2,761 research outputs found

    Modeling and Simulation in Engineering

    Get PDF
    This book provides an open platform to establish and share knowledge developed by scholars, scientists, and engineers from all over the world, about various applications of the modeling and simulation in the design process of products, in various engineering fields. The book consists of 12 chapters arranged in two sections (3D Modeling and Virtual Prototyping), reflecting the multidimensionality of applications related to modeling and simulation. Some of the most recent modeling and simulation techniques, as well as some of the most accurate and sophisticated software in treating complex systems, are applied. All the original contributions in this book are jointed by the basic principle of a successful modeling and simulation process: as complex as necessary, and as simple as possible. The idea is to manipulate the simplifying assumptions in a way that reduces the complexity of the model (in order to make a real-time simulation), but without altering the precision of the results

    The NASA SBIR product catalog

    Get PDF
    The purpose of this catalog is to assist small business firms in making the community aware of products emerging from their efforts in the Small Business Innovation Research (SBIR) program. It contains descriptions of some products that have advanced into Phase 3 and others that are identified as prospective products. Both lists of products in this catalog are based on information supplied by NASA SBIR contractors in responding to an invitation to be represented in this document. Generally, all products suggested by the small firms were included in order to meet the goals of information exchange for SBIR results. Of the 444 SBIR contractors NASA queried, 137 provided information on 219 products. The catalog presents the product information in the technology areas listed in the table of contents. Within each area, the products are listed in alphabetical order by product name and are given identifying numbers. Also included is an alphabetical listing of the companies that have products described. This listing cross-references the product list and provides information on the business activity of each firm. In addition, there are three indexes: one a list of firms by states, one that lists the products according to NASA Centers that managed the SBIR projects, and one that lists the products by the relevant Technical Topics utilized in NASA's annual program solicitation under which each SBIR project was selected

    Research reports: 1994 NASA/ASEE Summer Faculty Fellowship Program

    Get PDF
    For the 30th consecutive year, a NASA/ASEE Summer Faculty Fellowship Program was conducted at the Marshall Space Flight Center (MSFC). The basic objectives of the programs, which are in the 31st year of operation nationally, are (1) to further the professional knowledge of qualified engineering and science faculty members; (2) to stimulate an exchange of ideas between participants and NASA; (3) to enrich and refresh the research and teaching activities of participants' institutions; and (4) to contribute to the research objectives of the NASA centers. The Faculty Fellows spent 10 weeks at MSFC engaged in a research project compatible with their interests and background and worked in collaboration with a NASA/MSFC colleague. This document is a compilation of Fellows' reports on their research during the summer of 1994

    Small business innovation research. Abstracts of completed 1987 phase 1 projects

    Get PDF
    Non-proprietary summaries of Phase 1 Small Business Innovation Research (SBIR) projects supported by NASA in the 1987 program year are given. Work in the areas of aeronautical propulsion, aerodynamics, acoustics, aircraft systems, materials and structures, teleoperators and robotics, computer sciences, information systems, spacecraft systems, spacecraft power supplies, spacecraft propulsion, bioastronautics, satellite communication, and space processing are covered

    The physics of wind-blown sand and dust

    Full text link
    The transport of sand and dust by wind is a potent erosional force, creates sand dunes and ripples, and loads the atmosphere with suspended dust aerosols. This article presents an extensive review of the physics of wind-blown sand and dust on Earth and Mars. Specifically, we review the physics of aeolian saltation, the formation and development of sand dunes and ripples, the physics of dust aerosol emission, the weather phenomena that trigger dust storms, and the lifting of dust by dust devils and other small-scale vortices. We also discuss the physics of wind-blown sand and dune formation on Venus and Titan.Comment: 72 journal pagers, 49 figure

    The new Mars: The discoveries of Mariner 9

    Get PDF
    The Mariner 9 encounter with Mars is extensively documented with photographs taken by the satellite's onboard cameras, and an attempt is made to explain the observed Martian topography in terms of what is known about the geomorphological evolution of the earth. Early conceptions about the Mars surface are compared with more recent data made available by the Mariner 9 cameras. Other features of the planet Mars which are specifically discussed include the volcanic regions, the surface channels, the polar caps and layered terrain, the Martian atmosphere, and the planet's two moons--Phobos and Deimos

    Radial Basis Functions: Biomedical Applications and Parallelization

    Get PDF
    Radial basis function (RBF) is a real-valued function whose values depend only on the distances between an interpolation point and a set of user-specified points called centers. RBF interpolation is one of the primary methods to reconstruct functions from multi-dimensional scattered data. Its abilities to generalize arbitrary space dimensions and to provide spectral accuracy have made it particularly popular in different application areas, including but not limited to: finding numerical solutions of partial differential equations (PDEs), image processing, computer vision and graphics, deep learning and neural networks, etc. The present thesis discusses three applications of RBF interpolation in biomedical engineering areas: (1) Calcium dynamics modeling, in which we numerically solve a set of PDEs by using meshless numerical methods and RBF-based interpolation techniques; (2) Image restoration and transformation, where an image is restored from its triangular mesh representation or transformed under translation, rotation, and scaling, etc. from its original form; (3) Porous structure design, in which the RBF interpolation used to reconstruct a 3D volume containing porous structures from a set of regularly or randomly placed points inside a user-provided surface shape. All these three applications have been investigated and their effectiveness has been supported with numerous experimental results. In particular, we innovatively utilize anisotropic distance metrics to define the distance in RBF interpolation and apply them to the aforementioned second and third applications, which show significant improvement in preserving image features or capturing connected porous structures over the isotropic distance-based RBF method. Beside the algorithm designs and their applications in biomedical areas, we also explore several common parallelization techniques (including OpenMP and CUDA-based GPU programming) to accelerate the performance of the present algorithms. In particular, we analyze how parallel programming can help RBF interpolation to speed up the meshless PDE solver as well as image processing. While RBF has been widely used in various science and engineering fields, the current thesis is expected to trigger some more interest from computational scientists or students into this fast-growing area and specifically apply these techniques to biomedical problems such as the ones investigated in the present work

    Consistent Point Data Assimilation in Firedrake and Icepack

    Full text link
    We present methods and tools that significantly improve the ability to estimate quantities and fields which are difficult to directly measure, such as the fluidity of ice, using point data sources, such as satellite altimetry. These work with both sparse and dense point data with estimated quantities and fields becoming more accurate as the number of measurements are increased. Such quantities and fields are often used as inputs to mathematical models that are used to make predictions so improving their accuracy is of vital importance. We demonstrate how our methods and tools can increase the accuracy of results, ensure posterior consistency, and aid discourse between modellers and experimenters. To do this, we bring point data into the finite element method ecosystem as discontinuous fields on meshes of disconnected vertices. Point evaluation can then be formulated as a finite element interpolation operation (dual-evaluation). Our new abstractions are well-suited to automation. We demonstrate this by implementing them in Firedrake, which generates highly optimised code for solving PDEs with the finite element method. Our solution integrates with dolfin-adjoint/pyadjoint which allows PDE-constrained optimisation problems, such as data assimilation, to be solved through forward and adjoint mode automatic differentiation. We demonstrate our new functionality through examples in the fields of groundwater hydrology and glaciology

    Flow-vegetation interactions at the plant-scale: the importance of volumetric canopy morphology on flow field dynamics

    Get PDF
    Vegetation is abundant in rivers, and has a significant influence on their hydraulic, geomorphological, and ecological functioning. However, past modelling of the influence of vegetation has generally neglected the complexity of natural plants. This thesis develops a novel numerical representation of flow through and around floodplain and riparian vegetation, focusing on flow-vegetation interactions at the plant-scale. The plant volumetric canopy morphology, which comprises the distribution of vegetal elements over the three-dimensional plant structure, is accurately captured at the millimetre scale spatial resolution using Terrestrial Laser Scanning (TLS), and incorporated into a Computational Fluid Dynamics (CFD) model used to predict flow. Numerical modelling, with vegetation conceptualised as a porous blockage, is used to improve the process-understanding of flow-vegetation interactions. Model predictions are validated against flume experiments, with plant motion dynamics investigated, and analysis extended to consider turbulent flow structures and the plant drag response. Results demonstrate the spatially heterogeneous velocity fields associated with plant volumetric canopy morphology. The presence of leaves, in addition to the posture and aspect of the plant, significantly modifies flow field dynamics. New insights into flow-vegetation interactions include the control of plant porosity, influencing ‘bleed-flow’ through the plant body. As the porosity of the plant reduces, and bleed-flow is prevented, the volume of flow acceleration increases by up to ~150%, with more sub-canopy flow diverted beneath the impermeable plant blockage. Species-dependent drag coefficients are quantified; these are shown to be dynamic as the plant reconfigures, differing from the commonly assigned value of unity, and for the species’ investigated in this thesis range between 0.95 and 2.92. The newly quantified drag coefficients are used to re-evaluate vegetative flow resistance, and the physically-determined Manning’s n values calculated are highly applicable to conveyance estimators and industry standard hydraulic models used in the management of the river corridor
    • …
    corecore