Enumerating all solutions of a relational algebra equation is a natural and
powerful operation which, when added as a query language primitive to the
nested relational algebra, yields a query language for nested relational
databases, equivalent to the well-known powerset algebra. We study
\emph{sparse} equations, which are equations with at most polynomially many
solutions. We look at their complexity, and compare their expressive power with
that of similar notions in the powerset algebra.Comment: Minor revision, accepted for publication in SIAM Journal on Computin