270 research outputs found

    Classical Conformal Blocks and Accessory Parameters from Isomonodromic Deformations

    Get PDF
    Classical conformal blocks naturally appear in the large central charge limit of 2D Virasoro conformal blocks. In the AdS3/CFT2AdS_{3}/CFT_{2} correspondence, they are related to classical bulk actions and are used to calculate entanglement entropy and geodesic lengths. In this work, we discuss the identification of classical conformal blocks and the Painlev\'e VI action showing how isomonodromic deformations naturally appear in this context. We recover the accessory parameter expansion of Heun's equation from the isomonodromic τ\tau-function. We also discuss how the c=1c = 1 expansion of the τ\tau-function leads to a novel approach to calculate the 4-point classical conformal block.Comment: 32+10 pages, 2 figures; v3: upgraded notation, discussion on moduli space and monodromies, numerical and analytic checks; v2: added refs, fixed emai

    A transformed rational function method and exact solutions to the 3+1 dimensional Jimbo-Miwa equation

    Full text link
    A direct approach to exact solutions of nonlinear partial differential equations is proposed, by using rational function transformations. The new method provides a more systematical and convenient handling of the solution process of nonlinear equations, unifying the tanh-function type methods, the homogeneous balance method, the exp-function method, the mapping method, and the F-expansion type methods. Its key point is to search for rational solutions to variable-coefficient ordinary differential equations transformed from given partial differential equations. As an application, the construction problem of exact solutions to the 3+1 dimensional Jimbo-Miwa equation is treated, together with a B\"acklund transformation.Comment: 13 page

    Two Reliable Methods for Solving the (3 + 1)-Dimensional Space-Time Fractional Jimbo-Miwa Equation

    Get PDF
    We investigate methods for obtaining exact solutions of the (3 + 1)-dimensional nonlinear space-time fractional Jimbo-Miwa equation in the sense of the modified Riemann-Liouville derivative. The methods employed to analytically solve the equation are the G′/G,1/G-expansion method and the novel G′/G-expansion method. To the best of our knowledge, there are no researchers who have applied these methods to obtain exact solutions of the equation. The application of the methods is simple, elegant, efficient, and trustworthy. In particular, applying the novel G′/G-expansion method to the equation, we obtain more exact solutions than using other existing methods such as the G′/G-expansion method and the exp-Φ(ξ)-expansion method. The exact solutions of the equation, obtained using the two methods, can be categorized in terms of hyperbolic, trigonometric, and rational functions. Some of the results obtained by the two methods are new and reported here for the first time. In addition, the obtained exact explicit solutions of the equation characterize many physical meanings such as soliton solitary wave solutions, periodic wave solutions, and singular multiple-soliton solutions

    Rational Solutions of the Painlev\'e-II Equation Revisited

    Full text link
    The rational solutions of the Painlev\'e-II equation appear in several applications and are known to have many remarkable algebraic and analytic properties. They also have several different representations, useful in different ways for establishing these properties. In particular, Riemann-Hilbert representations have proven to be useful for extracting the asymptotic behavior of the rational solutions in the limit of large degree (equivalently the large-parameter limit). We review the elementary properties of the rational Painlev\'e-II functions, and then we describe three different Riemann-Hilbert representations of them that have appeared in the literature: a representation by means of the isomonodromy theory of the Flaschka-Newell Lax pair, a second representation by means of the isomonodromy theory of the Jimbo-Miwa Lax pair, and a third representation found by Bertola and Bothner related to pseudo-orthogonal polynomials. We prove that the Flaschka-Newell and Bertola-Bothner Riemann-Hilbert representations of the rational Painlev\'e-II functions are explicitly connected to each other. Finally, we review recent results describing the asymptotic behavior of the rational Painlev\'e-II functions obtained from these Riemann-Hilbert representations by means of the steepest descent method

    Meromorphic solutions of nonlinear ordinary differential equations

    Full text link
    Exact solutions of some popular nonlinear ordinary differential equations are analyzed taking their Laurent series into account. Using the Laurent series for solutions of nonlinear ordinary differential equations we discuss the nature of many methods for finding exact solutions. We show that most of these methods are conceptually identical to one another and they allow us to have only the same solutions of nonlinear ordinary differential equations
    corecore