
3rd International Conference on Industrial Engineering and Industrial Management  
XIII Congreso de Ingeniería de Organización 
Barcelona-Terrassa, September 2nd-4th 2009 

Using Tabu Search for the Response Time Variability Problem∗

1. Introduction 

 

Albert Corominas1, Alberto García-Villoria1, Rafael Pastor1 
1 Institute of Industrial and Control Engineering (IOC), Universitat Politècnica de Catalunya, Av. Diagonal, 647, 
08028. Barcelona, Spain. albert.corominas@upc.edu, alberto.garcia-villoria@upc.edu, rafael.pastor@upc.edu 

Keywords: response time variability, tabu search, scheduling, regular sequences 

The concept of fair sequence has emerged independently from scheduling problems of diverse 
environments. The common aim of these scheduling problems, as defined in Kubiak (2004), 
is to build a fair sequence using n symbols, where symbol i (i = 1,...,n) must occur di times in 
the sequence. The fair sequence is the one which allocates a fair share of positions to each 
symbol i in any subsequence. This fair or ideal share of positions allocated to symbol i in a 
subsequence of length k is proportional to the relative importance (di) of symbol i with respect 
to the total copies of competing symbols (equal to 1.. ii n d

=∑ ). There is no a universal 
definition of fairness because several reasonable metrics can be defined according to the 
specific problem considered. 

Among the different definitions of fairness, several fair sequencing problems have emerged, 
among them the Response Time Variability Problem (RTVP). This problem has been first 
time reported in Waldspurger and Weihl (1994) and originally formalised in Corominas et al. 
(2007). In the RTVP, the fair sequence is the one which minimises the sum of the variability 
in the distances between any two consecutive copies of the same symbol. In other words, the 
distance between any two consecutive copies of the same symbol should be as regular  as 
possible (ideally constant) . 

The RTVP arises whenever products, clients or jobs need to be sequenced so as to minimize 
variability in the time between the instants at which they receive the necessary resources 
(Corominas et al., 2007). This problem has a broad range of real-world applications. These 
include, for instance, the sequencing on mixed-model assembly lines under JIT (Kubiak, 
1993; Miltenburg, 1989), the resource allocation in computer multi-threaded systems such as 
operating systems, network servers and media-based applications (Dong et al., 1998; 
Waldspurger and Weihl, 1995), the periodic machine maintenance problem when the times 
between consecutive services of the same machine are equal (Anily et al., 1998; Wei and Liu, 
1983), the collection of waste (Herrmann, 2007) and the schedule of commercial videotapes 
for television (Bollapragada et al., 2004; Brusco, 2008). 

The RTVP is NP-hard (Corominas et al., 2007). Since this problem is a difficult 
combinatorial optimisation problem, several heuristic and metaheuristic algorithms has been 
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proposed in the literature to solve it. Waldspurger and Weihl (1995) used the Jefferson 
method of apportionment (Balinski and Young, 1982), a greedy heuristic algorithm which 
they renamed as the stride scheduling technique. Herrmann (2007) solved the RTVP by 
applying a heuristic algorithm based on the stride scheduling technique. Corominas et al. 
(2007) proposed also the Jefferson method together with other four greedy heuristic 
algorithms. García et al. (2006) proposed six metaheuristic algorithms: a multi-start, a greedy 
randomized adaptive search procedure (GRASP) and four variants of a discrete particle 
swarm optimization (PSO) algorithm. An enhanced multi-start algorithm and an enhanced 
GRASP algorithm were proposed in Corominas et al. (2008), and other ten discrete PSO 
algorithms were proposed in García-Villoria and Pastor (2009a). A cross-entropy method 
approach was used in García-Villoria et al. (2007) and a psychoclonal algorithm was used to 
solve the RTVP in García-Villoria and Pastor (2008). Finally, an algorithm based on 
Electromagnetism-like Mechanism (EM) was proposed in García-Villoria and Pastor (2009b). 
The best results recorded to date have been obtained with the psychoclonal algorithm (García-
Villoria and Pastor, 2008) and the enhanced multi-start algorithm (Corominas et al., 2008). 

To date, no tabu search (TS) approach has been proposed to solve the RTVP. In this study we 
propose a TS algorithm for the RTVP which improves the best results reported in the 
literature. 

The remainder of the paper is organized as follows: Section 2 presents a formal definition of 
the RTVP and describes briefly the two best algorithms up to now for solving the problem. 
Section 3 proposes a TS algorithm to solve the RTVP. Section 4 presents the results of a 
computational experiment. Finally, some conclusions and suggestions for future research are 
given in Section 5. 

2. The Response Time Variability Problem 

The RTVP is formulated as follows. Let n be the number of symbols, di the number of copies 
to be sequenced of symbol i (i = 1,…,n) and D the total number of copies ( 1.. ii n d

=∑ ). Let s 
be a solution of an instance in the RTVP that consists of a circular sequence of copies 
( 1 2 Ds s s s=  ), where sj is the copy sequenced in position j of sequence s. For each symbol i 

in which 2id ≥ , let i
kt  be the distance between the positions in which the copies k + 1 and k 

of symbol i are found. We consider the distance between two consecutive positions to be 
equal to 1. Since the sequence is circular, position 1 comes immediately after position D; 
therefore, 

i

i
dt  is the distance between the first copy of symbol i in a cycle and the last copy of 

the same symbol in the preceding cycle. Let it  be the desired average distance between two 

consecutive copies of symbol i ( i
i

Dt d= ). The objective is to minimise the metric called 

response time variability (RTV), which is defined by the sum of the square errors with respect 
to the it  distances. Since the symbols i such that 1id =  do not intervene in the computation of 

RTV, we assume that for each of these symbols 1
it  is equal to it . Thus, RTV is given by the 

following expression: 

( )2
1 1

.
idn

i
k i

i k
RTV t t

= =
= −∑∑  (1) 



For example, let 3n =  with symbols A, B and C. Also consider 2Ad = , 2Bd =  and 4Cd = ; 
thus, 8D = , 4At = , 4Bt =  and 2Ct = . Any sequence such that contains symbol i ( i∀ ) 
exactly id  times is a feasible solution. For example, the sequence (C, A, C, B, C, B, A, C) is a 
feasible solution, and has an 

( ) ( )( ) ( ) ( )( ) ( ) ( ) ( ) ( )( )2 2 2 2 2 2 2 25 4 3 4 2 4 6 4 2 2 2 2 3 2 1 2RTV = − + − + − + − + − + − + − + −  = 

12. 

As it has been introduced in Section 1, the psychoclonal algorithm proposed in García-
Villoria and Pastor (2008) and the multi-start algorithm proposed in Corominas et al. (2008) 
are the best procedures to date to solve the RTVP. 

Psychoclonal is an evolutionary metaheuristic first time proposed in Tiwari et al. (2005). 
According to the authors, this metaheuristic inherits its characteristics from the need hierarchy 
theory of Maslow (1954) and the clonal selection principle (Gaspar and Collard, 2000). The 
basic scheme of the psychoclonal metaheuristic is the following: 1) An initial population of 
solutions is generated and a function to evaluate the fitness of a solution is given; 2) The best 
solutions are selected and cloned in a number proportional to their fitness; 3) The generated 
clones are hypermutated (hypermutation is an operator that modifies the solution with a rate 
inversely proportional to the fitness of the solution); 4) A new population is formed by the 
best clones and by new solutions generated at random; 5) Steps 2-4 are repeated until a stop 
condition is reached. This metaheuristic was adapted to solve the RTVP (for a more detailed 
explanation, see García-Villoria and Pastor, 2008). 

The general scheme of the multi-start metaheuristic consists of two phases. In the first phase 
an initial solution is generated. Then, the second phase improves the obtained initial solution. 
These two phases are iteratively applied until a stop condition is reached. Thus, the multi-start 
algorithm proposed in Corominas et al. (2008) to solve the RTVP consists of, at each 
iteration, generating an initial solution by a random mechanism (first phase) and then 
applying it a local search (second phase); the stop condition consists in reaching a given 
computing time (for a more detailed explanation, see Corominas et al., 2008) 

3. A Tabu Search algorithm to solve the RTVP 

Local search methods have the great disadvantage that the local optimum found is often a 
fairly mediocre solution (Gendreau, 2003). To overcome this limitation, the Tabu Search 
metaheuristic (TS) has been proposed by Glover (1986). TS is based on applying a local 
search in which non-improving movements are allowed. To avoid cycling back to visited 
solutions, the most recent history of the search is recorded in a tabu list of tabu (forbidden) 
solutions. The complete tabu solutions could be recorded in the tabu list, but this may require 
a lot of memory, make it expensive to check whether a solution is tabu or not and, above all, 
does not diversify sufficiently the search. Thus, it is common to record only the last moves 
(transformations) performed on the current solution and forbidding reverse transformations 
(Gendreau, 2003). The tabu lists are usually implemented as a list of fixed length with a FIFO 
(First In, First Out) policy. A tabu solution can be overridden if a suitable aspiration criterion 
is met. The general scheme of TS is show in Figure 1. 



Figure 1. General scheme of TS 

We propose an algorithm based on the general scheme of TS to solve the RTVP. The 
elements of the proposed TS algorithm are defined as follows: 

− Initial solution. A solution is represented by the sequence of the copies of the symbols to 
be sequenced. The initial solution is obtained from the best solution returned by the five 
heuristics proposed in Corominas et al. (2007). 

− Neighbourhood. The neighbourhood of a solution is obtained by swapping each pair of 
consecutive or non-consecutive positions of the sequence that represents the solution. 

− Tabu moves. A forbidden move of the tabu list consists of two pairs of position/symbol. 
For instance, the move [(3, A), (5, B)] means that all solutions with the symbol A sequenced 
in position 3 and the symbol B sequenced in position 5 are considered tabu. 

− Aspiration criterion. The aspiration criterion is that the move produces a solution better 
than the best solution found in the past. 

− Stopping condition. The TS algorithm stops once it has run for a preset time. 

The TS algorithm has only one parameter whose value has to be set and it is the size of the 
tabu list. Although the parameter values are extremely important because the results of the 
metaheuristic for each problem are very sensitive to them, the selection of parameter values is 
commonly justified in one of the following ways (Eiben et al., 1999; Adenso-Díaz and 
Laguna, 2006): 1) "by hand" on the basis of a small number of experiments that are not 
specifically referenced; 2) by using the general values recommended for a wide range of 
problems; 3) by using the values reported to be effective in other similar problems; or 4) by 
choosing values without any explanation.  

Adenso-Díaz and Laguna (2006) proposed a new technique called CALIBRA specifically 
designed for fine-tuning the parameters of heuristic and metaheuristic algorithms. CALIBRA 
was used in García-Villoria and Pastor (2008) and in Corominas et al. (2008) to set the 
parameter values of the psychoclonal and the multi-start algorithms, respectively. We used 
also CALIBRA to set the size of the tabu list of our TS algorithm. CALIBRA was applied to a 
training set. The training set has 60 instances which were generated as explained in the 
introduction of Section 4. The optimal value of the size tabu list returned by CALIBRA was 
75. 

1.  Define the neighbourhood structure N  
2.  Let S an initial solution and S* := S 
3.  While stopping condition is not reached do: 
4. Let S’ the best solution from N(S) which is non-tabu or allowed by aspiration 
5. If S’ is better than S*, then S* := S’ 
6. Add the current move in the tabu list (removing its last move if the list is full) 
7. S := S’ 
8.  End While 
9.  Return S* 



4. Computational experiment 

The psychoclonal and the multi-start algorithms proposed in García-Villoria and Pastor 
(2008) and in Corominas et al. (2008), respectively, are the most efficient algorithms in the 
literature to solve the RTVP. Therefore, we compare the performance of our proposed TS 
algorithm with these two algorithms. In what follows of this section, we refer to our TS 
algorithm as TS, the psychoclonal algorithm as Psycho and the multi-start algorithm as MS. 

All algorithms are coded in Java and executed on a 3.4 GHz Pentium IV with 1.5 GB of 
RAM. The same 60 training instances and 740 test instances used in García-Villoria and 
Pastor (2008) and in Corominas et al. (2008) are also used in this paper. These instances were 
grouped into four classes (from CAT1 to CAT4 with 15 training instances and 185 test 
instances in each class) according to their size. The instances were generated using the 
random values of D (total number of copies) and n (number of symbols) shown in Table 1. 
For all instances and for each symbol  i = 1,…,n, a random value of di (number of copies to be 
sequenced of model i) is between 1 and ( )1 2.5D n− +  such that 

1.. ii n
d D

=
=∑ . 

Table 1. Uniform distribution for generating the D and n values 

 CAT1 CAT2 CAT3 CAT4 
D U(25, 50) U(50, 100) U(100, 200) U(200, 500) 
n U(3, 15) U(3, 30) U(3, 65) U(3, 150) 

The algorithms were run for 50 and 1,000 seconds for each instance. Table 2 and Table 3 
shows the overall average RTV values for the 740 test instances and for each class of 
instances (CAT1 to CAT4) obtained with the three algorithms, respectively. 

Table 2. Average RTV values for a computing time of 50 seconds 

 Global CAT1 CAT2 CAT3 CAT4 
TS 202.42 10.30 22.40 109.38 667.59 
Psycho 235.68 14.92 44.25 137.07 746.50 
MS 2,106.01 11.56 38.02 154.82 8,219.65 

Table 3. Average RTV values for a computing time of 1,000 seconds 

 Global CAT1 CAT2 CAT3 CAT4 
TS 113.31 10.24 21.46 106.21 315.33 
Psycho 161.60 14.90 39.90 122.38 469.23 
MS 169.25 10.51 31.21 123.27 512.02 

Tables 2 and 3 shows that the multi-start algorithm converges much slower than the other two 
algorithms when big instances (CAT4 instances) are solved (Figure 2 shows how the 
algorithms converge during the computing time). Therefore, we analyse the results obtained 
by the algorithms after 1,000 seconds of computing time. 

The global average RTV values of TS with 1,000 computing time seconds for all test 
instances are 29.88% and 33.05% better than the results obtained using Psycho or MS, 
respectively. If we consider the results by class, we can see that MS performs better than 
Psycho for the two smallest instances (CAT1 and CAT2), both performs very similar for the 
medium instances (CAT3) and Psycho performs better than MS for the biggest instances 



(CAT4). On the other hand, TS performs better than the other two algorithms for all type of 
instance: TS is 2.57% and 31.24% better than MS for CAT1 and CAT2 instances, respectively, 
and 13.21% and 32.80% better than Psycho for CAT3 and CAT4 instances, respectively. 

 

Figure 2. Average RTV values over the computing time 

Table 4 shows the number of times that each algorithm reaches the best RTV value for each 
instance obtained using the three algorithms. The results are shown for the 740 instances 
overall and for each class of instance. 

Table 4. Number of times that the best solution is reached 

 Global CAT1 CAT2 CAT3 CAT4 
TS 587 185 185 113 104 
Psycho 104 52 7 37 8 
MS 305 164 18 48 75 

As could be expected from the results in Table 3, Table 4 shows that TS reaches the best 
solution the greatest number of times (in 79.32% of the instances overall). Moreover, if the 
results are observed by class, it can be seen that TS always obtains the best solution for CAT1 
and CAT2 instances. On the other hand, MS obtains more times the best solution than Psycho, 
even for the CAT4 instances. This is surprising since MS obtains a worst RTV values average 
for CAT4 instances than Psycho. 

To complete the analysis of the results, we examined the dispersion of the results. A measure 
of the dispersion (let it be called σ) of the RTV values obtained by each algorithm alg = {TS, 
Psycho, MS} is defined for a given instance, ins, according to the following expression: 

2( ) ( )

( )( , )
alg best

ins ins
best

ins

RTV RTValg ins
RTV

σ
 −

=   
 
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where ( )alg
insRTV  is the RTV value of the solution obtained with the algorithm alg for the 

instance ins, and ( )best
insRTV  is the best RTV value of the solutions obtained with the three 

algorithms for the instance ins. Table 5 shows the average σ dispersion for the total number of 
instances and for each class. 

Table 5. Average σ dispersion with respect to the best solution found 

 Global CAT1 CAT2 CAT3 CAT4 
TS 0.42 0.00 0.00 0.21 1.18 
Psycho 1.90 1.08 1.68 0.19 4.63 
MS 0.48 0.02 0.43 0.19 1.30 

Table 5 shows that TS has the lowest average σ dispersions for the total number of cases and 
for each instance class (except for CAT3, in which it is also low but slightly worse than the 
dispersions of the other two algorithms). That is, when TS does not obtain the best RTV value 
for a given instance, it obtains a value that is very close to it. MS has also a low dispersion for 
each instance class. On the other hand, Psycho has a quite worst dispersion for CAT4 
instances than MS, although the RTV average obtained by Psycho for the CAT4 instances is 
better than the RTV average obtained by MS. This means that although Psycho obtains a 
better performance, on average, for the CAT4 instances, the MS is a more robust algorithm 
than Psycho. Anyway, the TS algorithm that we propose is the one that obtains, on average, 
the better solutions and the one that has the most stable behaviour. 

5. Conclusions and future lines of research 

The RTVP is a scheduling problem which has a broad range of real-world applications. Since 
the RTVP is NP-hard, several heuristic and metaheuristics have been proposed to solve it. 
Among them, the two algorithms with which the best results have been achieved are the 
psychoclonal algorithm proposed in García-Villoria and Pastor (2008) and the multi-start 
algorithm proposed in Corominas et al. (2008). We propose a straight application of the TS 
metaheuristics to solve the RTVP. The computational experiment shows that the proposed TS 
algorithm improves by far the best results published in the literature. Moreover, the TS 
algorithm is very stable; that is, when it does not obtain the best RTV value for a given 
instance, it obtains a value that is very close to it. 

The definition of the neighbourhood structure is a very critical decision in the design of any 
TS algorithm (Gendreau et al., 2003). In this study we propose to generate the neighbourhood 
of a solution by swapping each pair of consecutive or non-consecutive positions of the 
solution sequence. Because of the good performance of the TS algorithm, a promising line of 
research is testing other neighbourhood structures in the proposed algorithm to solve the 
RTVP. Other candidate ways of generating the neighbourhood of a solution are, for example: 
1) by swapping each pair of only consecutive positions of the sequence, and 2) by inserting 
each position in the sequence. 
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