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Encouraging Versatile Thinking in Algebra
using the Computer

David Tall & Michael Thomas

Mathematics Education Research Centre Coventry School - Bablake
University of Warwick Coundon Rd
Coventry CV4 7AL Coventry CV1 4AU
U.K. U.K.

Abstract

 In this article we formulate and analyse some of the obstacles to
understanding the notion of a variable, and the use and meaning of algebraic
notation, and report empirical evidence to support the hypothesis that an
approach using the computer will be more successful in overcoming these
obstacles. The computer approach is formulated within a wider framework of
versatile thinking in which global, holistic processing complements local,
sequential processing. This is done through a combination of programming in
BASIC, physical activities which simulate computer storage and manipulation
of variables, and specific software which evaluates expressions in standard
mathematical notation. The software is designed to enable the user to explore
examples and non-examples of a concept, in this case equivalent and non-
equivalent expressions. We call such a piece of software a generic organizer
because it offers examples and non-examples which may be seen not just in
specific terms, but as typical, or generic, examples of the algebraic processes,
assisting the pupil in the difficult task of abstracting the more general concept
which they represent.

Empirical evidence from several related studies shows that such an approach
significantly improves the understanding of higher order concepts in algebra,
and that any initial loss in manipulative facility through lack of practice is
more than made up at a later stage.

Conceptual difficulties in algebra

It is well-known, both in everyday teaching experience and in a wide range of
empirical studies, that children find great difficulty in understanding algebra
(see, for example, Rosnick & Clement 1980, Matz 1980, Küchemann 1981,
Wagner, Rachlin & Jensen 1984). For a child meeting algebra for the first
time there are a number of obstacles which must be confronted and resolved.

First and foremost, there is considerable cognitive conflict between the deeply
ingrained implicit understanding of natural language and the symbolism of
algebra. In most western civilizations, both algebra and natural language are
spoken, written and read sequentially from left to right. There are exceptions



Versatile Thinking in Algebra & the Computer Tall & Thomas

– 2 –

to this, for instance, numbers in some languages may exhibit a reversal (e.g.
435 is ‘vier hundert fünf und dreisig’ in German, but ‘four hundred and thirty
five’ in English). However, this is nothing compared with the subtle rules of
precedence which occur in algebra. For instance, the expression 3x+2 is both
read and processed from left to right, however, 2+3x is read from left to right
as “two plus three x”, but computed from right to left, with the product of 3
and x calculated before the sum. This difficulty of unravelling the sequence in
which the algebra must be processed, conflicting with the sequence of natural
language, we term the parsing obstacle. It manifests itself in various ways, for
example the child may consider that ab means the same as a+b, because they
read the symbol ab as a and b, and interpret it as a+b. Or the child may read
the expression 2+3a from left to right as 2+3 giving 5, and consider the full
expression to be the same as 5a.

Prior to the introduction of algebra, children become accustomed to working
in mathematical environments where they solve problems by producing a
numerical “answer”, leading to the expectation that the same will be true for
an algebraic expression (Kieran 1981). An arithmetic expression such as 3+2
is successfully interpreted as an invitation to calculate the answer 5, whereas
the algebraic expression 3+2a cannot be calculated until the value of a is
known. This unfulfilled and erroneous expectation we term the expected
answer obstacle. It causes a related difficulty, which we term the lack of
closure obstacle, in which the child experiences discomfort attempting to
handle an algebraic expression which represents a process that (s)he cannot
carry out.

Another closely related dilemma is the process-product obstacle, caused by the
fact that an algebraic expression such as 2+3a represents both the process by
which the computation is carried out and also the product of that process. To a
child who thinks only in terms of process, the symbols 3(a+b) and 3a+3b
(even if they are understood) are quite different, because the first requires the
addition of a and b before multiplication of the result by 3, but the second
requires each of a and b to be multiplied by 3 and then the results added. Yet
such a child is asked to understand that the two expressions are essentially the
same, because they always give the same product. Such a child must face the
problem of realizing that the symbol 3a+6 represents the implied product of
any process whereby one takes a number, multiplies it by 3 and then adds 6 to
the result. This requires the encapsulation of the process as an object so that
one can talk about it without the need to carry out the process with particular
values for the variable. When the encapsulation has been performed, two
different encapsulated objects must then be coordinated and regarded as the
“same” object if they always give the same product – a task of considerable
complexity.
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Faced with such obstacles, it is no wonder that so many children fail. To cope
with these difficulties, traditional teaching tends to emphasize the calculation
and manipulation of algebraic expressions – teaching children the rules of
algebra so that they develop the necessary manipulative ability. “Do
multiplication before addition”, “calculate expressions in brackets first”,
“collect together like terms”, “of means multiply”, “add the same thing to both
sides”, “change sides, change sign”, “to divide, turn upside down and
multiply”, etc etc. It is hoped that once the child is able to carry out the rules
consistently, then understanding will follow, but it is a forlorn hope. When
algebra is taught as an essentially manipulative activity, following a sequence
of mechanistic rules, it is only to be expected that a poor understanding of the
subject prevails.

We hypothesise that as soon as children are unable to give meaning to
concepts, they hide their difficulties by resorting to routine activities to obtain
correct answers and gain approval. Once committed to such a course, it easily
degenerates into a never ending downward spiral of instrumental activity:
learning the “trick of the week” to survive, soon leading to a collection of
disconnected activities that become more and more difficult to coordinate,
even at a purely mechanistic level. Therefore the beginning phase of the
subject – giving meaning to the variable concept and devising ways of
overcoming the cognitive obstacles – is fundamental to laying a foundation for
meaningful algebraic thinking.

The continuing need for algebra

 One way to avoid the difficulties so far acknowledged is to reduce the amount
of algebra taught, or not to teach it at all. In the UK, the National Curriculum
now makes fewer demands on algebra for 16 year olds than was previously
the case, and there are moves elsewhere to reduce formal algebra by using
more numerical problem-solving (see, for example, Leitzel & Demana 1988).

We are convinced that the reduction in algebra content – certainly for the
average or above average pupil – is a profound error, based on a view of
seemingly insurmountable difficulties which have occurred in a pre-computer
paradigm. Certainly there is a stage where the introduction of algebra makes
matters more difficult (for instance, the question “I am thinking of a number
and twice it is six, what is the number?” is more likely to produce a correct
response than “solve 2x=6”). But soon there comes a stage in solving slightly
more complicated problems where the lack of algebra can bcome a serious
handicap. For instance, Gardiner set the following problem in a school
mathematics contest:

Find a prime number which is one less than a cube. Find another prime number
which is one less than a cube. Explain! (Gardiner 1988)
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Students soon find two cubed minus one is prime, but looking for patterns in
the numbers that turn up by cubing and subtracting one (2 gives 7, 3 gives 26,
4 gives 63, etc) can give interesting red-herrings. (For instance, when the
number is odd the result is even, but when the number is even the result is odd
and the question needs further investigation.) But applying the process to the
number n gives n3–1 and anyone with a little experience in algebra can see that
this factorizes to (n–1)(n2+n+1), which is prime only when n=2... We thus see
that there is a stage in the curriculum when the introduction of algebra may
make simple things hard, but not teaching algebra will soon render it
impossible to make hard things simple.

We believe that, whilst the initial difficulties cannot be totally avoided, they
are exaggerated by the teaching of algebra in a context in which the
symbolism does not make sense to the vast majority of pupils, and that the
success rate can be significantly improved by giving a coherent meaning to the
concepts by using a computer. The principles which we will shortly describe
apply throughout mathematics and in the next section we formulate a wider
theoretical framework before returning to the specific case of algebra.

Versatile Thinking in Mathematics

To be able to be a successful mathematician requires more than the ability to
carry out a succession of mechanistic steps, be they steps in carrying out a
numerical calculation, solving a linear equation, differentiating a composite
function, or writing down a mathematical proof. What is also required is an
overall picture of the task at hand, so that the appropriate solution path can be
selected and any errors that occur are more likely to be sensed and corrected.
Thus the sequential/logical/analytic way of carrying out a succession of
mathematical processes needs to be complemented by a global/holistic overall
grasp of the context.

The differences between these forms of thinking has been a focus of thought
for several centuries. Descartes (1628), for example, contrasted the intuition
of an immediate perception of connections between concepts with chains of
logical deduction required to give formal relationships. Poincaré (1903)
distinguished between those mathematicians who thought in a predominantly
sequential/deductive mode, and those whose work developed more through
intuition.

Krutetskii (1976, p. 326) divided his mathematically gifted pupils into
analytic, geometric and harmonic types, according to their preferences for
verbal-logical, visual-spatial, or a combination of the two. He was of the
opinion that the analytic and geometric types mentioned by Poincaré should be
acknowledged as somewhat limited because they tend to specialize only in
restricted areas of mathematics. Although representatives of such extreme
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types can be successful in school mathematics, they are liable to experience
difficulties which are a consequence of their limitations.

In the last two decades there has been considerable speculation that the
sequential/analytic and global/holistic modes of thinking may be due to
different methods of processing in different parts of the brain. Several
physiological studies (e.g. Sperry, Gazzaniga & Bogen 1969, Seamon 1974,
Gazzaniga 1974, Popper & Eccles 1977) promoted a model of thinking as a
unified system consisting of two, qualitatively different processors, linked via
the corpus callosum (the connection between the two hemispheres), with the
rapid flow of data between them and the processing done by them, controlled
by a control unit. In this model one processor – usually in the major, left
hemisphere of the brain of right-handed individuals – is a sequential processor
involved with logical, linguistic and mathematical activities (see e.g. Bogen
1969). The studies suggested that the control unit appears more likely to be
seated in this hemisphere, possibly accounting for its dominance. The other
processor, in the minor, right hemisphere, is a fast, parallel processor, able to
make global decisions, and being the primary centre of visual and mental
image reasoning (Bogen 1969).

Following criticism and further research, Gazzaniga (1985) proposed a
modified model in which the brain is organized into many relatively
independent functioning units working in parallel, with the control unit
mentioned above interpreting and coordinating the product of these various
units. He gives examples in which individual functions may lie in the left or
right brain of different individuals. According to his theory, what is important
is not where the different abilities are located in the brain, but how they
operate and interconnect. Some units, related to verbal, aural and linguistic
abilities are able, by their very nature, to give conscious verbal output to the
individual and constitute a sequential/verbal mode of thought. Others, relating
to visual, tactile and other senses can give only gestalt, non-verbal output,
relating to what we have characterized as global/holistic thought. This suggests
that there may be aspects of visual thinking involved in understanding
mathematics which are less easily verbalised and hence less likely to be valued.

The cognitive model proposed by Thomas (1988) stresses the need for
cognitive integration of the two qualitatively different modes of thinking, with
both being actively promoted in teaching and thus made available in the mind
of the mathematics student. Following Brumby (1982), we use the term
versatile thinking to refer to the complementary combination of both modes,
in which the individual is able to move freely and easily between them, as and
when the mathematical situation renders it appropriate.

In general, the global/holistic side of the brain’s activity has been conceived as
intuitive and visual. Certainly, if its output is holistic, with links between
concepts made simultaneously with no logical or sequential relationships being
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apparent, then it qualifies for the term “intuitive”. However, we believe that
this intuition can be honed to link in with the sequential/logical thinking
processes and therefore be of value in giving an overall view of the
mathematical structure. We also believe that visual ideas are not only
graphical and geometric. Symbolism is viewed through the eye, and whilst it
may be processed sequentially through scanning the expression, it may also be
taken in holistically, in chunks, and this side of visualization is very important
in algebra.

Versatile thinking in algebra

An illustration of versatile thinking arises from the following type of question:
Factorize : (2x + 1)2 – 3x(2x + 1).

Many secondary-school pupils who view factorization as a process seem
locked into a serialist/analytic mode where they work from left to right
“multiplying out brackets”, “collecting together like terms” and factorizing the
resulting quadratic function. Apparently unable to break free from such a
serialist strategy, few seem able to apply the versatility of thought necessary to
switch from an analytical approach to a global/holistic one and “see” that 2x+1
is a common factor, hence moving directly to the answer, with a minimum of
analytic processing.

One of the reasons for the prominence of a serialist line of thinking in
questions like the one above, would seem to be the emphasis in the pupil’s
mind on obtaining the product or answer, with the process existing as a means
to that end, rather than being a conceptual entity to think about in its own
right. This implies that a pupil may be able to obtain a factorization or
“product” by a sequential/analytic process without fully understanding
conceptually what a factorization is.

It should be noted that it is possible for an individual to carry out an
algorithmic process without abstracting from it an understanding of the
concepts embedded in the process. They may even be able to encapsulate the
process as an entity that they can think about without understanding its
constituent concepts. This may then be repeated at a later stage when, for
example, pupils trying to find the highest common factor of several algebraic
expressions, using a strategy such as that mentioned above would need to learn
another process rather than being able to deduce the answer from their
understanding of their previous processes. Their progress is thus characterised
by a sequence of process management tasks leading to instrumental
understanding, rather than the construction of true relational understanding in
the sense of Skemp (1976). It is our belief that the educator should encourage
relational understanding not through enforcement of the process itself, but
through versatile thinking that reflects on the construction of vital concepts as
well as encapsulation of the process.
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Using the Computer to promote Versatile Thinking

Versatile thinking requires the availability of cognitive interaction between
concepts represented by imagery as well as symbolically and verbally. An
environment encouraging the formation and manipulation of such cognitive
structures should be more likely to produce versatile thinking.

Skemp 1979 proposes three different modes in which the individual can
mentally construct concepts: by interaction with the real world (which he
terms “actuality”), by interaction with other people, and by reflection on
concepts in the mind and the relationships between them. Tall 1990 divides the
first of these modes into two:

• interaction with inanimate objects which are passive so that the
user must manipulate them him(her)self

and

• interaction with systems, such as computer software, which are
cybernetic, and react to the individual’s actions according to
pre-programmed and predictable rules,

This gives four modes of interaction for concept formation:

• with passive objects

• with cybernetic systems

• with other persons

• by internal reflection.

Of these four, the cybernetic system offers potentially a more consistent mode
of building concepts by providing consistent feedback which may be predicted
and tested. For instance, if the statement

A=3

is typed in BASIC, followed by
PRINT A+2

the computer responds with the number 5. One may then conjecture what will
happen if one types

PRINT A+3

or
B=A+2
PRINT B

and so on, in order to begin to formulate theories about the consistency with
which the language handles the symbols.

Of course, the symbols are treated slightly differently in BASIC from
standard algebra, for instance, multiplication must be written explicitly in
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BASIC but may be implicit in algebra. It is therefore helpful to program
software in which standard algebraic notation is allowed and is evaluated
numerically in the usual way. We therefore designed software called the
algebraic maths machine which allowed several individual letters to stand for
variable numbers, and accepted up to two expressions which could be
evaluated to compare the results of calculations (figure 1).

Figure 1

By evaluating expressions such as 2(x+y) and 2x+2y for various numerical
values of x, y, it is then possible for pupils to experience the fact that different
expressions evaluate to the same values every time, and to predict and test
what might happen with other expressions, such as 2+3a and 5a, or, at a more
advanced level,  (x2-1)/(x-1) and (x+1).

Such software, that allows exploration of examples, and non-examples of
concepts (in this case equivalent and non-equivalent expressions), is termed a
generic organizer (Tall 1986). It encourages the individual to manipulate
examples, to predict and test, to develop experiences on which higher-level
abstractions may be built.

In general generic organizers may be passive or cybernetic. For instance,
Dienes blocks, embodying some of the principles of place value in physical
materials, are passive. They require the user to act upon them and reflect on
the result of these actions to build up the abstract idea of place value (and to
move to the more subtle understanding that each position may be represented
symbolically in the same way). The algebraic maths machine is a cybernetic
generic organizer, designed to help the pupil abstract the notions of variable
and of equivalent algebraic expressions. Again it will require action on the
part of teacher and pupil to assist the pupil to abstract the underlying concepts.
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We initially proposed quite subtle theories as to why the algebraic maths
machine might promote versatile thinking in which equivalent expressions
might be viewed holistically as being the same (Thomas & Tall 1988). We
subsequently suspected the truth to be rather more prosaic. Although the pupil
has to type in each expression (in BASIC programming or the algebraic maths
machine), and therefore processes them in the normal left to right scansion,
the computer carried out all the intervening evaluations. Thus the pupil is
relieved of the burden of the evaluation process and simply, by not having to
carry it out, is able to focus on the product of the evaluations and to predict
and test why different looking expressions may always give the same value.

Activities to promote versatile thinking in algebra

In addition to the cybernetic organizer, the pupils played with an inanimate
organizer, consisting of a cardboard maths machine, which gave them a
physical analogy to the process by which BASIC uses letters as variables. This
simply consists of two large sheets of card, one representing the computer
screen, the other having boxes drawn on it to represent places to store
numbers within the computer. In addition there are small pieces of cardboard
with letters on them, to place above the stores as  labels and numbers to place
inside the stores as values

The programming activities in BASIC, such as
A=3
B=A+1
PRINT B

were carried out analogously by a group of pupils on the cardboard machines.
Someone placed a message on the screen to say A=3, and a message was passed
to someone else in charge of the stores. (S)he looked to see if there was a store
labelled A , and if there was not, a new store was labelled. Then the store

labelled A  had the number 3 placed insided. Next the message B=A+1 was

passed to the store-keeper, who made sure that a store was labelled B  in the

same way, looked into store A  to find the value was 3, added 1 to get 4, then

placed a card marked 4 in the store B . Finally when the PRINT B command

was passed over, the store-keeper saw that B  contained 4, and found another

card with this number written on and passed it back to be displayed on the
carboard screen.

The classroom was flexibly organized. Only two or three computers were
needed to service a class of twenty or more pupils, because the others could
work on cardboard maths machines.

The setup was intended to involve all four modes of reality construction:



Versatile Thinking in Algebra & the Computer Tall & Thomas

– 10 –

• interaction with the cardboard maths machine (passive
organizer)

• interaction with the algebraic maths machine (cybernetic
organizer)

• interaction between the teacher and pupils and between the
pupils themselves

• personal reflection on the meaning of the notation.

Initially the curriculum activities were designed:

• to encourage the mental image of a letter as a store label
representing a single number which could be changed and, by
extension, could hold any of a variety of numbers,

• to consider the evaluation of expressions and equivalent
expressions in BASIC notation and in standard algebraic
notation.

The pupil could think holistically of a variable as a store labelled with a letter,
and of an expression either as a process on the cardboard maths machine or as
a product in BASIC or in the algebraic maths machine. By giving meaning to
the concept of variable and expression in this way it was hypothesized that the
pupils would have a better foundation to construct the meaning of algebraic
symbolism.

The parsing obstacle was attacked by discussion between teacher and pupils,
then encouraging pupils to reflect on the possible meaning of different
expressions, using BASIC and the algebraic maths machine to build and test
theories as to the meaning of the notation, the order of evaluation of
expressions and the nature of equivalent expressions. We hypothesized that the
expected answer obstacle would be less problematic in the computer
environment as letters and algebraic expressions had a physical function in the
cardboard maths machine and are typed into the computer and seen by the
pupil, thus giving a concrete meaning to the symbolism. Given number values
for the variables, the expressions could be evaluated, in the same way as
arithmetic expressions. Thus the pupils could think of expressions as being
potentially evaluable, yet talk about them as conceptual entities, reducing the
problem of the lack of closure obstacle. Finally, the process-product obstacle
was faced squarely by seeing that the expression represented both process (in
the cardboard maths machine) and product (in the algebraic maths machine
and in BASIC). As the computer performed the process in BASIC and the
Algebraic Maths Machine, this allowed the pupils to concentrate on the
notation as product and to think of it as a conceptual entity.

The whole module, designed to last for three weeks, with four one-hour
lessons a week, has subsequently been published under the title “Dynamic
Algebra” by the Mathematics Association (Tall & Thomas 1989a).
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The Experiments

In the first pilot experiment pupils aged 11/12 in the final year of a Middle
School were divided into 21 matched pairs. One half of the pairs were given
the Dynamic Algebra Module over a three week period whilst the other half
did no algebra. It would therefore be expected that this pilot study showed
improvements in the understanding of algebra (Thomas & Tall 1986). What is
more significant is that one year later, when all the children had moved
schools and studied algebra in a traditional way, a follow-up study indicated
that there were still measurable differences in performance on algebra.

All the pupils transferred to Secondary Schools at the end of the school year.
Eleven of the matched pairs transferred to the same school and were put into
the same mathematics sets, so that during their first year at the school (age
12/13 years) they received an equivalent tuition in algebra. At the end of that
year they were again given the algebra test used in the original study to see
what the longer term effects might have been. A summary of the results and a
comparison with their previous results – using the t-test for non-independent
samples – are given in table I. We see that, over one year after their work on
the basic concepts of algebra in a computer environment, they were still
performing significantly better than those who had not experienced such
work. (The relatively low scores – approximately half marks out of a
maximum of 71 – occur because conceptually harder questions from the
CSMS tests were included on the test. The performance of the control students
was typical of a large sample tested by the CSMS project.)

Exper.
mean

(max=71)

Control
mean

(max=71)
Mean
diff.

S.D. N t df p

Post -test 32.55 19.98 12.57 10.61 21 5.30 20 <0.0005
Delayed post-test 34.70 25.73  8 .47 11.81 20 3.13 19 <0.005
One year + later 44.10 37.40  6 .70  7 .76 10 2.59 9 <0.025

Table I : performance of 11 matched pairs on simple algebraic problems

We may conclude then that there are significant longer term benefits to be had
from the introduction of a module such as the Dynamic Algebra package, with
its emphasis on conceptualisation and use of mental images rather than on skill
acquisition, prior to the more formal learning of algebra.

In order to extend this comparison between the two approaches mentioned
above a larger scale experiment was arranged whereby a direct comparison
might be made between the Dynamic Algebra Module and a traditional skill
based module. The subjects of this second experiment were taken from 6
mixed ability forms in the first year of a mixed ability 12-plus entry
comprehensive school (i.e. 12/13 year olds). On the basis of an algebra pre-
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test based on the CSMS algebra test, and correlated with it, it was found to be
possible to organise 57 matched pairs from the classes.

In the first stage of the comparison the experimental group received the
Dynamic Algebra Module during their normal mathematics periods over
about 4 weeks (about 12 hours). During this time the control group were
taught elementary algebra using a traditional skill based module of work used
in the school over some years, and covering basic simplification and equation
solving in one unknown. Since this point in the experiment gave an ideal
opportunity to compare the effects of each treatment thus far after each group
had finished its work they were given the same test again and a close
comparison of their performance made.

Six months later, all the pupils were given the same traditional module for a
two week period, the controls as revision, the others for the first time,
followed by a repeat of the test. After the post-test of this experiment a cross-
section of 18 pupils, 11 experimental and 7 control, were given a semi-
structured interview lasting about twenty minutes. During the interviews,
which were recorded, the pupils were required to attempt certain key
questions and to explain their thinking and strategies.

The Results

The overall results, as seen in table II, showed that there was no significant
difference in performance between the groups on the algebra test in the post
test, but that, after the second post test the difference becomes significant.

(N=48)
Exper.
mean

(max=67)

Control
mean

(max=67)

Mean
diff. S.D. N t df p

Post -test 36.0 35.9 0.10 10.46 48 0.06 47 n.s
Second post-test 42.1 39.3 2.76  8 .91 47 2.08 46 <0.025

Table II  : Performance of 48 matched pairs on algebra post-tests

A different picture emerges on consideration of the results of individual
questions. Perhaps, not surprisingly, there are some questions where the
control group performed significantly better than the experimental group and
these tended to be those questions involving the sort of skills, particularly
associated with simplification of expressions, which they had been taught (see
table III, which uses the z-statistic to test the difference between the means of
two normal distributions). However, there were some questions on which the
experimental group did noticeably better, and significantly so in some cases.
As table IV shows, these were questions which are of a harder conceptual
nature and require a higher level of understanding, as defined by Küchemann
(1981), including in the case of several of the questions the concept of letter as
a generalised number or variable. Thus it appears that there were differential
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effects from the two approaches in respect of algebraic skills on the one hand
and deeper conceptual understanding on the other.

Question
(asked of 48 matched pairs)

Experimental
proportion

correct

Control
proportion

correct
z p

Multiply 3c by 5 0.10 0.44 3.67 <0.0005
Simplify 3a + 4b + 2a 0.52 0.75 2.30 <0.05
Simplify 3b – b + a 0.33 0.63 2.83 <0.005
Simplify 3a + 4 + a 0.42 0.54 1.21  —
G jigsaws and H jigsaws =? 0.58 0.81  2.45 <0.01

Table III  : Algebraic skills

Question
(asked of 48 matched pairs)

Experimental
proportion

correct

Control
proportion

correct
z p

For what values of a is a+3>7 ? 0.35 0.13 2.63 <0.005
For what values of a is 6>a+3 ? 0.25 0.06 2.53 <0.01
a+b=b — always, never,
sometimes ... when ?

0.33 0.15 2.15 <0.025

M+P+N=N+M+R, — always,
never, sometimes ... when?

0.44 0.29 1.48  —

Perimeter of rectangle D by 4 0.52 0.27  2.50 <0.01
Perimeter of rectangle 5 by F 0.52 0.29 2.29 <0.025
Which is larger: 2n or n+2 ? 0.08 0.00 2.04 <0.025

Table IV  : Conceptual questions

Evidence For Versatility and Conceptual Understanding

The results of our work suggest differential effects between the computer-
based approach to algebra, with its emphasis on letters as generalized numbers
and the traditional skill-based type of module with its emphasis on acquiring
manipulative skills. It seems that the computer work promoted a deeper
conceptual understanding, whilst the other work, as expected, initially
facilitated better surface skills. However, when the computer module was
combined with the skill-based one then it led to a superior overall
performance without detrimental effect on skills.

A significant fact here is that the experimental students are initially
performing better at skills which are considered to be of a higher level. In
other words, the order of difficulty of concepts in the computer paradigm is
different from that in the traditional paradigm. This makes the general point
that empirical research in a pre-computer paradigm may no longer be
appropriate for a computer paradigm. The relative degree of difficulty of
concepts is not absolute, it may be paradigm-dependent.

Given the evidence from the earlier pilot test that the difference in
performance persisted over a longer period, we waited for eighteen months
and gave the students a repeat of the post-test. On this occasion the difference
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between experimental and control groups was no longer statistically significant
(Thomas & Tall 1989b). During this period the classes had been reorganized
in a way which has led to a variety of different experiences for pupils matched
in pairs during the experiment. This suggests that, although computer
experiences may be able provoke different kinds of understanding in the short
and medium term, if these experiences are not continued then their effect may
wane in the face of the overwhelming influence of more recent experiences.

However, understanding of algebraic concepts may not be evidenced by test
performance alone, since, for example, correct answers may be the result of
incorrect understanding. In order to examine the pupils’ understanding of
algebra beyond their test performance it is useful to refer back to interviews
and a questionnaire administered after the second post-test.

The Interviews

The transcript of the interviews reveals, in the language used by the pupils in
each of the groups, the versatility of thought underlying the better
performance of the computer group.

The superior relational understanding and versatility of thought of those who
had used the Dynamic Algebra module strikingly manifested itself in several
different ways, including:

(i) The attempts by the experimental group to explain and offer
reasons for their thinking, compared with the control pupils
greater concern with surface operations in their comments.

(ii) An improvement in encapsulation of processes, shown by the
ability of the computer group to discuss processes without
having to carry them out first and to exhibit global knowledge
of a question in their comments.

(iii) The ability of the computer group pupils to take a global view
of a problem, rather than being pressed into processes implied
by the operations present in the notation.

The following examples taken from the transcripts of the interviews show
these manifestations of improved versatile thinking:

Question: Solve 2p – 1 = 5.

The confusion in thinking which may result from instrumental understanding
is illustrated by one of the control pupil’s explanations for this question :

Pupil  C2 : 2p minus 1 equals 5. If you add the 1 to the 5 that’s 6, so because
there’s no other minus p I forget the p and do the 2p minus 1 equals. If you add
the 1 to the 5 which is 6 and then you take 1 from the 6. No, I don’t get that. I
know I’ve done it but...

Interviewer : What would the value of p be did you say?

Pupil C2 : Six.
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Here the explanation is solely in terms of the operations with no reasons for
their use being cited. This may be compared with the following reasoning
from one of the experimental group pupils :

Pupil E2 : Well find out what minus 1 ... so you would add 1 to that so you get
rid of the 1, so that would be 6 and then its obvious that 2 times 3 equals 6, so
p would be 3.

The pupils in the interviews were also asked to compare the above equation
with 2s – 1 = 5. This was in order to see if they were able to conserve
equation (Wagner 1977, 1981) under a change of variable. A distinct
difference in the type of comment between the two groups shows the superior
understanding in this area of those pupils who had used the computer.

The control group featured those who were unsure of the relationship
Pupil  C1 : s could be 3 as well

Pupil  C4 : They could both equal 4

and those who needed to solve both equations
Pupil C2  : Well what I have put is 2p equals 6 and 2s equals 6,

Pupil C5 : 2s...add the 1 and 5, 6 er 2 and 2, 6, 3 times, so s is 3 as well.

The experimental (computer) group on the other hand were remarkably
consistent in seeing the second equation as being equivalent to the first:

Pupil  E1 : I can say that p and s have the same value...its the same sum.

Pupil E5 : The same. Just using a different letter.

All  the experimental group responded in this way. These responses show
evidence of a global/holistic view of the equations which has enabled the
students to develop the understanding of conservation of equation by seeing
the common structure of the equations. This concept of conservation of
equation under a change of variable was further tested with several of the
children by using an extension to the first question :

Solve 2(p + 1) – 1 = 5.

The insight of the computer group pupils is shown by :
Pupil E1 : Yes, p equals 2.

Interviewer : How did you work that out then?

Pupil  E1 : Well its the same, but its plus 1, so minus 1 add 3.

. . .

Pupil E2 : Oh it would be 2.

Interviewer : Can you tell me why?

Pupil E2 : Because p plus 1 if that’s 3 its the same as the last one only the p is
less because you’ve got to add 1 to the sum.
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Deep and powerful insights such as these, facilitated by a global/holistic view
leading to the structure of the equations, was not matched by the controls.
Instead we have :

Pupil C6 : Say p plus 1, there is already 1 plus p plus another one, I’d say that
was 2p, and then outside plus another 2 that is 4 minus 1 is 3, I would say.

Interviewer : So what is the answer?

Pupil C6 : p equals 1, I would say.

Many would agree that the type of algebraic equation where there are
variables on both sides of the equation is conceptually considerably more
difficult, since they involve one in algebraic manipulation (i.e. of variables)
rather than arithmetic (e.g. Herscovics and Kieran 1980). Although the work
done by neither group had involved them in being taught how to solve this
type of equation, several of the interviewees were given one to solve. One of
the features of relational understanding one might expect to see is that it would
be more easily extensible than instrumental understanding, more readily
applicable to new areas of mathematics. The ways in which the two groups
tackled the question :

Solve 3x – 5 = 2x + 1

again seemed to indicate a superior understanding on the part of those who
had used the computer.

For instance, one control pupil began to manipulate the expression
instrumentally:

Pupil C6 : I’d say it was minus 2x and here you’ve got 3x, 2x plus 1x, so I’d
put that as 1x.

[Writes 3x – 5 = 2x + 1 = 1x]

Interviewer : And is that the answer?

Pupil C6 : Yes.

Here the pupil clearly realized that progress might be made by subtracting 2x
but carried it out in a mechanical way which led to an incorrect result on
which he did not wish to elaborate.

Another control pupil lost sight of the objective all together :
Pupil C3 : I’m trying to work out how you could take 5 from that to leave that.

Interviewer : Can you see any way of doing it?

Pupil C3 : You would have to find the value of x before you could start.

In contrast, the experimental pupils responded more purposefully:
Pupil E1 : Well the value of x must be the same because it’s in the same sum...
I’m thinking that maybe take x times some number away from both sides. That
wouldn’t leave anything in there to go on. You’d have nothing there if you take
2x away and 1x minus 5 equals plus 1.

[Writes x – 5 = +1]
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Interviewer : So how might you do it now?

Pupil E1 : I was thinking maybe get rid of this and forget about that 4 by
putting, adding 5 to both sides – that should do it – so it would be 3x equals 2x
plus 6... try to take x away.

[Writes 3x = 2x + 6]

Shortly after this he solved the equation.

Another experimental pupil started with what seemed like a serialist/analytic
approach, but accompanied his actions with clear reasons for the steps he was
taking, suddenly making a mental connection that enabled him to solve the
problem.

Pupil E2 : You would add 5 to that to get rid of the minus 5 and then that plus 6
so it would be 3x equals 2x plus 6....Well that plus 6 has got a bigger x
because 2x plus 6 equals 3x, that means another 6 would be equal to x, so make
that 3x as well...Well x equals 6.

In the middle of the question the pupil is versatile enough to change viewpoint
(possibly as a result of a cognitive conflict) to a global/holistic one and see the
equation in terms of its balancing structure, equating the extra x with 6.

The Questionnaire

A second means of testing the pupils’ understanding which was employed was
a questionnaire. This probed their understanding and view of algebraic
notation and although it did not allow the opportunity to follow up answers in
the way that an interview does, it had the advantage of wider coverage, being
given to 147 pupils.

The questionnaire included three types of questions:

• to explain, with reasons, whether two algebraic expressions
were equal or not,

• to explain to an imaginary visitor from Mars the meaning of
some algebraic notation,

• harder algebraic questions, beyond the level studied.

Question
Experimental

proportion
correct

Control
proportion

correct
z p

Is 
6
7

   the same as 6÷7? 0.76 0.44 3.38 <0.0005
Is 2+3c  the same as 5c ? 0.41 0.31 1.33 n.s
Is 2(a+b) the same as 2a+2b ? 0.57 0.31 2.69 <0.0005
Solve 13–y=2y+7 0.43 0.27 1.83 <0.05
Simplify 5h–(3g+2h) 0.24 0.08 2.16 <0.025
Solve 17–3e>2 0.31 0.13 2.37 <0.01

Table V : A Comparison of Some Questionnaire Facilities
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Question
Experimental

proportion
making error

Control
proportion

making error
z p

3+m=3m 0.08 0.27 2.54 <0.01
ab=a+b 0.06 0.23 1.77 <0.05
b-2×c=(b-2)c 0.09 0.23 1.71 <0.05
3+2m=5m 0.04 0.13 1.57 n.s

Table VI  : A Comparison of Some Specific Errors

Table V shows the proportions of the pupils giving correct answers to selected
questions and table VI gives the proportion making a specific error. (In both
tables there were 78 experimental and 69 control pupils, with no significant
difference between pre-test means.) These results, and the fact that the
controls did not perform significantly better than the experimental group on
any question, appear to confirm the superior understanding of algebraic
notation of the computer group. Moreover, the experimental students seem to
have a better, more global, view of the notation which in turn has reduced the
occurence of some of the more common notational errors such as conjoining
in addition and the wrong use of brackets.

Of the three questions cited in table V asking if two expressions are
equivalent, the experimental students perform worse than than the control
students in every case. The least well answered of these is the (non)-
equivalence of 2+3c and 5c, illustrating the persistence of the parsing obstacle
and the probable reading of the symbolism from left to right. The
experimental students perform better, but not at a statistically significant level.

The first of these three questions is a significant instance of the process-
product obstacle in which many of the controls did not consider the two
notations as the equivalent because

“ 
6
7  is a fraction, 6÷7 is a sum ”.

This reveals the perception of 6÷7 as a process involving value-operation-
value rather than as a global entity – the single number – produced by this
process. This was not such a problem for the computer group.

The other questions reveal the understanding of the computer group to be
superior in its extensibility to the more difficult questions with their
requirement of deeper understanding.

Reflections

The experiments show that the students using the Dynamic Algebra Module
are more versatile in their thinking than the students following a traditional
course. They are better able to cope with the parsing obstacle, being
significantly better at interpreting symbolism and having fewer parsing errors
such as 2+3a=5a or 3+m=3m.
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They are better able to cope with the process-product obstacle, evidenced by
the fact that they are more likely to consider equivalent expressions such as
2(a+b) and 2a+2b to be the same. They are better at conserving equations and
are less likely to feel the need to go through a solution process to solve an
equation equivalent to one which they have just solved. They are more likely
to be able to chunk information, for instance in seeing that p+1 can be treated
as the variable in the equation  2(p+1)–1=5, whilst the control pupils are more
likely to feel the need to process the information by multiplying out, collecting
terms, and solving for p.

They are more likely to be able to think of expressions as objects, thus
overcoming the lack of closure obstacle and seem to have no problem with the
expected answer obstacle.

Those taking the Dynamic Algebra Module show a reversal of the accepted
order of difficulty of certain concepts: they are initially better at certain
concepts considered more difficult in the CSMS tests (such as solving the
inequality a+3>7) and less good at routine algebraic skills (such as simplifying
3b–b+a). However, after a brief revision of routine skills, they improved to
match the control students at routine problems whilst retaining their
superiority in higher order skills.

This is consistent with Heid’s work in calculus (Heid 1988) where it was
shown that students who use the computer for conceptual work and only carry
out routine manipulation for a short time at the end of the course were better
at higher level conceptual problems than control students following a
traditional course and not significantly different in ability with routine
manipulation.

There is mixed evidence over the very long term improvements caused by a
short three-week period of study using the computer different in nature from
the rest of the work of the students. The initial pilot study, in which the
experimental students used a versatile computer approach to algebra and the
control students did no algebra, showed a maintained difference in
performance over a year later even after further study of algebra by both
groups. The main study revealed the superior medium term performance of
the experimental students following a versatile computer scheme over the
control students following a traditional scheme, but failed to reveal a
statistically significant difference eighteen months later during which time
there was no further computer work.

There is evidence that the relative degree of difficulty of concepts may differ
in a computer paradigm from a traditional paradigm, suggesting the need for
further research and the reassessment of fondly held beliefs of what is hard
and what is easy.
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Finally, although the Dynamic Algebra Module only tackles the initial phases
of letter as a label for a number or set of numbers, and equivalence of
expressions through evaluation, there is evidence that the treatment has an
immediate extension to linear equations.
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