12,952 research outputs found

    Solving equations in the relational algebra

    Full text link
    Enumerating all solutions of a relational algebra equation is a natural and powerful operation which, when added as a query language primitive to the nested relational algebra, yields a query language for nested relational databases, equivalent to the well-known powerset algebra. We study \emph{sparse} equations, which are equations with at most polynomially many solutions. We look at their complexity, and compare their expressive power with that of similar notions in the powerset algebra.Comment: Minor revision, accepted for publication in SIAM Journal on Computin

    Prospective K-8 Teachers’ Knowledge of Relational Thinking

    Get PDF
    The goal of this study was to examine two issues: First, pre-service teachers’ ability and inclination to think relationally prior to instruction about the role relational thinking plays in the K-8 mathematics curriculum. Second, to examine task specific variables possibly associated with pre-service teachers’ inclination to engage in relational thinking. The results revealed that preservice teachers engage in relational thinking about equality, however, their inclination to do so is rather limited. Furthermore, they tend to engage in relational thinking more frequently in the context of arithmetic than algebra-related tasks. Pre-service teachers’ inclination to engage in relational thinking appeared to also relate to the overall task complexity and the use of variables. Implications of these findings for pre-service teacher education are provided

    Breaking the addition addiction: creating the conditions for knowing-to act in early algebra

    Get PDF
    We use data from a teaching experiment with a group of eight years old students to explore the potential of examining number sentences to promote relational thinking. This type of thinking requires attention to mathematical structure through consideration of relationships between terms contained in the sentence and not just on computation and comparison of the numeric values of each side. We show that children came to “know-to act” in the context of written activities and orchestrated discussions about number sentences, overcoming some of their computational habits and developing new ways to see and more flexibly approach the sentences. The results help to advance the study of young students´ emergent algebraic modes of thinking

    Developing Learning Trajectory For Enhancing Students’ Relational Thinking

    Get PDF
    Algebra is part of Mathematics learning in Indonesian curriculum. It takes one half of the teaching hours in senior high school, and one third in junior high school. However, the learning trajectory of Algebra needs to be improved because teachers teach computational thinking by applying paper-and-pencil strategy combining with the concepts-operations-example-drilling approach. Mathematics textbooks do not give enough guidance for teachers to conduct good activities in the classroom to promote algebraic thinking especially in the primary schools. To reach Indonesian Mathematics teaching goals, teachers should develop learning trajectories based on pedagogical and theoretical backgrounds. Teachers need to have knowledge of student’s developmental progressions and understanding of mathematics concepts and students’ thinking. Research shows that teachers’ knowledge of student’s mathematical development is related to their students’ achievement. In fostering a greater emphasis on algebraic thinking, teachers and textbooks need to work more closely together to develop a clearer learning trajectory. Having this algebraic thinking, students developed not only their own character of learning and thinking but also their attitude, attention and discipline. Key Words: Learning Trajectory, Relational Thinkin

    Encouraging versatile thinking in algebra using the computer

    Get PDF
    In this article we formulate and analyse some of the obstacles to understanding the notion of a variable, and the use and meaning of algebraic notation, and report empirical evidence to support the hypothesis that an approach using the computer will be more successful in overcoming these obstacles. The computer approach is formulated within a wider framework ofversatile thinking in which global, holistic processing complements local, sequential processing. This is done through a combination of programming in BASIC, physical activities which simulate computer storage and manipulation of variables, and specific software which evaluates expressions in standard mathematical notation. The software is designed to enable the user to explore examples and non-examples of a concept, in this case equivalent and non-equivalent expressions. We call such a piece of software ageneric organizer because if offers examples and non-examples which may be seen not just in specific terms, but as typical, or generic, examples of the algebraic processes, assisting the pupil in the difficult task of abstracting the more general concept which they represent. Empirical evidence from several related studies shows that such an approach significantly improves the understanding of higher order concepts in algebra, and that any initial loss in manipulative facility through lack of practice is more than made up at a later stage
    • …
    corecore