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Encouraging Versatile Thinking in Algebra
using the Computer

David Tall & Michael Thomas

Mathematics Education Research Centre Coventry School - Bablake
University of Warwick Coundon Rd
Coventry CV4 7AL Coventry CV1 4AU
U.K. U.K.
Abstract

In this article we formulate andanalyse some of the obstacles to
understanding the notion of a variable, anduke and meaning of algebraic
notation, andreport empiricalevidence to support the hypothesis that an
approach using the computer will be maeccessful inovercomingthese
obstacles. The computer approach is formulated within a wider framework of
versatile thinking in which global, holistic processing complements local,
sequential processing. This is done through a combination of programming in
BASIC, physical activities which simulate computer storage and manipulation
of variables, and specific software which evaluates expressiostamaard
mathematical notation. The software is designed to enable the usepltoe
examples and non-examples of a concept, in ¢hseequivalent and non-
equivalent expressions. We call such a piece of software a gemg&anizer
because ibffers examples and non-examples which may be seen not just in
specific terms, but as typical, or generic, examples of the algebraic processes,
assisting the pupil in the difficult task of abstracting the more gewgeralept
which they represent.

Empirical evidencefrom several relategtudies shows that such approach

significantly improves the understanding of higleeder concepts imalgebra,

and that any initial loss in manipulative facilitirough lack of practice is
more than made up at a later stage.

Conceptual difficulties in algebra

It is well-known, both in everyday teaching experience and in a wide range of
empirical studies, that children find great difficulty in understanding algebra
(see, for exampleRosnick & Clement 1980, Matz 1980, Kichemal®81,
Wagner, Rachlin &Jlensenl984). For a child meeting algebra for tfiest
time there are a number of obstacles which must be confronted and resolved.

First and foremost, there is considerable cognitive conflict between the deeply
ingrained implicit understanding of natural language and the symbolism of

algebra. In most western civilizations, both algebra and natural language are
spoken, written and read sequentidtlym left to right. There arexceptions
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to this, forinstance, numbers in some languages may exhibgvarsal(e.g.
435 is ‘vier hundert funf und dreisig’ in German, but ‘four hundred tairdy
five’ in English). However, this is nothing compared with the subtle rules of
precedence which occur in algebra. For instance, the expressigns3both
read and processed from left to right, however,x4ds3ead from left taight
as “two plus three’, but computedrom right to left, with the product of 3
andx calculated before the sum. This difficulty of unravelling skeguence in
which the algebra must be processed, conflicting withsdtpience ohatural
language, we term thgarsing obstaclelt manifests itself in various ways, for
example the child may consider tledi means the same ashb, because they
read the symbahb asa and b,and interpret it as+b. Or the child mayead
the expression 2€3from left to right as 2+3 giving 5, and consider fad
expression to be the same as 5

Prior tothe introduction of algebra, children becoamzustomed tevorking

in mathematical environments where they solve problems by producing a
numerical “answer”, leading to the expectation thatséwme will betrue for

an algebraic expression (Kieran 1981). An arithmetic expression such as 3+2
Is successfullynterpreted as an invitation toalculate the answer 5, whereas
the algebraic expression 3 Zannot be calculated until the value afis
known. This unfulfiled and erroneous expectation we term dkpected
answer obstaclelt causes aelated difficulty, which we term thdack of
closure obstaclein which the child experiences discomfort attempting to
handle an algebraic expression which represents a process that (s)he cannot
carry out.

Another closely related dilemma is thecess-product obstagleaused by the
fact that an algebraic expression such asazepresents both thgrocessby
which the computation is carried out and alsograductof that process. To a
child who thinks only in terms of process, the symboks+BY and &+3b
(even if they are understood) are quite differdicause théirst requires the
addition ofa andb before multiplication of the result by 3, but tkecond
requires each ad andb to be multiplied by 3 and then the results added. Yet
such a child is asked to understand that the two expressieessentially the
same, because they always give the sproduct. Such achild must face the
problem of realizing that the symboh5 represents the implied product of
any process whereby one takes a number, multiplies it by 3 and then adds 6 to
the result. This requires thancapsulation of the process as an object so that
one can talk about it without the needctrry outthe process witlparticular
valuesfor the variable.When the encapsulation has begarformed, two
different encapsulated objects must then be coordinatedregarded as the
“same” object if they always give the sapeduct — a task of considerable
complexity.
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Faced with such obstacles, it is no wonder that so many children fatogeo

with these difficultiestraditional teaching tends temphasize the calculation
and manipulation of algebraic expressions — teaching children the rules of
algebra so that they develop the necessary manipulative ability. “Do
multiplication before addition”,“calculate expressions in bracketgst”,
“collect together like terms”, “of means multiply”, “add the same thing to both
sides”, “change sides, change sign”, “to divideyn upside down and
multiply”, etc etc. It is hoped that once the child is abledoy outthe rules
consistently, then understanding will follow, but it idcalorn hope. When
algebra is taught as an essentially manipulative activity, followisggaence

of mechanistic rules, it is only to be expected thppar understanding of the
subject prevails.

We hypothesise that as soon @&@sldren are unable to give meaning to
concepts, they hide their difficulties by resorting to routine activities to obtain
correct answers and gain approval. Once committed to such a coweasilyit
degenerates into a never ending downward spiral of instrumental activity:
learning the “trick of theweek” to survive, soon leading to a collection of
disconnected activities that becomre and more difficult to coordinate,
even at a purely mechanistic lev@lherefore the beginning phase of the
subject — giving meaning to the variable concept and devigiags of
overcoming the cognitive obstacles — is fundamental to laying a foundation for
meaningful algebraic thinking.

The continuing need for algebra

One way to avoid the difficulties so far acknowledged is to reduce the amount
of algebra taught, or not to teach it at all. In the UK, the Nati@uaticulum

now makedewer demands on algebr@r 16 yearolds than wagpreviously

the case, and there are moves elsewhere to rdduoal algebra byusing

more numerical problem-solving (see, for example, Leitzel & Demana 1988).

We are convinced that the reduction in algebra content — cerfainlyhe
average or above average pupil — is a profoanar, based on a view of
seemingly insurmountable difficulties which have occurred preacomputer
paradigm. Certainly there isstage where thatroduction of algebranakes
matters more difficult (forinstance, the question “I am thinking ohamber

and twice it is six, what is the number?” is more likely to produa®raect
response than “solvex26”). But soon there&eomes a stage in solving slightly
more complicated problems where the lack of algebra can bcome a serious
handicap. For instance, Gardineset the following problem in achool
mathematics contest:

Find a prime number which is one less than a cube. &iother prime number
which is one less than a cube. Explain! (Gardiner 1988)
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Students soofind two cubed minus one {@ime, but looking for patterns in

the numbers that turn up by cubing and subtracting one (2 gives 7, 3 gives 26,
4 gives 63, etc) can give interestimgd-herrings. (Forinstance, when the
number is odd the result is even, but when the number is even the result is odd
and the question neeflsrther investigation.) But applying the process to the
numbern givesn3-1 and anyone with a little experience in algebra can see that
this factorizes tort-1)(n2+n+1), which is prime only when=2... We thus see
thatthere is astage inthe curriculum when the introduction algebra may

make simple things hard, but nd&éaching algebrawill soon render it
impossible to make hard things simple

We believe that, whilst the initial difficulties cannot be totally avoided, they
are exaggerated by the teaching of algebra in a context in which the
symbolism does not mak&nse tahe vast majority of pupils, and that the
success rate can be significantly improved by giving a coherent meaning to the
concepts by using eomputer. The principles which we will shortly describe
apply throughout mathematics and in the next section we formulatielea
theoretical framework before returning to the specific case of algebra.

Versatile Thinking in Mathematics

To be able to be a successful mathematicgguires more than the ability to
carry out asuccession of mechanistic steps,they steps incarrying out a
numerical calculation, solving a linear equation, differentiatingomposite
function, or writing down a mathematigatoof. What is alsorequired is an
overall picture of the task at hand, so that the appropriate solution path can be
selected and any errors that occur are more likely teebsedand corrected.

Thus the sequential/logical/analytic way o#rrying out asuccession of
mathematical processes needs to be complemented by a global/loelesttl

grasp of the context.

The differences between themems of thinkinghas been a focus of thought

for several centuriedDescartes (1628)or example, contrasted the intuition

of an immediate perception of connections between concepts with chains of
logical deduction required to give formal relationships. Poincaré (1903)
distinguished between those mathematicians who thought in a predominantly
sequential/deductive mode, and those whesek developed morghrough
intuition.

Krutetskii (1976, p. 326) divided his mathematically gifted pupils into
analytic geometricand harmonic types, according to their preferences for
verbal-logical, visual-spatial, or a combination of the two. ws of the
opinion that the analytic and geometric types mentioned by Poincaré should be
acknowledged as somewhat limitbécause they tend to specialiaaly in
restricted areas of mathematics. Although representativesudi extreme



Versatile Thinking in Algebra & the Computer Tall & Thomas

types can be successful in school mathematics, dheyliable to experience
difficulties which are a consequence of their limitations.

In the last twodecadesthere has been considerable speculation that the
sequential/analytic and global/holistic modes of thinking may be due to
different methods of processing in different parts of the brain. Several
physiological studiege.g. Sperry,Gazzaniga & Bogen 196%eamonl974,
Gazzaniga 1974opper & Eccles 1977) promoted a model of thinking as a
unified system consisting of two, qualitativedyfferent processors, linked via

the corpus callosum (the connection between the two hemispheres), with the
rapid flow of data between them and the processing done by twertrplled

by a control unit. In this model one processor — usually inntlagor, left
hemisphere of the brain of right-handed individuals — is a sequpnbieéssor
involved with logical, linguistic and mathematical activities (see Bagen
1969). The studiesuggested that theontrol unit appears more likely to be
seated in thidiemisphere, possibly accountifgy its dominance. Thether
processor, in the minor, right hemisphere, is a fast, parallel processor, able to
make global decisions, and being themary centre ofvisual and mental
image reasoning (Bogen 1969).

Following criticism andfurther research,Gazzaniga (1985) proposed a
modified model in which the brain is organized into many relatively
independent functioning units working in parallel, with the control unit
mentioned above interpreting and coordinating the produdghe$evarious
units. He gives examples in which individual functions may lie in the left or
right brain of different individuals. According to his theory, what is important
Is not where the different abilities are located in the brain, but hihey
operate and interconnecdome unitsyelated to verbal, aural and linguistic
abilities are able, by their very nature, to go@nsciousverbal output to the
individual and constitute a sequential/verbal mode of thought. Otteasing

to visual, tactile and othesensescan give only gestalthon-verbal output,
relating to what we have characterized as global/holistic thought.sliggests
that there may bespects of visuathinking involved in understanding
mathematics which are less easily verbalised and hence less likely to be valued.

The cognitive model proposed by Thomas (1988) stresses the need for
cognitive integratiorof the two qualitatively different modes of thinking, with
both being actively promoted in teaching and thus made available in the mind
of the mathematics student. Following Brumby (1982), use theterm
versatilethinking to refer tothe complementary combination of both modes,

in which the individual is able to move freely and easily between them, as and
when the mathematical situation renders it appropriate.

In general, the global/holistic side of the brain’s activity has been conceived as
intuitive and visual. Certainly, if its output is holistic, with linksetween
concepts made simultaneously with no logical or sequential relationships being

-5_
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apparent, then it qualifiger the term “intuitive”. However, wdelieve that

this intuition can be honed to link in with the sequential/logical thinking
processes andherefore be of value in giving an overall view of the
mathematicalstructure. Wealso believe that visual ideasre not only
graphical and geometric. Symbolism is viewed through the eye, and whilst it
may be processed sequentially through scanning the expression, it may also be
taken in holistically, in chunks, and this side of visualization is wagortant

in algebra.

Versatile thinking in algebra

An illustration of versatile thinking arises from the following type of question:
Factorize : (2x + 1)2 — 3x(2x + 1).

Many secondary-school pupils who view factorization as a prosesm
locked into a serialist/analytic mode where they wdordm left to right
“multiplying out brackets”, “collecting together like terms” and factorizing the
resulting quadratic function. Apparently unable to break fireen such a
serialist strategy, few seem able to apply the versatility of thought necessary to
switch from an analytical approach to a global/holistic one“sed’ that +1

Is a common factor, hence moving directly to the answer, with a minimum of

analytic processing.

One of the reasonfor the prominence of a serialist line of thinking in
guestions like the one above, would seem to be the emphasis pujis
mind on obtaining the product or answer, with the process existingrnesiss

to that end, rathethan being a conceptual entity to think about in its own
right. This implies that a pupil may be able to obtain a factorization or
“product” by a sequential/analytic process without fully understanding
conceptually what a factorization is.

It should be noted that it is possibler an individual to carry out an
algorithmic process without abstracting from it an understanding of the
concepts embedded in the process. They may even be able to encapsulate the
process as an entity that they can think about without understanding its
constituent concepts. This may then be repeated at askzige when, for
example, pupils trying to find the highest common factor of several algebraic
expressions, using a strategy such as that mentioned above would resath to
another processather than being able to deduce the ansvieym their
understanding of their previous processes. Their progress is thus characterised
by a sequence of process management tasks leadingnstoumental
understanding, rather than the construction of true relational understanding in
the sense of Skemp (1976). It is our belief that the educator should encourage
relational understanding not through enforcement of the process itself, but
through versatile thinking that reflects on the construction of vital concepts as
well as encapsulation of the process.

—6-—
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Using the Computer to promote Versatile Thinking

Versatile thinking requires the availability of cognitive interactimetween
conceptsrepresented by imagery as well as symbolically and verbally. An
environment encouraging the formation and manipulatiorsumh cognitive
structures should be more likely to produce versatile thinking.

Skemp 1979 proposethree different modes in which the individual can
mentally construct concepts: by interaction with tkeal world (which he
terms “actuality”), by interaction with other people, and by reflection on
concepts in the mind and the relationships between them. Tall 1990 divides the
first of these modes into two:

* interaction with inanimate objects which grassiveso that the
user must manipulate them him(her)self

and

* interaction with systems, such as computer software, which are
cyberneti¢c and react to the individual’'s actions according to
pre-programmed and predictable rules,

This gives four modes of interaction for concept formation:
» with passive objects
» with cybernetic systems
» with other persons
* Dby internal reflection.

Of these four, the cybernetic system offers potentially a rnonsistent mode
of building concepts by providing consistent feedback which may be predicted
and tested. For instance, if the statement

A=3
Is typed in BASIC, followed by
PRINT A+2

the computer responds with the number 5. One may then conjecture what will
happen if one types

PRINT A+3

or
B=A+2
PRINT B

and so on, irorder tobegin to formulate theories about thensistency with
which the language handles the symbols.

Of course, the symbols are treated slightly differently BASIC from
standard algebra, fomstance, multiplication must be written explicitly in
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BASIC but may be implicit in algebra. It is therefore helpful googram
software in which standard algebraic notation is allowed andvauated
numerically in the usual way. Wtherefore designed software called the
algebraic maths machinehich allowed several individual letters to stand for
variable numbers, andccepted up to two expressions which could be
evaluated to compare the results of calculations (figure 1).

UARIABLES

x y z
COHSTRHTS
FUHCTIOHS

2x+2i 2(x+i)

Choose from:

M: MMake Maths. Machine
U:Change wvariables
I:Inpu variable values E:End

Figure 1

By evaluating expressions such as+3( and Z+2y for various numerical
values ofx, y, it is then possible for pupils to experience the fact difédrent

expressions evaluate to the same vakwsy time, and to predict arteést

what might happen with other expressions, such as and &, or, at amore

advanced level, x¢-1)/(x-1) and k+1).

Such software, that allows exploration of examples, and non-examples of
concepts (in thigaseequivalent and non-equivalent expressions), is termed a
generic organizer(Tall 1986). It encourages the individual to manipulate
examples, to predict and test, to develop experiences on which higher-level
abstractions may be built.

In general generic organizers may passiveor cybernetic For instance,
Dienes blocks, embodying some of the principles of place valyghysical
materials, are passive. Thegquire the user tact upon them and reflect on

the result of these actions to build up the abstract idea of place value (and to
move to the more subtle understanding #ath position may beepresented
symbolically in the same way). Thadgebraic maths machinis a cybernetic
generic organizergesigned to help the pupil abstract the notionsasfable

and of equivalent algebraic expressions. Again it valfjuire action on the

part of teacher and pupil to assist the pupil to abstract the underlying concepts.
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We initially proposed quite subtle theories as to why the algebraths
machine might promote versatile thinking in which equivalent expressions
might be viewed holistically as being the same (Thomas & T@#8). We
subsequently suspected the truth to be rather more prosaic. Although the pupil
has to type in each expression (in BASIC programming or the algehedis
machine), and therefongrocesses them in the normal leftright scansion,

the computer carried out all the intervening evaluations. Thus the pupil is
relieved of the burden of the evaluation process and simpiypobiiaving to

carry it out, isable to focus on the product of the evaluations andréalict

and test why different looking expressions may always give the same value.

Activities to promote versatile thinking in algebra

In addition to the cybernetic organizer, the pupils played withnanimate
organizer, consisting of acardboard maths machinevhich gave them a
physical analogy to the process by whigASIC usedetters as variables. This
simply consists of twdarge sheets ofcard, one representing the computer
screen, the other having boxes drawn on it to repreptates to store
numbers within the computer. In addition there are spiatles ofcardboard
with letters on them, to place above the storedafielsand numbers tplace
inside the stores amlues

The programming activities in BASIC, such as

A=3
B=A+1
PRINT B

were carried out analogously by a group of pupils on the cardboactiines.
Someone placed a message on the screen to say A=3, and a mesgaagsadas
to someone else in charge of the stores. (S)he looked to see if therestoas a

Iabelled@ , and if therewas not, a new storavas labelled. Then thstore
Iabelled@ had the number 3 placed insided. Next tiessage B=A+1 was
passed to the store-keeper, who made sure that av@srtabelle@ in the
same way, looked into sto@ Ao find the value was 3, added 1 to get 4, then
placed a card marked 4 in the st@a. Binally when the PRINT B command

was passed over, the store-keeper saat:dﬂtained 4, and found another

card with this number written on anmhssed it back to be displayed on the
carboard screen.

The classroom was flexiblgprganized. Only two or three computenere
needed to service @dass oftwenty or more pupilsbecause thethers could
work on cardboard maths machines.

The setup was intended to involve all four modes of reality construction:
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* interaction with the cardboard maths machir{passive
organizer)

* interaction with the algebraic maths machine (cybernetic
organizer)

* interaction between the teacher and pupils and between the
pupils themselves

» personal reflection on the meaning of the notation.
Initially the curriculum activities were designed:

* to encourage the mental image of a letter as a duirel
representing a single number which could be changed and, by
extension, could hold any of a variety of numbers,

 to consider the evaluation of expressions and equivalent
expressions IiNBASIC notation and in standard algebraic
notation.

The pupil could think holistically of a variable as a store labelled wli#itar,

and of an expression either apracesson the cardboard maths machine or as
aproductin BASIC or in the algebraic maths machine. By giving meaning to
the concept of variable and expression in this way it was hypothesized that the
pupils would have a better foundation to construct the meaning of algebraic
symbolism.

The parsing obstaclevas attacked by discussion betwdeacher and pupils,

then encouraging pupils to reflect on the possible meaninglifbtérent
expressions, usinBASIC and the algebraic maths machine to build &l
theories as to the meaning of the notation, twder of evaluation of
expressions and the nature of equivalent expressions. We hypothesized that the
expected answembstacle would be less problematic in the computer
environment as letters and algebraic expressions had a physical function in the
cardboard maths machine and are typed into the computesesmmd by the

pupil, thus giving a concrete meaning to the symbolism. Given nuuahees

for the variables, thexpressions could be evaluated, in the same way as
arithmetic expressions. Thus the pupils could think of expressions as being
potentially evaluable, yet talk about them as conceptual entities, reducing the
problem of thdack of closure obstacld-inally, the process-producbbstacle

was faced squarely by seeing that the expregsipresented both process (in

the cardboard maths machine) and product (in the algebraic maittgne

and in BASIC). As the computgrerformed the process IBASIC and the
Algebraic Maths Machine, this allowed the pupils to concentrate on the
notation as product and to think of it as a conceptual entity.

The whole module, designed to lastr three weeks, withfour one-hour
lessons aweek, has subsequently been publishedier the title“Dynamic
Algebra” by the Mathematics Association (Tall & Thomas 1989a).

—-10 -
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The Experiments

In the first pilot experiment pupils aged 11/12 in the final year Middle
Schoolwere divided into 21 matched pairs. One half of the pairs were given
the Dynamic Algebra Module over a three week period whilst the other half
did no algebra. It would therefore lexpected that this pilot studghowed
improvements in the understanding of algebra (Thomas & Tall 1986). What is
more significant is that one year later, when all the children rhaded
schools and studiealgebra in a traditional way, a follow-up study indicated
that there were still measurable differences in performance on algebra.

All the pupilstransferred tdSecondary Schools at the end of the sciealr.
Eleven of the matched paitseansferred tahe same school angere put into

the same mathematics sets, so thating their first year at the schodge
12/13 years) they received an equivalent tuition in algebra. At the end of that
year they were again given the algebra test used irigaal study to see
what the longer term effects might have been. A summary of the results and a
comparison with their previous results — using ttiest for non-independent
samples — are given in table I. Weethat, over one year after their work on
the basic concepts of algebra incamputer environment, they were still
performing significantly better than those who had not experiensech
work. (The relatively low scores — approximately half marks out of a
maximum of 71 — occulbecause conceptuallgarder questionsfrom the
CSMS tests were included on the test. The performance of the cstutlehts

was typical of a large sample tested by the CSMS project.)

Exper. Control

mean mean | Mean| S.D. N t df p

(max=71)| (max=71)| diff.
[[Post -test 32.55 19.98 [12.57[(10.61[ 21 |5.30 | 20 [<0.0005
[[Delayed post-test [ 34.70 25.73 | 8.47]11.81] 20 | 3.13 [ 19 [<0.005
lone year + later 44.10 | 37.40 | 6.70] 7.76| 10 [2.59] 9 [<0.025

Table | : performance of 11 matched pairs on simple algebraic problems

We may conclude then that there are significant longer term benefits to be had
from the introduction of a module such as the Dynamic Algebra package, with
its emphasis on conceptualisation and use of mental inmmages than on skill
acquisition, prior to the more formal learning of algebra.

In order toextend this comparison between the two approaches mentioned
above alarger scaleexperimentwas arranged whereby a direct comparison
might be made between the Dynamic Algebra Module and a traditional skill
based module. The subjects of this secemrderiment were takefrom 6
mixed ability forms in the first year of a mixed ability 12-plestry
comprehensive school (i.e. 12/13 year olds). Onbi#®s of amalgebrapre-

-11 -



Versatile Thinking in Algebra & the Computer Tall & Thomas

test based on the CSMS algebra test, and correlated withwidsifound to be
possible to organise 57 matched pairs from the classes.

In the first stage of the comparison the experimergabup received the
Dynamic Algebra Module during their normahathematics periodover
about 4 weeks (about 1R2ours). During this time the control groupere
taught elementary algebra using a traditional slaked module ofvork used

in the school over some years, and covebagic simplification and equation
solving in one unknownSince thispoint in the experiment gave an ideal
opportunity to compare the effects of each treatment thus farestdgroup
had finished its work they were given tlsame test again and @ose
comparison of their performance made.

Six monthslater, all the pupils were given tlsametraditional module for a

two week period, the controls as revision, the others the first time,
followed by a repeat of the test. After the post-test of this experiment a cross-
section of 18 pupils, 11 experimental andc@ntrol, were given asemi-
structured interview lasting about twenty minutes. During the interviews,
which were recorded, the pupils were required to attempt certain key
guestions and to explain their thinking and strategies.

The Results

The overall results, aseen in tabldl, showed that therevas no significant
difference in performance between the groups on the algebra test poghe
test, but that, after the second post test the difference becomes significant.

Exper. Control | Mean
(N=48) mean mean diff. S.D. N t df p
(max=67)| (max=67)
[[Post -test 36.0 35.9 | 0.10 [10.46] 48 [0.06 [ 47 n.s
[[Second post-test 42.1 39.3 | 2.76 | 8.91]| 47 | 2.08 | 46 | <0.025

Table Il : Performance of 48 matched pairs on algebra post-tests

A different picture emerges on consideration of the results of individual
guestions. Perhaps, not surprisingly, there are sommestions where the
control group performed significantly better than the experimental group and
these tended to be those questions involvingsii of skills, particularly
associated with simplification of expressions, which they had been teaght
table Ill, whichusesthe z-statistic to test the difference between the means of
two normal distributions). However, there were sajuestions on which the
experimental group did noticeably better, and significantly so in s@®es.

As table IV shows, theseere questions whiclare of a harderconceptual
nature and require a higher level of understanding, as defin&didhyemann
(1981), including in the case of several of the questions the concept of letter as
a generalised number or variable. Thus it appears that there were differential

—-12 —
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effects from the two approaches in respect of algebraic skills on the one hand
and deeper conceptual understanding on the other.

Experimental Control
Question proportion proportion z p
(asked of 48 matched pairs) correct correct
Multiply 3c by 5 0.10 0.44 3.67 <0.0005
Simplify 3a + 4b + 2a 0.52 0.75 2.30 <0.05
Simplify 3b— b+ a 0.33 0.63 2.83 <0.005
Simplify 3a+4 + a 0.42 0.54 1.21 —
| G jigsaws and H jigsaws =? 0.58 0.81 2.45 <0.01
Table Il : Algebraic skills
Experimental Control
Question proportion proportion z p
(asked of 48 matched pairs) correct correct
For what values of ais a+3>7 ? 0.35 0.13 2.63 <0.005
For what values of ais 6>a+3 ? 0.25 0.06 2.53 <0.01
a+b=b — always, never, 0.33 0.15 2.15 <0.025
sometimes ... when ?
M+P+N=N+M+R, — always, 0.44 0.29 1.48 —
never, sometimes ... when?
Perimeter of rectangle D by 4 0.52 0.27 2.50 <0.01
Perimeter of rectangle 5 by F 0.52 0.29 2.29 <0.025
Which is larger. 2nor n+2 ? 0.08 0.00 2.04 <0.025

Table IV : Conceptual questions

Evidence For Versatility and Conceptual Understanding

The results of our worksuggestdifferential effects between theomputer-

based approach to algebra, with its emphasis on letters as generalized numbers
and the traditional skill-based type of module withdtaphasis oracquiring
manipulative skills. Itseemsthat the computer work promoted a deeper
conceptual understanding, whilst the othemork, as expected, initially
facilitated better surface skills. However, when the computer module was

combined with the skill-based one then it led to saperior overall
performance without detrimental effect on skills.
A significant fact here is that the experimental studeats initially

performing better askills which are considered to be of a higher level. In
other words, th@rder of difficulty of concepts in theomputer paradigm is
different from that in the traditional paradigm. Thnskes the general point
that empirical research in a pre-computer paradigm may no longer be
appropriate for a computer paradigm. The relative degree of difficulty of
concepts is not absolute, it may be paradigm-dependent.

Given the evidencerom the earlier pilottest that the difference in
performance persisted over a longer period, we wdieceighteen months
and gave the students a repeat of the post-test. On this occastfiettence
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between experimental and control groups was no longer statistically significant
(Thomas & Tall 1989b). During this period toklssesad beerreorganized

in a way which has led to a variety of different experiences for pupils matched
in pairs during the experiment. Thisuggeststhat, although computer
experiences may be able provoke different kinds of understanding shdne

and medium term, if these experiences are not continued then their effect may
wane in the face of the overwhelming influence of more recent experiences.

However, understanding of algebraic concepts may not be evidendedtby
performance alone, sincir example, correct answers may be the result of
incorrect understanding. In order &xamine the pupils’ understanding of
algebra beyond their test performance it is usefukfer back to interviews
and a questionnaire administered after the second post-test.

The Interviews

The transcript of the interviews reveals, in the language used by the pupils in
each of the groups, the versatility of thought underlying thetter
performance of the computer group.

The superior relational understanding and versatility of thought of those who
had used the Dynamic Algebra module strikingly manifested itself in several
different ways, including:

(i) The attempts by the experimental group to explain affdr
reasons for their thinking, compared with the contpobils
greater concern with surface operations in their comments.

(i) An improvement in encapsulation of processes, shown by the
ability of the computer group taliscuss processewithout
having tocarry them out firseand to exhibit global knowledge
of a question in their comments.

(iii) The ability of the computer group pupils to take a gloaiv
of a problem, rathethan being pressed into processes implied
by the operations present in the notation.

The following examples takefrom the transcripts of the interviewshow
these manifestations of improved versatile thinking:

Question: Solve@— 1 =5.
The confusion in thinking which may res@itbom instrumental understanding
Is illustrated by one of the control pupil’'s explanations for this question :

Pupil C2: 2 minus 1 equals 5. If you adde 1 to the 5 that's 6, so because
there’s no other minys| forget thep and do the @ minus 1 equals. If you add
the 1 to the 5 which is 6 and then you take 1 ftben6.No, | don’t getthat. |
know I've done it but...

Interviewer : What would the value pte did you say?
Pupil C2 : Six.
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Here the explanation is solely in terms of the operations with no reasons for
their use being cited. This may be compared with the following reasoning
from one of the experimental group pupils :

Pupil E2 : Well find out what minus 1 ... so you would add th&b soyou get
rid of the 1, so that would be 6 and then its obvithiaé 2 times 3quals 6, so
p would be 3.

The pupils in the interviews were alasked tocompare the above equation
with 2s — 1 = 5. This was irorder tosee ifthey were able to conserve
equation (Wagner 1977, 1981) under a change of variable. A distinct
difference in the type of comment between the two graiasvs thesuperior
understanding in this area of those pupils who had used the computer.

The control group featured those who were unsure of the relationship
Pupil C1 :scould be 3 as well
Pupil C4 : They could both equal 4

and those who needed to solve both equations
Pupil C2 : Well what | have put ip2quals 6 andskquals 6,
Pupil C5: 2s...add the 1 and 5, 6 er 2 and 2, 6, 3 timesssdas well.

The experimental (computer) group on the other hand wensarkably
consistent in seeing the second equation as being equivalent to the first:

Pupil E1:1can say thatands have the same value...its the same sum.
Pupil E5 : The same. Just using a different letter.

All the experimental group responded in this way. These respshses
evidence of a global/holistic view of the equations which has enabled the
students to develop the understanding of conservation of equatiseenyy

the common structure of the equations. This concept of conservation of
equation under a change of variablas further tested with several of the
children by using an extension to the first question :

Solve 2p+1)-1=5.
The insight of the computer group pupils is shown by :
Pupil E1 : Yesp equals 2.
Interviewer : How did you work that out then?
Pupil E1: Well its the same, but its plus 1, so minus 1 add 3.

Pupil E2 : Oh it would be 2.
Interviewer : Can you tell me why?

Pupil E2 : Becauspplus 1 if that's 3 itshe same as the last oosly thep is
less because you've got to add 1 to the sum.
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Deep and powerful insightsuch as these, facilitated by a global/holistic view
leading to the structure of the equatiomss not matched by theontrols.
Instead we have :

Pupil C6 : Say plus 1, there is already 1 plpsplus anotherone, I'd saythat
was 2, and then outside plus another 2 that is 4 minus 1 is 3, | would say.

Interviewer : So what is the answer?
Pupil C6 :p equals 1, | would say.

Many would agree that the type of algebraic equation where there are
variables on botrsides of the equation is conceptually considerablyre
difficult, since they involve one in algebraic manipulat{@e. of variables)
rather than arithmetic (e.gHerscovics andieran 1980). Although thevork

done by neither group had involved them in being taught how to Huke

type of equation, several of the interviewees were given one to solve. One of
the features of relational understanding one might expect to see is that it would
be more easily extensible than instrumental understandimgpre readily
applicable to new areas of mathematics. The ways in which thegtaugps
tackled the question :

Solve X-5=%+1

again seemed to indicatesaperior understanding on the part of those who
had used the computer.

For instance, one control pupibegan to manipulate the expression
instrumentally:

Pupil C6 : I'd say it was minusxZand here you've gotxX3 2x plus X, so I'd
put that as &

[Writes X—5 =X+ 1 = K]
Interviewer : And is that the answer?
Pupil C6 : Yes.
Here the pupil clearly realized that progress might be made by subtragting 2

but carried it out in anechanical way which led to ancorrect result on
which he did not wish to elaborate.

Another control pupil lost sight of the objective all together :
Pupil C3 : I'm trying to work out how you could take 5 from that to leave that.
Interviewer : Can you see any way of doing it?
Pupil C3 : You would have to find the valuexdfefore you could start.

In contrast, the experimental pupils responded more purposefully:

Pupil E1 : Well the value of must be the same because it'tha samesum...
I'm thinking that maybe taketimes some number away from baildes. That
wouldn’t leave anything in there to go on. You'd have nothing theyeuftake
2x away and £ minus 5 equals plus 1.

[Writesx — 5 = +1]
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Interviewer : So how might you do it now?

Pupil E1 : | wasthinking maybe get rid othis and forget abouthat 4 by
putting, adding 5 to both sides — that should do it — so it wouldkkeg@als
plus 6... try to take away.

[Writes 3 = 2x + 6]
Shortly after this he solved the equation.

Another experimental pupil started with wisdemed like a serialist/analytic
approach, but accompanied his actions with clear redsortbe steps he was
taking, suddenly making a mental connection that enabled him to solve the
problem.

Pupil E2 : You would add 5 to that to get rid of the minus 5 and ttieiplus 6

so it would be 8 equals R plus 6....Well that plus 6 has got a bigget

because 2plus 6 equalsx3 that means another 6 would be equad, teo make

that X as well...Wellx equals 6.
In the middle of the question the pupil is versatile enough to change viewpoint
(possibly as a result of a cognitive conflict) to a global/holistic onesardhe
equation in terms of its balancing structure, equating the rxtith 6.

The Questionnaire

A second means of testing the pupils’ understanding which was employed was
a questionnaire. This probed their understanding and view of algebraic
notation and although it did not allow the opportunity to follow up answers in
the way that an interview does, it had the advantage of wider coverage, being
given to 147 pupils.

The questionnaire included three types of questions:

* to explain, with reasons, whether two algebraic expressions
were equal or not,

» to explain to an imaginary visitdrom Mars themeaning of
some algebraic notation,

» harder algebraic questions, beyond the level studied.

Experimental Control
Question proportion proportion z p
correct correct
6

Is7 the same as 677 0.76 0.44 3.38 <0.0005
Is 2+3c the same as 5¢? 0.41 0.31 1.33 n.s
Is 2(a+b) the same as 2a+2b ? 0.57 0.31 2.69 <0.0005
Solve 13—y=2y+7 0.43 0.27 1.83 <0.05
Simplify 5h—(3g+2h) 0.24 0.08 2.16 <0.025
Solve 17-3e>2 0.31 0.13 2.37 <0.01

Table V : A Comparison of Some Questionnaire Facilities
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Experimental Control
Question proportion proportion z p
making error | making error
3+m=3m 0.08 0.27 2.54 <0.01
ab=a+b 0.06 0.23 1.77 <0.05
b-2xc=(b-2)c 0.09 0.23 1.71 <0.05
3+2m=5m 0.04 0.13 1.57 n.s

Table VI : A Comparison of Some Specific Errors

Table V shows the proportions of the pupils giving correct answessle¢oted
guestions and table VI gives tpeoportion making apecificerror. (In both

tables there were 78 experimental and 69 control pupils, with no significant
difference between pre-test means.) These results, and the fact that the
controls did notperform significantly better than the experimental group on
any question, appear to confirm the superior understanding of algebraic
notation of the computer group. Moreover, the experimesttalents seem to
have a better, more global, view of the notation which in has reduced the
occurence of some of the more common notatienadrs such as conjoining

in addition and the wrong use of brackets.

Of the three questions cited in table V asking if two expressions are
equivalent, the experimental studepesrform worsethan than thecontrol
students in every case. The least well answeredhe$e is the(non)-
equivalence of 2+@and %, illustrating the persistence of the parsoigstacle
and the probable reading of the symbolidnom left to right. The
experimental students perform better, but not at a statistically significant level.

The first of thesethree questions is a significant instance of the process-
product obstacle in which many of the controls did not consider the two
notations as the equivalent because

6
“ = is afraction, 6+7 is a sum”.

This reveals the perception of 6+7 agm@cessinvolving value-operation-
valuerather than as a global entity — the single number — producethiby
process. This was not such a problem for the computer group.

The otherqguestions reveal the understanding of the compgteup to be
superior in its extensibility to the more difficuljuestions with their
requirement of deeper understanding.

Reflections

The experiments show that the students using the Dynamic Aldébdale
are more versatile in their thinking than tsieidents following araditional
course. They are better able to cope with thersing obstacle being
significantly better at interpreting symbolism and having fewer pamsingrs
such as 2+&=5a or 3+m=3m.
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They are better able to cope with thecess-product obstaglevidenced by

the fact that they are more likely to consider equivalent expressiafs as
2(atb) and &a+2b to be the same. They are better at conserving equations and
are lesslikely to feel the need to go through a solution process to solve an
equation equivalent to one which they have just solved. They are more likely
to be able to chunk information, for instance in seeingptatcan bdreated

as the variable in the equationp21)—-1=5, whilst the control pupils araore

likely to feel the need to process the information by multiplying out, collecting
terms, and solving fop.

They are more likely to be able to think of expressions as objduts,
overcoming thdack of closure obstacland seem to have no problem with the
expected answer obstacle.

Those taking the Dynamic Algebra Module show a reversal ofatwepted
order of difficulty of certainconcepts: theyare initially better at certain
concepts considerenhore difficult in the CSMStests (such as solving the
inequalitya+3>7) and less good at routine algebraic skills (such as simplifying
3b—b+a). However, after a brief revision of routine skills, they improved to
match the controlstudents atroutine problems whilst retainingheir
superiority in higher order skills.

This is consistent wittHeid's work in calculus (Heid 1988)where it was
shown that students who use the computer for conceptual work andaosnyy
out routine manipulation for a short time at the end of the course vetter
at higher level conceptual problems than contstudents following a
traditional course and not significantly different in ability witloutine
manipulation.

There is mixecdevidence over the very longrm improvementsaused by a
short three-week period of study using the computer different in nérimne

the rest of the work of the students. The initial pilot study, in which the
experimental students used a versatile computer approach to algebra and the
control students did no algebra, showed a maintained difference in
performance over a year later even afterther study of algebra by both
groups. The main study revealed the superior medium term performance of
the experimental students following a versatile compusiEiemeover the
control students following a traditional scheme, but failed to reveal a
statistically significant difference eighteen months later during which time
there was no further computer work.

There is evidence that the relative degree of difficulty of conceptsdifiay

In a computer paradigm from a traditional paradigounggesting the need for
further researctand the reassessment of fondly held beliefs of whaarsl
and what is easy.
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Finally, although the Dynamic Algebra Module only tackles the inflzses
of letter as a labefor a number orset of numbers, and equivalence of
expressions through evaluation, there is evidence that the treabasrdan
immediate extension to linear equations.
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