment with parameter 1

2δ =  (Balinski and Young 1982). The Webster index 

for model i (i = 1,…,n) is evaluated as 
( )

i

it

d
x δ+

, where xit is the number of units of 

model i in the sequence of length t = 0,…,D (assume xi0 = 0). The local search 
procedure applied to the initial solutions is the same local search as in the multi-start 
method. 
 
3.3. The PSO algorithm 
 
PSO is a population-based metaheuristic designed by Kennedy and Eberhart (1995), 
which is based on an analogy of the social behaviour of flocks of birds when they 
search for food. The population or swarm is composed of particles (birds), which have 
an m-dimensional real point (which represents a feasible solution) and a velocity (the 
movement of the point in a m-dimensional real space). The velocity of a particle is 
typically a combination of three kinds of velocities: 1) inertia velocity; 2) velocity to the 
best point found by the particle; and 3) velocity to the best point found by the swarm. 
These components of the particles are iteratively modified by the PSO algorithm as it 
looks for an optimal solution. 

In the DPSOpoi-cpdyn algorithm (García-Villoria and Pastor 2009), random 
modifications to the points of the particles are introduced. The frequency of the 
modifications changes dynamically according to the homogeneity of the swarm. The 
aim is to prevent premature convergence and to enable the PSO algorithm to escape a 
local optimum. Although the PSO metaheuristic was originally designed for working in 
a m-dimensional real space, DPSOpoi-cpdyn is adapted to work with a sequence that 
represents the solution. In this adaptation, a point is now the sequence of units of the 
models that represents a solution, and the velocity is an ordered list of transformations 
that must be applied to the particle so that it changes from its current point to another 
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point; each transformation consists of a pair of positions of the point (sequence) that are 
to be swapped. The velocity to the best point found by the particle is the list of 
transformations needed to obtain the best particle point from the current position; the 
same applies for the velocity to the best point found by the swarm. 
 
 
4. The EM metaheuristic 
 
The electromagnetism-like mechanism (EM) metaheuristic is a new population-based 
metaheuristic created by Birbil and Fang (2003). The EM metaheuristic has been 
applied successfully to the following problems:  the project scheduling problem (Debels 
and Vanhoucke 2006; Debels et al. 2006), neural network training (Wu et al. 2004), the 
permutation flowshop scheduling problem (Yuan et al. 2006), the nurse scheduling 
problem (Maenhout and Vanhoucke 2007), the single machine scheduling problem 
(Chang et al. 2009) and multi-objective optimisation problems (Tsou and Kao 2008). 
On the other hand, in the Birbil’s PhD thesis (Birbil 2002), the EM metaheuristic is 
compared with other methods and shown to have substantial performance. 

The EM metaheuristic operates basically as follows. EM starts with an initial 
population of solutions that will be attracted to the deep valleys and repulsed from the 
steep hills (if we wish to minimise the value of the solutions). Each solution can be 
thought of as a particle charged according to its objective function value. Then, an 
analogy of the attraction-repulsion mechanism of the electromagnetism theory can be 
applied. Moreover, some solutions are improved by a local search. 

Next, we present the framework of the EM metaheuristic; for further details, see 
Birbil and Fang (2003). This algorithm works with a special class of optimisation 
problems with bounded variables in the following form: 

 
min (max) ( )xf  

subject to | , 1, ,m
j j jx l x u j m∈ℜ ≤ ≤ =   

 
where f is the function that evaluates a point (which represents a solution), m is the 

dimension of the problem (in the case of the RTVP, m would be equal to D, which is the 
total number of units) and xj is the coordinate of the jth dimension, which is lower 
bounded by lj and upper bounded by uj. 

The EM metaheuristic is divided into four phases (which are explained in 
Subsections 4.1 to 4.4): 1) the initialization of the population of the points; 2) the 
application of the local search; 3) the calculation of the total force vector; and 4) the 
movement according to the total force. The pseudocode of the metaheuristic is shown in 
Figure 1. 
 

Figure 1. Pseudocode of the EM metaheuristic. 

 

 1: P = initial population 
 2: while the stopping criteria is not reached do 
 4: xbest = best point of P 
 3: Local search 
 4: for each point x do: Fx = total force vector(x, P) 
 5: for each point x do: Move(x, Fx) 
 6: end while 

 



 70 

 
4.1. Initial population 
 
The metaheuristic starts generating randomly the initial population, which consists of p 
points of the feasible domain. Each coordinate of each point is uniformly distributed 
between their upper and lower bounds. 
 
 
4.2. Local search 
 
The local search procedure provides the EM algorithm with a good balance between the 
exploration and exploitation of the feasible region. Birbil and Fang (2003) propose two 
approaches according to the points to which the local search can be applied: local search 
applied to all points and local search applied only to the current best point. 

Local search applied to all points promotes a more meticulous examination of the 
region around the points. However local search applied only to the best point usually 
gives as good results and less time is spent on the local search. 

In both cases, a simple local search is recommended rather than a powerful one 
because it is enough for a good convergence (Birbil and Fang 2003). The local search is 
not applied until a local optimal point is reached; the local search stops when a number 
of iterations (let it be called lsiter) is executed. 
 
 
4.3. Calculation of the total force vector 
 
The charge of each point x belonging to the population P (let it be called qx), which 
determines the intensity of attraction or repulsion of the point, changes at each iteration 
of the EM metaheuristic. The charge is first evaluated as follows: 
 

 
( )

( ) ( )exp
( ) ( )

best

x best

y P

f x f xq m
f y f x

∈

 
 −

= − − 
 

∑
 (2) 

 
Note that, unlike electrical charges, no signs are associated with the charges. The 

direction of a particular force between two points is determined when their objective 
values have been compared. The total force for each point belonging to the population P 
(let it be called xF ) is evaluated as follows: 
 

 
2

|
2
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q q
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where xy −  is the euclidean distance between the two points. 
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4.4. Movement according to the total force 
 
Each point x belonging to the population P is moved according to the next equation: 
 

 x

x

Fx x
F

λ= +  (4) 

 
where λ denotes a random number uniformly distributed between 0 and 1 and xF  is the 
norm of the force vector. The parameter λ is used to ensure that the points have a 
nonzero probability of moving to the unvisited regions in this direction. Furthermore, 
the force applied to each point is normalized, so the feasibility is maintained (i.e., each 
coordinate of each point will be between lj and uj). 
 
 
5. The EM algorithm for the RTVP 
 
The objective function and the equations of the EM metaheuristic work with points of a 
region of the m-dimensional real space. Others procedures such as PSO algorithms or 
other optimisation algorithms of real variables are also designed for working in an m-
dimensional real space. However, a solution of many combinatorial optimisation 
problems is usually represented as an ordered sequence of integer numbers (as in the 
RTVP), so these metaheuristics (EM, PSO and others) are incompatible with this 
representation of the solution as an ordered sequence of integer numbers. There are two 
ways of applying algorithms of this kind to the RTVP: to adapt the algorithm to work 
with a sequence of integer numbers or to adapt the representation of the solution as an 
m-dimensional real point. 

To adapt the PSO algorithm to a sequence of integer numbers for the RTVP is done 
in García-Villoria and Pastor (2009), as explained in Section 2. As would happen in the 
EM algorithm, this way involves redefining several mathematical operators used by the 
algorithm. For example, the difference between two points ( ( )y x−  and ( )x y−  in 
Equation 3) would now be the difference between two sequences of integer numbers 
and this new different operator should be defined. 

On the other hand, a sequence of integer numbers can be represented by an m-
dimensional real point using random key representation (RK) (Bean 1994). The main 
advantage of using RK is that each solution corresponds to a real point, so that 
geometric operations (for example, the evaluation of a point charge (Equation 2)) can be 
performed on its components. Since geometric operations are the cornerstone of several 
metaheuristics (such as EM), RK allows a straightforward application of this type of 
metaheuristics to solve combinatorial optimisation problems. Although there is 
empirical evidence that Genetic Algorithms that applies RK may obtain slight worst 
results that Genetic Algorithms adapted to the combinatorial problem (Bean 1994), in 
other metaheuristics there is no conclusion about which approach is better. In the case 
of EM algorithms, to the best of our knowledge, most of the papers in which an EM 
algorithm is proposed to solve a combinatorial optimisation problem RK is used 
(Debels and Vanhoucke 2006; Debels et al. 2006; Yuan et al. 2006; Chang et al. 2009) 
and only one paper adapts EM (Maenhout and Banhoucke, 2007). Because RK have 
been effectively applied to the EM metaheuristic to solve several combinatorial 
problems, in this paper RK is also used in the EM algorithm for solving the RTVP. 
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Random key representation for the RTVP is explained in Subsection 4.1. How the 
initial population is generated is described in Subsection 4.2. The local search used in 
our EM algorithm is explained in Subsection 4.3. The calculations of the total force 
vectors and the movements according to the total force are directly implemented 
according to Equations (2), (3) and (4). Finally, Subsection 4.4 explains the fine-tuning 
of the parameter values of the EM algorithm: the size of the initial population (p) and 
the maximum number of iterations of the local search procedure (lsiter). 
 
 
5.1. Random key representation 
 
Random key representation (Bean 1994) consists of an m-length sequence of different 
real numbers called keys. Let the key sequence be r = r1, …, rm, where rj is the key of 
the position j. In the context of the proposed EM algorithm, the key sequence has D 
(number of units to be sequenced with di units of model i) keys. As the EM 
metaheuristic works with bounded variables, the values of the keys are bounded 
between 0 and 1. 

Given a key sequence r, the solution s (sequence of models) that is represented by r 
is as follows. First, for each position j = 1,...,D of r, key rj is associated with a model. 
The association is done in a way that, for each model i, there are id  consecutive keys 
associated with model i. For each key sequence, the association for key rj will be always 
done with the same model, i.e., if, for example, key r1 is associated with model A in 
every key sequence r, r1 will be associated with this model. Next, a new key sequence, 

,r′  is obtained by putting r (and therefore their associated models) in descending order 
according to the values of the keys. Then, for each position j = 1,...,D, model js  is the 
model associated with key 

j
r′ , i.e., the model sequenced in position j is the model 

associated with key rj that is in the position j in the key sequence .r′  
For example, let a RTVP instance be n = 3, 2=Ad , 2=Bd  and 4=Cd . Given the 

key sequence r = (0.12, 0.26, 0.67, 0.08, 0.14, 0.45, 0.87, 0.62), each key rj (j = 1,…,8) 
is associated with a model as follows: 
 

models A A B B C C C C 
 ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ 

keys 0.12 0.26 0.67 0.08 0.14 0.45 0.87 0.62 
 

So, the descending ordered key sequence is r′ = (0.87, 0.67, 0.62, 0.45, 0.26, 0.14, 
0.12, 0.08) and, therefore, the solution represented is (C, B, C, C, A, C, A, B). 
 
 
5.2. Initial population 
 
The initial population of points consists of p solutions generated randomly. As has been 
introduced previously, each solution is represented by a key sequence where each key 
value is bounded between 0 and 1. To get a solution, we generate a random value 
uniformly distributed in [0,1] for each key. 
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5.3. Local search 
 
The local search procedure used in the EM algorithm is as follows. A local search is 
performed iteratively in a neighbourhood that is generated by interchanging two units of 
different consecutive and non-consecutive models; the first solution found in the 
neighbourhood that is better than the current solution is selected; the optimisation ends 
when the maximum number of iterations is reached or no neighbouring solution is better 
than the current solution. 

Local search applied to all points and local search applied only to the best point 
were tested by an initial experiment. To apply the local search only to the best point 
provided much better solutions for the RTVP, so the local search applied only to the 
best point is used in the EM algorithm. 
 
 
5.4. Fine-tuning of the EM parameters 
 

Fine-tuning the parameters of a metaheuristic algorithm is almost always a difficult 
task. Although parameter values are extremely important because the results of the 
metaheuristic for each problem are highly sensitive to them, the selection of parameter 
values is commonly justified in one of the following ways (Eiben et al. 1999, Adenso-
Díaz and Laguna 2006): 1) “by hand”, on the basis of a small number of experiments 
that are not specifically referenced; 2) using the general values recommended for a wide 
range of problems; 3) using the values reported to be effective in other similar 
problems; or 4) choosing values without any explanation. 

Adenso-Díaz and Laguna (2006) proposed a new technique called CALIBRA for 
fine-tuning the parameters of heuristic and metaheuristic algorithms. CALIBRA is 
based on Taguchi’s fractional factorial experimental designs coupled with a local search 
procedure. The local search is applied to promising regions of the parameter values and 
the promising regions are found by means of Taguchi’s experimental designs. One 
assumption of Taguchi’s experimental designs is the linear interdependence between the 
parameters, whereas the interdependence is usually non-linear (Adenso-Díaz and 
Laguna 2006). CALIBRA uses the analysis of the factorial experiment results only as a 
guideline to narrow the search and to initiate the next round of experiments. Because the 
search focuses on narrower ranges for each parameter value, the linear assumption 
becomes less restrictive and the predicted optimal values approach to the true optimal 
values. 

CALIBRA was chosen for fine-tuning the EM algorithm parameters. A set of 60 
representative training instances, which were generated as explained in Section 5, was 
used. The values obtained for the size of the population (p) and the maximum number 
of iterations of the local search (lsiter) are shown in Table 1. 

The GRASP and PSO algorithms (the multi-start algorithm does not have 
parameters) were also fine-tuned using CALIBRA and the same 60 training instances. 
GRASP only has one parameter, which is the size of the candidate list (CL). DPSOpoi-
cpdyn has five parameters: the size of the population (p), the coefficient that weights the 
inertia velocity (ω), the coefficient that weights the velocity to the best particle point 
(c1), the coefficient that weights the velocity to the best swarm point (c2) and the factor 
of the degree of the random modifications introduced (K). The parameter values 
obtained are shown in Table 1. 
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Table 1. Parameter values obtained with CALIBRA 
EM GRASP DPSOpoi-cpdyn 
p =        25 CL size = 3 p =   13 
lsiter =  5  ω =  0.75 
  c1 = 0.13 
  c2 = 0.75 
  K =  8.70 

 
 
6. Computational experiment 
 
The computational experiment for the EM algorithm is carried out for the same 
instances and conditions used in García et al. (2006) and in García-Villoria and Pastor 
(2009). That is, the algorithms ran 740 instances, which were grouped into four classes 
(from CAT1 to CAT4 with 185 instances in each class) according to their size. The 
instances were generated using the random values of D (number of units) and n (number 
of models) shown in Table 2. For all instances and for each model i = 1,…,n, a random 

value of di (number of units of model i) is between 1 and 1
2.5

D n− +  such that 

1.. ii n
d D

=
=∑ . All algorithms were coded in Java and the computational experiment 

was carried out using a 3.4 GHz Pentium IV with 512 Mb of RAM. 
 
 

Table 2. Uniform distribution for the D and n values of the test instances 
   CAT1   CAT2   CAT3   CAT4 
D ~U(25, 50) ~U(50, 100) ~U(100, 200) ~U(200, 500) 
n ~U(3, 15) ~U(3, 30) ~U(3, 65) ~U(3, 150) 

 
For each instance, the four algorithms were run for 50 seconds. Table 3 shows the 

averages of the RTV values to be minimized for the global of 740 instances and for each 
class of instances (CAT1 to CAT4). 
 

Table 3. Averages of the RTV values for 50 seconds 
 EM Multi-start GRASP DPSOpoi-cpdyn 
Global 3,747.05 21,390.40 14,168.83 4,625.54 
CAT1 19.14 12.08 15.47 16.42 
CAT2 54.54 44.36 88.48 51.34 
CAT3 260.79 226.90 510.44 610.34 
CAT4 14,653.72 85,278.25 56,060.92 17,824.04 

 
For the global of all instances, the EM algorithm is 18.99% better than DPSOpoi-

cpdyn, 73.55% better than the GRASP algorithm and 82.48% better than the multi-start 
algorithm. Observing the results in Table 3 by class, we can see that a simple algorithm 
such as the multi-start algorithm obtains the best averages for small and medium 
instances (CAT1, CAT2 and CAT3) but a very poor average for large instances (CAT4). 
On the other hand, DPSOpoi-cpdyn works well for small and large instances (CAT1, 
CAT2 and CAT4) but obtains bad results for medium instances (CAT3). Finally, the EM 
algorithm works fine for small and medium instances; and for large instances, which are 
the most difficult to solve, it obtains the best results. 

To complete the analysis of the results, their dispersion is observed. A measure of 
the dispersion (let it be called σ) of the RTV values obtained by each algorithm mh = 
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{EM, multi-start, GRASP, DPSOpoi-cpdyn } for a given instance, ins, is defined as 
follows: 
 

 
2

)(

)()(
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where )(RTV mh

ins  is the RTV value of the solution obtained with the algorithm mh for the 
instance ins, and )(RTV best

ins  is, for the instance ins, the best RTV value of the solutions 
obtained with the four algorithms. Table 4 shows the average σ dispersion for the global 
of 740 instances and for each class of instances. 
 

Table 4. Average σ dispersion regarding the best solution found for 50 seconds 
 EM Multi-start GRASP DPSOpoi-cpdyn 
Global 10.45 50.56 81.88 4.79 
CAT1 1.62 0.04 0.65 0.76 
CAT2 0.49 0.09 4.38 0.34 
CAT3 0.24 0.13 7.28 5.29 
CAT4 39.45 201.96 315.20 12.78 

 
For the global of all instances, the EM procedure has the second least average σ 

dispersion: 87.24% better than the GRASP algorithm and 79.33% better than the multi-
start algorithm, but the DPSOpoi-cpdyn σ dispersion is better than the EM procedure σ 
dispersion. Observing the results in Table 4 by class, we see that the EM, multi-start and 
PSO algorithms have a very stable performance for small instances (CAT1 and CAT2). 
For medium instances (CAT3), only the EM and multi-start algorithms shows a very 
stable performance. Finally, no algorithm has a very stable performance for the largest 
instances (CAT4). This may occur because 50 computing seconds are not be enough 
time for the algorithms to converge for the CAT4 instances. Table 5 and Table 6 show 
the averages of the RTV values and the σ dispersion, respectively, for all instances and 
for each class of instance (CAT1 to CAT4) obtained with the four algorithms when they 
are run for 1,000 seconds. 
 

Table 5. Averages of the RTV values for 1,000 seconds 
 EM Multi-start GRASP DPSOpoi-cpdyn 
Global 330.29 1,378.58 1,495.12 1,537.34 
CAT1 18.64 10.93 13.59 14.35 
CAT2 52.97 35.48 75.08 46.55 
CAT3 157.20 160.67 428.86 143.96 
CAT4 1,092.36 5,307.25 5,462.95 5,944.51 

 
Table 6. Average σ dispersion regarding the best solution found for 1,000 seconds 

 EM Multi-start GRASP DPSOpoi-cpdyn 
Global 0.79 4.80 14.47 7.61 
CAT1 1.84 0.04 0.48 0.52 
CAT2 1.03 0.04 5.29 0.53 
CAT3 0.21 0.12 10.98 0.07 
CAT4 0.08 18.98 41.06 29.27 

 
When a computing time of 1,000 seconds is used—which seems to be long enough 

for all algorithms to converge (see Figure 2)—the EM algorithm is clearly the best 
algorithm: it is 76.04%, 77.91% and 78.52% better than the multi-start, GRASP and 
PSO algorithm, respectively. Moreover, when the EM algorithm has converged, it has a 
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very stable performance for all type of instances (CAT1 to CAT4). That is, when the 
best solution is not obtained with the EM algorithm, the EM solution is always very 
close to the best solution. 
 

Figure 2. Average of the RTV values obtained during the execution time 

 
 

 
7. Conclusions and future research 
 
The EM metaheuristic is a population-based metaheuristic for optimisation recently 
proposed by Birbil and Fang (2003). The method uses an attraction-repulsion 
mechanism to move the points of the population towards the optimality. In this paper, 
an EM algorithm is presented for solving the Response Time Variability Problem 
(RTVP), which has been recently appeared in the literature.  

This scheduling problem arises in a variety of real-life environments including 
mixed-model assembly lines, multi-threaded computer systems, periodic machine 
maintenance, and waste collection. The aim of the RTVP is to minimize the variability 
in the distances between any two consecutive units of the same model. Since the RTVP 
is an NP-hard problem, heuristic and metaheuristic methods are needed to solve real-life 
instances. García et al. (2006) and García-Villoria and Pastor (2009) have proposed a 
multi-start, a GRASP and several PSO algorithms for solving the RTVP. A 
computational experiment was done and the results obtained with the EM algorithm are 
better than the results of the aforementioned algorithms. Moreover, the EM algorithm 
has a very stable performance when it has converged. 

There are two approaches for applying a metaheuristic that works in a real space for 
solving combinatorial optimisation problems: to adapt the algorithm for working with a 
sequence of integer numbers or to adapt the representation of the solution as a real point 
with a random key representation. One of the best referenced procedures is a PSO 
algorithm (DPSOpoi-cpdyn) that follows the first approach; on the other hand, the 
proposed EM algorithm follows the second approach. We propose as a future research 
to develop a version of DPSOpoi-cpdyn following the second approach, and to develop 
a version of the EM algorithm following the first approach. The objective is to obtain 
better results for the RTVP. 
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*

The concept of fair sequence has emerged independently from scheduling problems of 
diverse environments, principally from manufacturing, hard real-time systems, 
operating systems and networks environments. The common framework for these 
scheduling problems is defined by Kubiak (2004) as to build a fair sequence using n 
symbols, where symbol i = 1,...,n is to occur given number di of times in the sequence. 
The fair sequence will be that one that allocates a fair share of positions in any prefix of 
the sequence to each symbol i. This fair or ideal share of positions allocated to symbol i 
in a sequence prefix of length k is proportional to a relative importance (di) of symbol i 

with respect to the total copies of competing symbols (equal to 
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Abstract. The Response Time Variability Problem (RTVP) is a combinatorial scheduling 
problem which has recently appeared in the literature. This problem has a wide range of real-
life applications in, for example, manufacturing, hard real-time systems, operating systems 
and network environment. Originally, the RTVP occurs whenever products, clients or jobs 
need to be sequenced in such a way that the variability in the time between the instants at 
which they receive the necessary resources is minimized. Since RTVP is hard to solve, 
heuristic techniques are needed for solving it. In two previous studies, three metaheuristic 
algorithms (a multi-start, a GRASP and a PSO algorithm) were proposed to solve the RTVP. 
These three metaheuristic algorithms have been the most efficient to date in solving non-small 
instances of the RTVP. We propose solving the RTVP by means of a psychoclonal algorithm 
based approach. The psychoclonal algorithm inherits its attributes from the need hierarchy 
theory proposed by Maslow and the artificial immune system (AIS) approach, specifically the 
clonal selection principle. In this paper we compare the proposed psychoclonal algorithm with 
the other three metaheuristic algorithms previously mentioned and show that, on average, the 
psychoclonal algorithm strongly improves the obtained results. 
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universally definition of fairness because several reasonable metrics of fairness can be 
defined according to the specific problem. 
 
The first problem in which seems to have appeared the idea of fair sequence is the 
sequencing on the mixed-model assembly production lines at Toyota Motor Corporation 
under the just-in-time (JIT) production system. One of the most important JIT 
objectives is to get rid of all kinds of waste and inefficiency and, according to Toyota, 
the main waste is due to the stocks. To reduce the stock, JIT production systems require 
producing only the necessary models in the necessary quantities at the necessary time. 
To achieve this, one main goal, as Monden (1983) says, is scheduling the units to be 
produced to keep a constant consumption rates of the components involved in the 
production process. Miltenburg (1989) deals with this scheduling problem and he 
assumes that models require approximately the same number and mix of parts. Thus, he 
considers only the demand rates for the models. Miltenburg proposes four objective 
functions based on the fairness idea of scheduling the models so that the proportion of 
model i produced, over each time period, to the total production is as close to its ideal 
production as possible. That is, if the number of models is n (i = 1,...,n) and the units of 
model i to be produced is di, then the total number of units to be produced (D) is equal 

to 
1

n

i
i

d
=
∑  and the ideal production of model i at the period time k (k = 1,...,D) is id k

D
. 

This problem is known as Product Rate Variation (PRV) problem (Kubiak 1993). 
Kubiak and Sethi (1991) reformulated the PRV problem as an assignment problem and, 
therefore, it can be solved with an algorithm whose complexity is polynomial in D. 
 
Independently of assembly lines, the fair sequencing idea has appeared in computer 
multithreaded systems when Waldspurger and Weihl (1995) proposed the stride 
scheduling to resource allocation in these systems. Multithreaded systems (operating 
systems, network servers, media-based applications, etc.) need to manage the scarce 
resources in order to service requests of n clients. Resources are allocated in discrete 
time slices (authors refer to the duration of a standard time slice as a quantum). 
Resource rights are represented by tickets and each client i has a given number di of 
tickets. A fair scheduling is obtained when the resources that a client has received (i.e. 
the number of quanta in which has been assigned) during the first k allocations, k = 

1,...,D (where 
1

n

i
i

D d
=

= ∑ ), are directly proportional to its ticket allocations. Thus, a 

client with twice as many tickets as another will receive twice as much of a resource in 
a given time interval. Waldspurger and Weihl suggest two metrics to evaluate the 
fairness of a sequence: the throughput error and the response time variability. The 
throughput error measures the maximum absolute deviation, for each client i and 

allocation k, between the resources received and the ideal resources id k
D

 
 
 

. The 

problem of minimizing the throughput error can be efficiently solved using the Earliest 
Due Date rule defining fictitious earliest and latest due dates (see Kubiak 2004). 
 
The problem of minimizing the response time variability is known as Response Time 
Variability Problem (RTVP). Waldspurger and Weihl define the response time as the 
elapsed time from a client’s completion of one quantum up to including its completion 
of next. Since the quantum duration is fixed, this definition is equivalent to the number 
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of quanta between a client’s two consecutive quantum allocations plus one. Thus, the 
response time variability for a client is the variance of its response times.  
 
This metric is not exclusively useful on computer system environments. For example, in 
our experience with practitioners of manufacturing industries, we noticed that 
practitioners usually refer to a good mixed-model sequence not in terms of ideal 
production as it is usual in the literature (Miltenburg 1989), but in terms of having 
distances between the units for the same model as regular as possible (i.e. there should 
not be variance in the response times of the models). Herrmann (2007) found the RTVP 
while was working with a healthcare facility that needed to schedule the collection of 
waste from waste collection rooms throughout the building. Given data about how often 
a trash handler needs to visit each room, the facilities manager wanted these visits to 
occur as regularly as possible so that excessive waste would not collect in any room. 
For instance, if a room needs four visits per eight-hour shift, then, ideally, it would be 
visited every two hours. The problem is difficult because different rooms require a 
different number of visits per shift. Herrmann proposed a heuristic algorithm based on 
the stride scheduling for solving it. 
 
The RTVP is, unfortunately, NP-hard (Corominas et al. 2007). To solve the RTVP, 
Waldspurger and Weihl (1995) proposed the stride scheduling, which is a greedy 
heuristic algorithm. Corominas et al. (2007) proposed a mixed integer linear 
programming (MILP) model and five greedy heuristic algorithms. In Corominas et al. 
(2006), an improved MILP model is proposed (the practical limit to obtain optimal 
solutions is 40 units to be scheduled). García et al. (2006) proposed seven metaheuristic 
algorithms: a multi-start, a GRASP (Greedy Randomized Adaptive Search Procedure) 
and four variants of a discrete PSO (Particle Swarm Optimization) algorithm. Finally, 
eleven variants of a discrete PSO algorithm were used in García-Villoria and Pastor 
(2007). 
 
In this paper, a psychoclonal algorithm based approach is proposed to solve the RTVP. 
Psychoclonal is a very new population-based metaheuristic that was first proposed by 
Tiwari et al. (2005). This metaheuristic inherits its attributes from the need hierarchy 
theory of Maslow (1954) and the artificial immune system (AIS) approach, specifically 
the clonal selection principle (Gaspar and Collard 2000; de Castro and von Zuben 
2002). There are five levels of needs arranged in the Maslow’s hierarchy, named 
physiological needs, safety needs, social needs, growth needs and self-actualization 
needs. Clonal selection explains the response of immune systems to non-self antigens. 
The cells (lymphocytes) that produce antibodies that can recognize the intruding 
antigens are selected to proliferate by cloning and further are undergone to an affinity 
maturation process that consists in hypermutations in order to obtain cells that produce 
antibodies that can improve their affinities to the non-self antigens. The worst cells are 
undergone receptor editing: cells are deleted and replaced by new ones. The whole 
process continues until the self-actualization level is reached. 
 
The psychoclonal metaheuristic has yielded very good results when it has been used to 
solve several scheduling and combinatorial optimization problems (Prakash and Tiwari 
2005; Tiwari et al. 2005; Kumar et al. 2006a, 2006b; Singh et al. 2006). The proposed 
psychoclonal algorithm for solving the RTVP is compared with the most efficient 
procedures for solving non-small instances published to date: the multi-start and the 
GRASP algorithms proposed in García et al. (2006) and the PSO algorithm called 
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DPSOpoi-cpdyn (García-Villoria and Pastor 2007). On average, the psychoclonal 
algorithm improves strongly on previous results. 
 
The rest of the paper is organized as follows. Section 2 presents a formal definition of 
the RTVP and briefly exposes the three metaheuristic procedures presented by García et 
al. (2006) and García-Villoria and Pastor (2007) for its solution. Section 3 describes the 
basic scheme of the psychoclonal metaheuristic. Section 4 proposes a psychoclonal 
algorithm based approach for solving the RTVP. Section 5 provides the computational 
experiment and the comparison with the other metaheuristics. Finally, some conclusions 
are given in Section 6. 
 
 
2. The Response Time Variability Problem (RTVP) 
 
The aim of the Response Time Variability Problem (RTVP) is to minimize variability in 
the distances between any two consecutive copies of the same symbol. 
 
The RTVP is formulated as follows. Let n be the number of symbols, id  the number of 
copies to be scheduled of the symbol i (i = 1,…,n) and D the total number of copies 

(
1

n

i
i

D d
=

= ∑ ). Let s be a solution of an instance in the RTVP that consists of a circular 

sequence of copies ( Dssss 21= ), where sj is the copy sequenced in position j of 
sequence s. For all symbol i in which 2id ≥ , let i

kt  be the distance between the positions 
in which the copies k + 1 and k of the symbol i are found (where the distance between 
two consecutive positions is considered equal to 1). Since the sequence is circular, 
position 1 comes immediately after position D; therefore, i

di
t  is the distance between the 

first copy of the symbol i in a cycle and the last copy of the same symbol in the 
preceding cycle. Let it  be the average distance between two consecutive copies of the 

symbol i (
i

i d
Dt = ). For all symbol i in which 1=id , it1  is equal to it . The objective is 

to minimize the metric Response Time Variability (RTV) which is defined by the 
following expression: 
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1 1
( )

idn
i
k i

i k
RTV t t

= =

= −∑∑  (1) 

 
For example, let 3n = , 2=Ad , 2=Bd  and 4=Cd ; thus, 8=D , 4=At , 4=Bt  and 

2.Ct =  Any sequence is a feasible solution. For example, the sequence (C, A, C, B, C, 
B, A, C) is a solution, where ( ) ( )( ) ( ) ( )( )2 2 2 25 4 3 4 2 4 6 4RTV = − + − + − + −  

( ) ( ) ( ) ( )( )2 2 2 22 2 2 2 3 2 1 2 2 8 2 1 2+ − + − + − + − = + + = . 

 
As has been introduced in Section 1, the best type of procedures to date for solving the 
RTVP are three metaheuristics. Therefore, next the three best algorithms based on these 
metaheuristics are briefly explained (for more details of the three algorithms, see García 
et al. 2006 and García-Villoria and Pastor 2007). 
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The multi-start method is based on generating initial random solutions and on 
improving each of them to find a local optimum, which is usually done by means of a 
local search procedure (Martí 2003). The multi-start proposed in García et al. (2006) is 
as follows. Random solutions are generated as follows. For each position, a symbol to 
be sequenced is chosen at random. The probability of each symbol is equal to the 
number of copies of this symbol that remain to be sequenced divided by the total 
number of copies that remain to be sequenced. The local search procedure used is 
applied as follows. A local search is performed iteratively in a neighborhood that is 
generated by interchanging each pair of two consecutive symbols of the sequence that 
represents the current solution; the best solution in the neighborhood is chosen; the 
optimization ends when no neighboring solution is better than the current solution. 
 
GRASP, designed by Feo and Resende (1989), can be considered as a variant of the 
multi-start method in which the initial solutions are obtained using directed randomness. 
The solutions are generated by means of a greedy strategy in which random steps are 
added and the choice of elements to be included in the solution is adaptive. The random 
step in the GRASP proposed by García et al. (2006) consists of selecting the next 
symbol to be sequenced from a set called candidate list; the probability of each 
candidate symbol is proportional to the value of its Webster index, which is based on 
the parametric method of apportionment with parameter 1

2δ =  (Balinski and Young 

1982). The Webster index for the symbol i (i = 1,…,n) is evaluated as 
( )

i

ik

d
x δ+

, where 

xik is the number of copies of the symbol i in the sequence of length k = 0,…,D (assume 
xi0 = 0). The candidate list is composed by the symbols with greater value of their 
Webster index. The local search procedure applied to the initial solutions is the same 
local search that is applied by the multi-start method. 
 
PSO is a population-based metaheuristic algorithm designed by Kennedy and Eberhart 
(1995), which is based on an analogy of the social behaviour of flocks of birds when 
they search for food. The population or swarm is composed of particles (birds), which 
have a multi dimensional real point (which represents a feasible solution) and a velocity 
(the movement of the point in the n-dimensional real space). The velocity of a particle is 
typically a linear combination of three types of velocity: 1) the inertia velocity; 2) the 
velocity to the best point found by the particle; and 3) the velocity to the best point 
found by the swarm. The PSO algorithm iteratively modifies the point and the velocity 
of each particle as it looks for the optimal solution. In the DPSOpoi-cpdyn algorithm 
(García-Villoria and Pastor 2007), random modifications to the points of the particles 
are introduced. The frequency of the modifications changes dynamically according to 
the homogeneity of the swarm. The aim is preventing a premature convergence and 
enabling the PSO algorithm to escape from a local optimum. Although the PSO 
algorithm was originally designed for working in an n-dimensional real space, 
DPSOpoi-cpdyn is adapted to work with a sequence that represents the solution. In this 
adaptation of the PSO algorithm, a point is now the sequence of copies of the symbols 
that represents a solution and the velocity is an ordered list of transformations that must 
be applied to the particle so it changes from its current point to another point; each 
transformation consists of a pair of positions of the point (sequence) to be swapped. In 
the case of the velocity to the best point found by the particle, this velocity is a list of 
transformations needed to obtain the best particle point from the current position; the 
case is the same for the velocity to the best point found by the swarm. 



 84 

3. The psychoclonal metaheuristic 
 
The psychoclonal metaheuristic has been recently proposed by Tiwari et al. (2005) 
which has been successfully used for solving the following scheduling and 
combinatorial problems: the disassembly line balancing problem (Prakash and Tiwari 
2005), the assembly configuration problem (Tiwari et al. 2005), the flow shop problem 
(Kumar et al. 2006a), the make-to-stock inventory deployment problem (Kumar et al. 
2006b) and the product mix decision problem (Singh et al. 2006). 
 
This metaheuristic is inspired by the need hierarchy theory of Maslow (1954) and the 
clonal selection principle developed by Gaspar and Collard (2000). First, the salient 
concepts of these theories are briefly explained in Section 3.1. Next, the psychoclonal 
metaheuristic scheme is described in Section 3.2. 
 
3.1. Background theories of the psychoclonal metaheuristic 
 
Psychologists have investigated the motivations of people behavior during their 
lifetime. Maslow proposed a theory, known as need hierarchy theory, which 
hypothesizes that the people behavior is motivated for satisfying their needs. These 
needs are grouped into five sets that are hierarchically arranged according to the degree 
of necessity. These levels are the following (Tiwari et al. 2005): A) physiological needs 
(in optimization, this corresponds to the generation of possible sequences based upon 
the problem environment), B) safety needs (evaluation of a particular entity or candidate 
solution), C) social needs (selection and interaction between candidate solutions), D) 
growth needs (candidate solutions diversify to extend the search space) and E) self-
actualization needs (a stop condition is required to decide the near-optimal solution). In 
order to satisfy the upper levels, first the lowest levels have to be satisfied. 
 
Artificial Immune Systems (AIS) are an emerging kind of computational intelligence 
paradigm inspired by the biological immune system of vertebrate animals. Their 
applications include optimization, anomaly detection, fault diagnosis and patter 
recognition (de Castro and Timmis 2002). Wang et al. (2004) classify the methods 
based in AIS in three main categories: clonal selection principle-based, Genetic 
Algorithms (GA)-aided and immune networks-based approaches. 
 
The clonal selection explains the response of the immune system of the vertebrate 
animals when they are attacked by foreign antigens. Immune system has lymphocytes or 
white cells that secrete antibodies that neutralize the foreign antigens (since a given 
lymphocyte only produces a single type of antibodies, in AIS there is no distinction 
between a lymphocyte and its antibodies). The effectiveness of the immune response 
depends on the affinity that has the antibodies with the antigens. The first time that the 
body is exposed to a given antigen, immune system has low affinity antibodies, each 
one with different affinity. But immune system is able to learn how to produce high 
affinity antibodies (it is known as reinforcement learning). The antibodies are selected 
to proliferate according to their affinities (clonal selection). Next, antibody clones are 
diversified by two mechanisms: hypermutation and receptor editing. This phenomenon 
is referred as maturation of the immune response. The hypermutation introduces 
random changes into an antibody inversely proportional to its affinity with the antigen. 
A large proportion of the hypermuted clones becomes more dysfunctional but, however, 
occasionally an effective hypermutation improves their affinity. The receptor editing 
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deletes the lowest affinity antibodies and develops new ones through genetic 
recombination; in AIS, the genetic recombination is modeled creating a new antibody at 
random. Figure 1 illustrates hypermutation guides the affinity to a local optimum 
whereas receptor editing escapes from the local optimum. 
 

 
 

Figure 1. Representation of hypermutation and receptor editing 
 
The reinforcement learning strategy makes that immune system continuously improving 
its efficiency to block foreign antigens. Since the body would be expected a given 
antigen more times during its lifespan, immune system keeps clones of the highest 
affinity antibodies (immune memory). Therefore, immune system ensures speed and 
accuracy in its responses across the time. 
 
3.2. The psychoclonal metaheuristic scheme 
 
The aim of Tiwari et al. (2005) when they developed the psychoclonal metaheuristic 
was to obtain a generic scheme based on the need of explotation (i.e. the local search) 
and the exploration (i.e. the global search) of the search space. The need hierarchy 
theory of Maslow and the clonal selection principle were used by Tiwari et al. (2005) to 
develop the psychoclonal metaheuristic, which scheme is as follows: 
 
Need level A (physiological needs). Each antibody represents a solution. Thus, an 

affinity function has to be defined based on the objective function. It is also 
required an initial population of antibodies generated at random depending upon the 
environment of the problem. 

 
Need level B (safety needs). The antibodies are exposed to the antigen, i.e. the value of 

their affinity function is calculated. 
 
Need level C (social needs). An interaction is carried out between the antibodies to 

identify the best antibodies of the population. The best antibodies are selected and 
cloned proportionally to their affinity function value. 
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Need level D (growth needs). The generated clones are submitted for hypermutation 
with a rate inversely proportional to their affinity function value. After satisfaction 
of need level D, it is necessary to check the needs of level B (i.e. to calculate the 
affinity function values of the clones after hypermutation). 

 
Need level E (self-actualization needs). The best clones are selected to be part of the 

new population generation. In addition, new antibodies generated at random are 
added to the new generation (receptor editing). The process repeats until the self-
actualization is reached (e.g. a maximum number of generation or a maximum 
computing time). 

 
 
4. The psychoclonal algorithm based approach for solving the RTVP 
 
In Section 4.1 we design an algorithm based on the Pychoclonal metaheuristic for 
solving the RTVP. The algorithm has several parameters that influence in its efficiency. 
The selection of their values is discussed in Section 4.2. 
 
4.1. Design of the psychoclonal algorithm 
 
In this paper we propose an algorithm for solving the RTVP based on the psychoclonal 
metaheuristic. 
 
The first consideration is the choice of the antibody representation for a solution. For 
the RTVP, the more intuitive representation consists in a D-length sequence of the 

symbols (where 
1

n

i
i

D d
=

= ∑ ). The design of algorithm is explained below: 

 
A1. The affinity function f for the antibody ab is defined as ( )

1( ) ( )f ab RTV ab ε= +  

where RTV(ab) is the RTV value of the solution represented by ab and ε is a small 
value to avoid a division by zero. 

 
A2. The initial population is set by antibodies that are generated as in the multi-start 

algorithm. That is, for each position of the sequence (antibody), a symbol to be 
sequenced is chosen at random. The probability of each symbol is equal to the 
number of copies of this symbol that remain to be sequenced divided by the total 
number of copies that remain to be sequenced. The total number of antibodies that 
form the population is N. 

 
B.  For each antibody ab of the current population, f(ab) is evaluated. 
 
C.  The best n antibodies according to their affinity value are selected to be cloned. The 

number of clones (NC) that are generated for each selected antibody is calculated 
with the following expression: 

  ( ) round ,  1, ,i
NNC ab i n

i
β ⋅ = = 

 
  (2) 

 where abi is the ith best antibody of the current population, round is an operator 
that rounds its argument toward the closest integer and β is a multiplying factor. 
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D1. The clones are submitted for hypermutation with a rate inversely proportional to 

their affinity value. The hypermutation rate (σ) for a clone ab is calculated with the 
following expression: 

  
*

( )

( ) max 1, round
f abK

fab D eσ
−  

 = ⋅     
 (3) 

 
where K is the control factor of decay and f* is the affinity value of the best 
antibody of the current population. The hypermutation rate indicates how many 
simple mutations are applied to the cloned antibodies. A simple mutation consists 
in choosing randomly two positions of the sequence that represents the antibody 
and swapping them. In order to maintain the best antibodies, we keep one original 
(parent) antibody unhypermutated. 

 
D2. For each cloned antibody ab, f(ab) is evaluated. 
 
E1. The current population is set with the (N - d)th best cloned antibodies. 
 
E2. The current population is completed adding d new antibodies generated at ramdon 

as explained in step A2. 
 
E3. Until the computing time of the algorithm does not reach a preset time go to step B. 
 
The way that the number of clones (Equation 2) and the hypermutation rate (Equation 3) 
are evaluated is based on the CLONALG algorithm (de Castro and von Zuben 2002), 
which is one of the most widely applied method based on AIS (Wang et al. 2004). 
 
The algorithm that we propose has 5 parameters: N (size of the population), n (number 
of the best antibodies to be cloned), β (multiplying factor to calculate the number of 
clones of a given antibody), K (control factor of decay of the hypermutation rate) and d 
(the number of new generated antibodies to be added into the population). Their suitable 
values are discussed in the next section. 
 
4.2. Fine-tuning of the psychoclonal algorithm parameters 
 
Fine-tuning the parameters of a metaheuristic algorithm is almost always a difficult 
task. Although the parameter values are extremely important because the results of the 
metaheuristic for each problem are very sensitive to them, the selection of parameter 
values is commonly justified in one of the following ways (Eiben et al. 1999; Adenso-
Díaz and Laguna 2006): 1) “by hand” on the basis of a small number of experiments 
that are not specifically referenced; 2) by using the general values recommended for a 
wide range of problems; 3) by using the values reported to be effective in other similar 
problems; or 4) by choosing values without any explanation. 
 
Adenso-Díaz and Laguna (2006) proposed a new technique called CALIBRA for fine-
tuning the parameters of heuristic and metaheuristic algorithms. CALIBRA is based on 
Taguchi’s fractional factorial experimental designs coupled with a local search 
procedure. 
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CALIBRA has been chosen for fine-tuning the psychoclonal algorithm parameters 
using a set of 60 representative training instances (generated as explained in Section 5). 
The following parameter values are obtained: N = 25, n = 3, β = 1.3, K = 7.6 and d = 3. 
 
The GRASP and PSO algorithms (the multi-start algorithm has not parameters) are also 
fine-tuned with CALIBRA and the same 60 training instances. GRASP has only one 
parameter, which is the size of the candidate list; the obtained value is 3. DPSOpoi-
cpdyn has five parameters and the following values are obtained: size of the population 
= 13, coefficient that weights the inertia velocity (ω) = 0.75, coefficient that weights the 
velocity to the best particle point (c1) = 0.13, coefficient that weights the velocity to the 
best swarm point (c2) = 0.75 and factor of the degree of the random modifications 
introduced (K) = 8.70. 
 
 
5. Computational experiment 
 
The multi-start, GRASP and PSO algorithms explained in Section 2 are the most 
efficient algorithms published to date for solving non-small RTVP instances. Therefore, 
we compare our proposed psychoclonal algorithm with them. 
 
The computational experiment for the four metaheuristic algorithms was carried out for 
the same instances and conditions used in García et al. (2006). That is, the algorithms 
ran 740 instances which were grouped into four classes (185 instances in each class) 
according to their size. The instances in the first class (CAT1) were generated using a 
random value of D (number of copies) uniformly distributed between 25 and 50, and a 
random value of n (number of symbols) uniformly distributed between 3 and 15; for the 
second class (CAT2), D was between 50 and 100 and n between 3 and 30; for the third 
class (CAT3), D was between 100 and 200 and n between 3 and 65; and for the fourth 
class (CAT4), D was between 200 and 500 and n between 3 and 150. For all instances 
and for each type of symbol i = 1,…,n, a random value of di (number of copies of the 

symbol i) was between 1 and 1
2.5

D n− +  such that 
1

n

i
i

d D
=

=∑ . All algorithms were 

coded in Java and the computational experiment was carried out using a 3.4 GHz 
Pentium IV with 512 MB of RAM. 
 
For each instance, the four metaheuristics were run for 50 seconds. Table 1 shows the 
averages of the RTV values to be minimized for the global of 740 instances and for each 
class of instances (CAT1 to CAT4). 
 

 Psychoclonal Multi-start GRASP DPSOpoi-cpdyn 
Global 235.68 21,390.39 14,168.83 4,625.54 
CAT1 14.92 12.08 15.47 16.42 
CAT2 44.25 44.36 88.48 51.34 
CAT3 137.07 226.90 510.44 610.34 
CAT4 746.48 85,278.25 56,060.92 17,824.04 

Table 1. Averages of the RTV values for 50 seconds 
 
For the global of all instances, the psychoclonal algorithm is 94.90% better than 
DPSOpoi-cpdyn, 98.34% better than the GRASP algorithm and 98.90% better than the 
multi-start algorithm. Observing the results in Table 1 by class, we can see that a simple 
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algorithm such as the multi-start algorithm obtains good averages for small instances 
(CAT1 and CAT2) but a very poor average for large instances (CAT4). On the other 
hand, DPSOpoi-cpdyn produces quite good results for small instances (CAT1 and 
CAT2), worse results for medium instances (CAT3) and better results for large ones. 
Finally, the psychoclonal algorithm works very well for all class of instances. For the 
smallest instances (CAT1) it is the second best shortly overcome by the multi-start 
algorithm. For the remaining classes, the psychoclonal algorithm obtains the best RTV 
averages. For CAT2 instances, it is 0.25%, 49.99% and 13.81% better than the multi-
start, GRASP and PSO algorithms, respectively. For CAT3 instances, it is 39.59%, 
73.15% and 77.54% better than the multi-start, GRASP and PSO algorithms, 
respectively. Finally, for CAT4 instances, it is 99.12%, 98.67% and 95.81% better than 
the multi-start, GRASP and PSO algorithms, respectively. 
 
In Table 2 we compare the number of times that each algorithm reaches the best RTV 
value obtained with all four algorithms. The results are shown for the 740 instances 
overall and for each class of instances. 
 

 Psychoclonal Multi-start GRASP DPSOpoi-cpdyn 
Global 447 231 190 66 
CAT1 61 147 102 37 
CAT2 72 70 45 27 
CAT3 148 14 24 2 
CAT4 166 0 19 0 

Table 2. Number of times that the best solution is reached 
 
As we expect from the results in Table 1, Table 2 shows that the psychoclonal algorithm 
reaches the best solution the greatest number of times (in 60.40% for the global of all 
instances). Observing the results by class, we can see that for CAT3 instances, although 
the multi-start algorithm obtains a better RTV average than the GRASP, the GRASP 
algorithm reaches mores times the best solution. And for CAT4 instances the GRASP 
algorithm reaches more times the best solution than DPSOpoi-cpdyn, although 
DPSOpoi-cpdyn is better according to the RTV value average. 
 
To complete the analysis of the results, their dispersion is observed. A measure of the 
dispersion (let it be called σ) of the RTV values obtained by each algorithm alg = 
{psychoclonal, multi-start, GRASP, DPSOpoi-cpdyn} for a given instance, ins, is 
defined as follows: 
 

 
2( ) ( )

( )

RTV RTV( , )
RTV

alg best
ins ins

best
ins

alg insσ
 −

=  
 

 (5) 

 
where ( )RTV alg

ins  is the RTV value of the solution obtained with the algorithm alg for the 
instance ins, and )(RTV best

ins  is, for the instance ins, the best RTV value of the solutions 
obtained with the four metaheuristics. Table 3 shows the average σ dispersion for the 
global of 740 instances and for each class of instances. 
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 Psychoclonal Multi-start GRASP DPSOpoi-cpdyn 
Global 0.23 12,562.54 27,928.94 292.60 
CAT1 0.79 0.05 0.71 0.78 
CAT2 0.11 0.10 5.70 0.45 
CAT3 0.02 0.75 17.74 21.13 
CAT4 0.01 50,249.23 111,691.60 1,148.03 

Table 3. Average σ dispersion regarding the best solution found 
 
For the global of all instances, the psychoclonal algorithm has the least average σ 
dispersion very far from the dispersion of the other algorithms. Observing the results in 
Table 3 by class, we see that the behavior of the dispersions is almost analogous to the 
behavior of the RTV values. For the smallest instances (CAT1 and CAT2), the multi-
start algorithm gives the smallest average dispersion and it is near followed by the 
psychoclonal algorithm. For the medium and big instances (CAT3 and CAT4), the 
psychconal algorithm shows clearly the least dispersion, followed by the multi-start 
algorithm for the medium instances. Although the multi-start algorithm gives the worst 
RTV solutions for the CAT4 instances, it has less dispersion than the GRASP algorithm; 
this indicates that multi-start algorithm is more stable than the GRASP algorithm in this 
case. To summarize, the results in Tables 1-3 show that the psychoclonal algorithms has 
a very good performance in terms of the RTV values and also has a very stable behavior 
for all classes of instances. 
 
The bad results for the larger instances (CAT4) obtained by the multi-start, GRASP and 
PSO algorithms may occur because 50 seconds might not be enough time for them to 
converge. Table 4 shows the averages of the RTV values for the global of all instances 
and for each class of instances (CAT1 to CAT4) obtained with the four algorithms when 
they are run for 1,000 seconds. 
 
 

 Psychoclonal Multi-start GRASP DPSOpoi-cpdyn 
Global 161.60 1,378.58 1,495.12 1,537.34 
CAT1 14.90 10.93 13.59 14.35 
CAT2 39.90 35.48 75.08 46.55 
CAT3 122.38 160.67 428.86 143.96 
CAT4 469.23 5,307.25 5,462.95 5,944.51 

Table 4. Averages of the RTV values for 1000 seconds 
 
With 1000 seconds of execution time, which seems time enough for the convergence of 
the four algorithms (see Figure 2), the psychoclonal algorithm is for the global of all 
instances 88.28%, 88.19% and 89.49% better than the multi-start, GRASP and PSO 
algorithms, respectively. Although the multi-start, GRASP and PSO algorithms improve 
a lot their average results, the psychoclonal algorithm is clearly better. Indead, the 
results obtained with the psychoclonal algorithm for 50 computing seconds are much 
better than the results obtained with the other algorithms for 1000 computing seconds. 
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Figure 2. Average of the RTV values obtained over the computing time 

 
Finally, to show the strength of the psychoclonal algorithm, the best heuristics proposed 
in Corominas et al. (2007) to solve the RTVP (the bottleneck, Webster, Jefferson and 
insertion heuristics) are compared with the proposed psychoclonal algorithm. The 
execution time of the heuristics for each instance was always close to 0.1 seconds. We 
show in Table 5 the averages of the RTV values for the global of all instances and for 
each class of instances obtained with the four heuristics and the psychoclonal for 
different running times. With only 0.5 seconds of computing time, the average of the 
RTV values obtained with the psychoclonal algorithm is 51.03% better than the average 
of the RTV values obtained with the best heuristic (bottleneck heuristic); and with 5 
seconds, it is 93.52% better.. 
 
     Psychoclonal 
 Bottleneck Webster Jefferson Insertion (0.5 sec.) (1 sec.) (5 sec.) 
Global 9,849.99 22,821.94 23,736.83 25,811.24 4,823.48 2,498.85 638.49 
CAT1 107.09 121.84 147.19 172.69 16.35 15.61 15.24 
CAT2 693.38 933.11 1,077.88 1,254.29 50.97 48.08 45.83 
CAT3 4,369.44 8,502.80 9,106.04 10,248.21 593.01 316.82 145.90 
CAT4 34,230.05 81,730.00 84,616.22 91,569.77 18,633.57 9,614.87 2,347.94 

Table 5. Averages of the RTV values 
 
 
6. Conclusions 
 
In this paper, the Response Time Variability Problem (RTVP) is solved. This problem is 
an NP-hard scheduling problem that proposes a new metric to measure the fairness of a 
solution according to the relative importance of the different symbols to be sequenced. 
In the RTVP, the aim is to minimize variability in the distances between any two 
consecutive copies of the same symbol, i.e. to distribute the symbols the more regular 
as possible. 
 



 92 

The RTVP occurs in diverse environments as manufacturing, hard real-time systems, 
operating systems and networks environments. Since it is a NP-hard problem, 
metaheuristic methods are needed for solving non-small instances. García et al. (2006) 
have proposed a multi-start algorithm and a GRASP algorithm and García-Villoria and 
Pastor (2007) have proposed a PSO algorithm called DPSOpoi-cpdyn, which are the 
most efficient algorithms published to date for solving the RTVP. In order to improve 
the published results, a psychoclonal algorithm based approach is proposed. 
 
The psychoclonal metaheuristic inherits its attributes from the need hierarchy theory of 
Maslow (1954) and the artificial immune system (AIS) approach, specifically the clonal 
selection principle (Gaspar and Collard 2000). The main features of this metaheuristic 
are various levels of needs, affinity maturation to guide the solution to a local optimum 
and receptor editing to escape from local optima and to explore new regions of the 
solution search space. 
 
A computation experiment was carried out and its results show that the psychoclonal 
algorithm that we propose improves strongly the previous results obtained with the 
other three algorithms on average. In addition, the psychoclonal algorithm has a very 
stable behavior for small, medium and large instances. The theoretical properties of the 
psychoclonal metaheuristic have not been mathematically studied in the literature. This 
is a future research topic. 
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Abstract. The response time variability problem (RTVP) is a hard scheduling problem that 
has recently been defined in the literature and has a wide range of real-world applications in 
mixed-model assembly lines, multithreaded computer systems, network environments and 
others. The RTVP arises whenever products, clients or jobs need to be sequenced in such a 
way that the variability in the time between the points at which they receive the necessary 
resources is minimized. Since the RTVP is a complex problem, heuristic and metaheuristic 
techniques are needed to solve it. The best results in the literature for the RTVP have been 
obtained with a psychoclonal algorithm. We propose a genetic algorithm (GA) that is adapted 
to solve the RTVP. A computational experiment is carried out and it is shown that, on 
average, the GA produces better results than the psychoclonal algorithm. 
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1. Introduction 
 
The concept of fair sequence has emerged independently from scheduling problems in 
diverse environments, principally from manufacturing, hard real-time systems, 
operating systems and network environments. The common aim of these scheduling 
problems, as defined in Kubiak (2004), is to build a fair sequence using n symbols, 
where symbol i (i = 1,...,n) must occur di times in the sequence. The fair sequence is the 
one which allocates a fair share of positions to each symbol i in any subsequence. This 
fair or ideal share of positions allocated to symbol i in a subsequence of length k is 
proportional to the relative importance (di) of symbol i with respect to the total copies of 
competing symbols (equal to ). There is not a universal definition of fairness, 
as several reasonable metrics can be defined according to the specific problem 
considered. 
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Among the different definitions of fairness, the concept of Response Time Variability 
(RTV) has emerged. In RTV, the ideal distance for symbol i between any two 
consecutive copies of this symbol is equal to D/di, where D is the length of the sequence 
( )1.. ii n
D d

=
= ∑ . The RTV metric is the sum, for all symbols i, of the squares of the 

differences between the ideal and the real distances corresponding to all pairs of 
consecutive copies of symbol i. Thus, the RTV metric measures the non-fairness of a 
sequence. The Response Time Variability Problem (RTVP) lies in finding the optimal 
sequence according to the RTV metric, that is, the sequence that minimizes the response 
time variability. Thus, the distance between any two consecutive copies of the same 
symbol should be as regular as possible (ideally constant). 
 
This problem has a broad range of real-world applications. One of the first situations in 
which the idea of the fair sequence appeared was the sequencing of mixed-model 
assembly lines at Toyota Motor Corporation under the just-in-time (JIT) production 
system. One of the main aims of JIT is to eliminate sources of waste and inefficiency. In 
the case of Toyota, the main source of waste was the production of excessive volumes 
of stock. To solve this problem, JIT systems produce only the specific models required 
and in the quantities needed at any given time. According to Monden (1983), in this 
type of system the units should be scheduled in such a way that the consumption rates 
of the components in the production process remain constant. Miltenburg (1989) also 
studied this scheduling problem and considered only the demand rates for the models, 
thus defining the product rate variation (PRV) problem (Miltenburg, 1989; Kubiak, 
1993). The PRV problem is intended to minimize variations in the production rate of 
different models. However, feedback from the manufacturing industry suggests that a 
good mixed-model sequence is one in which the distances between units of the same 
model are as regular as possible. 
 
Apart from assembly lines, the fair sequencing idea has appeared in computer 
multithreaded systems (Waldspurger and Weihl, 1995; Dong et al., 1998). 
Multithreaded systems (operating systems, network servers, media-based applications, 
etc.) do different tasks to attend to the requests of client programs that take place 
concurrently. These systems need to manage scarce resources in order to service the 
requests of n clients. For example, multimedia systems must not display video frames 
too early or too late, as this would produce jagged motion perceptions (Corominas et al., 
2007). Waldspurger and Weihl considered that resource rights could be represented by 
tickets and that each client i had a given number di of tickets. They suggested the 
Response Time Variability (RTV) metric to evaluate the fairness of a sequence of 
resource rights. 
 
Other contexts in which the RTVP appears are the periodic machine maintenance 
problem (Anily et al., 1998), the schedule of commercial videotapes for television 
(Bollapragada et al., 2004; Brusco, 2008) and the schedule of waste collection 
(Herrmann, 2007). A study by Bollapragada et al. (2004) was motivated by a problem 
faced by the National Broadcasting Company (BNC), which is one of the main 
American firms in the television industry. Major advertisers buy hundreds of slots from 
the BNC to air commercials. The advertisers request that the airings of their 
commercials are as evenly spaced as possible over the broadcast season. Hermann 
(2007) came up with the RTVP while working with a healthcare facility that needed to 
schedule the collection of waste from waste collection rooms throughout the building. 
Based on data about how often a waste collector had to visit each room and in view of 
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the fact that different rooms require a different number of visits per shift, the facility 
manager wanted these visits to occur as regularly as possible, so that excessive waste 
would not collect in any room. For instance, if a room needed four visits per eight-hour 
shift, it ideally had to be visited every two hours. 
 
The RTVP is NP-hard (Corominas et al., 2007). To solve the RTVP, Waldspurger and 
Weihl (1995) used the Jefferson method of apportionment (Balinski and Young, 1982), 
a greedy heuristic algorithm which they renamed as the stride scheduling technique. 
Herrmann (2007) solved the RTVP by applying a heuristic algorithm based on the stride 
scheduling technique. Corominas et al. (2007) proposed four other greedy heuristic 
algorithms and a mixed-integer linear programming (MILP) model. Corominas et al. 
(2009) proposed an improved MILP model and increased the practical limit for 
obtaining optimal solutions from 25 to 40 copies to be scheduled. García et al. (2006) 
proposed six metaheuristic algorithms: a multi-start, a greedy randomized adaptive 
search procedure (GRASP) and four variants of a discrete particle swarm optimisation 
(PSO) algorithm. Another ten discrete PSO algorithms were proposed in García-Villoria 
and Pastor (2009a). A cross-entropy approach was used in García-Villoria et al. (2007). 
The electromagnetism-like mechanism was proposed to solve the RTVP in García-
Villoria and Pastor (2009b). Finally, the best results recorded to date were obtained with 
a psychoclonal algorithm (García-Villoria and Pastor, 2008). 
 
To improve the results obtained in prior studies, we propose using a genetic algorithm 
(GA)-based approach to solve the RTVP. GA is a well known metaheuristic that was 
proposed in the 1970s (Holland, 1975) and has proved to be very effective in solving 
hard optimisation problems. We adapt the GA by defining a suitable representation of 
the solutions and genetic operators for the RTVP. The proposed GA algorithm is 
compared with the most efficient procedure for solving non-small instances published in 
the literature, which is a psychoclonal algorithm proposed in García-Villoria and Pastor 
(2008). On average, the proposed GA algorithm improves the best previous results 
reported in the literature by more than 20%. 
 
The remainder of the paper is organized as follows: Section 2 presents a formal 
definition of the RTVP and briefly describes the psychoclonal algorithm for solving the 
problem. Section 3 contains an introduction to GAs. Section 4 proposes a GA procedure 
for solving the RTVP. Section 5 presents the computational experiment and the 
comparison between our algorithm and the psychoclonal algorithm. Finally, some 
conclusions are given in Section 6. 
 
 
2. The Response Time Variability Problem (RTVP) 
 
The RTVP is designed to minimize variability in the distances between any two 
consecutive copies of the same symbol and is formulated as follows. Let n be the 
number of symbols, id  the number of copies of the symbol i to be scheduled (i = 
1,…,n), and D the total number of copies (

1.. ii n
D d

=
= ∑ ). Let s be a solution of an 

instance in the RTVP. This consists of a circular sequence of copies ( Dssss 21= ), 
where sj is the copy sequenced in position j of sequence s. For all symbols i such that 

2id ≥ , let i
kt  be the distance between the positions in which copies k + 1 and k of 

symbol i are found (i.e. the number of positions between them, where the distance 
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between two consecutive positions is considered equal to 1). Since the sequence is 
circular, position 1 comes immediately after position D; therefore, i

di
t  is the distance 

between the first copy of symbol i in a cycle and the last copy of the same symbol in the 
preceding cycle. Let it  be the desired average distance between two consecutive copies 

of symbol i (
i

i d
Dt = ). For all symbols i such that 1=id , it1  is equal to it . The aim is 

to minimize the metric RTV, which is defined by the following expression: 
 

 2

1 1
( )

idn
i
k i

i k
RTV t t

= =

= −∑∑  (1) 

 
For example, let 3n = , 3Ad = , 2Bd =  and 2Cd = ; thus, 7D = , 7

3At = , 7
2Bt =  and 

7
2Ct = . Any sequence that contains exactly id  times the symbol i ( )∀i  is a feasible 

solution. For example, the sequence (A, B, A, C, B, A, C) is a feasible solution, where: 

( ) ( ) ( ) ( ) ( ) ( ) ( )2 2 2 2 2 2 27 7 7 7 7 7 7 52 3 2 3 4 3 43 3 3 2 2 2 2 3RTV      = − + − + − + − + − + − + − =     
     

 
As introduced in Section 1, the psychoclonal algorithm proposed in García-Villoria and 
Pastor (2008) is the best procedure to date for solving the RTVP. This algorithm is an 
evolutionary metaheuristic (as is the GA) that was first proposed in Tiwari et al. (2005). 
According to the authors, this metaheuristic inherits its characteristics from the need 
hierarchy theory of Maslow (1954) and the clonal selection principle (Gaspar and 
Collard, 2000). The basic scheme of the psychoclonal metaheuristic is the following: 1) 
an initial population of solutions is generated and a function is given to evaluate the 
fitness of a solution; 2) the best solutions are selected and cloned in a number 
proportional to their fitness; 3) the generated clones are hypermutated (hypermutation is 
similar to the mutation operator of genetic algorithms, but the difference lies in the fact 
that the modification rate of the hypermutation is inversely proportional to the fitness of 
the solution); 4) the new generation is formed by the best clones and by new solutions 
generated at random; 5) steps 2-4 are repeated until a stop condition is reached. This 
metaheuristic was adapted to solve the RTVP (for a more detailed explanation, see 
García-Villoria and Pastor, 2008). 
 
 
3. Genetic Algorithms 
 
Genetic algorithms (GAs) are metaheuristic procedures based on the principles of 
natural selection and sexual reproduction. The first GA was proposed in Holland 
(1975). Prior to that, in the 1960s, some optimisation techniques were proposed that 
have in common the concepts of selection and mutation, which can be considered as 
straightforward developments of hill-climbing methods. The new concept introduced by 
Holland was the idea of recombination of solutions. 
 
GAs are now commonly used to solve optimisation problems (Reeves, 2003), although 
Holland's original work did not emphasize the use of GAs for optimising objective 
functions. GAs have been applied successfully to all kind of optimisation problems 
(Michalewicz, 1996) and the number of GA applications that have been reported in the 
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literature to solve combinatorial optimisation problems (such as the RTVP) has grown 
exponentially (Reeves, 2003). 
 
The classical scheme of a GA is shown in Figure 1. First an initial population of 
chromosomes is generated, each of which represents a solution of the problem. A 
chromosome is composed of simple elements called genes. A fitness function is used to 
evaluate the fitness of the chromosomes. Then, a new population that evolves towards 
better chromosomes is iteratively generated from the current one until a stop condition 
is reached (convergence of the population, maximum computing time, etc.). The key to 
produce better chromosomes consists of two chromosome operators called crossover 
and mutation. Crossover combines parent chromosomes to generate offspring 
chromosomes that share some features taken from each parent. The selection of the 
parents depends on their fitness. The aim of the crossover is to form a new population 
with a higher proportion of the characteristics of the good chromosomes of the previous 
population (Beasley et al., 1993a). Mutation is applied to the offspring chromosomes 
and consists of modifications to the values of several genes selected at random. 
Mutation diversifies the current population, and thus prevents premature convergence 
(Bean, 1994; Carter and Ragsdale, 2006). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Scheme of a classical GA 
 

In the early stages of GAs, they were designed as generic tools for solving complex 
problems. To achieve this, the data structures of the chromosomes were fixed-length 
binary strings (sequences of 0s and 1s) and standard genetic operators were used. The 
advantages of this approach are problem domain independence, which allows 
applications to be developed easily, and the existence of a theoretical basis 
(Michalewicz, 1996). However, most researchers have used modified GAs with more 
powerful data structures that are adapted for real problems (Koza, 1990). To use a 
special representation, suitable genetic operators (crossover and mutation) must be 
defined that are adapted to work with this structure. The adaptation is usually performed 
by analogy with classical crossover and mutation. Although there is a poor theoretical 
basis for modified GAs, the advantage of incorporating problem-specific knowledge 
into the chromosomes representation and the genetic operators is that, in practice, 
modified GAs outperform classical GAs when they are used in real-world problems 
(Beasley et al., 1993b; Michalewicz, 1996). 
 

1. Current population = Generate the initial population of chromosomes 
2. Evaluate the fitness of each chromosome 
3. While stopping condition is not reached do: 
4. New population = Ø 
5. While new population is not full do: 
6.  Select two parent chromosomes according to their fitness from the 
  current population 
7.  Apply crossover to the parents to obtain two offspring chromosomes 
8.  Apply mutation to the obtained offspring chromosomes 
9.  Add the generated offspring to the new population 
10. End While 
11. Current population = new population 
12. End While 
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Thus, a modified GA is proposed in this paper to solve the RTVP (see Section 4). When 
the designed algorithm uses a structure and operators that are different from the 
classical ones, some authors call it an evolution program (EP) (Michalewicz, 1996). We 
will consider our algorithm as a GA, only because the term GA is more popular (for a 
broad explanation of GAs and EPs, see Michalewicz (1996)). 
 
 
4. Using a GA to solve the RTVP 
 
In this paper we propose a modified GA for solving the RTVP. Seven elements have to 
be designed: 1) the representation of solutions (the data structure of the chromosomes); 
2) the generation of the initial population of solutions; 3) the fitness function; 4) 
crossover; 5) mutation; 6) the generation of the offspring population; and 7) the stop 
condition. The proposed designs of these 7 elements are explained in the following 
subsections. Moreover, the fine-tuning of the parameter values of the GA algorithm is 
explained in Subsection 4.8. 
 
4.1. Representation of solutions 
 
A straightforward representation of a solution consists of the positions of the copies of 
each symbol to be sequenced. Thus, each copy has a gene associated with it and the 
value of each gene indicates the position of its associated copy. The building block 
hypothesis (Goldberg, 1989) is considered to code the chromosomes. This hypothesis 
states that a successful coding scheme is one that encourages the formation of building 
blocks. A building block is a list of consecutive genes that work well together. 
 
To code the chromosomes of our GA, we decided to have a building block for each 
symbol i formed by the genes that indicate the positions in the sequence of the copies of 
symbol i. We selected this method as the quality of a solution depends on the response 
time variability for each symbol i (see Equation 1), which depends on the relative 
distances between the units of symbol i. Therefore, the positions of the units of symbol i 
have to be considered together. 
 

 

 
Figure 2. Representation of a RTVP solution 

 
 
We will explain the representation of a solution with the following example: 3n = , 

3Ad = , 2Bd =  and 2Cd = . A feasible solution is (B, C, A, B, A, A, C). The first three 
genes of a chromosome form the building block of symbol A, and their values are the 
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positions of the first, second and third copies of symbol A (see Figure 2). The fourth 
and fifth genes form the building block of symbol B, and their values are the positions 
of the first and second copies of symbol B (see Figure 2). The sixth and seventh genes 
form the building block of symbol C, and their values are the positions of the first and 
second copies of symbol C (see Figure 2). 
 
Note that the solution space using the proposed representation is not all the space of 
permutations. For instance, using the same example, the chromosome (5,3,6 | 1,4 | 2,7) 
is unfeasible, because it indicates that the position of the first copy of symbol A (which 
is 5) is greater than the position of the second copy of symbol A (which is 3). That is, 
the second copy of symbol A is sequenced before the first copy of symbol A, and this is 
incoherent with the definition of first copy and second copy. 
 
4.2. Generation of the initial population 
 
The initial population is made up of the chromosomes that represent solutions generated 
at random. Each solution is generated as follows. For each position of the sequence, a 
symbol to be sequenced is chosen at random. The probability of each symbol is equal to 
the number of copies of this symbol that remain to be sequenced, divided by the total 
number of copies that remain to be sequenced. The total number of chromosomes that 
make up the population is N (which is a parameter of the GA). 
 
4.3. Fitness function 
 
The fitness of a chromosome is only used in our GA to rank the chromosomes (see 
Section 4.6). Thus, an easy implementation of the fitness function is the inverse of the 
RTV value of the solution represented by the chromosome. 
 
4.4. Crossover operator 
 
The offspring obtained by applying the classical crossover operator in a permutation 
search space is usually unfeasible. To solve this difficulty, the partially matched 
crossover (PMX) has been successfully applied (e.g., Wu et al., 2007) since it was first 
proposed in Goldberg and Lingle (1985). 
 
PMX cross two parent chromosomes as follows. First, two cut points are chosen at 
random along the chromosomes. Next, the section between these points defines an 
interchange mapping. Figure 3 shows an example of the application of the standard 
PMX.  

 

 
Figure 3. Application of the standard PMX 
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In this paper, a variation of the standard PMX is proposed that is adapted to the 
representation of the solutions. The first difference is that the proposed PMX selects a 
complete building block at random, instead of two random cut points, with the aim of 
ensuring the preservation of a good building block. The second difference is that a 
feasibility post-process is needed, as unfeasible offspring may be produced. As seen in 
the example in Section 4.1, the chromosome (5,3,6 | 1,4 | 2,7) is unfeasible because the 
second copy of symbol A is sequenced before the first copy of symbol A. To repair the 
chromosome, the genes of each building block are arranged in increasing order. In this 
example, the repaired chromosome is (3,5,6 | 1,4 | 2,7). Figure 4 shows a complete 
example of the application of the proposed PMX variation. 
 

 
Figure 4. Application of the adapted PMX 

 
4.5. Mutation operator 
 
The mutation operator designed for our GA is analogous to the classical GA mutation. 
The proposed mutation operates as follows. Each gene has a probability p (which is a 
parameter of the GA) to mutate. If a gene is mutated, then there is a probability of 0.5 to 
increase its value by one (if the value is the length of the chromosome, then its value is 
changed to 1) and there is a probability of 0.5 to decrease its value by one (if the value 
is 1, then its value is changed to the length of the chromosome). Let v and v’ be the 
original and the new value of the mutated gene, respectively. The value of the other 
gene whose value is v’ is changed to v. After the mutations of the chosen genes, the 
repairing post-process used in the proposed crossover operator (see Section 4.4) is also 
needed. Figure 5 shows an example of the proposed mutation operator. 
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Figure 5. Application of the mutation operator 

 
4.6. Generation of the offspring population 
 
The classical generation of the offspring population is shown in Steps 4-9 of Figure 1. 
In this case, all chromosomes of the new population are obtained from the parent 
population by crossover and mutation. Several new ideas have been introduced in the 
literature to improve this traditional reproduction.  
 
The elitist strategy proposed in Goldberg (1989) involves copying the best 
chromosomes from the parent population to the offspring population. The advantage of 
the elitist strategy is that the best solution monotonically improves from one generation 
to the next (Bean, 1994). However, this strategy has the disadvantage of premature 
convergence of the population. To avoid this, Bean (1994) employs the idea of 
immigration. This consists of including several new chromosomes that are generated at 
random in the offspring population.  
 
The elitist strategy and the idea of immigration are used in our proposed GA. The 
proportion of best parent chromosomes (B) and the proportion of new chromosomes (R) 
introduced into the offspring population are parameters of our GA. Figure 6 shows a 
scheme of the generation of the offspring. 
 

 
Figure 6. Generation of the offspring population 
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Parents are selected for the crossover as follows. One parent is chosen at random with a 
uniform probability from the best chromosomes population and the other parent is 
chosen at random with a uniform probability from the non-best population. The fitness 
function defined in Section 4.3 has been used to rank the chromosomes of the current 
population. 
 
4.7. Stop condition 
 
The GA algorithm stops once it has run for a preset time. 
 
4.8. Fine-tuning the algorithm parameters 
 
Fine-tuning the parameters of a metaheuristic algorithm is almost always a difficult 
task. Although the parameter values may have a very strong effect on the results of the 
metaheuristic for each problem, they are often selected using one of the following 
methods, which are not sufficiently thorough (Eiben et al., 1999; Adenso-Díaz and 
Laguna, 2006): 1) “by hand”, based on a small number of experiments that are not 
referenced; 2) using the general values recommended for a wide range of problems; 3) 
using the values reported to be effective in other similar problems; or 4) with no 
apparent explanation. 
 
Adenso-Díaz and Laguna (2006) proposed a new technique called CALIBRA for fine-
tuning the parameters of heuristic and metaheuristic algorithms. CALIBRA is based on 
using conjointly Taguchi’s fractional factorial experimental designs and a local search 
procedure. 
 
García-Villoria and Pastor (2008) used CALIBRA to fine-tune their psychoclonal 
algorithm, and we used the same technique to fine-tune our GA algorithm. The 
following parameter values were obtained: N (size of the population) = 13, p (mutation 
probability) = 0.013, B (proportion of best chromosomes) = 0.18 and R (proportion of 
new chromosomes) = 0.12. 
 
 
5. Computational experiment 
 
The psychoclonal algorithm proposed in García-Villoria and Pastor (2008) is the most 
efficient algorithm in the literature for solving non-small RTVP instances. Therefore, 
we compared the performance of our proposed GA algorithm with that psychoclonal 
algorithm. In the rest of this section, we refer to our GA algorithm as GA-RTVP and the 
psychoclonal algorithm as Psycho-RTVP. 
 
The computational experiment was carried out for the same instances and conditions 
that were used in García-Villoria and Pastor (2008). That is, the algorithms were run for 
740 instances, which were grouped into four classes (185 instances in each class) 
according to size. The instances in the first class (CAT1) were generated using a random 
value of D (number of copies) distributed uniformly between 25 and 50, and a random 
value of n (number of symbols) distributed uniformly between 3 and 15; for the second 
class (CAT2), D was between 50 and 100 and n between 3 and 30; for the third class 
(CAT3), D was between 100 and 200 and n between 3 and 65; and for the fourth class 
(CAT4), D was between 200 and 500 and n between 3 and 150. For all instances and for 
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each symbol i = 1,…,n, a random value of di (number of copies of symbol i) was 
between 1 and ( )1 2.5D n− +  so that 1.. ii n

d D
=

=∑ . The two algorithms were coded 
in Java and the computational experiment was carried out using a 3.4 GHz Pentium IV 
with 1.5 GB of RAM. 
 
The algorithms were run for 50 seconds for each instance. Table 1 shows the average 
RTV values to be minimized for the global of 740 instances and for each class of 
instances (CAT1 to CAT4) obtained with the two algorithms. 
 

Table 1. Average RTV values for a computing time of 50 seconds 
 Global CAT1 CAT2 CAT3 CAT4 
GA-RTVP 186.94 11.65 29.41 84.54 622.16 
Psycho-RTVP 235.68 14.92 44.25 137.07 746.50 

 
Table 1 shows that the global average results of the GA algorithm for all the instances 
considered are 20.68% better than the results obtained using the best method proposed 
in the literature. If we consider the results by class, the GA-RTVP also obtains better 
results than Psycho-RTVP: the results obtained with the GA algorithm are 21.92%, 
33.54%, 38.32% and 16.66% better for CAT1 instances, CAT2 instances, CAT3 
instances and CAT4 instances, respectively. Considerable improvements are observed in 
all classes. To analyse whether the differences are statistically significant we carried out 
the two sample test using the statistical software package Minitab® 15.1.0.0. With a 
confidence level above 99%, GA-RTVP is better than Psycho-RTVP, if we consider the 
overall results and the results by class. 
 
Table 2 shows the number of times that each algorithm reaches the best RTV value 
obtained by either one. The results are shown for the total number of 740 instances and 
for each class. 
 

Table 2. Number of times that the best solution is reached 
 Global CAT1 CAT2 CAT3 CAT4 
GA-RTVP 663 171 175 172 145 
Psycho-RTVP 148 72 23 13 40 

 
As expected from the results in Table 1, Table 2 shows that GA-RTVP reaches the best 
solution on more occasions than Psycho-RTVP. For the total number of instances, the 
GA algorithm obtains the best solution in 89.59% of cases and the psychoclonal 
algorithm in 20.00%. 
 
To complete the analysis of the results, we examined the relative discrepancies between 
the RTV values obtained for each algorithm and the best values obtained by both 
algorithms. A measure of the discrepancies (let it be called σ) of the RTV values 
obtained by each algorithm alg = {GA-RTVP, Psycho-RTVP} was defined for a given 
instance, ins, according to the following expression: 
 

 
2( ) ( )

( )

RTV RTV( , )
RTV

alg best
ins ins

best
ins

alg insσ
 −

=  
 

 (5) 
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where ( )RTV alg
ins  is the RTV value of the solution obtained with the algorithm alg for the 

instance ins, and )(RTV best
ins  is the best RTV value of the solutions obtained with the two 

algorithms for the instance ins. Table 3 shows the average σ values for the total number 
of instances and for each class. Table 3 shows that both algorithms produce low average 
σ values for the total number of cases and for each instance class. That is, when an 
algorithm does not obtain the best RTV value for a given instance, it obtains a value that 
is very close to it. Although the behaviour of Psycho-RTVP is very stable, GA-RTVP 
improves it and has even more stable behaviour. 
 

Table 3. Average σ values for the best solution found 
 Global CAT1 CAT2 CAT3 CAT4 
GA-RTVP 0.007 0.009 0.006 0.004 0.010 
Psycho-RTVP 0.859 0.750 0.697 1.323 0.664 

 
A computing time of 50 seconds may not be long enough for the algorithms to converge 
for the largest instances. Table 4 shows the average RTV values for the total number of 
instances and for each class of instances (CAT1 to CAT4) when the algorithms are run 
for 200, 400, 800 and 1,000 seconds. 
 

Table 4. Average RTV values for a computing time of 200, 400, 800 and 1,000 seconds 
  Global CAT1 CAT2 CAT3 CAT4 

200 s. GA-RTVP 131.81 11.34 28.26 77.81 409.84 
Psycho-RTVP 172.07 14.92 41.54 131.67 500.16 

400 s. GA-RTVP 117.93 11.10 27.72 76.21 356.69 
Psycho-RTVP 164.96 14.92 40.61 128.03 476.28 

600 s. GA-RTVP 112.28 10.95 27.56 75.53 335.06 
Psycho-RTVP 163.19 14.92 40.22 125.85 471.80 

800 s. GA-RTVP 109.00 10.95 27.18 75.17 322.70 
Psycho-RTVP 162.28 14.92 40.01 123.89 470.29 

1,000 s. GA-RTVP 106.68 10.92 27.00 74.86 313.92 
Psycho-RTVP 161.60 14.90 39.90 122.38 469.23 

 
When a computing time of 1,000 seconds is used—which seems to be long enough for 
both algorithms to converge (see Figure 7)—the GA-RTVP algorithm is 33.99% better 
than Psycho-RTVP for the total number of instances. If we consider the results by class, 
GA-RTVP is 26.71%, 32.33%, 38.83% and 33.10% better than the Psycho-RTVP for 
CAT1, CAT2, CAT3 and CAT4 instances, respectively. Again, GA-RTVP obtains better 
results than Psycho-RTVP, considering the overall results and the results by class with a 
confidence level above 99%. 
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Figure 7. Average RTV values over the computing time 

 
Finally, the real-life waste collection example presented by Herrmann (2007) was 
solved using GA-RTVP and Psycho-RTVP. This example has the following 
characteristics: n = 14, d = (2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5) and, therefore, D = 46. 
This example was solved optimally with the MILP presented in Corominas et al. (2006). 
Both algorithms were run ten times and they always found an optimal solution. The 
minimum, average and maximum computing times needed by GA-RTVP to find the 
optimum were 0.375, 0.994 and 3.234 seconds, respectively. The minimum, average 
and maximum computing times needed by Psycho-RTVP to find the optimum were 
0.687, 4.139 and 9.688 seconds, respectively. 
 
 
6. Conclusions 
 
In this paper, the response time variability problem (RTVP) is solved. This scheduling 
problem arises in a variety of real-world environments, including mixed-model 
assembly lines, multithreaded systems, network servers, periodic machine maintenance, 
and waste collection. The aim of the RTVP is to minimize the variability in the 
distances between any two consecutive copies of the same symbol. 
 
Since the RTVP is an NP-hard problem, heuristic and metaheuristic methods are needed 
to solve real-world instances. Several metaheuristic algorithms have been developed to 
solve this hard combinatorial optimisation problem. The most efficient algorithm to date 
for solving the RTVP was a psychoclonal algorithm (García-Villoria and Pastor, 2008). 
A GA adapted to solve the RTVP was used to improve the published results. The 
computational experiment showed that the proposed GA improves on the best results 
obtained in the literature. 
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Abstract. We propose two classes for the implementation of hyper-heuristic algorithms. The 
first is based on constructive heuristics, whereas the second uses improvement methods. 
Within the latter class, a general framework is designed for the use of local search procedures 
and metaheuristics as low-level heuristics. A dynamic scheme to guide the use of these 
approaches is also devised. These ideas are tested on a hard scheduling problem known as the 
Response Time Variability Problem (RTVP). An intensive computational experiment shows 
the effectiveness of the proposed hyper-heuristics and their ability to select the right low-level 
heuristic at a given iteration during the search. 
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1. Introduction 
 
One of the most commonly used approaches to NP-hard optimisation problems is 
heuristics-based methods. Since each heuristic may have particular weaknesses and 
strengths depending on the characteristics of the instance or scenario in which it is 
applied (Bai et al., 2008), it seems reasonable to choose the right heuristic at a given 
iteration during the search. This is the key idea of hyper-heuristic methods. 
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Hyper-heuristics are an emerging methodology in search and optimisation (Burke et al., 
2003a). However, references to them can be found in the literature from the 1960s 
onwards (Ross, 2005). A short definition of hyper-heuristic methods is “heuristics to 
choose heuristics”. Hyper-heuristics apply the right heuristic during the problem solving 
process, according to the current state of the solution. Thus, an intelligent application of 
different heuristics at different times in the search could lead to better performance than 
the application of individual heuristics (Burke et al., 2006). Some hyper-heuristics work 
on rules that are often extracted from offline learning and knowledge acquisition. This 
type of hyper-heuristics could be classified as an expert system. 
 
Hyper-heuristics operate indirectly on the solutions by choosing the (meta)heuristic to 
be applied. They thus operate at a higher level than classical heuristics and 
metaheuristics. In fact, hyper-heuristics only have access to a set of low-level 
(meta)heuristics that are applied to the current solution. The main advantage of this is 
that hyper-heuristics can be designed independently of the problem domain. Thus, given 
a problem, a set of (meta)heuristics and a suitable fitness function, the same hyper-
heuristic can be applied (Burke et al., 2003a). In other words, an existing hyper-
heuristic method can be applied to a new problem quickly and cheaply. For an overview 
of hyper-heuristics, see Burke et al. (2003a), Ross (2005) and Özcan et al. (2008), and 
for information on heuristics in general, see Salhi (2006). 
 
Hyper-heuristics can be divided into two categories: constructive hyper-heuristics and 
improvement hyper-heuristics. Constructive hyper-heuristics use a set of constructive 
heuristics as the low-level heuristics, in order to construct a full solution. In contrast, 
improvement hyper-heuristics start from a complete initial solution and then improve on 
it, using either simple refinement heuristics or even more sophisticated, but time-
consuming, metaheuristics. An extended classification can be found in Burke et al. 
(2009). 
 
This paper proposes several constructive and improvement hyper-heuristics that can be 
applied to a variety of hard combinatorial optimisation problems. We use the Response 
Time Variability Problem (RTVP) as a platform to test this methodology. The RTVP is 
an NP-hard scheduling problem that was first reported in Waldspurger and Weihl 
(1994) and formally formulated by Corominas et al. (2007). This problem has a wide 
range of real-world applications: it occurs whenever products, clients or jobs need to be 
sequenced in such a way that there is minimal variability in the time between the 
instants at which the necessary resources are received. Applications include sequencing 
of mixed-model assembly lines under JIT (Kubiak, 1993; Miltenburg, 1989), resource 
allocation in computer multi-threaded systems such as operating systems, network 
servers and media-based applications (Dong et al., 1998; Waldspurger and Weihl, 1994, 
1995), the periodic machine maintenance problem when the times between consecutive 
services of the same machine are equal (Anily et al., 1998; Wei and Liu, 1983), waste 
collection (Herrmann, 2007) and scheduling commercial videotapes for television 
(Bollapragada et al., 2004; Brusco, 2008). 
 
The set of low-level heuristics used in the proposed constructive hyper-heuristics 
consists of several greedy heuristics put forward by Bollapragada et al. (2004) and 
Corominas et al. (2007). For the improvement hyper-heuristic, we introduce local 
search procedures that are commonly applied, as well as metaheuristics. To the best of 
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our knowledge, there are no studies on the use of metaheuristics as low-level heuristics. 
We understand the reason for this lack of interest, as metaheuristics are known to 
consume a large amount of cpu time. However, since hyper-heuristics can select the 
right heuristic during the solution generation process, it seems likely that they are also 
able to select the most suitable metaheuristic, according to the current state of the 
solution. In this paper, two sets of low-level heuristics are proposed for the 
improvement hyper-heuristics. The first consists of the three local search methods used 
in the classical improvement hyper-heuristics, whereas the second contains a composite 
hill-climbing method, which is based on iteratively applying the three aforementioned 
local search methods, one variant of tabu search (TS) and one variant of variable 
neighbourhood search (VNS). 
 
The remainder of the paper is organized as follows: Section 2 presents a formulation of 
the RTVP and a brief state of the art in this area. Section 3 explains the heuristics and 
metaheuristics that will be used in the proposed hyper-heuristics. Section 4 describes 
our methodology for constructive hyper-heuristics. Section 5 deals with improvement 
hyper-heuristics. Section 6 presents our computational experiments. Finally, some 
conclusions and suggestions are given in Section 7. 
 
 
2. The Response Time Variability Problem (RTVP) 
 
The RTVP is formulated as follows. Let n be the number of symbols to be sequenced 
(representing products, clients, jobs, etc.), where symbol i (i = 1,...,n) is to be copied di 
times in the sequence (the number of times that symbol i has to receive the resource) 
and D is the total number of copies (

1.. ii n
d

=∑ ). Let s be a solution of an instance in the 

RTVP that consists of a circular sequence of copies ( Dssss 21= ), where sj is the copy 
sequenced in position j of sequence s. For each symbol i in which 2id ≥ , let i

kt  be the 
distance between the positions in which the copies k + 1 and k of symbol i are found. 
We consider that the distance between two consecutive positions is equal to 1. Since the 
sequence is circular, position 1 comes immediately after the last position D. Therefore, 

i
di

t  is the distance between the first copy of symbol i in a cycle and the last copy of the 
same symbol in the preceding cycle. Let it  be the desired average distance between two 

consecutive copies of symbol i ( i
i

Dt d= ). The objective is to minimise the metric 

called the response time variability (RTV), which is defined by the sum of the square 
errors with respect to the it  distances. Since the symbols i such that 1id =  do not 

intervene in the computation of RTV, we assume that for each of these symbols 1
it  is 

equal to it . Thus, RTV is given by the following expression as 2

1 1
( )

idn
i
k i

i k
RTV t t

= =

= −∑∑ .  

 
As an illustration, consider the following example. Let 3n =  with symbols A, B and C. 
Also consider 2=Ad , 2=Bd  and 4=Cd . Thus, 8=D , 4=At , 4=Bt  and 2.Ct =  Any 
sequence that contains symbol i ( )∀i  exactly id  times is a feasible solution. For 



 114 

example, the sequence (C, A, C, B, C, B, A, C) is a feasible solution, and has an 
( ) ( )( ) ( ) ( )( ) ( ) ( ) ( ) ( )( )2 2 2 2 2 2 2 25 4 3 4 2 4 6 4 2 2 2 2 3 2 1 2 1 2 .RTV = − + − + − + − + − + − + − + − =  

 
Corominas et al. (2007) proposed a mixed integer lineal programming (MILP) model to 
solve the RTVP. Corominas et al. (2009a) then improved the previous MILP model to 
obtain optimal sequences up to 40 copies. Bollapragada et al. (2004) proposed a simple 
branch and bound algorithm and four heuristics. Five heuristics were presented in 
Corominas et al. (2007), of which three were greedy. García et al. (2006) developed six 
metaheuristic algorithms which include: a multi-start, a greedy randomized adaptive 
search procedure (GRASP) and four variants of a discrete particle swarm optimization 
(PSO) algorithm. Other discrete PSO algorithms were proposed in García-Villoria and 
Pastor (2009a). A multi-start algorithm and a GRASP algorithm were given by 
Corominas et al. (2008). Cross-entropy, psychoclonal and electromagnetism-like 
mechanism approaches were used in García-Villoria et al. (2007), García-Villoria and 
Pastor (2008) and García-Villoria and Pastor (2009b), respectively. The best results 
have recently been achieved with three methods based on the TS metaheuristic 
(Corominas et al., 2009b), the VNS metaheuristic (Corominas et al., 2009c) and the 
genetic algorithm (GA) metaheuristic (García-Villoria and Pastor, 2009c). 
 
 
3. Low-level heuristics for the RTVP 
 
The heuristics and metaheuristics that will be used in our study to solve the RTVP are 
briefly reviewed here. Section 3.1 presents six greedy heuristics for generating a 
solution for the RTVP, whereas Section 3.2 describes three local search methods, one 
composite hill-climbing method and two metaheuristic algorithms. These are our low-
level heuristics, which will be embedded into our hyper-heuristic approaches. 
 
3.1. Greedy heuristics for the RTVP 
 
3.1.1. Parametric methods of apportionment 
 
The parametric method of apportionment is defined as follows (Balinski and Young, 
1982). Let xil be the number of copies of symbol i that have already been sequenced in 
the sequence of length l, l = 0, 1, … (assume xi0 = 0); the symbol to be sequenced in 

position l + 1 is * arg max ,i
i

il

di
x δ

 
=  + 

 where δ (0,1]∈ . If there is a tie, then use 

lexicographical order. 
 
The Webster method (Gr1) consists of applying the above method with δ = 0.5, whereas 
the Jefferson method (Gr2) uses δ = 1. We also propose an application of the parametric 
method, with δ = 0.25 and δ = 0.75 (Gr3 and Gr4, respectively). Corominas et al. 
(2007) used the Webster and Jefferson methods to solve the RTVP. 
 
3.1.2. A priority-based rule heuristic (Gr5) 
 
Let xil be the number of copies of symbol i that have already been sequenced in the 
sequence of length l, l = 0, 1, … (assume xi0 = 0); the symbol to be sequenced in 
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position l + 1 is ( )* 1
arg max .i

i il

l d
i x

D
+ ⋅ 

= − 
 

 If there is a tie, then the symbol i with 

the lowest di is sequenced. If this leads to another tie, then use lexicographical order. 
This idea is taken from the priority rule used in the GRASP algorithm proposed in 
Corominas et al. (2008). 
 
3.1.3. A contribution-based rule (Gr6) 
 
The symbol to be sequenced in position l (l = 1, 2, …) is the one that contributes least to 
the objective function (the RTV value). If there is a tie, then use lexicographical order. 
This method was proposed in Bollapragada et al. (2004). 
 
3.2. Local search methods, a composite hill-climbing method and metaheuristics for 
the RTVP 
 
3.2.1. Local search methods 
 
Three local search methods (LS-1, LS-2 and LS-3) are proposed. The LS-1 
neighbourhood is generated by swapping each pair of two consecutive positions of the 
sequence in the current solution. The LS-2 neighbourhood is a generalisation of LS-1, in 
which the move is not restricted to consecutive positions. The LS-3 neighbourhood is 
generated by removing each member of the sequence from its current position and 
inserting it in all other possible positions in the sequence. These neighbourhoods are 
proposed in Corominas et al. (2009c). All local search methods are performed 
iteratively in their neighbourhood. The best solution in the neighbourhood is chosen at 
each iteration and the optimisation ends when no neighbouring solution is better than 
the current solution. 
 
3.2.2. A composite hill-climbing method 
 
The composite hill-climbing method (CHC) consists of applying iteratively the three 
local search procedures (LS-1, LS-2 and LS-3) until there is no improvement in the 
solution. 
 
The order in which the three local search procedures make up the composite heuristic 
CHC could be important in terms of solution quality and cpu time. The procedures are 
ordered according to increasing neighbourhood complexity (that is, LS-1, LS-2 and LS-
3), as the solution is improved rapidly through LS-1 at the first iteration of CHC. Thus, 
there will be generally fewer iterations in LS-2 and specifically in LS-3 (which 
consumes much more cpu time than LS-1), given the good solution quality found by LS-
1 and LS-2, respectively. Consequently, the heuristic CHC can run using a relatively 
larger number of iterations. 
 
3.2.3. Tabu search 
 
The disadvantage of local search methods is that they get trapped in a local optimum. 
Tabu Search (TS) is one of the metaheuristics that has the power to overcome such a 
limitation (Glover, 1986). TS is a deterministic and aggressive approach that is based on 
applying a local search in which non-improving movements are also allowed. To avoid 
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cycling back to visited solutions, the most recent history of the search is recorded in a 
list of tabu (forbidden) solutions. A tabu solution can be overridden if a suitable 
aspiration criterion is met (see Salhi (2002) for more details on this issue). 
 
TS has been successfully applied to solve the RTVP (Corominas et al., 2009b). The 
neighbourhood used is that of the LS-2 local search method. The aspiration criterion 
relates to the move which produces a better solution than the best one found so far. A 
forbidden move on the tabu list involves two pairs consisting of (position, symbol). For 
instance, the move [(3, A), (5, B)] means that all solutions with the symbol A sequenced 
in position 3 and symbol B sequenced in position 5 are considered tabu.  
 
The TS algorithm has one parameter that is the size of its tabu list. The choice of the 
parameter value may have a crucial  effect on the results of the metaheuristic. Thus, it is 
important to find a suitable value of the parameter. We used a new technique called 
CALIBRA (Adenso-Díaz and Laguna, 2006), which is specifically designed for fine-
tuning the parameters of heuristic and metaheuristic algorithms. CALIBRA operates in 
the same set of training instances as those used by the training stage of CHH-2 and 
CHH-3 (see Subsection 4.2). The tabu list size found by CALIBRA was 75. 
 
3.2.4. Variable neighbourhood search 
 
The variable neighbourhood search (VNS) metaheuristic is based on applying a 
systematic change of neighbourhood within a local search method (Mladenović and 
Hansen, 1997). 
 
The VNS metaheuristic has been shown to be very effective to solve the RTVP 
(Corominas et al., 2009c). We propose a straightforward application of the VNS to 
solve the RTVP. The neighbourhoods used, N1, N2 and N3, are those of LS-1, LS-2 and 
LS-3, respectively. The local search method applied is the same as in the tabu search 
proposed in Corominas et al. (2009b), that is, LS-2. The acceptance criterion is that the 
RTV value of ' ( )kS N S∈  is equal to or lower than the RTV value of S. 
 
Note that the proposed VNS algorithm is different from the hill-climbing method 
(CHC), although both algorithms employ the same neighbourhood operators. The 
following aspects of the VNS algorithm differs from CHC: 1) a random neighbour is 
obtained from the current one, according to the current neighbourhood structure, 2) LS-2 
is applied to this random neighbour, 3) if the local optimum obtained after applying LS-
2 is not worse than the current solution, the current neighbourhood is not changed; 
otherwise, the current neighbourhood is changed to the next one. 
 
 
4. Constructive hyper-heuristic procedures 
 
We propose four constructive hyper-heuristics, based on the general hyper-heuristic 
framework presented by Burke et al. (2003a), see Figure 1. 
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Figure 1. A general hyper-heuristic scheme 
 
4.1. A crude constructive hyper-heuristic (CHH-1) 
 
Our first hyper-heuristic procedure (CHH-1) is a straightforward design based on Figure 
1. The set CH  of low-level heuristics consists of the six greedy heuristics described in 
Section 3.1 (Gr1 to Gr6). As it is a constructive hyper-heuristic, the initial problem 
states that S0 is a void sequence. The aim of the algorithm is to decide which heuristic is 
worth using at each position l (l = 1,...,D) of the sequence that represents the current 
solution. The application of the selected heuristic at position l gives the symbol 
sequenced at this position. To decide which heuristic to use at step l, the following 
criterion is adopted. Based on the current partial solution (that is, the symbols selected 
at positions 1,...,l-1), all heuristics are applied to complete their corresponding full 
solutions. The heuristic that generates the best solution (according to the RTV value) 
yields the symbol to be chosen at position l. The entire process is then repeated until the 
position before last (i.e., D-1) is filled, as the last position is obviously known. The 
pseudocode and a graphic illustration of the proposed hyper-heuristic are shown in 
Figure 2 and Figure 3, respectively. 
 

 

Figure 2. Pseudocode of the hyper-heuristic CHH-1 
 

1. Start with a set of heuristics, each of which is applicable to a problem 
state and transforms it to a new problem state. 

2. Let the initial problem state be S0. 
3. If the problem state is Si then find the heuristic that is in some sense the 

most suitable for transforming that state. Apply it, to obtain a new state 
of the problem Si+1. 

4. If the problem is solved, stop; otherwise go to Step 3. 

0. Let CH  = {Gr1, Gr2, Gr3, Gr4, Gr5, Gr6};  
Let S be the solution sequence, initially void; 

1. l := 1; 
2. While 1l D≤ −  do: 
3. For all Ch H∈ , apply h to obtain a full solution with positions 

between [1...l-1] of the current S, which is considered fixed. Let 
*
lh  be the heuristic that obtains the best solution at step l; 

4. Choose the symbol at position l identified by *
lh ; 

5. l := l + 1; 
6. End while; 
7. Add the remaining symbol at position D and return to S 
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Figure 3. An illustration of the hyper-heuristic CHH-1 
 
4.2. A learning-based constructive hyper-heuristic (CHH-2) 
 
The second constructive hyper-heuristic (CHH-2) is similar to CHH-1, except that the 
set l

CH  of low-level heuristics is slightly restricted, as it keeps changing dynamically at 
each step l (l = 1,...,D-1) during the sequencing process. At step l, the heuristic h is 
included in set l

CH  if the probability ( l
hα ) of obtaining the best full solution with fixed 

positions between [1...l-1] of the current subsequence is greater than or equal to a 
threshold probability ( )THα ; i.e., { }|l l

C C h THH h H α α= ∈ ≥ . We have considered two 

ways of calculating these probabilities l
hα . A training stage is carried out from which 

the l
hα  values are derived. The idea of using a dynamic set l

CH  is to consider the most 
promising heuristics based on the training stage only. To decide which heuristic of 

l
CH is selected at step l, the same criterion as in CHH-1 is adopted. 

 
Training stage 
The training stage consists of solving a training set of RTVP instances with the hyper-
heuristic CHH-1. The idea is to record the number of times each heuristic is selected at 
each step l (l = 1,...,D-1) of CHH-1, to see whether some heuristics are more promising 
than others when applied at the beginning, in the middle or at the end of the sequencing 
process. Since each instance may have different D values (and, therefore, a different D-
length of its solution sequence), we decided to split the sequences into 20 slots, whose 
size depends on the D value of the instance. By splitting the position into slots, we do 
not look at the absolute position where the heuristics are used, but at the relative 
position in the sequence (that is, at the beginning, middle or end of the sequence). The 
training set has 60 instances, which were grouped into four classes (from CAT1 to 
CAT4), according to their size. More details on these instances are given in the 
computation results section (Section 6). Figure 4 shows the average percentage of times 
that each heuristic has been selected at each slot for all training instances and for each 
class of instances (CAT1 to CAT4). On average, Gr5 is the most frequently selected 
heuristic during the first half of the sequencing process, Gr3 in the second half, and Gr1 
at the end. This tendency is even more apparent for the largest instances (CAT4), 
whereas for the smallest instances (CAT1) there is no clear tendency. 
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Figure 4. Average percentage of times that a heuristic is selected 
 
The two ways of setting the probabilities l

hα  are given below:  
 
(i) The probability l

hα  of heuristic h being selected at position l is the overall average 
percentage of times over all training instances that h has been selected in slot s 

( )( )20 1 1s l D=  −  +  . 

(ii) Analogous to (i): the probability l
hα  of heuristic h being selected at position l is the 

average percentage of times that h has been selected in slot s over the training 
instances of the class in which the instance to be solved belongs to (CAT1, CAT2, 
CAT3 or CAT4). An instance is classified into a class according to its size (see 
Table 1 in Section 6). 

 
Another interesting way of calculating these probabilities is proposed in Qu et al. 
(2009). This is based on generating a set of solutions by randomly selecting the heuristic 
to be applied at each step l (l = 1,...,D-1) and counting the number of times that each 
heuristic has been applied in each slot s in the good solutions (see Qu et al. (2009) for 
more details). 
 
4.3. An elitist-based constructive hyper-heuristic (CHH-3) 
 
The proposed elitist-based constructive hyper-heuristic (CHH-3) can be considered ea 
special case of CHH-2 where l

CH  is made up of one chosen heuristic only, which is the 
best heuristic at step l. In other words, at step l (l = 1,...,D), the set l

CH  is formed only 
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by the most probable heuristic. That is, the heuristic applied is ( )max arg
c

l
h

h H
h α

∈
= . The 

two settings for generating the probabilities l
hα  that are described in Subsection 4.2 are 

also used here. 
 
4.4. A random-based constructive hyper-heuristic (CHH-4) 
 
The forth constructive hyper-heuristic (CHH-4) is similar to CHH-1, but the low-level 
heuristic selection criterion used is a random one. At each position in the sequence, the 
heuristic to be applied at each step is selected at random using equal probabilities (1/6) 
for each heuristic. 
 
 
5. Improvement hyper-heuristics 
 
The performance of a hyper-heuristic may vary according to the available set of low-
level heuristics. In the hyper-heuristic literature, it is common to use local search 
procedures as low-level heuristics in improvement hyper-heuristics (for example, Burke 
et al., 2003b; Dowsland et al., 2007; Pisinger and Ropke, 2007).  
 
Metaheuristics have been used in the hyper-heuristic literature as the main framework, 
including TS (Burke et al., 2003b; Burke et al., 2007; Bai et al., 2008; Qu and Burke, 
2009), VNS (Qu and Burke, 2009), genetic algorithm (Ho et al., 2007), ant algorithm 
(Burke et al., 2005) and simulated annealing (Dowsland et al., 2007; Bai et al., 2008). 
However, to the best of our knowledge, the use of metaheuristics in hyper-heuristics as 
low-level heuristics has not been reported in the literature to date. 
 
In this study, we propose to use two different sets of low-level heuristics. One set, 0

IH , 
consists of the local search procedures described in Section 3.2.1 (LS-1, LS-2 and LS-3). 
Moreover, we also propose using the set 1

IH , which consists of the more sophisticated 
heuristics given in Subsections 3.2.2 to 3.2.4 (HC, TS and VNS). 
 
5.1. The general improvement-based hyper-heuristic framework 
 
We propose a general improvement hyper-heuristic framework, based on that shown in 
Figure 1. The improvement hyper-heuristics starts from a full initial solution which is 
improved by iteratively performing several cycles, each of which consists of two stages: 
a learning stage and a launching stage (see Figure 5). The hyper-heuristic stops when it 
has run for a maximum preset available time (T). The pseudocode of the general 
improvement-based hyper-heuristic is shown in Figure 6. 
 

 
 

Figure 5. A graphical representation of the improvement hyper-heuristic scheme 
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Learning stage 
The learning stage consists of running all of the low-level heuristics from the current 
solution. The objective is to see how many times each heuristic improves the current 
solution. The time spent on each heuristic in this stage ( 0

itτ ) depends on the current 
iteration of the hyper-heuristic (it) and is defined as follows: 1

0 0 0
it itτ θ τ −= , where 1

0 Tτ α= , 
α ( 0 1α<  ) is a coefficient that weights the time spent in the learning stage, and θ0 
( 00 1θ< ≤ ) is a non-increasing learning coefficient. Note that if 0 1θ = , the time spent in 
the learning stage remains equal at each iteration of the hyper-heuristic, whereas if 

0 1θ < , this time will decrease exponentially. 
 
Launching stage 
A low-level heuristic is selected to be used in the launching stage, according to the 
improvement in the current solution obtained in the learning stage. The launching stage 
consists of running the selected heuristic from the best solution obtained in the learning 
stage. The time spent in this stage ( 1

itτ ) also depends on the current iteration of the 
hyper-heuristic, and is defined as follows: 1

1 1 1
it itτ θ τ −= , where 1

1 Tτ β= , β ( 0 1β<  ) is a 
coefficient that weights the time spent in the launching stage, and θ1 ( 1 1θ ≥ ) is a non-
decreasing launching coefficient. Analogous to θ0, if 1 1θ = , the time spent in the 
launching stage remains equal at each iteration of the hyper-heuristic, whereas if 1 1θ > , 
this time will increase exponentially. 
 

 

Figure 6. Pseudocode of the general improvement-based hyper-heuristic 
 
5.2. The selection mechanisms 
 
Based on the framework, three criteria are proposed for selecting the low-level heuristic 
to be applied in the launching stage of each cycle for the improvement hyper-heuristics. 
All three criteria are based on the performance obtained during the learning stage. 
 
(i) Best performance-based hyper-heuristic. The heuristic selected is the one that most 

improves the current solution during the learning stage. 

0. Let IH  be the set of low-level (meta)heuristics; 
Let S be an initial solution; 

1. it := 1; 
2. While execution time < T do: 

Learning stage: 
3. For all Ih H∈ , apply h to S during the time 0

itτ  to obtain an 
improved solution; 

4. Let S' be the best improved solution; 
Launching stage: 

5. Select a heuristic, *h , of IH  according to the selection mechanism; 
6. Apply *h  to S' during the time 1

itτ ; 
7. it := it + 1 
8. S := S'; 
9. End while; 
10. Return S 
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(ii) Probability-based hyper-heuristic. The heuristic is selected in a pseudo-random 

way, according to the RTV value obtained in the previous learning stage. The 
probability of heuristic h being selected at iteration it, ( , )p h it , is: 

 
( )

( )
1 ,

( , )
1 ,

Ig H

RTV h it
p h it

RTV g it
∈

=
∑

,  

 
where ( ),RTV g it  is the RTV value obtained with heuristic g in the learning stage at 
iteration it. 

 
(iii) Threshold probability-based hyper-heuristic. At iteration it, only the heuristics that 

have obtained an improvement close to the best improvement in the learning stage 
are considered to be selected pseudo-randomly. That is, 

 
( ) *

, if , ( )
( , )

0
h it T TH TRTV h it RTV it

p h it
otherwise

γ β ≤ ⋅
= 


 

 

where ( )
( ),

1 ,
1 ,

it

T
h it

T
g S

RTV h it
RTV g it

γ

∈

=
∑

 and ( ){ }*| , ( )it I T TH TS h H RTV h it RTV itβ= ∈ ≤ ⋅ . 

* ( )TRTV it is the best RTV value obtained in the learning stage at iteration it, THβ  
( 1THβ ≥ ) is the threshold used in the selection and T is the maximum preset 
available time. 

 
5.3. Local search based hyper-heuristic algorithms 
 
We propose three hyper-heuristic algorithms that use a set of local search procedures as 
the set of low-level heuristics ( 0

IH ). We refer to them as 0- - IIHH 1 H , 0- - IIHH 2 H  and 
0- - IIHH 3 H on the basis of the selection criteria (i), (ii) and (iii), respectively. 

 
Although the scheme of the hyper-heuristic is independent of the set of low-level 
heuristics used, these three variants may finish their execution time before the 
maximum preset available time (T). This can happen if a local optimum using LS-1, LS-
2 and LS-3 is found before the end of T. 
 
5.4. Metaheuristic based hyper-heuristic algorithms 
 
Three hyper-heuristic algorithms that use the set of the composite hill-climbing method 
and metaheuristic algorithms as the set of low-level heuristics ( 1

IH ) are presented, 
which differ in the choice of the selection criteria defined earlier. We refer to these three 
variants as 1- - IIHH 1 H , 1- - IIHH 2 H  and 1- - IIHH 3 H , which use the selection criteria (i), (ii) 
and (iii), respectively. 
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6. Computational results 
 
The proposed hyper-heuristics were coded in Java and executed on a PC 3.4 GHz Intel 
Pentium IV with 1.5 GB of RAM. The 60 training instances and 740 test instances used 
in Corominas et al. (2008, 2009b), García et al. (2006) and García-Villoria and Pastor 
(2008, 2009a, 2009b) were also used in this paper (all instances can be found at 
http://www.ioc.upc.edu/EOLI/research/). These instances were grouped into four 
classes (from CAT1 to CAT4 with 15 training instances and 185 test instances in each 
class) according to their size. The instances were generated using the random values of 
D (number of units) and n (number of models) shown in Table 1. For all instances and 
for each model i = 1,…,n, a random value of di (number of units of model i) is between 
1 and ( )1 2.5D n− + , such that 

1.. ii n
d D

=
=∑ . 

 
Table 1. Uniform distributions for generating the D and n values 

 

  CAT1 CAT2 CAT3 CAT4 
D  U(25, 50) U(50, 100) U(100, 200) U(200, 500) 
n  U(3, 15) U(3, 30) U(3, 65) U(3, 150) 

 
We report the results of the three classes of our proposed hyper-heuristics in the next 
three sections. 
 
6.1. Results of the constructive hyper-heuristics 
 
The 740 test instances were solved with the six greedy heuristics (Gr1, Gr2, Gr3, Gr4, 
Gr5 and Gr6) and the constructive hyper-heuristics CHH-1, CHH-2, CHH-3 and CHH-
4. The two probabilities settings presented in Section 4.2 were used. To run CHH-2, a 
preliminary experiment was carried out to set the value of the threshold probability THα  
to 0.2. The computing times were very small: for all greedy heuristics, the maximum 
time for solving an instance was 0.070 cpu seconds, and for CHH-1, CHH-2, CHH-3 
and CHH-4 it was 2.523, 0.590, 0.040 and 0.046 cpu seconds, respectively. Since the 
computing times of the greedy heuristics is negligible, a better, fast heuristic (let it be 
called BH) can be easily constructed by merely running the six heuristics and getting the 
best solution. Table 2 shows the average RTV values to be minimised for each class of 
instances (CAT1 to CAT4) obtained with all these greedy algorithms. For CHH-2 and 
CHH-3, we show the results obtained by setting the α probabilities using the first way 
(Overall prob.) or the second way (Per class prob.), as explained in the training stage in 
Subsection 4.2.  
 
Table 2 shows that the best individual greedy heuristic is clearly Gr5, which is much 
better than the second best heuristic (Gr4). BH is, obviously, better than Gr5. If we 
consider the results by class, BH is 9.74%, 7.62%, 3.82% and 4.81% better than Gr5 for 
CAT1, CAT2, CAT3 and CAT4 instances, respectively. On the other hand, CHH-1 is 
21.86%, 20.44%, 14.35% and 13.14% better than Gr5 for CAT1, CAT2, CAT3 and 
CAT4 instances, respectively. In addition, CHH-1 is 13.43%, 13.88%, 10.95% and 
8.75% better than BH for CAT1, CAT2, CAT3 and CAT4 instances, respectively. This 
hyper-heuristic is the best for CAT1 instances and the second best for CAT2 instances, 
as well as being very close to the best results for the CAT2 instances. 
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Table 2. Average RTV values for the constructive hyper-heuristics  
 

  CAT1 CAT2 CAT3 CAT4 
Gr1  121.84 933.41 8,502.80 81,730.00 
Gr2  147.19 1,077.88 9,106.04 84,616.22 
Gr3  120.09 915.74 8,347.60 80,670.03 
Gr4  125.06 914.70 8,295.41 80,577.15 
Gr5  88.02 553.06 3,894.31 30,870.45 
Gr6  405.39 2,583.30 17,450.83 163,908.26 
BH  79.45 510.93 3,745.39 29,385.59 

CHH-1  68.78 440.00 3,335.37 26,814.25 

CHH-2 
Overall prob. 78.89 477.38 3,377.66 27,196.49 
Per class prob. 83.19 522.98 3,297.68 26,323.33 

CHH-3 
Overall prob. 83.05 426.50 2,754.06 23,178.13 
Per class prob. 104.53 599.37 3,186.30 21,542.86 

CHH-4  118.75 500.76 2,716.69 19,605.49 
 
Note that although Gr1, Gr2, Gr3, Gr4 and Gr6 are poor quality heuristics by 
themselves, the hyper-heuristic algorithms find their strengths and use them in the right 
moment in the solution generation process. In fact, Figure 4 shows that CHH-1 found, 
on average for the training instances, that Gr5  more suitable in the first half of the 
sequence, Gr3 for almost all of the second half, and Gr1 for the last positions of the 
sequence. Gr2, Gr4 and Gr6 were found to be dominated and inferior, except in the case 
of CAT1 instances. This is an exciting and interesting observation of the behaviour of 
these heuristics and deserves theoretical support in the future. 
 
The results obtained by the two variants of CHH-2 are, on average, similar to those 
found by CHH-1, except that CHH-2 is much faster than CHH-1. These results are 
expected since, at each step, the heuristics that perform badly are not considered. 
 
When a training stage was used to decide a priori which heuristic generated the best full 
solution from a fixed current partial solution (i.e., the most likely heuristic to be selected 
per position), better solutions than CHH-1 and CHH-2 are obtained. On average, the 
best CHH-3 hyper-heuristic variant is the one whose probabilities are calculated per 
instance class, which was found to be 14.94% and 26.69% better than BH for the 
medium and large instances (CAT3 and CAT4 instances), respectively. However, for the 
small instances (CAT1 and CAT2 instances), BH is 23.99% and 14.76% better, 
respectively. The best results for the CAT2 instances are obtained, surprisingly, by the 
CHH-3 variant whose probabilities are calculated based on all instances. 
 
Finally, Table 2 shows that the random selection strategy (CHH-4) is the best for 
solving medium and, particularly, large instances (CAT3 and CAT4 instances, 
respectively). CHH-4 is 27.47% and 33.28% better than BH for CAT3 and CAT4 
instances, respectively. These results may be surprising. However, the hyper-heuristic 
literature shows that random selection strategies frequently yield good performances 
(e.g., Burke et al., 2005; Bilgin et al., 2007). 
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The results of CHH-1 are not necessary better than those from all variants of the other 
CHH-2 and CHH-3. This could be considered surprising, as CHH-1 has all the low-
level heuristics available for use at each iteration, whereas CHH-2 and CHH-3 rely on a 
subset only. This could be due to the lack of correlation between the qualities of the 
solutions at different iterations. 
 
6.2. Results of the local search based hyper-heuristics 
 
All test instances were solved with the composite hill-climbing method (CHC) and the 
three local search based hyper-heuristic algorithms ( 0- - IIHH 1 H , 0- - IIHH 2 H  and 

0- - IIHH 3 H ). The initial solution used for all algorithms was obtained with the best 
constructive hyper-heuristic. This is found by applying CHH-3 using the probabilities 
calculated per instance class. The maximum time available to run all algorithms (T) was 
set to 1,000 seconds. A preliminary experiment was conducted to set the values of the 
following parameters, which were found to be α = 0.01, θ0 = 0.95, β = 0.02, θ1 = 1.2 and 

THβ = 1.1.  
 
Table 3 shows the average RTV values for each class of instances (CAT1 to CAT4) 
obtained with CHC and with the three improvement hyper-heuristics that use the local 
search methods as low-level heuristics (that is, 0- - IIHH 1 H , 0- - IIHH 2 H  and 0- - IIHH 3 H ). 
 

Table 3. Average RTV values for the local search based hyper-heuristics 
 

  CAT1 CAT2 CAT3 CAT4 
CHC  16.39 39.91 101.90 339.75 

0- - IIHH 1 H   15.71 38.99 102.51 321.20 
0- - IIHH 2 H   15.71 38.99 100.44 315.05 
0- - IIHH 3 H   15.71 38.99 96.55 314.33 

 
A simple composite method such as CHC, which iteratively applies the three local 
search methods LS-1, LS-2 and LS-3, is able to obtain very good solutions. In fact, as 
shown in Table 4, CHC obtained better results than TS, which was previously the best at 
solving the RTVP. However, hyper-heuristics decide intelligently when to use each 
local search during the optimisation process, rather than systematically using them in a 
specific order. All three hyper-heuristics outperformed CHC. The hyper-heuristics 

0- - IIHH 1 H , 0- - IIHH 2 H  and 0- - IIHH 3 H  were, on average, 3.93%, 5.57% and 6.50% better 
overall than CHC, respectively. Considering the best by class results, 0- - IIHH 3 H  is 
4.15%, 2.31%, 5.25% and 7.48% better than CHC for CAT1, CAT2, CAT3 and CAT4 
instances, respectively. 
 
6.3. Results of the metaheuristic based hyper-heuristics 
 
All test instances were solved with the three metaheuristic based hyper-heuristic 
algorithms ( 1- - IIHH 1 H , 1-2- IIHH H  and 1- - IIHH 3 H ), the composite hill-climbing method 
(CHC) and TS and VNS, which are based on two of the metaheuristics that perform best 
at solving the RTVP (Corominas et al., 2009b, 2009c). The initial solution used for all 
algorithms was obtained with the best constructive hyper-heuristic (that is, CHH-3 
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using the probabilities calculated per instance class). The same parameter values as in 
the previous subsection are also used here. The time available to run all algorithms was 
set to 1,000 seconds. 
 
Table 4 shows the average RTV values for each class of instances (CAT1 to CAT4) 
obtained with 1- - IIHH 1 H , 1-2- IIHH H  and 1- - IIHH 3 H . The results obtained when using TS 
and VNS directly are also included here for comparison. Since the initial solutions used 
in Corominas et al. (2009b, 2009c) are different from the initial solutions used in this 
paper, we solved the instances again with TS and VNS.  
 

Table 4. Average RTV values for the metaheuristic based hyper-heuristics 
 

  CAT1 CAT2 CAT3 CAT4 
CHC  16.39 39.91 101.90 339.75 

TS  10.74 42.68 175.03 689.44 
VNS  11.36 24.53 83.54 408.52 

1- - IIHH 1 H   10.39 25.18 74.71 529.65 
1-2- IIHH H   10.37 24.55 72.46 433.39 
1- - IIHH 3 H   10.39 24.72 66.91 334.76 

 
The best results shown in Table 4 are obtained, on average, by the hyper-heuristic 
algorithm 1- - IIHH 3 H  and are 12.28% better than the results found by the best low-level 
heuristic (CHC) when applied in isolation. If we consider the results by class, we can 
see that TS performs better than CHC and VNS for the smallest instances (CAT1), VNS 
outperforms CHC and TS for the next two larger sets of instances (CAT2 and CAT3) and 
CHC was the best for the largest set of instances (CAT4). However, 1- - IIHH 3 H  was 
equally good or better than CHC, TS and VNS for all types of instances. In particular, 

1- - IIHH 3 H  is 3.26% better than TS for CAT1 instances, 0.77% worse and 19.91% better 
than VNS for CAT2 and CAT3 instances, respectively, and 1.47% better than CHC for 
CAT4 instances. Thus, we can confirm that low-level metaheuristic algorithms can yield 
promising and excellent results when they are combined intelligently during the 
improvement process, within a hyper-heuristic framework. 
 
6.4. General discussion of the results 
 
Although the goal of this study is not to improve the best results obtained in the 
literature to solve the RTVP, several of the hyper-heuristics that we developed are very 
competitive. We compile the averages of the RTV values together with the variance 
within each set of instances to facilitate observations of the different approaches. 
Moreover, the results obtained with the GA proposed in García-Villoria and Pastor 
(2009c) have been added for comparison purposes (the GA was run in the same 
conditions as the other algorithms; that is, it was executed on a PC 3.4 GHz Intel 
Pentium IV with 1.5 GB of RAM and stopped after 1,000 cpu seconds per instance). 
 
 
 
 



 127 

Table 5. Averages of the RTV values (standard deviation of the RTV values)  
 

  CAT1 CAT2 CAT3 CAT4 

CHC  16.39 
(8.28) 

39.91 
(17.47) 

101.90 
(38.15) 

339.75 
(257.47) 

TS  10.74 
(5.69) 

42.68 
(24.60) 

175.03 
(90.74) 

689.44 
(533.29) 

VNS  11.36 
(5.80) 

24.53 
(11.40) 

83.54 
(48.49) 

408.52 
(490.32) 

GA  10.92 
(5.83) 

27.00 
(14.28) 

74.86 
(43.92) 

313.92 
(233.03) 

0- - IIHH 1 H   15.71 
(8.18) 

38.99 
(16.39) 

102.51 
(43.23) 

321.20 
(156.19) 

0- - IIHH 2 H   15.71 
(8.18) 

38.99 
(16.39) 

100.44 
(40.47) 

315.05 
(158.86) 

0- - IIHH 3 H   15.71 
(8.18) 

38.99 
(16.39) 

96.55 
(41.13) 

314.33 
(141.08) 

1- - IIHH 1 H   10.39 
(5.54) 

25.18 
(11.34) 

74.71 
(35.16) 

529.65 
(585.64) 

1-2- IIHH H   10.37 
(5.48) 

24.55 
(11.33) 

72.46 
(43.02) 

433.39 
(396.44) 

1- - IIHH 3 H   10.39 
(5.47) 

24.72 
(11.47) 

66.91 
(33.58) 

334.76 
(359.41) 

 
The number of times that each algorithm reaches the best RTV value obtained using all 
algorithms are shown in Table 6. The results obtained with the constructive hyper-
heuristic algorithms have not been included in Table 5 or Table 6, because these 
algorithms are only used to obtain an initial solution and the cpu times are negligible. 
 

Table 6. Averages of the number of times that the best solution is reached 
 

  CAT1 CAT2 CAT3 CAT4 
CHC  0.23 0.07 0.01 0.05 

TS  0.88 0.28 0.03 0.01 
VNS  0.72 0.53 0.22 0.16 
GA  0.80 0.39 0.36 0.45 

0- - IIHH 1 H   0.26 0.10 0.02 0.06 
0- - IIHH 2 H   0.26 0.10 0.02 0.07 
0- - IIHH 3 H   0.26 0.10 0.02 0.09 
1- - IIHH 1 H   0.97 0.55 0.18 0.05 
1-2- IIHH H   0.97 0.61 0.31 0.09 
1- - IIHH 3 H   0.95 0.62 0.34 0.15 

 
Hyper-heuristics that use metaheuristic methods as low-level heuristics obtain the best 
RTV average when solving the smallest instances (CAT1 instances), with no significant 
differences between them (confidence level of 95%). Moreover, they obtain the best 
solution for 95% ( 1- - IIHH 3 H ) or 97% ( 1-1- IIHH H  and 1-2- IIHH H ) of the CAT1 
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instances. For the CAT2 instances, the use of low-level metaheuristics also gives the 
best RTV average with no significant difference between 1-2- IIHH H , 1- - IIHH 3 H  and 
VNS, although the two hyper-heuristics obtain the best solution more frequently (61% 
and 62% of the instances, respectively) than the VNS (53% of the instances). In the case 
of CAT3 instances, the RTV average obtained by 1- - IIHH 3 H  is significantly the best, 
although the GA algorithm is able to obtain the best solution slightly more times (36% 
of times) than 1- - IIHH 3 H  (34% of times). Finally, for the biggest instances (CAT4 
instances), the GA algorithm obtains the best solutions the highest number of times 
(45% of times) and also obtains the best RTV average, although there is no significant 
difference between the RTV averages obtained by CHC, 0- - IIHH 1 H , 0- - IIHH 2 H  and 

0- - IIHH 3 H . 
 
 
7. Conclusions 
 
The overall goal of this paper is to propose schemes for implementing hyper-heuristics 
within a general scheme that is general enough to be easily adapted to solve a variety of 
hard combinatorial optimisation problems. In this paper, we have chosen a sequencing 
NP-hard problem known as the Response Time Variability Problem (RTVP) to test the 
efficiency of the proposed hyper-heuristic schemes. The hyper-heuristic algorithms 
proposed in this study operate at a higher level of abstraction and have no knowledge of 
the problem domain. The problem domain is in the low-level heuristics used by the 
hyper-heuristic and in the evaluation function used to evaluate the goodness of a 
solution. In other words, the same hyper-heuristic algorithms can solve other 
combinatorial problems without too much extra effort by replacing the low level 
heuristics and the evaluation function only. 
 
Our first attempt is to design a constructive-based hyper-heuristic approach which is 
based on the reuse of a set of existing greedy simple heuristics known in the literature. 
Our goal was not to compete with the best results reported in the literature, but to check 
whether reusing the six greedy simple heuristics reported in the literature produced 
better solutions than those obtained when the heuristics were used in an isolated way. 
Four constructive hyper-heuristic algorithms were designed by a straightforward 
application of the general hyper-heuristic scheme shown in Figure 1. The difference 
between the four algorithms is the low-level selection criterion. An extensive 
experiment showed the ability of the hyper-heuristics to use each low-level heuristic at 
the appropriate moment, according to the current state of the partial solution. On 
average, the best proposed constructive hyper-heuristic is able to obtain approximately 
35% improvement in the best low-level heuristic, if used in an isolated way. This 
success is particularly remarkable, as the results show that the other five heuristics 
obtained very bad solutions by themselves. 
 
To investigate the impact of a relatively higher complexity to the low level heuristics, 
local search methods were introduced instead of simple greedy ones. We have proposed 
three local search methods based on three neighbourhoods for the RTVP that exist in 
the literature. The improvement hyper-heuristic approach is found to be useful in 
deciding the most suitable local search to be applied at a given time based on the current 
state of the search. The computational experiment shows the success of this 
implementation of hyper-heuristics that combines the use of the local search methods 
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Our final exploration is to go one step further in terms of time complexity of the low-
level heuristics by introducing metaheuristics instead. Such an investigation, to the 
authors knowledge, has not been reported in the literature. We believe this is mainly 
because of the excessive computational time that these may require. Though we 
appreciate this drawback our aim is to find a way of overcoming this problem. We have 
therefore put forward a mechanism on how to deal with this issue. We presented 
appropriate schemes on how to select low-level metaheuristics based on regular use of 
learning and launching stages at each cycle of the search. The goal is to control the 
computational burden while guiding the search toward good solutions. Encouraging 
results show the usefulness of integrating more sophisticated low level algorithms such 
as metaheuristics within the hyper-heuristic methodology. We believe this is a 
challenging issue that merits further study. Future studies could investigate the design of 
a mechanism to decide the amount of time used in the learning and launching stages in 
each cycle of the search. This obviously will depend on many attributes including the 
running time, problem characteristics and individual performance of the local searches 
or the metaheuristics, among other factors. The design of robust mechanisms for 
selecting the most appropriate low-level (meta)heuristic at a given iteration is an open 
question that may not have an optimal answer in practice, but any insightful attempt 
would, in our view and without doubt, be a step in the right direction. 
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Over the last decades, metaheuristics have shown to be very useful to solve effectively 

many types of complex problems. Most of the algorithms proposed in the literature have 

a set of parameters whose values have to be set before their execution, although the 

choice of their parameter values is not trivial (see, for instance, Altinel and Öncan, 

2005; Battarra et al, 2008). The selection of the parameter values is an important task 

because it may has a great influence in the performance of the algorithm. Much research 

effort can be spent in fine-tuning an algorithm (Barr et al, 1995). The task of fine-tuning 
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is usually hard due to the following three reasons (Adenso-Díaz and Laguna, 2006): 1) 

the algorithm may be very sensitive to the parameter values, 2) a non-linear 

interdependence can be involved between the parameters, and 3) in stochastic 

algorithms (as metaheuristic algorithms usually are) each execution may provide a 

different solution. 

 

Despite the relevance of the selection of parameter values, this selection is commonly 

justified in one of the following ways (Adenso-Díaz and Laguna, 2006, Eiben et al, 

1999): 1) "by hand" on the basis of a small number of experiments that are not 

specifically referenced, 2) by using the general values of the method recommended for a 

wide range of problems, 3) by using the values of the method reported to be effective in 

other similar problems, and 4) without any explanation. 

 

A right and well detailed practice for fine-tuning heuristics is described in Coy et al 

(2001), but it has the disadvantage of being tedious and needing a lot of human time for 

the experimental designs. The new systematic procedure that we propose in this paper is 

a hands-off tool for fine-tuning metaheuristics based on CALIBRA (Adenso-Díaz and 

Laguna, 2006) and the Nelder & Mead algorithm (N&M) (Nelder and Mead, 1965). It 

should be taken into account that the evaluation of a calibration is usually very time 

expensive in the case of metaheuristics. But the procedure proposed in this paper needs 

few evaluations to find a good calibration. 

 

The remainder of the paper is organized as follows: Section 2 and 3 introduce 

CALIBRA and N&M, respectively. Section 4 explains the systematic procedure that we 

propose for fine-tuning metaheuristics. We apply the proposed procedure for fine-tuning 

three different metaheuristics in Section 5. Finally, some conclusions are given in 

Section 6. 

 

 

2. CALIBRA 

 

CALIBRA is a tool proposed in Adenso-Díaz and Laguna (2006) specifically designed 

for fine-tuning algorithms within a specified range of parameter values. CALIBRA is 

based on using conjointly Taguchi’s fractional factorial experimental designs (Taguchi, 
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1987) and a local search procedure. The maximum number of parameters supported by 

the current version of CALIBRA is 5. If the algorithm has more than 5 parameters, its 

authors suggest determining the 5 most significant parameters and fixing the others 

(Adenso-Díaz and Laguna, 2006). 

 

Notice that one assumption of Taguchi’s experimental designs is the linear 

interdependence between the parameters but, as it has been mentioned in Section 1, the 

interdependence is usually non-linear. CALIBRA uses the analysis of the experiment 

results only as a guideline to narrow the search and to initiate the next round of 

experiments. Because the search focuses on narrower ranges for each parameter value, 

the linear assumption becomes less restrictive and the predicted optimal values can be 

approached to the true optimal values. 

 

The user has to provide CALIBRA with the number of iterations (whose minimal value 

is 2k + 9, where k is the number of parameters to be fine-tuned) and with a 

representative training set of instances. For a more detailed explanation of CALIBRA 

see Adenso-Díaz and Laguna (2006). 

 

 

3. The Nelder & Mead algorithm 

 

The problem of fine-tuning k parameters of an algorithm can be approached as an 

optimisation problem, in which the problem consists of finding the k parameter values 

that optimise the algorithm performance. Let φ be a function whose variables are the 

algorithm parameters and whose image is the performance of the algorithm. Therefore, 

the fine-tuning optimisation problem is equivalent to the problem of optimising φ. Since 

the set of instances of a problem is infinite, we must use a representative training set to 

calculate the φ image. 

 

Since φ is not expected to have any special or recognizable property, a direct 

optimisation algorithm (i.e., it only uses the values of the function) is needed to solve 

the fine-tuning optimisation problem. The Nelder & Mead algorithm (N&M) (Nelder 

and Mead, 1965), also known as the flexible polyhedron algorithm, is a direct 

optimisation algorithm that has offered and still offers good results in the literature 
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(Chelouah and Siarry, 2005). N&M is based on k+1 points that are the vertex of a 

hypertetrahedron (preferably regular) in a k-dimensional space. The coordinates of a 

point represents the parameter values, and each point is evaluated with φ. Next, the 

points are iteratively moved over the space according to their evaluations until a local 

optimal point is reached. N&M is able to approach to the global optimal point whether 

φ is unimodal; if φ is multimodal, then N&M approaches to one local optimum 

depending on the initial hypertetrahedron. N&M was originally designed for working 

with only real coordinates; however, it can be easily adapted to admit integer 

coordinates. For a more detailed explanation of N&M, see Nelder and Mead (1965). 

 

 

4. A systematic procedure for fine-tuning metaheuristics 

 

The fine-tuning procedure that we propose takes the advantages of CALIBRA and 

N&M. In a situation in which there is little knowledge about the right value of a 

parameter, a wide range of values can be used in CALIBRA. For example, to fine-tune 

the size of the population of a genetic algorithm, the range [1..200] can be specified in 

CALIBRA. In this case, CALIBRA is able to return a good approximation of the right 

calibration of the population size. On the other hand, N&M needs an initial point 

(remind that, in the context of fine-tuning, the coordinates of a point represents the 

parameter values of the algorithm to be fine-tuned) to build the initial hypertetrahedron. 

It is advisable that the initial point used by N&M to build the initial hypertetrahedron is 

a good point. The reason is that, for multimodal functions, N&M tends to approach to 

one local optimal near from the initial point.  

 

The fine-tuning procedure that we propose has two steps. First we can obtain a quite 

good fine-tuning applying CALIBRA with wider or narrower ranges of the parameter 

values according to the knowledge that we have. The narrower the ranges the better the 

fine-tuning obtained by CALIBRA. Next, we can obtain a more precise calibration by 

N&M using as the start point the values returned by CALIBRA. 

 

In the conclusions given in Adenso-Díaz and Laguna (2006), its authors suggest that 

CALIBRA can be used to search in a narrow range around parameters values that have 

been tested. Thus, at the second step of our proposed procedure, CALIBRA could be 
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used again instead of N&M. This alternative is compared with respect to our procedure 

and with respect to using only one time CALIBRA in Section 5. 

 

 

5. Computational experiment 

 

In this section, we analyse the proposed fine-tuning procedure and the alternative 

explained in Section 4. That is, first we obtain initial parameter values with CALIBRA. 

Next, we can apply N&M using the initial values obtained at the first step or we can 

apply again CALIBRA using narrower ranges around the values obtained at the first 

step. In the remainder of this section, we refer to our fine-tuning procedure as 

CALIBRA+N&M and we refer to the alternative procedure as CALIBRA+CALIBRA. 

 

The set of the parameter values will be done in three metaheuristic algorithms proposed 

in the literature for solving a new scheduling problem known as Response Time 

Variability Problem (RTVP). The RTVP arises whenever products, clients or jobs need 

to be sequenced in such a way that the variability in the time between the points at 

which they receive the necessary resources is minimized. The variability is measured 

with the RTV metric, which is a weighted variance. The objective of the RTVP is 

obtaining a sequence with the minimal RTV value. This problem is NP-hard (for more 

details, see Corominas et al (2007). The following metaheuristic algorithms have been 

chosen to analyse the fine-tuning procedure: a particle swarm optimisation (PSO) 

algorithm proposed in García-Villoria and Pastor (2009) called DPSOpoi-cpdyn by the 

authors, the psychoclonal algorithm proposed in García-Villoria and Pastor (2008a) and 

the electromagnetism-like mechanism (EM) algorithm proposed in García-Villoria and 

Pastor (2008b). 

 

CALIBRA and N&M evaluate the performance of the parameter values as follows. A 

training set of 60 representative instances is solved with a computing time limit of 50 

seconds for each instance. The performance is the average RTV values of the solutions 

(sequences) obtained. The used training set is the training set used in García-Villoria 

and Pastor (2008a, 2008b, 2009) for fine-tuning their algorithms. Since the evaluation 

of each iteration of the calibration takes 50 minutes, we use CALIBRA in 

CALIBRA+N&M and in CALIBRA+CALIBRA with the minimal number of iterations 
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allowed by the tool (2k + 9, where k is the number of parameters to be fine-tuned). Thus, 

in order to make a fair comparison, N&M is stopped after (2k + 9)*50 minutes although 

it had not converged to a local optimum. 

 

In order to test the obtained calibration, the algorithm run 740 test instances used in 

García-Villoria and Pastor (2008a, 2008b, 2009) using the parameter values of the 

calibration. 

 

5.1. Fine-tuning of the PSO algorithm 

 

Parameters N ω c1 c2 cp 

 CALIBRA (Step 1) 

Ranges [1..100] [0..1] [0..1] [0..1] [0..10] 

Precision 0 2 2 2 1 

Values 13 0.75 0.13 0.75 8.7 

RTV  
50 s. 4,625.54 

1,000 s. 1,537.34 

  CALIBRA + N&M (Step 2) 

Start point (13, 0.75, 0.13, 0.75, 8.7) 

Values 13 0.853 0.188 0.810 8.584 

RTV  
50 s. 3,992.28 

1,000 s. 794.93 

  CALIBRA+CALIBRA (Step 2) 

Ranges  [1..25] [0.6..0.9] [0..0.25] [0.6..0.9] [6..10] 

Precision  0 2 2 2 1 

Values  3 0.67 0.16 0.86 7.0 

RTV  
50 s. 4,063.69 

1,000 s. 1,115.72 

Table 1. Fine-tuning of the PSO algorithm 
 

The DPSOpoi-cpdyn algorithm has 5 parameters: size of the population (N), ω, c1, c2 

and cp. By definition, ω, c1, and c2 values are between 0 and 1. Table 1 shows the ranges 

and their precision (in number of decimals) used in CALIBRA (Ranges and Precision, 
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respectively), the start point used in N&M (Start point), the returned values of the 

parameters (Values) and the average RTV values obtained by the PSO algorithm (using 

the parameter values returned) for the 740 test instances when the algorithm is run 50 

and 1,000 seconds ( RTV ). 

 

It can be observed that the calibration obtained using two times CALIBRA 

(CALIBRA+CALIBRA) improves the solutions 12.15% and 27.43% with respect to 

using one time CALIBRA for 50 and 1,000 computing seconds, respectively. But the 

improvement obtained using the proposed fine-tuning procedure, CALIBRA+N&M, is 

still better: 13.69% and 48.29%. 

 

5.2. Fine-tuning of the psychoclonal algorithm 

 

Parameters N n β d K 

 CALIBRA (Step 1) 

Ranges [1..200] [1..200] [0..10] [1..200] [3..10] 

Precision  0 0 1 0 1 

Values 25 3 1.3 3 7.6 

RTV  
50 s. 235.68 

1,000 s. 161.60 

  CALIBRA + N&M (Step 2) 

Start point (25, 3, 1.3, 3, 7.6) 

Values 25 8 1.538 0 7.581 

RTV  
50 s. 188.86 

1,000 s. 160.72 

  CALIBRA+CALIBRA (Step 2) 

Ranges  [1..40] [0..10] [0..2.5] [0..10] [6..9] 

Precision  0 0 1 0 1 

Values  5 1 1.9 0 8.3 

RTV  
50 s. 208.49 

1,000 s. 169.58 

Table 2. Fine-tuning of the psychoclonal algorithm 
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The psychoclonal algorithm has 5 parameters: size of the population (N), n, β, d, and K. 

Table 2 shows the fine-tuning process of the psychoclonal algorithm. 

 

The calibration obtained using CALIBRA+CALIBRA improves the solutions 11.54% 

with respect to using one time CALIBRA for 50 executing seconds, whereas 

CALIBRA+N&M improves 19.87%. On the other hand, for 1,000 computing seconds, 

CALIBRA+CALIBRA get 4.94% worse with respect to using one time CALIBRA, 

whereas CALIBRA+N&M improves slightly (0.54%). 

 

5.3. Fine-tuning of the EM algorithm 

 

The EM algorithm has 2 parameters: size of the population (N) and lsiter, both integers. 

Table 3 shows the fine-tuning process of the EM algorithm. 

 

Parameters N lsiter 

CALIBRA (Step 1) 

Ranges [1..100] [0..20] 

Precision 0 0 

Values 25 5 

RTV  
50 s. 3,747.05 

1,000 s. 330.29 

CALIBRA + N&M (Step 2) 

Start point (25, 5) 

Values 26 6 

RTV  
50 s. 3,683.46 

1,000 s. 295.31 

CALIBRA+CALIBRA (Step 2) 

Ranges  [10..40] [0..15] 

Precision  0 0 

Values  17 3 

RTV  
50 s. 3,930.48 

1,000 s. 426.58 

Table 3. Fine-tuning of the EM algorithm 
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The results obtained using CALIBRA+CALIBRA are worse than the results obtained 

using one time CALIBRA (4.90% and 29.15% worse for 50 and 1,000 computing 

seconds, respectively). On the other hand, CALIBRA+N&M always improves the results 

with respect to CALIBRA (1.70% and 10.59% better for 50 and 1,000 computing 

seconds, respectively). 

 

 

6. Conclusions 

 

In this paper we propose a systematic procedure for fine-tuning metaheuristics. Even 

though the performance of the metaheuristic algorithms proposed in the literature may 

be very sensitive to the parameter values, the selection of the values is usually not 

enough justified. The proposed procedure is able to find good parameter values for all 

kind of instance of the problem spending little computing time. 

 

Other fine-tuning designs have been proposed in the literature, but they have the 

disadvantage of being very laborious and human-time consuming. Instead, the 

procedure that we propose needs of little human intervention. Thus, we believe that the 

proposed fine-tuning procedure can be very useful for researchers and practitioners. 

 

CALIBRA is a valuable tool for a first and quick approximation to good parameter 

values. In the case that more fine-tuning time is available, the CALIBRA authors 

suggest applying again CALIBRA in a narrow range around the obtained parameter 

values. The computational experience shows that the proposal introduced in this paper 

is better. That is, applying the Nelder & Mead algorithm to fine-tuning the parameter 

values is better than applying again CALIBRA. 
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Abstract. The Response Time Variability Problem (RTVP) is an NP-hard combinatorial 
scheduling problem which has recently been reported and formalised in the literature. This 
problem has a wide range of real-world applications in mixed-model assembly lines, multi-
threaded computer systems, broadcast of commercial videotapes and others. The RTVP arises 
whenever products, clients or jobs need to be sequenced in such a way that the variability in 
the time between the points at which they receive the necessary resources is minimised. We 
propose a greedy but adaptive heuristic that avoids being trapped into a poor solution by 
incorporating a look ahead strategy suitable for this particular scheduling problem. The 
proposed heuristic outperforms the best existing methods, while being much faster and easier 
to understand and to implement. 
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1. Introduction 
 
The concept of a fair sequence has emerged independently from scheduling problems of 
diverse environments. The common aim of these scheduling problems, as defined in 
Kubiak (2004), is to build a fair sequence using n symbols, where symbol s (s = 1,...,n) 
must occur ds times in the sequence. The fair sequence is the one which allocates a fair 
share of positions to each symbol s in any subsequence. This fair or ideal share of 
positions allocated to symbol s in a subsequence of length k is proportional to the 
relative importance (ds) of symbol s with respect to the total copies of competing 

symbols (equal to ). There is no universal definition of fairness because several 

reasonable metrics can be defined according to the specific problem considered. 
 
Among the different definitions of fairness, several fair sequencing problems have 
emerged, among them the Response Time Variability Problem (RTVP). This problem 
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has been reported for the first time by Waldspurger and Weihl (1994) but formalised 
several years later by Corominas et al. (2007). In the RTVP, the fair sequence is the one 
which minimises the sum of the variability in the distances between any two 
consecutive copies of the same symbol. In other words, the distance between any two 
consecutive copies of the same symbol should be as regular as possible (i.e., ideally 
constant). 
 
In practice, the RTVP arises whenever products, clients or jobs need to be sequenced so 
as to minimise the variability in the time between the instants at which they receive the 
necessary resources (Corominas et al., 2007). This problem has a broad range of real-
world applications. These include, for instance, the sequencing of mixed-model 
assembly lines under JIT (Kubiak, 1993; Miltenburg, 1989), the resource allocation in 
computer multi-threaded systems such as operating systems, network servers and 
media-based applications (Dong et al., 1998; Waldspurger and Weihl, 1994, 1995), the 
periodic machine maintenance problem when the times between consecutive services of 
the same machine are equal (Anily et al., 1998; Wei and Liu, 1983), the collection of 
waste (Herrmann, 2007), the schedule of commercial videotapes for television 
(Bollapragada et al., 2004; Brusco, 2008) and the design of sales catalogues 
(Bollapragada et al., 2004). 
 
Corominas et al. (2007) studied the computational complexity of the RTVP and proved 
that it is NP-hard. Since this problem is a difficult combinatorial optimisation problem, 
several heuristic and metaheuristic algorithms have been proposed for its solution. 
Waldspurger and Weihl (1994) propose an algorithm that generates a solution 
randomly. The same authors (Waldspurger and Weihl, 1995) improve their previous 
results using the Jefferson method of apportionment (Balinski and Young, 1982), a 
greedy heuristic algorithm which they renamed as the stride scheduling technique. 
Herrmann (2007) solved the RTVP by applying a heuristic algorithm based on the stride 
scheduling technique. Corominas et al. (2007) proposed the Jefferson method together 
with other four constructive type heuristic algorithms. Seven new heuristics are also 
given by Corominas et al. (2009). Metaheuristics for the RTVP were recently proposed 
in García-Villoria and Pastor (2008, 2009, 2010) and these include a psychoclonal 
algorithm, an electromagnetism-like mechanism (EM) algorithm, and a genetic 
algorithm (GA) respectively. 
 
The best five classical heuristics are described by (Corominas et al., 2009) and known 
as Oc, AWe/dg, We/dg, Je/dg and In. On the other hand, the best results recorded to date 
using relatively a larger computing time have been obtained with a GA (García-Villoria 
and Pastor, 2010). 
 
In this paper, a simple constructive greedy heuristic using an adaptive search based on a 
look ahead strategy is proposed. The reasoning behind this approach and a couple of 
theorems to support it are put forward. An extensive computational experiment is 
carried out to assess the superiority of this heuristic over the aforementioned classical 
heuristics for both solution quality and computational effort. Moreover, the solutions 
obtained with the proposed heuristic are also found competitive when compared to the 
GA while requiring a fraction of its cpu time. 
 
In this study, we also introduce a new but related scheduling problem for the first time 
that we call minmax RTV problem. In this problem, the objective is to minimise the 
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maximum absolute discrepancy in the distances between any two consecutive copies of 
the same symbol. Although the heuristic introduced in this paper has been specifically 
designed to solve the RTVP, the way the look ahead strategy is defined led itself to 
solve the minmax RTVP as well. The obtained results are reported here to provide a 
platform for benchmarking purposes in the future. 
 
The remainder of the paper is organised as follows: First, Section 2 presents a formal 
definition of the RTVP. The next section represents the main body of the research and it 
covers the new heuristic algorithm, the supporting theorems and the proposed 
enhancements. The results of our computational experiment are presented in Section 4. 
A new but related problem, the minmax RTVP, is briefly described and its results 
summarised in Section 5. Finally, some conclusions and suggestions for future research 
are provided in the last section. 
 
 
2. The Response Time Variability Problem (RTVP) 
 
The RTVP is formulated as follows. Let n be the number of symbols, sd  the number of 
copies to be sequenced of symbol s (s = 1,…,n) and D the total number of copies 
(

1.. ss n
d

=∑ ). Let seq be a solution of an instance in the RTVP that consists of a circular 

sequence of copies ( 1 2 Dseq s s s=  ), where sj is the copy sequenced in position j of 
sequence seq. For each symbol s in which 2sd ≥ , let s

kt  be the distance between the 
positions in which the copies k + 1 and k of symbol s are found. We consider the 
distance between two consecutive positions to be equal to 1. Since the sequence is 

circular, position 1 comes immediately after position D; therefore, 
s

s
dt  is the distance 

between the first copy of symbol s in a cycle and the last copy of the same symbol in the 
preceding cycle. Let st  be the ideal average distance between two consecutive copies of 

symbol s ( s
s

Dt d= ). Note that for each symbol s in which 1sd = , 1
st  is equal to st . The 

objective is to minimise the metric called response time variability (RTV), which is 
defined by the sum of the square errors with respect to the st  distances. This is defined 

as 2

1 1
( )

sdn
s
k s

s k
RTV t t

= =

= −∑∑ . 

 
For an illustration, consider the following example. Let 3n =  with symbols A, B and C. 
Also consider 2=Ad , 2=Bd  and 4=Cd ; thus, 8=D , 4=At , 4=Bt  and 2.Ct =  Any 
sequence such that contains symbol s ( )s∀  exactly sd  times is a feasible solution. For 
example, the sequence (C, A, C, B, C, B, A, C) is a feasible solution, and has an RTV 
value = ( ) ( )( ) ( ) ( )( ) ( ) ( ) ( ) ( )( )2 2 2 2 2 2 2 25 4 3 4 2 4 6 4 2 2 2 2 3 2 1 2− + − + − + − + − + − + − + −  = 

12. 
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3. An adaptive heuristic for the RTVP 
 
In this section we propose a constructive greedy heuristic to solve the RTVP which uses 
a look ahead strategy. The heuristic has D (

1.. ss n
d

=∑ ) steps and at each step p (p = 
1,…,D) it is decided which symbol is sequenced at position p of the sequence. In fact, it 
could be considered that the heuristic has 1D −  steps since the symbol to be sequenced 
at the last step will be automatically determined. The reasoning behind the strategy to 
select the symbol to be sequenced at each step is discussed in subsection 3.1 which also 
contains two theorems to support our selection process. The initial implementation is 
explained in subsection 3.2 and several enhancements are then proposed in subection 
3.3. 
 
3.1. The basic idea of the heuristic 
 
Let first introduce some additional nomenclature: 
 
seqp: The partial sequence obtained at step p; 0, , 1p D= − . Initially seq0 is a 

void sequence 
ˆ( , )d s p : The number of times left for symbol s to be sequenced in seqp; 1, ,s n=  , 

0, , 1p D= −  
SS(p): The set of symbols that have been sequenced in seqp at least once; 

0, , 1p D= −  
lsp(s, p): The last position in which symbol s has been sequenced in seqp; ( )s SS p∈ , 

0, , 1p D= −  
t(s, p): ( , 1)p lsp s p− − ; ( 1)s SS p∈ − , 1, ,p D=   

S+(p): The set of symbols { }ˆ( 1) | ( , ) ( , 1) 1ss S Sp t s p t d s p∈ − ≥ ∧ − ≥ ; 1, ,p D=   

S-(p): The set of symbols { }ˆ( 1) | ( , ) ( , 1) 1ss S Sp t s p t d s p∈ − < ∧ − ≥ ; 1, ,p D=   

 
Given a partial solution sequence seqp-1, the aim is to decide which symbol to be 
sequenced at position p (p = 1,…,D). The symbols that still have copies to be sequenced 
at step p (that is, all symbol s (s = 1,…,n) such as ˆ( , 1) 1d s p − ≥ ) can be grouped into 
either the set S+(p) or the set S-(p). Given a symbol ( )s S p+∈  and a symbol ' ( )s S p−∈ , 
if one of them has to be sequenced at step p, then the decision that gives the lowest 
increment to the RTV value of the partial solution for the symbols s and s’ is to 
sequence the symbol s in position p and to sequence the symbol s’ in a later position. 
The validity of this claim is shown in Theorem 1. The reasoning behind this argument is 
that we try to avoid accumulating an excessive future increase in the distance between 
the next copy to be sequenced of symbol s and its last sequenced copy. This is important 
as the square error between ideal distances and real distances is used and this can be 
amplified very quickly. On the other hand, we allow that the distance between the next 
copy to be sequenced of symbol s’ and its last sequenced copy increases. Note that its 
discrepancy between this distance and 'st  will be reduced as shown in Figure 1. 
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Figure 1. A graphical illustration of the sequencing distance concept 
 
Theorem 1 Let seqp-1 be a partial sequence solution obtained at step p-1 (p = 1,…,D). 
Given a symbol ( )s S p+∈  and a symbol ' ( )s S p−∈ , if one of them has to be sequenced 
at step p, then the best decision is to sequence the symbol s in position p and the symbol 
s’ in a later position p’ (p’ > p). 
 
Proof. By definition of the sets S+(p) and S-(p), we have that '( , ) ( ' )s st s p t t s p t− > −  or, 
equivalently, '( , ) ( ' )s st s p t t s p t u− = − +  where 0u > . Analogously, 'p p q= +  where 

1q ≥ . Consider the two possible options for sequencing the two symbols. 
 
Option 1: The symbols s and s’ are sequenced in the positions p and p’, respectively. 
The increment of the RTV value ( 1

RTV∆ ) is the following: 
1
RTV∆ = ( )( ) ( )( )2 2

', ', 's st s p t t s p t− + − = ( )( ) ( )( )2 2
' '', ',s st s p t u t s p q t− + + + − =

( )( ) ( )( )2 2
' '', ',s st s p t u t s p q t− + + + − . 

 
Option 2: The symbols s and s’ are sequenced in the positions p’ and p, respectively. 
The increment of the RTV value ( 2

RTV∆ ) is the following: 
2
RTV∆ = ( )( ) ( )( )2 2

', ' ',s st s p t t s p t− + − = ( )( ) ( )( )2 2
', ',s st s p q t t s p t+ − + − =

( )( ) ( )( )2 2
', ',s st s p q t t s p t+ − + − = ( )( ) ( )( )2 2

' '', ',s st s p q t u t s p t+ − + + − . 
 
Let '( ' ) st s p tθ = − . Thus, ( ) ( )2 21 2 2 22 2 2RTV u q u q u qθ θ θ θ θ∆ = + + + = + + + +  and 

( )( )22 2 2 2 22 2 2 2RTV q u u q u q q uθ θ θ θ θ∆ = + + + = + + + + + . 

Therefore, 2 1 2RTV RTV qu∆ = ∆ + . Since 1q ≥  and 0u >  1 2
RTV RTV⇒ ∆ < ∆ . ■ 

 
We can generalize Theorem 1 by extending it for any pair of symbols s and s’ without 
considering if they are included in the set S+(p) or in the set S-(p). 
 
Theorem 2 Let seqp-1 be a partial sequence solution obtained at step p-1 (p = 1,…,D). 
Given the symbols , ' ( )s s SS p∈ , when one of them has to be sequenced at step p, then 
the best decision is to sequence the symbol 

{ }
( )

, '
* arg max ( , ) i

i s s
s t i p t

∈
= −  in position p and 

the other symbol s# { } { }( )# , ' *s s s s= −  in a later position p’ (p’ > p). 
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Proof. By hypothesis, we have that #
#

*( *, ) ( , )s s
t s p t t s p t− ≥ − . If 

#
#

*( *, ) ( , )s s
t s p t t s p t− > − then we can apply Theorem 1. In the other hand, if 

#
#

*( *, ) ( , )s s
t s p t t s p t− = −  then it is indifferent which of the two symbols is sequenced 
first.  ■ 
 
Lemma. When all symbols have been sequenced at least once, the symbol 

{ }
ˆ( )| ( , ) 1

* arg max ( , ) s
s SS p d s p

s t s p t
∈ ≥

= −  is sequenced at step p. 

 
The above lemma constitutes the cornerstone idea in which the proposed heuristic will 
be based upon. 
 
3.2. An initial implementation 
 
We propose an initial heuristic based on Theorem 2 and the above lemma. At each step 
p (p = 1,…,D) of the heuristic, the symbols that still have copies to be sequenced are 
classified into the following three sets: 
 
S1(p): The set of symbols { } ( ) ( ){ }ˆ1, , | 1 ( , 1) 1ss n d d s p∈ = ∧ − = ; 1, ,p D=   

S2(p): The set of symbols { } ( ) ( ){ }ˆ1, , | 2 ( , 1)s ss n d d s p d∈ ≥ ∧ − = ; 1, ,p D=   

S3(p): The set of symbols { } ( ) ( ){ }ˆ1, , | 2 0 ( , 1)s ss n d d s p d∈ ≥ ∧ < − < ; 1, ,p D=   

 
Note that the symbols with only one copy to be sequenced have the following 
interesting property. All symbol s of S1(p) (and, therefore, 1

s
st t= ), will never increase 

the RTV value of the solution (this is explained in Section 2). The heuristic will 
sequence these symbols (i.e., those in which 1sd = ) whenever it is not suitable to 
sequence any other symbol s from S2(p) or S3(p). 
 
Let the function ( , )s p∆  1 3( ) ( )s S p S p∀ ∈ ∪  and p∀  (p = 1,…,D) be defined as 

follows:
( , ) ,if 2

( , )
0 ,if 1

s s

s

t s p t d
s p

d
− ≥

∆ =  =
 

 
Note that, by definition, the symbols of the sets S+(p) have 0∆ ≥ , whereas those 
symbols of the sets S-(p) have 0∆ < . Ideally, the remaining copies of the symbols that 
have been sequenced at least once should be next sequenced at step p in which their Δ 
value is 0. In general, however, this is not always possible, so the idea is to sequence the 
symbols with the highest Δ value according to Theorem 2.  
 
The pseudo-code of the proposed heuristic is shown in Figure 2. The algorithm has two 
phases. Let R be the number of steps used by the algorithm to sequence all symbols s in 
which ds ≥ 2 at least once. That is, R is the step in which ( )2 1S R + = ∅  and 

( )2S R ≠ ∅ . The first phase applies during the first R steps (lines 2 to 4 of the pseudo-
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code) and the second phase uses the remaining D R−  steps (lines 5 and 6 of the 
pseudo-code).  
 

 

Figure 2. The pseudocode of the initial heuristic 
 
 

Figure 3. The tie breaker 
 
Phase I. In this phase, all symbols s in which ds ≥ 2 are sequenced at least once. At each 
step p (p = 1,…,R), only symbols of S2(p) or S3(p) are considered to be sequenced. The 
symbols of S1(p ) are not considered in this phase because they are kept for the second 
phase to fill the positions which are not suitable for any other symbols. All symbols s in 
which ds = 1 can be used as a wild card. The main objective of this phase is to sequence 
at least the first copy of all symbols s in which ds ≥ 2. However, if there is one or more 
symbols of S3(p) that have Δ ≥ 0, then the symbol with the highest value is selected. 
 
Phase II. In this phase, all symbols s in which ds ≥ 2 have been sequenced at least once. 
Thus, according to Theorem 2, at each step p (p = 1R + ,…,D), the symbol which has 
the highest Δ value is chosen. Note that if all symbols of S3(p) have a negative Δ value, 
then a symbol of S1(p) is sequenced (if S1(p) is not void), since its Δ value is 0. This 
scheme is introduced to stop the Δ values of the symbols of S3(p) to be increased at the 
next steps. 
 
 
 
 
 
 

8. Let seq0 be a void sequence 
9. For 1p =  to D do: 
10. If 2 ( )S p ≠ ∅  then: 
11. If 3: ( ) | ( , ) 0s s S p s p∃ ∈ ∆ ≥  then *

ps  is the symbol 3( )s S p∈  with 
the highest ( , )s p∆  value. In case of tie, use the tie breaker of 
Figure 3. 

12. Otherwise *
ps  is the symbol 2 ( )s S p∈  with the highest sd  value. If 

there is a tie, use lexicographical order. 
13. Otherwise ( 2 ( )S p = ∅ ): 
14. *

ps  is the symbol 1 3( ) ( )s S p S p∈ ∪  with highest ( , )s p∆  value. In 
case of tie, use the tie breaker of Figure 3. 

15. seqp is obtained by sequencing *
ps  in seqp-1 

16. Next p  
17. Return Dseq  

• If there is a tie, select the symbol with the highest ˆ( , )d s p  value.  
• If there is again a tie, select the symbol with the highest sd  value. 
• Finally, if there is a tie, use lexicographical order. 
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3.3. Enhancements 
 
Three modifications to improve the performance of the initial heuristic are proposed in 
the following three subsections (3.3.1 to 3.3.3). The pseudo-code of the enhanced 
approach is given in the last subsection (3.3.4). 
 
 
3.3.1. Effect of the distances between the first and last copies of the symbols 
 
When the last copy of symbol s remains to be sequenced, only the distance between this 
copy and its second to the last copy (i.e., 1s

s
dt − ) is taken into account. However, the 

distance between its last copy and its first copy in the preceding cycle (i.e., 
s

s
dt ) should 

also be taken into consideration. The function ( , )s p∆  is therefore redefined to 
overcome this discrepancy: 
 

( ) ( )
[ ] ( ) ( ) ( )

ˆ( , ) if 2 ( , 1) 2

ˆ( , ) ( , ) ( if 2 ( , 1) 1

0 if 1

s s

s s s

s

t s p t d d s p

s p t s p t t D fsp s p d d s p

d

 − ≥ ∧ − ≥

∆ = − + − + − ≥ ∧ − =   


=


 

 
where fsp(s) returns the first position in which symbol s has been sequenced. 
 
3.3.2. Effect of the competition for the same position 
 
The initial heuristic sequences, at each step p, a symbol of S2(p) (during the first phase) 
or a symbol of S1(p) (during the second phase) when all symbols of S3(p) have negative 
Δ values. However, there are situations in which it is better to sequence a symbol of 
S3(p) though its Δ value is negative.  
 
A counter-example 
Let 5n =  with symbols A, B, C, D and E in which 1Ad = , 5.7Bt = , 3.9Ct = , 2.6Dt =  
and 2.8Et = , and let suppose that at step p the sequence seqp shown in Figure 4a has 
been generated.  
 
The initial proposed heuristic will produce the partial sequence shown in Figure 4b as 
follows:  
 

• At step p , ( , ) 0A p∆ = , ( , ) 1.7B p∆ = − , ( , ) 0.9C p∆ = − , ( , ) 0.6D p∆ = −  and 
( , ) 1.8E p∆ = − ; thus, the symbol A is sequenced since it has the highest Δ value. 

• At step 1p + , ( , 1) 0.7B p∆ + = − , ( , 1) 0.1C p∆ + = , ( , 1) 0.4D p∆ + =  and 
( , 1) 0.8E p∆ + = − , so symbol D is sequenced. 

• At step 2p + , ( , 2) 0.3B p∆ + = , ( , 2) 1.1C p∆ + = , ( , 2) 1.6D p∆ + = −  and 
( , 2) 0.2E p∆ + = , so symbol C is sequenced. 

• At step 3p + , ( , 3) 1.3B p∆ + = , ( , 3) 2.9C p∆ + = − , ( , 3) 0.6D p∆ + = −  and 
( , 3) 1.2E p∆ + = , so symbol B is sequenced. 
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• At step 4p + , ( , 4) 4.7B p∆ + = − , ( , 4) 1.9C p∆ + = − , ( , 4) 0.4D p∆ + =  and 
( , 4) 2.2E p∆ + = , so symbol E is sequenced. 

 
The increment of the RTV value obtained from the copies of the symbols B, C, D and E 
sequenced from step 1p +  to step 4p +  is ( ) ( ) ( )2 2 27 5.7 5 3.9 3 2.6− + − + − +  

( )25 2.8− =  7.9.  
 
On the other hand, a lower RTV increment could be obtained with the sequence shown 
in Figure 4c, which is ( ) ( ) ( ) ( )2 2 2 26 5.7 4 3.9 2 2.6 4 2.8− + − + − + − =  1.9. In this case, 
the symbol D has been sequenced at step p although ( , ) 0.6D p∆ = − . 
 

 
 

Figure 4. Different ways of sequencing 
 
The proposed condition for sequencing at step p a symbol of S3(p) though all its 
symbols have a negative Δ value is that there could be too many symbols that would be 
sequenced during the next immediate positions of p. To overcome this shortcoming, the 
following condition is introduced: 
 

{ } 31 : ( , ) ( )q p D S p q q p M∃ ∈ + ≥ − +

 , 
 
where M ( 1M ≥ ) is a parameter that quantifies the effect of the cardinality of the set 

{ }3 3( , ) ( ) : ( , ) ( ) 0S p q s S p s p q p= ∈ ∆ + − ≥ . The value of M that obtains the best 
performance was found empirically to be 2. 
 
3.3.3. Effect of dynamic ideal distances 
 
In the initial heuristic, the ideal distance between two copies of symbol s is considered 
to be equal to st  in all steps of the construction of the solution. On the other hand, it 
seems better to adjust dynamically the ideal distance of symbol s according to the 
current partial solution. This aims to sequence the remaining copies of s more regularly 
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among the remaining positions. The adjusted ideal distances ˆ( , )t s p  are then defined for 
all 3 ( )s S p∈  and for all step p (p = 1,…,D) as follows: 
 

( , 1) ( )ˆ( , ) ˆ( , 1) 1
D lsp s p fsp st s p

d s p
− − +

=
− +

 

 
 
3.3.4. The enhanced heuristic 
 
The pseudo-code of our enhanced heuristic is shown in Figure 5, with the summary of 
the modifications as explained in the last three subsections: 
 
• 2M =  

• 

( ) ( )
( ) ( ) ( )

ˆˆ( , ) ( , ) , if 2 ( , ) 2

ˆˆ ˆ( , ) ( , ) ( , ) ( , ) ( , if 2 ( , ) 1

0 ,if 1

s

s

s

t s p t s p d d s p

s p t s p t s p t s p D fsp s p d d s p

d

 − ≥ ∧ ≥

   ∆ = − + − + − ≥ ∧ =   


=


1, ,p D=  , 1 3( ) ( )s S p S p∀ ∈ ∪  

• { }3 3( , ) ( ) : ( , ) ( ) 0S p q s S p s p q p= ∈ ∆ + − ≥ ; 1, ,p D=  , 1, ,q p D= +   
 

 

Figure 5. The pseudocode of the enhanced heuristic 
 
 

0. Let seq0 be a void sequence 
1. For 1p =  to D do: 
2. If 2 ( )S p ≠ ∅  then: 
3. If ( )3: ( ) | ( , ) 0s s S p s p∃ ∈ ∆ ≥ ∨  

{ }( )31 : ( , ) ( )q p D S p q q p M∃ ∈ + ≥ − +

  then *
ps  is the symbol 

3( )s S p∈  with the highest ( , )s p∆  value. In case of tie, use the 
tie break procedure of Figure 3. 

4. Otherwise *
ps  is the symbol 2 ( )s S p∈  with the highest sd  value. If 

there is a tie, use lexicographical order. 
5. Otherwise ( 2 ( )S p = ∅ ): 

6. If { }( )31 : ( , ) ( )q p D S p q q p M∃ ∈ + ≥ − +

  then 3' ( );S S p=  

otherwise, 1 3' ( ) ( )S S p S p= ∪  
7. *

ps  is the symbol 's S∈  with highest ( , )s p∆  value. In case of tie, use 
the tie break procedure of Figure 3. 

8. seqp is obtained by sequencing *
ps  in seqp-1 

9. Next p  
10. Return Dseq  
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4. Computational results for the RTVP 
 
To assess the performance of our proposed heuristic we conduct a large experiment of 
around 800 instances and compare our results against the best from the classical 
heuristics as well as the metaheuristics. All algorithms are coded in Java and executed 
on a 3.4 GHz Pentium IV with 1.5 GB of RAM. 
 
4.1. Comparison vs. the best classical heuristics 
 
The proposed heuristic is compared with the five best existing classical heuristics 
proposed (Corominas et al., 2009). Those are known as Oc, AWe/dg, We/dg, Je/dg and 
In. In their study, 600 test instances were used, which were grouped into three classes 
according to size (classes CAT1 to CAT3, with 200 instances in each class). In this 
study, we also add 200 other larger test instances under class CAT4. All instances were 
generated using the random values of D (total number of copies) and n (number of 
symbols) shown in Table 1. For all instances and for each symbol s = 1,…,n, a random 
number of copies to be sequenced of model s (ds) is randomly generated between 1 and 
( )1 2.5D n− +  such that 

1.. ss n
d D

=
=∑ . The 800 instances are available at 

http://www.ioc.upc.edu/EOLI/research. 
 

Table 1. Uniform distribution for the D and n values of the test instances 
 CAT1 CAT2 CAT3 CAT4 
D U(25, 50) U(50, 100) U(100, 200) U(200, 500) 
n U(3, 15) U(3, 30) U(3, 65) U(3, 150) 

 
The results are analysed by considering all the sets of instances as well as in each class 
of instances (CAT1 to CAT4). We show the results of the proposed initial heuristic (let it 
be called IN-H) and those of the enhanced heuristic (let it be called ENH-H). The 
average RTV values of the solutions obtained with all heuristics are given in Table 2. 
 

Table 2. Average RTV values obtained by the classical heuristics 
 

  Global CAT1 CAT2 CAT3 CAT4 
ENH-H  144.30 26.96 60.85 135.45 353.92 

IN-H  652.16 43.44 141.20 481.83 1,942.15 
Oc  215.61 28.96 74.20 198.61 560.68 

Awe/dg  405.88 47.03 120.32 349.13 1,107.03 
We/dg  434.56 50.93 129.62 376.27 1,181.43 
Je/dg  594.51 57.52 164.19 499.72 1,656.61 

In  778.51 121.16 308.45 658.21 2,026.21 
 
We can see in Table 2 that Oc was the best existing heuristic in the literature. This 
observation is valid for the overall RTV averages as well as in each class of instances 
(CAT1 to CAT4). Our initial heuristic (IN-H) performs well but not as competitive. On 
the other hand, the enhanced heuristic (ENH-H) obtains, on average, better solutions 
than Oc. If we consider the results by class, ENH-H is 6.91%, 17.99%, 31.80% and 
36.88% better than Oc for CAT1, CAT2, CAT3 and CAT4 instances, respectively. Thus, 
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the results point that the larger the instance, the more competitive is our heuristic. 
Moreover, ENH-H is much faster than Oc as it is shown in Table 3. On average, ENH-H 
requires only 1.82 milliseconds to solve an instance, whereas Oc needs 1,479.99 
milliseconds (i.e., nearly 810 times slower). 
 

Table 3. Average computing time (in milliseconds) used by the classical heuristics  
 

  Global CAT1 CAT2 CAT3 CAT4 
ENH-H  0.72 0.12 0.22 0.43 2.12 

IN-H  0.63 0.11 0.20 0.38 1.82 
Oc  1,479.99 13.38 83.32 511.66 5,311.62 

Awe/dg  4.56 0.86 1.45 3.91 12.01 
We/dg  4.42 0.65 1.35 4.27 11.41 
Je/dg  3.47 0.15 0.55 4.06 9.12 

In  0.48 0.30 0.30 0.40 0.90 
 
Robustness of the solutions 
The dispersion with respect to the best RTV value obtained is also recorded. A measure 
of the dispersion (let it be σ) of the RTV values obtained by each algorithm, say alg, for 

a given instance, say ins, is defined as ( )( )2( ) ( ) ( )( , ) RTV RTV RTValg best best
ins ins insalg insσ = − , 

where ( )RTV alg
ins  is the RTV value of the solution obtained with the algorithm alg for the 

instance ins, and )(RTV best
ins  is, for the instance ins, the best RTV value of the solutions 

obtained with all heuristics. Table 4 shows the average σ dispersion values. 
 

Table 4. Average σ dispersion values regarding the best solution found by the classical heuristics 
 

  Global CAT1 CAT2 CAT3 CAT4 
ENH-H  0.11 0.26 0.07 0.03 0.07 

IN-H  19.00 3.69 5.66 12.64 54.01 
Oc  0.27 0.21 0.23 0.35 0.28 

Awe/dg  7.15 4.01 3.50 4.89 16.21 
We/dg  9.09 4.44 4.11 6.45 21.36 
Je/dg  22.18 8.29 8.57 15.66 56.22 

In  48.27 54.52 85.67 21.82 31.06 
 
ENH-H and Oc both obtain low averages of the σ dispersion values. This indicates that 
both algorithms are very stable especially our enhanced heuristic which besides 
outperforming all the other heuristics, it is found to be extremely robust and consistent 
in generating excellent results. 
 
4.2. Comparison vs metaheuristics 
 
We also compare the results of our heuristic with the best results obtained by the GA of 
García-Villoria and Pastor (2010). In this scenario, a set of 740 test instances is used 
instead. This is a subset of the 800 test instances (the other 60 instances were used to 
calibrate the parameters of the GA in their study). As in the previous subsection, these 
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740 instances are also grouped into four classes according to size (classes CAT1’ to 
CAT4’, with 185 instances in each class). Table 5 shows the averages of the RTV values 
obtained by our proposed heuristic and the GA with 10, 50, 200, 500 and 1,000 seconds 
of computing time. 
 

Table 5. Average RTV values for a computing time of 10, 50, 200, 500 and 1,000 seconds 
  Global CAT1’ CAT2’ CAT3’ CAT4’ 
ENH-H  159.50 27.56 62.76 151.91 395.77 

GA 

10 s. 1,245.10 12.13 31.85 111.47 4,824.94 
50 s. 186.94 11.65 29.41 84.54 622.16 
200 s. 131.81 11.34 28.26 77.81 409.84 
500 s. 114.39 11.00 27.63 75.59 343.33 
1,000 s. 106.68 10.92 27.00 74.86 313.92 

 
On average, the GA is able to improve ENH-H. Observing the results by class, the 
metaheuristic algorithm obtains, on average, better solutions for all type of instances 
(CAT1’ to CAT4’), though these results are not directly comparable due to the large 
difference in the computing times. For instance, the GA needs more than 200 seconds to 
obtains better results for the largest instances (CAT4’) while our heuristic requires tiny 
fraction of a second (0.72 milliseconds) only. As our heuristic is so fast and generates 
reasonably good solutions, it could be an invaluable tool to be incorporated within other 
powerful meta-heuristics for the generation of the initial solution, or be part of some 
exact methods for providing tighter upper bounds.  
 
 
5. The minmax RTVP 
 
As our approach is flexible enough to cater for other type objective functions, in this 
paper we introduced a related RTVP which we refer to as the minmax RTVP. Here, the 
objective is to minimise the metric that we call the maximum response time variability 
(maxRTV). This is defined by the maximum of the absolute errors with respect to the st  

distances, ( )
1 1

max max
sdn

s
k ss k

maxRTV t t
= =

= − . 

 
For an illustration, consider the same example introduced in Section 2. That is, let 3n =  
with symbols A, B and C. Also consider 2=Ad , 2=Bd  and 4=Cd ; thus, 8=D , 

4=At , 4=Bt  and 2.Ct =  Any sequence such that contains symbol s ( )s∀  exactly sd  
times is a feasible solution. For example, the sequence (C, A, C, B, C, B, A, C) is a 
feasible solution. The maxRTV value of the illustrative example is, therefore, 

( ) ( ) ( )( )max max 5 4 , 3 4 ,max 2 4 , 6 4 , max 2 2 , 2 2 , 3 2 , 1 2 1 2− − − − − − − − = . 

 
The minmax RTVP is solved for all 800 test instances using the original implementation 
(IN-H) and its enhanced version ENH-H algorithm. Since this is the first time in the 
literature this related problem is presented, there is obviously no comparison with other 
existing results. In Table 6, we provide our results which can be used for future 
benchmarking purposes which hopefully will entice other researchers to investigate this 
or related scheduling problems.  
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Table 6. Smallest, average and largest maxRTV value obtained with ENH-H and IN-H 
 

 maxRTV  Global CAT1 CAT2 CAT3 CAT4 

ENH-H 
Smallest  0.58 0.91 0.58 1.38 1.58 
Average  3.17 2.19 2.72 3.43 4.33 
Largest  10.18 4.00 5.14 7.55 10.18 

IN-H 
Smallest  0.91 0.91 1.69 2.04 3.66 
Average  7.85 3.17 4.99 7.77 15.48 
Largest  80.40 8.07 14.11 22.27 80.40 

 
 
6. Conclusions and future research 
 
This paper proposes a new constructive greedy heuristic based on an adaptive search to 
solve the Response Time Variability Problem (RTVP). The RTVP is an NP-hard 
scheduling problem that appears in a broad range of real-life applications. Several 
heuristics and metaheuristic algorithms have been proposed in previous studies to solve 
the RTVP. The best solutions have been achieved by means of metaheuristics, but they 
need a lot of computing time (1,000 seconds). On the other hand, classical heuristics 
only require a fraction of that amount, but the solutions were usually found to be 
inferior. 
 
The heuristic that we propose improves upon the performance of the best existing 
classical heuristics in terms of solution quality and computing time. Moreover, the 
solutions obtained are also competitive with the best solutions found by the existing 
metaheuristics while requiring a fraction of their computing time especially for the 
largest tested instances. In addition, we adopted this heuristic to tackle a related but a 
new scheduling problem namely the minmax RTVP with computational results for 
benchmarking purposes. 
 
A promising line of research is to develop additional properties to make the enhanced 
heuristic even more powerful. Another simple way is to incorporate post optimisation. 
For instance partial enumeration can easily be implemented a few positions before the 
end, local search procedures as well as metaheuristics such as tabu search or simulated 
annealing can also be introduced. From a practical view point other metrics to define the 
fairness could also be attempted for this exciting scheduling problem. The commonly 
used measure between two successive symbols is one unit of distances, this could be 
generalised to be dependent on the type of symbols and their relationships. This 
additional feature will obviously make the problem more complex but practically 
interesting and academically challenging. 
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Abstract. The response time variability problem (RTVP) is a scheduling problem with a wide 
range of real-world applications: mixed-model assembly lines, multi-threaded computer 
systems, network environments, broadcast of commercial videotapes and machine 
maintenance, among others. The RTVP arises whenever products, clients or jobs need to be 
sequenced in such a way that the variability in the time between the points at which they 
receive the necessary resources is minimised. Since the RTVP is NP-hard, several heuristic 
and metaheuristic techniques are needed to solve non-small instances. The best procedure in 
the literature for the RTVP is an algorithm based on a variant of the variable neighbourhood 
search (NVS), called Reduced VNS (RVNS). We propose hybridizing with RVNS three 
existing algorithms based on tabu search, multi-start and particle swarm optimisation. The 
aim is to combine the strengths of the metaheuristics. A computational experiment is carried 
out and it is shown that, on average, all proposed hybrid methods are able to improve the best 
published solutions. 
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1. Introduction 
 
The concept of fair sequence has emerged independently from scheduling problems in 
diverse environments. The common aim of these scheduling problems, as defined in 
Kubiak (2004), is to build a fair sequence using n symbols, where symbol i (i = 1,...,n) 
must occur di times in the sequence. The fair sequence is the one which allocates a fair 
share of positions to each symbol i in any subsequence. This fair or ideal share of 
positions allocated to symbol i in a subsequence of length k is proportional to the 
relative importance (di) of symbol i with respect to the total copies of competing 
symbols (equal to ). There is not a universal definition of fairness, as several 
reasonable metrics can be defined according to the specific problem considered. For a 
detailed introduction to fair sequences, see Kubiak (2009). 
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Among the different definitions of fairness, the concept of response time variability 
(RTV) has emerged. In RTV, the ideal distance for symbol i between any two 
consecutive copies of this symbol is equal to D/di, where D is the length of the sequence 
( )1.. ii n
D d

=
= ∑ . The RTV metric is the sum, for all symbols i, of the squares of the 

differences between the ideal and the real distances corresponding to all pairs of 
consecutive copies of symbol i. Thus, the RTV metric measures the non-fairness of a 
sequence. The response time variability problem (RTVP) lies in finding the optimal 
sequence according to the RTV metric, that is, the sequence that minimises the RTV. 
Thus, the distance between any two consecutive copies of the same symbol should be as 
regular as possible (ideally constant). 
 
This problem has a broad range of real-world applications. One of the first situations in 
which the idea of the regular sequence appeared was the sequencing of mixed-model 
assembly lines at Toyota Motor Corporation under the just-in-time (JIT) production 
system. Since Toyota popularized the just-in-time (JIT) production systems, the 
problem of sequencing on mixed-model assembly lines has acquired high relevance. 
One of the main aims of JIT is to eliminate sources of waste and inefficiency. In the 
case of Toyota, the main source of waste was the production of excessive volumes of 
stock. To solve this problem, JIT systems produce only the specific models required and 
in the quantities needed at any given time. According to Monden (1983), in this type of 
system the units should be scheduled in such a way that the consumption rates of the 
components in the production process remain constant. Miltenburg (1989) also studied 
this scheduling problem and considered only the demand rates for the models 
(Miltenburg, 1989; Kubiak, 1993). The problem proposed by Miltenburg intended to 
minimise variations in production rate in different models. However, feedback received 
from the manufacturing industry suggests that a good mixed-model sequence is one in 
which the distances between units of the same model are as regular as possible. One 
drawback of the Miltenburg problem is that, on the contrary of the RTVP, it takes the 
positions of the models with only one unit to be produced into account although the 
positions of these models are irrelevant for the regularity of the consumption rates. 
 
The RTVP also appears in computer multithreaded systems (Waldspurger and Weihl, 
1994 and 1995; Dong et al., 1998; Bar-Noy et al., 2002). Multithreaded systems 
(operating systems, network servers, media-based applications, etc.) do different tasks 
to attend to the requests of client programs that take place concurrently. These systems 
need to manage the scarce resources in order to service the requests of n clients. For 
example, multimedia systems must not display video frames too early or too late, 
because this would produce jagged motion perceptions (Kubiak, 2009). Waldspurger 
and Weihl, considering that resource rights could be represented by tickets and that each 
client i had a given number di of tickets, suggested the RTV metric to evaluate the 
sequence of resource rights. 
 
Other contexts in which the RTVP can be applied are the design of sales catalogues 
(problem introduced in Bollapragada et al., 2004), the periodic machine maintenance 
problem (Anily et al., 1998; Wei and Liu, 1983) as well as other distance-constrained 
problems (e.g., see Han et al., 1996). 
 
Two real-life cases of RTVP applications were reported in the literature. In 
Bollapragada et al. (2004), the study is motivated by the problem faced by the National 
Broadcasting Company (BNC) of U.S., one of the main firms in the television industry. 



 163 

Major advertisers buy to BNC hundreds of time slots to air commercials. The 
advertisers ask to BNC that the airings of their commercials are evenly spaced as much 
as possible over the broadcast season. The problem solved finally is not the RTVP, but a 
non-cycling variant. This study is continued in Brusco (2008). In Herrmann (2007), the 
author came up with the RTVP while working with a healthcare facility that needed to 
schedule the collection of waste from waste collection rooms throughout the building. 
Based on data about how often a waste collector had to visit each room and in view of 
the fact that different rooms require a different number of visits per shift, the facility 
manager wanted these visits to occur as regular as possible so that excessive waste 
would not collect in any room. For instance, if a room needed four visits per eight-hour 
shift, it should be ideally visited every two hours. 
 
Although the RTVP is in general NP-hard (Corominas et al., 2007), the two-symbol 
case can be optimally solved with a polynomial algorithm proposed in Corominas et al. 
(2007). For the other cases, Corominas et al. (2007) proposed a mixed-integer linear 
programming (MILP) model whose practical limit to obtain optimal solutions is 25 
copies to be sequenced. Corominas et al. (2010) proposed an improved MILP model 
and increased the practical limit for obtaining optimal solutions from 25 to 40 copies to 
be sequenced. 
 
For solving largest instances, heuristic methods have been proposed. This problem has 
been first time solved in Waldspurger and Weihl (1994) using a method that authors 
called lottery scheduling, which consists on generating a solution at random. Later, 
Waldspurger and Weihl (1995) used the Jefferson method of apportionment (Balinski 
and Young, 1982), a greedy heuristic algorithm which they renamed as the stride 
scheduling technique. Herrmann (2007) solved the RTVP by applying a heuristic 
algorithm based on the stride scheduling technique. An aggregation approach was used 
in Herrmann (2009). Corominas et al. (2007) proposed also the Jefferson method 
together with other four greedy heuristic algorithms and a local search method. García 
et al. (2006) proposed six metaheuristic algorithms: a multi-start (MS), a greedy 
randomized adaptive search procedure (GRASP) and four variants of a discrete particle 
swarm optimisation (PSO) algorithm. An enhanced multi-start algorithm and an 
enhanced GRASP algorithm were proposed in Corominas et al. (2008), and other ten 
discrete PSO algorithms were proposed in García-Villoria and Pastor (2009a). A cross-
entropy method (CE) algorithm, a psychoclonal algorithm, an electromagnetism-like 
mechanism (EM) algorithm, and a genetic algorithm (GA) were used in García-Villoria 
et al. (2007) and García-Villoria and Pastor (2008, 2009b, 2010), respectively. Finally, 
two tabu search (TS) algorithms and a variable neighbourhood search (VNS) algorithm 
were proposed in Corominas et al. (2009a, 2009b, 2009c), respectively. 
 
The best results when solving the RTVP has been achieved using the VNS 
metaheuristic (Corominas et al., 2009c). In order to improve the solution of the RTVP, 
we propose three hybrid solution approaches: an hybridization of TS with VNS 
(TS+VNS), an hybridization of MS with VNS (MS+VNS) and an hybridization of PSO 
with VNS (PSO+VNS). Hybrid frameworks can combine the strengths of different 
metaheuristics to obtain a more efficient method. In the proposed TS+VNS, TS is used 
as the main framework and the VNS principle of alternating dynamically between 
neighbourhoods is incorporated. On the other hand, VNS is used as an intensification 
phase in the proposed MS+VNS and PSO+VNS. A computational experiment shows the 
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benefits of hybridizing with VNS since the obtained results are, on average, 11.71% 
better with respect to the best results published in the literature. 
 
The remainder of the paper is organized as follows. Section 2 presents a formal 
definition of the RTVP. Section 3 justifies the hybrid algorithms proposed in this work 
and gives a detailed explanation of their design. Section 4 presents the results of a 
computational experiment. Finally, some conclusions are given in Section 5. 
 
 
2. The Response Time Variability Problem (RTVP) 
 
The RTVP is formulated as follows. Let n be the number of symbols to be sequenced 
(that represent products, clients, jobs, …), where symbol i (i = 1,...,n) is to be copied di 
times in the sequence (that represent the number of times that symbol i has to receive 
the resource) and D is the total number of copies (

1.. ii n
d

=∑ ). Let s be a solution of an 

instance in the RTVP that consists of a circular sequence of copies ( Dssss 21= ), 
where sj is the copy sequenced in position j of sequence s. For each symbol i in which 

2id ≥ , let i
kt  be the distance between the positions in which the copies k + 1 and k of 

symbol i are found. We consider the distance between two consecutive positions to be 
equal to 1. Since the sequence is circular, position 1 comes immediately after the last 
position D; therefore, i

di
t  is the distance between the first copy of symbol i in a cycle 

and the last copy of the same symbol in the preceding cycle. Let it  be the desired 

average distance between two consecutive copies of symbol i ( i
i

Dt d= ). The objective 

is to minimise the metric called response time variability (RTV), which is defined by 
the sum of the square errors with respect to the it  distances. Since the symbols i such 
that 1id =  do not intervene in the computation of RTV, we assume that for each of 

these symbols 1
it  is equal to it . The aim is to minimise the metric RTV, which is 

defined by the following expression: 
 

 2

1 1
( )

idn
i
k i

i k
RTV t t

= =

= −∑∑  (1) 

 
For example, let 3n = , 3Ad = , 2Bd =  and 2Cd = ; thus, 7D = , 7

3At = , 7
2Bt =  and 

7
2Ct = . Any sequence that contains exactly id  times the symbol i ( )∀i  is a feasible 

solution. For example, the sequence (A, B, A, C, B, A, C) is a feasible solution, where: 

( ) ( ) ( ) ( ) ( ) ( ) ( )2 2 2 2 2 2 27 7 7 7 7 7 7 52 3 2 3 4 3 43 3 3 2 2 2 2 3RTV      = − + − + − + − + − + − + − =     
     

 
 
3. Hybrid algorithms for the RTVP 
 
The best method to solve the RTVP is an algorithm proposed in Corominas et al. 
(2009c) which is based on a variant of the VNS metaheuristic called Reduced VNS 
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(RVNS). We propose three hybrid methods based on hybridizing RVNS with TS 
(TS+VNS), MS (MS+VNS) and PSO (PSO+VNS). 
 
The TS algorithm proposed in Corominas et al. (2009b) is the second best method to 
solve the RTVP. On average, the TS algorithm slightly outperforms the VNS algorithm 
when solving instances up to 200 copies to be sequenced whereas VNS clearly 
outperforms TS when solving larger instances (Corominas et al., 2009c). Thus, it seems 
natural to try combining the advantages of these two best metaheuristics to solve the 
RTVP. We propose an hybrid method based on applying the main TS framework but 
incorporating a mechanism that dynamically alters neighbourhood. This idea has been 
successfully applied to solve other scheduling problems (Xu et al., 2006; Ekşioğlu et 
al., 2008). 
 
The RVNS algorithm has the following handicap. After certain computing time the 
search will be trapped in a local optimum with respect all neighbourhoods which may 
be not a global optimum. Thus, the multi-start technique (MS) could be applied in order 
to escape from the local optimum. MS consists on iteratively generating a random 
solution and then applying an intensification search. Two MS algorithms have been 
proposed to solve the RTVP (García et al., 2006; Corominas et al., 2008). In both, a 
local search is used in the intensification search. Although both MS algorithms have the 
potential to find good solutions, the applied local search needs a lot of time to converge 
to a local optimum when the initial random solution has a very bad quality. We propose 
to use the RVNS in the intensification phase instead. 
 
On the other hand, in the classical PSO the process of diversification is more taken into 
account than the process of intensification (Tchomté and Gourgand, 2009). Maybe this 
is the reason of the bad performance (compared to other metaheuristic algorithms) of 
the PSO algorithms proposed in the literature to solve the RTVP (García et al., 2006; 
García-Villoria and Pastor, 2009a). In order to overcome this shortcoming, Tasgetiren et 
al. (2007) and Anghinolfi and Paolucci (2009) propose to improve the best solution of 
the population at each iteration by means of a local search method and a stochastic local 
search method to solve the permutation flowshop problem and a single-machine 
tardiness problem, respectively. We propose to use the RVNS algorithm as the 
improvement mechanism. 
 
We first explain in Subsection 3.1 the RVNS algorithm in which is based the three 
proposed hybrid algorithms. Then the TS, MS and PSO algorithms hybridized with 
VNS (TS+VNS, MS+VNS and PSO+VNS, respectively) are explained in Subsections 
3.2, 3.3 and 3.4, respectively. Finally, the selection of the parameter values of all hybrid 
algorithms is explained in Subsection 3.5 
 
3.1. A RVNS algorithm 
 
Variable Neighbourhood Search (VNS) is a metaheuristic proposed in Mladenovic and 
Hansen (1997) for combinatorial optimization. The basic idea of VNS is applying a 
systematic change of neighbourhood within a local search method (Mladenovic and 
Hansen, 1997). VNS is based on the following three simple facts (Hansen and 
Mladenovic, 2003): 1) a local optimum with respect to one neighbourhood structure is 
not necessarily so with another, 2) a global optimum is a local optimum with respect to 
all possible neighbourhood structures, and 3) it has been observed empirically that for 
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many problems local optima with respect to one or several neighbourhood structures are 
relatively close to each other. 
 
In the basic VNS proposed in (Mladenovic and Hansen, 1997) there is a local search 
step, which can be costly in terms of cpu time for large instances of some problems 
(Hansen and Mladenovic, 2003). In Hansen and Mladenovic (1999) is proposed the 
Reduced VNS (RVNS), in which the local search step is removed. The general scheme 
of RVNS is shown in Figure 1. 
 

1.  Select the set of neighbourhood structures Nk (k=1..kmax), where kmax is the 
number of neighbourhoods 

2.  Let S an initial solution 
3.  While stopping condition is not reached do: 
4. Set k := 1 
5. While k ≤ kmax do: 
6.  Select a solution S’ at random from Nk(S) 
7.  If the acceptance criterion is satisfied, then S := S’ and k := 1;  
 otherwise k := k + 1 
8. End While 
9.   End While 
10. Return S 

Figure 1. General scheme of RVNS 
 
Corominas et al. (2009c) proposed a RVNS-based algorithm for solving the RTVP 
because it is shown that the local search step for large RTVP instances is very costly in 
terms of computing time. The following three neighbourhood structures are used: 1) 
interchanging each pair of two consecutive units of the sequence that represents the 
current solution (N1), 2) interchanging each pair of consecutive or no-consecutive units 
of the sequence (N2), and 3) inserting each unit in each position of the sequence (N3). 
The acceptance criteria is that the neighbour solution S’ is better than or equal to the 
current solution S. 
 
3.2. TS+VNS 
 
Local search methods have the great disadvantage that the local optimum found is often 
a fairly mediocre solution (Gendreau, 2003). To overcome this limitation, the Tabu 
Search metaheuristic (TS) has been proposed by Glover (1986). TS is based on applying 
a local search in which non-improving movements are allowed. To avoid cycling back 
to visited solutions, the most recent history of the search is recorded in a tabu list of 
tabu (forbidden) solutions. The complete tabu solutions could be recorded in the tabu 
list, but this may require a lot of memory, make it expensive to check whether a solution 
is tabu or not and, above all, does not diversify sufficiently the search. Thus, it is 
common to record only the last moves (transformations) performed on the current 
solution and forbidding reverse transformations (Gendreau, 2003). The tabu lists are 
usually implemented as a list of fixed length with a FIFO (First In, First Out) policy. A 
tabu solution can be overridden if a suitable aspiration criterion is met. 
 
Two straightforward applications of the TS classical scheme shown in Figure 2 has been 
proposed in the literature to solve the RTVP (Corominas et al., 2009a and 2009b). The 
only difference between both TS algorithms is the definition of the neighbourhood. In 
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Corominas et al. (2009a), the neighbourhood N2 is used (see Subsection 3.1), whereas in 
Corominas et al. (2009b), the neighbourhood N3 is used (see Subsection 3.1). 
 
In the classical TS, the current solution is moved in an only neighbourhood structure. In 
our paper, we propose a TS algorithm based on changing dynamically between the 
neighbourhoods N1, N2 and N3. Note that N1 is included in N2 or N3, so it seems 
unnecessary. However, the benefit of using N1 is that it helps to the algorithm to 
converge very fast without detrimental of its performance (Corominas et al., 2009c). 
 
Some of the benefits of altering neighbourhood can be the following (Xu et al., 2006): 
 

• Different neighbourhood moves bring in various degrees of changes for the new 
solution, so it carries diversification effects. 

• Some neighbourhoods are harder to evaluate than others, but they are more 
effective in locating better solutions. Dynamic neighbourhood moves can better 
address the balance between the efficiency and effectiveness of the TS algorithm. 

 
The mechanism of neighbourhood changing that we propose is the following. First, the 
TS algorithm starts using N1. Each move that does not improve the best solution (S*) is 
counted. When a maximum number of non-improvement moves is reached (max_nim1), 
the next neighbourhood N2 is used. Similarly, when max_nim2 non-improvement moves 
is reached using N2, the current neighbourhood is change to N3. Again, when max_nim3 
non-improvement moves is reached using N3, the process continues iteratively using N1 
again. 
 
The scheme of TS+VNS is shown in Figure 2.  
 

1.  Select the set of neighbourhood structures Nk (k = 1..3) 
2.  Set the values of the parameters max_nimk (k = 1..3). 
3.  Let S an initial solution and S* := S 
4.  k := 1 
5.  ni := 0 
6.  While stopping condition is not reached do: 
7. Let S’ the best solution from Nk(S) which is non-tabu or allowed by aspiration 
8. Add the current move in the tabu list (removing its last move if the list is full) 
9. If S’ is better than S*, then S* := S’ 
10. Otherwise: ni := ni + 1 
 If ni = max_nimk, then k := (k mod 3) + 1 and ni := 0 
11. S := S’ 
12. End While 
13. Return S* 

Figure 2. Scheme of TS+VNS 
 
The elements of the proposed algorithm for solving the RTVP are defined as follows: 
 

• Initial solution. The initial solution is obtained from the best solution returned by 
the five heuristics proposed in Corominas et al. (2007). 
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• Neighbourhoods. The neighbourhoods N1, N2 and N3 are the same neighbourhoods 
explained in Subsection 3.1. 

• Tabu moves. A forbidden move of the tabu list consists of two pairs of 
position/symbol. For instance, the move [(3, A), (5, B)] means that all solutions 
with the symbol A sequenced in position 3 and the symbol B sequenced in position 
5 are considered tabu. In the case of the neighbourhood N3, if the symbol A is 
inserted into position 3, then the move [(3, A), (3, A)] is recorded in the tabu list. 

• Aspiration criterion. The aspiration criterion is that the move produces a solution 
better than the best solution found in the past. 

• Stopping condition. The algorithm stops once it has run for a preset time. 

 
3.3. MS+VNS 
 
The multi-start metaheuristic is a general scheme that consists of two phases. The first 
phase obtains an initial solution and the second phase improves the obtained initial 
solution. These two phases are applied iteratively until a stop condition is reached. This 
scheme has been first used at the beginning of 80’s (Boender et al., 1982). The 
generation of the initial solution, how to improve them and the stop condition can be 
very simple or very sophisticated. The combination of these elements gives a wide 
variety of multi-start methods. For a good review of multi-start methods, see Martí 
(2003) and Hoos and Stützle (2005). 
 
We propose the following multi-start VNS algorithm. At each iteration, a random initial 
solution is obtained and then is improved by means of the RVNS algorithm explained in 
Subsection 3.1. The random solutions are generated as it is done in García et al. (2006) 
and Corominas et al. (2008). That is, for each position of the sequence, the symbol to be 
sequenced is chosen at random. The probability of each symbol of being chosen is equal 
to the number of its copies that remain to be sequenced divided by the total number of 
copies that remain to be sequenced. The stopping condition of the RVNS algorithm 
consists in reaching a maximum number of iterations without improving the current 
solution. The maximum number of iterations is ms vnsD α +⋅   , where D is the total 
number of copies to be sequenced and αms+vns is the parameter of the algorithm. The 
multi-start VNS algorithm stops after it has run for a preset time. Figure 3 shows the 
scheme of the proposed multi-start VNS algorithm. 
 

1. Let S* be a random solution 
2. While stopping condition is not reached do: 
3. Let S be a random solution 
4. Apply the RVNS algorithm to S and get S’ 
5. If S’ is better than S*, then S* := S’ 
6. End While 
7. Return S* 

Figure 3. Scheme of MS+VNS 
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3.4. PSO+VNS 
 
PSO is a population metaheuristic introduced by Kennedy and Eberhart (1995) which is 
based on the social behaviour of flocks of birds when they search for food. The 
population or swarm is composed of particles (birds), whose attributes are an m-
dimensional real point (which represents a feasible solution) and a velocity (the 
movement of the point in the m-dimensional real space). The velocity of a particle is 
typically a combination of three types of velocities: 1) the inertia velocity (i.e., the 
previous velocity of the particle); 2) the velocity to the best point found by the particle; 
and 3) the velocity to the best point found by the population. These components of the 
particles are modified iteratively by the algorithm as it searches for an optimal solution. 
These modifications are formalized with the following two equations: 
 
 ( ) ( )1

1 1 2 2
t t t t t
i i i i iv v c r p x c r gbest xω+ = ⋅ + ⋅ − + ⋅ − , (2) 

 1 1t t t
i i ix x v+ += +  (3) 

 
where t is the current iteration, t

iv  is the current velocity of particle i at iteration t, ω is 
the inertia parameter that weights the previous velocity of particle i, c1 and c2 are two 
parameters multiplied by two random numbers, r1 and r2 respectively, uniformly 
distributed in the range [0, 1], t

ix  is the current point of particle i at iteration t, ( )t t
i ip x−  

is the velocity towards the best point found so far by the particle, and ( )t
igbest x−  is the 

velocity towards the best point found so far by the whole swarm.  
 
One of the first attempts to solve the RTVP through metaheuristics was by means of 
PSO-based algorithms (García et al., 2006). Later, more sophisticated PSO algorithms 
were proposed to solve the RTVP; the best of the PSO algorithms to solve the RTVP is 
called DPSOpoi-cpdyn by its authors (García-Villoria and Pastor, 2009a). Although the 
PSO metaheuristic was originally designed for m-dimensional real spaces, DPSOpoi-
cpdyn is adapted to work with the sequence that represents a solution (for details, see 
García-Villoria and Pastor (2009a)). Moreover, DPSOpoi-cpdyn introduces random 
modifications to the points of the particles after being applied Equations 2 and 3 with a 
frequency that changes dynamically as follows. For each position of the point (which is 
a sequence that represents a solution), the position has a probability cp ( 0 1pc≤ ≤ ) of 
being swapped with another, randomly selected position. The parameter cp changes 
dynamically according to the heterogeneity of the swarm at iteration t according to 
Equation 4: 
 
 ( )K het t

pc e− ⋅= , (4) 
 
where K is a parameter to be set, het(t) is a measure of the heterogeneity of the 

population defined as ( )

t
i

i P
v

het t D P
∈= ⋅

∑
, t

iv  is the module of the velocity of particle 

i at iteration t, D is the total number of copies to be sequenced, and P  is the size of the 
population P. 
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We propose the following hybridization of DPSOpoi-cpdyn with the RVNS algorithm. 
At each iteration, the best point (solution) found by the swarm, gbest, is improved by 
applying the RVNS algorithm explained in Subsection 3.1. The stopping condition of 
the RVNS algorithm consists on reaching a maximum number of iterations without 
improving the current solution. The maximum number of iterations is  vnspsoD −⋅α , 
where D is the total number of copies to be sequenced and αpso+vns is a parameter of the 
algorithm. The scheme of PSO+VNS is shown in Figure 4. 
 

1. Initialize population 
2. While stopping condition is not reached do: 
3. For each particle i do: 
4.   Update velocity of i according to Equation 2 
5.   Update point of i according to Equation 3 
6.   For each position of the point i, swap it with another position selected at 

random with a probability cp (Equation 4) 
7.   Update best point of particle i 
8. End For 
5. Update best point of the population 
6. End While 
7. Return best point of the population 

Figure 4. Scheme of PSO+VNS 
 
3.5. Fine-tuning the algorithm parameters 
 
Fine-tuning the parameters of a metaheuristic algorithm is almost always a difficult 
task. Although the parameter values may have a very strong effect on the results of the 
metaheuristic for each problem, they are often selected using one of the following 
methods, which are not sufficiently thorough (Eiben et al., 1999; Adenso-Díaz and 
Laguna, 2006): 1) “by hand”, based on a small number of experiments that are not 
referenced; 2) using the general values recommended for a wide range of problems; 3) 
using the values reported to be effective in other similar problems; or 4) with no 
apparent explanation. 
 
Adenso-Díaz and Laguna (2006) proposed a new technique called CALIBRA for fine-
tuning the parameters of algorithms. CALIBRA is based on using conjointly Taguchi’s 
fractional factorial experimental designs and a local search procedure. We propose to 
use CALIBRA for setting the parameter values of our hybrid algorithms. CALIBRA 
was applied to a representative training set of 60 instances which were generated as 
explained in the Section 4. The following parameter values were obtained: 
 

• TS+VNS: size of the tabu list = 127, max_nim1 = 751, max_nim2 = 8 and max_nim3 
= 26. 

 
• MS+VNS: αms+vns = 37.5. 
 
• PSO+VNS: size of the population = 6, ω = 0.87, c1 = 0.75, c2 = 0.87, K = 27.5 and 

αpso+vns = 9.4. 
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Since CALIBRA cannot fine-tune more than five parameters, PSO+VNS (which have 
six parameters) are fine-tuned in two steps. In the first step, the initial value of the size 
of the population is set to 13 (which is the value used for DPSOpoi-cpdyn in García-
Villoria and Pastor, (2009)) and the remaining parameters (ω, c1, c2, K and αpso+vns) are 
fine-tuned. In the second step the value of ω is set at the value obtained in the first step 
and the remaining parameters (size of the population, c1, c2, K and αpso+vns) are fine-
tuned. 
 
 
4. Computational experiment 
 
In the computational experiment the three proposed hybrid algorithms (TS+VNS, 
MS+VNS and PSO+VNS) and the four original metaheuristic algorithms –the RVNS 
algorithm proposed in Corominas et al. (2009c) (let it be called RVNSRTVP), the TS 
proposed in Corominas et al. (2009b) (let it be called TSRTVP), the MS proposed in 
García et al. (2006) (let it be called MSRTVP) and the best PSO proposed in García-
Villoria and Pastor (2009a) (called DPSOpoi-cpdyn)– were run. 
 
All algorithms are coded in Java and executed on a PC 3.4 GHz Intel Pentium IV with 
1.5 GB of RAM. The same 60 training instances and 740 test instances used in García et 
al. (2006), Corominas et al. (2009b, 2009c) and García-Villoria and Pastor (2009a) are 
also used in this paper (all instances can be found at 
http://www.ioc.upc.edu/EOLI/research/). These instances were grouped into four 
classes (from CAT1 to CAT4 with 15 training instances and 185 test instances in each 
class) according to their size. The instances were generated using the random values of 
D (number of copies) and n (number of symbols) shown in Table 1. For all instances 
and for each model i = 1,…,n, a random value of di (number of copies of symbol i) is 
between 1 and ( )1 2.5D n− +  such that 

1.. ii n
d D

=
=∑ . 

 
Table 1. Uniform distributions for generating the D and n values 

 

  CAT1 CAT2 CAT3 CAT4 
D  U(25, 50) U(50, 100) U(100, 200) U(200, 500) 
n  U(3, 15) U(3, 30) U(3, 65) U(3, 150) 

 
The stop condition of all algorithms is to be run for a preset time. We run the algorithms 
for 10, 50, 200, 500 and 1,000 seconds. The results obtained are shown and explained in 
the following two subsections. In Subsection 4.1, the original metaheuristic algorithms 
are compared with their hybrid version in order to show the benefits of hybridizing with 
RVNSRTVP. In Subsection 4.2, the hybrid algorithms are compared with the two best 
methods up to now (RVNSRTVP and TS+VNS) to solve the RTVP. 
 
4.1. Original metaheuristics versus hybrid metaheuristics 
 
Table 2 shows the results obtained with TSRTVP and its hybrid version, TS+VNS. The 
addition of variable neighbourhood to the TS algorithm helps it to improve its 
performance for the largest instances (CAT4 instances) and the hybrid version is able to 
obtain solutions 40.48% better, on average, for these instances after 1,000 computing 
seconds. With respect to the results obtained for small and medium instances (CAT1 to 
CAT3 instances), for which TSRTVP was the best method after 1,000 computing seconds, 
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no significant differences (according to the t-Test paired two sample for means with a 
confidence level of 95%) in the quality of the solutions with respect to TS+VNS are 
observed. Moreover, the hybrid version presents a faster convergence without or very 
little losing quality at the solutions. This tendency to faster convergence is especially 
observable in the medium and largest instances.  
 

Table 2. Average RTV values for TSRTVP and TS+VNS 
  Global CAT1 CAT2 CAT3 CAT4 

10 s. TSRTVP 339.59 10.42 25.32 128.29 1,194.31 
TS+VNS 87.18 10.63 25.43 60.67 251.99 

50 s. TSRTVP 210.47 10.26 22.56 73.26 735.78 
TS+VNS 71.57 10.38 24.00 53.99 193.83 

200 s. TSRTVP 123.98 10.25 21.67 55.53 408.47 
TS+VNS 63.60 10.27 23.08 50.57 170.49 

500 s. TSRTVP 90.74 10.24 21.29 50.19 279.37 
TS+VNS 58.35 10.24 22.74 49.04 151.38 

1,000 s. TSRTVP 78.62 10.24 21.16 48.12 234.96 
TS+VNS 55.05 10.24 22.48 47.66 139.84 

 
Tables 3 shows the results obtained with MSRTVP and MS+VNS. The advantages of 
incorporating RVNSRTVP in the MS algorithm are that much better solutions are obtained 
with a very fast convergence. After 1,000 computing seconds, the results obtained with 
MS+VNS are 6.31%, 40.98%, 73.08% and 97.26% better than the results of MSRTVP for 
CAT1, CAT2, CAT3 and CAT4 instances, respectively. There is a clear tendency of the 
performance improvement of the hybrid algorithm when the size of the instances 
increases. 
  

Table 3. Average RTV values for MSRTVP and MS+VNS 
  Global CAT1 CAT2 CAT3 CAT4 

10 s. MSRTVP 31,847.07 13.26 52.09 2,582.45 124,740.50 
MS+VNS 71.07 10.24 21.58 51.07 201.39 

50 s. MSRTVP 21,390.39 12.08 44.36 226.90 85,278.25 
MS+VNS 62.17 10.24 21.23 47.46 169.76 

200 s. MSRTVP 10,060.19 11.43 39.50 185.85 40,003.97 
MS+VNS 58.45 10.24 21.01 45.54 158.10 

500 s. MSRTVP 4,015.37 11.10 36.74 171.40 15,842.23 
MS+VNS 56.25 10.24 20.97 43.97 149.83 

1,000 s. MSRTVP 1,378.58 10.93 35.48 160.67 5,307.25 
MS+VNS 54.95 10.24 20.94 43.26 145.35 

 
Finally, the results obtained with DPSOpoi-cpdyn and PSO+VNS are shown in Table 4. 
Similar to the comparison between the MS algorithm and its hybrid version, the benefits 
of hybridizing the PSO algorithm with the VNS algorithms are clear. For all class of 
instances, PSO+VNS has better performance. After 1,000 computing seconds, the 
results obtained with PSO+VNS are 27.18%, 52.74%, 67.49% and 97.57% better than 
the results of PSORTVP for CAT1, CAT2, CAT3 and CAT4 instances, respectively. The 
convergence of PSO+VNS is also better.  
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Table 4. Average RTV values for DPSOpoi-cpdyn and PSO+VNS 
  Global CAT1 CAT2 CAT3 CAT4 

10 s. DPSOpoi-cpdyn 9,108.66 17.36 82.37 1,512.67 34,822.26 
PSO+VNS 81.84 10.49 22.65 51.18 243.04 

50 s. DPSOpoi-cpdyn 4,625.46 16.42 51.34 610.34 17,824.04 
PSO+VNS 60.03 10.47 22.42 49.57 161.91 

200 s. DPSOpoi-cpdyn 2,757.89 15.47 48.88 262.78 10,704.43 
PSO+VNS 57.37 10.46 22.26 48.07 148.68 

500 s. DPSOpoi-cpdyn 1,964.62 14.61 48.18 168.82 7,626.87 
PSO+VNS 56.31 10.45 22.03 47.55 145.22 

1,000 s. DPSOpoi-cpdyn 1,537 14.35 46.55 143.95 5,944.51 
PSO+VNS 55.86 10.45 22.00 46.80 144.22 

 
4.2. Hybrid metaheuristics versus best methods 
 
The two most efficient methods to solve the RTVP proposed in the literature up to now 
are RVNSRTVP and TSRTVP. The TS algorithm is slightly better for solving small and 
medium RTVP instances whereas the VNS algorithm is clearly the best for solving the 
largest instances. Table 5 show the results obtained with these two algorithms and with 
the three proposed hybrid algorithms for 10, 50 and 1,000 computing seconds. 
 

Table 5. Average RTV values for RVNSRTVP, TSRTVP, TS+VNS, MS+VNS and PSO+VNS 
  Global CAT1 CAT2 CAT3 CAT4 

10 s. 

RVNSRTVP 68.60 10.73 23.72 52.87 187.07 
TSRTVP 339.59 10.42 25.32 128.29 1,194.31 
TS+VNS 87.18 10.63 25.43 60.67 251.99 
MS+VNS 71.07 10.24 21.58 51.07 201.39 
PSO+VNS 81.84 10.49 22.65 51.18 243.04 

50 s. 

RVNSRTVP 63.69 10.73 23.69 51.80 169.64 
TSRTVP 210.47 10.26 22.56 73.26 735.78 
TS+VNS 71.57 10.38 24.00 53.99 193.83 
MS+VNS 62.17 10.24 21.23 47.46 169.76 
PSO+VNS 60.03 10.47 22.42 49.57 161.91 

1,000 s. 

RVNSRTVP 62.24 10.73 23.69 51.40 163.69 
TSRTVP 78.62 10.24 21.16 48.12 234.96 
TS+VNS 55.05 10.24 22.48 47.66 139.84 
MS+VNS 54.95 10.24 20.94 43.26 145.35 
PSO+VNS 55.86 10.45 22.00 46.80 144.22 

 
Independently of the performance of the original metaheuristic algorithms, the solutions 
obtained with the hybrid algorithms are very good. Anyway, significant differences 
(with a confidence level of 95%) are observed after 1,000 computing seconds. For 
CAT1 instances, TS+VNS and MS+VNS are 2.01% better than PSO+VNS. For CAT2 
and CAT3 instances, MS+VNS is the algorithm that obtains best solution and is 4.82% 
and 7.56% better, respectively, than PSO+VNS, which is the second best algorithm for 
solving these instances. Finally, the best algorithm for the CAT4 instances is TS+VNS, 
which is 3.04% better than the second best algorithm, PSO+VNS. With respect to the 
convergence, all hybrid heuristics converge very fast. 
 
Comparing the proposed hybrid algorithms with the two best methods published in the 
literature, we can see that, on average, all proposed algorithms outperform them. 
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Observing the results by class, MS+VNS is able to obtain equal or better results for the 
best known results up to now of each class (for CAT1 to CAT3 instances, the best results 
were obtained with TSRTVP; for CAT4 instances, the best results were obtained with 
RVNSRTVP). For the smallest instances, MS+VNS obtains equal results than TSRTVP. For 
CAT2 and CAT3 instances, MS+VNS results are, on average, 1.04% and 10.10% better 
than the TSRTVP results. Finally, for CAT4 instances, MS+VNS is 11.20% better than 
RVNSRTVP. And in global MS+VNS is 11.71% better than the best method published to 
date. 
 
Table 5 shows that the proposed hybrid algorithms are able to obtain better solutions 
and faster than the previous methods proposed in the literature for solving the RTVP. 
However, we cannot know if the solutions are good. Thus, we have tried to find the 
optimal solutions but only the smallest instances (CAT1 instances) were optimally 
solved. For the remaining instances, the lower bound (LB) proposed in Corominas et al. 
(2007) is used. Table 6 shows the average of the optimal RTV values ( *RTV ) for CAT1 
instances and the averages of the LBs ( LB ). 
 

Table 6. Averages of the optimal RTV values and the RTV lower bounds 
 Global CAT1 CAT2 CAT3 CAT4 
LB  21.40 5.35 10.95 21.15 48.15 

*RTV  * 10.24 * * * 
TS+VNS 55.05 10.24 22.48 47.66 139.84 
MS+VNS 54.95 10.24 20.94 43.26 145.35 
PSO+VNS 55.86 10.45 22.00 46.80 144.22 

 
For all 185 CAT1 instances, MS+VNS and TS+VNS achieve the optimal solutions. We 
can see in Table 6 that the LB calculated as proposed in Corominas et al. (2007) is not 
accurate. For the smallest instances, the ratio between *RTV and LB is 1.914. It seems 
reasonable to assume that this ratio will remain equal or increase for larger instances. 
Thus, if we assume that the ratio remains equal, a more accurate estimation of the 
averages of the optimal values for CAT2, CAT3 and CAT4 instances are obtained by 
multiplying their LB  by 1.914; that is, 20.96, 40.48 and 92.16 for CAT2, CAT3 and 
CAT4 instances, respectively. According to this assumption, we can ensure that the 
solutions obtained by the hybrid algorithms for CAT2 and CAT3 instances are very 
good. 
 
 
5. Conclusions 
 
In this paper, the response time variability problem (RTVP) is solved. This scheduling 
problem arises in a variety of real-life environments including mixed-model assembly 
lines, multi-threaded systems, network servers, broadcast of commercial videotapes, 
periodic machine maintenance and waste collection, among others. The aim of the 
RTVP is to minimise the variability in the distances between any two consecutive 
copies of the same symbol. 
 
The RTVP is an NP-hard problem and heuristic and metaheuristic methods are needed 
to solve real-life instances. Since the first method to solve the RTVP was proposed in 
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1994, the solution of this problem has been improving. Up to date, the best solutions 
have been obtained with a reduced variable neighbourhood search (RVNS) algorithm. 
One of the main shortcoming of RVNS is that may be trapped in a local optimum with 
respect all neighbourhoods. To overcome this situation, we propose three different 
hybrid algorithms in which RVNS is hybridized with tabu search (TS), multi-start (MS) 
and particle swarm optimisation (PSO). Thus, the diversification ability of TS, MS and 
PSO is combined with the intensification ability of RVNS. 
 
A computational experiment shows the success of our proposals. On average, all three 
hybrid algorithms are able to improve the best solutions published in the literature. 
Moreover, we have shown that two of the proposed algorithms obtain the optimal 
solutions for all 185 smallest test instances (CAT1 instances) and we can reasonably 
assume that optimal or near optimal solutions are obtained for small and medium 
instances (CAT2 and CAT3 instances). 
 
Very efficient non-exact methods have been designed in this work to solve the RTVP. A 
future research can be focused on improving the exact solution of the RTVP by 
increasing the size of the instances that can be solved in a practical time. In order to 
achieve this goal, the following lines of research are promising: 1) To improve the best 
MILP model which is proposed in Corominas et al. (2010), and 2) To specifically 
design a branch and bound algorithm in order to take advantage of all characteristics of 
the problem. 
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1 INTRODUCTION 

Sequencing several units as regularly as possible in mixed-model assembly production lines is a major 
problem ever since Toyota Motor Corporation developed and implemented the just-in-time (JIT) 
production system (Monden, 1983). One of the most important JIT objectives is to get rid of all kinds of 
waste and inefficiency and, according to Toyota, the main waste is due to the stocks.  

The key to reducing stocks with JIT, as Monden (1983) says, is to have constant production rates and 
constant consumption rates of the components involved in the production process. First, the number of 
units of each model to be produced by the mixed-model assembly production line throughout the 
production period must be decided. Next, these units must be sequenced as regularly as possible. 
Regularity can be sought in the consumption of the components that arrive to the production line or in the 
production of the models that leave the production line. Depending on the kind of regularity desired, 
Kubiak (1993) classifies these sequencing problems into two categories: ORV (Output Rate Variation) 
problems and PRV (Production Rate Variation) problems. 

The ORV problem concentrates on the consumption of the components needed by the models and its 
aim is to minimize the variations in this consumption in the production period. 

On the other hand, the PRV problem concentrates on production rates of the models and its objective is 
to minimize a function of the discrepancies between the real production rate and the ideal one (i.e., the 
one that would correspond to a constant rate of production). This kind of regularity is important when 
production needs to be adjusted to demand. Thus, according to the JIT system, it is possible to satisfy 
demands for a variety of models without holding large inventories or incurring large waits.  

Regularity in the PRV problem can be characterized at least in as many ways as discrepancy functions 
are defined. The Response Time Variability Problem (RTVP) is a PRV problem in which the regularity 
consists in preserving the distance between two consecutive units of the same model as constant as 
possible. The RTVP occurs whenever products, clients or jobs need to be sequenced so as to minimize 
variability in the time between the instants at which they receive the necessary resources. As it is usual in 
the literature on regular sequences (Monden, 1983; Miltenburg, 1989), we assume in this paper that the 
processing time of the units does not depend on the model and, therefore, is the same for all the units. 

The RTVP was first presented by Corominas et al. (2007), who proposed a mixed integer lineal 
programming (MILP) model and five greedy heuristic algorithms to solve this problem. An improved 
MILP presented by Corominas et al. (2006) has a practical limit for obtaining optimal solutions of around 
40 units to be scheduled. 

In order to improve the results obtained in prior studies, an application based on the Cross Entropy (CE) 
method is proposed. The CE method was originally created for rare-event simulation by Rubinstein 
(1997). The new CE method provides an adaptive algorithm for estimating probabilities of rare events in, 
for example, queuing models or complex stochastic networks (Rubinstein, 1997). Later it was observed 
that the CE method can be easily adapted for other applications such as general combinatorial and multi-
extremal optimization, learning algorithms and neural computation (Rubinstein and Kroese, 2004). 

The CE method involves an iterative procedure in which each iteration has two steps. Step 1 generates a 
random sample of solutions according to a probability distribution. Step 2 modifies the probability 
distribution according to the sample obtained in the previous step; this change in the probability 
distribution will increase the probability of generating a better sample in the next iteration. For a discrete 
optimization problem in which a deterministic objective function is optimized (this is the case of the 
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RTVP), it is demonstrated that the CE method always converges and the probability of an optimal 
solution being found can be made arbitrarily close to 1 (Costa et al., 2006). 

This paper shows how CE method can be easily adapted to solve the combinatorial scheduling RTVP. 
Moreover, the results obtained by the CE method and the five greedy heuristics proposed by Corominas et 
al (2007) are compared and it is shown that the CE method outperforms them clearly.  

The rest of this paper is organized as follows. Section 2 exposes a formal definition of the RTVP and 
briefly explains the five heuristic algorithms presented by Corominas et al. (2007). Section 3 extends the 
explanation of the CE method and proposes its application to the RTVP. Section 4 gives the results of the 
computational experiment. Finally, some conclusions are presented in Section 5. 

2 THE RESPONSE TIME VARIABILITY PROBLEM (RTVP) 

In the Response Time Variability Problem (RTVP) the regularity of production in mixed-model assembly 
production lines is measured in a new way. The idea is to arrange the units of each model as regularly as 
possible.  

Real-life examples do not occur only in the mixed-model assembly production line context. For 
example, asynchronous transfer mode networks need to broadcast the video data frames and sound data 
frames of the applications as constantly as possible (Dong et al., 1998); another example is the periodic 
machine maintenance problem, if it is considered with equal distances between consecutive services of 
the same machine (Anily et al., 1998). 

 These problems are often faced as a distance-constrained scheduling problem, in which the distance 
between any two given consecutive units of the same model is bounded. The difficulty lies in obtaining a 
feasible solution which respects the distance constraints. On the other hand, the RTVP always obtains a 
solution, preserving the main idea of having the distances between any two given consecutive units of the 
same model as constant as possible. 

The RTVP is formulated as follows. Let n be the number of models, di the number of units of model i (i 

= 1,…,n) and D the total number of units ( ∑
=

=
n

i
idD

1
). Let s be a solution of an instance in the RTVP that 

consists of a circular sequence of units ( Dssss 21= ), where sj is the unit sequenced in position j of 

sequence s. For all models i in which 2≥id , let i
kt  be the distance between the positions in which units k 

+ 1 and k of model i are found (i.e., the number of positions between them, where the distance between 
two consecutive positions is considered equal to 1). As the sequence is circular, position 1 comes 
immediately after position D; therefore, i

di
t  is the distance between the first unit of model i in a cycle and 

the last unit of the same model in the preceding cycle. Let it  be the average distance between two 

consecutive units of model i (
i

i d
Dt = ). For all models i in which 1=id , it1  is equal to it . The 

objective is to minimize the ∑∑
= =
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For example, let 3=n , 3Ad = , 2=Bd  and 2Cd = ; thus, 7D = , 7
3At = , 7

2Bt =  and 7
2Ct = . A 

feasible solution is the sequence (A, B, A, C, B, A, C), where 

( ) ( ) ( )2 2 27 7 72 3 23 3 3RTV  = − + − + − + 
 

( ) ( ) ( ) ( )2 2 2 27 7 7 73 4 3 42 2 2 2
   − + − + − + − =   
   

52 1 1
3 2 2 3+ + = . 

To solve non-small RTVP instances, five greedy heuristic algorithms were proposed by Corominas et al. 
(2007): the bottleneck, random, Webster’s, Jefferson’s and insertion sequences. These five heuristic 
algorithms, which are until now the only algorithms proposed in the literature, are compared with the 
proposed CE method in Section 4. Next the heuristics are briefly described (for more details, see 
Corominas et al., 2007). 

The bottleneck sequence is obtained by solving the bottleneck problem optimally. Among the proposed 
algorithms in the literature, the algorithm of Moreno (2002) (see also Moreno and Corominas, 2006) has 
been chosen. 
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The random sequence is obtained by randomizing the bottleneck sequence as follows. For each position 
p = 1,...,D, a random number r between 1 and D is obtained; then, the units of the positions p and r are 
swapped. 

Webster’s sequence is obtained by applying the parametric method of apportionment (Balinski and 
Young, 1982) with parameter 21=δ . Let xil be the number of model i units in the sequence of length l, l 
= 0, 1, …; assume xi0 = 0, ni ,,1= . The model to be sequenced in position l + 1 can be computed as 

follows: ( )






+= δil

i
i x

di maxarg* . 

Jefferson’s sequence is obtained by applying the parametric method of apportionment with 1=δ . 
The insertion sequence is based on the idea of solving two-model problems. The two-model problems 

are solved in a polynomial time using an exact algorithm presented by Corominas et al. (2007). Let 

ndd ≤≤ ...1  and let n - 1 two-model problems ),( 11 nnn ddP −− = , ),(
1

22 ∑
−=

−− =
n

ni
inn ddP , …, ),(

2
11 ∑

=

=
n

i
iddP . 

In each of the problems Pn-2, Pn-3, …, P1, the second model will be the same fictitious model for all 
problems, denoted by *. Let sequences Sn-1, Sn-2,…, S1 be the optimal solution to problems Pn-1, Pn-2,…, P1 
respectively, which are obtained by the algorithm described by Corominas et al. (2007). Note that the 
sequence Si, 1,2−= ni , is made up of the model i and the fictitious model *. Then the sequence for the 
original problem is built recursively by first replacing * in S1 by S2 to obtain S1’. Next, * are replaced by 
S3 in S1’ to obtain a sequence S1’’, and so on. 

3 THE CROSS-ENTROPY METHOD 

This section presents the CE method, the application based on this method to solve the RTVP and how 
the parameters of the CE method have been fine-tuned. 

3.1 The general CE method 

The CE method was pioneered in 1997 when an adaptive algorithm for estimating probabilities of rare 
events in complex stochastic networks was presented by Rubinstein (1997). There are a lot of real-life 
applications in which rare events with very small probabilities need to be estimated: ruins in insurance 
risk or finance, breakdowns of manufacturing systems, packet losses and buffer overflows in computer 
and communication networks, false alarms in radar or similar security systems, technical defects, and 
many others. 

Simulating the system for a long time is not a practical way to estimate these small probabilities. A 
better way is to use the importance sampling (IS) technique, in which the system is simulated under a 
different probability distribution so that the rare event occurs more frequently. However, an important 
disadvantage of the IS technique lies in determining the optimal parameters for the probability 
distribution of the events. The CE method eliminates this disadvantage because it provides an adaptive 
procedure to estimate the optimal parameters.  

It was realized that the CE method could be adapted to solving difficult combinatorial and multi-
extremal optimization problems together with learning algorithms and neural computation applications 
(Rubinstein and Kroese, 2004). The CE method provides a mathematical way which connects the 
estimation of rare events in simulation to the combinatorial optimization problems (COP).  

The CE method is based on an iterative procedure divided into two steps: 1) generate a random sample 
of solutions according to a probability distribution; and 2) modify the probability distribution depending 
on the sample obtained in the previous step. The change in the probability distribution will increase the 
probability of generating a better sample in the next iteration.  

To solve a COP with the CE method, the COP is associated with a stochastic optimization problem 
represented with a weighted directed graph. Depending on the problem, the randomness will be: a) in the 
nodes, in which case we call it a stochastic node network (SNN) problem; or b) at the edges, in which 
case we call it a stochastic edge network (SEN) problem. Examples of SNN problems are the max-cut 
problem and clustering problems; examples of SEN problems are the travelling salesman problem and the 
quadratic assignment problem (Rubinstein and Kroese, 2004). 

As the RTVP is an SEN problem, we will concentrate on the CE method algorithm for solving problems 
of this type. We merely provide a practical explanation of this algorithm; for a formal definition and its 
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mathematical justification, see the book by Rubinstein and Kroese (2004) or the tutorial by Boer et al. 
(2005). A SEN problem consists in finding the optimal set of edges in the graph which represents the 
optimal solution. To find an optimal solution, the algorithm works as follows: 

 
1. Initialize the probabilities of the edges; 1=it . 
2. Generate N candidate feasible solutions )(it

kX , Nk ,,1=  according to the probabilities of the 

edges at the iteration it, )(it
epr . Let )(itB  be the set of the  N∗ρ  best solutions according to the fitness 

function at the iteration it, where ρ is between (0,1]. 
3. For each edge e, update its probability for the next iteration as   

{ }
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)(
)1(

:
it

it
it

e B

XeBX
pr

∈∈
=+ . 

4. If stopping criterion is reached then stop, otherwise set 1+= itit  and go to Step 2. 
 
To avoid a premature convergence, the smooth version of the CE method (Rubinstein and Kroese, 2004) 

is used in the RTVP. Now, a new smoothing parameter α, whose value can be between 0 and 1, is used 
for updating the probabilities as follows: 
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The main reason why the smooth version updating procedure performs better is that it prevents 

probabilities of 0s and 1s; once edge has a probability of 0 or 1, it will appear in solutions never or 
forever, which is undesirable. 

Although the CE method bears similarities with other algorithms that work with probabilities, as the Ant 
Colony Optimization (ACO) method (Dorigo et al., 1999) and the Learning Automata Search Technique 
(LAST) (Gosavi, 2003), specially when a SEN problem is solved, there are differences between them. 
The main differences between the CE and the ACO method are: 1) CE uses only the best solutions of the 
sample whereas ACO uses all the solutions (Kauppila, 2006), and 2) in CE, the generation of future 
solutions is based on a generic calculation whereas in ACO the generation of solutions is also based on 
problem dependent heuristics (Boer et al., 2005). The main differences between CE and LAST lies in: 1) 
at each iteration, CE generates a set of solutions to calculate the probabilities of the next generation, 
whereas LAST only generate one solution, and 2) CE calculates the probability for each edge e according 
to the number of solutions in which edge e appears and to the fitness of the solutions, whereas LAST 
calculates the probability of edge e according to the fitness of the historical best solution in which edge e 
appears (for a detailed explanation, see Gosavi, 2003). 

3.2 The application of the CE method to the RTVP 

The general CE method algorithm for a SEN problem has been described in the previous subsection. For 
the application of the CE method to the RTVP, four points of the algorithm need to be specified: 1) the 
graph that represents the associated stochastic optimization problem, 2) the generation of a candidate 
feasible solution sequence according to the probabilities, 3) the initial probabilities of the edges and 4) the 
stopping criterion. 

In order to make more understandable the explanation, the example introduced in Section 2 is used: n = 
3; dA = 3,       dB = 2 and dC = 2; and D = 7 

 
3.2.1. Definition of the graph 
Let the graph G = (N’, E). The set of nodes N’ is the union of the sets N1 and N2, where 

( )
1 { :1 1,1 1}i

k iN n i n k d= ≤ ≤ − ≤ ≤ −  and }11:{2 −≤≤= DttN . Notice that the model n is not included in 

N1 because the units of this model are fixed when the previous models are sequenced. The node )(i
kn  

belonging to N1 represents the unit k of the model i; the node t belonging to N2 represents a distance t 
between two units. Thus, in the example we have ( ) ( ) ( ){ }1 1 2 1, ,A A BN n n n=  and { }2 1, 2,3, 4,5,6 .N =  Let 

21 NNE ×⊂ , where the edge eikt = ( )(i
kn , t) represents that the unit k + 1 of the model i is sequenced at 

distance t of the unit k of the model i. 



 184 

 
3.2.2. Generation of a feasible solution sequence 

We start by setting unit 1 of model 1 to the first position of the sequence (example of the start sequence 
shown in Figure 1a). Then, an edge has to be randomly chosen from the node )1(

1n  of the set 
}11:{ 1,1,1 +−≤≤ dDte t . For each unit, the sum of the probabilities of an eligible set of edges from this 

unit is almost always different than one. The probabilities of the set are therefore normalized for each 
selection. The initial probabilities of the example are generated as it is explained in Section 3.2.3 and they 
are shown in Table 1 (before being normalized) and Table 2 (after being normalized). The choice of the 
edge will fix the unit 2 position (let it be called )1(

2p ) of model 1 to the value 1 t+ . Note that the biggest 

possible position )1(
2p  is 21 +− dD , which allows the rest of the units of model 1 to be sequenced at the 

positions )1(
2p  + 1, )1(

2p  + 2, …, D. In the example, it is supposed that the edge randomly chosen is eA,1,2 
(i.e., t = 2) and, therefore, ( )

2 1 2 3Ap = + =  (see Figure 1b). 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Generation of a feasible solution sequence 
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Table 1. Initial probabilities (before being normalized) 
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Table 2. Initial probabilities (after being normalized) 
 

Now we choose an edge randomly from node )1(
2n  of the set }1)2(1:{ )1(

21,2,1 +−−−≤≤ pdDte t . This 
process continues for units 3, 4, …,d1 – 1 of model 1. The set of eligible edges from unit k of model 1 is 

}1)(1:{ )1(
1,,1 +−−−≤≤ ktk pkdDte , where )1(

kp  is the position at the sequence of unit k of model 1. In 
the example the set would be ,2,{ :1 7 (3 2) 3 1}A te t≤ ≤ − − − + , i.e., {1, 2,3, 4}, and the probabilities of the 

edges from ( )
2

An  are normalized (Table 3a); then, an edge is randomly chosen: for example, eA,2,3 (i.e., t = 
3). Therefore, ( )

3 3 3 6Ap = + =  (see Figure 1c). Note that the distance between the first unit of model 1 and 
the last unit of the same model in the preceding cycle is automatically determined when 

1

(1)
dp  is fixed. 

When all units of model 1 are set, it is the turn of the units of model 2, then model 3, and so on until the 
penultimate model. The first unit of each model is always set at the first free position of the sequence. The 
distances between the remaining units must ensure that the units are not set at a taken position. Thus, in 
the example the first unit of the model B is placed in the first free position of the sequence and, therefore, 

( )
1 2Bp =  (see Figure 1d). Next, an edge from ( )

1
Bn  has to be chosen from the set {2,3,5} . Notice that the 

distances 1 and 4 are not included in the set because if the edge eB,1,1 is chosen then ( )
2 2 1 3Bp = + =  and 

the position 3 is already occupied by the model A (and analogous for the edge eB,1,4). The probabilities of 
the edges from ( )

1
Bn  are normalized (Table 3b) and then the edge is randomly chosen: for example, the 
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edge eB,1,3. Therefore, ( )
2 2 3 5Bp = + =  (see Figure 1e). Finally, the sequence is completed with the units 

of the last model C (see Figure 1f). 
 

 t=1 t=2 t=3 t=4 
(a) ( )

2
An  30

234
 120

234
 60

234
 24

234
 

 
 t=1 t=2 t=3 t=4 t=5 

(b) ( )
1

Bn   5
25

 15
25

  5
25

 

Table 3. Normalized probabilities 
 

The distance between the last unit and the first unit of a majority model could be forced to be big by the 
rule of setting the first unit of each model at the first free position of the sequence. To alleviate this, the 
models are arranged decreasingly by their number of units before the CE method application starts. 

 
3.2.3. Initial probabilities of the edges 
The initial probabilities are set so that the nearer a distance is to the ideal distance, the more probable 

the distance is. For each model i = 1,...,n, let tmaxi = D – di + 1 – (i – 1), where tmaxi is the maximal 
theoretical distance between two consecutive units of model i. Notice that tmaxi depends on i because the 
first unit of each sequenced model is set at the first free position of the sequence. For each node k of 
model i, )(i

kn , the probabilities of the set of edges which go out from the node are set as follows: 

ε+−
= ttpr

i
eikt

1)1( , t = 1,…, tmaxi, where 610−=ε  is used to avoid a division by zero if t is equal to it . 

Because (1)
1

i

ikt

tmax
t epr=∑ is greater than 1, the probabilities are next normalized (as it has been shown with the 

previous example in Tables 1 and 2). 
 
3.2.4. Stopping criterion 
The CE algorithm stops running after 50 seconds. 

3.3 Fine-tuning the CE parameters 

Fine-tuning the parameters of a metaheuristic algorithm is almost always a difficult task. Although the 
value of the parameters is vital because the results of the metaheuristic for each problem are very 
sensitive to them, the fine-tuning is usually done by intuitively testing several values.  

The problem of fine-tuning the parameters of a metaheuristic application can be approached as an 
optimization problem, for which the solution consists of finding the parameter values that optimize the 
running of the metaheuristic for the problem to solve. Since the set of instances of a problem is infinite, 
we must resign ourselves to a representative training set for making the optimization. 

The Nelder and Mead (N&M) algorithm (Nelder and Mead, 1965), also named the flexible polyhedron 
algorithm, has been chosen for solving the fine-tuning problem because it is a direct one (i.e., it uses only 
the values of the function). There are another algorithms that could be used to solve this fine-tuning 
optimization problem, but the N&M algorithm has offered good results since its publication and it is 
referenced by recent papers (Anjos et al., 2004; Chelouah and Siarry, 2005; Corominas, 2005). The N&M 
algorithm starts from an v-dimensional point, whose coordinates are the v parameters of an objective 
function, and an initial hyper-tetrahedron is formed. For the fine-tuning problem, the parameters of the 
metaheuristic are used as the coordinates of the points. It is advisable for one of the initial vertices of the 
hyper-tetrahedron to be a known good point since the N&M algorithm ensures that the solution found is 
never worse than the best of the initial vertices. Then, the points of the hyper-tetrahedron are iteratively 
moved in the v-dimensional space according to the values of the function of each point until a local 
optimal point is reached. The function to be used by the N&M algorithm for the fine-tuning problem of a 
metaheuristic is the sum of the objective function values corresponding to the solutions obtained with the 
metaheuristic application at each instance of the training set. Usually, the bigger an instance is, the bigger 
the objective function value of its optimal solution is. Therefore, the N&M algorithm will give more 
relevance to the big instances for fine-tuning the parameters. To avoid this situation, the objective 
function values are normalized by dividing them by a lower bound of the instance. The lower bound used 
for the RTVP is the lower bound (let be called LBT) introduced by Corominas et al. (2007), which is 
calculated as follows: 
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The CE method needs fine-tuning of three parameters: the number of candidate solutions to be produced 
at each iteration (N), the proportion of candidate solutions that is part of the best solutions (ρ) and the 
smooth parameter (α). To set the initial point (initial values of the parameters) of the N&M algorithm, the 
values recommended by Rubinstein and Kroese (2004) are considered: N bigger than D2 (D is the number 
of units), ρ equal to the minimum of 0.01 and ln( ) ,D D  and α between 0.7 and 1. Note that N could be 
very big, so we limited this initial value to 500; ρ was initially set to 0124.0500)500ln( =  and α to 0.8. 
To know a good initial point to start the N&M algorithm is another reason to use it because, in this case, 
the N&M algorithm ensures a good solution, i.e., a good fine-tuning of the CE parameters. 

A set of 45 training instances (generated as explained in Section 4) was used to fine-tune the CE method 
and, to value a point, the CE method was run for 50 seconds each instance. The N&M algorithm was 
stopped after 42 hours. The fine-tuning values of the parameters are finally N=306, ρ = 0.0206 and α = 
0.8868. 

4 COMPUTATIONAL EXPERIMENTS 

The computational experiments were performed by running 555 instances grouped into three classes (185 
instances in each class) according to their size. The instances in the first class (called CAT1) were 
generated using a random value of D (number of units) uniformly distributed between 25 and 50, and a 
random value of n (number of models) uniformly distributed between 3 and 15; for the second class 
(called CAT2), D was between 50 and 100, and n between 3 and 30; and for the third class (called CAT3), 
D was between 100 and 200 and n between 3 and 65. For all instances and for each model i, a random 

value of di (number of units of the model i) is between 1 and ( 1)
2.5

D n− +  such that ∑
=

=
n

i
i Dd

1
. The 

instances were randomly generated because there is not any set of benchmark instances published in the 
literature since the problem is very new. 

The CE and the heuristic algorithms were coded in Java and the computational experiments were 
carried out using a 3.4 GHz Pentium IV with 512 Mb of RAM. 

For each instance, the CE algorithm was run for 50 seconds. The time needed by the five heuristic 
algorithms (H1 to H5) is negligible (always less than a second per instance). Table 4 shows the averages 
of the RTV values for each class of instances (CAT1 to CAT3).  

 
 CE H1 H2 H3 H4 H5 
CAT1 21.16 107.09 932.13 121.84 147.19 172.69 
CAT2 106.15 693.38 4741.55 933.11 1077.88 1254.29 
CAT3 2809.81 4369.44 25157.87 8502.80 9106.04 10248.21 

Table 4. Averages of the RTV values for each class of instance 
H1 = Bottleneck; H2 = Random; H3 = Webster; H4 = Jefferson; H5=Insertion  

The CE method gives much better results than the best of the heuristic algorithms (H1: bottleneck): 
80.24% better for class CAT1, 84.69% better for class CAT2 and 35.69% better for class CAT3. However, 
the improvement for class CAT3 is not as impressive as the improvement for the other two classes. Table 
5 shows: the averages of the number of iterations that the CE algorithm does in 50 seconds, for each class 
of instance, and the iteration in which the best solution was found. 

 
 Average 

number of  
iterations 

Best solution  
iteration 

CAT1 527.94 7.37 
CAT2 103.57 15.94 
CAT3 16.78 14.64 

Table 5. Averages of number of iterations and iteration in which the best solution is found 

The best solution for CAT1 and CAT2 instances is found long before the last iteration of the CE 
algorithm. On the other hand, more than 70% of the CAT3 instances found their best solution at the last 
or penultimate iteration (47% at the last and 23% at the penultimate iteration). This indicates that in many 
CAT3 instances the CE algorithm stops before it finishes to converge, i.e., the probabilities of the edges 
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are nearly to zero or to one. In spite of this, the CE algorithm improves by 35.69% for class CAT3 when 
compared to the bottleneck heuristic. 

Tables 5 and 6 show other characteristic of the CE method. As opposed to other metaheuristic methods 
such as genetic algorithms, the CE method converges very fast (though it needs to generate a lot of 
solutions at each iteration) (Rubinstein and Kroese, 2004). To see how many iterations (on average) the 
CAT3 instances need in order to converge, these instances were also run for 100, 200 and 300 seconds. 
The results are shown in Table 6. 

 
 

 
 
 
 

Table 6. RTV value and averages of number of iterations and the best solution iteration of the CE application for the 
CAT3 instances. 

When the CAT3 instances are run for 100 seconds, there are still 51% of instances which found their best 
solution at the last or penultimate iteration (31% at the last and 20% at the penultimate). However, the 
results are 31,11% better than the 50-second results. For 200 seconds, there are 23% of instances which 
found their best solution at the last or penultimate iteration (13% at the last and 10% at the penultimate). 
These results are 53.01% better than the 50-second results. Finally, for 300 seconds, there are only 4% of 
instances which found their best solution at the last or penultimate iteration (3% at the last and 1% at the 
penultimate). These results are 57.89% better than the 50-second results and 72.92% better than the 
bottleneck heuristic. 

As the execution time of the greedy heuristics is negligible, a better heuristic (let it be called HB) can be 
constructed by merely running the five heuristics and getting the best solution for each instance. 
Moreover, to solve the RTVP in a real context, an application (let it be called CE-HB) can be constructed 
by running the CE method (over 50 seconds, for example) and HB and getting the best solution for each 
instance. Table 7 shows the averages of the RTV values for the CE application (run for 50 seconds), for 
the bottleneck heuristic, for the HB and for the CE-HB. 

 
 CE Bottleneck HB CE-HB 
CAT1 21.16 107.09 98.40 19.97 
CAT2 106.15 693.38 631.41 86.45 
CAT3 2809.81 4369.44 4200.67 1534.16 

Table 7. Averages of the RTV obtained values 

Although HB, obviously, improves on the bottleneck heuristic, the CE application continues to give much 
better results than HB: 78.45% better for class CAT1, 83.19% better for class CAT2 and 33.11% better for 
class CAT3. Table 7 shows that it is a good idea to solve the RTVP with CE-HB, especially when the CE 
application has no time to converge: for the CAT3 instances, CE-HB gets 45.40% better results than the 
CE method. This is because the CE application needs to converge until the end to obtain good results. 

5 CONCLUSIONS AND FUTURE RESEARCH 

The RTVP proposes a new metric for measuring the regularity of production in a mixed-model assembly 
production line. The RTVP tries to minimize the variability of distances between units of the same model. 
This metric has the advantage that it is very easy to understand for the practitioners, which know the 
importance of obtaining a good sequence in the mixed-model lines. Therefore, the efforts for minimizing 
the response time variability are important. 

A CE method application has been presented to solve the RTVP, an NP-hard combinatorial 
optimization problem. The CE method has created recently for rare-event simulation but was soon 
adapted to solving combinatorial optimization problems. The power and generality of this method consist 
in the fact that the updating rules are often simple and fast. The first contribution of our paper shows how 
the CE method is easily adapted to solve the scheduling problem RTVP. Moreover, this adaptation is a 
good example of how the CE method can be used for other production scheduling problems. 

The effectiveness of the CE method is demonstrated by the computational experiments. The CE 
application is contrasted with the greedy heuristics proposed by Corominas et al. (2007) and the solutions 
obtained with the CE application are considerably better. Thus, the second contribution of our paper 

 RTV  
value 

Number of  
iterations 

Best solution  
iteration 

50 sec. 2809.81 16.78 14.64 
100 sec. 1935.76 27.85 19.10 
200 sec. 1320.24 54.57 25.73 
300 sec. 1183.27 80.91 28.22 
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consists in that the RTV values of the obtained sequences are improved. Although the computation times 
needed by the heuristics are much less than the time needed by the CE application, it is not a disadvantage 
in a production environment because the scheduled sequence is not updated frequently. Moreover, a 
metaheuristic, as it is the CE method, has the advantage that the more time is running, better solutions 
may found and, therefore, it is more probable to obtain the global optimal solution. 

At present, we are developing two applications based on the metaheuristics Electromagnetism-like 
Mechanism and Psycho-Clonal Algorithm in order to find one metaheuristic that improves the CE method 
results. 

As it is said in Section 1, this paper assumes that the processing time of the units does not depend on the 
model. In a future research, different processing time of the units according to the model will be 
considered. 
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Abstract. The Response Time Variability Problem (RTVP) is a combinatorial NP-hard problem which 
has a wide range of real-life applications. It has recently appeared in the literature and has therefore not 
been widely discussed to date. The RTVP has been solved in other works by mixed integer linear 
programming (for small instances) and heuristics, but metaheuristic procedures have not previously been 
used. In this paper, a solution to the RTVP by means of multi-start, GRASP and PSO procedures is 
proposed. We report on our computational experiments and draw conclusions. 
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Introduction 
 
The Response Time Variability Problem (RTVP) consists in sequencing a list of products, events, clients 
and jobs in such a way that the variability in the time they spend waiting for their next turn to obtain the 
resources they need is minimized. This problem has recently been defined in the literature and to date 
very few papers have been published on the subject [1], [2], [3]. 
 
Corominas et al. [2] have proved that the RTVP is a combinatorial NP-hard problem and, with the 
exception of a few special cases, they have in fact found an optimum solution to the problem only for 
small instances. Therefore, solving the problem by means of heuristic and metaheuristic procedures is 
entirely justified. In this paper, a solution to the RTVP is put forward by applying the following three 
procedures: multi-start, GRASP (Greedy Randomized Adaptive Search Procedure) and PSO (Particle 
Swarm Optimization). 
 
The multi-start method is based on generating initial random solutions and on improving each of them to 
find a local optimum, which is usually done through a local search procedure. 
 
GRASP, designed by Feo and Resende [5] in 1989, can be considered to be a variant of the multi-start 
method in which the initial solutions are obtained using directed randomness. They are generated by 
means of a greedy strategy in which random steps are added and the choice of the elements to be included 
in the solution is adaptive. 
 
PSO is a metaheuristic procedure designed by Kennedy and Eberhart [6] in 1995. The original algorithm 
was designed for working with continuous functions of real variables and has obtained good results. 
Furthermore, it has recently been adapted for the purposes of working with combinatorial problems such 
as the travelling salesperson problem [7] or the flowshop problem [8]. In spite of these good results, there 
are not many PSO methods for solving combinatorial optimization problems. 
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The remainder of this paper is set out as follows: Section 1 presents a formal definition of the RTVP; 
Section 2 briefly describes the methods used and how they were adapted to solve the RTVP; Section 3 
explains how the values for the metaheuristic parameters were established; the computational results are 
shown in Section 4; and finally, the conclusions are put forward in Section 5. 
 
 
1. Response Time Variability Problem (RTVP) 
 
The Response Time Variability Problem occurs whenever products, clients or jobs need to be sequenced 
so as to minimize variability in the time between the instants at which they receive the necessary 
resources. 
 
The RTVP occurs in a wide range of real-life applications. For example, it is a common occurrence in the 
automobile industry in the sequencing of models [9] and in the Asynchronous Transfer Mode (ATM) 
when multimedia systems need to broadcast video or sound at a specific time [10]. 
 
These kinds of situations are often considered to be distance-constrained scheduling problems, in which 
the distance between any two given consecutive units of the same product is bounded. However, in the 
RTVP the aim is to minimize variability in the distances between any two consecutive units of the same 
product and to find a feasible solution that optimizes this objective. 
 
The RTVP is formulated as follows. Let n be the number of products, di the number of units of product i 

and D the total number of units ( ∑
=

=
n

i
idD

1
). Let s be a solution of an instance in the RTVP that consists 

of a circular sequence of units ( Dssss 21= ), where sj is the unit sequenced in position j of sequence s. 

For all products i in which 2≥id , let i
kt  be the distance between the positions in which the units k+1 and 

k of product i are found (i.e., the number of positions between them). As the sequence is circular, position 
1 comes immediately after position D; therefore, i

di
t  is the distance between the first unit of product i in a 

cycle and the last unit of the same product in the preceding cycle. Let it  be the average distance between 

two consecutive units of product i (
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For example, let 3=n , 2=Ad , 2=Bd  and 4=Cd ; thus, 8=D , 4=At , 4=Bt  and 2=Ct . A 
feasible solution is the sequence (C, A, C, B, C, B, A, C) where 

( ) ( )[ ] ( ) ( )[ ] ( ) ( ) ( ) ( )[ ] 122822123222246424345 22222222 =++=−+−+−+−+−+−+−+−=RTV  
 
Corominas et al. [2] proved that the RTVP is NP-hard. The RTVP was optimally solved by means of 
mathematical programming, up to 40 units [3], and by means of heuristic procedures plus local 
optimization [2]. 
 
 
2. Multi-start, GRASP and PSO metaheuristic methods 
 
2.1. Multi-start method 
 
The multi-start method consists in generating random solutions, applying local optimization methods and 
preserving the best results. 
 
The pseudocode of the adaptation of the multi-start method is 
 
1. Let the value of the best solution found be ∞=Z . 
2. While (actual time < execution time), do: 
3.  Get a random initial solution X 
4.  Apply the local optimization to X and get X’ 
5.  If value (X’) < Z , then Z = value (X’) 
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Random solutions are generated as follows. For each position from 1 to D in the sequence, we randomly 
obtain which product will be sequenced with a probability equal to the number of units of that type of 
product that remain to be sequenced divided by the total number of units that remain to be sequenced. 
 
The local optimization is applied as follows. A local search is performed iteratively in a neighbourhood 
that is generated by interchanging two consecutive units; the best solution in the neighbourhood is 
chosen; the optimization ends when no neighbouring solution remains that is better than the current 
solution. 
 
2.2. Greedy Randomized Adaptive Search Procedure (GRASP) method 
 
Like the multi-start method, GRASP consists in generating solutions, applying local optimizations and 
preserving the best results. However, the generation of solutions is performed by applying a heuristic with 
directed randomness, which is usually a random variation of a simple greedy heuristic. At each stage in 
the heuristic, the next product to be added to the solution is randomly selected from a list of candidates 
with a probability proportional to the value of an associated index. 
 
The pseudocode of the GRASP adaptation is almost the same as that of the multi-start method: the only 
difference is the way in which the initial solutions are obtained, which is as follows. For each position 
from 1 to D in the sequence, the product to be sequenced is randomly selected from the candidate list with 
a probability proportional to the value of its Webster index. This index, defined in [2], is as follows: let 

2
1=δ  and let ikx be the number of units of product i that have already been sequenced in the sequence 

of length k, k = 0, 1, …; the value of the Webster index of product i to be sequenced in position 1+k  is 

δ+ik

i

x
d

. 

 
The local optimization used is the same as the optimization used in the multi-start method. 
 
The size of the candidate list was set to 5 candidates. 
 
2.3. Particle Swarm Optimization (PSO) method 
 
Kennedy and Eberhart designed the PSO metaheuristic by establishing an analogy to the social behaviour 
of flocks of birds when they search for food. Originally, this metaheuristic was designed to optimize 
continuous functions of real variables [6]. Due to its good performance, it has been adapted for the 
purposes of working with combinatorial problems [7], [8], [11]. 
 
In this kind of algorithm, the particles, which correspond to the birds, have a position (a feasible solution) 
and a velocity (the change in their position), and the set of particles form the swarm, which corresponds 
to the flock. 
 
At each step in the PSO algorithm, the behaviour of a particle is the result of the combination of the 
following three factors: 1) to continue on the path that it is following, 2) to follow the best solution found 
and 3) to go to the best position found by the swarm. The formalization of this behaviour is expressed in 
the following two equations: 

)()( 3211 tttttt XBSPcXBPcvcv −⋅⊗−⋅⊗⋅=+  (1) 

11 ++ += ttt vXX  (2) 

where tv  is the velocity of the particle at time step t; tX  is the position of the particle at time step t; tBP  
is the best position of the particle up to time step t; tBSP  is the best position of the swarm up to time step 
t; and c1, c2 and c3 are the coefficients that weight the importance of the three types of decision. 
 
The values of coefficients c1, c2 and c3 are usually fixed in advance. 
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To apply the PSO algorithm to the RTVP, the elements and the operations of the equations (1) and (2) 
have to be defined. 
 
2.3.1. Position of the particle 
 
As mentioned above, a position represents a feasible solution. The position is represented by a D-length 
array that contains the sequence of D units. 
 
2.3.2. Velocity of the particle 
 
The expression (X2 – X1) represents the difference between two positions and it is the velocity needed to 
go from position X1 to X2. This velocity is an ordered list of transformations (called movements) that must 
be applied to the particle so that it changes from its current position to the other one. Two types of 
movements, each of which had two variations, were considered. 
 
The first type of movement, called M1, is a pair of values (α / j). For each position s in the sequence X1, a 
check is conducted to determine whether the unit in this position s is equal to the unit in position s of 
sequence X2. If they are different, α is the unit in position s of X2 and j is position s. Thus, this movement 
denotes that the unit in position j must be exchanged for the first unit that is equal to α and that is to the 
right of position s. This concept is used to solve the CONWIP problem [11]. 
 
The second type of movement, called M2, is a pair of positions (i, j). These values indicate that the units 
that are sequenced in positions i and j have been exchanged. 
Two examples of the movements that are needed to move to position X2 (A-B-C-A-B-C-A-B-C) from 
position X1 (A-A-A-B-B-B-C-C-C) are shown below. 
 
M1: movements (B/2), (C/3) and (C/6) are needed. 
 A-A-A-B-B-B-C-C-C → (B/2) → A-B-A-A-B-B-C-C-C → (C/3) →  
 A-B-C-A-B-B-A-C-C → (C/6) → A-B-C-A-B-C-A-B-C 
M2: movements (2,4), (3,7) and (6,8) are needed. 
 A-A-A-B-B-B-C-C-C → (2,4) → A-B-A-A-B-B-C-C-C → (3,7) →  
 A-B-C-A-B-B-A-C-C → (6,8) → A-B-C-A-B-C-A-B-C 
 
There would seem to be no difference between M1 and M2, but when two velocities are added (see 
Section 2.3.4) then lists of movements that refute this may appear. 
 
The two variations for each movement are: 1) if only the type of product is used to compare two units 
(this variation is called T and it is used in examples above), and 2) if the unit number is used to compare 
two units and therefore a unit is only equal to itself (this variation is called F). For example, in the case of 
variation F, position A1-A2-A3-B1-B2-B3-C1-C2-C3 (in which the number next to each letter is a unit 
identifier for each product) is different to position A2-A1-A3-B1-B3-B2-C1-C2-C3, but in variation T the 
two positions are equal (they appear as A-A-A-B-B-B-C-C-C). 
 
The difference between two positions using variation F will always be greater than or equal to the 
difference when variation T is applied. 
 
2.3.3. External multiplication of a coefficient by a velocity 
 
The coefficients c1, c2 and c3 yield values of between 0 and 1. When a coefficient is multiplied by a 
velocity, it indicates the probability of each movement that is to be applied. For example, if we multiply 
velocity [(B/2), (C/3), (C/6)] by coefficient 0.6, three random numbers between 0 and 1 are generated for 
comparison with coefficient 0.6; if the values are 0.3, 0.8 and 0.4, then movements (B/2) and (C/6) are 
applied, whereas movement (C/3) is not. The resulting velocity of the multiplication is therefore [(B/2), 
(C/6)]. 
 
2.3.4. Sum of velocities 
 
The sum of two velocities is simply the concatenation of their own list of movements. 
 
2.3.5. Sum of a velocity plus a position 
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The sum of a velocity plus a position gives the same result as applying each movement of the velocity to 
the position. 
 
2.3.6. Pseudocode of the algorithm 
 
1. Initiate the particles with random positions and empty velocities. 
2. While (actual time < execution time), do: 
3.        Update the best swarm position. 
4.        For each particle: 
5.  update its best position and apply the two PSO equations. 
 
The random positions are generated in the same way as the random solutions in the multi-start method. 
 
 
3. Fine-tuning the PSO parameters 
 
Adapting metaheuristics to a specific problem does not end with the definition of the space of solutions or 
the local search; moreover, it is required to set the parameters. The value of the parameters is vital 
because the results of the metaheuristic for each problem are very sensitive to them. To fine-tune is very 
expensive and it is usually done by intuitively testing several values. 
 
For the purposes of this paper, we fine-tuned the parameters using a recent technique called CALIBRA 
[12]. CALIBRA is an automatic configuration procedure based on statistical analysis techniques 
(Taguchi’s fractional factorial experimental designs) coupled with a local search procedure. A set of 60 
representative instances was used to fine-tune the algorithms and a set of 740 units was used to test them. 
The four parameters to be fine-tuned were the number of particles in the swarm and coefficients c1, c2 and 
c3. The range of the values used to fine-tune the algorithms was [5,30] for the number of particles and 
[0,1] for the coefficients. CALIBRA needed 35 hours to fine-tune each algorithm. 
 
 
4. Computational results 
 
As described in Section 2.3.2, depending on the type of movement (M1 or M2) and the variation (T or F), 
we have four PSO algorithms (called M1-F, M1-T, M2-F and M2-T), as well as the multi-start algorithm 
and the GRASP algorithm. 
 
The algorithms ran 740 instances, which were grouped into four classes (185 instances in each class) 
depending on their size. The instances in the first class (called CAT1) were generated using a random 
value of D (number of units) between 25 and 50, and a random value of n (number of products) between 3 
and 15; for the second class (called CAT2), D was between 50 and 100, and n between 3 and 30; for the 
third class (called CAT3), D was between 100 and 200 and n between 3 and 65; and for the fourth class 
(called CAT4), D was between 200 and 500 and n between 3 and 150. 
 
The algorithms were coded in Java and the computational experiments were carried out using a 3.4 GHz 
Pentium IV with 512 Mb of RAM. 
 

Table 1. Averages of the RTV values to be minimized 

 PSO 
Multi-
start GRASP 

 M1F M1T M2F M2T   

CAT1 68.79 66.83 83.14 80.93 11.33 13.90 

CAT2 445.55 509.89 604.27 517.05 48.10 91.64 

CAT3 3050.38 4335.87 4488.44 3888.79 320.63 541.52 

CAT4 28955.82 48917.80 37937.76 30029.34 79823.89 57041.74 
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Firstly, the six algorithms were run for 50 seconds for each instance. Table 1 shows the averages of the 
RTV values to be minimized for each class of instances. 
 
In Table 1 it can be seen that the best results for the three first classes are given by the multi-start method, 
followed by the GRASP method, whereas the PSO algorithm yields the worst results. However, in the 
case of class CAT4, in which the instances are largest, the order is the reverse: the four PSO algorithms 
yield better results than the GRASP method, and the multi-start method gives the worst results. The 
reason for this is that the multi-start method does not have time to locally optimize a single solution for 
87.57% of the instances in the CAT4 class; this happens in the GRASP method for 84.32% of the 
instances. 
 
The second computational experiment consisted in locally optimizing the solutions that were obtained 
with the PSO algorithms in the first computational experiment. The optimization used was the same as the 
multi-start optimization; it stops after 50 seconds if the optimization has not been completed. Table 2 
shows the averages of the RTV values obtained for each class of instances. 
 

Table 2. Averages of the RTV values of the PSO local optimized solutions 

 M1F M1T M2F M2T 

CAT1 21.61 24.43 23.61 25.65 

CAT2 67.42 89.75 77.56 95.14 

CAT3 229.32 406.63 302.06 427.09 

CAT4 15842.12 29604.35 20560.1 15537.62 
 
The results obtained using M1F for the instances in class CAT3 after local optimization are better than the 
results obtained using the multi-start method. Moreover, the optimization times for the first two classes 
are negligible and the average time for the third class is between 4.26 and 5.84 seconds (using M1F and 
M1T, respectively). The instances in the first three classes were all locally optimized. However, there was 
not enough time to optimize all the instances in class CAT4: only 60 instances (32.43%) were locally 
optimized based on the solutions that were obtained using M1F. 
 
Finally, the six procedures were re-run for 200 seconds using the instances in class CAT4, which are the 
most difficult to solve. In the case of PSO algorithms, 100 seconds were spent on obtaining a solution and 
a further 100 seconds, at the most, were spent on locally optimizing the previous solution. Table 3 shows 
the average of the RTV values obtained for class CAT4 (the values in parenthesis were obtained using the 
PSO algorithms before local optimization was applied). 
 

Table 3. Average of the RTV values of the CAT4 instances 

M1F M1T M2F M2T 
multi-
start GRASP 

(24022.52) 
8782.07 

(44697.30) 
21432.13 

(36445.60) 
14892.35 

(29838.01) 
11984.25 39719.71 30020.35 

 
The results show that all the PSO algorithms give better results than the multi-start and GRASP 
algorithms. In this last experiment, 97 instances (52.43%) were locally optimized after applying the M1F 
algorithm. 
 
 
5. Conclusions and future lines of research 
 
In this paper we have presented our solution to the RTVP (a problem that has not been widely researched 
to date), to which six algorithms were applied: one multi-start, one GRASP and four PSO. 
 
The results show that the best procedure is the multi-start for small instances (between 25 and 100 units 
and between 3 and 30 products). However, for bigger instances (between 100 and 500 units and between 
3 and 150 products) the search should be more specific as the four PSO algorithms are much better than 
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the multi-start and GRASP methods and the latter are better than the multi-start methods. Moreover, as 
was to be expected, there is a significant improvement in the solutions that were obtained using the PSO 
algorithm to which local optimization had been applied. 
 
Future research will consist in adapting new metaheuristic procedures, such as for example simulated 
annealing and tabu search. 
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One of the first problems in which has appeared the importance of sequencing regularly is the sequencing 
on the mixed-model assembly production lines at Toyota Motor Corporation under the just-in-time (JIT) 
production system. One of the most important JIT objectives is to get rid of all kinds of waste and 
inefficiency and, according to Toyota, the main waste is due to the stocks. To reduce the stock, JIT 
production systems require to producing only the necessary models in the necessary quantities at the 
necessary time. To achieve this, one main goal, as Monden says [2], is scheduling the units to be 
produced to keep constant consumption rates of the components involved in the production process. 
Miltenburg [7] deals with this scheduling problem and he assumes that models require approximately the 
same number and mix of parts. Thus, he considers only the demand rates for the models. In our 
experience with practitioners of manufacturing industries, we noticed that they usually refer to a good 
mixed-model sequence in terms of having distances between the units for the same model as regular as 

, Rafael PASTOR 
Institute of Industrial and Control Engineering (IOC), Technical University of Catalonia (UPC), 

Barcelona, Spain 

Abstract. The Response Time Variability Problem (RTVP) is an NP-hard scheduling optimization 
problem that has recently appeared in the literature. This problem has a wide range of real-life 
applications in, for example, manufacturing, hard real-time systems, operating systems and network 
environments. The RTVP occurs whenever models, clients or jobs need to be sequenced to minimize 
variability in the time between the instants at which they receive the necessary resources. The RTVP has 
been already solved in the literature with a multi-start and a GRASP algorithm. We propose an improved 
multi-start and an improved GRASP algorithm to solve the RTVP. The computational experiment shows 
that, on average, the results obtained with our proposed algorithms improve on the best obtained results to 
date. 

Keywords. response time variability, regular sequences, scheduling, multi-start metaheuristic, grasp 

Introduction 
 
The Response Time Variability Problem (RTVP) is a scheduling problem that has recently been 
formalized in [1]. The RTVP occurs whenever products, clients or jobs need to be sequenced so as to 
minimize variability in the time between the instants at which they receive the necessary resources. 
Although this optimization problem is easy to formulate, it is very difficult to solve optimally (it is NP-
hard [1]). 
 
The RTVP has a broad range of real-life applications. For example, it can be used to regularly sequencing 
models in the automobile industry [2], to allocating resources in computer multi-threaded systems and 
network servers [3], to broadcasting video and sound data frames of applications over asynchronous 
transfer mode networks [4], in the periodic machine maintenance problem when the distances between 
consecutive services of the same machine are equal [5] and in the collection of waste [6]. 
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possible. Therefore, the metric used in the RTVP reflects the way in which practitioners refer to a 
desirable regular sequence. 
 
In [1], a mixed integer lineal programming (MILP) model to solve the RTVP has been proposed. The 
previous MILP model has been improved in [8], but the practical limit to obtain optimal solutions is 40 
units to be scheduled. Thus, the use of heuristic or metaheuristic methods for solving real-life RTVP 
instances is justified. In [1], five greedy heuristic algorithms have been proposed. Seven metaheuristic 
algorithms -one multi-start, one GRASP (Greedy Randomized Adaptive Search Procedure) and four PSO 
(Particle Swarm Optimization) algorithms- have been proposed in [9]. Finally, eleven PSO metaheuristic 
algorithms were used to solve the RTVP in [10]. 
 
The general scheme of the multi-start metaheuristic consists of two phases. In the first phase an initial 
solution is generated. Then, the second phase improves the obtained initial solution. These two phases are 
iteratively applied until a stop condition is reached. The GRASP metaheuristic can be considered a 
variant of the multi-start metaheuristic in with the initial solutions are obtained using direct randomness. 
They are generated by means of a greedy strategy in which random steps are added and the choice of the 
elements to be included in the solution is adaptive. 
 
This paper is an extension of the work initialized in [9]. The new research done with the PSO 
metaheuristic was reported in [10] and the PSO algorithm called DPSOpoi-cpdyn by the authors is the 
best algorithm to date for solving the RTVP. In this paper we propose an improved multi-start algorithm 
and an improved GRASP algorithm. On average, the proposed algorithms improve strongly on previous 
results. 
 
The rest of this paper is organized as follows. Section 1 presents a formal definition of the RTVP. Section 
2 explains the existing multi-start and GRASP for solving the RTVP and proposes two new improved 
multi-start and GRASP algorithms. Section 3 provides the computational experiment and the comparison 
with the best algorithm to solve the RTVP (DPSOpoi-cpdyn) and the existing multi-start and GRASP 
algorithms. Finally, some conclusions are given in Section 4. 
 
 
1. Response Time Variability Problem (RTVP) 
 
The aim of the Response Time Variability Problem (RTVP) is to minimize the variability of the distances 
between any two consecutive units of the same model in the sequence. 
 
The RTVP is stated as follows. Let n be the number of models, id  the number of units of the model i (i = 

1,…,n) to be scheduled and D the total number of units (
1

n

i
i

D d
=

= ∑ ). Let s be a solution of an instance of 

the RTVP. It consists in a circular sequence of units 1 2( ... )Ds s s s= , where sj is the unit sequenced in 
position j of sequence s. For all model i in which 2id ≥ , let i

kt  be the distance between the positions in 
which the units k + 1 and k of the model i are found (where the distance between two consecutive 
positions is considered equal to 1). Since the sequence is circular, position 1 comes immediately after 
position D; therefore, 

i

i
dt  is the distance between the first unit of the model i in a cycle and the last unit of 

the same model in the preceding cycle. Let it  be the average distance between two consecutive units of 

the model i ( )i
i

Dt d= . For all model i in which 1id = , 1
it  is equal to it . The objective is to minimize the 

metric Response Time Variability (RTV), which is defined by the following 

expression: 2

1 1
( )

idn
i
k i

i k
RTV t t

= =

= −∑∑ . 

 
For example, let 3n = , 2Ad = , 2Bd =  and 4Cd = ; thus, 8D = , 4At = , 4Bt =  and 2Ct = . Any 
sequence such that contains exactly di times the symbol i ( )i∀  is a feasible solution. For example, the 
sequence (C, A, C, B, C, B, A, C) is a solution, where  

( ) ( )( ) ( ) ( )( ) ( ) ( ) ( ) ( )( )2 2 2 2 2 2 2 25 4 3 4 2 4 6 4 2 2 2 2 3 2 1 2 1 2 .RTV = − + − + − + − + − + − + − + − =  
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As explained in the introduction, the best RTVP results recorded to date were obtained by using a PSO 
algorithm called DPSOpoi-cpdyn [10]. PSO is a population metaheuristic algorithm based on the social 
behaviour of flocks of birds when they search for food. The population or swarm is composed of particles 
(birds), whose attributes are an n-dimensional real point (which represents a feasible solution) and a 
velocity (the movement of the point in the n-dimensional real space). The velocity of a particle is 
typically a combination of three types of velocities: 1) the inertia velocity (i.e., the previous velocity of 
the particle); 2) the velocity to the best point found by the particle; and 3) the velocity to the best point 
found by the swarm. These components of the particles are modified iteratively by the algorithm as it 
searches for an optimal solution. Although the PSO algorithm was originally designed for n-dimensional 
real spaces, DPSOpoi-cpdyn is adapted to work with a sequence that represents the solution. Moreover, 
DPSOpoi-cpdyn introduces random modifications to the points of the particles with a frequency that 
changes dynamically according to the homogeneity of the swarm (for more details, see [10]). 
 
 
2. The multi-start and GRASP algorithms 
 
2.1. The multi-start algorithm 
 
The multi-start metaheuristic is a general scheme that consists of two phases. The first phase obtains an 
initial solution and the second phase improves the obtained initial solution. These two phases are applied 
iteratively until a stop condition is reached. This scheme has been first used at the beginning of 80’s [11]. 
The generation of the initial solution, how to improve them and the stop condition can be very simple or 
very sophisticated. The combination of these elements gives a wide variety of multi-start methods. For a 
good review of multi-start methods, see [12] and [13]. 
 
The multi-start algorithm proposed in [9] for solving the RTVP is based on generating, at each iteration, a 
random initial solution and on improving it by means of a local search procedure. The algorithm stops 
after it has run for a preset time. Random solutions are generated as follows. For each position, a model to 
be sequenced is randomly chosen. The probability of each model is equal to the number of units of this 
model that remain to be sequenced divided by the total number of units that remain to be sequenced. The 
local search procedure used is applied as follows. A local search is performed iteratively in a 
neighbourhood that is generated by interchanging each pair of two consecutive units of the sequence that 
represents the current solution; the best solution in the neighbourhood is chosen; the optimization ends 
when no neighbouring solution is better than the current solution. 
 
If the quality of the initial solutions is low, the computing time required by the local search to find the 
local optimum is increased. For big RTVP instances, few iterations may be done because of the available 
execution time. An easy and fast way to obtain better initial solutions without giving up the simplicity of 
the multi-start algorithm could be generating, at each iteration, P random solutions and get as the initial 
solution the best of them, that is, applying the local search only for the best solution of the P random 
solutions. In this paper we propose a parametric multi-start algorithm to solve the RTVP that has one 
parameter: the number of random solutions generated at each iteration (P). Figure 1 shows the 
pseudocode of our algorithm. 
 

Figure 1. Pseudocode of the proposed multi-start algorithm 
 

 
 
As it has been mentioned, when the execution time of the algorithm is reached, the algorithm is 
immediately stopped (that is, the current local optimization is also stopped). 

  1. Set the value of the parameter P 
  2. Let the best solution found X  initially be void 
  3. Let the RTV value of the best solution found be Z = ∞  
  4. While execution time is not reached do: 
  5. Generate P random solutions 
  6. Let X  the best solution generated at step 5 
  7. Apply the local optimization to X  and get optX  
  8. If ( )optRTV X  < Z , then optX X= and ( )optZ RTV X=  
  9. End While 

   



 200 

 
2.2. The GRASP algorithm 
 
The GRASP metaheuristic was designed in 1989 by Feo and Resende [14] and can be considered as a 
multi-start variant. However, the generation of the initial solution is performed by means of a greedy 
strategy in which random steps are added and the choice of the elements to be included in the solution is 
adaptive. 
 
The random step in the GRASP proposed in [9] consists of selecting the next model to be sequenced from 
a set called candidate list; the probability of each candidate model is proportional to the value of an 
associated index. The index used in [9] is the Webster index, which is evaluated as follows. Let xik be the 
number of units of model i that have been already sequenced in the sequence of length k, k = 0, 1, … 
(assuming xi0 = 0); the value of the Webster index of model i to be sequenced in position k + 1 is 

( 0.5)
i

ik

d
x + . The local optimization used is the same as the optimization used in the multi-start 

algorithm. 
 
In this paper we propose to use another index that is evaluated as follows. Let xik be the number of units 
of model i that have been already sequenced in the sequence of length k, k = 0, 1, … (assuming xi0 = 0), di 
the number of units of the model i to be sequenced and D the total number of units to be sequenced; the 
value of our index of the model i to be sequenced in position k + 1 is: 

( 1) i
ik

k d
x

D
+ ⋅

−  (1) 

If there is a tie, then the models with lower di are first added in the candidate list. 
 
2.3. Fine-tuning of the algorithm parameters 
 
Fine-tuning the parameters of a metaheuristic algorithm is almost always a difficult task. Although the 
parameter values are extremely important because the results of the metaheuristic for each problem are 
very sensitive to them, the selection of parameter values is commonly justified in one of the following 
ways [15]: 1) “by hand” on the basis of a small number of experiments that are not specifically 
referenced; 2) by using the general values recommended for a wide range of problems; 3) by using the 
values reported to be effective in other similar problems; or 4) by choosing values without any 
explanation. 
 
Adenso-Díaz and Laguna [15] proposed a new technique called CALIBRA for fine-tuning the parameters 
of heuristic and metaheuristic algorithms. CALIBRA is based on Taguchi’s fractional factorial 
experimental designs coupled with a local search procedure. 
 
CALIBRA has been chosen for fine-tuning the parameters of our proposed parametric multi-start 
algorithm, our proposed GRASP algorithm and the GRASP algorithm proposed in [9] (the multi-start 
algorithm proposed in [9] has not parameters) using a set of 60 representative training instances 
(generated as explained in Section 3). The following parameter values are obtained: for the parametric 
multi-start algorithm, P = 1,500, and for both GRASP algorithms, size of the candidate list = 3. 
 
The size of the candidate list used in the GRASP algorithm proposed in [9] was 5, but the computational 
experiment showed that slightly better results are obtained, on average, using the value returned by 
CALIBRA. Thus, the results shown in the next section are referred only to the ones obtained using a size 
of the candidate list equal to 3. 
 
 
3. Computational experiment 
 
Our two proposed algorithms are compared with the PSO algorithm called DPSOpoi-cpdyn [10], which is 
the most efficient algorithm published to date to solve non-small RTVP instances. We compare also our 
algorithms with the multi-start and the GRASP algorithms proposed in [9] in order to compare the 
improvements achieved with the modifications that we have proposed. In what follows in this section, we 
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refer to the multi-start and GRASP algorithms proposed in [9] as MS-old and GR-old, respectively; and 
we refer to our proposed multi-start and GRASP algorithms as MS-new and GR-new, respectively. 
 
The computational experiment was carried out for the same instances used in [9] and [10]. That is, the 
algorithms ran 740 instances which were grouped into four classes (185 instances in each class) according 
to their size. The instances in the first class (CAT1) were generated using a random value of D (total 
number of units) uniformly distributed between 25 and 50, and a random value of n (number of models) 
uniformly distributed between 3 and 15; for the second class (CAT2), D was between 50 and 100 and n 
between 3 and 30; for the third class (CAT3), D was between 100 and 200 and n between 3 and 65; and 
for the fourth class (CAT4), D was between 200 and 500 and n between 3 and 150. For all instances and 
for each model i = 1,…,n, a random value of di (number of units of model i) was between 1 and 

1
2.5

D n− +  such that 
1

n

i
i

d D
=

=∑ . All algorithms were coded in Java and the computational experiment 

was carried out using a 3.4 GHz Pentium IV with 1.5 GB of RAM. 
 
For each instance, all algorithms were run for 50 seconds. Table 1 shows the averages of the RTV values 
to be minimized for the global of 740 instances and for each class of instances (CAT1 to CAT4). 
 

Table 1. Averages of the RTV values for 50 seconds 
 

 MS-new GR-new DPSOpoi-
cpdyn MS-old GR-old 

Global 2,106.01 2,308.69 4,625.54 21,390.40 14,168.83 

CAT1 11.56 13.00 16.42 12.08 15.47 

CAT2 38.02 60.45 51.34 44.36 88.48 

CAT3 154.82 270.93 610.34 226.90 510.44 

CAT4 8,219.65 8,890.37 17,824.04 85,278.25 56,060.92 
 
For the global of all instances, the results of our multi-start and GRASP algorithm are, on average, 
54.47% and 50.09%, respectively, better than DPSOpoi-cpdyn, which was to date the best algorithm to 
solve the RTVP. Moreover, MS-new is the best algorithm, on average, for small (CAT1 and CAT2), 
medium (CAT3) and big (CAT4) instances. Comparing MS-new with MS-old by class, we can observe in 
Table 1 that MS-new is 4.30%, 14.29%, 31.77% and 90.36% better than MS-old for CAT1, CAT2, CAT3 
and CAT4 instances, respectively; and GR-new is 15.97%, 31.68%, 46.92% and 84.14% better than GR-
old for CAT1, CAT2, CAT3 and CAT4 instances, respectively. As we expected, the bigger are the 
instances, the bigger is the improvement obtained. 
 
To complete the analysis of the results, their dispersion is observed. A measure of the dispersion (let it be 
called σ) of the RTV values obtained by each metaheuristic mh (mh = {MS-new, GR-new, DPSOpoi-
cpdyn, MS-old, GR-old}) for a given instance, ins, is defined as follows: 

2( ) ( )

( )( , )
mh best

ins ins
best

ins

RTV RTV
mh ins

RTV
σ

 −
=  

 
 (2) 

where ( )mh
insRTV  is the RTV value of the solution obtained with the metaheuristic mh for the instance ins, 

and ( )best
insRTV  is, for the instance ins, the best RTV value of the solutions obtained with the four 

metaheuristics. Table 2 shows the average σ dispersion for the global of 740 instances and for each class 
of instances. 
 
 
 
 
 
 



 202 

Table 2. Average σ dispersion regarding the best solution found for 50 seconds 

 MS-
new 

GR-new DPSOpoi-
cpdyn MS-old GR-old 

Global 2.55 6,650.83 4,931.36 202,910.13 268,299.58 

CAT1 0.08 0.26 0.87 0.21 0.79 

CAT2 0.03 1.94 0.56 0.18 6.26 

CAT3 0.05 3.07 13.80 0.50 14.18 

CAT4 10.06 26,598.04 19,710.23 811,639.64 1,073,177.09 
 
Observing the results in Table 2 by class, we can see that MS-new has always a very small dispersion far 
followed by the other algorithms. That means that MS-new has a very stable behaviour independently of 
the size of the instances. For small and medium instances (CAT1, CAT2 and CAT3), GR-new has also a 
stable behaviour, but for some big instances (CAT4) GR-new obtains very bad RTV values. Note that 
although the RTV values of the CAT4 instances obtained with GR-new are, on average, better than the 
values obtained with DPSOpoi-cpdyn, the dispersion of DPSOpoi-cpdyn is lower than the dispersion of 
GR-new. But comparing the GR-new dispersion with the GR-old dispersion, we can see GR-new has a 
much more stable behaviour than GR-old. 
 
A computing time of 50 seconds may not be long enough to converge for the largest instances (CAT4 
instances). Table 3 shows the averages of the RTV values for the global of all instances and for each class 
of instances (CAT1 to CAT4) obtained when the algorithms are run for 1000 seconds. 
 

Table 3. Averages of the RTV values for 1,000 seconds 

 MS-
new 

GR-new DPSOpoi-
cpdyn MS-old GR-old 

Global 169.25 301.90 1,537.34 1,378.59 1,495.12 

CAT1 10.51 11.56 14.34 10.93 13.59 

CAT2 31.21 50.45 46.55 35.48 75.08 

CAT3 123.27 227.50 143.96 160.67 428.86 

CAT4 512.02 918.10 5,944.51 5,307.25 5,462.95 
 

Figure 2. Average of the RTV values obtained over the computing time 

 
 
With 1,000 seconds of execution time, which seems time enough for the convergence of the five 
algorithms (see Figure 2), MS-new is for the global of all instances 43.94%, 88.99%, 87.72% and 88.68% 
better than the GR-new, DPSOpoi-cpdyn, MS-old and GR-old, respectively; and GR-new is 80.36%, 
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78.10% and 79.81% better than DPSOpoi-cpdyn, MS-old and GR-old, respectively. Although DPSOpoi-
cpdyn, MS-old and GR-old improve a lot their average results, MS-new and GR-new are clearly better. 
 
Finally, the real-life industrial example presented in [6] was solved  using MS-new, GR-new and 
DPSOpoi-cpdyn. This example has the following characteristics: n = 14, d = (2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 
4, 5, 5) and, therefore, D = 46. The three algorithms were run ten times with an execution time limit of 
1,000 seconds. MS-new found the optimal solution in all cases and the minimum, average and maximum 
computing times were 3.38, 8.74 and 25.03 seconds, respectively. GR-new found also the optimal 
solution in all cases and the minimum, average and maximum computing times were 1.08, 26.53 and 
101.86 seconds, respectively. In contrast, DPSOpoi-cpdyn found the optimal solution in only two cases, in 
computing times of 593.94 and 960.25 seconds. 
 
 
4. Conclusions and future research 
 
The RTVP occurs in diverse environments as manufacturing, hard real-time systems, operating systems 
and networks environments. In the RTVP, the aim is to minimize variability in the distances between any 
two consecutive units of the same model, i.e. to distribute the units as regular as possible. Since it is a NP-
hard scheduling optimization problem, heuristic and metaheuristic methods are needed. 
 
This paper is an extension of the work started in [9], in which one multi-start, one GRASP and four PSO 
algorithms were proposed. New PSO algorithms to solve the RTVP have been published in [10]. The best 
of them, DPSOpoi-cpdyn, obtains the best results to date. In this paper, an improved multi-start algorithm, 
MS-new, and an improved GRASP algorithm, GR-new, are proposed to solve the RTVP.  
 
The computational experiment shows clearly that the proposed algorithms obtain, on average, strongly 
better solutions than DPSOpoi-cpdyn independently of the size of the RTVP instance. Moreover, MS-new, 
the proposed algorithm that obtains the best solutions, has always a very stable behaviour. Instead, GR-
new and DPSOpoi-cpdyn have not. Therefore, it is advisable to use always MS-new for solving the RTVP. 
 
Although the RTVP is hard to solve, it is interesting to try to solve it by means of exact procedures to 
know the largest size of the RTVP instances that can be solved optimally in a practical computing time. 
The two exact procedures proposed in the literature are MILP models [1, 8]. Since the use of Constraint 
Programming (CP) to solving the RTVP has not been proposed yet in the literature, applying CP to RTVP 
seems a promising future line of research.  
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Abstract: The Response Time Variability Problem (RTVP) is a NP-hard 
combinatorial scheduling problem which has recently reported and formalised in the 
literature. This problem has a wide range of real-world applications in mixed-model 
assembly lines, multi-threaded computer systems, network environments and others. 
The RTVP arises whenever products, clients or jobs need to be sequenced in such a 
way that the variability in the time between the points at which they receive the 
necessary resources is minimized. The best results in the literature for the RTVP 
were obtained with a psychoclonal algorithm. We propose a Variable 
Neighbourhood Search (VNS) algorithm for solving the RTVP. The computational 
experiment shows that, on average, the results obtained with the proposed algorithm 
improve strongly on the best obtained results to date. 

 

1. INTRODUCTION 

The Response Time Variability Problem (RTVP) is a combinatorial scheduling problem that has been 
first time reported in Waldspurger and Weihl (1994) and was first time formalised in Corominas et al. 
(2007). The RTVP occurs whenever products, clients or jobs need to be sequenced so as to minimize 
variability in the time between the instants at which they receive the necessary resources. Although this 
combinatorial optimization problem is easy to formulate, it is NP-hard (Corominas et al., 2007). 

The RTVP has a broad range of real-life applications. For example, it can be used to regularly sequence 
models in the automobile industry (Monden, 1983), to resource allocation in computer multi-threaded 
systems and network servers (Waldspurger and Weihl, 1994, 1995), to broadcast video and sound data 
frames of applications over asynchronous transfer mode networks (Dong et al., 1998), in the periodic 
machine maintenance problem when the distances between consecutive services of the same machine are 
equal (Anily et al., 1998) and in the collection of waste (Herrmann, 2007). 

One of the first problems in which has appeared the importance of sequencing regularly is at the 
sequencing on the mixed-model assembly production lines at Toyota Motor Corporation under the just-in-
time (JIT) production system. One of the most important JIT objectives is to get rid of all kinds of waste 
and inefficiency and, according to Toyota, the main waste is due to the stocks. To reduce the stock, JIT 
production systems require to producing only the necessary models in the necessary quantities at the 



 214 

necessary time. To achieve this, one main goal, as Monden (1983) says, is scheduling the units to be 
produced to keep constant consumption rates of the components involved in the production process. 
Miltenburg (1989) deals with this scheduling problem and assumes that models require approximately the 
same number and mix of parts. Thus, only the demand rates for the models are considered. In our 
experience with practitioners of manufacturing industries, we noticed that they usually refer to a good 
mixed-model sequence in terms of having distances between the units for the same model as regular as 
possible. Therefore, the metric used in the RTVP reflects the way in which practitioners refer to a 
desirable regular sequence 

Corominas et al. (2007) proposed a mixed integer linear programming (MILP) model to solve the RTVP. 
Corominas et al. (2009) proposed an improved MILP model and increased the practical limit for 
obtaining optimal solutions from 25 to 40 units to be scheduled. Thus, the use of heuristic or 
metaheuristic methods for solving real-life instances of the RTVP is justified. Waldspurger and Weihl 
(1995) used the Jefferson method of apportionment (Balinski and Young, 1982), a greedy heuristic 
algorithm which they renamed as the stride scheduling technique. Herrmann (2007) solved the RTVP by 
applying a heuristic algorithm based on the stride scheduling technique. Corominas et al. (2007) proposed 
four other greedy heuristic algorithms. García et al. (2006) proposed six metaheuristic algorithms: a 
multi-start, a greedy randomized adaptive search procedure (GRASP) and four variants of a discrete 
particle swarm optimization (PSO) algorithm. Other ten discrete PSO algorithms were proposed in 
García-Villoria and Pastor (2007). A cross-entropy method approach was used in García-Villoria et al. 
(2007). The Electromagnetism-like Mechanism (EM) was proposed to solve the RTVP in García-Villoria 
and Pastor (2008a). Finally, the best results recorded to date have been obtained with a Psychoclonal 
algorithm (García-Villoria and Pastor, 2008b). 

To improve the results obtained in prior studies, we propose to use a Variable Neighbourhood Search 
(VNS)-based algorithm for solving the RTVP. VNS is a metaheuristic used to solve combinatorial 
optimization problems (Mladenović and Hansen, 1997), as it is the RTVP. This metaheuristic is based on 
changing systematically the neighbourhood during a local search. The proposed VNS algorithm is 
compared with the most efficient procedure for solving non-small instances published in the literature, 
which is a psychoclonal algorithm proposed in García-Villoria and Pastor (2008b). On average, the 
proposed VNS algorithm improves more than 61% on the best previous results reported in the literature. 

The remainder of the paper is organized as follows: Section 2 presents a formal definition of the RTVP 
and describes briefly the psychoclonal algorithm used for solving the problem. Section 3 proposes a VNS 
algorithm for solving the RTVP. Section 4 presents the computational experiment and the comparison 
between our algorithm and the psychoclonal algorithm. Finally, the conclusions are given in Section 5. 

 

2. THE RESPONSE TIME VARIABILITY PROBLEM 

The RTVP is designed to minimize variability in the distances between any two consecutive units of the 
same model and is formulated as follows. Let n be the number of models, id  the number of units of 
model i to be scheduled (i = 1,…,n), and D the total number of units (

1.. ii n
D d

=
= ∑ ). Let s be a solution 

of an instance in the RTVP. It consists in a circular sequence of units ( 1 2 ... Ds s s s= ), where sj is the unit 
sequenced in position j of sequence s. For each model i in which 2id ≥ , let i

kt  be the distance between 
the positions in which units k + 1 and k of model i are found. We consider the distance between two 
consecutive positions to be equal to 1. Since the sequence is circular, position 1 comes immediately after 
position D; therefore, 

i

i
dt  is the distance between the first unit of model i in a cycle and the last unit of the 

same model in the preceding cycle. Let it  be the average distance between two consecutive units of 
model i ( i it D d= ). Note that for each model i in which 1id = , 1

it  is equal to it . The aim is to minimize 
the metric response time variability (RTV) which is defined by the following expression:  

 

( )2

1 1
.

idn
i
k i

i k
RTV t t

= =

= −∑∑  (1) 
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For example, let n = 3, dA = 2, dB = 2 and dC = 4; thus, D = 8, 4At = , 4Bt =  and 2Ct = . Any sequence 
that contains model i ( )i∀  exactly di times is a feasible solution. For example, the sequence (C, A, C, B, 
C, B, A, C) is a feasible solution, where: 

( ) ( )( ) ( ) ( )( ) ( ) ( ) ( ) ( )( )2 2 2 2 2 2 2 25 4 3 4 2 4 6 4 2 2 2 2 3 2 1 2 1 2 .RTV = − + − + − + − + − + − + − + − =   

As has been introduced in Section 1, the psychoclonal algorithm proposed in García-Villoria and Pastor 
(2008b) is the best procedure to date for solving the RTVP. Psychoclonal is an evolutionary metaheuristic 
first time proposed in Tiwari et al. (2005). According to the authors, this metaheuristic inherits its 
characteristics from the need hierarchy theory of Maslow (1954) and the clonal selection principle 
(Gaspar and Collard, 2000). The basic scheme of the psychoclonal metaheuristic is the following: 1) An 
initial population of solutions is generated and a function to evaluate the fitness of a solution is given; 2) 
The best solutions are selected and cloned in a number proportional to their fitness; 3) The generated 
clones are hypermutated (hypermutation is an operator that modifies the solution with a rate inversely 
proportional to the fitness of the solution); 4) A new population is formed by the best clones and by new 
solutions generated at random; 5) Steps 2-4 are repeated until a stop condition is reached. This 
metaheuristic was adapted to solve the RTVP (for a more detailed explanation, see García-Villoria and 
Pastor, 2008b). 

 

3. A VNS ALGORITHM FOR SOLVING THE RTVP 

Variable Neighbourhood Search (VNS) is a metaheuristic proposed recently in Mladenović and Hansen 
(1997) for combinatorial optimization. The basic idea of VNS is applying a systematic change of 
neighbourhood within a local search method (Mladenović and Hansen, 1997). According to the strategies 
used in changing neighbourhoods and in selecting the neighbour to be the current solution, several 
extensions have been proposed, but most of them keep the simplicity of the basic idea (Mladenović et al., 
2003). VNS is based on the following three simple facts (Hansen and Mladenović, 2003): 1) a local 
minimum with respect to one neighbourhood structure is not necessarily so with another, 2) a global 
minimum is a local minimum with respect to all possible neighbourhood structures, and 3) It have been 
observed empirically that for many problems local minima with respect to one or several neighbourhood 
structures are relatively close to each other. 

In the basic VNS proposed in (Mladenović and Hansen, 1997) there is a local search step, which can be 
costly for large instances of some problems (Hansen and Mladenović, 2003). In Hansen and Mladenović 
(1998) is proposed the Reduced VNS (RVNS), in which the local search step is removed. In this paper we 
propose a RVNS-based algorithm for solving the RTVP because it is shown in García et al. (2006) that 
the local search proposed in their paper for large RTVP instances is very costly. The general scheme of 
RVNS is shown in Fig. 1. 

 

 

 

 

 

 

 

 
 

Fig. 1. General scheme of RVNS 

For the proposed RVNS algorithm, we have selected the following three neighbourhood structures: 1) 
interchanging each pair of two consecutive units of the sequence that represents the current solution (N1), 
2) interchanging each  

pair of consecutive or no-consecutive units of the sequence (N2), and 3) inserting each unit in each 
position of the sequence (N3). Note that all local optima with respect N2 are always local optima with 

1.  Select the set of neighbourhood structures Nk 
(k=1..kmax), where kmax is the cardinality of the set 

2.  Let S an initial solution 
3.  While stopping condition is not reached do: 
4. Set k = 1 
5. While k ≤ kmax do: 
6.  Select a solution S’ at random from Nk(S) 
7.  If the acceptance criteria is satisfied, then set S 

= S’ and set k = 1; otherwise set k = k + 1 
8. End While 
9.   End While 
10. Return S 
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respect N1 because the neighbourhood of a solution S with respect to N1 is a subset of the neighbourhood 
of S with respect to N2. Therefore, if there is not a neighbour of S with respect to N2 that is better than S, 
there is not either a neighbour of S with respect to N1 better than S. Thus, it seems that the first 
neighbourhood is unnecessary according to the aforementioned first and second facts in which are based 
VNS. To justify the addition of this neighbourhood, Section 4 will show the benefits of adding N1 to our 
RNVS algorithm. The initial RTVP solution is generated as in the psychoclonal algorithm (García-
Villoria and Pastor, 2008b). That is, for each position, a model to be sequenced is randomly chosen. The 
probability of each model is equal to the number of units of this model that remain to be sequenced 
divided by the total number of units that remain to be sequenced. The stopping condition of the algorithm 
is a preset time run. The original acceptance criteria used in Hansen and Mladenović (1998) is that the 
neighbour solution S’ was better than the current solution S. But the chosen acceptance criteria for our 
algorithm is that the neighbour solution S’ was better than or equal to the current solution S, as it is done 
in Tasgetiren et al. (2007). Its aim is to facilitate escaping from local optima. 

 

4. COMPUTATIONAL EXPERIMENT 

The psychoclonal algorithm proposed in García-Villoria and Pastor (2008b) is the most efficient 
algorithm in the literature for solving non-small RTVP instances. Therefore, we compared the 
performance of our proposed RVNS algorithm with that psychoclonal algorithm. In what follows of this 
section, we refer to our RVNS algorithm as RVNS(1,2,3) and the psychoclonal algorithm as Psycho. In 
order to justify the use of the neighbourhood N1, we run also a RVNS algorithm without this 
neighbourhood structure (i.e., only N2 and N3 are used); we refer to this algorithm as RVNS(2,3). 

The computational experiment was carried out for the same instances and conditions that were used in 
García-Villoria and Pastor (2008b). That is, the algorithms were run for 740 instances which were 
grouped into four classes (185 instances in each class) according to size. The instances in the first class 
(CAT1) were generated using a random value of D (number of units) distributed uniformly between 25 
and 50, and a random value of n (number of models) distributed uniformly between 3 and 15; for the 
second class (CAT2), D was between 50 and 100 and n between 3 and 30; for the third class (CAT3), D 
was between 100 and 200 and n between 3 and 65; and for the fourth class (CAT4), D was between 200 
and 500 and n between 3 and 150. For all instances and for each unit i = 1,…,n, a random value of di 
(number of units of model i) was between 1 and ( )1 2.5D n− +  so that 

1.. ii n
d D

=
=∑ . The two 

algorithms were coded in Java and the computational experiment was carried out using a 3.4 GHz 
Pentium IV with 1.5 GB of RAM. 

All algorithms were run for 50 seconds for each instance. Table 1 shows the averages of the RTV values 
to be minimized for the total of 740 instances and for each class of instances (CAT1 to CAT4) obtained 
with the algorithms. 

 

Table 1. Average RTV values for 50 seconds 
 RVNS(1,2,3) RVNS(2,3) Psycho 

Total 63.96 86.78 235.68 
CAT1 10.73 10.63 14.92 
CAT2 23.69 23.23 44.25 
CAT3 51.80 53.39 137.07 
CAT4 169.64 259.86 746.50 

 
Table 1 shows that our proposed algorithm RVNS(1,2,3) is, on average,72.86% better than the results 
obtained using the best method proposed in the literature. Moreover, for each type of class of instances, 
the RVNS(1,2,3) algorithm always obtains better results than Psycho: 28.08%, 46.46%, 62.21% and 77.28% 
for CAT1, CAT2, CAT3 and CAT4 instances, respectively. We can see that the larger is the RTVP instance 
(and, therefore, harder to be solved), better is RVNS(1,2,3) compared with Psycho. Comparing RVNS(1,2,3) 
with RVNS(2,3), it is observed in Table 1 that very similar results are obtained for the small and medium 
instances (CAT1, CAT2 and CAT3 instances); on the other hand, an improvement of 34.72% is obtained 
for the largest  instances (CAT4 instances) when the neighbourhood N1 is used. 

Table 2 shows the number of times that each algorithm reaches the best RTV value obtained by either 
one. The results are shown for the total number of 740 instances and for each class. 
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Table 2. Number of times that the best solution is reached for 50 seconds 
 RVNS(1,2,3) RVNS(2,3) Psycho 

Total 587 443 57 
CAT1 162 168 51 
CAT2 140 144 6 
CAT3 124 94 0 
CAT4 161 37 0 

 

As expected from the results in Table 1, Table 2 shows that RVNS(1,2,3) reaches the best solution more 
times. For the total number of instances, the best solution is obtained in 79.32%, 59.86% and 7.7% of 
cases by RVNS(1,2,3), RVNS(2,3) and Psycho, respectively. 

To complete the analysis of the results, their dispersion is observed. A measure of the dispersion (let it be 
called σ) of the RTV values obtained by each algorithm alg = { RVNS(1,2,3), RVNS(2,3), Psycho } for a 
given instance, ins, is defined as follows: 

 

2( ) ( )

( )( , )
alg best

ins ins
best

ins

RTV RTValg ins
RTV

σ
 −

=  
 

 (2) 

 
where ( )alg

insRTV  is the RTV value of the solution obtained with the algorithm alg for the instance ins, and 
( )best

insRTV  is, for the instance ins, the best RTV value of the solutions obtained with the three algorithms. 
Table 3 shows the average σ dispersion for the total of 740 instances and for each class of instances. The 
low dispersion of the two RVNS algorithms for all classes of instances means that both algorithms have a 
very stable behaviour. That is, when an RVNS algorithm does not obtain the best RTV value for a given 
instance, it obtains a value that is close to it. Psycho-RTVP has a quite stable behaviour, but its dispersion 
is much bigger than the dispersion of the RVNS algorithms because the Psycho performance is worse. 

 

Table 3. Average σ dispersion regarding the best solution found for 50 seconds 
 RVNS(1,2,3) RVNS(2,3) Psycho 

Total 0.018 0.162 8.059 
CAT1 0.030 0.020 1.003 
CAT2 0.024 0.009 1.748 
CAT3 0.015 0.029 5.442 
CAT4 0.004 0.592 24.043 

 
The difference of the results obtained with the three algorithms may be due to that 50 seconds is not time 
enough for the convergence of the algorithms for all instances, especially the largest ones. Fig. 2 shows 
that 1,000 computing seconds seems long enough for all algorithms to converge. 

 

Fig. 2. Average RTV values over the computing time 
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Tables 4 and 5 shows the average RTV values and the average σ dispersion, respectively, for the total of 
740 instances and for each class of instances obtained for 1,000 seconds. 

 

Table 4. Average RTV values for 1,000 seconds 
 RVNS(1,2,3) RVNS(2,3) Psycho 

Total 62.24 62.06 161.60 
CAT1 10.73 10.63 14.90 
CAT2 23.29 23.19 39.90 
CAT3 51.40 51.46 122.38 
CAT4 163.15 162.95 469.23 

 

Table 5. Average σ dispersion regarding the best solution found for 1,000 seconds 
 RVNS RVNS(2,3) Psycho 

Total 0.026 0.019 4.100 
CAT1 0.030 0.020 0.994 
CAT2 0.024 0.008 1.256 
CAT3 0.024 0.024 3.984 
CAT4 0.026 0.026 10.166 

 
Using 1,000 seconds of computing time, Psycho improves its average RTV value a 31.43% regarding the 
values obtained with 50 computing seconds. Nevertheless, RVNS(1,2,3) is still 61.49% better on average 
for all instances than Psycho, and 27.99%, 41.63%, 58.00% and 65.23% better for CAT1, CAT2, CAT3 
and CAT4 instances, respectively. Moreover, we can see in Table 5 that RVNS(1,2,3) still obtains the best 
solutions or solutions very close to the best. Note that 50 seconds is almost enough time for RVNS(1,2,3) to 
converge, since it improves, on average, only 2.69% with 1,000 computing seconds. 
Comparing RVNS(1,2,3) versus RVNS(2,3) for the total of all instances and for each class of instances, we 
can see in Table 4 and 5 that there are not significant differences between the quality of the solutions 
obtained with both algorithms. We expected that RVNS(1,2,3) and RVNS(2,3) give similar results when both 
algorithms have time to converge. The reason is that the only difference between the two algorithms is 
that the neighbourhood structure N1 is not included in RVNS(2,3) but, as it has been explained in Section 3, 
all local optima with respect the neighbourhood structure N2 (used in both algorithms) are always local 
optima with respect N1, that is, N1 is dominated by N2. 

Thus, the great advantage of using N1 in RVNS(1,2,3)  is that it helps to the algorithm to converge very fast 
without detrimental of its performance. This is very useful for large instances or when little computational 
time is available. For example, RVNS(1,2,3) obtains an average RTVP value for the largest instances 
(CAT4) with 10 seconds equal to 187.07, whereas the average value obtained with RVNS(2,3) for CAT4 
instances with 10 seconds is 550.50. The reason is because, at the beginning of the search, it is easier to 
find a neighbour better than the current solution using the neighbourhood structure N1 instead of N2. To 
demonstrate that, we run two times the VNS algorithm for 5 seconds for all 185 CAT4 instances. The first 
time only N1 was used (RVNS(1)); the second time only N2 was used (RVNS(2)). During the 5 seconds, 
RVNS(1) generated, on average, for the total of CAT4 instances 134,112.25 solutions, where 2.67% 
(3,578.74), 16.32% (21,881.05) and 81.02% (108,652.46) were better, equal and worse than the current 
solution, respectively. On the other hand, RVNS(2) generated, on average, for the total of CAT4 instances 
145,364.11 solutions, where 0.42% (604.86), 6.43% (9,343.08) and 93.16% (135,416.17) were better, 
equal and worse than the current solution, respectively. 

Finally, we compare the MILP model proposed by Corominas et al. (2009) with our RVNS(1,2,3) algorithm 
and with the psychoclonal algorithm. Corominas et al. (2009) solved 60 small RTVP instances, with a D 
value of between 20 and 40 and a p value of between 3 and 15, with the MILP model. We have repeated 
the experiment by setting the maximum execution time at 2,000 seconds and 55 instances were solved 
optimally. The results obtained are shown in Table 6. 

 

Table 6. Averages of the RTV values and the execution time (in seconds) 

 MILP RVNS(1,2,3)      Psychoclonal 
RTV 9.86 10.06 10.06 14.49 12.49 
Time 188.19 0.1 10 0.1 10 
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Table 6 shows that RVNS(1,2,3) is able to converge very quickly to near optimal solutions for small 
instances. With only 0.1 seconds of computing time, the quality of the solutions obtained with RVNS(1,2,3) 
is very close to that obtained with MILP (only 1.99% worse). On the other hand, the psychoclonal 
algorithm needs 10 seconds to obtain solutions that are, on average, 21.06% worse than those from MILP. 

 

5. CONCLUSIONS 

The Response Time Variability Problem is a scheduling problem that has been acquiring a greater 
importance on the mixed-model assembly production lines since Toyota popularized the just-in-time 
production system (Monden, 1983; Miltenburg, 1989). RTVP occurs whenever products, clients or jobs 
need to be sequenced so as to minimize variability in the time between the instants at which they receive 
the necessary resources. Other real-life applications of the RTVP shown in the literature are present in 
computer multi-threaded systems and network servers (Waldspurger and Weihl, 1994, 1995; Dong et al., 
1998), in periodic machine maintenances (Anily et al., 1998) and in the collection of waste (Herrmann, 
2007). 

The computational experiment shows the following two points: 

1. A straightforward implementation of an algorithm based on the simple metaheuristic RVNS 
improves strongly all the methods published in the literature, including also the algorithms based 
on more complex metaheuristics as Particle Swarm Optimization (García et al., 2006; García-
Villoria and Pastor, 2007), Cross-Entropy method (García-Villoria et al., 2007), 
Electromagnetism-like Mechanism (García-Villoria and Pastor, 2008a) and Psychoclonal approach 
(García-Villoria and Pastor, 2008b). 

2. The addition of the dominated neighbourhood structure N1 in our RVNS algorithm makes it to 
converge faster to solutions of good quality. This observation may be extended to other problems 
and VNS algorithms, in which the addition of dominated neighbourhood structures can help them 
to be more efficient. 

The VNS metaheuristic is very easy to be hybridized with any another metaheuristic. Since the good 
results obtained in the literature (Hansen and Mladenović, 2003), the hybridization of VNS with other 
metaheuristics proposed in the literature to solve the RTVP as PSO (García-Villoria and Pastor, 2007), 
EM (García-Villoria and Pastor, 2008a) or Psychoclonal (García-Villoria and Pastor, 2008b) seems a 
promising future line of research. 
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1. Introduction 
 
The concept of fair sequence has emerged independently from scheduling problems of 
diverse environments. The common aim of these scheduling problems, as defined in 
Kubiak (2004), is to build a fair sequence using n symbols, where symbol i (i = 1,...,n) 
must occur di times in the sequence. The fair sequence is the one which allocates a fair 
share of positions to each symbol i in any subsequence. This fair or ideal share of 
positions allocated to symbol i in a subsequence of length k is proportional to the 
relative importance (di) of symbol i with respect to the total copies of competing 
symbols (equal to ). There is no a universal definition of fairness because 
several reasonable metrics can be defined according to the specific problem considered. 
 
Among the different definitions of fairness, several fair sequencing problems have 
emerged, among them the Response Time Variability Problem (RTVP). This problem 
has been first time reported in Waldspurger and Weihl (1994) and originally formalised 
in Corominas et al. (2007). In the RTVP, the fair sequence is the one which minimises 
the sum of the variability in the distances between any two consecutive copies of the 
same symbol. In other words, the distance between any two consecutive copies of the 
same symbol should be as regular  as possible (ideally constant). 
 
The RTVP arises whenever products, clients or jobs need to be sequenced so as to 
minimize variability in the time between the instants at which they receive the necessary 
resources (Corominas et al., 2007). This problem has a broad range of real-world 
applications. These include, for instance, the sequencing on mixed-model assembly 
lines under JIT (Kubiak, 1993; Miltenburg, 1989), the resource allocation in computer 
multi-threaded systems such as operating systems, network servers and media-based 
applications (Dong et al., 1998; Waldspurger and Weihl, 1995), the periodic machine 
maintenance problem when the times between consecutive services of the same 
machine are equal (Anily et al., 1998; Wei and Liu, 1983), the collection of waste 
                                                 
∗ Supported by the Spanish Ministry of Education and Science under project DPI2007-61905; co-funded 
by the ERDF. 



 222 

(Herrmann, 2007) and the schedule of commercial videotapes for television 
(Bollapragada et al., 2004; Brusco, 2008). 
 
The RTVP is NP-hard (Corominas et al., 2007). Since this problem is a difficult 
combinatorial optimisation problem, several heuristic and metaheuristic algorithms has 
been proposed in the literature to solve it. Waldspurger and Weihl (1995) used the 
Jefferson method of apportionment (Balinski and Young, 1982), a greedy heuristic 
algorithm which they renamed as the stride scheduling technique. Herrmann (2007) 
solved the RTVP by applying a heuristic algorithm based on the stride scheduling 
technique. Corominas et al. (2007) proposed also the Jefferson method together with 
other four greedy heuristic algorithms. García et al. (2006) proposed six metaheuristic 
algorithms: a multi-start, a greedy randomized adaptive search procedure (GRASP) and 
four variants of a discrete particle swarm optimization (PSO) algorithm. An enhanced 
multi-start algorithm and an enhanced GRASP algorithm were proposed in Corominas 
et al. (2008), and other ten discrete PSO algorithms were proposed in García-Villoria 
and Pastor (2009a). A cross-entropy method approach was used in García-Villoria et al. 
(2007) and a psychoclonal algorithm was used to solve the RTVP in García-Villoria and 
Pastor (2008). Finally, an algorithm based on Electromagnetism-like Mechanism (EM) 
was proposed in García-Villoria and Pastor (2009b). The best results recorded to date 
have been obtained with the psychoclonal algorithm (García-Villoria and Pastor, 2008) 
and the enhanced multi-start algorithm (Corominas et al., 2008). 
 
To date, no tabu search (TS) approach has been proposed to solve the RTVP. In this 
study we propose a TS algorithm for the RTVP which improves the best results reported 
in the literature. 
 
The remainder of the paper is organized as follows: Section 2 presents a formal 
definition of the RTVP and describes briefly the two best algorithms up to now for 
solving the problem. Section 3 proposes a TS algorithm to solve the RTVP. Section 4 
presents the results of a computational experiment. Finally, some conclusions and 
suggestions for future research are given in Section 5. 
 
 
2. The Response Time Variability Problem 
 
The RTVP is formulated as follows. Let n be the number of symbols, di the number of 
copies to be sequenced of symbol i (i = 1,…,n) and D the total number of copies 
( 1.. ii n d

=∑ ). Let s be a solution of an instance in the RTVP that consists of a circular 

sequence of copies ( 1 2 Ds s s s=  ), where sj is the copy sequenced in position j of 

sequence s. For each symbol i in which 2id ≥ , let i
kt  be the distance between the 

positions in which the copies k + 1 and k of symbol i are found. We consider the 
distance between two consecutive positions to be equal to 1. Since the sequence is 
circular, position 1 comes immediately after position D; therefore, 

i

i
dt  is the distance 

between the first copy of symbol i in a cycle and the last copy of the same symbol in the 
preceding cycle. Let it  be the desired average distance between two consecutive copies 

of symbol i ( i
i

Dt d= ). The objective is to minimise the metric called response time 

variability (RTV), which is defined by the sum of the square errors with respect to the 
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it  distances. Since the symbols i such that 1id =  do not intervene in the computation of 

RTV, we assume that for each of these symbols 1
it  is equal to it . Thus, RTV is given by 

the following expression: 
 

( )2

1 1
.

idn
i
k i

i k
RTV t t

= =
= −∑∑  (1) 

 

For example, let 3n =  with symbols A, B and C. Also consider 2Ad = , 2Bd =  and 
4Cd = ; thus, 8D = , 4At = , 4Bt =  and 2Ct = . Any sequence such that contains 

symbol i ( i∀ ) exactly id  times is a feasible solution. For example, the sequence (C, A, 
C, B, C, B, A, C) is a feasible solution, and has an 

( ) ( )( ) ( ) ( )( ) ( ) ( ) ( ) ( )( )2 2 2 2 2 2 2 25 4 3 4 2 4 6 4 2 2 2 2 3 2 1 2RTV = − + − + − + − + − + − + − + −

 = 12. 
 
As it has been introduced in Section 1, the psychoclonal algorithm proposed in García-
Villoria and Pastor (2008) and the multi-start algorithm proposed in Corominas et al. 
(2008) are the best procedures to date to solve the RTVP. 
 
Psychoclonal is an evolutionary metaheuristic first time proposed in Tiwari et al. 
(2005). According to the authors, this metaheuristic inherits its characteristics from the 
need hierarchy theory of Maslow (1954) and the clonal selection principle (Gaspar and 
Collard, 2000). The basic scheme of the psychoclonal metaheuristic is the following: 1) 
An initial population of solutions is generated and a function to evaluate the fitness of a 
solution is given; 2) The best solutions are selected and cloned in a number proportional 
to their fitness; 3) The generated clones are hypermutated (hypermutation is an operator 
that modifies the solution with a rate inversely proportional to the fitness of the 
solution); 4) A new population is formed by the best clones and by new solutions 
generated at random; 5) Steps 2-4 are repeated until a stop condition is reached. This 
metaheuristic was adapted to solve the RTVP (for a more detailed explanation, see 
García-Villoria and Pastor, 2008). 
 
The general scheme of the multi-start metaheuristic consists of two phases. In the first 
phase an initial solution is generated. Then, the second phase improves the obtained 
initial solution. These two phases are iteratively applied until a stop condition is 
reached. Thus, the multi-start algorithm proposed in Corominas et al. (2008) to solve 
the RTVP consists of, at each iteration, generating an initial solution by a random 
mechanism (first phase) and then applying it a local search (second phase); the stop 
condition consists in reaching a given computing time (for a more detailed explanation, 
see Corominas et al., 2008) 
 
 
3. A Tabu Search algorithm to solve the RTVP 
 
Local search methods have the great disadvantage that the local optimum found is often 
a fairly mediocre solution (Gendreau, 2003). To overcome this limitation, the Tabu 
Search metaheuristic (TS) has been proposed by Glover (1986). TS is based on applying 
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a local search in which non-improving movements are allowed. To avoid cycling back 
to visited solutions, the most recent history of the search is recorded in a tabu list of 
tabu (forbidden) solutions. The complete tabu solutions could be recorded in the tabu 
list, but this may require a lot of memory, make it expensive to check whether a solution 
is tabu or not and, above all, does not diversify sufficiently the search. Thus, it is 
common to record only the last moves (transformations) performed on the current 
solution and forbidding reverse transformations (Gendreau, 2003). The tabu lists are 
usually implemented as a list of fixed length with a FIFO (First In, First Out) policy. A 
tabu solution can be overridden if a suitable aspiration criterion is met. The general 
scheme of TS is show in Figure 1. 

Figure 1. General scheme of TS 

 
We propose an algorithm based on the general scheme of TS to solve the RTVP. The 
elements of the proposed TS algorithm are defined as follows: 

− Initial solution. A solution is represented by the sequence of the copies of the 
symbols to be sequenced. The initial solution is obtained from the best solution returned 
by the five heuristics proposed in Corominas et al. (2007). 

− Neighbourhood. The neighbourhood of a solution is obtained by swapping each pair 
of consecutive or non-consecutive positions of the sequence that represents the solution. 

− Tabu moves. A forbidden move of the tabu list consists of two pairs of 
position/symbol. For instance, the move [(3, A), (5, B)] means that all solutions with the 
symbol A sequenced in position 3 and the symbol B sequenced in position 5 are 
considered tabu. 

− Aspiration criterion. The aspiration criterion is that the move produces a solution 
better than the best solution found in the past. 

− Stopping condition. The TS algorithm stops once it has run for a preset time. 

 

The TS algorithm has only one parameter whose value has to be set and it is the size of 
the tabu list. Although the parameter values are extremely important because the results 
of the metaheuristic for each problem are very sensitive to them, the selection of 
parameter values is commonly justified in one of the following ways (Eiben et al., 1999; 
Adenso-Díaz and Laguna, 2006): 1) "by hand" on the basis of a small number of 
experiments that are not specifically referenced; 2) by using the general values 

1.  Define the neighbourhood structure N  
2.  Let S an initial solution and S* := S 
3.  While stopping condition is not reached do: 
4. Let S’ the best solution from N(S) which is non-tabu or allowed by aspiration 
5. If S’ is better than S*, then S* := S’ 
6. Add the current move in the tabu list (removing its last move if the list is full) 
7. S := S’ 
8.  End While 
9.  Return S* 
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recommended for a wide range of problems; 3) by using the values reported to be 
effective in other similar problems; or 4) by choosing values without any explanation.  
 
Adenso-Díaz and Laguna (2006) proposed a new technique called CALIBRA 
specifically designed for fine-tuning the parameters of heuristic and metaheuristic 
algorithms. CALIBRA was used in García-Villoria and Pastor (2008) and in Corominas 
et al. (2008) to set the parameter values of the psychoclonal and the multi-start 
algorithms, respectively. We used also CALIBRA to set the size of the tabu list of our 
TS algorithm. CALIBRA was applied to a training set. The training set has 60 instances 
which were generated as explained in the introduction of Section 4. The optimal value 
of the size tabu list returned by CALIBRA was 75. 
 
 
4. Computational experiment 
 
The psychoclonal and the multi-start algorithms proposed in García-Villoria and Pastor 
(2008) and in Corominas et al. (2008), respectively, are the most efficient algorithms in 
the literature to solve the RTVP. Therefore, we compare the performance of our 
proposed TS algorithm with these two algorithms. In what follows of this section, we 
refer to our TS algorithm as TS, the psychoclonal algorithm as Psycho and the multi-
start algorithm as MS. 
 
All algorithms are coded in Java and executed on a 3.4 GHz Pentium IV with 1.5 GB of 
RAM. The same 60 training instances and 740 test instances used in García-Villoria and 
Pastor (2008) and in Corominas et al. (2008) are also used in this paper. These instances 
were grouped into four classes (from CAT1 to CAT4 with 15 training instances and 185 
test instances in each class) according to their size. The instances were generated using 
the random values of D (total number of copies) and n (number of symbols) shown in 
Table 1. For all instances and for each symbol  i = 1,…,n, a random value of di (number 
of copies to be sequenced of model i) is between 1 and ( )1 2.5D n− +  such that 

1.. ii n
d D

=
=∑ . 

Table 1. Uniform distribution for generating the D and n values 

 CAT1 CAT2 CAT3 CAT4 
D U(25, 50) U(50, 100) U(100, 200) U(200, 500) 
n U(3, 15) U(3, 30) U(3, 65) U(3, 150) 

 
The algorithms were run for 50 and 1,000 seconds for each instance. Table 2 and Table 
3 shows the overall average RTV values for the 740 test instances and for each class of 
instances (CAT1 to CAT4) obtained with the three algorithms, respectively. 
 

Table 2. Average RTV values for a computing time of 50 seconds 

 Global CAT1 CAT2 CAT3 CAT4 
TS 202.42 10.30 22.40 109.38 667.59 
Psycho 235.68 14.92 44.25 137.07 746.50 
MS 2,106.01 11.56 38.02 154.82 8,219.65 

Table 3. Average RTV values for a computing time of 1,000 seconds 
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 Global CAT1 CAT2 CAT3 CAT4 
TS 113.31 10.24 21.46 106.21 315.33 
Psycho 161.60 14.90 39.90 122.38 469.23 
MS 169.25 10.51 31.21 123.27 512.02 

 
Tables 2 and 3 shows that the multi-start algorithm converges much slower than the 
other two algorithms when big instances (CAT4 instances) are solved (Figure 2 shows 
how the algorithms converge during the computing time). Therefore, we analyse the 
results obtained by the algorithms after 1,000 seconds of computing time. 
 
The global average RTV values of TS with 1,000 computing time seconds for all test 
instances are 29.88% and 33.05% better than the results obtained using Psycho or MS, 
respectively. If we consider the results by class, we can see that MS performs better than 
Psycho for the two smallest instances (CAT1 and CAT2), both performs very similar for 
the medium instances (CAT3) and Psycho performs better than MS for the biggest 
instances (CAT4). On the other hand, TS performs better than the other two algorithms 
for all type of instance: TS is 2.57% and 31.24% better than MS for CAT1 and CAT2 
instances, respectively, and 13.21% and 32.80% better than Psycho for CAT3 and CAT4 
instances, respectively. 
 

 
Figure 2. Average RTV values over the computing time 

 
Table 4 shows the number of times that each algorithm reaches the best RTV value for 
each instance obtained using the three algorithms. The results are shown for the 740 
instances overall and for each class of instance. 
 
As could be expected from the results in Table 3, Table 4 shows that TS reaches the best 
solution the greatest number of times (in 79.32% of the instances overall). Moreover, if 
the results are observed by class, it can be seen that TS always obtains the best solution 
for CAT1 and CAT2 instances. On the other hand, MS obtains more times the best 
solution than Psycho, even for the CAT4 instances. This is surprising since MS obtains a 
worst RTV values average for CAT4 instances than Psycho. 
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Table 4. Number of times that the best solution is reached 

 Global CAT1 CAT2 CAT3 CAT4 
TS 587 185 185 113 104 
Psycho 104 52 7 37 8 
MS 305 164 18 48 75 

 
To complete the analysis of the results, we examined the dispersion of the results. A 
measure of the dispersion (let it be called σ) of the RTV values obtained by each 
algorithm alg = {TS, Psycho, MS} is defined for a given instance, ins, according to the 
following expression: 
 

2( ) ( )

( )( , )
alg best

ins ins
best

ins

RTV RTValg ins
RTV

σ
 −

=   
 

 (2) 

 
where ( )alg

insRTV  is the RTV value of the solution obtained with the algorithm alg for the 

instance ins, and ( )best
insRTV  is the best RTV value of the solutions obtained with the 

three algorithms for the instance ins. Table 5 shows the average σ dispersion for the 
total number of instances and for each class. 
 

Table 5. Average σ dispersion with respect to the best solution found 

 Global CAT1 CAT2 CAT3 CAT4 
TS 0.42 0.00 0.00 0.21 1.18 
Psycho 1.90 1.08 1.68 0.19 4.63 
MS 0.48 0.02 0.43 0.19 1.30 

 
Table 5 shows that TS has the lowest average σ dispersions for the total number of cases 
and for each instance class (except for CAT3, in which it is also low but slightly worse 
than the dispersions of the other two algorithms). That is, when TS does not obtain the 
best RTV value for a given instance, it obtains a value that is very close to it. MS has 
also a low dispersion for each instance class. On the other hand, Psycho has a quite 
worst dispersion for CAT4 instances than MS, although the RTV average obtained by 
Psycho for the CAT4 instances is better than the RTV average obtained by MS. This 
means that although Psycho obtains a better performance, on average, for the CAT4 
instances, the MS is a more robust algorithm than Psycho. Anyway, the TS algorithm 
that we propose is the one that obtains, on average, the better solutions and the one that 
has the most stable behaviour. 
 
 
5. Conclusions and future lines of research 
 
The RTVP is a scheduling problem which has a broad range of real-world applications. 
Since the RTVP is NP-hard, several heuristic and metaheuristics have been proposed to 
solve it. Among them, the two algorithms with which the best results have been 
achieved are the psychoclonal algorithm proposed in García-Villoria and Pastor (2008) 
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and the multi-start algorithm proposed in Corominas et al. (2008). We propose a straight 
application of the TS metaheuristics to solve the RTVP. The computational experiment 
shows that the proposed TS algorithm improves by far the best results published in the 
literature. Moreover, the TS algorithm is very stable; that is, when it does not obtain the 
best RTV value for a given instance, it obtains a value that is very close to it. 
 
The definition of the neighbourhood structure is a very critical decision in the design of 
any TS algorithm (Gendreau et al., 2003). In this study we propose to generate the 
neighbourhood of a solution by swapping each pair of consecutive or non-consecutive 
positions of the solution sequence. Because of the good performance of the TS 
algorithm, a promising line of research is testing other neighbourhood structures in the 
proposed algorithm to solve the RTVP. Other candidate ways of generating the 
neighbourhood of a solution are, for example: 1) by swapping each pair of only 
consecutive positions of the sequence, and 2) by inserting each position in the sequence. 
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Resumen 

 
El Response Time Variability Problem (RTVP) es un problema combinatorio de 
scheduling publicado recientemente en la literatura. Dicho problema de 
optimización combinatoria es muy fácil de formular pero muy difícil de resolver 
de forma exacta (es NP-hard). El RTVP se presenta cuando productos, clientes 
o tareas se han de secuenciar minimizando la variabilidad entre los instantes 
de tiempo en los que reciben los recursos que ellos necesitan. Este problema 
tiene una gran cantidad de aplicaciones reales: secuenciación de modelos en 
líneas de montaje mixtas, asignación de recursos a sistemas 
multiprocesadores, mantenimiento continuo, recogida de basuras o la 
secuenciación de anuncios en televisión. La Inteligencia Artificial dispone de 
herramientas eficientes, tales como las metaheurísticas, para resolver 
problemas combinatorios de scheduling complejos. En trabajos previos, el 
RTVP ha sido resuelto mediantes varios algoritmos metaheurísticos 
provenientes de la Inteligencia Artificial (entre otros, las metaheurísticas multi-
start, PSO y GRASP). En este trabajo se propone un algoritmo de búsqueda 
tabu (tabu seach), el cual mejora los mejores resultados referenciados en la 
literatura. 
 
Palabras clave: response time variability, metaheurísticas, tabu search, 
scheduling 
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SOLVING THE RESPONSE TIME VARIABILITY PROBLEM 
BY MEANS OF A TABU SEARCH APPROACH

1.. ii n d
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Abstract 
 
The Response Time Variability Problem (RTVP) is a combinatorial scheduling 
problem that has recently appeared in the literature. Although this combinatorial 
optimisation problem is easy to formulate, it is very difficult to solve (it is NP-
hard).The RTVP occurs whenever products, clients or jobs need to be 
sequenced so as to minimize variability in the time between the instants at 
which they receive the necessary resources. This problem has a broad range of 
real-world applications: to sequence on mixed-model assembly lines, to 
resource allocation in computer multi-threaded systems, in the periodic machine 
maintenance problem, in the collection of waste and in the schedule of 
commercial videotapes for television. The field of Artificial Intelligence has 
provided us with efficient tools such as metaheuristic techniques for solving 
complex combinatorial scheduling problems. In previous studies, several 
metaheuristic algorithms (among others, a multi-start, a PSO and a GRASP 
algorithm) were proposed to solve the RTVP. In this study we propose a tabu 
search algorithm for the RTVP which improves the best results reported in the 
literature. 
 
Keywords: response time variability, metaheuristics, tabu search, scheduling 
 
 
 
1. Introducción 
 
El concepto de secuencia fair (secuencia justa, imparcial, buena, ideal, regular) 
ha surgido de forma independiente en problemas de scheduling de diversos 
entornos. El objetivo común de ese tipo de problemas de scheduling, como es 
definido en Kubiak (2004), consiste en construir una secuencia fair utilizando n 
símbolos, de forma que el símbolo i (i = 1,...,n) se presente di veces en la 
secuencia. Una secuencia fair es aquella que asigna, repartiendo de forma fair, 
las posiciones a cada símbolo i en cualquier subsecuencia. Este reparto fair o 
ideal de posiciones asignadas al símbolo i en una subsecuencia de longitud k 
es proporcional a la importancia relativa del símbolo i (di) respecto al total de 
copias de los diferentes símbolos a repartir (que, obviamente, es igual a 

). No existe una definición universal de fairness, ya que se pueden 
definir diversas métricas razonables en función del problema específico que se 
está considerando. 
 
Considerando las diferentes definiciones de fairness, varios problemas de 
secuenciación fair han sido propuestos en la literatura, entre ellos el Response 
Time Variability Problem (RTVP). Este problema fue expuesto por primera vez 
en Waldspurger and Weihl (1994) y formalizado en Corominas et al. (2007). En 
el RTVP, la secuencia fair es aquella que minimiza la suma de la variabilidad 
                                                 
 Supported by the Spanish Ministry of Education and Science under project DPI2007-61905; 
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de las distancias entre cualquier pareja de copias consecutivas de un mismo 
símbolo. En otras palabras, la distancia entre cualquier pareja de copias 
consecutivas de un mismo símbolo debería ser tan regular como sea posible 
(e, idealmente, constante). 
 
El RTVP se presenta cuando productos, clientes o tareas se han de secuenciar 
minimizando la variabilidad entre los instantes de tiempo en los que reciben los 
recursos que ellos necesitan (Corominas et al., 2007). Este problema tiene una 
gran cantidad de aplicaciones reales: la secuenciación de modelos en líneas de 
montaje mixtas (Kubiak, 1993; Miltenburg, 1989); la asignación de recursos en 
sistemas multiprocesadores, tales como los servidores de redes o las 
aplicaciones de transmisión de videos (Dong et al., 1998; Waldspurger and 
Weihl, 1995); el mantenimiento continuo, cuando el tiempo entre servicios 
consecutivos en una misma máquina debe ser el mismo (Anily et al., 1998; Wei 
and Liu, 1983); la recogida de basuras (Herrmann, 2007); o la secuenciación de 
anuncios en prensa o televisión (Bollapragada et al., 2004; Brusco, 2008). 
 
El RTVP es un problema NP-hard (Corominas et al., 2007). Debido a que es un 
problema de optimización combinatoria difícil de resolver de forma óptima, en la 
literatura se han propuesto para su resolución diversos procedimientos 
heurísticos y metaheurísticos. Waldspurger and Weihl (1995) utilizan el método 
de distribución de escaños de Jefferson (Balinski and Young, 1982), un 
algoritmo heurístico greedy que ellos denominan como la técnica stride 
scheduling. Herrmann (2007) resuelve el RTVP aplicando un algoritmo 
heurístico basado en la técnica stride scheduling. Corominas et al. (2007) 
también proponen el método de Jefferson junto a otros cuatro algoritmos 
heurísticos. García et al. (2006) diseñan seis algoritmos metaheurísticos: un 
multi-start, un greedy randomized adaptive search procedure (GRASP) y cuatro 
variantes de un algoritmo basado en el particle swarm optimization (PSO) 
discreto. Un algoritmo multi-start mejorado, así como un nuevo algoritmo 
GRASP, también mejorado, son propuestos en Corominas et al. (2008); y otros 
diez algoritmos PSO discretos son propuestos en García-Villoria and Pastor 
(2009a). Un procedimiento cross-entropy es utilizado en García-Villoria et al. 
(2007). Un algoritmo basado en Electromagnetism-like Mechanism (EM) es 
propuesto en García-Villoria and Pastor (2009b). Finalmente, un algoritmo 
Psychoclonal es utilizado para resolver el RTVP en García-Villoria and Pastor 
(2008). Los mejores resultados reportados en la literatura hasta el momento se 
han conseguido con el algoritmo psychoclonal (García-Villoria and Pastor, 
2008) y el algoritmo multi-start mejorado (Corominas et al., 2008). 
 
Hasta la fecha, ningún algoritmo tabu search (TS) ha sido propuesto para 
resolver el RTVP. En este trabajo se propone un algoritmo TS para el RTVP 
que mejora los mejores resultados publicados hasta el momento en la 
literatura. 
 
El resto del artículo está organizado como sigue: la Sección 2 presenta una 
definición formal del RTVP y describe, brevemente, los dos mejores 
procedimientos metaheurísticos publicados hasta el momento para resolver el 
problema de estudio; la Sección 3 propone un algoritmo TS para resolver el 
RTVP; la Sección 4 presenta el resultado del experimento computacional 
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realizado; finalmente, varias conclusiones y sugerencias de trabajo futuro son 
expuestas en la Sección 5. 
 
 
2. El Response Time Variability Problem 
 
El RTVP puede ser formulado como sigue. Sea n el número de símbolos, di el 
número de copias a ser secuenciadas del símbolo i (i = 1,…,n) y D en número 
total de copias a secuenciar ( 1.. ii n d

=∑ ). Sea s una solución de un ejemplar del 

RTVP, que consiste en una secuencia circular de copias ( 1 2 Ds s s s=  ), donde 
sj es la copia secuenciada en la posición j de la secuencia s. Para cada símbolo 
i con 2id ≥ , sea i

kt  la distancia entre las posiciones en las que se encuentran 
las copias k + 1 y k del símbolo i (considerando que la distancia entre dos 
posiciones consecutivas de la secuencia es igual a 1). Como se ha introducido, 
la secuencia es circular, de esta forma la posición 1 viene inmediatamente 
después de la posición D, y 

i

i
dt  es la distancia entre la primera copia del 

símbolo i en un ciclo y la última copia de ese mismo símbolo en el ciclo 
precedente. Sea it  la distancia media deseada entre dos copias consecutivas 

del símbolo i ( i
i

Dt d= ). El objetivo es minimizar la métrica llamada response 

time variability (RTV), que se define como la suma de los cuadrados de los 
errores respecto a las distancias it . Como los símbolos i con 1id =  no 
intervienen en el cálculo del RTV, se asume que para cada uno de esos 
símbolo 1

it  es igual a it . De esta forma, el RTV se obtiene con la expresión 

( )2

1 1
.

idn
i
k i

i k
RTV t t

= =
= −∑∑  

 
Por ejemplo, sea 3n =  y los símbolos A, B y C; considérese, adicionalmente, 
que 2Ad = , 2Bd =  y 4Cd = ; así, 8D = , 4At = , 4Bt =  y 2Ct = . Cualquier 
secuencia que contenga el símbolo i ( i∀ ) exactamente id  veces es una 
solución factible. Por ejemplo, la secuencia (C, A, C, B, C, B, A, C) es una 
solución factible con el siguiente valor: 

( ) ( )( ) ( ) ( )( ) ( ) ( ) ( ) ( )( )2 2 2 2 2 2 2 25 4 3 4 2 4 6 4 2 2 2 2 3 2 1 2 1 2 .RTV = − + − + − + − + − + − + − + − =

 
 
Como se ha introducido en la Sección 1, el algoritmo psychoclonal propuesto 
en García-Villoria and Pastor (2008) y el procedimiento multi-start presentado 
en Corominas et al. (2008) son los mejores procedimientos publicados hasta la 
fecha para resolver el RTVP. 
 
El procedimiento psychoclonal es una metaheurística evolutiva propuesta por 
primera vez en Tiwari et al. (2005). De acuerdo con los autores, esta 
metaheurística obtiene sus fundamentos de la teoría de las necesidades 
jerárquicas de Maslow (1954) y del principio de selección por clonación 
(Gaspar and Collard, 2000). El esquema básico de la metaheurística 
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psychoclonal es el siguiente: 1) Se genera una población inicial de soluciones y 
se dispone de una función que evalúa el fitness (la adecuación) de cualquier 
solución; 2) Las mejores soluciones son seleccionadas y clonadas un número 
de veces que es proporcional a su propio fitness; 3) Los clones generados son 
hipermutados (la hipermutación es un operador que modifica la solución con un 
ratio inversamente proporcional a su fitness); 4) Se forma una nueva población 
seleccionando los mejores clones e incorporando nuevas soluciones generadas 
de forma aleatoria; 5) Se repiten las etapas 2 a 4 hasta que se cumple un 
criterio de parada. Esta metaheurística fue adaptada y probada en la resolución 
del RTVP (para un mayor detalle, se recomienda García-Villoria and Pastor, 
2008). 
 
El esquema general de la metaheurística multi-start consta de dos fases. En la 
primera fase se genera una solución inicial, la cual es mejorada en la segunda 
fase del procedimiento. Dichas dos fases se aplican de forma iterativa hasta 
que se cumple un criterio de parada. En el algoritmo multi-start propuesto en 
Corominas et al. (2008) para resolver el RTVP, la generación de la solución 
inicial se realiza de forma alteatoria y la fase de mejora con un procedimiento 
de optimización local; por otro lado, el criterio de parada consiste en alcanzar 
un tiempo de computación preestablecido (para un mayor detalle, se 
recomienda Corominas et al., 2008). 
 
 
3. Un algoritmo Tabu Search para resolver el RTVP 
 
Los métodos de búsqueda local presentan la gran desventaja que una vez se 
alcanza el óptimo local, éste suele ser una solución mediocre (Gendreau, 2003) 
y, además, el método finaliza la búsqueda y no permite evolucionar a nuevos 
óptimos locales. Para superar estas limitaciones, Glover (1986) propone la 
metaheurística Tabu Search (TS). TS se basa en aplicar una búsqueda local en 
la cual se permiten movimientos de no- mejora (es decir, que proporcionan 
soluciones con un valor peor que el valor de la solución de partida). Para evitar 
que el procedimiento entre en un ciclo infinito entre soluciones ya generadas, la 
historia más reciente de la búsqueda es guardada en una lista de soluciones 
tabu (prohibidas). En la lista tabu se podrían guardar las soluciones tabú 
completas (toda la secuencia que, en el RTVP, las identifica), pero esta 
estrategia podría necesitar mucha memoria de ordenador, podría hacer lento el 
comprobar si una solución es o no tabu y, sobretodo, podría no diversificar 
suficientemente la búsqueda. De esta forma, es común guardar únicamente los 
últimos movimientos (transformaciones) realizados en la solución de partida y 
prohibir las transformaciones inversas que, nuevamente, llevarían a 
(generarían) la solución de partida (Gendreau, 2003). La lista tabu usualmente 
es implementada como una lista de longitud fija con una política FIFO (First In, 
First Out). Una solución tabu puede ser utilizada (es decir, se cancela la 
prohibición de ser considerada) si satisface un criterio de aspiración (que, 
habitualmente, suele ser que proporcione un valor de la función de evaluación 
mejor que el valor de la mejor solución generada hasta el momento en todo el 
proceso de búsqueda). La Figura 1 muestra el esquema general del 
procedimiento TS. 
 



 236 

 
 
 
 
 
 
 
 
 
 

Figura 1. Esquema general del procedimiento TS 
 
En este trabajo se propone un algoritmo basado en el esquema anterior de TS 
para resolver el RTVP. A continuación se especifican los elementos del TS 
propuesto: 
 
− Solución inicial. Una solución es representada por la secuencia de copias 

de los símbolos a ser secuenciados. Se toma como solución inicial la mejor 
de las proporcionadas por los cinco procedimientos heurísticos propuestos 
en Corominas et al. (2007). 

 
− Vecindario. El vecindario de una solución se obtiene insertando el símbolo 

asignado a cada posición entre el resto de posiciones de la secuencia que 
representa a dicha solución. 

 
− Movimientos tabu. Un movimiento prohibido de la lista tabu consiste en una 

pareja “posición/símbolo”. Por ejemplo, el movimiento (3, A) significa que 
se consideran tabu todas las soluciones con el símbolo A secuenciado en 
la posición 3 de la secuencia. 

 
− Criterio de aspiración. El criterio de aspiración consiste en que el 

movimiento proporcione una solución que sea mejor que la mejor solución 
generada hasta el momento en todo el proceso de búsqueda. 

 
− Condición de parada. El algoritmo TS finaliza la búsqueda cuando se 

alcanza un tiempo de computación preestablecido (como en los algoritmos 
psychoclonal y multi-start propuestos en García-Villoria and Pastor (2008) y 
Corominas et al. (2008), respectivamente). 

 
El algoritmo TS presenta un único parámetro cuyo valor ha de ser fijado de 
partida: el tamaño de la lista tabu. Aunque el valor de este tipo de parámetros 
es extremadamente importante, ya que los resultados de las metaheurísticas 
para cada problema son muy sensibles a ellos, la decisión de cómo 
determinarlos es comúnmente justificada de una de las siguiente maneras 
(Eiben et al., 1999; Adenso-Díaz and Laguna, 2006): 1) "a mano", en base a un 
pequeño número de experimentos que no son específicamente referenciados; 
2) utilizando valores generales, recomendados para un amplio rango de 
diferentes tipos de problemas; 3) utilizando los valores que han sido efectivos 
en otros problema similares; o 4) seleccionando dichos valores sin ninguna 
explicación. 

Sea S una solución inicial 
Definir la estructura de vecindario N 
Mientras no se cumpla la condición de parada hacer: 
 Sea S’ la mejor solución de N que cumple el criterio de aspiración o no tabu 
 Si S’ es mejor que la mejor generada hasta el momento S*, hacer S* := S’ 
 Hacer S := S’ 
 Añadir el movimiento actual a la lista tabu (y, tal vez, borrar el último) 
Fin mientras 
Devolver S* 
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Adenso-Díaz and Laguna (2006) proponen una nueva técnica, llamada 
CALIBRA, diseñada específicamente para ajustar el valor de los parámetros de 
algoritmos heurísticos y metaheurísticos. CALIBRA es utilizada en García-
Villoria and Pastor (2008) y en Corominas et al. (2008) para determinar los 
valores de los parámetros de los algoritmos psychoclonal y multi-start, 
respectivamente. En este trabajo también se ha utilizado CALIBRA para decidir 
el valor de la lista tabu del algoritmo TS propuesto: CALIBRA fija el valor de la 
lista tabu en 38. 
 
 
4. Experimento computacional 
 
Los algoritmos psychoclonal y multi-start, propuestos en García-Villoria and 
Pastor (2008) y en Corominas et al. (2008), son los algoritmos más eficientes 
publicados en la literatura hasta el momento para resolver el RTVP. De esta 
forma, se compara la calidad del algoritmo TS propuesto con la de dichos dos 
algoritmos. En lo que resta de esta sección, el algoritmo TS será referido como 
TS, el algoritmo psychoclonal como Psycho y el algoritmo multi-start como MS. 
 
Los tres algoritmos han sido codificados en Java y han sido ejecutados en un 
ordenador Pentium IV de 3.4 GHz con 1.5 GB de memoria RAM. En este 
trabajo se utilizan los mimos 60 ejemplares de entrenamiento y los 740 
ejemplares de prueba que son utilizados en García-Villoria and Pastor (2008) y 
Corominas et al. (2008). Los 60 ejemplares de entrenamiento son utilizados por 
CALIBRA para fijar el valor de los parámetros de los algoritmos. Todos los 
ejemplares pueden ser agrupados en cuatro clases (de la CAT1 a la CAT4, con 
15 ejemplares de entrenamiento y 185 de prueba en cada clase) de acuerdo a 
su tamaño. Los ejemplares fueron generados utilizando las distribuciones 
uniformes mostradas en la Tabla 1 para generar, de forma aleatoria, los valores 
de D (número total de copias) y n (número de símbolos). Para todos los 
ejemplares y para cada símbolo i = 1,…,n, se generó un valor aleatorio de di 
(número de copias del símbolo i a ser secuenciadas) entre 1 y ( )1 2.5D n− + , 

cumpliendo, obviamente, que 
1.. ii n

d D
=

=∑ . 
 

 CAT1 CAT2 CAT3 CAT4 
D U(25, 50) U(50, 100) U(100, 200) U(200, 500) 
n U(3, 15) U(3, 30) U(3, 65) U(3, 150) 

Tabla 1. Distribución uniforme para generar los valores de D y de n 
 
Los tres algoritmos fueron ejecutados, para cada ejemplar, durante 50 y 1000 
segundos. Las Tablas 2 y 3 muestran los valores promedio del RTV, obtenidos 
con cada uno de los tres algoritmos, para el total de los 740 ejemplares de 
prueba (Global) y para cada clase de ejemplares (CAT1 a CAT4)  
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 Global CAT1 CAT2 CAT3 CAT4 
TS 210.47 10.26 22.56 73.26 735.78 
Psycho 235.68 14.92 44.25 137.07 746.50 
MS 2106.01 11.56 38.02 154.82 8219.65 

Tabla 2. Valor promedio del RTV con 50 segundos de tiempo de computación 
 

 Global CAT1 CAT2 CAT3 CAT4 
TS 78.62 10.24 21.16 48.12 234.96 
Psycho 161.60 14.90 39.90 122.38 469.23 
MS 169.25 10.51 31.21 123.27 512.02 

Tabla 3. Valor promedio del RTV con 1000 segundos de tiempo de computación 
 
Las Tablas 2 y 3 muestran que el algoritmo multi-start converge más 
lentamente que los otros dos algoritmos, en global y cuando se resuelven 
ejemplares de gran tamaño, los de la categoría CAT4 (la Figura 2 muestra la 
convergencia de los algoritmos en función del tiempo de computación). De esta 
manera, se analizan los resultados obtenidos por los algoritmos después de 
1000 segundos de tiempo de computación. 
 
El valor promedio del RTV para TS, con 1000 segundos de tiempo de cálculo y 
para el conjunto de los 740 ejemplares (Global), es un 51.35% y un 53.55% 
mejor que los valores obtenidos utilizando los algoritmos Psycho y MS, 
respectivamente. Si se consideran los resultados por clases, MS presenta 
mejores resultados que Psycho para las clases de ejemplares de menor 
tamaño (CAT1 y CAT2), resultados muy semejantes para los ejemplares de 
tamaño medio (CAT3) y peores resultados para la clase de ejemplares de 
mayor tamaño (CAT4). De todas formas, el algoritmo TS obtiene mejores 
resultados que los otros dos algoritmos en todas las clases de ejemplares: TS 
es un 2.57% y un 32.21% mejor que MS para las clases CAT1 y CAT2, 
respectivamente, y un 60.68% y un 49.93% mejor que Psycho para las clases 
CAT3 y CAT4, respectivamente. 
 

 
Figura 2. Valor promedio del RTV en función del tiempo de computación 
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La Tabla 4 muestra el número de veces que cada algoritmo obtiene el mejor 
valor RTV para cada ejemplar, considerando los tres algoritmos. Los resultados 
se presentan para el total de los 740 ejemplares (Global) y para cada clase de 
ejemplares. 
 

 Global CAT1 CAT2 CAT3 CAT4 
TS 678 185 185 185 123 
Psycho 58 51 7 0 0 
MS 244 163 17 1 63 

Tabla 4. Número de veces en que se obtiene la mejor solución 
 
Como se podría esperar de los resultados de la Tabla 3, la Tabla 4 muestra 
que TS obtiene la mejor solución el mayor número de veces (en un 91.62% de 
ejemplares en global). Además, si se analizan los resultados por clases, se 
observa que TS siempre obtiene las mejores soluciones en las clases CAT1, 
CAT2 y CAT3. Por otro lado, MS obtiene más veces que Psycho la mejor 
solución, incluso para los ejemplares de la clase CAT4. Este resultado puede 
sorprender ya que, para esta clase de ejemplares, MS obtiene un valor 
promedio del RTV peor que el obtenido por el algoritmo Psycho. 
 
Para completar el análisis de los resultados, se calcula su dispersión. Se define 
una medida de dispersión (aquí denominada σ) del valor del RTV obtenido por 
cada algoritmo, alg = {TS, Psycho, MS}, en cada ejemplar, ins, según la 

expresión 
2( ) ( )

( )( , )
alg best

ins ins
best

ins

RTV RTValg ins
RTV

σ
 −

=   
 

; donde ( )alg
insRTV  es el valor del 

RTV de la solución obtenida con el algoritmo alg para el ejemplar ins, y 
( )best

insRTV  es el mejor valor del RTV, para el ejemplar ins, de las soluciones 
obtenidas con los tres algoritmos. La Tabla 5 expone la dispersión σ promedio 
para el total de ejemplares y por clases. 
 

 Global CAT1 CAT2 CAT3 CAT4 
TS 0.10 0.00 0.00 0.00 0.39 
Psycho 3.00 1.08 1.76 3.67 5.49 
MS 1.77 0.02 0.47 3.47 3.11 

Tabla 5. Dispersión σ promedio 
 
La Tabla 5 muestra que TS presenta la menor dispersión promedio para el total 
de ejemplares y para cada una de las clases. Para las tres primeras clases 
(CAT1, CAT2 y CAT3), la dispersión es nula ya que siempre obtiene las 
mejores soluciones. En cambio, para los ejemplares más grandes (CAT4) la 
dispersión ya no es nula aunque continúa siendo muy baja. Este resultado 
significa que cuando TS no obtiene el mejor valor del RTV para un ejemplar, 
obtiene un valor muy cercano. MS también obtiene una baja dispersión para las 
dos clases más pequeñas (CAT1 y CAT2). Por otro lado, Psycho presenta una 
dispersión peor que MS para todas las clases, aunque los valores promedios 
del RTV obtenidos por Psycho para CAT3 y CAT4 es mejor que el obtenido por 
MS; esto indica que aunque Psycho obtiene un mejor funcionamiento para 
CAT3 y CAT4, en promedio, MS es un algoritmo más robusto que Psycho. De 
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todas formas, el algoritmo TS propuesto en este trabajo es el que obtiene, en 
promedio, las mejores soluciones con un comportamiento muy estable. 
 
 
5. Conclusiones y futuras líneas de investigación 
 
El RTVP es un problema de scheduling que se presenta en una gran cantidad 
de aplicaciones reales. Como el RTVP es un problema NP-hard, varios 
procedimientos heurísticos y metaheurísticos han sido propuestos para su 
resolución. Entre ellos, los dos algoritmos que han obtenido mejores resultados 
son el algoritmo psychoclonal propuesto en García-Villoria and Pastor (2008) y 
el algoritmo multi-start presentado en Corominas et al. (2008). En este trabajo 
se presenta una aplicación basada en la metaheurística tabu search (TS) para 
la resolución del RTVP. Los resultados del experimento computacional 
realizado muestran que el algoritmo TS propuesto mejora los mejores 
resultados publicados en la literatura hasta el momento. Además se comprueba 
que el algoritmo TS es muy estable: cuando no obtiene el mejor resultado para 
un ejemplar del RTVP, obtiene un valor muy cercano al mejor. 
 
La definición del vecindario es una decisión crítica en el diseño de cualquier 
metaheurística, en general, y del algoritmo TS, en particular (Gendreau et al., 
2003). En este trabajo se genera el vecindario de una solución insertando el 
símbolo asignado a cada posición entre el resto de posiciones de la secuencia 
que representa a dicha solución. Debido al buen funcionamiento del algoritmo 
TS, se pretende seguir investigando para intentar mejorarlo. Para ello se 
propone diseñar y probar nuevas definiciones del vecindario de una solución; 
por ejemplo intercambiado los símbolos asignados a cada pareja de posiciones 
consecutivas de la secuencia que representa a una solución o intercambiando 
los símbolos asignados a cada pareja de posiciones consecutivas y no 
consecutivas de la secuencia. 
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Abstract. The response time variability problem (RTVP) is a NP-hard scheduling problem 
which has recently formalised in the literature. This problem has a wide range of real-world 
applications in mixed-model assembly lines, multi-threaded computer systems, network 
environments and others. The RTVP arises whenever products, clients or jobs need to be 
sequenced in such a way that the variability in the time between the points at which they 
receive the necessary resources is minimised. The best exact method to solve this problem is a 
mixed integer linear programming (MILP) which is able to solve optimally instances up to 40 
units to be scheduled in a practical time. The objective of this work is to increase the size of 
the instances that can be solved optimally. We propose a branch and bound (B&B) algorithm 
that takes advantage of the characteristics of the problem. In particular, several dominated and 
equivalent solutions are detected to avoid exploring them. A computational experiment shows 
that the proposed B&B algorithm is able to solve larger instances up to 55 units to optimally. 

Keywords: response time variability, scheduling, fair sequences, branch and bound 

 
 
1. Introduction 
 
The Response Time Variability Problem (RTVP) is an optimisation sequencing problem 
which was first reported in Waldspurger and Weihl (1994) and formally formulated by 
Corominas et al. (2007). This problem occurs in real-life situations in which jobs, 
clients, products or events need to be sequenced in such a way that the variability in the 
time between the turns at which they receive their necessary resources is minimised. 
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One of the first situations in which the idea of the regular sequence appeared was the 
sequencing on mixed-model assembly lines at Toyota Motor Corporation under the just-
in-time (JIT) production system. Since Toyota popularized the JIT production systems, 
the problem of sequencing on mixed-model assembly lines has acquired high relevance. 
One of the main aims of JIT is to eliminate sources of waste and inefficiency. In the 
case of Toyota, the main source of waste was the production of excessive volumes of 
stock. To solve this problem, JIT systems produce only the specific models required and 
in the quantities needed at any given time. According to Monden (1983), in this type of 
system the units should be scheduled in such a way that the consumption rates of the 
components in the production process remain constant. Under certain assumptions 
introduced in Miltenburg (1989), this scheduling problem can be solved considering 
only the demand rates for the models (Miltenburg, 1989; Kubiak, 1993). 
 
The RTVP also appears in computer multithreaded systems (Waldspurger and Weihl, 
1994 and 1995; Dong et al., 1998). Multithreaded systems (operating systems, network 
servers, media-based applications, etc.) do different tasks to attend to the requests of 
client programs that take place concurrently. These systems need to manage the scarce 
resources in order to service the requests of n clients. For example, multimedia systems 
must not display video frames too early or too late, because this would produce jagged 
motion perceptions (Corominas et al., 2007). Waldspurger and Weihl, considering that 
resource rights could be represented by tickets and that each client had its own number 
of tickets, suggested the RTV metric to evaluate the sequence of resource rights. 
 
Two real-life cases of RTVP applications were reported in the literature. In 
Bollapragada et al. (2004), the study is motivated by the problem faced by the National 
Broadcasting Company (BNC) of U.S., one of the main firms in the television industry. 
Major advertisers buy to BNC hundreds of time slots to air commercials. The 
advertisers ask to BNC that the airings of their commercials are evenly spaced as much 
as possible over the broadcast season. The same problem is also solved in Brusco 
(2008). In Herrmann (2007), the author came up with the RTVP while working with a 
healthcare facility that needed to schedule the collection of waste from waste collection 
rooms throughout the building. Based on data about how often a waste collector had to 
visit each room and in view of the fact that different rooms require a different number of 
visits per shift, the facility manager wanted these visits to occur as regular as possible so 
that excessive waste would not collect in any room. For instance, if a room needed four 
visits per eight-hour shift, it should be ideally visited every two hours. 
 
Other contexts in which the RTVP can be applied are the design of sales catalogs 
(Bollapragada et al., 2004), the periodic machine maintenance problem (Wei and Liu, 
1983; Anily et al., 1998) as well as other distance-constrained problems (e.g., see Han 
et al., 1996). 
 
The abovementioned applications are examples of a very common situation, in 
manufacturing and in services, in which a resource must be used successively by 
different units and it is important to schedule them in such a way that the different types 
of units share the resource in some fair manner (see Kubiak (2009) who provides an 
extensive overview on fair sequences). The RTVP proposes a new universal measure of 
fairness: to minimise the variability of the distance (measured, for example, in number 
of slot times) between any two consecutive units of the same product, event, job or 
client; i.e., to have the distances between any two given consecutive units of the same 
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product as constant as possible. Several other measures have been proposed for the 
fairness of the sequence of models on assembly lines, either based on the difference 
between ideal and actual productions (Miltenburg, 1989; Kubiak, 1993; Steiner and 
Yeomans, 1993) or on the difference between ideal and actual production dates (Inman 
and Bulfin, 1991; Bautista et al., 1997). The new measure of fairness is easier to 
understand by practitioners, since it only uses a simple concept: the distance. Moreover 
it has the characteristic that the value of the measure does not depend on the position of 
those products with only one unit to be sequenced. 
 
The RTVP has been demonstrated to be NP-hard (Corominas et al., 2007). Thus, this 
problem has been mostly solved by means of heuristic procedures (Waldspurger and 
Weihl, 1994, 1995; Corominas et al., 2007; Herrmann, 2007, 2009) as well as 
metaheuristic procedures (García et al., 2006; Corominas et al., 2008, 2009a, 2009b, 
2009c, 2009d; García-Villoria and Pastor, 2008, 2009a, 2009b, 2010; García-Villoria et 
al., 2010). 
 
Anyway, there are two works in which the RTVP is solved optimally for small instances 
(Corominas et al., 2007, 2010). In both works a Mixed Integer Linear Programming 
(MILP) approach is used. The best MILP model (Corominas et al., 2010) obtains 
optimal solutions with a practical time of 40 units to be sequenced. 
 
The disadvantage of the MILP approach is that general software is used to solve the 
MILP model and it is difficult to take advantage of all characteristics of the problem. In 
order to solve optimally larger instances in a practical time, we suggest using the branch 
and bound (B&B) approach. In this paper we proposed an algorithm based on the B&B 
technique that is specifically designed to solve the RTVP. A computational experiment 
shows that the proposed B&B algorithm is able to solve optimally instances up to 55 
copies to be sequenced (that is, the size of the instances that can be optimally solved has 
been increased 37.5% with respect to the best exact method published in the literature). 
 
The remainder of the paper is organized as follows. Section 2 presents a formal 
definition of the RTVP. Section 3 proposes our B&B algorithm to solve the RTVP. 
Section 4 presents the results of a computational experiment. Finally, some concluding 
remarks are given in Section 5. 
 
 
2. The Response Time Variability Problem (RTVP) 
 
The RTVP is formulated as follows. Let n be the number of symbols to be sequenced 
(that represent products, jobs, clients, events, …), where symbol i (i = 1,...,n) is to be 
copied di times in the sequence. Let D be the total number of copies to be sequenced 
(

1.. ii n
D d

=
= ∑ ). Let s be a solution of an instance in the RTVP that consists of a 

circular sequence of copies ( Dssss 21= ), where sj is the copy sequenced in position j 
of sequence s. For each symbol i in which 2id ≥ , let i

kt  be the distance between the 
positions in which the copies k + 1 and k of symbol i are found. We consider the 
distance between two consecutive positions to be equal to 1. Since the sequence is 
circular, position 1 comes immediately after the last position D; therefore, i

di
t  is the 

distance between the first copy of symbol i in a cycle and the last copy of the same 



 246 

symbol in the preceding cycle. Let it  be the desired average distance between two 

consecutive copies of symbol i ( i
i

Dt d= ). Note that for each symbol i in which 1id = , 

1
it  is equal to it . The objective is to minimise the metric called response time variability 

(RTV), which is defined by the sum of the square errors with respect to the it  distances. 
This is given in the following expression: 
 

 2

1 1
( )

idn
i
k i

i k
RTV t t

= =

= −∑∑  (1) 

 
For example, let 3n =  with symbols A, B and C, and consider, 3Ad = , 2Bd =  and 

2Cd = ; thus, 7D = , 7
3At = , 7

2Bt =  and 7
2Ct = . Any sequence such that contains 

symbol i ( i∀ ) exactly id  times is a feasible solution. For instance, the sequence (A, B, 
A, C, B, A, C) is a feasible solution, where: 
 

( ) ( ) ( ) ( ) ( ) ( ) ( )2 2 2 2 2 2 27 7 7 7 7 7 7 52 3 2 3 4 3 43 3 3 2 2 2 2 3RTV      = − + − + − + − + − + − + − =     
     

 
 
3. A Branch and Bound algorithm for the RTVP 
 
Branch and Bound (B&B) is a general technique for solving combinatorial optimisation 
problems, as it is the RTVP. B&B is based on dividing (branching) a feasible region of 
the solution space into several subregions. The divisions of the (sub)regions of the 
solution space are represented in a tree, in which each node represents a (sub)region of 
the space. The terminal nodes of the tree are regions of the space that contains only one 
solution. To avoid examining all (sub)regions of the space of solutions, the tactics of 
pruning the nodes with not better bounds than the value of the best current solution 
found, and eliminating dominated or equivalent nodes are usually used. For a good 
overview of enumerative procedures in tree representations, see Pastor and Corominas 
(2000). 
 
We propose an algorithm based on the B&B technique. In Sections 3.1 to 3.12 the 
characteristics of the proposed algorithm are explained. Finally, in Section 3.13 the fine-
tuning of the algorithm parameters is shown. 
 
3.1. Objective 
 
The objective is to obtain one solution that minimises the RTV value defined by Eq. 1 
 
3.2. Initial solution 
 
The RTV value of an initial solution is used as an initial upper bound of the optimal 
solution. The initial solution is generated as follows.  
 
First, a solution is obtained by applying the Reduced Variable Neighbourhood Search 
(RVNS) algorithm proposed in Corominas et al. (2009b), which is the best heuristic 
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method published in the literature to solve the RTVP. The RVNS algorithm works as 
follows. The start solution is generated using the lottery scheduling (Waldspurger and 
Weihl, 1994) as it is done in previous works published in the literature when an start 
solution is required. That is, for each position, a symbol to be sequenced is randomly 
chosen. The probability of each symbol is equal to the number of copies of this symbol 
that remain to be sequenced divided by the total number of units that remain to be 
sequenced. The neighbourhoods (N1, N2 and N3) used in this RVNS algorithm are the 
following. N1 is generated by swapping each pair of two consecutive positions of the 
sequence. N2 is a generalisation of N1 where the move is not restricted to consecutive 
positions. N3 is generated by inserting each position in the sequence. At each iteration, a 
neighbour of the current solution is obtained at random from the current neighbourhood. 
If the neighbour is worse, then the neighbourhood is changed to the following 
neighbourhood; otherwise, the current neighbourhood is changed to the first one (N1). 
The stop condition of the RVNS algorithm used in this paper is that the current solution 
does not improve in a certain number of consecutive iterations. A previous 
computational experiment has shown that 500.000 iterations are far enough for the 
convergence of the RVNS algorithm. The pseudo-code of the algorithm is shown in 
Figure 1. 
 

1.  Let S an initial solution 
2.  k := 1 
3.  it := 0 
4.  While it < 500.000 do: 
5. it := it + 1 
6. Select a solution S’ at random from Nk 
7. If RTV(S) ≤ RTV(S’) then: 
  S := S’ and k := 1;  
  If RTV(S) < RTV(S’) then it := 0 

Otherwise: 
  k := (k mod 3) + 1 
8.  End While 
9.  Return S 

Figure 1. Pseudo-code of the RVNS algorithm 
 
The RVNS algorithm is able to obtain a good solution very quickly, although it does not 
ensure that the returned solution is a local optimum with respect to the neighbourhoods 
N1, N2 and N3. Thus, we apply a composite hill climbing method to improve (if 
possible) the solution returned by the RVNS algorithm. The composite hill climbing 
method consists of applying iteratively three local search procedures (LS1, LS2 and 
LS3) to the solution until there is no improvement of the solution (i.e., until a local 
optimum with respect all three neighbourhoods is reached). The local searches are 
performed iteratively as follows: the best solution in the neighbourhood is chosen at 
each iteration; the optimisation ends when no neighbouring solution is better than the 
current solution. The neighbourhoods used by LS1, LS2 and LS3 are N1, N2 and N3, 
respectively. 
 
3.3. Nodes of the tree 
 
The algorithm starts from an empty sequence and, at each iteration, allocates a copy of 
one symbol that still has unallocated copies to the first empty position. Therefore, at 
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each node of the tree we have a partially filled sequence, excepting at the terminal 
nodes, where we have a complete sequence. 
 
3.4. Preprocessing to avoid examining equivalent nodes 
 
Note that a RTVP solution is defined by the relative distances, for each symbol i, 
between the consecutive copies of symbol i instead of the absolute positions in which 
the copies are sequenced. The two following preprocesses are applied to avoid 
examining equivalent nodes. 
 
a)  A copy of the symbol i with the largest di (number of copies to be sequenced), i*, is 

fixed in the first position of the sequence. The aim is to avoid some equivalent 
isomorphic solutions. Two solutions are isomorphic if one sequence can be reduced 
to the other by means of a partial rotation or if considering one of them clockwise is 
equal to the other considered counterclockwise. 

 
For example, let symbol A the one with the largest number of copies to be 
sequenced (i* = A). Then, the sequence (A, B, A, C, B, A, C) will be generated, but 
not the sequences (B, A, C, B, A, C, A) and (C, A, B, C, A, B, A). Note that the 
second one can be reduced to the first one by means of a partial rotation, and the 
third one can be reduced to the first one considered counterclockwise. 

 
b)  To replace the symbols that have only one copy to be sequenced by a fictitious 

symbol. The number of times that the fictitious symbol is sequenced is equal to the 
number of symbols that have only one copy to be sequenced. The copies of the 
fictitious symbol will not contribute in the RTV value of the sequence. 
 
For example, the sequences (A, B, D, A, C, B, E, A, C) and (A, B, E, A, C, B, D, A, 
C) are equivalent. But if the suggested preprocess is applied, only the equivalent 
sequence (A, B, *, A, C, B, *, A, C) will be generated, where * is the fictitious 
symbol. 

 
3.5. Branching 
 
Given a non terminal node, its child nodes are generated by allocating one copy of the 
symbols that still have unallocated copies at the first free position of the sequence. 
 
3.6. Node selection 
 
A dynamic search strategy is used for selecting the next node to be explored (Pastor and 
Corominas, 2000). According to the current available RAM memory, the following two 
possibilities are applied:  
 
a) If the available RAM is over than certain threshold, the search strategy consists of 
selecting the node that has the minimum value according to the following expression: 
 
 · · ·LB UBη λ µ υ+ +  (2) 
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where , ,η λ µ  are parameters, LB is the lower bound of the node, UB is the upper bound 
of the node and υ  is the number of empty positions in the partial sequence 
corresponding to the node. 
 
b) If the available RAM is below than certain threshold, the search strategy consists of 
selecting the node that has the minimum value according to Eq. 2 and then applying a 
depth-first search in the subtree that has the selected node as root (i.e., in the exploration 
of that subtree the values of the parameters are 0η λ= =  and 1µ = ). 
 
3.7. Bounding 
 
A node is pruned when the following condition is true: 
 
 ( )2* −> RTVLB  (3) 
 
where RTV* is the RTV value of the current best solution found (i.e., the global upper 
bound of the problem). The reason is because the difference between the RTV values 
corresponding to any pair of feasible solutions is an even integer number (see 
Corominas et al., 2007). 
 
3.8. Lower bound (LB) 
 
The following lower bound was suggested in Corominas et al. (2007). Let a 
decomposition vector of D  into id  components be defined as follows: ( )1,..., ii dλ λ λ=  

of id  positive integers that add up to D  and 1 ...
idλ λ≥ ≥ . The components of vector iλ  

are the distances between the id  copies of symbol i . Thus, the minimum RTV value for 
symbol i , iRTV , can be obtained when mod iD d  and modi id D d−  components of iλ  

are equal to 
i

D
d

 
 
 

 and 
i

D
d

 
 
 

, respectively. For example, let 24D = , 4n = , 

( )9,7,5,3d =  and ( )2.67,3.43,4.8,8t = . The decomposition vectors 

( )1 3,3,3,3,3,3,2,2,2λ = , ( )2 4,4,4,3,3,3,3λ = , ( )3 5,5,5,5,4λ =  and ( )4 8,8,8λ =  provide 

the minimum values of iRTV  ( )1,..., 4i = . A lower bound on the value of iRTV , 

iRTVLB , and a lower bound on the value of RTV , RTVLB , can be defined as follows: 

( ) ( )
22

modmod 









−








⋅−+










−








⋅= i

i
iii

i
ii t

d
DdDdt

d
DdDRTVLB  and 

∑
=

=
n

i
iRTVLBRTVLB

1
: 

 
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

2 2 2 2

2 2 2 2

6 3 2.67 3 2 2.67 3 4 3.43 4 3 3.43

4 5 4.8 1 4 4.8 0 8 8 3 8 8 4.51

RTVLB    = ⋅ − + ⋅ − + ⋅ − + ⋅ −   
   + ⋅ − + ⋅ − + ⋅ − + ⋅ − =   
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In this case, however, a lower bound, PLB , is needed for a partial solution, that is, a 
solution in which the first k positions of the sequence has been filled. 
 
A lower bound for a partial solution, PS , can be obtained by adding, for all symbols in 
which 2id ≥ , the sum of RTVPS (the value associated with the distances between the 
copies of the symbols allocated in [1,…, k], if any) and REMRTV  (a bound 
corresponding to the assignment of the remaining copies, if any, to the free positions). 
 
Let i  be a non-fictitious symbol whose copies have not all been assigned in the partial 
solution PS . Three cases must be distinguished: 
 
- Case 1. No copy of symbol i  has been assigned in the k positions: We must 

distribute D  positions among id  distances (between two copies of symbol i ), 
guaranteeing that one distance be greater than or equal to 1+k . 

- Case 2. Only one copy of symbol i  has been assigned to position h  ( ≤ k): We must 
distribute D  positions among id  distances, guaranteeing that one distance be 
greater than or equal to 1+− hk  and another be greater or equal to h. 

- Case 3. p copies of symbol i  have been assigned in the k positions, the first in the 
sequence in position hf and the last one in position hl: We must distribute 

fl hhD +−  positions among 1+− pdi  distances, guaranteeing that one distance be 
greater than or equal to 1+− lhk  and another be greater than or equal to hf. Case 2 
can be reduced to Case 3 taking into account that hhh lf ==  and 1=p . Case 1 can 
be reduced to Case 3 taking into account that 0=== hhh lf  and 1=p . 

 
Thus, the problem consists in distributing fl hhD +−  “units of distance” among 

1+− pdi  distances ( ) 1,..., 1i
j it j d p= − + , taking into account that two distances are 

lower bounded by 1+− lhk  and hf, respectively, and the others are lower bounded by 1, 
with the objective of minimising a function of the discrepancy between the distances 
and the average distance it . That is, it is the apportionment problem with lower bounds. 
Bautista et al. (2001) propose a general optimisation procedure for a convex, 
nonnegative (symmetric or not) discrepancy function and such that ( )0 0f = . For the 
discrepancy function considered here (the quadratic discrepancy), the resulting 
procedure is as follows: 
 

11 +−= l
i hkt  

f
i ht =2  

for 3j =  to 1+− pdi  
1i

jt =  
next j  
for 1j =  to idpkD −+−  ( ))1()()1( −−−−−+−+−= pdhhhkhD ifllf  

find ( )*
* mini i

ss s
s t t= ; malot * * 1i i

s s
t t= +  

next j  
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For the instance defined by 4n =  and ( )9,7,5,3d =  and the partial solution 

( )A,C,B,A,A,C,C,C,A,,,,,,,,,,,,,,,PS = , we have: 
 

( ) ( ) ( ) ( ) ( ) ( )2 2 2 2 2 23 2.67 1 2.67 4 2.67 4 4.8 1 4.8 1 4.8 34.19PSRTV    = − + − + − + − + − + − =   
 
And, applying the procedure described above, the distances (3,3,3,3,2,2), (7,3,3,3,3,3,2), 
(9,9) and (10,7,7) are obtained for the symbols A, B, C and D, respectively. The value 
corresponding to these distances, REMRTV , is: 
 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

2 2 2 2 2

2 2 2

4 3 2.67 2 2 2.67 1 7 3.43 5 3 3.43 1 2 3.43

2 9 4.8 1 10 8 2 7 8 58.33

REMRTV    = ⋅ − + ⋅ − + ⋅ − + ⋅ − + ⋅ −   
   + ⋅ − + ⋅ − + ⋅ − =   

 
And, finally, 34.19 58.33 92.52PS REMPLB RTV RTV= + = + =  
 
3.9. Upper bound (UB) 
 
To calculate the upper bound of a node, the partial solution associated to the node is 
completed applying a constructive heuristic based on the priority rule proposed in 
Corominas et al. (2008), and the RTV value of the completed solution is taken as the 
upper bound.  
 
The constructive heuristic that we propose works as follows. Let xik be the number of 
copies of symbol i that have been already sequenced in the sequence of length k, k = 0, 
1, … (asumme xi0 = 0); the symbol to be sequenced in position k + 1 is 

( )* 1
arg max .i

i ik

k d
i x

D
+ ⋅ 

= − 
 

 If there is a tie, then the symbol i with the lowest di is 

sequenced. If there is also a tie, then use lexicographical order. 
 
In the case that the obtained full solution is better than the best current solution found, 
then the global upper bound (RTV*) is updated. 
 
3.10. Improving the solutions of terminal nodes 
 
When a terminal node is examined, the composite hill climbing method explained in 
Section 3.2 is applied to the solution associated with the node. In the case that the 
obtained improved solution is better than the best current solution found, then the global 
upper bound (RTV*) is updated. 
 
3.11. Dominances 
 
We will say that a node A dominates another node B if all the following conditions are 
fulfilled: 
 

a) The partial sequences of both nodes contain the same total number of copies. 
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b) The partial sequences of both nodes contain the same number of copies of the 
fictitious symbol. 
 
c) Excluding the fictitious symbol and the symbols such that all their copies are 
included in the partial sequence: the first and last positions occupied for each 
symbol present in the partial sequences coincide in both nodes. 
 
d) The partial RTV value (RTVPS) for node A is less (strict dominance) or equal 
(non-strict dominance) than for node B. 
 

Note that the definition includes the possibility of mutual (non-strict) dominance.  
 
When A dominates strictly B, the latter can be fathomed. When there is a mutual 
dominance between A and B, any of them (but not both, of course) can be fathomed. 
 
3.12. Avoiding examining equivalent isomorphic nodes 
 
A first preprocess method to avoid examining equivalent solutions is proposed in 
Section 3.4. In this section, we propose a method to avoid examining other isomorphic 
solutions during the search. 
 
In order to make more understandable the explanation, the following simple example is 
introduced: let n = 3; dA = 5, dB = 4 and dC = 3; thus, D = 12. The exploration tree that 
will be generated (taking into account the preprocess methods explained in Section 3.4) 
is shown in Figure 2. 
 

 
Figure 2. Exploration tree example 

 
 
All sequences that start with subsequence (A, A) are generated (explicitly or implicitly) 
from the subtree that has the node AA as its root (Subtree 1 in Figure 2). 
 
Thus, there is not necessity to generate any sequence that contains the subsequence (A, 
A) from the subtree that has the node AB as its root (Subtree 2 in Figure 2). The reason 
is that each one of these type of solutions is symmetric with respect of one of the 
solutions generated in Subtree 1. For example, the sequence (A, B, ?, ?, ?, A, A, ?, ?, ?, 
?, ?) is symmetric with respect to the sequence (A, A, ?, ?, ?, ?, ?, A, B, ?, ?, ?), which 
could be generated in Subtree 1, where ? is a copy of symbols A, B or C. 
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Similarly, there is not necessity to generate any sequence that contains any of the 
sequences (A, A), (A, B) or (B, A) from the subtree that has the node AC as its root 
(Subtree 3 in Figure 2). For example, the sequence (A, ?, ?, ?, ?, ?, ?, B, A, ?, ?, ?) is 
symmetric with respect the sequence (A, B, ?, ?, ?, ?, ?, ?, A, ?, ?, ?), which could be 
generated in Subtree 2. 
 
The idea to avoid generating symmetries has been exemplified using tabu subsequences 
with a length equal to 2. This idea can be generalized for a length equal to or greater 
than 2. 
 
Before formalizing the introduced idea, let first introduce some additional 
nomenclature. Let 1 2 Ls s s s=   and 1 2' ' ' 'Ls s s s=   be two (sub)sequences of length L, 
where sj and ' js  are the copies sequenced in position j of sequences s and s', 
respectively. We define 

SYM
<  and 

SYM
=  as two comparison operators between symbols, 

where j kSYM
s s<  returns if symbol sj is less than sk, and j kSYM

s s=  returns if symbol sj is the 

same symbol than sk; the order of the symbol set used is the lexicographical order (the 
order criterion will not have influence in the performance of the algorithm). We also 
define 

SEQ
<  as a comparison operator between two (sub)sequences of the same length, 

where '
SEQ

s s<  is defined as follows: 

 

( ) ( )

( ) ( )( ) ( )
1 1

1 1 2 3 2 3

, if 0

''
, if 1

' ' ' '

SYM
SEQ

L LSYM SEQ

false L

SYM s SYM ss s
L

SYM s SYM s s s s s s s

= 
 

 < ∨  < =  ≥  = ∧ <    
 

,  

 
where SYM(sj) returns the symbol of copy sj. 
 
Let suppose that the length of the tabu subsequences is L. Given a node N of the 
exploration tree of the level L, let its associated partial sequence be 1 2 Lsn sn sn sn=  , 
where sn1 is a copy of the symbol with the largest number of copies to be sequenced, i* 
(see Section 3.4). The set of tabu subsequences of node N, TS(N), is defined as follows: 
 
 1 2( ) ( ) ( )TS N TS N TS N= ∪  (4) 
 

{ }
( )

( )

1 2 2.. 1.. : *
2.. :

1

* 1 2 1 2
2.. : *

: ( ) 1.. 1

( )

1 1

j

j

L j ij L i n i i
j L SYM s i

i L LSEQ
j L SYM s i

sn s s SYM s n d

TS N

d sn s s sn sn sn

= = ≠
= =

= =

       ∀ ∈ ∧ ∀ ≤ ∧          =  
    + ≤ ∧ <       

∑

∑



 

 (4') 

 
 [ ] [ ]{ }2 1 2 1 1 2 1 1( ) : ( ) *L L L L LTS N s s s sn sn s s s TS N s i− −= ∈ ∧ ≠   (4'') 
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The definition of the set TS1(N) includes as tabu subsequences all subsequences that are 
feasible (that is, the symbols allocated are comprised between 1 and n, and the number 
of times that each symbol i is sequenced is not greater than di) and are lower (according 
to the operator 

SEQ
< ) than the partial sequence sn. The definition of the set TS2(N) 

includes all sequences of TS1(N) considered counterclockwise in which the symbol of 
its last copy is different of symbol i*. 
 
For example, let L = 4, n = 3, 

SYM SYM
A B C< <  and dA = 10, dB = 6, dC = 9; thus, i* = A. 

The set of tabu subsequences of node ABAC is {(A, A, A, A), (A, A, A, B), (A, A, A, 
C), (A, A, B, A) , (A, A, B, B), (A, A, B, C), (A, A, C, A) , (A, A, C, B), (A, A, C, C), 
(A, B, A, A) , (A, B, A, B)} ∪  {(B, A, A, A), (C, A, A, A), (B, B, A, A), (C, B, A, A), 
(B, C, A, A), (C, C, A, A), (B, A, B, A)} 
 
During the branching procedure, only the child nodes whose associated sequence has 
not any tabu subsequence are examined. The more greater is the value of L, the less 
equivalent solutions will be examined although the cpu time needed to check if a partial 
solution contains a tabu subsequence increases exponentially. Thus, the suitable value 
of the parameter L has to be set empirically. 
 
3.13. Fine-tuning the algorithm parameters 
 
Fine-tuning the parameters of an algorithm is almost always a difficult task. Although 
the parameter values may have a very strong effect on the performance of the algorithm 
for each problem, they are often selected using one of the following methods, which are 
not sufficiently thorough (Eiben et al., 1999; Adenso-Díaz and Laguna, 2006): 1) “by 
hand”, based on a small number of experiments that are not referenced; 2) using the 
general values recommended for a wide range of problems; 3) using the values reported 
to be effective in other similar problems; or 4) with no apparent explanation. 
 
Adenso-Díaz and Laguna (2006) proposed a new technique called CALIBRA for fine-
tuning the parameters of algorithms. CALIBRA is based on using conjointly Taguchi’s 
fractional factorial experimental designs and a local search procedure.  
 
We propose to use CALIBRA for setting the parameter values of our algorithm. 
CALIBRA was applied to a training set of 30 instances. These instances were generated 
as follows (the same way that is used in the literature; e.g., Corominas et al., 2010). D 
was randomly selected with a discrete uniform distribution between 20 and 30, between 
30 and 35 and between 35 and 40, for instances T1 to T10, T11 to T20 and T21 to T30, 
respectively. For instances T1 to T10, n and di were randomly selected with a discrete 
uniform distribution between 3 and 2D    and between 1 and ( )1 2D n − +   (with 

1

n
ii

d D
=

=∑ ), respectively. For instances T11 to T30, n and di were randomly selected 
with a discrete uniform distribution between 3 and 12 and between 1 and 

( )1 2.5D n − +   (with 
1

n
ii

d D
=

=∑ ), respectively. To evaluate the effectiveness of a 
given set of parameter values we consider the number of the training instances that can 
be solved optimally within 2,000 seconds. To break the tie the average computing time 
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spent for solving all training instances is used. The following parameter values were 
returned by CALIBRA: 
 

• η = 1, λ = 0, μ = 675 (parameters defined in Section 3.6) 
• L = 3 (parameter defined in Section 3.12) 

 
CALIBRA points that the UB value is useless for the node selection. With the values of 
the parameters returned by CALIBRA, Eq. 2 takes the form 675·LB υ+ . Thus, in the 
final proposed B&B algorithm the UB of each node is not calculated to save cpu time. 
Notice that using the η, λ and μ values returned by CALIBRA is almost equivalent to 
use a depth-first node selection strategy breaking the ties with the LB value. 
 
 
4. Computational experiment 
 
We first solved the 120 instances used in Corominas et al. (2010). These instances were 
generated as follows. D was randomly selected with a discrete uniform distribution 
between 20 and 30, between 30 and 35 and between 35 and 40, for instances 1 to 40, 41 
to 80 and 81 to 120, respectively. For instances 1 to 40, n and di were randomly selected 
with a discrete uniform distribution between 3 and 2D    and between 1 and 

( )1 2D n − +   (with 
1

n
ii

d D
=

=∑ ), respectively. For instances 41 to 120, n and di were 
randomly selected with a discrete uniform distribution between 3 and 12 and between 1 
and ( )1 2.5D n − +   (with 

1

n
ii

d D
=

=∑ ), respectively.  
 
The B&B algorithm was coded in Java and the computational experiment was carried 
out on a PC 3.00 GHz Intel Pentium IV with 1.5 GB of RAM. Because the Corominas 
et al. (2010) computational experiment was carried out in a slower machine, their 
computing times showed in this paper are multiplied by a corrective factor in order to be 
compared fairly with our computing times. The applied corrective factor is 0.5 and it is 
calculated according to the public CPU benchmark provided by PassMark Software 
(http://www.cpubenchmark.net/). 
 
Table 1 summarises the results obtained with a maximum calculation time of 10,000 
seconds for each instance. The columns #Opt and #Fea show the number of instances 
that have been solved optimally and the number of instances in which a solution has 
been found but its optimality has not been demonstrated, respectively. The average 
computing time (in seconds) is shown between parentheses. 
 

Table 1. Comparison between the MILP and the proposed B&B method 
 

  #Opt #Fea 

MILP  114 (278 s.) 6 (10,000 s.) 

B&B 
 114 (7.47 s.) 

        + 
6 (316.21 s.) 

0 

 
The results show that the B&B algorithm is able to solve all 120 instances including the 
six ones that could not be solved with the MILP method. Moreover, the computing time 
needed to solve the instances presents a huge improvement. For the 116 instances that 
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has been solved by the two methods, the MILP method needs, on average, 278 seconds 
whereas the proposed B&B method only needs 7.47 seconds. On the other hand, the 6 
instances solved by the B&B algorithm but not by the MILP model need, on average, 
316.21 computing seconds. 
 
We have expanded the computational experiment solving larger instances with the B&B 
algorithm. The instances were generated as follows. D was randomly selected with a 
discrete uniform distribution between 40 and 45, between 45 and 50, between 50 and 
55, between 55 and 60 and between 60 and 65 for instances 121 to 160, 161 to 200, 201 
to 240, 241 to 280 and 281 to 320, respectively. The n and di values are generated as it 
was done for instances 41 to 120 (all test and training instances can be downloaded at 
https://www.ioc.upc.edu/EOLI/research/) 
 
Table 2 shows the results obtained for instances 1 to 320 with a maximum calculation 
time of 10,000 seconds for each instance. Column D shows the range size of the 
instances, column T shows the average time (in seconds) to solve an instance, column 
TS0 shows the time (in seconds) to obtain the initial solution (see Section 3.2), column 
RTV shows the average of the best RTV values found and column #Opt shows the 
number of instances that have been solved optimally. 
 

Table 2. Results obtained with the B&B method 
 

Instances  D T TS0 RTV #Opt 

1-40  20-30 2.15 2.08 6.23 40 

41-80  30-35 5.89 2.83 9.24 40 

81-120  35-40 60.69 3.05 13.47 40 

121-160  40-45 785.98 2.08 14.43 38 

161-200  45-50 1,589.13 2.83 16.49 37 

201-240  50-55 2,973.90 3.06 18.51 34 

241-280  55-60 5,090.25 3.60 20.48 23 

281-320  60-65 5,910.49 4.00 24.87 18 

 
As it has been mentioned before, the B&B algorithm is able to solve all instances up to 
40 copies to be sequenced. Between 40 and 45 copies, 45 and 50 copies and 50 and 55 
copies the B&B algorithm solves the 95%, 92.5% and 85% of instances, respectively. 
For larger instances, the number of solved instances decrease quickly. However, the 
algorithm is still able to solve around 50% of instances that has between 55 and 65 
copies to be sequenced. 
 
Table 3 shows the results focused on the instances that have been optimally solved 
within 10,000 computing seconds, where column TB shows the instant at which the best 
solution was found (in seconds) and column RTV* shows the average of the optimal 
RTV values. As it is usual in exact methods, we can see that the most computing time 
for non-small instances is spent not on finding an optimal solution but on ensuring its 
optimality. 
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Table 3. Optimal results obtained with the B&B method 

 

Instances  T TB TS0 RTV* #Opt 

1-40  2.15 2.08 2.08 6.23 40 

41-80  5.89 2.83 2.83 9.24 40 

81-120  60.69 12.49 3.05 13.47 40 

121-160  301.03 19.83 2.08 14.38 38 

161-200  907.17 232.26 2.81 16.21 37 

201-240  1,734.00 442.36 3.03 17.34 34 

241-280  1,461.30 3.62 3.61 18.17 23 

281-320  912.21 142.91 4.00 19.17 18 

 
 
5. Conclusions 
 
This paper deals with the exact solution of the response time variability problem 
(RTVP) by means of a branch and bound (B&B) algorithm. The RTVP is a scheduling 
problem that arises in a wide range of real-life problems. The exact solution of this 
problem is, in general, very difficult because it is NP-hard. A mathematical 
programming model proposed in Corominas et al. (2010) was the best exact method to 
solve it with a practical limit for obtaining optimal solution of 40 copies to be 
sequenced. 
 
We have analysed the characteristics of the problem to propose a specially designed 
B&B algorithm. In particular, we have tried to avoid exploring dominated and 
equivalent solutions as much as possible. The proposed algorithm improves the best 
published exact method. All instances proposed in Corominas et al. (2010) are solved 
optimally and much faster. Moreover, the size of the instances that can be solved to 
optimality increased from 40 to 55 units. Thus, not only larger instances can be 
optimally solved but also it is useful to found new optimal solutions to the RTVP that 
can be used to compare the results obtained with heuristic and metaheuristic methods. 
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Abstract. The response time variability problem (RTVP) is a combinatorial optimization problem 
which has recently appeared in the literature. This problem has a wide range of real-life applications 
in mixed-model assembly lines, multi-threaded computer systems, network environments and others. 
The RTVP arises whenever products, clients or jobs need to be sequenced in such a way that the 
variability in the time between the points at which they receive the necessary resources is minimized. 
This problem is very complex. Swarm intelligence research has proposed some metaheuristics for 
solving complex optimization problems: among others, particle swarm optimization (PSO) and ant 
colony optimization (ACO). A PSO algorithm called DPSOpoi-cpdyn has been proposed in the 
literature to solve efficiently the RTVP. We propose an ACS algorithm—which is an ACO variant—
for solving the RTVP. A computational experiment is carried out and it is shown that, on average, the 
ACS algorithm produces better results than DPSOpoi-cpdyn. 

Keywords: response time variability, scheduling, ant colony optimization, ant colony system, swarm 
intelligence 

 

1. Introduction 

The fair sequence concept emerged independently of scheduling problems in a range of environments 
including, among others, mixed-model assembly lines, multi-threaded computer systems and network 
environments. The common aim of these scheduling problems is to build a fair sequence using n symbols, 
where symbol i (i = 1,...,n) must occur di times in the sequence. The fair sequence is the one which 
allocates a fair share of positions to each symbol i in any subsequence. This fair or ideal share of positions 
allocated to symbol i in a subsequence of length k is proportional to the relative importance (di) of symbol 
i with respect to the total copies of competing symbols (equal to ). There is no a universal 

definition of fairness because several reasonable metrics can be defined according to the specific problem 
considered. 
 
In the response time variability problem (RTVP), the fair sequence is the one which minimizes variability 
in the distances between any two consecutive copies of the same symbol [1]. In other words, the distance 
between any two consecutive copies of the same symbol should be as regular as possible (ideally, 
constant). 
 
The RTVP has a broad range of real-life applications. For example, it can be used to regularly sequence 
models in the automobile industry [2], to resource allocation in computer multi-threaded systems and 
                                                 
† Supported by the Spanish Ministry of Education and Science under project DPI2007-61905; co-funded by the FEDER. 
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network servers [3, 4], in the periodic machine maintenance problem [5], in the collection of waste [6] 
and to broadcast commercial videotapes in television [7]. 
 
The RTVP is NP-hard [1]. Eleven algorithms based on the particle swarm optimization (PSO) 
metaheuristic have been proposed in the literature for solving the RTVP [8, 9]. The PSO metaheuristic (as 
well as the ant colony optimization (ACO) metaheuristic) falls under the scope of swarm intelligence 
research, which studies algorithms inspired by the observed behaviour of swarms [10]. Swarm behaviour 
is determined by the interactions of single agents in the group who exchange information with the rest of 
the group. 
 
In this paper we propose to use an ACO approach to solve the RTVP. The ACO metaheuristic is inspired 
by the behaviour of ants when searching for food and was introduced by Dorigo [11] as a tool for solving 
hard combinatorial optimization problems (COPs) such as the RTVP. Real ants secrete pheromones that 
they put on the ground as they move between the anthill and sources of food. Ants smell the pheromones 
and tend to follow a trail according to its intensity. In ACO algorithms, artificial ants ‘walk’ over the COP 
states which are visited by other ants while building solutions. The path taken by an ant is a sequence of 
states that represents a solution to the problem. Each state is associated with a pheromone trail which is 
represented by a numeric value. The pheromone trails for each state are modified iteratively according to 
the fitness of the paths (solutions) built by the ants. At each step, an ant chooses a state of the problem 
using a probability which depends on its associated pheromone trail. 
 
Several variants of ACO have been developed in the literature, including Ant System [11], Ant-Q [12], 
Ant Colony System [13], MAX-MIN Ant System [14], and Rank-Based Ant System [15]. These variants 
differ principally in the procedure by which the pheromone trail is updated [16]. In this paper, the ant 
colony system (ACS) is used to solve the RTVP because it is one of the most successful ACO variants in 
practice [16]. 
 
The proposed ACS algorithm for solving the RTVP was compared with the best PSO algorithm published 
in the literature, which is called DPSOpoi-cpdyn [9]. On average, the proposed ACS algorithm improves 
on the best previous results. 
 
The remainder of the paper is organized as follows: Section 2 presents a formal definition of the RTVP 
and briefly presents the DPSOpoi-cpdyn algorithm. Section 3 describes the basic scheme of the ACS 
metaheuristic. Section 4 proposes an ACS algorithm for solving the RTVP. Section 5 presents the 
computational experiments and the comparison between our algorithm and DPSOpoi-cpdyn. Finally, some 
conclusions are given in Section 6. 

2. The Response Time Variability Problem (RTVP) 

The RTVP is designed to minimize variability in the distances between any two consecutive copies of the 
same symbol and is formulated as follows. Let n be the number of symbols, di the number of copies of the 
symbol i to be scheduled (i = 1,…,n), and D the total number of copies (

1..
i

i n
D d

=

= ∑ ). Let s be a solution of 

an instance in the RTVP that consists of a circular sequence of copies (s = s1s2…sD), where sj is the copy 
sequenced in position j of sequence s. For all symbol i in which 2id ≥ , let i

kt  be the distance between the 
positions in which copies k + 1 and k of symbol i are found (i.e. the number of positions between them, 
where the distance between two consecutive positions is considered equal to 1). Since the sequence is 

circular, position 1 comes immediately after position D; therefore, i
di

t  is the distance between the first 

copy of symbol i in a cycle and the last copy of the same symbol in the preceding cycle. Let it  be the 

average distance between two consecutive copies of symbol i (
i

i d
Dt = ). For all symbol i in which di 

=1, it1  is equal to it . The aim is to minimize the metric response time variability (RTV) which is defined 
by the following expression: 
 



 263 

2

1 1
( )

idn
i
k i

i k
RTV t t

= =

= −∑∑  (1) 

 
For example, let 3n = , 3Ad = , 2Bd =  and 2Cd = ; thus, 7D = , 7

3At = , 7
2Bt =  and 7

2Ct = . Any 

sequence such that contains exactly di times the symbol i ( )i∀ is a feasible solution. For example, the 

sequence (A, B, A, C, B, A, C) is a feasible solution, where: ( ) ( ) ( )2 2 27 7 72 3 23 3 3RTV  = − + − + − + 
 

 

( ) ( ) ( ) ( )2 2 2 27 7 7 7 53 4 3 42 2 2 2 3
   − + − + − + − =   
   

. 

 
As explained above, the best PSO algorithm for solving the RTVP is DPSOpoi-cpdyn [9]. PSO is a 
populational metaheuristic algorithm designed by Kennedy and Eberhart [17] which is based on swarm 
intelligence obtained from the observed social behaviour of flocks of birds when they search for food. 
The population or swarm is composed of particles (birds), whose attributes are an m-dimensional real 
point (which represents a feasible solution) and a velocity (the movement of the point in the m-
dimensional real space). The velocity of a particle is typically a combination of three types of velocities: 
1) the inertia velocity (i.e., the previous velocity of the particle); 2) the velocity to the best point found by 
the particle; and 3) the velocity to the best point found by the swarm. These components of the particles 
are modified iteratively by the algorithm as it searches for an optimal solution. Although the PSO 
algorithm was originally designed for m-dimensional real spaces, DPSOpoi-cpdyn is adapted to work with 
a sequence that represents the solution. Moreover, DPSOpoi-cpdyn introduces random modifications to 
the points of the particles with a frequency that changes dynamically according to the homogeneity of the 
swarm (for more details, see [9]). 

3. ACO and Ant Colony System 

The ACO metaheuristic was initially designed by Dorigo to solve the traveling salesman problem [11]. 
ACO algorithms have been used to solve many combinatorial optimization problems (COPs) [10]. ACO 
was initially inspired by the biological behaviour of ants but was soon modified to solve COPs more 
efficiently. ACO differs from real ants in the following ways [10]: 1) artificial ants move through a 
discrete environment (i.e., through a finite set of states of the problem); 2) heuristic information is also 
considered when the solutions are being built; 3) the pheromone update is performed only by some ants 
and often after a solution has been constructed; and 4) ACO may include artificial mechanisms such as 
local search and look-ahead. 
 
The first step in solving a COP with ACO is to associate a graph G = (N, E), called construction graph, 
with the problem. The nodes in the set N are usually components of the solution, and the artificial ants 
build a solution incrementally by moving from node to node along the edges of the set E. Each edge has 
an associated pheromone trail value and a heuristic value. The ants combine the pheromone and the 
heuristic information to select the next edge probabilistically. Fig. 1 shows a classical scheme of the ACO 
metaheuristic, which consists in setting an initial value (τ0) for each pheromone trail and then looping 
over the following three components until a stop condition is reached: 1) the construction of a solution by 
the ants; 2) a local search from some or all the solutions (this component is optional); and 3) the update of 
the pheromone trail values. 
 

 
 

Fig. 1. Scheme of the ACO metaheuristic 
 
 

1. Set the values of the ACO parameters 
2. Initialize the pheromone trail values 
3. While stopping condition is not reached do: 
4. ConstructAntSolutions 
5. ApplyLocalSearch [optional] 
6. UpdatePheromones 
7. End While 
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The first ACO metaheuristic proposed in the literature was Ant System [11]. Several other ACO 
metaheuristics have been introduced to improve the performance of Ant System. All ACO metaheuristics 
use the scheme shown in Fig. 1, but they contain different definitions for constructing solutions and 
updating pheromones (Steps 4 and 6 in Fig. 1). For more extensive information about ACO, see the book 
by Dorigo and Stützle [18]. 
 
Dorigo and Blum [16] found that ACS is one of the most successful ACO metaheuristics in practice. 
Therefore, we decided to use ACS to solve the RTVP. In the following sections we explain how the 
solution construction, the local search and the pheromone update are applied in ACS [10]. 
 
ConstructAntSolutions. Given a construction graph G = (N, E), each ant constructs a solution starting 
with an empty partial solution sp. Then, a component from N is added to sp at each construction step until 
the solution is complete. The next component to be added is determined by selecting at random an edge 
from the set E(sp), which is the subset of E composed of the eligible edges for the partial solution sp. The 
probability that an edge eij (where i is the last component added to sp) will be chosen is given by the 
following equation: 
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(2) 

 
where q is a random number distributed uniformly over [0,1], q0 is a parameter of ACS, τij is the 
pheromone trail values associated with the edge eij, η(eij) is the heuristic information that indicates how 
desirable it is to choose the edge eij, and α and β are two positive parameters of ACS that weight the 
importance of the pheromone value and the heuristic information, respectively. 
 
ApplyLocalSearch. Optional actions called daemon actions could be performed once the solutions have 
been constructed. The most commonly used daemon action is to apply a local search to the solutions. 
Although this component is optional, ACO algorithms and their variants perform better if a local search is 
applied [19].  
 
UpdatePheromones. Pheromones are updated according to the locally optimized solutions. This 
component is designed to increase the pheromone trail values associated with the edges used by good 
solutions and to decrease the pheromone trail values associated with the edges used by bad solutions. 
ACS applies two pheromone updates: the offline pheromone update and the local pheromone update. The 
offline pheromone update is applied at the edges belonging to the best solution bs (either the best current 
solution or the best solution found by the algorithm) using the following formula: 
 

1(1 )    if  belong to ( )
                                  otherwise

ij ij
ij

ij

e bsf bsρ τ ρ
τ

τ

 − ⋅ + ⋅= 


 
(3) 

 
where (0,1]ρ ∈  is a parameter called the evaporation rate and f is the objective function of the problem to 
be minimized. 
The local pheromone update is performed by all ants when an edge eij is chosen according to the 
following formula: 
 

0(1 )ij ijτ ϕ τ ϕ τ= − ⋅ + ⋅  (4) 

 
where (0,1)ϕ ∈  is a parameter called the pheromone decay coefficient and τ0 is the initial value of the 
pheromone trails. The local update is intended to diversify the search performed by subsequent ants in the 
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current iteration of ACS by reducing the pheromone value of the edges that are chosen by the previous 
ants. Note that τij only decreases if τ0 is smaller than the current τij; consequently, τ0 is usually set to a low 
value [20]. 

4. Using ACS to Solve the RTVP 

The ACS scheme was described in the previous section. Five main points need to be specified when 
applying ACS to the RTVP. Section 4.1 presents the construction graph associated with the RTVP and 
explains how the graph is covered by the ants in order to build a solution. Section 4.2 explains the 
heuristic information used in Equation (2). Section 4.3 describes the local search procedure. Section 4.4 
gives the best solution used in Equation (3). Section 4.5 explains the stop condition. Finally, Section 4.6 
explains the fine-tuning of the parameter values of the ACS algorithm. 

4.1. Defining the Construction Graph and Building a Solution 

In order to make the explanation more understandable, the example introduced in Section 2 is used: n = 3; 
dA = 3, dB = 2, dC = 2; and D = 7. 
Let the construction graph G = (N, E). The set of nodes N is the union of the sets N1 and N2, where 

{ }1 :1 1,  1 1i
k iN n i n k d= ≤ ≤ − ≤ ≤ −  and { }2 :1 1N t t D= ≤ ≤ − . Note that the symbol n is not included in 

N1 because the positions of the copies of this symbol are fixed when the previous symbols are sequenced. 
The node i

kn  belonging to N1 represents the copy k of the symbol i; the node t belonging to N2 represents 

a distance between two copies of the same symbol. Therefore, in the example we have { }1 1 2 1, ,A A BN n n n=  

and { }2 1, 2,3, 4,5,6 .N =  Let 1 2E N N⊂ × , where the edge ( ),i
ikt ke n t=  represents that the copy k + 1 of 

the symbol i is sequenced at distance t of the copy k of the symbol i. 
 
An ant starts to generate a solution sequence by setting copy 1 of symbol 1 to the first position of the 
sequence (see the current sp of the example in Fig. 2a). Then, an edge has to be chosen at random from 
the set { }1,1, 1( ) :1 1p

tE s e t D d= ≤ ≤ − +  using the probabilities defined by Equation (2). The choice of the 

edge will fix the position (let it be called 1
2p ) of the second copy of symbol 1 to the value 1 + t. Note that 

the highest possible position 1
2p  is 1 2D d− + , so the remaining copies of symbol 1 can be sequenced at 

the positions 1 1
2 21, 2, ,p p D+ +  . In the example, let us suppose that the edge chosen at random is eA,1,2 

(i.e., t = 2) and, therefore, 2 1 2 3Ap = + = (see current sp in Fig. 2b). The ant then chooses an edge at 

random from the set { }1
1,2, 1 2( ) :1 ( 2) 1 .p

tE s e t D d p= ≤ ≤ − − − +  This process continues for copies 3, 4, 
…, d1 -1 of symbol 1. The set of eligible edges when copy k of symbol 1 has been sequenced is 

{ }1
1, , 1( ) :1 ( ) 1 ,p

k t kE s e t D d k p= ≤ ≤ − − − +  where 1
kp  is the position at the sequence of copy k of symbol 

1. In the example, { },2,( ) :1 7 (3 2) 3 1 ,p
A tE s e t= ≤ ≤ − − − +  i.e., { },2,1 ,2,2 ,2,3 ,2,4, , ,A A A Ae e e e . Next, an edge 

is chosen at random: for example, ,2,3Ae  (i.e., t = 3). Therefore, 3 3 3 6Ap = + =  (see Fig. 2c). Note that the 
distance between the first copy of symbol 1 and the last copy of the same symbol in the preceding cycle is 
determined when 

1

1
dp  is fixed.  

 
When all copies of symbol 1 have been sequenced, the process is repeated for the copies of symbol 2, 
then symbol 3, and so on up to the penultimate symbol. The first copy of each symbol is always 
sequenced at the first free position in the sequence. The other copies of each symbol are sequenced in the 
same way as those of symbol 1, but the eligible edges must be chosen in such as way that the copies are 
not sequenced at an occupied position. In the example, the first copy of symbol B is placed in the first free 
position of the sequence, and therefore 1 2Bp =  (see Fig. 2d). Next, an edge has to be chosen from 

{ },1,2 ,1,3 ,1,5( ) , , .p
B B BE s e e e=  Note that edges ,1,1Be  and ,1,4Be  are not eligible because if edge ,1,1Be  is chosen 

(i.e., t = 1), 2 2 1 3Bp = + =  and position 3 is already occupied by symbol A (and analogously for edge 



 266 

,1,4Be ). Let us suppose that edge ,1,3Be  is chosen at random. Therefore, 2 2 3 5Bp = + =  (see Fig. 2e). 
Finally, the sequence is completed with the copies of symbol C (see Fig. 2f). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2. Construction of a solution sequence 

4.2. Heuristic Information 

The heuristic information for the edge , ,i k te  is given by the following equation: 
 

, , 2

1( )
( )i k t

i

e
t t

η
ε

=
− +

 (5) 

 
which expresses the desirability for distance t to be equal to the ideal distance of symbol i; ε is a small 
value (10-6) to prevent a division by zero if the two distances are equal. 

4.3. Local Search 

The local search procedure is applied as follows. A local search is performed iteratively in a 
neighbourhood that is generated by interchanging each pair of consecutive copies of the sequence that 
represents the current solution. The best solution in the neighbourhood is then chosen, and the 
optimization stops when a certain number of iterations are reached or when no neighbouring solution is 
better than the current solution. 
 
During the first iterations of the ACS algorithm we observed that the solutions constructed by the ants 
were still relatively poor. Consequently, it may be very computationally expensive to apply a local search 
until a local optimum is found when large instances are being solved, so only a few iterations of the ACS 
algorithm can be run. Therefore, the number of iterations (which is a parameter of the algorithm that we 
shall call lsiter) is limited to reduce the time spent on the local search. 

4.4. Best Solution Used in the Offline Pheromone Update 

Only the best solution is considered for the offline pheromone update (Equation (3)). This best solution 
can be either the best solution obtained in the current iteration or the best solution obtained by the 
algorithm during its execution. We conducted a brief experiment and found that the best solution obtained 
in the current iteration is clearly the preferable option. Therefore, in this paper we only consider the ACS 
algorithm that uses the first option. 

4.5. Stop Condition 

The ACS algorithm stops once it has run for a preset time. 

 

A       (a) 
 
A  A     (b) 
 
A  A   A  (c) 
 
A B A   A  (d) 
 
A B A  B A  (e) 
 
A B A C B A C (f) 
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4.6. Fine-tuning the ACS Algorithm Parameters 

Fine-tuning the parameters of a metaheuristic algorithm is almost always a difficult task. Although the 
parameter values may have a very strong effect on the results of the metaheuristic for each problem, they 
are often selected using one of the following methods, which are not sufficiently thorough [21, 22]: 1) “by 
hand”, based on a small number of experiments that are not referenced; 2) using the general values 
recommended for a wide range of problems; 3) using the values reported to be effective in other similar 
problems; or 4) with no apparent explanation. 
 
Adenso-Díaz and Laguna [22] proposed a new technique called CALIBRA for fine-tuning the parameters 
of heuristic and metaheuristic algorithms. CALIBRA is based on using conjointly Taguchi’s fractional 
factorial experimental designs and a local search procedure. 
 
CALIBRA was used in [9] to fine-tune DPSOpoi-cpdyn, and we used the same technique to fine-tune our 
ACS algorithm. The following parameter values were obtained: number of ants = 20, q0 = 0.9, α = 1.5, β 
= 1.75, τ0 = 0.00013, ρ = 0.87, φ = 0.13 and lsiter = 50.  
 
Since CALIBRA cannot fine-tune more than five parameters, the ACS algorithm was fine-tuned in two 
steps. In the first step, α and β were set to 1 (that is, the pheromone and heuristic information had the 
same weight), τ0 was set to a small value (0.01), as is commonly done in the literature [20], and the 
remaining parameters (number of ants, q0, ρ, φ and lsiter) were fine-tuned. In the second step, the number 
of ants, q0 and lsiter were set to the values obtained in the first step and the remaining parameters (α, β, τ0, 
ρ, and φ) were fine-tuned. 

5. Computational Experiment 

The computational experiment was carried out for the same instances that were used in [9]. That is, the 
algorithms were run for 740 instances which were grouped into four classes (185 instances in each class) 
according to size. The instances in the first class (CAT1) were generated using a random value of D 
(number of copies) distributed uniformly between 25 and 50, and a random value of n (number of 
symbols) distributed uniformly between 3 and 15; for the second class (CAT2), D was between 50 and 
100 and n between 3 and 30; for the third class (CAT3), D was between 100 and 200 and n between 3 and 
65; and for the fourth class (CAT4), D was between 200 and 500 and n between 3 and 150. For all 
instances and for each symbol i = 1,…,n, a random value of di (number of copies of symbol i) was 

between 1 and 1
2.5

D n− +  so that 
1..

i
i n

d D
=

=∑ . Both algorithms were coded in Java and the 

computational experiment was carried out using a 3.4 GHz Pentium IV with 1.5 GB of RAM. 
 
The algorithms were run for 50 seconds for each instance. Table 1 shows the average RTV values to be 
minimized for the global of 740 instances and for each class of instances (CAT1 to CAT4) obtained with 
the two algorithms. 
 

Table 1. Average RTV values for a computing time of 50 seconds 
 Global CAT1 CAT2 CAT3 CAT4 
ACS algorithm 1,651.48 10.92 36.83 504.84 6,053.31 
DPSOpoi-cpdyn 4,625.54 16.42 51.34 610.34 17,824.04 

 
Table 1 shows that the global average results of the ACS algorithm for all the instances considered are 
64.23% better than the results of DPSOpoi-cpdyn. If we consider the results by class, the ACS algorithm 
also obtains better results than DPSOpoi-cpdyn: the results obtained with the ACS algorithm are 33.50%, 
28.26%, 17.29% and 66.04% better for CAT1 instances, CAT2 instances, CAT3 instances and CAT4 
instances, respectively. Considerable improvements are observed in all classes, particularly for the biggest 
instances (CAT4), which are the most difficult to solve. 
 
We examined also the dispersion of the results. A measure of the dispersion (let it be called σ) of the RTV 
values obtained by each algorithm alg = {ACS algorithm, DPSOpoi-cpdyn } was defined for a given 
instance, ins, according to the following expression: 
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where ( )RTV alg

ins  is the RTV value of the solution obtained with the algorithm alg for the instance ins, and 
( )RTV best
ins  is the best RTV value of the solutions obtained with the two algorithms for the instance ins. 

Table 2 shows the average σ dispersion for the total number of instances and for each class. 
 

Table 2. Average σ dispersion for the best solution found 
 Global CAT1 CAT2 CAT3 CAT4 
ACS algorithm 0.59 ≈ 0.00 0.03 2.22 0.11 
DPSOpoi-cpdyn 2.66 0.82 0.61 1.70 7.53 

 
Table 2 shows that the ACS algorithm produces the lowest average σ dispersion for the total number of 
cases. That is, the ACS algorithm not only obtains the best RTV values but also exhibits more stable 
behaviour. If we consider the results in Table 2 by class, we can see that the CAT3 instances are an 
exception to this pattern. Surprisingly, the dispersion of results obtained with DPSOpoi-cpdyn for CAT3 
instances is lower than that obtained with the ACS algorithm, although the ACS algorithm produces 
better RTV values. This is due to the presence of an outlier, since the solution obtained with the ACS 
algorithm is much worse than that obtained with DPSOpoi-cpdyn for only one CAT3 instance. If this 
outlier is disregarded, the average σ dispersions of the produced by the ACS algorithm and DPSOpoi-
cpdyn are 0.89 and 1.70, respectively. 
 
A computing time of 50 seconds may not be long enough for the algorithms to converge for the largest 
instances (CAT4 instances). Table 3 shows the average RTV values for the total number of instances and 
for each class of instances (CAT1 to CAT4) when the algorithms are run for 1,000 seconds. 
 

Table 3. Average RTV values for a computing time of 1,000 seconds 
 Global CAT1 CAT2 CAT3 CAT4 
ACS algorithm 1,208.81 10.46 31.17 337.31 4,456.32 
DPSOpoi-cpdyn 1,537.34 14.35 46.55 143.96 5,944.51 

 
When a computing time of 1,000 seconds is used—which seems to be long enough for both algorithms to 
converge (see Fig. 3)—the ACS algorithm is 21.37% better than DPSOpoi-cpdyn for the total number of 
instances. If we consider the results by class, the ACS algorithm is 27.11%, 33.04% and 25.03% better 
than DPSOpoi-cpdyn for CAT1, CAT2 and CAT4 instances, respectively. However, DPSOpoi-cpdyn 
performs better for the CAT3 instances. 
 

  
 

Fig. 3. Average RTV values over the computing time 
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6. Conclusions 

In this paper, the response time variability problem (RTVP) is solved. This scheduling problem arises in a 
variety of real-life environments including mixed-model assembly lines, multi-threaded systems, network 
servers, periodic machine maintenance, waste collection and television broadcast. The aim of the RTVP is 
to minimize the variability in the distances between any two consecutive copies of the same symbol. 
 
Since the RTVP is an NP-hard problem, heuristic and metaheuristic methods are needed to solve real-life 
instances. Several metaheuristics have been developed for solving hard optimization problems based on 
biological swarm intelligence, including the PSO and ACO metaheuristics. The best PSO algorithm for 
solving the RTVO is called DPSOpoi-cpdyn [9]. An ant colony system (ACS), which is a variant of the 
ACO metaheuristic, has been successfully applied to combinatorial optimization problems. We propose 
an ACS algorithm for solving the RTVP, and the computational experiment showed that the ACS 
algorithm improves DPSOpoi-cpdyn. 
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The response time variability problem (RTVP) is a combinatorial optimisation problem 
that occurs whenever products, clients or jobs need to be sequenced so as to minimise 
variability in the time between the instants at which they receive the necessary 
resources. This problem has a broad range of real-world applications: among others, to 
sequencing on mixed-model assembly lines under JIT (Monden, 1983; Miltenburg, 
1989; Kubiak, 1993), resource allocation in computer multi-threaded systems such as 
operating systems, network servers and media-based applications (Waldspurger and 
Weihl, 1994 and 1995; Dong et al., 1998; Bar-Noy et al., 2002), in the collection of 
waste (Herrmann, 2007), in the schedule of commercial videotapes for television 
(Bollapragada et al., 2004), in the design of sales catalogues (problem introduced in 
Bollapragada et al., 2004),and in the periodic machine maintenance problem (Wei and 
Liu, 1983; Anily et al., 1998). These real-life problems are usually considered as 
distance-constrained scheduling problems (Han et al., 1996; Dong et al., 1998). 
Although the main objective of the distance-constrained problem and the RTVP is to 
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find as regular a sequence as possible, the advantage of the RTVP is that it will always 
come up with a feasible solution, contrary to the distance-constrained problem as well 
as other distance-constrained problems (e.g., see Han et al., 1996). For a good 
introduction to the RTVP, see Corominas et al. (2009a) 
 
The RTVP is formulated as follows. Let n be the number of symbols, id  the number of 
copies to be scheduled of symbol i (i = 1,…,n) and D the total number of copies 
(

1.. ii n
D d

=
= ∑ ). Let s be a solution of a RTVP instance that consists of a circular 

sequence of copies ( Dssss 21= ), where sj is the copy sequenced in position j of 
sequence s. For all symbol i in which 2id ≥ , let i

kt  be the distance between the positions 
in which the copies k + 1 and k of symbol i are found (i.e. the number of positions 
between them, where the distance between two consecutive positions is considered 
equal to 1). Since the sequence is circular, position 1 comes immediately after position 
D; therefore, i

di
t  is the distance between the first copy of symbol i in a cycle and the last 

copy of the same symbol in the preceding cycle. Let it  be the average or ideal distance 
between two consecutive copies of symbol i (

i
i d

Dt = ). For all symbol i in which 

1=id , it1  is equal to it . The objective is to minimise the metric response time 
variability (RTV) which is defined by the following expression: 
 

 2

1 1
( )

idn
i
k i

i k
RTV t t

= =

= −∑∑  (1) 

 
The RTVP has been demonstrated to be NP-hard (Corominas et al., 2007). 
 
The objective of this work is to improve the solution of the RTVP. To achieve it, we 
have used simulated annealing (SA). The remainder of the paper is organized as 
follows. The state of the art with the methods proposed in the literature to solve the 
RTVP is given in Section 3. Three SA-based algorithms are proposed in Section 3 to 
improve the solution of the RTVP. A computational experiment is carried whose results 
are shown and discussed in Section 4. Finally, some conclusions are given in Section 5. 
 
 
2. State of the art 
 
Although the RTVP is in general NP-hard, the two-symbol case can be optimally solved 
with a polynomial algorithm proposed in Corominas et al. (2007). For the other cases, 
Corominas et al. (2007) proposed a mixed-integer linear programming (MILP) model, 
which was enhanced in Corominas et al. (2010). Anyway, only small instances can be 
solved optimally in a practical time (the limit size is 40 copies to be sequenced). 
 
The RTVP problem has been first time solved in Waldspurger and Weihl (1994) using a 
method that authors called lottery scheduling, which consists on generating a solution at 
random. Later, Waldspurger and Weihl (1995) used the Jefferson method of 
apportionment (Balinski and Young, 1982), a greedy heuristic algorithm which they 
renamed as the stride scheduling technique. Herrmann (2007) solved the RTVP by 
applying a heuristic algorithm based on the stride scheduling technique. An aggregation 



 273 

approach was used in Herrmann (2009). Corominas et al. (2007) proposed also the 
Jefferson method together with other four greedy heuristic algorithms and a local search 
method.  
 
Metaheuristic approaches have been intensively proposed during the last three years. 
García et al. (2006) proposed a multi-start (MS), a greedy randomized adaptive search 
procedure (GRASP) and four variants of a discrete particle swarm optimisation (PSO) 
algorithm. An enhanced multi-start algorithm and an enhanced GRASP algorithm were 
proposed in Corominas et al. (2008), and other ten discrete PSO algorithms were 
proposed in García-Villoria and Pastor (2009a). A cross-entropy method (CE) 
algorithm, a psychoclonal algorithm, an electromagnetism-like mechanism (EM) 
algorithm, and a genetic algorithm (GA) were used in García-Villoria et al. (2007) and 
García-Villoria and Pastor (2008, 2009b, 2010), respectively. Two tabu search (TS) 
algorithms and a variable neighbourhood search (VNS) algorithm were proposed in 
Corominas et al. (2009b, 2009c, 2009d), respectively. Finally, three hybrid algorithms 
(MS+VNS, TS+VNS and PSO+VNS), have been proposed in Corominas et al. (2009e). 
 
All these metaheuristic algorithms, except the CE algorithm, have been tested on the 
same set of benchmark instances. The set is composed of 740 instances which were 
grouped into four classes (from CAT1 to CAT4 with 185 test instances in each class), 
where CAT1 instances are the smallest instances and CAT4 instances are the largest 
instances. Tables 1 and 2 show the average RTV values of the solutions obtained with 
the algorithms for 50 and 1,000 computing seconds, respectively (if there are more than 
one algorithm based on the same metaheuristic, only the results of the best of them are 
shown). The results are shown for the 740 instances and for each class of instances 
(CAT1 to CAT4). 
 

Table 1. Average RTV values for a computing time of 50 seconds 

 Global CAT1 CAT2 CAT3 CAT4 
MS+VNS 62.17 10.24 21.23 47.46 169.76 
TS+VNS 71.57 10.38 24.00 53.99 197.90 
PSO+VNS 60.03 10.47 22.42 49.37 157.86 
VNS 63.96 10.73 23.69 51.80 169.64 
TS 210.47 10.26 22.56 73.26 735.78 
Psycho 235.68 14.92 44.25 137.07 746.50 
MS 2,106.01 11.56 38.02 154.82 8,219.65 
GRASP 2,308.69 13.00 60.45 270.93 8,890.37 
EM 3,747.05 19.14 54.54 260.79 14,653.72 
PSO 4,625.54 16.42 51.34 610.34 17,824.04 

 

The best results have been achieved with the three hybrid algorithms Corominas et al. 
(2009e). The algorithms are based on hybridizing the TS algorithm proposed in 
Corominas et al. (2009c), the MS algorithm proposed in Corominas et al. (2008) and a 
PSO algorithm proposed in García-Villoria and Pastor (2009a) with the VNS algorithm 
proposed in Corominas et al. (2009d), respectively. All three algorithms obtain very 
similar results, but the MS+VNS algorithm is slightly better than the TS+VNS and 
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PSO+VNS algorithms. The MS+VNS algorithm consist on embedding the VNS 
algorithm in a MS scheme. That is, several executions of the VNS algorithm proposed 
in Corominas et al. (2009d) are done from a different initial, random starting solution. 
 

Table 2. Average RTV values for a computing time of 1,000 seconds 

 Global CAT1 CAT2 CAT3 CAT4 
MS+VNS 54.95 10.24 20.94 43.26 145.35 
TS+VNS 55.05 10.24 22.48 47.66 139.84 
PSO+VNS 55.86 10.45 22.00 46.80 144.22 
VNS 62.24 10.73 23.69 51.40 163.15 
TS 78.62 10.24 21.16 48.12 234.96 
Psycho 161.60 14.90 39.90 122.38 469.23 
MS 169.25 10.51 31.21 123.27 512.02 
GRASP 301.90 11.56 50.45 227.50 918.10 
EM 330.29 18.64 52.97 157.20 1,092.36 
PSO 1,537.34 14.35 46.55 143.96 5,944.51 

 
 
3. Three SA-based algorithms for the RTVP 
 
Bollapragada et al. (2004) presented a real-life case of a problem that can be considered 
as a variant of the RTVP. There are two differences between this variant with respect to 
the RTVP defined in the Introduction: 1) the problem faced by Bollapragada et al. is a 
non-cyclic problem instead of a cyclic one; and 2) the discrepancies between real and 
ideal distances is penalized linearly instead of using a square penalization. The metric to 

be minimised in Bollapragada et al. (2004) is 
1

1 1

idn
i
k i

i k
t t

−

= =

−∑∑ . 

 
To solve the non-cycling variant of the RTVP in which the television advertising slots 
are scheduled, Brusco (2008) proposed a SA algorithm. However, no SA approach has 
been proposed to solve the RTVP to date. We propose three algorithms based on SA. 
The first algorithm is a straightforward application of the classical SA. The second 
algorithm is a hybridization of the first proposed SA algorithm with a MS scheme. 
Finally, the third algorithm is an extension of the second one in which several 
neighbourhood structures are used. 
 
We first introduce in Subsection 3.1 the SA metaheuristic. Then the three SA-based 
algorithms are explained in Subsections 3.2, 3.3 and 3.4, respectively. Finally, the fine-
tuning of the parameters of all algorithms is explained in Subsection 3.5. 
 
3.1. Simulated Annealing 
 
The Simulated Annealing metaheuristic (SA) was proposed in Kirkpatrick et al. (1983) 
to solve complex combinatorial optimisation problems, as it is the RTVP. Since then, 
SA has been successfully applied for solving a wide range of combinatorial 
optimisation problems (Henderson et al., 2003). 
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SA can be seen as a variant of a local search procedure in which is allowed moving to a 
worse solution in small probability. The objective of accepting worse solutions is to 
avoid being trapped into a local optimum. The metaheuristic starts from an initial 
solution, which is initially the current solution. Then, at each iteration, a new solution 
from the neighbourhood of the current solution is considered. If the neighbour is not 
worse than the current solution, then the neighbour becomes the current solution; in the 
case that is worse, the neighbour can become also the current solution with a probability 
that depends on: 1) how worse is the neighbour, and 2) the value of a parameter called 
temperature, which is decreased every certain number of iterations. The pseudo-code of 
SA (when minimising the objective function) is shown in Figure 1. 
 

Let f(s) be the objective function to be minimised of the solution s 
Let N(s) the neighbourhood of the solution s 
Let А(t) the new temperature calculated from the temperature t 
 
0.  Set the parameters: 
 t0 (initial temperature) 
 itt (number of iterations during the temperature remains equal) 
1.  t := t0; 
2.  s := Generation of the initial solution 
3.  While stopping criterion is not reached do: 
4. i :=0 
5. While i < itt do: 
6.  s’ := choose at random a solution from N(s) 
7.  Δ := f(s’) – f(s) 
8.  If Δ ≤ 0 Then s := s’ 
9.  If Δ > 0 Then s := s’ with probability exp(-Δ/t) 
10.  i := i + 1 
11. End while 
12. t := А(t) 
13.  End while 
14.  Return the best solution found 

Figure 1. Pseudo-code of SA 
 
3.2. A straightforward SA algorithm (SAN1) 
 
Several decisions have to be taken before applying the general scheme of SA to solve 
the RTVP. Some of these decisions are general and the others are specific for the 
problem to solve. Specific decisions for the RTVP are the representation of solutions 
and the neighbourhood of each solution (N(s)), the generation of the initial solution and 
the objective function (f(s)). General decisions are the way to decrease the temperature 
(А(t)) and the stopping criterion of the algorithm. Moreover, the parameters of the 
algorithm need to be fine-tuned before the execution (it is explained in Section 3.5). 
 
3.1.1. Representation and neighbourhood of solutions 
 
The representation of a solution is the sequence of symbols, in which each symbol i 
appears di (the number of copies of symbol i to be sequenced) times. The 
neighbourhood of a solution is generated interchanging each pair of two consecutive 
units of the sequence that represents the solution (let this neighbourhood be called N1). 
This neighbourhood has been successfully applied when solving the RTVP with a 
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Multi-start and GRASP algorithm (Corominas et al., 2008) and a VNS algorithm 
(Corominas et al., 2009d). 
 
3.2.2. Initial solution 
 
The initial solution is generated using the lottery scheduling (Waldspurger and Weihl, 
1994) as it is done in previous works published in the literature when an initial solution 
is required. That is, for each position, a symbol to be sequenced is randomly chosen. 
The probability of each symbol is equal to the number of copies of this symbol that 
remain to be sequenced divided by the total number of units that remain to be 
sequenced. The random generation of the initial solution for a SA algorithm is usually 
done in the literature (Dowsland and Adenso-Díaz, 2003). 
 
3.2.3. Objective function 
 
In the case of the RTVP, the objective function to be minimised is the RTV value of the 
solution (Equation 1). 
 
3.2.4. Decreasing the temperature 
 
The temperature of the SA algorithm has influence on the probability of acceptance of 
worse neighbouring solutions. The higher the temperature, the more probable; and vice 
versa, the lower the temperature, the less probable (Step 9 in Figure 1). The most 
popular way in the literature that obtains good results is the geometric reduction, that is, 
А(t) = t.α, where α < 1 (Dowsland and Adenso-Díaz, 2003, Henderson et al., 2003). The 
α value has to be set; thus, α becomes another parameter of the algorithm. 
 
3.2.5. Stopping criterion 
 
The algorithm stops when it has run for a preset available time (the same criterion has 
been usually used in previous proposed metaheuristic methods for the RTVP). 
 
3.3. A SA algorithm embedded in a multi-start scheme (MS+SAN1) 
 
When the temperature is too low then the probability of accepting worse neighbour 
solutions is negligible. Thus, in practice, the previous proposed SA algorithm may be 
trapped in a local optimum after certain computing time. To overcome this situation, we 
propose to embed a variant of the previous SA algorithm in a MS scheme as follows. 
During a preset time, the SA variant algorithm is iteratively run. The variant is equal to 
the previous SA algorithm, except for its stopping criterion. The embedded SA stops 
when the current temperature is lower than a threshold (final temperature); then, and 
according to the MS scheme, the SA is launched again. Although it seems natural to 
apply a MS scheme to the SA metaheuristic after a certain computing time, up to our 
knowledge this idea does not appear in the literature. The second proposed SA 
algorithm is shown in Figure 2. 
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0.  Set the parameters: 
 t0 (initial temperature) 
 tf (final temperature) 
 itt (number of iterations during the temperature remains equal) 
1.  While current runtime < maximum runtime do: 
2.  t := t0; 
3.  s := Generation of the initial solution 
4.  While t ≥ tf do: 
5.  i :=0 
6.  While i < itt do: 
7.   s’ := choose at random a solution from N1(s) 
8.   Δ := f(s’) – f(s) 
9.   If Δ ≤ 0 Then s := s’ 
10.   If Δ > 0 Then s := s’ with probability exp(-Δ/t) 
11.   i := i + 1 
12.  End while 
13.  t := А(t) 
14.  End while 
15.  End while 
16.  Return the best solution found 

Figure 2. Pseudo-code of MS+SAN1 
 
3.4. A SA algorithm embedded in a multi-start scheme with multiple neighbourhoods 
(MS+SAN1,2,3) 
 
The previous second algorithm is extended with the following idea inspired from the SA 
algorithm proposed in Brusco (2008) to solve the non-cyclic variant of the RTVP. He 
defines two neighbourhoods, N2 and N3 (which are also used frequently in the 
literature). N2 consists on interchanging each pair of consecutive or no-consecutive units 
of the sequence. N3 consists on inserting each unit in each position of the sequence. 
Then, at each iteration of the Brusco's algorithm, it is selected from which of the two 
neighbourhoods will be obtained the neighbour of the current solution. The selection of 
the neighbourhood is at random with equal probabilities. 
 
We propose a new algorithm by incorporating the selection of the neighbourhood at the 
algorithm explained in Section 4.3. The available neighbourhoods are N1, N2 and N3. 
Moreover, instead of using equal probabilities for each neighbourhood, we put these 
values as parameters of the algorithm because using non equal probabilities may 
improve the performance of the algorithm. The third proposed SA algorithm is shown in 
Figure 3. 
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0.  Set the parameters: 
 t0 (initial temperature) 
 tf (final temperature) 
 itt (number of iterations during the temperature remains equal) 
 p1, p2, p3 (probability of selection neighbourhood N1, N2, N3) 
1.  While current runtime < maximum runtime do: 
2.  t := t0; 
3.  s := Generation of the initial solution 
4.  While t ≥ tf do: 
5.  i :=0 
6.  While i < itt do: 
7.   Let N be the neighbourhood selected at random between N1, N2 and N3 
8.   s’ := choose at random a solution from N (s) 
9.   Δ := f(s’) – f(s) 
10.   If Δ ≤ 0 Then s := s’ 
11.   If Δ > 0 Then s := s’ with probability exp(-Δ/t) 
12.   i := i + 1 
13.  End while 
14.  t := А(t) 
15.  End while 
16.  End while 
17.  Return the best solution found 

Figure 3. Pseudo-code of MS+SAN1,2,3 
 
3.5. Fine-tuning the algorithm parameters 
 
Fine-tuning the parameters of a metaheuristic algorithm is almost always a difficult 
task. Although the parameter values may have a very strong effect on the results of the 
metaheuristic for each problem, they are often selected using one of the following 
methods, which are not sufficiently thorough (Eiben et al., 1999; Adenso-Díaz and 
Laguna, 2006): 1) “by hand”, based on a small number of experiments that are not 
referenced; 2) using the general values recommended for a wide range of problems; 3) 
using the values reported to be effective in other similar problems; or 4) with no 
apparent explanation. 
 
Adenso-Díaz and Laguna (2006) proposed a new technique called CALIBRA for fine-
tuning the parameters of algorithms. CALIBRA is based on using conjointly Taguchi’s 
fractional factorial experimental designs and a local search procedure. We propose to 
use CALIBRA for setting the parameter values of our algorithms. CALIBRA was 
applied to a representative training set of 60 instances which were generated as 
explained in the Section 4. The following parameter values were obtained: 
 

• SAN1: t0 = 13, itt = 1762 and α = 0.9875. 
 
• MS+SAN1: t0 = 25, tf = 0.008, itt = 1525 and α = 0.9875. 
 
• MS+SAN1,2,3: t0 = 88, tf = 0.007, itt = 1750, α = 0.9875, p1 = 0.37 and p2 = 0.25. 

 
Since CALIBRA cannot fine-tune more than five parameters, MS+SAN1,2,3 (which have 
six parameters to be fine-tuned) is fine-tuned in two steps. Note that the value of p3 is 
not calibrated because it depends on the values of p1 and p2 (p3 = 1 - p1 - p2). In the first 
step, the value of tf is set to a small value (0.01), as it is usually done in the literature 
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(e.g., Brusco, 2008), and the remaining parameters (t0, itt, α, p1 and p2) are fine-tuned. 
In the second step the value of t0 is set at the value obtained in the first step and the 
remaining parameters (tf, itt, α, p1 and p2) are fine-tuned. 
 
 
4. Computational experiment 
 
The MS+VNS hybrid algorithm proposed in Corominas et al. (2009e) is the most 
efficient algorithm in the literature for solving non-small RTVP instances. Therefore, 
we compare the performance of our proposed algorithms with that MS+VNS algorithm 
(let it be called MS+VNS). 
 
All algorithms are coded in Java and executed on a PC 3.4 GHz Intel Pentium IV with 
1.5 GB of RAM. The same 60 training instances and 740 test instances used in 
Corominas et al. (2009e) and in previous works are also used in this paper (all instances 
can be found at https://www.ioc.upc.edu/EOLI/research/). These instances were 
grouped into four classes (from CAT1 to CAT4 with 15 training instances and 185 test 
instances in each class) according to their size. The instances were generated using the 
random values of D (number of copies) and n (number of symbols) shown in Table 3. 
For all instances and for each model i = 1,…,n, a random value of di (number of copies 
of symbol i) is between 1 and ( )1 2.5D n− +    such that 

1.. ii n
d D

=
=∑ . 

 
Table 3. Uniform distributions for generating the D and n values 

 

  CAT1 CAT2 CAT3 CAT4 
D  U(25, 50) U(50, 100) U(100, 200) U(200, 500) 
n  U(3, 15) U(3, 30) U(3, 65) U(3, 150) 

 
The stop condition of all algorithms is to be run for a preset time. We run the algorithms 
for 10, 50, 200 and 1,000 seconds. Table 4 shows the average RTV values to be 
minimised for the global of 740 instances and for each class of instances (CAT1 to 
CAT4) obtained with the algorithms and Figure 4 shows the evolution of the average 
RTV values for the global of all instances during the computing time.  
 
After 1,000 computing seconds, the best overall RTV average is obtained with 
MS+SAN1. It is worth to point that Corominas et al. (2009e) showed that the solutions 
obtained with their MS+VNS algorithm for all CAT1 instances are optimal solutions. 
Thus, we can see that MS+SAN1 and MS+SAN1,2,3 are also able to solve optimally all 
CAT1 instances. For CAT2 instances, MS+SAN1 is 0.10%, 0.14% and 3.46% better than 
MS+VNS, MS+SAN1,2,3 and SAN1, respectively, but without significant difference 
between MS+VNS and MS+SAN1,2,3. For CAT3 instances, MS+SAN1 is 6.19.%, 6.77% 
and 9.47% better than MS+SAN1,2,3, MS+VNS and SAN1, respectively. Finally, for CAT4 
instances, MS+SAN1 is 9.19.%, 20.94% and 33.77% better than SAN1, MS+VNS and 
MS+SAN1,2,3, respectively. To sum up, we can see that two of the SA algorithms, SAN1 
and MS+SAN1, are able to obtain, on average, better solutions (7.64% and 15.20% 
better, respectively) than VNS hybridises with MS (MS+VNS). This tendency grows 
with the size of the instances to be solved. 
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Table 4. Average RTV values for MS+VNS and SA based algorithms 
  Global CAT1 CAT2 CAT3 CAT4 

10 s. 

MS+VNS 71.07 10.24 21.58 51.07 201.39 
SAN1 108.46 10.26 21.67 45.68 356.24 
MS+SAN1 278.53 10.25 22.03 91.88 989.95 
MS+SAN1,2,3 144.21 10.35 22.72 55.61 488.17 

50 s. 

MS+VNS 62.17 10.24 21.23 47.46 169.76 
SAN1 50.87 10.26 21.67 44.57 126.98 
MS+SAN1 51.84 10.24 21.19 43.57 132.35 
MS+SAN1,2,3 73.12 10.24 21.52 47.34 213.37 

200 s. 

MS+VNS 58.45 10.24 21.01 45.35 157.22 
SAN1 50.78 10.26 21.67 44.56 126.62 
MS+SAN1 48.52 10.24 20.95 41.59 121.30 
MS+SAN1,2,3 66.60 10.24 21.15 44.84 190.17 

1,000 s. 

MS+VNS 54.95 10.24 20.94 43.26 145.35 
SAN1 50.75 10.26 21.67 44.55 126.54 
MS+SAN1 46.60 10.24 20.92 40.33 114.91 
MS+SAN1,2,3 61.92 10.24 20.95 42.99 173.51 

 
 

 
Figure 4. Average RTV values over the computing time 

 
Table 5 shows the number of times that each algorithm reaches the best RTV value 
obtained by either one after 1,000 computing seconds. The results are shown for the 
total number of 740 instances and for each class. As expected from the results in Table 
4, Table 5 shows that MS+SAN1 is the algorithm that more time reaches the best 
solution. For the total number of instances, MS+SAN1 obtains the best solution in 97% 
of times. 
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Table 5. Number of times that the best solution is reached 
 Global CAT1 CAT2 CAT3 CAT4 
MS+VNS 458 185 183 70 20 
SAN1 396 183 128 39 46 
MS+SAN1 721 185 184 179 173 
MS+SAN1,2,3 455 185 181 72 17 

 
To complete the analysis of the results, we examined the dispersion of the results with 
respect to the best solution obtained by either algorithm. A measure of the dispersion 
(let it be called σ) of the RTV values obtained by each algorithm alg = {MS+VNS, SAN1, 
MS+SAN1, MS+SAN1,2,3} was defined for a given instance, ins, according to the 
following expression: 
 

 
2( ) ( )

( )

RTV RTV( , )
RTV

alg best
ins ins

best
ins

alg insσ
 −

=  
 

 (2) 

 
where ( )RTV alg

ins  is the RTV value of the solution obtained with the algorithm alg for the 
instance ins, and )(RTV best

ins  is the best RTV value of the solutions obtained with the four 
algorithms for the instance ins. Table 6 shows the maximum σ dispersion for the total 
number of instances and for each class. We can see that low dispersions are obtained for  
the total number of cases and for each instance class with all algorithms (except for 
MS+SAN1,2,3 when the largest instances are solved). That is, when an algorithm does not 
obtain the best RTV value for a given instance, it obtains a value that is very close to it 
(especially true for MS+SAN1). 
 

Table 6. Maximum σ values with respect to the best solutions found 
 Global CAT1 CAT2 CAT3 CAT4 
MS+VNS 0.68 0.00 0.03 0.18 0.68 
SAN1 0.34 0.09 0.34 0.17 0.26 
MS+SAN1 0.02 0.00 0.02 0.01 ≈0.00 
MS+SAN1,2,3 5.07 0.00 0.02 0.10 5.07 

 
In order to see how close are the solutions obtained with the best method (MS+SAN1) 
with respect to the optimal solutions, the lower bound (LB) proposed in Corominas et 
al. (2007) is used. Table 6 shows the average of the RTV values obtained with 
MS+SAN1 after 1,000 computing seconds ( RTV ) and the averages of the LBs ( LB ). 
 

Table 7. Averages of the optimal RTV values and the RTV lower bounds 
 Global CAT1 CAT2 CAT3 CAT4 
LB  21.40 5.35 10.95 21.15 48.15 

RTV  46.60 10.24 20.92 40.33 114.91 
 
As it has been said, all 185 CAT1 instances were solved optimally with MS+SAN1. We 
can see in Table 7 that the LB is not accurate. For the smallest instances, the ratio 
between RTV and LB is 1.914. It seems reasonable to assume that this ratio will remain 
equal or increase for larger instances. Thus, if we assume that the ratio remains equal, a 
more accurate estimation of the averages of the optimal values for CAT2, CAT3 and 
CAT4 instances are obtained by multiplying their LB  by 1.914; that is, 20.96, 40.48 and 
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92.16 for CAT2, CAT3 and CAT4 instances, respectively. According to this assumption, 
we could ensure that the solutions obtained by the hybrid algorithms for CAT2 and 
CAT3 instances are very good. 
 
 
5. Conclusions 
 
In this paper, the response time variability problem (RTVP) is solved. This scheduling 
problem arises in a variety of real-world environments including mixed-model assembly 
lines, multi-threaded systems, periodic machine maintenance and waste collection, 
among others. The aim of the RTVP is to minimise the variability in the distances 
between any two consecutive copies of the same symbol. 
 
The RTVP is an NP-hard problem and heuristic and metaheuristic methods are needed 
to solve real-world, large instances. Several metaheuristic algorithms have been 
developed for solving this hard combinatorial optimization problem. The most efficient 
algorithm to date for solving the RTVP was a hybrid algorithm in which VNS is 
embedded in a MS scheme (Corominas et al., 2009e). The existing MS+VNS algorithm 
is a very efficient one to solve the RTVP and it was shown that it was able to solve 
optimally all test instances up to 50 copies to be sequenced.  
 
In this study we propose three SA-based algorithms. The best of them, MS+SAN1, 
improves on average the MS+VNS algorithm and obtains an average RTV value 
15.20% better. Moreover, MS+SAN1 is very stable for all type of instances. 
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