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Abstract 

The design of off-grid electrification projects considering hybrid systems and distribution 

microgrids is a complex task that requires the use of decision support tools. Most of existing 

tools focus on the design of hybrid systems without defining generator locations and microgrids 

configuration. Recently a deterministic heuristic was developed to solve the problem. In this 

study we present an enhanced deterministic heuristic and then a meta-heuristic procedure for 

designing community off-grid electrification projects based on renewable energies considering 

micro-scale resource variations and a combination of independent generation points and 

microgrids. Both new algorithms improve performance of the previous existing procedure. The 

new deterministic heuristic can rapidly (in a computational time lower than 1 minute) obtain a 

good solution. On the other hand, the proposed meta-heuristic method considerably enhances 

solutions obtained by the deterministic heuristic with a computational time of 1 hour on a 

standard PC. The improvement tends to raise as the complexity of the analyzed instance 

increases. The proposed algorithm is a complete design tool that can efficiently support the 

design of stand-alone community electrification projects requiring of low computational 

resources. 

 

Nomenclature 

- A(m): Set of arches of microgrid m 

- AVEREMS: Autonomous Village Electrification through Renewable Energy and Microgrid 

Systems 

- DP(m): Set of demand points of microgrid m 

- GGS: Grid Generation Score 

- GRASP: Greedy Randomized Adaptive Search Procedure 

- IGS: Independent Generation Score 

- L(x,y): Euclidean distance between point x and y 

- LA(a): Length of arch a 

- MS(s): Set of microgrids of solution s 

- NGS: No-generation Score 

- P(m): Set of points of microgrid m 

- PD(u): Electrical power demand of user u 

- RCL: Restricted Candidate List (of the GRASP) 

- R(m): Generation point (root) of microgrid m  

- S(M): Solution composed by microgrids of set M 

 

1. Introduction 

Projects relying on renewable energies demonstrated to be a reliable and sustainable option to 

electrify isolated communities autonomously [1]. These systems produce electricity in a clean 

way, their cost is often lower than national grid extension and they are not dependent from 

continuous fuel supply (such as diesel generators), therefore increasing projects long-term 

sustainability [2]. In this context, the configurations that proved to be the most reliable design 

options are hybrid systems that combine different generation resources [3] and distribution 

microgrids, where the energy is produced in a certain point and distributed through an electric 

microgrid to other consumption points [4]. 
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The design of off-grid renewable energy projects considering hybrid systems and distribution 

microgrids must consider multiple issues. When designing hybrid systems, the most adequate 

combination of technologies should be evaluated depending on available resources and 

generation and storage equipments characteristics. When designing microgrids, the selection of 

grid generation points and the definition of which points should be connected to a certain micro-

grid and which not are complex tasks, especially when a resource (e.g. wind) is highly disperse 

[5] and best areas for installing generators could be located far from demand points [6]. 

Furthermore, in scattered communities with isolated users, the combination of multiple 

microgrids and independent generation points is generally the cheapest design solution [7]. 

Over last decade, many tools have been developed in order to support the design [8]. However, 

most of them define the best combination of energy resources in one point but without 

designing the distribution through microgrids and without taking into account resource spatial 

variations. The only known method that permits the design of off-grid electrification projects 

based on multiple renewable energies considering micro-scale resource variations, a 

combination of independent generation points and microgrids and considering generation in 

every point of an area (not only close to the users) is the deterministic greedy heuristic proposed 

in [9]. 

The problem solved is called AVEREMS: the Autonomous Village Electrification through 

Renewable Energy and Microgrid Systems [9]. The solutions of that algorithm were shown to 

considerably improve those obtained by other procedures that, with some limitations, deal with 

the same design problem: VIPOR software [10] and the mathematical model presented in [7]. 

However, the algorithm proposed by [9] has some possible weaknesses. Firstly, it creates 

microgrids always minimizing cable length, while in some cases it would be preferable to utilize 

a different network configuration in order to reduce utilized cable unitary cost and thus 

microgrid cost. Furthermore, it is a deterministic procedure in which a single solution is 

greedily constructed and then improved by a local search phase. It should be noted that the 

solution obtained by the local search, i.e. local optimum, could be far from the global optimum, 

i.e. the best of all feasible solutions. 

In the last few decades, various meta-heuristic procedures have been developed in order to 

escape from local optima and thus improve solutions encountered by deterministic heuristics 

[11]. One of those is the GRASP (Greedy Randomized Adaptive Search Procedure) [12] that 

has been successfully applied to various location optimization problems [13]. In particular, a 

GRASP based procedure demonstrated to be highly efficient in solving the capacitated plant 

location problem [14],which has various similarities with the AVEREMS problem (see [9]). 

In this study we present an improved deterministic heuristic and then a meta-heuristic 

procedure, based on the GRASP, for solving the AVEREMS problem; that is, for designing 

community off-grid electrification projects based on renewable energies considering micro-

scale resource variations and a combination of independent generation points and microgrids. 

The contribution of the paper is to propose an algorithm that obtains better results than currently 

available procedures with low computational requirements. In this paper the first meta-heuristic 

algorithm specifically designed for this purpose is proposed while previous methods were based 

on simpler procedures. The proposed methods consider the design of multiple microgrids and 

independent users, the use of hybrid systems combining different renewable energies and the 

installation of generators far from demand points.  
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The rest of the paper is organized as follows. Section 2 presents the components of a general 

off-grid electrification project and the basic problem statement of the AVEREMS. An 

enhancement to the deterministic heuristic method described in [9] is proposed in Section 3. 

Various versions of the proposed GRASP based algorithm are described in detail in Section 4. 

In Section 5 the best version is identified and its performance is compared with the existing 

procedure. Section 6 deals with the conclusions. 

 

2. The AVEREMS problem  

In this Section, after defining the main glossary used (sub-Section 2.1), the components of a 

hybrid off-grid electrification system (sub-Section 2.2) and the AVEREMS problem are 

described (sub-Section 2.3).  

 

2.1 Glossary 

The main terms used to describe the problem and the methods proposed in Sections 3 and 4 are 

hereby defined:  

- Demand point (or user): location of a consumption point, such as a house or a public 

building, with certain electric energy and power demands. Demand points can be 

generation points. 

- Distribution system: the electric cables that connect the generation system to the users. 

- Generation point: location where a generation system is installed. 

- Generation system: group of components installed in a certain point in order to 

generate and store the electricity. It includes generators (wind turbines and solar 

panels), controllers, batteries and inverters. 

- Grid consumption point (or no-generation point): a user connected to a multiple 

points’ microgrid and not being the generation point. It just consumes energy. 

- Grid generation point: generation point of a microgrid composed by multiple points 

- Independent generation point (or independent generation system): a user that is 

producing energy just for its own consumption. 

- Microgrid: set of one or more users fed by a generation system placed in a demand or 

no-demand point. It includes both the generation and the distribution systems. 

- No-demand point: location (that is not a demand point) that can be a generation point. 
 

2.2 Components of an off-grid electrification system 

The scheme of the elements involved in an autonomous electrification system considering wind 

and solar energies is as follows (Fig. 1): 

1) Generators: produce energy in alternating (wind turbines) or direct (solar panels) current. 

2) Controllers: convert to direct current and control the charge/discharge of the batteries. 

3) Batteries: store the energy produced by the generators, receive and supply electricity at direct 

current. 

4) Inverters: convert direct to alternating current at the nominal voltage. 

5) Electric cables: configure the microgrid that distributes the energy (only low voltage 

distribution is considered). 
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6) Electric meters: measure the energy consumed at the demand points. 

7) Users (or Demand points): consume the energy. 

 

Please insert Figure 1 

 

The generation system is composed by the generators (wind turbines and/or solar panels), 

controllers, batteries and inverters. The energy produced by a generation system is distributed to 

the users by electric cables (distribution system). The term “microgrid” in this paper refers to 

the ensemble of the generation and the distribution systems. A microgrid composed by a single 

demand point with the generation system located in the same point is also referred to as an 

“independent generation point”. The radial microgrid configuration (i.e. a single generation 

system per microgrid and distribution in form of a tree as in Fig. 1) is considered in this study as 

it is the preferred one in rural electrification projects [15].  

 

2.3 Problem statement 

The aim of the AVEREMS design problem is to find the lowest cost configuration (generation 

points’ locations and microgrids design) that accomplish with the energy and power demands of 

all the users, taking into account energy resource maps and different technical constraints. A 

detailed description of the AVEREMS problem constraints and mathematical formulation is 

reported in Appendix A. Next, the objective function of the problem and the constraints of the 

generation and distribution systems (Fig. 1) are resumed: 

- Objective function: To minimize the capital cost of the project, considering all components 

defined in Fig. 1, i.e. wind turbines, wind controllers, solar photo-voltaic (PV) panels, solar 

controllers, batteries, inverters, meters, and cables. 

- Constraints of the generation system: In each generation point, generators, controllers, 

inverters and batteries must be installed in order to cover the energy and power demands of 

connected users. The demand of the users is estimated at the horizon time of the project to 

consider the possible load growth. Generators and batteries must satisfy the energy demand, 

while inverters must fulfill the power demand. For the dimensioning of the generators, batteries 

and inverters the following aspects must be also considered: energy resources available in the 

area, energy and power losses due to equipments’ efficiencies, the minimum days of autonomy 

and the maximum battery discharge factor. In particular, the required days of autonomy are set 

in order to take into account the uncertainty in the wind and solar resource generation (e.g. as 

higher the uncertainty for a certain project, higher the days of autonomy of the batteries). This 

feature together with the consideration of the minimum resource month and the combination of 

different renewable resources (hybrid systems) intrinsically takes into account the generation 

uncertainty and reduces the risk of lack of energy supply. Controllers are dimensioned 

depending directly on the installed generators. Generation systems could be located in every 

point of a certain area (thus not forcedly close to demand points as considered by [7]). 

- Constraints of the distribution system: Every demand point must be connected to the 

generation system by an electric cable. The type of cable installed must satisfy maximum 

permitted voltage drop considering nominal distribution voltage, and cable resistance and 

maximum intensity. Microgrid structure is radial. Consumption meters must be installed in 

microgrids connecting multiple users. 
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Fig. 2 shows a solution to the AVEREMS problem in a community of 22 users distributed on an 

area of 1 km x 1 km. For each generation point, besides generators (indicated in Fig. 2), the 

number and type of the other components to be installed in the generation system, i.e. 

controllers, batteries and inverters (Fig. 1), must be specified. For each branch of a microgrid 

the type of cable must be specified in order to fulfill with distribution system constraints.  

 

Please insert Figure 2 

 

3. Enhanced deterministic heuristic  

The deterministic heuristic proposed in [9] is considered as the starting point for the 

development of the proposed metaheuristic procedure. That heuristic is a fast method composed 

by 2 phases: first construction, and then a local optimization. In the “construction phase”, the 

solution considering all independent generation points is firstly calculated, and then the 

algorithm iteratively extends microgrids as much as possible, according to the cost criterion. 

The “local optimization phase” is composed by 2 steps that are repeated if they improve the 

previously obtained solution (i.e., the solution cost is reduced): firstly the microgrids are divided 

into smaller ones and then the resulting microgrids are tried to be interconnected between them 

in a better way. 

The “construction phase” in [9] has the following drawback. The microgrids are always created 

solving the minimum spanning tree problem [16], which, given a generation point and a set of 

users to connect, looks for the configuration of the distribution system that minimizes the cable 

length. However, this configuration does not ensure the minimum cost because it depends on 

both the cable length and the cable type (i.e. unitary cost) used in order to fulfil distribution 

system constraints, such as maximum permitted voltage drop. Thus, the cable type should also 

to be taken into account when deciding the distribution system. 

In order to improve the original heuristic, we propose an enhanced deterministic heuristic based 

on the one proposed in [9]. The general scheme of the enhanced heuristic is shown in Figure 3 

and the heuristic is described in the next sub-Sections. The original “construction phase” is 

modified in order to be easily adapted as the starting point of a meta-heuristic procedure (see 

Section 4). Moreover, we include an additional third phase, “distribution system optimization 

phase”, which aims to reduce the distribution system cost. In that third phase, instead of using 

the minimal cable length distribution, longer lengths that may reduce the global solution cost are 

considered.  

Sub-Section 3.1 lists and describes the internal functions used in the proposed enhanced 

heuristic. The description and reasoning of the “construction phase” and the “distribution 

system optimization phase” are presented in detail is sub-Section 3.2 and 3.3, respectively. The 

“local optimization phase” is equal to the one originally proposed in [9] and, therefore, it is not 

detailed here. 

 

Please insert Figure 3 

 

3.1 Internal functions 



7 

 

The internal functions used in the heuristic description are hereby reported. Some of these 

functions are defined to facilitate its posterior usage in the GRASP based algorithm described in 

Section 4. The functions use symbols defined in the “nomenclature” Section. 

 

CM(m) Cost of microgrid m, including all components of the generation and distribution 

systems.  

CS(s) Cost of solution s. 
( )

( ) ( )
m MS s

CS s CM m


   

LPA(x,a)         Minimum distance between point x and arch a 

LPM(x,m) Minimum distance between point x and microgrid m 

 If |P(m)| = 1 then ( , ) ( , ( ))LPM x m L x R m  else
 ( )

( , ) min ( , )
a A m

LPM x m LPA x a



 

LC(m1,m2)  Estimation of the cable extension required to connect microgrids m1 and m2. 

    
( 1) ( 2)

( 1, 2) min min , 2 , min , 1
x P m x P m

LC m m LPM x m LPM x m
 

 
 

δ is a coefficient used to take into account possible slight differences between 

microgrids’ distance and real cable extension. In the heuristic proposed in [9] δ=1 

was assumed. In this study a value of δ=0.85 is considered in order to increase the 

possibility of connecting microgrids and thus to enlarge the search space of the 

algorithm. 

BED(m) Break Even Distance (BED) of microgrid m. It represents the maximum distance 

at which microgrid m could be reliably connected to another microgrid or to a no-

demand generation point. Given UCC the lowest unitary cable cost [$/m] and 

CC(m) the total electric cable cost of microgrid m,  

 

( ) ( )
( )

CM m CC m
BED m

UCC




  

B(m)  Set of branches of microgrid m. A branch is defined by the arches and the points 

(always including the generation point) of a microgrid that are downstream the 

same point, i.e. the electric energy they receive pass through the same arch 

connecting the generation point and a child of it (see Fig. 2). 

MB(B)  Microgrid composed by the set of braches B 

DU(a,b)  Set of users part of branch b that are downstream arch a (the electric energy they 

receive pass through arch a)  

AB(b)  Set of arches of branch b sorted in a decreasing order by PF(a), i.e. the product of 

arch length and the power flow circulating by it. For each a ∈ AB(b), the 

parameter PF(a) is calculated as 

  ( , )

( ) ( ) ( )
u DU a b

PF a L a PD u


    

CB(b)  Cost of the cables of branch b. Cable connections within a branch follow a radial 

tree-scheme and are realized so that cable length is minimized using the classical 

shortest connection network algorithm [16]. The cable type with the minimum 

cost that fulfills with the maximum permitted voltage drop and the maximum 

flowing intensity is selected. 

BD(a,b) Set of 2 branches {BD1(a,b), BD2(a,b)} resulting from removing arch a of branch 

b. Branch BD1(a,b) is composed by arches connecting all users DU(a,b), while 

branch BD2(a,b) is composed by the arches connecting the rest of users 
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Split(b) Set of (1 or 2) branches that results after trying to eliminate one by one all arches 

of b. The function stops when a division is accepted because the distribution 

system cost is reduced. If no division is accepted then the function returns b. The 

algorithm of this function is reported in the following. 

1. For (a∈AB(b)) 

2. If CB(BD1(a,b)) + CB(BD2(a,b)) < CB(b) then 

3. return {BD1(a,b), BD2(a,b)}  

4. EndIf 

5. EndFor 

6. return {b} 

ImproveCableCost(m)   Function that tries to divide all the branches of microgrid m into 

smaller ones in order to reduce the distribution system cost. For each 

branch the following steps are carried out: 

- It calculates the cost of dividing the branch into 2 smaller ones, 

eliminating one arch of the branch. All the arches are tried to be 

eliminated. 

- If the cost of the 2 new branches is lower than the initial branch cost 

then the sub-division is accepted. Therefore the same subdivision 

process is carried out for the resulting 2 branches.  

- The procedure stops when no more subdivision is accepted.  

 Let DB be the set of branches to be divided, b be the current branch 

that is tried to be divided and B* be the set of least cost branches. The 

detailed algorithm of this function is described in the following. 

0. Initialize variables: B* = ø; DB = B(m); 

1. While (DB ≠ ø) 

2.      b = first element of DB; DB = DB \{b} 

3.      If (Split(b) = {b}) then B* = B* ∪ {b} 

4.      else DB = DB ∪  Split(b) 

5. EndWhile 

6. Return MB(B*) 

In this function the generation point of microgrid m does not change. 

Thus R(MB(B*)) = R(m). 

 

MR(m, x, r)  Microgrid composed by DP(m) demand points with generation in point x. 

Cable length is firstly minimized using the shortest connection network 

algorithm [16].  

  If r = true: Cable cost is then improved utilizing the ImproveCableCost(m) 

function.  

  If r = false: Cable cost is not improved. 
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MU(m1,m2, r) Microgrid (mu) that results after connecting (according to Prim’s algorithm 

[16]) all demand points of microgrids m1 and m2. Therefore,

( ) ( ) ( )DP mu DP m1 DP m2   

  If r = true (cable cost is improved): The cable cost of mu is obtained 

utilizing the ImproveCableCost(mu) function; the root of microgrid mu is 

the one that leads to the lower cost between the root of m1 and the root of 

m2: if CM(MR(mu,R(m1),true)) < CM(MR(mu,R(m2),true)) then mu = 

MR(mu,R(m1),true) otherwise mu = MR(mu,R(m2),true).  

  If r = false (cable cost is not improved): R(m2) is selected as the root of mu 

only if it leads to a lower microgrid cost and has a Hybrid Potential 

Indicator (HPI) higher than R(m1): 

  if CM(MR(mu,R(m2),false)) < CM(MR(mu,R(m1),false)) and HPI(R(m2)) 

> HPI(R(m1)) then mu = MR(mu,R(m2),false) otherwise mu = 

MR(mu,R(m1), false). 

  HPI(x) is a resource indicator that considers the multiple renewable 

resources available in the area: higher the HPI(x) higher the resource(s) 

potential in point x. HPI(x) is calculated according to [17]. 

SelectM(m, M) Returns the microgrid mc to be connected to microgrid m. mc is selected 

from set M of microgrids. The selected microgrid mc is 

 

 
        arg max true

z M LC( z ,m ) max BED( z ),BED( m )

mc CM m CM z CM MU m,z,
 

  

 

IGC(s, ND) Returns the solution with generation in the best (low cost) demand point of 

each microgrid or in a no-demand point of set ND. For every microgrid m 

of solution s, the point x (part of the microgrid m or of set ND) that, if 

selected as the root, leads to the minimum microgrid cost is defined as 

microgrid generation point. In this function, set ND does not include no-

demand points that are already the generation point of another microgrid 

part of solution s. 

                        argmin true true
x P( m ) NDm MS( s )

IGC( s,ND ) S MR m, CM MR m,x, ,
 

  
   

    

 

3.2 Construction phase 

The reasoning of the construction phase is the following. First, it is considered that all demand 

points are independent generation points (i.e., a solution without any microgrid). This is a trivial 

solution that may be a high cost solution. Then, the heuristic constructs iteratively the 

microgrids extending them as much as possible whenever the solution cost decreases. The 

microgrids are subsequently constructed in the following two iterative cycles, which are shown 

in Fig. 4: 

1) Cycle 1: New microgrid construction iteration starts. The grid generation point of the 

(current) microgrid is firstly selected (STEP1) and then it starts cycle 2 in which the 

microgrid is extended.  
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2) Cycle 2: In each iterative step a microgrid (composed by one or more users) is tried to 

be connected to the current microgrid depending on certain criterion (STEP2). If the 

new microgrid has a lower cost than the two previous ones then the connection is 

accepted and Cycle 2 restarts. If the connection is not accepted then a new Cycle 1 

starts. 

The algorithm ends when all the demand points of the community are part of a created 

microgrid, i.e. a microgrid that was already tried to be extended.  

 

Please insert Figure 4 

 

The “selection steps” (STEP1 and STEP2 of Fig.4) are the most critical parts of the algorithm 

and are defined by two characteristics: the pool of possible candidates (PE1, PE2, respectively) 

and the indicator or heuristic function (HF1, HF2, respectively) used to rank the set PE and 

select the best candidate. 

Regarding STEP1, the pool of possible candidate elements (PE1) from which the microgrid 

generation point could be selected is the union of the sets of demand (D) and no-demand points 

(ND), not selected as a grid generation point in a previous iteration of cycle 1 (equation 1). As 

the number of initial no-demand points in an area could be considerably high, e.g. wind 

generation points are generally presented in form of a wide spatial grid with a spacing of 50 or 

100 m, an “initial filter”, proposed in [9], is firstly applied to pre-select most promising 

generation locations taking into account resource and demand distributions. 

- 1PE D ND 
         

(1) 

The heuristic function (HF1) to rank the elements of the set PE1 is the Grid Generation Score 

(GGS): an indicator that, based on demand and resource distributions, evaluates how much a 

certain point has the adequate characteristics for being the generation point of microgrid 

composed by multiple users (for more details see [17]). The point with the highest HF1 

(equation 2) is selected: 

-  1 1( )HF x GGS x x PE          (2) 

Regarding STEP2, i.e. the selection of the microgrid to connect, being m the current microgrid 

in expansion, the pool of possible candidates (PE2) is composed by all microgrids of the current 

solution s (excluding m) located at a distance from m lower than their Break Even Distance 

(BED) (equation 3). 

  2 ( ) \ ( , ) ( )PE mc MS s m LC mc m BED mc  
     

(3) 

The microgrid y that is tried to be connected to microgrid m could be selected in the following 

three different ways, adapted from [11]: HF2a, HF2b and HF2c (equations 4, 5 and 6).  

1) By distance (the element with the lowest HF2a value is selected):  

   2 2,aHF y LC y m y PE            (4) 
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2) By NGS, IGS and distance (the element with the highest HF2b value is selected): 

 
 

( )

2 2

max 1 ( ) ( );0.1

( , )

py DP y

b

NGS py IGS py
HF y y PE

LC y m


 

      (5) 

The NGS (No-generation Score) and the IGS (Independent Generation Score) are indicators 

that evaluate how much some a-priori characteristics of a point indicate that it should be a 

no-generation point (NGS) or an independent generation point (IGS) (for more details see 

[17]). As NGS and IGS can range from 0 to 2, a minimum value of the numerator is defined 

(0.1) in order to obtained always positive values of the HF2b. 

3) By savings (the element with the highest HF2c value is selected):  

        2 2( ) , , falsecHF y CM m CM y CM MU m y y PE       
 

(6) 

As the heuristic function that leads to the best results is not always the same [9], the algorithm is 

launched three times, each time with one of the 3 HF2, and finally the best found solution is 

returned. 

 

3.3 Distribution system optimization phase 

As it has been mentioned, when constructing the microgrids, the distribution is configured only 

considering the minimal cable length. However, since the cable costs are not taken into account, 

the minimal distribution cost is not ensured. The distribution cost may be reduced utilizing less 

expensive cables with a non-minimal cable length configuration and thus decreasing the total 

distribution cost. 

This reduction is the objective of the proposed “Distribution system optimization phase”, which 

we apply to the solution returned by the “local optimization” phase (Fig. 3). The scheme of the 

third phase is shown in Fig. 5: firstly the branches of the microgrids of a previously obtained 

solution are tried to be subdivided, i.e. “Branches subdivision” (sub-Section 3.3.1) and then 

obtained microgrids are iteratively tried to be interconnected, i.e. “Microgrids interconexion” 

(sub-Section 3.3.2). 

 

Please insert Figure 5 

 

3.3.1 Branches subdivision 

This step aims to improve the distribution system cost of the microgrids of the current solution 

by means of trying to subdivide the branches. Therefore, the function “ImproveCableCost()” is 

applied to every microgrid, as shown in the following. 

Parameters 
is  Initial solution  

M* Set of least cost microgrids 
 

Algorithm 

1. M* =
( )m MS is

ImproveCableCost (m)

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2. Return S(M*) 

 

3.3.2 Microgrids interconnection 

During this step the microgrids of the current solution are tried to be interconnected. For each 

microgrid m the following sub-steps are carried out: 

- The microgrids located at distance to the microgrid (m) lower than their Break-Even 

Distance are tried to be connected (separately) to m. Next, in order to improve the 

distribution system, the “ImproveCableCost()” function is applied to each newly 

obtained microgrid. The microgrid mc that leads to the highest savings is selected. 

- If the connection between microgrids m and mc decreases the cost of the solution then 

the two microgrids are connected and the algorithm tries to connect another microgrid 

to the latter obtained microgrid.  

- This process stops when the connection is rejected (no cost improvement is obtained).  

 

A detailed description of the procedure is reported in the following. As shown in Fig. 5, this 

algorithm is part of an iterative process. 

 

Parameters 
is  Initial solution  

IM Set of microgrids part of the initial solution is sorted by the number of 

connected points in descending order (in case of tie, by total cable length in 

descending order) 

ND Set of no-demand points pre-selected by the initial filter [9] as possible 

generation points 

RM Set of remaining microgrids that should be tried to be interconnected with the 

other microgrids 

m  Current microgrid that is tried to be interconnected to the other microgrids 

SM Set of remaining microgrids that could be connected to m 

mc  Selected microgrid to be connected to m 

s  Current solution  

sn  New solution obtained  

AcceptCon Boolean variable that indicates if the connection of microgrids m and mc is 

accepted or not 

Continue Boolean variable value that indicates if a new connection will be tried or not  

s*  Least cost solution 
 

Algorithm 

1. Initialization: RM = IM; s* = is;  

2. While (RM ≠ ø) 

3.    m = first element of RM; RM = RM \ {m}; SM = MS(s*) \ {m}; 

4.    s = s*;   ( , ) max , ( )Continue mc SM LC mc m BED mc BED m     

5.    While (Continue and SM ≠ ø) 

6.       Select the microgrid to be connected to m: mc = SelectM(m, SM) 

7.       m = MU(m, mc, true); SM = SM \ {mc}; sn = S(SM ∪ {m}) 
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8.       Connection acceptance criterion: AcceptCon = (CS(sn) < CS(s)) 

9.       If (AcceptCon) then s = sn; s* = sn; RM = RM \ {mc}; EndIf 

10.       Continue = AcceptCon and   ( , ) max , ( )mc SM LC mc m BED mc BED m    

11.    EndWhile 

12. EndWhile 

13. Improve generation cost: s* = IGC(s*, ND) 

14. Return s* 

 

4. GRASP based algorithm 

The enhanced deterministic heuristic described in Section 3 (from now on referred as the 

“deterministic heuristic”) improves the performance of the previous deterministic heuristic 

proposed by [9], with a very small increase in the computational time, as verified in sub-Section 

5.2. Nevertheless, when the improvement phases (second and third phases) are applied to the 

solution obtained in the construction phase, a local optimum is returned, which may not be the 

global optimal solution. Figure 6 shows a solution obtained in the construction phase (point 

“0”),  and how it is led by the improvement phases to the basin of attraction of the valley at 

which point “0” belongs (a local optimum, point “1”). However, as shown in Fig. 6, the set of 

all possible feasible solutions is generally composed by multiple local optima [18]. Thus, it is 

not guaranteed the quality the solution generated by the enhanced deterministic heuristic in 

comparison with the global optimum. 

In the last few decades, several meta-heuristic procedures have been developed in order to 

escape from local optima, which allows to explore better the solution space (i.e, to explore other 

valleys). Thus, better solutions may be found [11]. Among other metaheuristics, the Greedy 

Randomized Adaptive Search Procedure (GRASP) has been proposed [12]. GRASP is a multi-

start metaheuristc. Specifically, GRASP generates different solutions at random (which may 

belong to different valleys) and improve them in order to obtain different local optima (see Fig. 

6). As stopping criterion is usually defined a maximum calculation time or a maximum number 

of iterations. Obviously, the best local optimum found is returned. 

 

Please insert Figure 6 

 

GRASP has been successfully applied to many location optimization problems [13] including 

the capacitated plant location problem [14], which has many similarities with the AVEREMS 

problem (see [9]). Thus, we propose a GRASP based algorithm to solve AVEREMS.  

In each iteration of the proposed GRASP algorithm, two phases are applied (Fig. 7): random 

solution construction and solution improvement (or local search) which starts at the constructed 

solution and applies iterative improvement until a local optimum is found. Repeated 

applications of the randomized construction procedure yields diverse starting solutions for the 

local search and the best overall solution obtained in the process is kept as the result. 
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Please insert Figure 7 

 

In the following, we describe the new randomized solution construction (sub-Section 4.1) and 

the different proposed algorithm versions (sub-Section 4.2). 

 

4.1 Randomized construction phase 

The randomness of the GRASP is introduced in the solution construction phase in order to 

generate a wide range of different initial solutions and therefore improve the exploration of the 

solution space (Fig. 6). Assuming that a solution is composed by different elements that could 

be ranked by a heuristic function, the randomness can be introduced in the way these elements 

are selected [12]. As stated in sub-Section 3.2, microgrids can be seen as the different elements 

of a solution that are subsequently constructed in two iterative cycles (Fig. 4). Within each cycle 

there is a “selection step” (STEP1 and STEP2) in which the elements are ranked by a heuristic 

function and then the best ranked element is selected. Instead of selecting the best element, two 

restricted candidate lists (RCLs) could be used in STEP1 and STEP2 in order to introduce 

randomization: 

1) RCL1: list for the selection of the microgrid generation point (STEP1).  

2) RCL2: list for the selection of the microgrid that is tried to be connected (STEP2).  

In the classical GRASP implementation [12], a single RCL is used. Hereby two RCLs are 

considered in order to increase the randomization effect, enhance the variability of the 

constructed solutions and thus enlarge the exploration of the solution space.  

The main characteristics of the RCLs are: the pool of possible candidates, the size (nº of 

elements) of the RCL, the heuristic function and the selection procedure. These characteristic 

for RCL1 and RCL2 are reported in Table 1 and next described: 

a) The pool of possible candidates for STEP1 and STEP2 (respectively PE1 and PE2) are 

defined in sub-Section 3.2 (equations 1 and 3). 

b) Regarding the size, the number of best ranked elements (according to their heuristic 

function) to be included in the RCL could be defined as [19]: 

 max ,1SE PE      where 0 1       (7) 

Note that if α = 0 then the selection is deterministic (i.e. the best ranked element is 

always selected), while as α increases higher will be the randomness of the selection 

(with α = 1 the highest randomness is achieved). The appropriate choice of the value of 

parameter α is clearly critical and relevant in order to achieve a good balance between 

computation time and solution quality [20]. Parameter α will be calibrated for both 

RCL1 and RCL2 (sub-Section 5.3.1). 

c) The heuristic functions (HF) used in STEP1 and STEP2 are defined in sub-Section 3.2. 

There is a single HF1 for STEP1 (equation 2), while there are three possible HF2 (HF2a, 

HF2b, HF2c, defined in equations 4, 5 and 6) for STEP2.  

d) Regarding the selection procedure, in the original GRASP the selection of an element 

from the RCL is done in a uniform random way: all elements of the list have the same 
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probability to be chosen [12]. However, later studies showed that better results can be 

achieved by a random biased selection, in which the probability of selecting a certain 

element is proportional (or inversely proportional) to its heuristic function [21]. 

Therefore, being HFi the value of the heuristic function for element i, the selection 

probability pi of element i from a RCL is calculated as: 

o Proportional selection (P):
 





RCLy

y

i

HF

HF
p

     (8) 

 

o Inversely proportional selection (IP):

 





RCLy y

i
i

HF

HF
p

1

1

   (9)

 

The set RCL is composed by the SE best ranked elements of the pool of possible 

candidates (PE). Elements are sorted by their HF value in a decreasing or increasing 

order in the case of respectively proportional or inversely proportional selection. 

 

Please insert Table 1 

 

 

 

4.2 Different algorithm versions 

As shown, there are three heuristic functions for STEP2 (HF2a, HF2b, and HF2c). The heuristic 

function that obtains the best results cannot be defined a-priori. Therefore, we propose to 

analyze the performance of the following 5 GRASP based algorithm versions: 

- GRASP1: HF2a is always applied in each STEP2  

- GRASP2: HF2b is always applied in each STEP2  

- GRASP3: HF2c is always applied in each STEP2  

- GRASP4: HF2a, HF2b or HF2c are randomly selected (with the same probability) in each 

STEP2 of the construction phase.  

- GRASP5: HF2a, HF2b or HF2c are alternatively applied in each GRASP iteration. 

Furthermore, another algorithm version (GRASP0) in which the selection of the microgrid 

generation point (RCL1) and the selection of the microgrid to be connected (RCL2) are totally 

random, i.e. α1 = α2 = 1 and HF1 = HF2 = constant (e.g. 1), is also analyzed in order to evaluate 

the importance of utilizing good heuristic functions. The performances of these algorithm 

versions are compared in Section 5. 

 

5. Computational experiment  

In the previous Sections, an enhanced deterministic heuristic (Section 3) and then a GRASP 

based procedure (Section 4) were presented in order to support the design of autonomous 

community rural electrification projects based on renewable energies considering a combination 

of independent generation points and microgrids. 
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Hereby, we carried out a computational experiment in order to analyze the performance of the 

proposed algorithms. The analyzed instances are firstly described in sub-Section 5.1; then the 

improvements of the enhanced deterministic heuristic in comparison with the previous one [9] 

are analyzed (sub-Section 5.2); in sub-Section 5.3 the different GRASP based algorithm 

versions are calibrated and finally the performance of the best version is evaluated in 

comparison with the procedure available in literature (sub-Section 5.4). All calculations were 

done on a PC Intel Core 2 i7-2600 3.4 GHz with 8 GB of RAM. The code and the results 

obtained with the best GRASP version are available in [22]. 

 

5.1 Analyzed instances 

The same instances utilized in [9] are used: the complete input data are available in [22]. The 

instances were randomly generated based on the characteristics of the following 5 real rural 

electrification projects: El Alumbre (Peru), Alto Perú (Peru), Achada Leite (Cape Verde), El 

Roblar (Nicaragua) and Sonzapote (Nicaragua). Real projects resource data are utilized in order 

to generate the instances: solar resource was estimated by NASA database [23], while the wind 

resource map of the area (with a grid spacing of 100 m) was obtained using a micro-scale wind 

flow model [5].  

The electricity requirements of each user (household) are 420Wh/day and 300W of energy and 

power demand respectively. Regarding electrical equipments, the following data were 

considered: 

- Wind turbines (4 types): nominal power: 100 W to 2000 W; cost (including controllers): 

$1394 to $8732.  

- PV panels (3 types): nominal power: 50 W to100 W, cost: $451 to $821. 

- PV controller (3 types): maximum power: 50 W to 100 W, cost: $67 to $95.  

- Batteries (4 types): capacity: 1500 Wh to 3000 Wh; cost: $225 to $325; efficiency 85%; 

maximum discharge rate: 0.6; autonomy: 2 days. 

- Inverters (4 types): maximum power: 300 W to 3000 W; cost: $377 to $2300; efficiency 

85%.  

- Electric cables (2 types): cost: $4.9/m and $5.1/m; resistance: 2.71 and 2.15 /km; 

maximum intensity: 89 and 101 A; nominal voltage: 220 V; minimum voltage: 220 V; 

maximum voltage: 230 V. 

- User consumption meter: cost: $50 (installed only in microgrids composed by multiple 

users).  

The instances have a variable number of users (ranging from 10 to 90) and, regarding users’ 

distribution, they were randomly generated considering two different concentrations (last row of 

Table 2). According to the characteristics described in Table 2, two set of instances were 

generated: a “training set” of 90 instances for the calibration of the internal parameters used by 

the developed procedures and a “test set” of 450 instances for comparing the performance of the 

developed procedures. 

 

Please insert Table 2 

 

 

5.2 Performance of the enhanced deterministic heuristic 
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The solutions of the enhanced deterministic heuristic described in Section 3 (“enhanced 

deterministic heuristic” or “EDH”) are compared with those obtained by the previous 

deterministic heuristic [9] (“initial deterministic heuristic” or “IDH”). The results of the 

comparison between the 2 algorithms in the test set of 450 instances are shown in Table 3: 

columns 3 to 6 show the mean solution cost (“cost”) and mean computation times (“time”) of 

the IDH and the EDH for different groups of instances; columns 7 shows the % of the difference 

between mean solution costs; column 8 and 9 indicate respectively the number of instances (in 

percentage) in which EDH improves the IDH of more than 1% and vice versa (in the rest of 

instances the differences between solutions of the 2 algorithms are lower than 1%).  

The improvement of the enhanced heuristic is highly related with the number of users of the 

community (Table 3), i.e. the complexity of the instance to be solved. The effect of including 

the cable optimization phase is almost null for communities up to 30 users in which initial 

heuristic were found to be close to the optimal, according to [9]. The improvement of the EDH 

in comparison with the IDH increases rapidly as the number of users increases: for communities 

of more than 60 users significant improvements (more than 1%) of the EDH are found in 20% 

of the instances, whereas significant improvements of the IDH were found in less than 3% of 

the instances. The total mean solution costs of the IDH and the EDH are 87615$ and 87392$ 

respectively: the slight increase in calculation time is compensated by the solution improvement 

obtained by the enhanced deterministic heuristic. 

 

Please insert Table 3 

 

 

5.3 Selection of best GRASP based algorithm version 

As stated in sub-Section 4.2, different algorithm versions (based on the GRASP) should be 

analyzed, depending on the heuristic function utilized in the selection of the microgrid that is 

tried to be connected. In this Section all versions are firstly calibrated (Section 5.3.1) and then 

performances are compared in order to select the best one (Section 5.3.2). 

 

5.3.1 Calibration of the algorithms 

As stated in sub-Section 4.2, the value of parameter α, i.e. the ratio of possible candidates 

included in the RCL, is highly relevant in order to achieve a good balance between 

computational time and solution quality of a GRASP. Therefore, the parameters α1 = 0, 0.2, …, 

1 and α2 = 0, 0.2, …, 1 are calibrated, i.e. all combinations of values are tried, for the different 

algorithm versions on the “training set” of 90 instances. A computational time of 800 s is 

considered for each instance. The combinations of values that lead to the best (mean lowest 

cost) solutions are reported in Table 4. 

 

Please insert Table 4 

 

5.3.2 Comparison of different algorithm versions 
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Hereby, the 5 algorithm versions (GRASP1 to GRASP5) together with GRASP0 are compared 

and their results on the “test set” of 450 instances are shown in Fig. 8 and Table 5. Fig. 8 shows 

the convergence curves, i.e. the evolution of the cost of the best solution obtained by each 

version over the computational time. Each point of these curves is the mean value of the 

solution costs in the 450 instances at different computational times. For each GRASP version, 

Table 5 shows the mean solution cost obtained with 3600 s (column 2) and the percentage of 

instances for which each version finds a solution that is less than 1% worse than the best 

solution obtained by the 6 versions (column 3).  

 

Please insert Figure 8 

 

Please insert Table 5 

 

The version that does not use any heuristic function (GRASP0) obtains the worst results: its 

mean solution cost is higher than 87000$ (while all other versions are below 86800$) and its 

convergence curve is always above all the others. This confirms the importance of utilizing 

good heuristic functions for the selection of the elements in the RCLs. 

The convergence curves of the other algorithm versions (GRASP1 to GRASP5) have a similar 

pattern: most of the improvement is reached in the first 1000 s (dotted line in Fig. 8) whereas 

afterwards the curves tend to be horizontal (asymptotes). GRASP1 and GRASP2 obtain better 

results in comparison with GRASP3, possibly because the calculation for the savings (HF2c) 

requires longer computational time than the other heuristic functions (HF2a and HF2b). However 

the versions that utilize the 3 heuristic functions (GRASP4 and GRASP5), taking advantage of 

the benefits of each one, are better options. GRASP4 (in which the HF utilized in each launch of 

RCL2 is randomly selected between HF2a, HF2b and HF2c) is the best version: its convergence 

curve is always below all the others, its final mean solution cost is the lowest one (86666$) and 

it obtains the best solution in more instances (99.8%) than GRASP5 (99.1%).   

Therefore, the version GRASP4 is selected as the proposed solving procedure of this study. 

 

5.4 Performance of the GRASP based procedure 

As introduced, the only known algorithm that solves the AVEREMS problem thus designing 

off-grid electrification projects based on renewable energies considering micro-scale resource 

variations, a combination of independent generation points and microgrids and generation far 

from demand points is the deterministic heuristic proposed by [9] (called “IDH”). A preliminary 

computational experiment showed that the solutions of that algorithm considerably improve the 

solutions obtained by other procedures that, with some limitations, deal with the same design 

problem: the mathematical model proposed by Ferrer-Martí et al. [7] and the VIPOR software 

[10]. Considering the same assumptions and set of instances used in [9], it was verified that the 

proposed GRASP based procedure highly enhances the solutions obtained by those procedures: 

mean improvements of around 7% and 6% are obtained, respectively, with the mathematical 

model proposed in [7] and the VIPOR software [10]. An enhanced version of the IDH (called 
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“EDH”) was proposed in Section 3 that improves the performance of the IDH, as shown in sub-

Section 5.2. 

The solutions of the proposed GRASP based procedure (“GRASP” refers to GRASP4, i.e. the 

best algorithm version) are now compared with the ones obtained by the enhanced deterministic 

heuristic (EDH). As shown in Fig. 8, the enhanced heuristic (full black circle) can rapidly obtain 

a good solution (29 s), slightly better than the one obtained by the GRASP (blue line) in the 

same computational time (the same solution is reached by the GRASP after 70 s). However, 

when a higher computational time is available, as it is expected when dealing with the design of 

a long-term project, the proposed GRASP can considerably enhance the solutions obtained by 

the EDH. 

Table 6 presents the comparison between solutions obtained by the EDH and the GRASP (with 

a computational time of 3600 s) in the analyzed instances. The EDH and GRASP mean solution 

costs and computational times are shown in columns 3-4 and 5-6 respectively. Besides the mean 

difference between both solutions (column 7), the percentage of instances in which GRASP 

improves EDH solution of more than 1% (column 8) is presented (mention that GRASP 

improves EDH in all instances except one in which GRASP solution is 0.1% worse than EDH 

solution).  

 

Please insert Table 6 

 

The improvement of the GRASP in comparison with EDH depends on the number of users of 

the community (Fig. 9), the size of community area and the type of users’ concentration:  

- As the number of users of the instance increases also the differences between EDH and 

GRASP increase (Fig. 9). For instance of more than 30 users GRASP enhances EDH of 

more than 1% in more than 20% of the instances. In instances between 70 and 90 users 

the mean improvement is around 1%.  

- As smaller the community area higher the improvement: the lowest improvements 

(0.4% and 0.3% respectively) are obtained in instances C1 and C5 that where users are 

dispersed over widest areas (12.25 and 16 km
2
 respectively), while highest 

improvements (1.1%) are obtained in C3 that has the smallest area of just 4 km
2
.  

- Higher improvements are obtained in instances with higher users’ concentration: 

significant enhancements (more than 1%) are obtained in respectively 22% and 33% of 

the instances for the low and high users’ concentration types. 

  

Please insert Figure 9 

 

Fig. 10 shows the computational time and the number of iterations at which the GRASP reaches 

the asymptote, i.e. the point at which 90% of the final improvement (after 3600 s) to EDH is 

obtained. The computational time before reaching the asymptote increases as the number of 

users increases:  in instances up to 60 users the asymptote is reached in less than 600 s. 

However, even in instances of 90 users, 90% of the final improvement is obtained in slightly 

more than half of the computational time (2000s over 3600s). This indicates that a 

computational time of 1 hour can be considered sufficient to get the most out of the GRASP in 

the analyzed instances. 
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Regarding the number of iterations before reaching the asymptote, Fig. 10 shows that this value 

is not that affected by the number of users of the instances. In most cases, the asymptote is 

reached after between 50 and 200 iterations. Thus when applying the algorithm for the design, a 

maximum number of iteration can be established as a stopping criterion of the GRASP based 

algorithm: a value above 200 iterations seems to be adequate in order to get the most out of the 

algorithm. 

 

Please insert Figure 10 

 

In order to illustrate the type of solutions obtained, Fig. 11 shows the solution of the developed 

GRASP based method in a community of 88 users in Nicaragua [24]. The proposed 

configuration combines independent systems (P0, P1, P2 and P3) with wind (Microgrid 1) and 

solar (Microgrid 2 and 3) microgrids that connect concentrated groups of users taking advantage 

of the best wind resource area (red area). It reduces the cost of the project more than 15% in 

comparison with a design configuration considering all independent generation points. 

 

Please insert Figure 11 

 

 

6. Conclusions 

This study presents an enhanced deterministic heuristic and a meta-heuristic procedure to design 

rural communities’ off-grid electrification projects based on renewable energies. The proposed 

methods consider the design of multiple microgrids and independent users, the use of hybrid 

systems combining different renewable energies, micro-scale resource variations and the 

installation of generators far from demand points.  

Firstly, some enhancements to an existing deterministic algorithm proposed in a recent 

publication are presented. The new procedure improves solutions obtained by the previous 

method with a minimal increase in computational time. Based on this new heuristic, a GRASP 

based method is proposed in order to escape from local optima where the deterministic heuristic 

can remain trapped. Different algorithm versions were calibrated and compared in order to 

select the best one.  

The performance of the proposed algorithms was tested on 450 instances from literature, 

generated according to real projects, with different number of users (from 10 to 90), users’ 

concentrations and available wind and solar resources. 

The new deterministic heuristic can rapidly obtain a good solution in less than 1 minute in most 

analyzed instances. On the other hand, the proposed GRASP based algorithm considerably 

enhances solutions obtained by the deterministic heuristic with a computational time of 1 hour 

on a standard PC, a lapse of time generally affordable taking into account the problem to be 

solved. This improvement tends to increase as the number and the concentration of users 

increases: significant improvements (higher than 1%) were obtained in more than 30% of the 

instances bigger than 40 users. 
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The proposed algorithm is a complete design tool that can efficiently support the design of 

stand-alone community electrification projects requiring of low computational resources. A 

possible future line of research could be the explicit consideration in the model of the 

uncertainty in the renewable energy generation. 
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Appendix A – A mathematical model to solve the AVEREMS problem 

The mathematical formulation of the mathematical model presented in [7] considering wind and 

solar energies is hereby reported.  

 Data 

Consumption points: 

P Number of consumption points (households, schools, health centers, community 

centers, etc.). These are the only points where the generators can be placed. 

Lpd  Distance [m] between two points p and d ( p= 1,…, P; d = 1,…, P). 

Lmax  Maximum allowed length of segment of a cable of the microgrid. 

Qp  Set of points to which a point p could be directly joined with a cable segment 

(p= 1,…, P):  1,..., :p pd maxQ d P p d L L     . 

EDp Electric energy demand [Wh/day] at p (p = 1,…, P). 

PDp Power demand [W] at p (p = 1,…, P). 

CM Cost [US$] of an electric meter. 

 

Wind Generation: 

A, NA Types of wind turbines (a = 1,…, A) and maximum number of wind turbines that can be 

placed at a point, respectively. 

EApa,  Energy generated [Wh/day] by a wind turbine placed at point p of type a (p = 1,…, P; 

a = 1,…, A). 

PAa Maximum power [W] of a wind turbine of type a (a = 1,…, A). 

CAa Cost [US$] of a wind turbine of type a (a = 1,…, A). 

R Types of battery charge wind controllers (r = 1,…, R). 
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PRr Maximum power [W] of a battery charge wind controller of type r (r = 1,…, R). 

CRr Cost [US$] of a battery charge wind controller of type r (r = 1,…, R). 

 

PV Generation: 

S, NS Types of PV panels (s = 1,…, S) and the maximum number of PV panels that can be 

placed at a point, respectively. 

ESs,  Energy generated [Wh/day] by a PV panel of type s (s = 1,…, S). 

PSs Maximum power [W] of a PV panel of type s (s = 1,…, S). 

CSs Cost [US$] of a PV panel of type s (s = 1,…, S). 

Z Types of PV battery charge controllers (z = 1,…, Z). 

PZz Maximum power [W] of a battery charge PV controller of type z (z = 1,…, Z). 

CZz Cost [US$] of a battery charge PV controller of type z (z = 1,…, Z). 

 

Energy storage: 

B Types of batteries (b = 1,…, B). 

ηb Efficiency of the batteries [fraction of unity]. 

DB Maximum proportion of discharge admitted in the batteries. 

VB  Required autonomy of the batteries [days]. 

EBb Capacity [Wh] of a battery of type b (b = 1,…, B). 

CBb Cost [US$] of a battery of type b (b = 1,…, B). 

I Types of inverters (i = 1,…, I). 

ηi Efficiency of the inverters [fraction of unity]. 

PIi Maximum power [W] of an inverter of type i (i = 1,…, I). 

CIi Cost [US$] of an inverter of type i (i = 1,…, I). 

 

Microgrid: 
C Types of microgrid cables. 

RCc Electric resistance (feed and return) [/m] of a cable of type c (c = 1,…, C). 

ICc Maximum intensity [A] of a cable of type c (c = 1,…, C). 

CCc Cost [US$/m] of a cable of type c, including the cost of the infrastructure (c = 1,…, C). 

VN ,Vmin,,Vmax Nominal, Minimum and Maximum voltage [v], respectively. 

ηc Efficiency of the microgrid [fraction of unity].
 

 

Variables 

The model has the following variables: 

 

 Integer non-negative variables to define the location and sizing of equipment: 

paxa  Number of wind turbines of type a  placed at point p  ( 1,..., ;  1,...,p P a A  ). 

psxs

 

Number of PV panels of type s  placed at point p  ( 1,..., ; 1,...,p P s S  ). 

pbxb
 

Number of batteries of the type b  placed at point p
 
( 1,..., ; 1,...,p P b B  ). 

prxr
 

Number of battery charge wind controllers of type r  placed at point p
  

( 1,..., ; 1,...,p P r R  ). 

pixi
 

Number of inverters of the type i  placed at point p
 
( 1,..., ; 1,...,p P i I  ). 

pzxz
 

Number of battery charge PV controllers of type z placed at point p
 

( 1,..., ; 1,...,p P z Z  ). 
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 Float non-negative variables to define energy and power flows and voltage: 

pdfe

 

Flow of energy [Wh/day] between points p  and d  ( 1,..., ; pp P d Q  ). 

pdfp

 

Flow of power [W] between points p  and d  ( 1,..., ; pp P d Q  ). 

pv

 

Voltage [V] at point p  ( ,..., ; 1,...,p min maxv V V p P  ). 

 

 Binary variables to define the generation points, the microgrid and the meters: 

 0,1pxg 

 

1 if some wind turbine and/or PV panel is placed at point p ( 1,...,p P ); 

otherwise. 

 0,1pdcxc 

     

1 if there is a cable of type c  between the points p  and d   

( 1,..., ; ; 1,...,pp P d Q c C   ); 0 otherwise. 

 0,1pxm 

 

1 if an electric meter is placed at point p  ( 1,...,p P ); 0 otherwise. 

 

Objective function 
The objective function (10) minimizes the capital cost; i.e., the total cost of the generation, 

storage and distribution equipment. 

 

 
1 1 1 1 1 1

1 1 1 1

1 1 1 1 1

p

P A P S P B

a pa s ps b pb

p a p s p b

P C P I

pd c pdc i pi

p d Q c p i

P R P Z P

r pr z pz p

p r p z p

MIN Z CA xa CS xs CB xb

L CC xc CI xi

CR xr CZ xz CM xm

     

    

    

      

    

    

  

 

  

 (10) 

 

Constraints 
Constraint (11) defines the points at which wind turbines are placed and limits the maximum 

number of generators at the same point; in an analogous way (12) incorporates PV panels. 

Constraint (13) forces xgp to be equal to 0 if neither a wind turbine nor a PV panel is placed at 

point p. Energy and power balances and conservation are described in (14) and (15), 

respectively. Constraint (16) establishes the capacity of the batteries. Constraints (17) and (18) 

relate the energy and power flows respectively, to the existence of a cable between two points. 

The radial distribution of the microgrid is established in (19), constraint (20) limits the voltage 

drops and (21) the maximum intensity. The power of battery charge wind controllers is defined 

in (22). In a similar way, the power of battery charge solar controllers is defined depending on 

the power of the corresponding PV panel (23). Inverters can only be placed at points where 

wind-PV generators are placed (24). Constraints (25) and (26) force the installation of electric 

meters at the consumption points fed by a microgrid. 

 

1

1,...,
A

pa p

a

xa NA xg p P


    (11) 

1

1,...,
S

ps p

s

xs NS xg p P


    (12) 
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1 1
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A S

pa ps p

a s

xa xs xg p P
 

   
 

(13) 

1| 1 1

1 1
1 1,..,

q

p

P A S

qp pa pa s ps

q p Q a s

p

p pd

d Q

fe EA xa ES xs

ED
xg fe p P

b i c c   

   



    

  
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B P
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b j d Q
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P C
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ED
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n
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1 1
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Z S
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Abstract 

The design of off-grid electrification projects considering hybrid systems and distribution 

microgrids is a complex task that requires the use of decision support tools. Most of existing 

tools focus on the design of hybrid systems without defining generator locations and microgrids 

configuration. Recently a deterministic heuristic was developed to solve the problem. In this 

study we present an enhanced deterministic heuristic and then a meta-heuristic procedure for 

designing community off-grid electrification projects based on renewable energies considering 

micro-scale resource variations and a combination of independent generation points and 

microgrids. Both new algorithms improve performance of the previous existing procedure. The 

new deterministic heuristic can rapidly (in a computational time lower than 1 minute) obtain a 

good solution. On the other hand, the proposed meta-heuristic method considerably enhances 

solutions obtained by the deterministic heuristic with a computational time of 1 hour on a 

standard PC. The improvement tends to raise as the complexity of the analyzed instance 

increases. The proposed algorithm is a complete design tool that can efficiently support the 

design of stand-alone community electrification projects requiring of low computational 

resources. 

 

Nomenclature 

- A(m): Set of arches of microgrid m 

- AVEREMS: Autonomous Village Electrification through Renewable Energy and Microgrid 

Systems 

- DP(m): Set of demand points of microgrid m 

- GGS: Grid Generation Score 

- GRASP: Greedy Randomized Adaptive Search Procedure 

- IGS: Independent Generation Score 

- L(x,y): Euclidean distance between point x and y 

- LA(a): Length of arch a 

- MS(s): Set of microgrids of solution s 

- NGS: No-generation Score 

- P(m): Set of points of microgrid m 

- PD(u): Electrical power demand of user u 

- RCL: Restricted Candidate List (of the GRASP) 

- R(m): Generation point (root) of microgrid m  

- S(M): Solution composed by microgrids of set M 

 

1. Introduction 

Projects relying on renewable energies demonstrated to be a reliable and sustainable option to 

electrify isolated communities autonomously [1]. These systems produce electricity in a clean 

way, their cost is often lower than national grid extension and they are not dependent from 

continuous fuel supply (such as diesel generators), therefore increasing projects long-term 

sustainability [2]. In this context, the configurations that proved to be the most reliable design 

options are hybrid systems that combine different generation resources [3] and distribution 

microgrids, where the energy is produced in a certain point and distributed through an electric 

microgrid to other consumption points [4]. 
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The design of off-grid renewable energy projects considering hybrid systems and distribution 

microgrids must consider multiple issues. When designing hybrid systems, the most adequate 

combination of technologies should be evaluated depending on available resources and 

generation and storage equipments characteristics. When designing microgrids, the selection of 

grid generation points and the definition of which points should be connected to a certain micro-

grid and which not are complex tasks, especially when a resource (e.g. wind) is highly disperse 

[5] and best areas for installing generators could be located far from demand points [6]. 

Furthermore, in scattered communities with isolated users, the combination of multiple 

microgrids and independent generation points is generally the cheapest design solution [7]. 

Over last decade, many tools have been developed in order to support the design [8]. However, 

most of them define the best combination of energy resources in one point but without 

designing the distribution through microgrids and without taking into account resource spatial 

variations. The only known method that permits the design of off-grid electrification projects 

based on multiple renewable energies considering micro-scale resource variations, a 

combination of independent generation points and microgrids and considering generation in 

every point of an area (not only close to the users) is the deterministic greedy heuristic proposed 

in [9]. 

The problem solved is called AVEREMS: the Autonomous Village Electrification through 

Renewable Energy and Microgrid Systems [9]. The solutions of that algorithm were shown to 

considerably improve those obtained by other procedures that, with some limitations, deal with 

the same design problem: VIPOR software [10] and the mathematical model presented in [7]. 

However, the algorithm proposed by [9] has some possible weaknesses. Firstly, it creates 

microgrids always minimizing cable length, while in some cases it would be preferable to utilize 

a different network configuration in order to reduce utilized cable unitary cost and thus 

microgrid cost. Furthermore, it is a deterministic procedure in which a single solution is 

greedily constructed and then improved by a local search phase. It should be noted that the 

solution obtained by the local search, i.e. local optimum, could be far from the global optimum, 

i.e. the best of all feasible solutions. 

In the last few decades, various meta-heuristic procedures have been developed in order to 

escape from local optima and thus improve solutions encountered by deterministic heuristics 

[11]. One of those is the GRASP (Greedy Randomized Adaptive Search Procedure) [12] that 

has been successfully applied to various location optimization problems [13]. In particular, a 

GRASP based procedure demonstrated to be highly efficient in solving the capacitated plant 

location problem [14],which has various similarities with the AVEREMS problem (see [9]). 

In this study we present an improved deterministic heuristic and then a meta-heuristic 

procedure, based on the GRASP, for solving the AVEREMS problem; that is, for designing 

community off-grid electrification projects based on renewable energies considering micro-

scale resource variations and a combination of independent generation points and microgrids. 

The contribution of the paper is to propose an algorithm that obtains better results than currently 

available procedures with low computational requirements. In this paper the first meta-heuristic 

algorithm specifically designed for this purpose is proposed while previous methods were based 

on simpler procedures. The proposed methods consider the design of multiple microgrids and 

independent users, the use of hybrid systems combining different renewable energies and the 

installation of generators far from demand points.  
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The rest of the paper is organized as follows. Section 2 presents the components of a general 

off-grid electrification project and the basic problem statement of the AVEREMS. An 

enhancement to the deterministic heuristic method described in [9] is proposed in Section 3. 

Various versions of the proposed GRASP based algorithm are described in detail in Section 4. 

In Section 5 the best version is identified and its performance is compared with the existing 

procedure. Section 6 deals with the conclusions. 

 

2. The AVEREMS problem  

In this Section, after defining the main glossary used (sub-Section 2.1), the components of a 

hybrid off-grid electrification system (sub-Section 2.2) and the AVEREMS problem are 

described (sub-Section 2.3).  

 

2.1 Glossary 

The main terms used to describe the problem and the methods proposed in Sections 3 and 4 are 

hereby defined:  

- Demand point (or user): location of a consumption point, such as a house or a public 

building, with certain electric energy and power demands. Demand points can be 

generation points. 

- Distribution system: the electric cables that connect the generation system to the users. 

- Generation point: location where a generation system is installed. 

- Generation system: group of components installed in a certain point in order to 

generate and store the electricity. It includes generators (wind turbines and solar 

panels), controllers, batteries and inverters. 

- Grid consumption point (or no-generation point): a user connected to a multiple 

points’ microgrid and not being the generation point. It just consumes energy. 

- Grid generation point: generation point of a microgrid composed by multiple points 

- Independent generation point (or independent generation system): a user that is 

producing energy just for its own consumption. 

- Microgrid: set of one or more users fed by a generation system placed in a demand or 

no-demand point. It includes both the generation and the distribution systems. 

- No-demand point: location (that is not a demand point) that can be a generation point. 
 

2.2 Components of an off-grid electrification system 

The scheme of the elements involved in an autonomous electrification system considering wind 

and solar energies is as follows (Fig. 1): 

1) Generators: produce energy in alternating (wind turbines) or direct (solar panels) current. 

2) Controllers: convert to direct current and control the charge/discharge of the batteries. 

3) Batteries: store the energy produced by the generators, receive and supply electricity at direct 

current. 

4) Inverters: convert direct to alternating current at the nominal voltage. 

5) Electric cables: configure the microgrid that distributes the energy (only low voltage 

distribution is considered). 
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6) Electric meters: measure the energy consumed at the demand points. 

7) Users (or Demand points): consume the energy. 

 

Please insert Figure 1 

 

The generation system is composed by the generators (wind turbines and/or solar panels), 

controllers, batteries and inverters. The energy produced by a generation system is distributed to 

the users by electric cables (distribution system). The term “microgrid” in this paper refers to 

the ensemble of the generation and the distribution systems. A microgrid composed by a single 

demand point with the generation system located in the same point is also referred to as an 

“independent generation point”. The radial microgrid configuration (i.e. a single generation 

system per microgrid and distribution in form of a tree as in Fig. 1) is considered in this study as 

it is the preferred one in rural electrification projects [15].  

 

2.3 Problem statement 

The aim of the AVEREMS design problem is to find the lowest cost configuration (generation 

points’ locations and microgrids design) that accomplish with the energy and power demands of 

all the users, taking into account energy resource maps and different technical constraints. A 

detailed description of the AVEREMS problem constraints and mathematical formulation is 

reported in Appendix A. Next, the objective function of the problem and the constraints of the 

generation and distribution systems (Fig. 1) are resumed: 

- Objective function: To minimize the capital cost of the project, considering all components 

defined in Fig. 1, i.e. wind turbines, wind controllers, solar photo-voltaic (PV) panels, solar 

controllers, batteries, inverters, meters, and cables. 

- Constraints of the generation system: In each generation point, generators, controllers, 

inverters and batteries must be installed in order to cover the energy and power demands of 

connected users. The demand of the users is estimated at the horizon time of the project to 

consider the possible load growth. Generators and batteries must satisfy the energy demand, 

while inverters must fulfill the power demand. For the dimensioning of the generators, batteries 

and inverters the following aspects must be also considered: energy resources available in the 

area, energy and power losses due to equipments’ efficiencies, the minimum days of autonomy 

and the maximum battery discharge factor. In particular, the required days of autonomy are set 

in order to take into account the uncertainty in the wind and solar resource generation (e.g. as 

higher the uncertainty for a certain project, higher the days of autonomy of the batteries). This 

feature together with the consideration of the minimum resource month and the combination of 

different renewable resources (hybrid systems) intrinsically takes into account the generation 

uncertainty and reduces the risk of lack of energy supply. Controllers are dimensioned 

depending directly on the installed generators. Generation systems could be located in every 

point of a certain area (thus not forcedly close to demand points as considered by [7]). 

- Constraints of the distribution system: Every demand point must be connected to the 

generation system by an electric cable. The type of cable installed must satisfy maximum 

permitted voltage drop considering nominal distribution voltage, and cable resistance and 

maximum intensity. Microgrid structure is radial. Consumption meters must be installed in 

microgrids connecting multiple users. 
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Fig. 2 shows a solution to the AVEREMS problem in a community of 22 users distributed on an 

area of 1 km x 1 km. For each generation point, besides generators (indicated in Fig. 2), the 

number and type of the other components to be installed in the generation system, i.e. 

controllers, batteries and inverters (Fig. 1), must be specified. For each branch of a microgrid 

the type of cable must be specified in order to fulfill with distribution system constraints.  

 

Please insert Figure 2 

 

3. Enhanced deterministic heuristic  

The deterministic heuristic proposed in [9] is considered as the starting point for the 

development of the proposed metaheuristic procedure. That heuristic is a fast method composed 

by 2 phases: first construction, and then a local optimization. In the “construction phase”, the 

solution considering all independent generation points is firstly calculated, and then the 

algorithm iteratively extends microgrids as much as possible, according to the cost criterion. 

The “local optimization phase” is composed by 2 steps that are repeated if they improve the 

previously obtained solution (i.e., the solution cost is reduced): firstly the microgrids are divided 

into smaller ones and then the resulting microgrids are tried to be interconnected between them 

in a better way. 

The “construction phase” in [9] has the following drawback. The microgrids are always created 

solving the minimum spanning tree problem [16], which, given a generation point and a set of 

users to connect, looks for the configuration of the distribution system that minimizes the cable 

length. However, this configuration does not ensure the minimum cost because it depends on 

both the cable length and the cable type (i.e. unitary cost) used in order to fulfil distribution 

system constraints, such as maximum permitted voltage drop. Thus, the cable type should also 

to be taken into account when deciding the distribution system. 

In order to improve the original heuristic, we propose an enhanced deterministic heuristic based 

on the one proposed in [9]. The general scheme of the enhanced heuristic is shown in Figure 3 

and the heuristic is described in the next sub-Sections. The original “construction phase” is 

modified in order to be easily adapted as the starting point of a meta-heuristic procedure (see 

Section 4). Moreover, we include an additional third phase, “distribution system optimization 

phase”, which aims to reduce the distribution system cost. In that third phase, instead of using 

the minimal cable length distribution, longer lengths that may reduce the global solution cost are 

considered.  

Sub-Section 3.1 lists and describes the internal functions used in the proposed enhanced 

heuristic. The description and reasoning of the “construction phase” and the “distribution 

system optimization phase” are presented in detail is sub-Section 3.2 and 3.3, respectively. The 

“local optimization phase” is equal to the one originally proposed in [9] and, therefore, it is not 

detailed here. 

 

Please insert Figure 3 

 

3.1 Internal functions 
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The internal functions used in the heuristic description are hereby reported. Some of these 

functions are defined to facilitate its posterior usage in the GRASP based algorithm described in 

Section 4. The functions use symbols defined in the “nomenclature” Section. 

 

CM(m) Cost of microgrid m, including all components of the generation and distribution 

systems.  

CS(s) Cost of solution s. 
( )

( ) ( )
m MS s

CS s CM m


   

LPA(x,a)         Minimum distance between point x and arch a 

LPM(x,m) Minimum distance between point x and microgrid m 

 If |P(m)| = 1 then ( , ) ( , ( ))LPM x m L x R m  else
 ( )

( , ) min ( , )
a A m

LPM x m LPA x a



 

LC(m1,m2)  Estimation of the cable extension required to connect microgrids m1 and m2. 

    
( 1) ( 2)

( 1, 2) min min , 2 , min , 1
x P m x P m

LC m m LPM x m LPM x m
 

 
 

δ is a coefficient used to take into account possible slight differences between 

microgrids’ distance and real cable extension. In the heuristic proposed in [9] δ=1 

was assumed. In this study a value of δ=0.85 is considered in order to increase the 

possibility of connecting microgrids and thus to enlarge the search space of the 

algorithm. 

BED(m) Break Even Distance (BED) of microgrid m. It represents the maximum distance 

at which microgrid m could be reliably connected to another microgrid or to a no-

demand generation point. Given UCC the lowest unitary cable cost [$/m] and 

CC(m) the total electric cable cost of microgrid m,  

 

( ) ( )
( )

CM m CC m
BED m

UCC




  

B(m)  Set of branches of microgrid m. A branch is defined by the arches and the points 

(always including the generation point) of a microgrid that are downstream the 

same point, i.e. the electric energy they receive pass through the same arch 

connecting the generation point and a child of it (see Fig. 2). 

MB(B)  Microgrid composed by the set of braches B 

DU(a,b)  Set of users part of branch b that are downstream arch a (the electric energy they 

receive pass through arch a)  

AB(b)  Set of arches of branch b sorted in a decreasing order by PF(a), i.e. the product of 

arch length and the power flow circulating by it. For each a ∈ AB(b), the 

parameter PF(a) is calculated as 

  ( , )

( ) ( ) ( )
u DU a b

PF a L a PD u


    

CB(b)  Cost of the cables of branch b. Cable connections within a branch follow a radial 

tree-scheme and are realized so that cable length is minimized using the classical 

shortest connection network algorithm [16]. The cable type with the minimum 

cost that fulfills with the maximum permitted voltage drop and the maximum 

flowing intensity is selected. 

BD(a,b) Set of 2 branches {BD1(a,b), BD2(a,b)} resulting from removing arch a of branch 

b. Branch BD1(a,b) is composed by arches connecting all users DU(a,b), while 

branch BD2(a,b) is composed by the arches connecting the rest of users 
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Split(b) Set of (1 or 2) branches that results after trying to eliminate one by one all arches 

of b. The function stops when a division is accepted because the distribution 

system cost is reduced. If no division is accepted then the function returns b. The 

algorithm of this function is reported in the following. 

1. For (a∈AB(b)) 

2. If CB(BD1(a,b)) + CB(BD2(a,b)) < CB(b) then 

3. return {BD1(a,b), BD2(a,b)}  

4. EndIf 

5. EndFor 

6. return {b} 

ImproveCableCost(m)   Function that tries to divide all the branches of microgrid m into 

smaller ones in order to reduce the distribution system cost. For each 

branch the following steps are carried out: 

- It calculates the cost of dividing the branch into 2 smaller ones, 

eliminating one arch of the branch. All the arches are tried to be 

eliminated. 

- If the cost of the 2 new branches is lower than the initial branch cost 

then the sub-division is accepted. Therefore the same subdivision 

process is carried out for the resulting 2 branches.  

- The procedure stops when no more subdivision is accepted.  

 Let DB be the set of branches to be divided, b be the current branch 

that is tried to be divided and B* be the set of least cost branches. The 

detailed algorithm of this function is described in the following. 

0. Initialize variables: B* = ø; DB = B(m); 

1. While (DB ≠ ø) 

2.      b = first element of DB; DB = DB \{b} 

3.      If (Split(b) = {b}) then B* = B* ∪ {b} 

4.      else DB = DB ∪  Split(b) 

5. EndWhile 

6. Return MB(B*) 

In this function the generation point of microgrid m does not change. 

Thus R(MB(B*)) = R(m). 

 

MR(m, x, r)  Microgrid composed by DP(m) demand points with generation in point x. 

Cable length is firstly minimized using the shortest connection network 

algorithm [16].  

  If r = true: Cable cost is then improved utilizing the ImproveCableCost(m) 

function.  

  If r = false: Cable cost is not improved. 
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MU(m1,m2, r) Microgrid (mu) that results after connecting (according to Prim’s algorithm 

[16]) all demand points of microgrids m1 and m2. Therefore,

( ) ( ) ( )DP mu DP m1 DP m2   

  If r = true (cable cost is improved): The cable cost of mu is obtained 

utilizing the ImproveCableCost(mu) function; the root of microgrid mu is 

the one that leads to the lower cost between the root of m1 and the root of 

m2: if CM(MR(mu,R(m1),true)) < CM(MR(mu,R(m2),true)) then mu = 

MR(mu,R(m1),true) otherwise mu = MR(mu,R(m2),true).  

  If r = false (cable cost is not improved): R(m2) is selected as the root of mu 

only if it leads to a lower microgrid cost and has a Hybrid Potential 

Indicator (HPI) higher than R(m1): 

  if CM(MR(mu,R(m2),false)) < CM(MR(mu,R(m1),false)) and HPI(R(m2)) 

> HPI(R(m1)) then mu = MR(mu,R(m2),false) otherwise mu = 

MR(mu,R(m1), false). 

  HPI(x) is a resource indicator that considers the multiple renewable 

resources available in the area: higher the HPI(x) higher the resource(s) 

potential in point x. HPI(x) is calculated according to [17]. 

SelectM(m, M) Returns the microgrid mc to be connected to microgrid m. mc is selected 

from set M of microgrids. The selected microgrid mc is 

 

 
        arg max true

z M LC( z ,m ) max BED( z ),BED( m )

mc CM m CM z CM MU m,z,
 

  

 

IGC(s, ND) Returns the solution with generation in the best (low cost) demand point of 

each microgrid or in a no-demand point of set ND. For every microgrid m 

of solution s, the point x (part of the microgrid m or of set ND) that, if 

selected as the root, leads to the minimum microgrid cost is defined as 

microgrid generation point. In this function, set ND does not include no-

demand points that are already the generation point of another microgrid 

part of solution s. 

                        argmin true true
x P( m ) NDm MS( s )

IGC( s,ND ) S MR m, CM MR m,x, ,
 

  
   

    

 

3.2 Construction phase 

The reasoning of the construction phase is the following. First, it is considered that all demand 

points are independent generation points (i.e., a solution without any microgrid). This is a trivial 

solution that may be a high cost solution. Then, the heuristic constructs iteratively the 

microgrids extending them as much as possible whenever the solution cost decreases. The 

microgrids are subsequently constructed in the following two iterative cycles, which are shown 

in Fig. 4: 

1) Cycle 1: New microgrid construction iteration starts. The grid generation point of the 

(current) microgrid is firstly selected (STEP1) and then it starts cycle 2 in which the 

microgrid is extended.  
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2) Cycle 2: In each iterative step a microgrid (composed by one or more users) is tried to 

be connected to the current microgrid depending on certain criterion (STEP2). If the 

new microgrid has a lower cost than the two previous ones then the connection is 

accepted and Cycle 2 restarts. If the connection is not accepted then a new Cycle 1 

starts. 

The algorithm ends when all the demand points of the community are part of a created 

microgrid, i.e. a microgrid that was already tried to be extended.  

 

Please insert Figure 4 

 

The “selection steps” (STEP1 and STEP2 of Fig.4) are the most critical parts of the algorithm 

and are defined by two characteristics: the pool of possible candidates (PE1, PE2, respectively) 

and the indicator or heuristic function (HF1, HF2, respectively) used to rank the set PE and 

select the best candidate. 

Regarding STEP1, the pool of possible candidate elements (PE1) from which the microgrid 

generation point could be selected is the union of the sets of demand (D) and no-demand points 

(ND), not selected as a grid generation point in a previous iteration of cycle 1 (equation 1). As 

the number of initial no-demand points in an area could be considerably high, e.g. wind 

generation points are generally presented in form of a wide spatial grid with a spacing of 50 or 

100 m, an “initial filter”, proposed in [9], is firstly applied to pre-select most promising 

generation locations taking into account resource and demand distributions. 

- 1PE D ND 
         

(1) 

The heuristic function (HF1) to rank the elements of the set PE1 is the Grid Generation Score 

(GGS): an indicator that, based on demand and resource distributions, evaluates how much a 

certain point has the adequate characteristics for being the generation point of microgrid 

composed by multiple users (for more details see [17]). The point with the highest HF1 

(equation 2) is selected: 

-  1 1( )HF x GGS x x PE          (2) 

Regarding STEP2, i.e. the selection of the microgrid to connect, being m the current microgrid 

in expansion, the pool of possible candidates (PE2) is composed by all microgrids of the current 

solution s (excluding m) located at a distance from m lower than their Break Even Distance 

(BED) (equation 3). 

  2 ( ) \ ( , ) ( )PE mc MS s m LC mc m BED mc  
     

(3) 

The microgrid y that is tried to be connected to microgrid m could be selected in the following 

three different ways, adapted from [11]: HF2a, HF2b and HF2c (equations 4, 5 and 6).  

1) By distance (the element with the lowest HF2a value is selected):  

   2 2,aHF y LC y m y PE            (4) 
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2) By NGS, IGS and distance (the element with the highest HF2b value is selected): 

 
 

( )

2 2

max 1 ( ) ( );0.1

( , )

py DP y

b

NGS py IGS py
HF y y PE

LC y m


 

      (5) 

The NGS (No-generation Score) and the IGS (Independent Generation Score) are indicators 

that evaluate how much some a-priori characteristics of a point indicate that it should be a 

no-generation point (NGS) or an independent generation point (IGS) (for more details see 

[17]). As NGS and IGS can range from 0 to 2, a minimum value of the numerator is defined 

(0.1) in order to obtained always positive values of the HF2b. 

3) By savings (the element with the highest HF2c value is selected):  

        2 2( ) , , falsecHF y CM m CM y CM MU m y y PE       
 

(6) 

As the heuristic function that leads to the best results is not always the same [9], the algorithm is 

launched three times, each time with one of the 3 HF2, and finally the best found solution is 

returned. 

 

3.3 Distribution system optimization phase 

As it has been mentioned, when constructing the microgrids, the distribution is configured only 

considering the minimal cable length. However, since the cable costs are not taken into account, 

the minimal distribution cost is not ensured. The distribution cost may be reduced utilizing less 

expensive cables with a non-minimal cable length configuration and thus decreasing the total 

distribution cost. 

This reduction is the objective of the proposed “Distribution system optimization phase”, which 

we apply to the solution returned by the “local optimization” phase (Fig. 3). The scheme of the 

third phase is shown in Fig. 5: firstly the branches of the microgrids of a previously obtained 

solution are tried to be subdivided, i.e. “Branches subdivision” (sub-Section 3.3.1) and then 

obtained microgrids are iteratively tried to be interconnected, i.e. “Microgrids interconexion” 

(sub-Section 3.3.2). 

 

Please insert Figure 5 

 

3.3.1 Branches subdivision 

This step aims to improve the distribution system cost of the microgrids of the current solution 

by means of trying to subdivide the branches. Therefore, the function “ImproveCableCost()” is 

applied to every microgrid, as shown in the following. 

Parameters 
is  Initial solution  

M* Set of least cost microgrids 
 

Algorithm 

1. M* =
( )m MS is

ImproveCableCost (m)

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2. Return S(M*) 

 

3.3.2 Microgrids interconnection 

During this step the microgrids of the current solution are tried to be interconnected. For each 

microgrid m the following sub-steps are carried out: 

- The microgrids located at distance to the microgrid (m) lower than their Break-Even 

Distance are tried to be connected (separately) to m. Next, in order to improve the 

distribution system, the “ImproveCableCost()” function is applied to each newly 

obtained microgrid. The microgrid mc that leads to the highest savings is selected. 

- If the connection between microgrids m and mc decreases the cost of the solution then 

the two microgrids are connected and the algorithm tries to connect another microgrid 

to the latter obtained microgrid.  

- This process stops when the connection is rejected (no cost improvement is obtained).  

 

A detailed description of the procedure is reported in the following. As shown in Fig. 5, this 

algorithm is part of an iterative process. 

 

Parameters 
is  Initial solution  

IM Set of microgrids part of the initial solution is sorted by the number of 

connected points in descending order (in case of tie, by total cable length in 

descending order) 

ND Set of no-demand points pre-selected by the initial filter [9] as possible 

generation points 

RM Set of remaining microgrids that should be tried to be interconnected with the 

other microgrids 

m  Current microgrid that is tried to be interconnected to the other microgrids 

SM Set of remaining microgrids that could be connected to m 

mc  Selected microgrid to be connected to m 

s  Current solution  

sn  New solution obtained  

AcceptCon Boolean variable that indicates if the connection of microgrids m and mc is 

accepted or not 

Continue Boolean variable value that indicates if a new connection will be tried or not  

s*  Least cost solution 
 

Algorithm 

1. Initialization: RM = IM; s* = is;  

2. While (RM ≠ ø) 

3.    m = first element of RM; RM = RM \ {m}; SM = MS(s*) \ {m}; 

4.    s = s*;   ( , ) max , ( )Continue mc SM LC mc m BED mc BED m     

5.    While (Continue and SM ≠ ø) 

6.       Select the microgrid to be connected to m: mc = SelectM(m, SM) 

7.       m = MU(m, mc, true); SM = SM \ {mc}; sn = S(SM ∪ {m}) 
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8.       Connection acceptance criterion: AcceptCon = (CS(sn) < CS(s)) 

9.       If (AcceptCon) then s = sn; s* = sn; RM = RM \ {mc}; EndIf 

10.       Continue = AcceptCon and   ( , ) max , ( )mc SM LC mc m BED mc BED m    

11.    EndWhile 

12. EndWhile 

13. Improve generation cost: s* = IGC(s*, ND) 

14. Return s* 

 

4. GRASP based algorithm 

The enhanced deterministic heuristic described in Section 3 (from now on referred as the 

“deterministic heuristic”) improves the performance of the previous deterministic heuristic 

proposed by [9], with a very small increase in the computational time, as verified in sub-Section 

5.2. Nevertheless, when the improvement phases (second and third phases) are applied to the 

solution obtained in the construction phase, a local optimum is returned, which may not be the 

global optimal solution. Figure 6 shows a solution obtained in the construction phase (point 

“0”),  and how it is led by the improvement phases to the basin of attraction of the valley at 

which point “0” belongs (a local optimum, point “1”). However, as shown in Fig. 6, the set of 

all possible feasible solutions is generally composed by multiple local optima [18]. Thus, it is 

not guaranteed the quality the solution generated by the enhanced deterministic heuristic in 

comparison with the global optimum. 

In the last few decades, several meta-heuristic procedures have been developed in order to 

escape from local optima, which allows to explore better the solution space (i.e, to explore other 

valleys). Thus, better solutions may be found [11]. Among other metaheuristics, the Greedy 

Randomized Adaptive Search Procedure (GRASP) has been proposed [12]. GRASP is a multi-

start metaheuristc. Specifically, GRASP generates different solutions at random (which may 

belong to different valleys) and improve them in order to obtain different local optima (see Fig. 

6). As stopping criterion is usually defined a maximum calculation time or a maximum number 

of iterations. Obviously, the best local optimum found is returned. 

 

Please insert Figure 6 

 

GRASP has been successfully applied to many location optimization problems [13] including 

the capacitated plant location problem [14], which has many similarities with the AVEREMS 

problem (see [9]). Thus, we propose a GRASP based algorithm to solve AVEREMS.  

In each iteration of the proposed GRASP algorithm, two phases are applied (Fig. 7): random 

solution construction and solution improvement (or local search) which starts at the constructed 

solution and applies iterative improvement until a local optimum is found. Repeated 

applications of the randomized construction procedure yields diverse starting solutions for the 

local search and the best overall solution obtained in the process is kept as the result. 
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Please insert Figure 7 

 

In the following, we describe the new randomized solution construction (sub-Section 4.1) and 

the different proposed algorithm versions (sub-Section 4.2). 

 

4.1 Randomized construction phase 

The randomness of the GRASP is introduced in the solution construction phase in order to 

generate a wide range of different initial solutions and therefore improve the exploration of the 

solution space (Fig. 6). Assuming that a solution is composed by different elements that could 

be ranked by a heuristic function, the randomness can be introduced in the way these elements 

are selected [12]. As stated in sub-Section 3.2, microgrids can be seen as the different elements 

of a solution that are subsequently constructed in two iterative cycles (Fig. 4). Within each cycle 

there is a “selection step” (STEP1 and STEP2) in which the elements are ranked by a heuristic 

function and then the best ranked element is selected. Instead of selecting the best element, two 

restricted candidate lists (RCLs) could be used in STEP1 and STEP2 in order to introduce 

randomization: 

1) RCL1: list for the selection of the microgrid generation point (STEP1).  

2) RCL2: list for the selection of the microgrid that is tried to be connected (STEP2).  

In the classical GRASP implementation [12], a single RCL is used. Hereby two RCLs are 

considered in order to increase the randomization effect, enhance the variability of the 

constructed solutions and thus enlarge the exploration of the solution space.  

The main characteristics of the RCLs are: the pool of possible candidates, the size (nº of 

elements) of the RCL, the heuristic function and the selection procedure. These characteristic 

for RCL1 and RCL2 are reported in Table 1 and next described: 

a) The pool of possible candidates for STEP1 and STEP2 (respectively PE1 and PE2) are 

defined in sub-Section 3.2 (equations 1 and 3). 

b) Regarding the size, the number of best ranked elements (according to their heuristic 

function) to be included in the RCL could be defined as [19]: 

 max ,1SE PE      where 0 1       (7) 

Note that if α = 0 then the selection is deterministic (i.e. the best ranked element is 

always selected), while as α increases higher will be the randomness of the selection 

(with α = 1 the highest randomness is achieved). The appropriate choice of the value of 

parameter α is clearly critical and relevant in order to achieve a good balance between 

computation time and solution quality [20]. Parameter α will be calibrated for both 

RCL1 and RCL2 (sub-Section 5.3.1). 

c) The heuristic functions (HF) used in STEP1 and STEP2 are defined in sub-Section 3.2. 

There is a single HF1 for STEP1 (equation 2), while there are three possible HF2 (HF2a, 

HF2b, HF2c, defined in equations 4, 5 and 6) for STEP2.  

d) Regarding the selection procedure, in the original GRASP the selection of an element 

from the RCL is done in a uniform random way: all elements of the list have the same 
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probability to be chosen [12]. However, later studies showed that better results can be 

achieved by a random biased selection, in which the probability of selecting a certain 

element is proportional (or inversely proportional) to its heuristic function [21]. 

Therefore, being HFi the value of the heuristic function for element i, the selection 

probability pi of element i from a RCL is calculated as: 

o Proportional selection (P):
 





RCLy

y

i

HF

HF
p

     (8) 

 

o Inversely proportional selection (IP):

 





RCLy y

i
i

HF

HF
p

1

1

   (9)

 

The set RCL is composed by the SE best ranked elements of the pool of possible 

candidates (PE). Elements are sorted by their HF value in a decreasing or increasing 

order in the case of respectively proportional or inversely proportional selection. 

 

Please insert Table 1 

 

 

 

4.2 Different algorithm versions 

As shown, there are three heuristic functions for STEP2 (HF2a, HF2b, and HF2c). The heuristic 

function that obtains the best results cannot be defined a-priori. Therefore, we propose to 

analyze the performance of the following 5 GRASP based algorithm versions: 

- GRASP1: HF2a is always applied in each STEP2  

- GRASP2: HF2b is always applied in each STEP2  

- GRASP3: HF2c is always applied in each STEP2  

- GRASP4: HF2a, HF2b or HF2c are randomly selected (with the same probability) in each 

STEP2 of the construction phase.  

- GRASP5: HF2a, HF2b or HF2c are alternatively applied in each GRASP iteration. 

Furthermore, another algorithm version (GRASP0) in which the selection of the microgrid 

generation point (RCL1) and the selection of the microgrid to be connected (RCL2) are totally 

random, i.e. α1 = α2 = 1 and HF1 = HF2 = constant (e.g. 1), is also analyzed in order to evaluate 

the importance of utilizing good heuristic functions. The performances of these algorithm 

versions are compared in Section 5. 

 

5. Computational experiment  

In the previous Sections, an enhanced deterministic heuristic (Section 3) and then a GRASP 

based procedure (Section 4) were presented in order to support the design of autonomous 

community rural electrification projects based on renewable energies considering a combination 

of independent generation points and microgrids. 
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Hereby, we carried out a computational experiment in order to analyze the performance of the 

proposed algorithms. The analyzed instances are firstly described in sub-Section 5.1; then the 

improvements of the enhanced deterministic heuristic in comparison with the previous one [9] 

are analyzed (sub-Section 5.2); in sub-Section 5.3 the different GRASP based algorithm 

versions are calibrated and finally the performance of the best version is evaluated in 

comparison with the procedure available in literature (sub-Section 5.4). All calculations were 

done on a PC Intel Core 2 i7-2600 3.4 GHz with 8 GB of RAM. The code and the results 

obtained with the best GRASP version are available in [22]. 

 

5.1 Analyzed instances 

The same instances utilized in [9] are used: the complete input data are available in [22]. The 

instances were randomly generated based on the characteristics of the following 5 real rural 

electrification projects: El Alumbre (Peru), Alto Perú (Peru), Achada Leite (Cape Verde), El 

Roblar (Nicaragua) and Sonzapote (Nicaragua). Real projects resource data are utilized in order 

to generate the instances: solar resource was estimated by NASA database [23], while the wind 

resource map of the area (with a grid spacing of 100 m) was obtained using a micro-scale wind 

flow model [5].  

The electricity requirements of each user (household) are 420Wh/day and 300W of energy and 

power demand respectively. Regarding electrical equipments, the following data were 

considered: 

- Wind turbines (4 types): nominal power: 100 W to 2000 W; cost (including controllers): 

$1394 to $8732.  

- PV panels (3 types): nominal power: 50 W to100 W, cost: $451 to $821. 

- PV controller (3 types): maximum power: 50 W to 100 W, cost: $67 to $95.  

- Batteries (4 types): capacity: 1500 Wh to 3000 Wh; cost: $225 to $325; efficiency 85%; 

maximum discharge rate: 0.6; autonomy: 2 days. 

- Inverters (4 types): maximum power: 300 W to 3000 W; cost: $377 to $2300; efficiency 

85%.  

- Electric cables (2 types): cost: $4.9/m and $5.1/m; resistance: 2.71 and 2.15 /km; 

maximum intensity: 89 and 101 A; nominal voltage: 220 V; minimum voltage: 220 V; 

maximum voltage: 230 V. 

- User consumption meter: cost: $50 (installed only in microgrids composed by multiple 

users).  

The instances have a variable number of users (ranging from 10 to 90) and, regarding users’ 

distribution, they were randomly generated considering two different concentrations (last row of 

Table 2). According to the characteristics described in Table 2, two set of instances were 

generated: a “training set” of 90 instances for the calibration of the internal parameters used by 

the developed procedures and a “test set” of 450 instances for comparing the performance of the 

developed procedures. 

 

Please insert Table 2 

 

 

5.2 Performance of the enhanced deterministic heuristic 
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The solutions of the enhanced deterministic heuristic described in Section 3 (“enhanced 

deterministic heuristic” or “EDH”) are compared with those obtained by the previous 

deterministic heuristic [9] (“initial deterministic heuristic” or “IDH”). The results of the 

comparison between the 2 algorithms in the test set of 450 instances are shown in Table 3: 

columns 3 to 6 show the mean solution cost (“cost”) and mean computation times (“time”) of 

the IDH and the EDH for different groups of instances; columns 7 shows the % of the difference 

between mean solution costs; column 8 and 9 indicate respectively the number of instances (in 

percentage) in which EDH improves the IDH of more than 1% and vice versa (in the rest of 

instances the differences between solutions of the 2 algorithms are lower than 1%).  

The improvement of the enhanced heuristic is highly related with the number of users of the 

community (Table 3), i.e. the complexity of the instance to be solved. The effect of including 

the cable optimization phase is almost null for communities up to 30 users in which initial 

heuristic were found to be close to the optimal, according to [9]. The improvement of the EDH 

in comparison with the IDH increases rapidly as the number of users increases: for communities 

of more than 60 users significant improvements (more than 1%) of the EDH are found in 20% 

of the instances, whereas significant improvements of the IDH were found in less than 3% of 

the instances. The total mean solution costs of the IDH and the EDH are 87615$ and 87392$ 

respectively: the slight increase in calculation time is compensated by the solution improvement 

obtained by the enhanced deterministic heuristic. 

 

Please insert Table 3 

 

 

5.3 Selection of best GRASP based algorithm version 

As stated in sub-Section 4.2, different algorithm versions (based on the GRASP) should be 

analyzed, depending on the heuristic function utilized in the selection of the microgrid that is 

tried to be connected. In this Section all versions are firstly calibrated (Section 5.3.1) and then 

performances are compared in order to select the best one (Section 5.3.2). 

 

5.3.1 Calibration of the algorithms 

As stated in sub-Section 4.2, the value of parameter α, i.e. the ratio of possible candidates 

included in the RCL, is highly relevant in order to achieve a good balance between 

computational time and solution quality of a GRASP. Therefore, the parameters α1 = 0, 0.2, …, 

1 and α2 = 0, 0.2, …, 1 are calibrated, i.e. all combinations of values are tried, for the different 

algorithm versions on the “training set” of 90 instances. A computational time of 800 s is 

considered for each instance. The combinations of values that lead to the best (mean lowest 

cost) solutions are reported in Table 4. 

 

Please insert Table 4 

 

5.3.2 Comparison of different algorithm versions 
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Hereby, the 5 algorithm versions (GRASP1 to GRASP5) together with GRASP0 are compared 

and their results on the “test set” of 450 instances are shown in Fig. 8 and Table 5. Fig. 8 shows 

the convergence curves, i.e. the evolution of the cost of the best solution obtained by each 

version over the computational time. Each point of these curves is the mean value of the 

solution costs in the 450 instances at different computational times. For each GRASP version, 

Table 5 shows the mean solution cost obtained with 3600 s (column 2) and the percentage of 

instances for which each version finds a solution that is less than 1% worse than the best 

solution obtained by the 6 versions (column 3).  

 

Please insert Figure 8 

 

Please insert Table 5 

 

The version that does not use any heuristic function (GRASP0) obtains the worst results: its 

mean solution cost is higher than 87000$ (while all other versions are below 86800$) and its 

convergence curve is always above all the others. This confirms the importance of utilizing 

good heuristic functions for the selection of the elements in the RCLs. 

The convergence curves of the other algorithm versions (GRASP1 to GRASP5) have a similar 

pattern: most of the improvement is reached in the first 1000 s (dotted line in Fig. 8) whereas 

afterwards the curves tend to be horizontal (asymptotes). GRASP1 and GRASP2 obtain better 

results in comparison with GRASP3, possibly because the calculation for the savings (HF2c) 

requires longer computational time than the other heuristic functions (HF2a and HF2b). However 

the versions that utilize the 3 heuristic functions (GRASP4 and GRASP5), taking advantage of 

the benefits of each one, are better options. GRASP4 (in which the HF utilized in each launch of 

RCL2 is randomly selected between HF2a, HF2b and HF2c) is the best version: its convergence 

curve is always below all the others, its final mean solution cost is the lowest one (86666$) and 

it obtains the best solution in more instances (99.8%) than GRASP5 (99.1%).   

Therefore, the version GRASP4 is selected as the proposed solving procedure of this study. 

 

5.4 Performance of the GRASP based procedure 

As introduced, the only known algorithm that solves the AVEREMS problem thus designing 

off-grid electrification projects based on renewable energies considering micro-scale resource 

variations, a combination of independent generation points and microgrids and generation far 

from demand points is the deterministic heuristic proposed by [9] (called “IDH”). A preliminary 

computational experiment showed that the solutions of that algorithm considerably improve the 

solutions obtained by other procedures that, with some limitations, deal with the same design 

problem: the mathematical model proposed by Ferrer-Martí et al. [7] and the VIPOR software 

[10]. Considering the same assumptions and set of instances used in [9], it was verified that the 

proposed GRASP based procedure highly enhances the solutions obtained by those procedures: 

mean improvements of around 7% and 6% are obtained, respectively, with the mathematical 

model proposed in [7] and the VIPOR software [10]. An enhanced version of the IDH (called 
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“EDH”) was proposed in Section 3 that improves the performance of the IDH, as shown in sub-

Section 5.2. 

The solutions of the proposed GRASP based procedure (“GRASP” refers to GRASP4, i.e. the 

best algorithm version) are now compared with the ones obtained by the enhanced deterministic 

heuristic (EDH). As shown in Fig. 8, the enhanced heuristic (full black circle) can rapidly obtain 

a good solution (29 s), slightly better than the one obtained by the GRASP (blue line) in the 

same computational time (the same solution is reached by the GRASP after 70 s). However, 

when a higher computational time is available, as it is expected when dealing with the design of 

a long-term project, the proposed GRASP can considerably enhance the solutions obtained by 

the EDH. 

Table 6 presents the comparison between solutions obtained by the EDH and the GRASP (with 

a computational time of 3600 s) in the analyzed instances. The EDH and GRASP mean solution 

costs and computational times are shown in columns 3-4 and 5-6 respectively. Besides the mean 

difference between both solutions (column 7), the percentage of instances in which GRASP 

improves EDH solution of more than 1% (column 8) is presented (mention that GRASP 

improves EDH in all instances except one in which GRASP solution is 0.1% worse than EDH 

solution).  

 

Please insert Table 6 

 

The improvement of the GRASP in comparison with EDH depends on the number of users of 

the community (Fig. 9), the size of community area and the type of users’ concentration:  

- As the number of users of the instance increases also the differences between EDH and 

GRASP increase (Fig. 9). For instance of more than 30 users GRASP enhances EDH of 

more than 1% in more than 20% of the instances. In instances between 70 and 90 users 

the mean improvement is around 1%.  

- As smaller the community area higher the improvement: the lowest improvements 

(0.4% and 0.3% respectively) are obtained in instances C1 and C5 that where users are 

dispersed over widest areas (12.25 and 16 km
2
 respectively), while highest 

improvements (1.1%) are obtained in C3 that has the smallest area of just 4 km
2
.  

- Higher improvements are obtained in instances with higher users’ concentration: 

significant enhancements (more than 1%) are obtained in respectively 22% and 33% of 

the instances for the low and high users’ concentration types. 

  

Please insert Figure 9 

 

Fig. 10 shows the computational time and the number of iterations at which the GRASP reaches 

the asymptote, i.e. the point at which 90% of the final improvement (after 3600 s) to EDH is 

obtained. The computational time before reaching the asymptote increases as the number of 

users increases:  in instances up to 60 users the asymptote is reached in less than 600 s. 

However, even in instances of 90 users, 90% of the final improvement is obtained in slightly 

more than half of the computational time (2000s over 3600s). This indicates that a 

computational time of 1 hour can be considered sufficient to get the most out of the GRASP in 

the analyzed instances. 
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Regarding the number of iterations before reaching the asymptote, Fig. 10 shows that this value 

is not that affected by the number of users of the instances. In most cases, the asymptote is 

reached after between 50 and 200 iterations. Thus when applying the algorithm for the design, a 

maximum number of iteration can be established as a stopping criterion of the GRASP based 

algorithm: a value above 200 iterations seems to be adequate in order to get the most out of the 

algorithm. 

 

Please insert Figure 10 

 

In order to illustrate the type of solutions obtained, Fig. 11 shows the solution of the developed 

GRASP based method in a community of 88 users in Nicaragua [24]. The proposed 

configuration combines independent systems (P0, P1, P2 and P3) with wind (Microgrid 1) and 

solar (Microgrid 2 and 3) microgrids that connect concentrated groups of users taking advantage 

of the best wind resource area (red area). It reduces the cost of the project more than 15% in 

comparison with a design configuration considering all independent generation points. 

 

Please insert Figure 11 

 

 

6. Conclusions 

This study presents an enhanced deterministic heuristic and a meta-heuristic procedure to design 

rural communities’ off-grid electrification projects based on renewable energies. The proposed 

methods consider the design of multiple microgrids and independent users, the use of hybrid 

systems combining different renewable energies, micro-scale resource variations and the 

installation of generators far from demand points.  

Firstly, some enhancements to an existing deterministic algorithm proposed in a recent 

publication are presented. The new procedure improves solutions obtained by the previous 

method with a minimal increase in computational time. Based on this new heuristic, a GRASP 

based method is proposed in order to escape from local optima where the deterministic heuristic 

can remain trapped. Different algorithm versions were calibrated and compared in order to 

select the best one.  

The performance of the proposed algorithms was tested on 450 instances from literature, 

generated according to real projects, with different number of users (from 10 to 90), users’ 

concentrations and available wind and solar resources. 

The new deterministic heuristic can rapidly obtain a good solution in less than 1 minute in most 

analyzed instances. On the other hand, the proposed GRASP based algorithm considerably 

enhances solutions obtained by the deterministic heuristic with a computational time of 1 hour 

on a standard PC, a lapse of time generally affordable taking into account the problem to be 

solved. This improvement tends to increase as the number and the concentration of users 

increases: significant improvements (higher than 1%) were obtained in more than 30% of the 

instances bigger than 40 users. 
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The proposed algorithm is a complete design tool that can efficiently support the design of 

stand-alone community electrification projects requiring of low computational resources. A 

possible future line of research could be the explicit consideration in the model of the 

uncertainty in the renewable energy generation. 
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Appendix A – A mathematical model to solve the AVEREMS problem 

The mathematical formulation of the mathematical model presented in [7] considering wind and 

solar energies is hereby reported.  

 Data 

Consumption points: 

P Number of consumption points (households, schools, health centers, community 

centers, etc.). These are the only points where the generators can be placed. 

Lpd  Distance [m] between two points p and d ( p= 1,…, P; d = 1,…, P). 

Lmax  Maximum allowed length of segment of a cable of the microgrid. 

Qp  Set of points to which a point p could be directly joined with a cable segment 

(p= 1,…, P):  1,..., :p pd maxQ d P p d L L     . 

EDp Electric energy demand [Wh/day] at p (p = 1,…, P). 

PDp Power demand [W] at p (p = 1,…, P). 

CM Cost [US$] of an electric meter. 

 

Wind Generation: 

A, NA Types of wind turbines (a = 1,…, A) and maximum number of wind turbines that can be 

placed at a point, respectively. 

EApa,  Energy generated [Wh/day] by a wind turbine placed at point p of type a (p = 1,…, P; 

a = 1,…, A). 

PAa Maximum power [W] of a wind turbine of type a (a = 1,…, A). 

CAa Cost [US$] of a wind turbine of type a (a = 1,…, A). 

R Types of battery charge wind controllers (r = 1,…, R). 
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PRr Maximum power [W] of a battery charge wind controller of type r (r = 1,…, R). 

CRr Cost [US$] of a battery charge wind controller of type r (r = 1,…, R). 

 

PV Generation: 

S, NS Types of PV panels (s = 1,…, S) and the maximum number of PV panels that can be 

placed at a point, respectively. 

ESs,  Energy generated [Wh/day] by a PV panel of type s (s = 1,…, S). 

PSs Maximum power [W] of a PV panel of type s (s = 1,…, S). 

CSs Cost [US$] of a PV panel of type s (s = 1,…, S). 

Z Types of PV battery charge controllers (z = 1,…, Z). 

PZz Maximum power [W] of a battery charge PV controller of type z (z = 1,…, Z). 

CZz Cost [US$] of a battery charge PV controller of type z (z = 1,…, Z). 

 

Energy storage: 

B Types of batteries (b = 1,…, B). 

ηb Efficiency of the batteries [fraction of unity]. 

DB Maximum proportion of discharge admitted in the batteries. 

VB  Required autonomy of the batteries [days]. 

EBb Capacity [Wh] of a battery of type b (b = 1,…, B). 

CBb Cost [US$] of a battery of type b (b = 1,…, B). 

I Types of inverters (i = 1,…, I). 

ηi Efficiency of the inverters [fraction of unity]. 

PIi Maximum power [W] of an inverter of type i (i = 1,…, I). 

CIi Cost [US$] of an inverter of type i (i = 1,…, I). 

 

Microgrid: 
C Types of microgrid cables. 

RCc Electric resistance (feed and return) [/m] of a cable of type c (c = 1,…, C). 

ICc Maximum intensity [A] of a cable of type c (c = 1,…, C). 

CCc Cost [US$/m] of a cable of type c, including the cost of the infrastructure (c = 1,…, C). 

VN ,Vmin,,Vmax Nominal, Minimum and Maximum voltage [v], respectively. 

ηc Efficiency of the microgrid [fraction of unity].
 

 

Variables 

The model has the following variables: 

 

 Integer non-negative variables to define the location and sizing of equipment: 

paxa  Number of wind turbines of type a  placed at point p  ( 1,..., ;  1,...,p P a A  ). 

psxs

 

Number of PV panels of type s  placed at point p  ( 1,..., ; 1,...,p P s S  ). 

pbxb
 

Number of batteries of the type b  placed at point p
 
( 1,..., ; 1,...,p P b B  ). 

prxr
 

Number of battery charge wind controllers of type r  placed at point p
  

( 1,..., ; 1,...,p P r R  ). 

pixi
 

Number of inverters of the type i  placed at point p
 
( 1,..., ; 1,...,p P i I  ). 

pzxz
 

Number of battery charge PV controllers of type z placed at point p
 

( 1,..., ; 1,...,p P z Z  ). 



24 

 

 

 Float non-negative variables to define energy and power flows and voltage: 

pdfe

 

Flow of energy [Wh/day] between points p  and d  ( 1,..., ; pp P d Q  ). 

pdfp

 

Flow of power [W] between points p  and d  ( 1,..., ; pp P d Q  ). 

pv

 

Voltage [V] at point p  ( ,..., ; 1,...,p min maxv V V p P  ). 

 

 Binary variables to define the generation points, the microgrid and the meters: 

 0,1pxg 

 

1 if some wind turbine and/or PV panel is placed at point p ( 1,...,p P ); 

otherwise. 

 0,1pdcxc 

     

1 if there is a cable of type c  between the points p  and d   

( 1,..., ; ; 1,...,pp P d Q c C   ); 0 otherwise. 

 0,1pxm 

 

1 if an electric meter is placed at point p  ( 1,...,p P ); 0 otherwise. 

 

Objective function 
The objective function (10) minimizes the capital cost; i.e., the total cost of the generation, 

storage and distribution equipment. 

 

 
1 1 1 1 1 1

1 1 1 1

1 1 1 1 1

p

P A P S P B

a pa s ps b pb

p a p s p b

P C P I

pd c pdc i pi

p d Q c p i

P R P Z P

r pr z pz p

p r p z p

MIN Z CA xa CS xs CB xb

L CC xc CI xi

CR xr CZ xz CM xm

     

    

    

      

    

    

  

 

  

 (10) 

 

Constraints 
Constraint (11) defines the points at which wind turbines are placed and limits the maximum 

number of generators at the same point; in an analogous way (12) incorporates PV panels. 

Constraint (13) forces xgp to be equal to 0 if neither a wind turbine nor a PV panel is placed at 

point p. Energy and power balances and conservation are described in (14) and (15), 

respectively. Constraint (16) establishes the capacity of the batteries. Constraints (17) and (18) 

relate the energy and power flows respectively, to the existence of a cable between two points. 

The radial distribution of the microgrid is established in (19), constraint (20) limits the voltage 

drops and (21) the maximum intensity. The power of battery charge wind controllers is defined 

in (22). In a similar way, the power of battery charge solar controllers is defined depending on 

the power of the corresponding PV panel (23). Inverters can only be placed at points where 

wind-PV generators are placed (24). Constraints (25) and (26) force the installation of electric 

meters at the consumption points fed by a microgrid. 
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Figure Captions 
 

Fig. 1 – Components of an off-grid hybrid wind-photovoltaic electrification system 

 

Fig. 2 – Example of a solution to the AVEREMS problem in a community composed by 22 

users 

 

Fig. 3 – Main structure of the enhanced deterministic algorithm 

 

Fig. 4 – Main structure of the construction phase. STEP1 and STEP2 indicate the selection 

steps. 

 

Fig. 5 – Main structure of the distribution system optimization phase 

 

Fig. 6 – Main stages of the deterministic and GRASP algorithms in the solution space of a 

minimization problem.  

 

Fig. 7 – Main structure of the GRASP based algorithm 

 

Fig. 8 – Comparison between convergence curves of the different GRASP versions 

 

Fig. 9 – Improvement of GRASP in comparison to EDH 

 

Fig. 10 – Computational time and nº of iterations after which GRASP reaches the 90% 

improvements in comparison to EDH 

 

Fig. 11 – The obtained solution in the community of Sonzapote (Nicaragua) [24] with the mean 

wind speed at 10 m above ground level 
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Tables 

 

 
Table 1 – Characteristics of RCL1 and RCL2 

Characteristic RCL1 (STEP1) RCL2 (STEP2) 

Elements of the RCL Grid generation points Microgrids 

a) Pool of possible 

candidates
a 

PE1:  Set of demand and no-

demand points not 

previously selected as a grid 

generation point 

PE2:  Set of microgrids 

(excluding the current microgrid 

in expansion) located at a 

distance lower than their BED  

b) Size of the RCL
b  1 1 1max ,1SE PE       2 2 2max ,1SE PE      

c) Heuristic function
a
 

/ d) Selection 

procedure
c 

HF1  /  P 

3 alternatives: 

HF2a  /  IP 

HF2b  /  P 

HF2c  /  P 
 

a The formal definition of PE1, PE2, HF1, HF2a, HF2b, and HF2c is reported in equations (1) to (6). 
b The value of parameters α1 and α2 is calibrated in sub-Section 5.3.1.  
c Regarding selection procedure, P and IP refer respectively to proportional and inversely proportional selection. 

 

 

Table 2 – Characteristics of the analyzed instances 

Type of 

real 

project 

Community El Alumbre Alto Perú 
Achada 

Leite 
El Roblar Sonzapote 

Project name C1 C2 C3 C4 C5 

Area [km
2
] 3.5 x 3.5 1.5 x 3.5 2 x 2 3 x 3 4 x 4 

Solar Resource 

[Peak sun hours] 
4.3 4.3 4.8 4.2 4.3 

Wind speed [m/s]: 

min and max values 

of the map 
2 – 6.5 1.5 – 4 1.1 – 7.5 1 – 10.2 0.9 – 9.7 

Nº of users 10, 20, 30, 40, 50, 60, 70 80, 90 

Concentration of users 
Low (25% of the users in 20% of the area) 

High (50% of the users in 20% of the area) 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

Table



Table 3 – Comparison between the initial (IDH) and the enhanced (EDH) deterministic heuristic 

  
IDH 

 
EDH  Comparison 

  

Cost 

[US$] 
Time [s] 

 
Cost [US$] Time [s] 

 
Difference EDH > 1% IDH > 1% 

Project type 

C1 89508 23.4 
 

89426 28.8  0.06% 5.6% 3.3% 

C2 97943 29.4 
 

97908 34.3  0.03% 4.4% 2.2% 

C3 82258 14.4 
 

81470 23.7  0.74% 28.9% 4.4% 

C4 84670 19.3 
 

84543 25.3  0.07% 5.6% 2.2% 

C5 83695 29.8 
 

83615 33.5  0.02% 5.6% 3.3% 

N
o
 of users 

10-30 37747 5.0 
 

37744 5.3  0.01% 1.3% 1.3% 

40-60 88492 19.9 
 

88345 23.4  0.14% 8.7% 5.3% 

70-90 136605 44.9 
 

136089 58.7  0.40% 20.0% 2.7% 

Users 

concentration 

low 88590 22.8 
 

88381 28.2  0.17% 8.4% 0.9% 

high 86640 23.7 
 

86403 30.1  0.19% 11.6% 5.3% 

Total 
 

87615 23.3 
 

87392 29.1  0.18% 10% 3.1% 

 

 

Table 4 – Different GRASP versions with calibrated values of α1 and α2 

Algorithm 

version 

Selection of the microgrid 

generation point (RCL1) 

Selection of the microgrid that is tried 

to be connected (RCL2) 

HF1 α1 HF2 α2 

GRASP1 HF1 0.2 HF2a 0.6 

GRASP2 HF1 0.6 HF2b 0.8 

GRASP3 HF1 0.6 HF2c 0.2 

GRASP4 HF1 1 
Randomly selected by HF2a, 

HF2b, HF2c  
0.2 

GRASP5 HF1 
a HF2a, HF2b, HF2c are 

alternatively utilized 
a 

a As GRASP5 consists in alternatively implementing one iteration of GRASP1, one of GRASP2 and one 

of GRASP3, the same α1 and α2 values of these GRASP versions are considered for GRASP5. 

 

 

Table 5 – Comparison between solutions obtained by the different algorithm versions 
 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Version Mean solution cost [$] Best solution (within 1%) 

GRASP0 87073 87.3% 

GRASP1 86700 98.9% 

GRASP2 86703 98.4% 

GRASP3 86760 97.1% 

GRASP4 86666 99.8% 

GRASP5 86689 99.1% 



Table 6 – Comparison between EDH and GRASP procedures 

  
EDH 

 
GRASP 

 
Comparison 

  
Cost [US$] Time [s] 

 
Cost [US$] Time [s] 

 
Difference GRASP > 1% 

Project type 

C1 89426 28.8 
 

88989 3600 
 

0.4% 13.3% 

C2 97908 34.3 
 

96990 3600 
 

0.7% 37.8% 

C3 81470 23.7 
 

80280 3600 
 

1.1% 45.6% 

C4 84543 25.3 
 

83767 3600 
 

0.7% 30.0% 

C5 83615 33.5 
 

83302 3600 
 

0.3% 11.1% 

N
o
 of users 

10-30 37744 5.3 
 

37651 3600 
 

0.2% 7.3% 

40-60 88345 23.4 
 

87697 3600 
 

0.7% 30.7% 

70-90 136089 58.7 
 

134649 3600 
 

1.0% 44.7% 

Users 

concentration 

low 88381 28.2 
 

87787 3600 
 

0.5% 22.2% 

high 86403 30.1 
 

85545 3600 
 

0.8% 32.9% 

Total 
 

87392 29.1 
 

86666 3600 
 

0.65% 27.6% 

 

 




