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We investigate methods for obtaining exact solutions of the (3 + 1)-dimensional nonlinear space-time fractional Jimbo-Miwa
equation in the sense of the modified Riemann-Liouville derivative. The methods employed to analytically solve the equation are
the (𝐺󸀠/𝐺, 1/𝐺)-expansionmethod and the novel (𝐺󸀠/𝐺)-expansionmethod. To the best of our knowledge, there are no researchers
who have applied thesemethods to obtain exact solutions of the equation.The application of themethods is simple, elegant, efficient,
and trustworthy. In particular, applying the novel (𝐺󸀠/𝐺)-expansion method to the equation, we obtain more exact solutions than
using other existing methods such as the (𝐺󸀠/𝐺)-expansion method and the exp(−Φ(𝜉))-expansion method. The exact solutions
of the equation, obtained using the two methods, can be categorized in terms of hyperbolic, trigonometric, and rational functions.
Some of the results obtained by the twomethods are new and reported here for the first time. In addition, the obtained exact explicit
solutions of the equation characterize many physical meanings such as soliton solitary wave solutions, periodic wave solutions, and
singular multiple-soliton solutions.

1. Introduction

Various phenomena such as shallow water waves and multi-
cellular biological dynamics arising in the nonlinear physical
sciences [1, 2], engineering [3, 4], and biology [5] can bemod-
eled by a class of integrable nonlinear evolution equations
which can be expressed in terms of nonlinear partial differen-
tial equations (NPDEs) of integer orders. Consequently, study
of traveling wave solutions of NPDEs plays a significant role
in the investigation of behaviors of nonlinear phenomena.
Due to the efficiency, reliability, and easy use of symbolic soft-
ware packages such asMaple orMathematica,many powerful
methods have been constructed and developed to analytically
solve NPDEs with their aid. Over the last few decades, exact
solutions, analytical approximate solutions, and numerical
solutions of NPDEs have been successfully obtained. The
methods for obtaining exact explicit solutions of NPDEs are,

for example, the (𝐺󸀠/𝐺)-expansion method [6], the tanh-
function method [7, 8], the exp-function method [9, 10],
the 𝐹-expansion method [11], Hirota’s direct method [12, 13],
Kudryashov method [14, 15], and so on. Examples of the
methods for obtaining analytical approximate solutions to
NPDEs are the variational iteration method [16, 17] (VIM),
the Adomian decompositionmethod [18, 19] (ADM), and the
homotopy perturbation method [20, 21] (HPM). In addition,
the examples of useful methods for solving NPDEs numer-
ically are the generalized finite difference method [22], the
finite volume method [23], and the finite element method
[24].

Since fractional derivatives [25] such as the Riemann-
Liouville derivative and the Caputo derivative can describe
the memory and hereditary properties of materials and pro-
cesses which is different from ordinary derivatives, fractional
differential equations (FDEs), which are associated with
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fractional derivatives and the generalization of the classical
differential equations of integer orders, are expansively used
to model various complex phenomena in many study fields
such as physics [26], engineering [27], finance [28], and
biology [29]. It has been found that the above-mentioned
methods with their improvements (see, e.g., [30–33]) are also
widely applicable to solve FDEs. Searching for exact explicit
solutions to nonlinear fractional partial differential equations
(NFPDEs) is a research field of active interest. Nowadays,
many approacheswith the help of symbolic software packages
have been developed to efficiently provide exact solutions
of NFPDEs, for example, the improved extended tanh-
coth method [34], the improved generalized exp-function
method [35], the fractional Riccati expansion method [36],
the (𝐺󸀠/𝐺, 1/𝐺)-expansion method [37–41], and the novel(𝐺󸀠/𝐺)-expansion method [42–45]. The common idea of
these mentioned methods is based on the homogeneous
balance principle.

The (3 + 1)-dimensional Jimbo-Miwa equation, which
was introduced by Jimbo and Miwa [46], is written as

2𝑢𝑦𝑡 + 3𝑢𝑦𝑢𝑥𝑥 + 3𝑢𝑥𝑢𝑥𝑦 − 3𝑢𝑥𝑧 + 𝑢𝑥𝑥𝑥𝑦 = 0, (1)

which is the secondmember of integrable systems of the well-
known Kadomtsev-Petviashvili (KP) hierarchy [47, 48]. The
Jimbo-Miwa equation in (1) is employed to describe particu-
lar interesting (3 + 1)-dimensional traveling waves in physics.
According to the valuable literature obtaining exact solutions
of (1) by several methods (see, e.g., [49–52]), the equation
has a variety of solutions with distinct structures such as
single-soliton solutions, multiple-soliton solutions, periodic
wave solutions, and traveling wave solutions. The aim of this
article is to apply the (𝐺󸀠/𝐺, 1/𝐺)-expansion method and
the novel (𝐺󸀠/𝐺)-expansion method to solve the (3 + 1)-
dimensional space-time fractional Jimbo-Miwa equation in
the sense of Jumarie’smodified Riemann-Liouville derivative.
To the best of our knowledge, there are no researchers who
have applied these methods to the fractional Jimbo-Miwa

equation to obtain exact solutions. Some new exact solutions
of the equation are reported for the first time. The rest of this
paper is organized as follows. In Section 2, the definition of
Jumarie’s modified Riemann-Liouville derivative and some
of its properties are given. Additionally, the descriptions of
the (𝐺󸀠/𝐺, 1/𝐺) and the novel (𝐺󸀠/𝐺)-expansionmethods are
provided. In Section 3, we illustrate the application of the
twomethods to the (3+1)-dimensional space-time fractional
Jimbo-Miwa equation. In Section 4, we provide graphs and
physical explanations of some selected exact solutions of the
equation obtained by the twomethods. Some conclusions and
discussions which are relevant to the obtained results using
the mentioned methods are given in Section 5.

2. Mathematical Preliminaries

In this section, we will provide fundamental concepts
required in this paper for obtaining exact explicit solutions of
the (3 + 1)-dimensional space-time fractional Jimbo-Miwa
equation using the (𝐺󸀠/𝐺, 1/𝐺)-expansion method and
the novel (𝐺󸀠/𝐺)-expansion method. We first give a def-
inition and vital properties of the modified Riemann-
Liouville derivative defined by Jumarie. Then we describe
the (𝐺󸀠/𝐺, 1/𝐺)-expansion method and the novel (𝐺󸀠/𝐺)-
expansion method to obtain exact analytical solutions of
nonlinear FDEs associated with the mentioned fractional
derivative.

2.1. Jumarie’s Modified Riemann-Liouville Derivative and Its
Properties. Thedefinition of themodifiedRiemann-Liouville
derivative and its properties, which will be employed in this
papers, are given as follows.

Definition 1. Assume that𝑓 : R → R, 𝑡 → 𝑓(𝑡) denote a con-
tinuous (but not necessarily first-order differentiable) func-
tion. Jumarie’s modified Riemann-Liouville derivative of
order 𝛼 is defined by the following expression [53, 54]:

𝐷𝛼𝑡 𝑓 (𝑡) =
{{{{{{{{{{{{{

1Γ (−𝛼) ∫𝑡0 (𝑡 − 𝜉)−𝛼−1 𝑓 (𝜉) 𝑑𝜉, 𝛼 < 0,1Γ (1 − 𝛼) 𝑑𝑑𝑡 ∫𝑡0 (𝑡 − 𝜉)−𝛼 [𝑓 (𝜉) − 𝑓 (0)] 𝑑𝜉, 0 < 𝛼 < 1,
(𝑓(𝛼−𝑛) (𝑡))(𝑛) , 𝑛 ≤ 𝛼 < 𝑛 + 1, 𝑛 ≥ 1,

(2)

in which Γ(⋅) is the gamma function defined by

Γ (𝛼) = lim
𝑛→∞

𝑛!𝑛𝛼𝛼 (𝛼 + 1) (𝛼 + 2) ⋅ ⋅ ⋅ (𝛼 + 𝑛) . (3)

Some important properties of Jumarie’s modified
Riemann-Liouville derivative of order 𝛼 are summarized as
follows: 𝐷𝛼𝑡 𝑐 = 0, where 𝑐 is a constant, (4)

𝐷𝛼𝑡 𝑡𝛾 = Γ (𝛾 + 1)Γ (𝛾 + 1 − 𝛼)𝑡𝛾−𝛼, 𝛾 > 0, (5)

𝐷𝛼𝑡 (𝑐𝑓 (𝑡)) = 𝑐𝐷𝛼𝑡 𝑓 (𝑡) , (6)

𝐷𝛼𝑡 (𝑓 (𝑡) 𝑔 (𝑡)) = 𝑔 (𝑡)𝐷𝛼𝑡 𝑓 (𝑡) + 𝑓 (𝑡)𝐷𝛼𝑡 𝑔 (𝑡) , (7)

𝐷𝛼𝑡 𝑓 (𝑔 (𝑡)) = 𝑓󸀠𝑔 (𝑔 (𝑡))𝐷𝛼𝑡 𝑔 (𝑡) , (8)

𝐷𝛼𝑡 𝑓 (𝑔 (𝑡)) = 𝐷𝛼𝑔𝑓 (𝑔 (𝑡)) (𝑔󸀠𝑡)𝛼 . (9)

Remark 2. Properties (7)–(9) are direct results [53–55] from
using the fractional Leibniz rule, the fractional Barrow’s
formula, and the relation𝐷𝛼𝑡 𝑓(𝑡) ≅ Γ(𝛼 + 1)𝐷𝑡𝑓(𝑡). Property
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(7) requires only that the functions 𝑓 and 𝑔 are continuous
(not necessarily differentiable) functions.The use of property
(8) requires that the function 𝑓 is differentiable with respect
to the function 𝑔 and the function 𝑔 is continuous (not
necessarily differentiable). On the other hand, property (9)
needs the function 𝑓 to be continuous (not necessarily
differentiable) with respect to the function 𝑔 and the function𝑔 differentiable with respect to 𝑡. In particular, property (8)
will be utilized in our work.

2.2. Descriptions of the (𝐺󸀠/𝐺, 1/𝐺)-Expansion Method and
the Novel (𝐺󸀠/𝐺)-Expansion Method. In this section, the
descriptions of the (𝐺󸀠/𝐺, 1/𝐺)-expansion method and the
novel (𝐺󸀠/𝐺)-expansion method are concisely given. Con-
sider a nonlinear fractional evolution partial differential
equation in four independent variables 𝑥, 𝑦, 𝑧, and 𝑡 as
follows:

𝐹 (𝑢,𝐷𝛼𝑡 𝑢,𝐷𝜂𝑥𝑢,𝐷𝛽𝑦𝑢,𝐷𝛾𝑧𝑢,𝐷𝛼𝑡𝐷𝛼𝑡 𝑢,𝐷𝛼𝑡𝐷𝜂𝑥𝑢,𝐷𝛼𝑡𝐷𝛽𝑦𝑢,
𝐷𝛼𝑡𝐷𝛾𝑧𝑢,𝐷𝜂𝑥𝐷𝛽𝑦𝑢, . . .) = 0, 0 < 𝛼, 𝜂, 𝛽, 𝛾 < 1, (10)

where 𝐷𝛼𝑡 𝑢, 𝐷𝜂𝑥𝑢, 𝐷𝛽𝑦𝑢, and 𝐷𝛾𝑧𝑢 are Jumarie’s modified
Riemann-Liouville derivatives of a dependent variable 𝑢with
respect to 𝑡, 𝑥, 𝑦, and 𝑧. 𝐹 is a polynomial of the unknown
function 𝑢 = 𝑢(𝑥, 𝑦, 𝑧, 𝑡) and its various partial derivatives
in which the highest order derivatives and nonlinear terms
are involved. The first common step of the two methods is
to convert the NFPDE in (10) into an ordinary differential
equation (ODE) with a fractional complex transformation
[56–58] by using a traveling wave variable 𝜉. We suppose that

𝑈 (𝜉) = 𝑢 (𝑥, 𝑦, 𝑧, 𝑡) ,
𝜉 = 𝑥𝜂Γ (1 + 𝜂) + 𝑦𝛽Γ (1 + 𝛽) + 𝑧𝛾Γ (1 + 𝛾) − 𝑉𝑡𝛼Γ (1 + 𝛼) , (11)

where 𝑉 is a nonzero arbitrary constant. With the trans-
formation in (11) and an integration with respect to 𝜉 (if
possible), (10) is reduced to an ODE for 𝑈 = 𝑈(𝜉) as follows:

𝑃 (𝑈,𝑈󸀠, 𝑈󸀠󸀠, 𝑈󸀠󸀠󸀠, . . .) = 0, (12)

where 𝑃 is a function of 𝑈(𝜉) and its various derivatives. The
prime notation (󸀠) denotes the derivative with respect to 𝜉.
Next we provide themain steps of the (𝐺󸀠/𝐺, 1/𝐺)-expansion
method and then the novel (𝐺󸀠/𝐺)-expansion method for
solving the ODE in (12) as demonstrated below.

2.2.1. The (𝐺󸀠/𝐺, 1/𝐺)-Expansion Method. The following rel-
evant concepts required before providing the main steps
of the (𝐺󸀠/𝐺, 1/𝐺)-expansion method are introduced below.
Consider the following second-order linear ODE:

𝐺󸀠󸀠 (𝜉) + 𝜆𝐺 (𝜉) = 𝜇, (13)

where the prime notation (󸀠) denotes the derivative with
respect to 𝜉 and where 𝜆, 𝜇 are constants. Next we set

𝜙 (𝜉) = 𝐺󸀠 (𝜉)𝐺 (𝜉) ,
𝜓 (𝜉) = 1𝐺 (𝜉) .

(14)

Equations (13) and (14) can be transformed into the system of
two nonlinear ordinary differential equations as follows:

𝜙󸀠 = −𝜙2 + 𝜇𝜓 − 𝜆,
𝜓󸀠 = −𝜙𝜓. (15)

The solutions of (13) can be categorized into the following
three cases.

Case 1. If 𝜆 < 0, then the general solution of (13) is of the
form

𝐺 (𝜉) = 𝐴1 sinh (𝜉√−𝜆) + 𝐴2 cosh (𝜉√−𝜆) + 𝜇𝜆 , (16)

and we have

𝜓2 = −𝜆𝜆2𝜎1 + 𝜇2 (𝜙2 − 2𝜇𝜓 + 𝜆) , (17)

where 𝐴1 and 𝐴2 are arbitrary constants and 𝜎1 = 𝐴21 − 𝐴22.
Case 2. If 𝜆 > 0, then the general solution of (13) can be given
as

𝐺 (𝜉) = 𝐴1 sin (𝜉√𝜆) + 𝐴2 cos (𝜉√𝜆) + 𝜇𝜆 , (18)

and we have the following associated relation:

𝜓2 = 𝜆𝜆2𝜎2 − 𝜇2 (𝜙2 − 2𝜇𝜓 + 𝜆) , (19)

where 𝐴1 and 𝐴2 are arbitrary constants and 𝜎2 = 𝐴21 + 𝐴22.
Case 3. If 𝜆 = 0, then the general solution of (13) can be
written as

𝐺 (𝜉) = 𝜇2 𝜉2 + 𝐴1𝜉 + 𝐴2, (20)

and the corresponding relation is

𝜓2 = 1𝐴21 − 2𝜇𝐴2 (𝜙2 − 2𝜇𝜓) , (21)

where 𝐴1 and 𝐴2 are arbitrary constants.
The main steps of the (𝐺󸀠/𝐺, 1/𝐺)-expansion method

[37–41] are as follows.

Step 1. Suppose that the solution to (12) can be expressed by
a polynomial in the two variables 𝜙 and 𝜓 as follows:

𝑈 (𝜉) = 𝑎0 + 𝑁∑
𝑗=1

𝑎𝑗𝜙𝑗 + 𝑁∑
𝑗=1

𝑏𝑗𝜙𝑗−1𝜓, (22)
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where 𝑎0, 𝑎𝑗, and 𝑏𝑗 (𝑗 = 1, 2, . . . , 𝑁) are constants to be
determined later with 𝑎2𝑁 + 𝑏2𝑁 ̸= 0 and where the functions𝜙 = 𝜙(𝜉) and 𝜓 = 𝜓(𝜉) are implicitly associated with (13)
using the relations in (14).

Step 2. Determine the positive integer𝑁 in (22) by inserting
(22) into (12) and then using the homogeneous balance
between the highest order derivatives and the nonlinear
terms in (12). If the degree of 𝑈(𝜉) is Deg[𝑈(𝜉)] = 𝑁, then
the degree of other terms will be expressed as follows:

Deg [𝑑𝑞𝑈 (𝜉)𝑑𝜉𝑞 ] = 𝑁 + 𝑞,
Deg [(𝑈 (𝜉))𝑝 (𝑑𝑞𝑈 (𝜉)𝑑𝜉𝑞 )𝑠] = 𝑁𝑝 + 𝑠 (𝑁 + 𝑞) . (23)

In particular, if the balance number 𝑁 of some nonlinear
equations is not a positive integer then the special transfor-
mations (e.g., when𝑁 = 𝑞/𝑝 is a fraction in the lowest terms,
we set 𝑈(𝜉) = 𝑊𝑞/𝑝(𝜉)) are applied for 𝑈(𝜉) in (12) to have
a new equation in terms of the new function 𝑊(𝜉) with a
positive integer balance number (see details in [39, 59]).

Step 3. Substituting the resulting equation of (22) into (12)
with the aid of (15) and (17), the function 𝑃 in (12) can be
converted into a polynomial in 𝜙 and 𝜓, in which the degree
of 𝜓 is not larger than one. Equating each coefficients of
the resulting polynomial to zero, we obtain a system of
algebraic equations, which can be solved using the symbolic
computational packages such as Maple or Mathematica, for
the following unknowns 𝑎0, 𝑎𝑗, 𝑏𝑗 (𝑗 = 1, 2, . . . , 𝑁), 𝑉, 𝜇,𝜆(<0), 𝐴1, and 𝐴2. The resulting traveling wave solutions
generated by this step with the transformation in (11) are
expressed by hyperbolic functions.

Step 4. In the same manner as Step 3, substituting the
resulting equation of (22) into (12) with the aid of (15) and
(19) for 𝜆 > 0, we can obtain the exact solutions of (10) by
using the transformation in (11).The obtained exact solutions
are written as trigonometric functions.

Step 5. In the same manner as Step 3, substituting the
resulting equation of (22) into (12) with the aid of (15) and
(21) for 𝜆 = 0, we can obtain the traveling wave solutions of
(10) by using the transformation in (11). The resulting exact
solutions are expressed by rational functions.

2.2.2. The Novel (𝐺󸀠/𝐺)-Expansion Method. In the following,
we give themain steps of the novel (𝐺󸀠/𝐺)-expansionmethod
[42–45].

Step 1. Suppose that the solution of (12) can be expressed in
power of 𝜓(𝜉) as follows:

𝑈 (𝜉) = 𝑁∑
𝑗=−𝑁

𝑎𝑗 (𝜓 (𝜉))𝑗 , (24)

where

𝜓 (𝜉) = 𝑑 + 𝜙 (𝜉) with 𝜙 (𝜉) = 𝐺󸀠 (𝜉)𝐺 (𝜉) . (25)

The unknown constants 𝑎−𝑁 or 𝑎𝑁 may be zero, but both of
them cannot be zero simultaneously. The constants 𝑎𝑗 (𝑗 =0, ±1, ±2, . . . , ±𝑁) and 𝑑 are determined at a later step and the
function 𝐺 = 𝐺(𝜉) satisfies the following nonlinear second-
order ODE:

𝐺𝐺󸀠󸀠 = 𝜆𝐺𝐺󸀠 + 𝜇𝐺2 + V (𝐺󸀠)2 , (26)

where the prime notation (󸀠) denotes the derivative with
respect to 𝜉 and where 𝜆, 𝜇, and V are real parameters.

The Cole-Hopf transformation 𝜙(𝜉) = ln(𝐺(𝜉))𝜉 =𝐺󸀠(𝜉)/𝐺(𝜉) reduces (26) into the following generalizedRiccati
equation:

𝜙󸀠 (𝜉) = 𝜇 + 𝜆𝜙 (𝜉) + (V − 1) 𝜙2 (𝜉) . (27)

It is been discovered that (27) has thirty-nine solutions (see
[60, 61] and Appendix for details).

Step 2. The value of the positive integer 𝑁 can be computed
by balancing the highest order linear terms with nonlinear
terms of the highest order occurring in (12). If the degree
of 𝑈(𝜉) is Deg[𝑈(𝜉)] = 𝑁, then the degree of the other
expressions will be expressed as in (23).

Step 3. Substituting (24) along with (25) and (26) into (12),
we obtain polynomials in (𝑑 + 𝜙(𝜉))𝑘 (𝑘 = 0, ±1, ±2, . . . , ±𝑀
where 𝑀 is a positive integer). Collecting all coefficients of
like-power of the resulting polynomials to zero, we yield
an overdetermined set of algebraic equations for 𝑎𝑗 (𝑗 =0, ±1, ±2, . . . , ±𝑁), 𝑑, and 𝑉.
Step 4. Assuming that the unknown constants of the alge-
braic equations in Step 3 can be obtained, we substitute the
values of the constants together with the solutions of (27) into
(24) to obtain exact traveling wave solutions of the nonlinear
fractional evolution partial differential equation (10) when 𝜉
is set in (11).

Remark 3. It is worth noting that the novel (𝐺󸀠/𝐺)-expansion
method is a generalization of many types of (𝐺󸀠/𝐺)-
expansion methods. First, if we set 𝑑 = 0 in (25) and V = 0
in (26) and negative indices of (𝐺󸀠/𝐺) are zero in (24),
then the method is reduced to the basic (𝐺󸀠/𝐺)-expansion
methods proposed by Wang et al. [62]. Secondly, if 𝑑 = 0
in (25) and V = 0 in (26) then the method is identical to the
improved (𝐺󸀠/𝐺)-expansion methods introduced by Zhang
et al. [63].Thirdly, if 𝜆, 𝜇, and V in (26) are replaced by −𝜆, −𝜇,
and 0, respectively, then the novel (𝐺󸀠/𝐺)-expansion method
translates to the generalized and improved (𝐺󸀠/𝐺)-expansion
method presented byAkbar et al. [64]. Finally, if we let 𝑎𝑗 (𝑗 =0, 1, 2, . . . , 𝑁) be functions of 𝑥 and 𝑡 instead of constants and
V = 0 in (26) then the method coincides with the generalized(𝐺󸀠/𝐺)-expansion method introduced by Zhang et al. [65].
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3. Application of the Two Methods to
the (3 + 1)-Dimensional Space-Time
Fractional Jimbo-Miwa Equation

Consider the (3 + 1)-dimensional space-time fractional
Jimbo-Miwa equation [66]

2𝐷𝛽𝑦𝐷𝛼𝑡 𝑢 + 3𝐷𝛽𝑦𝑢𝐷2𝜂𝑥 𝑢 + 3𝐷𝜂𝑥𝑢𝐷𝜂𝑥𝐷𝛽𝑦𝑢 − 3𝐷𝜂𝑥𝐷𝛾𝑧𝑢
+ 𝐷3𝜂𝑥 𝐷𝛽𝑦𝑢 = 0, 0 < 𝜂, 𝛽, 𝛾, 𝛼 ≤ 1, (28)

where 𝐷𝜅𝑠𝑢 denotes Jumarie’s modified Riemann-Liouville
derivative of a dependent variable 𝑢 with respect to 𝑠 with
the fractional order 𝜅 and 𝑢(𝑥, 𝑦, 𝑧, 𝑡) is a traveling wave
solution of (28) which is an unknown function of four
independent variables 𝑥, 𝑦, 𝑧, and 𝑡. Using the traveling
wave transformation in second equation of (11) and the
properties in (5) and (8), we obtain 𝐷𝛼𝑡 𝑈(𝜉) = −𝑉𝑈󸀠,𝐷𝜂𝑥𝑈(𝜉) = 𝑈󸀠, 𝐷𝛽𝑦𝑈(𝜉) = 𝑈󸀠, 𝐷𝛾𝑧𝑈(𝜉) = 𝑈󸀠, 𝐷𝛽𝑦𝐷𝛼𝑡 𝑈(𝜉) =−𝑉𝑈󸀠󸀠, 𝐷2𝜂𝑥 𝑈(𝜉) = 𝐷𝜂𝑥(𝐷𝜂𝑥𝑈(𝜉)) = 𝑈󸀠󸀠, 𝐷𝜂𝑥𝐷𝛽𝑦𝑈(𝜉) =𝐷𝜂𝑥(𝑈󸀠(𝜉)) = 𝑈󸀠󸀠, 𝐷𝜂𝑥𝐷𝛾𝑧𝑈(𝜉) = 𝐷𝜂𝑥(𝑈󸀠(𝜉)) = 𝑈󸀠󸀠, and𝐷3𝜂𝑥 𝐷𝛽𝑦𝑈(𝜉) = 𝐷3𝜂𝑥 (𝑈󸀠(𝜉)) = 𝐷2𝜂𝑥 (𝐷𝜂𝑥(𝑈󸀠(𝜉))) =𝐷2𝜂𝑥 (𝑈󸀠󸀠(𝜉)) = 𝐷𝜂𝑥(𝐷𝜂𝑥(𝑈󸀠󸀠(𝜉))) = 𝐷𝜂𝑥(𝑈󸀠󸀠󸀠(𝜉)) = 𝑈(4). Hence,
(28) is reduced into the ODE of the variable 𝑈 = 𝑈(𝜉) as

− (2𝑉 + 3)𝑈󸀠󸀠 + 6𝑈󸀠𝑈󸀠󸀠 + 𝑈(4) = 0, (29)

where the prime notation (󸀠) denotes the derivative with
respect to 𝜉. Integrating (29) with respect to 𝜉 and then
choosing the constant of integration to be zero, we obtain the
following ODE:

(2𝑉 + 3)𝑈󸀠 − 3 (𝑈󸀠)2 − 𝑈󸀠󸀠󸀠 = 0. (30)

Applying the formulas in (23) for balancing the highest order
degree terms in 𝑈󸀠󸀠󸀠 and (𝑈󸀠)2 in (30), we have 𝑁 + 3 =2(𝑁 + 1) ⇒ 𝑁 = 1. Consequently, the solution forms of
(30) obtained using the (𝐺󸀠/𝐺, 1/𝐺)-expansion method and
the novel (𝐺󸀠/𝐺)-expansion method are formed with 𝑁 = 1
by using (22) and (24), respectively. Next, we will apply the
mentioned two methods to (30) to eventually produce exact
solutions of the fractional Jimbo-Miwa equation in (28) as
follows.

3.1. Using the (𝐺󸀠/𝐺, 1/𝐺)-Expansion Method. From the bal-
ance which is done above, (22) is reduced to

𝑈 (𝜉) = 𝑎0 + 𝑎1𝜙 (𝜉) + 𝑏1𝜓 (𝜉) , (31)

where the constant coefficients 𝑎0, 𝑎1, and 𝑏1 are determined
at a later step, subject to the inequality 𝑎21 + 𝑏21 ̸= 0. There are
three cases of the function𝐺(𝜉) associated with the functions𝜙(𝜉) and 𝜓(𝜉) of the solution in (31) depending on the sign of𝜆 described above.

Case 1 (hyperbolic function solutions (𝜆 < 0)). If 𝜆 < 0, we
substitute (31) into (30) along with the use of (15) and (17).
Then the left-hand side of (30) turns out to be a polynomial

in 𝜙(𝜉) and𝜓(𝜉). Setting all of the coefficients of this resulting
polynomial to be zero, we obtain the following system of
nonlinear algebraic equations in 𝑎0, 𝑎1, 𝑏1, 𝑉, 𝜇, 𝜆, 𝐴1, 𝐴2:𝜙4 (𝜉) : − 3𝜆2𝐴21𝑎21 + 3𝜆2𝐴22𝑎21 + 6𝜆2𝐴21𝑎1− 6𝜆2𝐴22𝑎1 − 3𝜇2𝑎21 + 6𝜇2𝑎1 + 3𝜆𝑏21 = 0,𝜙3 (𝜉) : − 6𝜆𝜇𝑎1𝑏1 + 6𝜆𝜇𝑏1 = 0,𝜙3 (𝜉) 𝜓 (𝜉) : − 6𝜆2𝐴21𝑎1𝑏1 + 6𝜆2𝐴22𝑎1𝑏1 + 6𝜆2𝐴21𝑏1− 6𝜆2𝐴22𝑏1 − 6𝜇2𝑎1𝑏1 + 6𝜇2𝑏1 = 0,𝜙2 (𝜉) : − 6𝜆3𝐴21𝑎21 + 6𝜆3𝐴22𝑎21 − 2𝑉𝜆2𝐴21𝑎1+ 2𝑉𝜆2𝐴22𝑎1 + 8𝜆3𝐴21𝑎1 − 8𝜆3𝐴22𝑎1 − 3𝜆𝜇2𝑎21− 3𝜆2𝐴21𝑎1 + 3𝜆2𝐴22𝑎1 − 2𝑉𝜇2𝑎1 + 5𝜆𝜇2𝑎1+ 3𝜆2𝑏21 − 3𝜇2𝑎1 = 0,𝜙2 (𝜉) 𝜓 (𝜉) : 6𝜆2𝜇𝐴21𝑎21 − 6𝜆2𝜇𝐴22𝑎21 − 12𝜆2𝜇𝐴21𝑎1+ 12𝜆2𝜇𝐴22𝑎1 + 6𝜇3𝑎21 − 12𝜇3𝑎1 − 6𝜆𝜇𝑏21 = 0,𝜙 (𝜉) : − 6𝜆2𝜇𝑎1𝑏1 + 6𝜆2𝜇𝑏1 = 0,𝜙 (𝜉) 𝜓 (𝜉) : − 6𝜆3𝐴21𝑎1𝑏1 + 6𝜆3𝐴22𝑎1𝑏1 − 2𝑉𝜆2𝐴21𝑏1+ 2𝑉𝜆2𝐴22𝑏1 + 5𝜆3𝐴21𝑏1 − 5𝜆3𝐴22𝑏1 + 6𝜆𝜇2𝑎1𝑏1− 3𝜆2𝐴21𝑏1 + 3𝜆2𝐴22𝑏1 − 2𝑉𝜇2𝑏1 − 7𝜆𝜇2𝑏1− 3𝜇2𝑏1 = 0,𝜓 (𝜉) : 6𝜆3𝜇𝐴21𝑎21 − 6𝜆3𝜇𝐴22𝑎21 + 2𝑉𝜆2𝜇𝐴21𝑎1− 2𝑉𝜆2𝜇𝐴22𝑎1 − 5𝜆3𝜇𝐴21𝑎1 + 5𝜆3𝜇𝐴22𝑎1+ 3𝜆2𝜇𝐴21𝑎1 − 3𝜆2𝜇𝐴22𝑎1 + 2𝑉𝜇3𝑎1 + 𝜆𝜇3𝑎1+ 3𝜇3𝑎1 = 0,𝜙0 (𝜉) : − 3𝜆4𝐴21𝑎21 + 3𝜆4𝐴22𝑎21 − 2𝑉𝜆3𝐴21𝑎1+ 2𝑉𝜆3𝐴22𝑎1 + 2𝜆4𝐴21𝑎1 − 2𝜆4𝐴22𝑎1 − 3𝜆3𝐴21𝑎1+ 3𝜆3𝐴22𝑎1 − 2𝑉𝜆𝜇2𝑎1 − 𝜆2𝜇2𝑎1 − 3𝜆𝜇2𝑎1 = 0.

(32)

It is required that the denominator of 𝜓2 in (17) is not zero,
so system (32) is valid if 𝜆2(𝐴21 −𝐴22) + 𝜇2 ̸= 0. By solving the
above algebraic system using theMaple package program, we
have the following results.

Result 1 𝑎1 = 2,𝑏1 = 0,
𝑉 = −2𝜆 − 32 ,
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𝜇 = 0,𝑎0, 𝜆 (< 0) are arbitrary constants.
(33)

From (16), (31), and (33), we obtain the traveling wave
solution of (28) as follows:

𝑢11 (𝑥, 𝑦, 𝑧, 𝑡) = 𝑎0
+ 2 (𝐴1 cosh (𝜉√−𝜆)√−𝜆 + 𝐴2 sinh (𝜉√−𝜆)√−𝜆)𝐴1 sinh (𝜉√−𝜆) + 𝐴2 cosh (𝜉√−𝜆) , (34)

where 𝜉 is defined in (11) with𝑉 shown in (33) and𝐴1,𝐴2 are
arbitrary constants.

Result 2 𝑎1 = 1,
𝑏1 = ±√−𝜆2𝐴21 − 𝜆2𝐴22 + 𝜇2𝜆 ,

𝑉 = −𝜆2 − 32 ,𝑎0, 𝜇, 𝜆 (< 0) are arbitrary constants.
(35)

From (16), (31), and (35), we obtain the traveling wave
solution of (28) as follows:

𝑢12 (𝑥, 𝑦, 𝑧, 𝑡)= 𝑎0
+ 𝐴1 cosh (𝜉√−𝜆)√−𝜆 + 𝐴2 sinh (𝜉√−𝜆)√−𝜆𝐴1 sinh (𝜉√−𝜆) + 𝐴2 cosh (𝜉√−𝜆) + 𝜇/𝜆
± √− (𝜆2𝐴21 − 𝜆2𝐴22 + 𝜇2) /𝜆𝐴1 sinh (𝜉√−𝜆) + 𝐴2 cosh (𝜉√−𝜆) + 𝜇/𝜆 ,

(36)

where 𝜉 is defined in (11) with𝑉 shown in (35) and𝐴1,𝐴2 are
arbitrary constants.

Case 2 (trigonometric function solutions (𝜆 > 0)). If 𝜆 > 0,
we substitute (31) into (30) along with the use of (15) and
(19). Then the left-hand side of (30) becomes a polynomial in𝜙(𝜉) and 𝜓(𝜉). Setting all of the coefficients of the resulting
polynomial to be zero, we obtain the following system of
nonlinear algebraic equations in 𝑎0, 𝑎1, 𝑏1, 𝑉, 𝜇, 𝜆, 𝐴1, 𝐴2:𝜙4 (𝜉) : − 3𝜆2𝐴21𝑎21 − 3𝜆2𝐴22𝑎21 + 6𝜆2𝐴21𝑎1+ 6𝜆2𝐴22𝑎1 + 3𝜇2𝑎21 − 3𝜆𝑏21 − 6𝜇2𝑎1 = 0,𝜙3 (𝜉) : 6𝜆𝜇𝑎1𝑏1 − 6𝜆𝜇𝑏1 = 0,𝜙3 (𝜉) 𝜓 (𝜉) : − 6𝜆2𝐴21𝑎1𝑏1 − 6𝜆2𝐴22𝑎1𝑏1 + 6𝜆2𝐴21𝑏1+ 6𝜆2𝐴22𝑏1 + 6𝜇2𝑎1𝑏1 − 6𝜇2𝑏1 = 0,

𝜙2 (𝜉) : − 6𝜆3𝐴21𝑎21 − 6𝜆3𝐴22𝑎21 − 2𝑉𝜆2𝐴21𝑎1− 2𝑉𝜆2𝐴22𝑎1 + 8𝜆3𝐴21𝑎1 + 8𝜆3𝐴22𝑎1 − 3𝜆2𝐴21𝑎1− 3𝜆2𝐴22𝑎1 + 3𝜆𝜇2𝑎21 + 2𝑉𝜇2𝑎1 − 3𝜆2𝑏21 − 5𝜆𝜇2𝑎1+ 3𝜇2𝑎1 = 0,𝜙2 (𝜉) 𝜓 (𝜉) : 6𝜆2𝜇𝐴21𝑎21 + 6𝜆2𝜇𝐴22𝑎21 − 12𝜆2𝜇𝐴21𝑎1− 12𝜆2𝜇𝐴22𝑎1 − 6𝜇3𝑎21 + 6𝜆𝜇𝑏21 + 12𝜇3𝑎1 = 0,𝜙 (𝜉) : 6𝜆2𝜇𝑎1𝑏1 − 6𝜆2𝜇𝑏1 = 0,𝜙 (𝜉) 𝜓 (𝜉) : − 6𝜆3𝐴21𝑎1𝑏1 − 6𝜆3𝐴22𝑎1𝑏1 − 2𝑉𝜆2𝐴21𝑏1− 2𝑉𝜆2𝐴22𝑏1 + 5𝜆3𝐴21𝑏1 + 5𝜆3𝐴22𝑏1 − 3𝜆2𝐴21𝑏1− 3𝜆2𝐴22𝑏1 − 6𝜆𝜇2𝑎1𝑏1 + 2𝑉𝜇2𝑏1 + 7𝜆𝜇2𝑏1+ 3𝜇2𝑏1 = 0,𝜓 (𝜉) : 6𝜆3𝜇𝐴21𝑎21 + 6𝜆3𝜇𝐴22𝑎21 + 2𝑉𝜆2𝜇𝐴21𝑎1+ 2𝑉𝜆2𝜇𝐴22𝑎1 − 5𝜆3𝜇𝐴21𝑎1 − 5𝜆3𝜇𝐴22𝑎1+ 3𝜆2𝜇𝐴21𝑎1 + 3𝜆2𝜇𝐴22𝑎1 − 2𝑉𝜇3𝑎1 − 𝜆𝜇3𝑎1− 3𝜇3𝑎1 = 0,𝜙0 (𝜉) : − 3𝜆4𝐴21𝑎21 − 3𝜆4𝐴22𝑎21 − 2𝑉𝜆3𝐴21𝑎1− 2𝑉𝜆3𝐴22𝑎1 + 2𝜆4𝐴21𝑎1 + 2𝜆4𝐴22𝑎1 − 3𝜆3𝐴21𝑎1− 3𝜆3𝐴22𝑎1 + 2𝑉𝜆𝜇2𝑎1 + 𝜆2𝜇2𝑎1 + 3𝜆𝜇2𝑎1 = 0.
(37)

It is required that the denominator of 𝜓2 in (19) is not zero;
thus system (37) is solvable if 𝜆2(𝐴21+𝐴22)−𝜇2 ̸= 0. On solving
the above algebraic system using theMaple package program,
we obtain the following results.

Result 1 𝑎1 = 2,𝑏1 = 0,
𝑉 = −2𝜆 − 32 ,𝜇 = 0,𝑎0, 𝜆 (> 0) are arbitrary constants.

(38)

From (18), (31), and (38), we obtain the traveling wave
solution of (28) as follows:

𝑢21 (𝑥, 𝑦, 𝑧, 𝑡)
= 𝑎0 + 2 (𝐴1 cos (𝜉√𝜆)√𝜆 − 𝐴2 sin (𝜉√𝜆)√𝜆)𝐴1 sin (𝜉√𝜆) + 𝐴2 cos (𝜉√𝜆) , (39)
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where 𝜉 is defined in (11) with 𝑉 shown in (38) and 𝐴1, 𝐴2
are arbitrary constants.

Result 2 𝑎1 = 1,
𝑏1 = ±√−−𝜆2𝐴21 − 𝜆2𝐴22 + 𝜇2𝜆 ,

𝑉 = −𝜆2 − 32 ,𝑎0, 𝜇, 𝜆 (> 0) are arbitrary constants.
(40)

From (18), (31), and (40), we deduce the traveling wave
solution of (28) as follows:𝑢22 (𝑥, 𝑦, 𝑧, 𝑡)

= 𝑎0 + 𝐴1 cos (𝜉√𝜆)√𝜆 − 𝐴2 sin (𝜉√𝜆)√𝜆𝐴1 sin (𝜉√𝜆) + 𝐴2 cos (𝜉√𝜆) + 𝜇/𝜆
± √− (−𝜆2𝐴21 − 𝜆2𝐴22 + 𝜇2) /𝜆𝐴1 sin (𝜉√𝜆) + 𝐴2 cos (𝜉√𝜆) + 𝜇/𝜆 ,

(41)

where 𝜉 is defined in (11) with 𝑉 shown in (40) and 𝐴1, 𝐴2
are arbitrary constants.

Case 3 (rational function solutions (𝜆 = 0)). If 𝜆 = 0, we
substitute (31) into (30) along with the use of (15) and (21).
Then the left-hand side of (30) becomes a polynomial in 𝜙(𝜉)
and 𝜓(𝜉). Setting all of the coefficients of this polynomial to
be zero, we obtain the following system of nonlinear algebraic
equations in 𝑎0, 𝑎1, 𝑏1, 𝑉, 𝜇, 𝐴1, 𝐴2:𝜙4 (𝜉) : 6𝜇𝐴2𝑎21 − 3𝐴21𝑎21 − 12𝜇𝐴2𝑎1 + 6𝐴21𝑎1− 3𝑏21 = 0,𝜙3 (𝜉) : 6𝜇𝑎1𝑏1 − 6𝜇𝑏1 = 0,𝜙3 (𝜉) 𝜓 (𝜉) : 12𝜇𝐴2𝑎1𝑏1 − 6𝐴21𝑎1𝑏1 − 12𝜇𝐴2𝑏1+ 6𝐴21𝑏1 = 0,𝜙2 (𝜉) : 4𝑉𝜇𝐴2𝑎1 − 2𝑉𝐴21𝑎1 − 3𝜇2𝑎21 + 3𝜇2𝑎1+ 6𝜇𝐴2𝑎1 − 3𝐴21𝑎1 = 0,𝜙2 (𝜉) 𝜓 (𝜉) : − 12𝜇2𝐴2𝑎21 + 6𝜇𝐴21𝑎21 + 24𝜇2𝐴2𝑎1− 12𝜇𝐴21𝑎1 + 6𝜇𝑏21 = 0,𝜙 (𝜉) 𝜓 (𝜉) : 4𝑉𝜇𝐴2𝑏1 − 2𝑉𝐴21𝑏1 − 12𝜇2𝑎1𝑏1 + 12𝜇2𝑏1+ 6𝜇𝐴2𝑏1 − 3𝐴21𝑏1 = 0,𝜓 (𝜉) : − 4𝑉𝜇2𝐴2𝑎1 + 2𝑉𝜇𝐴21𝑎1 + 6𝜇3𝑎21 − 6𝜇3𝑎1− 6𝜇2𝐴2𝑎1 + 3𝜇𝐴21𝑎1 = 0.

(42)

It is required that the denominator of 𝜓2 in (21) is not zero;
hence system (42) is valid if 𝐴21 − 2𝜇𝐴2 ̸= 0. By solving the
above algebraic system using theMaple package program, we
display only the following interesting results.

Result 1 𝑎1 = 1,
𝑏1 = ±√−2𝜇𝐴2 + 𝐴21,

𝑉 = −32 ,𝑎0, 𝜇 are arbitrary constants.
(43)

From (20), (31), and (43), we obtain the traveling wave
solution of (28) as follows:

𝑢31 (𝑥, 𝑦, 𝑧, 𝑡) = 𝑎0 + 𝜇𝜉 + 𝐴1(1/2) 𝜇𝜉2 + 𝐴1𝜉 + 𝐴2
± √−2𝜇𝐴2 + 𝐴21(1/2) 𝜇𝜉2 + 𝐴1𝜉 + 𝐴2 ,

(44)

where 𝜉 is defined in (11) with 𝑉 shown in (43) and 𝐴1, 𝐴2
are arbitrary constants.

Result 2 𝑎1 = 1,𝑏1 = 𝐴1,
𝑉 = −32 ,𝜇 = 0,𝑎0 is an arbitrary constant.

(45)

From (20), (31), and (45), we deduce the traveling wave
solution of (28) as follows:

𝑢32 (𝑥, 𝑦, 𝑧, 𝑡) = 𝑎0 + 2𝐴1𝐴1𝜉 + 𝐴2 , (46)

where 𝜉 is defined in (11) with 𝑉 shown in (45) and 𝐴1, 𝐴2
are arbitrary constants.

Aksoy et al. [67] utilized the (𝐺󸀠/𝐺)-expansion method
to generate the exact solutions of (28), which are expressed
in (33), (34), and (35) in their paper. We have found that
our exact solutions in (34), (39), and (46), obtained by the(𝐺󸀠/𝐺, 1/𝐺)-expansion method, have the samemathematical
structures as their results. While the solutions in (36), (41),
and (44) do not appear in [67] and they are all new and not
found elsewhere.

3.2. Using the Novel (𝐺󸀠/𝐺)-Expansion Method. Obtaining𝑁 = 1 from balancing the highest order derivative 𝑈󸀠󸀠󸀠 with
the nonlinear term of the highest order (𝑈󸀠)2, the solution
of (30) using the novel (𝐺󸀠/𝐺)-expansion method has the
following form:𝑈 (𝜉) = 𝑎−1 (𝜓 (𝜉))−1 + 𝑎0 + 𝑎1 (𝜓 (𝜉)) , (47)
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where𝜓(𝜉) = 𝑑+𝜙(𝜉) and 𝜙(𝜉) = 𝐺󸀠/𝐺. Substituting (47) into
(30) and then performing algebraic manipulations, the left-
hand side of (30) is converted into polynomials of (𝜓(𝜉))−𝑗 =(𝑑 + 𝜙(𝜉))−𝑗 and (𝜓(𝜉))𝑗 = (𝑑 + 𝜙(𝜉))𝑗 where 𝑗 = 0, 1, 2, 3, 4.

Equating the coefficients of like-power of these polynomi-
als to zero, we obtain the following set of nonlinear algebraic
equations:

𝜓4 (𝜉) : − 6V3𝑎1 − 3V2𝑎21 + 18V2𝑎1 + 6V𝑎21 − 18V𝑎1− 3𝑎21 + 6𝑎1 = 0,
𝜓3 (𝜉) : 24𝑑V3𝑎1 + 12𝑑V2𝑎21 − 72𝑑V2𝑎1 − 24𝑑V𝑎21− 12𝜆V2𝑎1 − 6𝜆V𝑎21 + 72𝑑V𝑎1 + 12𝑑𝑎21 + 24𝜆V𝑎1+ 6𝜆𝑎21 − 24𝑑𝑎1 − 12𝜆𝑎1 = 0,
𝜓2 (𝜉) : − 36𝑑2V3𝑎1 − 18𝑑2V2𝑎21 + 108𝑑2V2𝑎1+ 36𝑑2V𝑎21 + 36𝑑𝜆V2𝑎1 + 18𝑑𝜆V𝑎21 − 108𝑑2V𝑎1− 18𝑑2𝑎21 − 72𝑑𝜆V𝑎1 − 18𝑑𝜆𝑎21 − 7𝜆2V𝑎1 − 3𝜆2𝑎21− 8𝜇V2𝑎1 − 6𝜇V𝑎21 + 6V2𝑎−1𝑎1 + 2𝑉V𝑎1 + 36𝑑2𝑎1+ 36𝑑𝜆𝑎1 + 7𝜆2𝑎1 + 16𝜇V𝑎1 + 6𝜇𝑎21 − 12V𝑎−1𝑎1− 2𝑉𝑎1 − 8𝜇𝑎1 + 3V𝑎1 + 6𝑎−1𝑎1 − 3𝑎1 = 0,
𝜓 (𝜉) : 24𝑑3V3𝑎1 + 12𝑑3V2𝑎21 − 72𝑑3V2𝑎1 − 24𝑑3V𝑎21− 36𝑑2𝜆V2𝑎1 − 18𝑑2𝜆V𝑎21 + 72𝑑3V𝑎1 + 12𝑑3𝑎21+ 72𝑑2𝜆V𝑎1 + 18𝑑2𝜆𝑎21 + 14𝑑𝜆2V𝑎1 + 6𝑑𝜆2𝑎21+ 16𝑑𝜇V2𝑎1 + 12𝑑𝜇V𝑎21 − 24𝑑V2𝑎−1𝑎1 − 4𝑉𝑑V𝑎1− 24𝑑3𝑎1 − 36𝑑2𝜆𝑎1 − 14𝑑𝜆2𝑎1 − 32𝑑𝜇V𝑎1− 12𝑑𝜇𝑎21 + 48𝑑V𝑎−1𝑎1 − 𝜆3𝑎1 − 8𝜆𝜇V𝑎1 − 6𝜆𝜇𝑎21+ 12𝜆V𝑎−1𝑎1 + 4𝑉𝑑𝑎1 + 2𝑉𝜆𝑎1 + 16𝑑𝜇𝑎1 − 6𝑑V𝑎1− 24𝑑𝑎−1𝑎1 + 8𝜆𝜇𝑎1 − 12𝜆𝑎−1𝑎1 + 6𝑑𝑎1+ 3𝜆𝑎1 = 0,
𝜓0 (𝜉) : − 6𝑑4V3𝑎1 − 3𝑑4V2𝑎21 + 18𝑑4V2𝑎1 + 6𝑑4V𝑎21+ 12𝑑3𝜆V2𝑎1 + 6𝑑3𝜆V𝑎21 − 18𝑑4V𝑎1 − 3𝑑4𝑎21− 24𝑑3𝜆V𝑎1 − 6𝑑3𝜆𝑎21 − 7𝑑2𝜆2V𝑎1 − 3𝑑2𝜆2𝑎21− 8𝑑2𝜇V2𝑎1 − 6𝑑2𝜇V𝑎21 + 6𝑑2V3𝑎−1 + 36𝑑2V2𝑎−1𝑎1+ 2𝑉𝑑2V𝑎1 + 6𝑑4𝑎1 + 12𝑑3𝜆𝑎1 + 7𝑑2𝜆2𝑎1+ 16𝑑2𝜇V𝑎1 + 6𝑑2𝜇𝑎21 − 18𝑑2V2𝑎−1 − 72𝑑2V𝑎−1𝑎1+ 𝑑𝜆3𝑎1 + 8𝑑𝜆𝜇V𝑎1 + 6𝑑𝜆𝜇𝑎21 − 6𝑑𝜆V2𝑎−1

− 36𝑑𝜆V𝑎−1𝑎1 − 2𝑉𝑑2𝑎1 − 2𝑉𝑑𝜆𝑎1 − 8𝑑2𝜇𝑎1
+ 18𝑑2V𝑎−1 + 3𝑑2V𝑎1 + 36𝑑2𝑎−1𝑎1 − 8𝑑𝜆𝜇𝑎1
+ 12𝑑𝜆V𝑎−1 + 36𝑑𝜆𝑎−1𝑎1 − 𝜆2𝜇𝑎1 + 𝜆2V𝑎−1
+ 6𝜆2𝑎−1𝑎1 − 2𝜇2V𝑎1 − 3𝜇2𝑎21 + 2𝜇V2𝑎−1+ 12𝜇V𝑎−1𝑎1 − 3V2𝑎2−1 + 2𝑉𝜇𝑎1 − 2𝑉V𝑎−1− 6𝑑2𝑎−1 − 3𝑑2𝑎1 − 6𝑑𝜆𝑎−1 − 3𝑑𝜆𝑎1 − 𝜆2𝑎−1+ 2𝜇2𝑎1 − 4𝜇V𝑎−1 − 12𝜇𝑎−1𝑎1 + 6V𝑎2−1 + 2𝑉𝑎−1+ 2𝜇𝑎−1 + 3𝜇𝑎1 − 3V𝑎−1 − 3𝑎2−1 + 3𝑎−1 = 0,

𝜓−1 (𝜉) : − 24𝑑3V3𝑎−1 − 24𝑑3V2𝑎−1𝑎1 + 72𝑑3V2𝑎−1+ 48𝑑3V𝑎−1𝑎1 + 36𝑑2𝜆V2𝑎−1 + 36𝑑2𝜆V𝑎−1𝑎1− 72𝑑3V𝑎−1 − 24𝑑3𝑎−1𝑎1 − 72𝑑2𝜆V𝑎−1− 36𝑑2𝜆𝑎−1𝑎1 − 14𝑑𝜆2V𝑎−1 − 12𝑑𝜆2𝑎−1𝑎1
− 16𝑑𝜇V2𝑎−1 − 24𝑑𝜇V𝑎−1𝑎1 + 12𝑑V2𝑎2−1+ 4𝑉𝑑V𝑎−1 + 24𝑑3𝑎−1 + 36𝑑2𝜆𝑎−1 + 14𝑑𝜆2𝑎−1
+ 32𝑑𝜇V𝑎−1 + 24𝑑𝜇𝑎−1𝑎1 − 24𝑑V𝑎2−1 + 𝜆3𝑎−1+ 8𝜆𝜇V𝑎−1 + 12𝜆𝜇𝑎−1𝑎1 − 6𝜆V𝑎2−1 − 4𝑉𝑑𝑎−1− 2𝑉𝜆𝑎−1 − 16𝑑𝜇𝑎−1 + 6𝑑V𝑎−1 + 12𝑑𝑎2−1 − 8𝜆𝜇𝑎−1+ 6𝜆𝑎2−1 − 6𝑑𝑎−1 − 3𝜆𝑎−1 = 0,

𝜓−2 (𝜉) : 36𝑑4V3𝑎−1 + 6𝑑4V2𝑎−1𝑎1 − 108𝑑4V2𝑎−1
− 12𝑑4V𝑎−1𝑎1 − 72𝑑3𝜆V2𝑎−1 − 12𝑑3𝜆V𝑎−1𝑎1
+ 108𝑑4V𝑎−1 + 6𝑑4𝑎−1𝑎1 + 144𝑑3𝜆V𝑎−1+ 12𝑑3𝜆𝑎−1𝑎1 + 43𝑑2𝜆2V𝑎−1 + 6𝑑2𝜆2𝑎−1𝑎1+ 44𝑑2𝜇V2𝑎−1 + 12𝑑2𝜇V𝑎−1𝑎1 − 18𝑑2V2𝑎2−1− 2𝑉𝑑2V𝑎−1 − 36𝑑4𝑎−1 − 72𝑑3𝜆𝑎−1 − 43𝑑2𝜆2𝑎−1− 88𝑑2𝜇V𝑎−1 − 12𝑑2𝜇𝑎−1𝑎1 + 36𝑑2V𝑎2−1 − 7𝑑𝜆3𝑎−1− 44𝑑𝜆𝜇V𝑎−1 − 12𝑑𝜆𝜇𝑎−1𝑎1 + 18𝑑𝜆V𝑎2−1+ 2𝑉𝑑2𝑎−1 + 2𝑉𝑑𝜆𝑎−1 + 44𝑑2𝜇𝑎−1 − 3𝑑2V𝑎−1
− 18𝑑2𝑎2−1 + 44𝑑𝜆𝜇𝑎−1 − 18𝑑𝜆𝑎2−1 + 7𝜆2𝜇𝑎−1− 3𝜆2𝑎2−1 + 8𝜇2V𝑎−1 + 6𝜇2𝑎−1𝑎1 − 6𝜇V𝑎2−1− 2𝑉𝜇𝑎−1 + 3𝑑2𝑎−1 + 3𝑑𝜆𝑎−1 − 8𝜇2𝑎−1 + 6𝜇𝑎2−1− 3𝜇𝑎−1 = 0,
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𝜓−3 (𝜉) : − 24𝑑5V3𝑎−1 + 72𝑑5V2𝑎−1 + 60𝑑4𝜆V2𝑎−1− 72𝑑5V𝑎−1 − 120𝑑4𝜆V𝑎−1 − 48𝑑3𝜆2V𝑎−1− 48𝑑3𝜇V2𝑎−1 + 12𝑑3V2𝑎2−1 + 24𝑑5𝑎−1 + 60𝑑4𝜆𝑎−1+ 48𝑑3𝜆2𝑎−1 + 96𝑑3𝜇V𝑎−1 − 24𝑑3V𝑎2−1+ 12𝑑2𝜆3𝑎−1 + 72𝑑2𝜆𝜇V𝑎−1 − 18𝑑2𝜆V𝑎2−1− 48𝑑3𝜇𝑎−1 + 12𝑑3𝑎2−1 − 72𝑑2𝜆𝜇𝑎−1 + 18𝑑2𝜆𝑎2−1− 24𝑑𝜆2𝜇𝑎−1 + 6𝑑𝜆2𝑎2−1 − 24𝑑𝜇2V𝑎−1 + 12𝑑𝜇V𝑎2−1+ 24𝑑𝜇2𝑎−1 − 12𝑑𝜇𝑎2−1 + 12𝜆𝜇2𝑎−1 − 6𝜆𝜇𝑎2−1 = 0,𝜓−4 (𝜉) : 6𝑑6V3𝑎−1 − 18𝑑6V2𝑎−1 − 18𝑑5𝜆V2𝑎−1+ 18𝑑6V𝑎−1 + 36𝑑5𝜆V𝑎−1 + 18𝑑4𝜆2V𝑎−1+ 18𝑑4𝜇V2𝑎−1 − 3𝑑4V2𝑎2−1 − 6𝑑6𝑎−1 − 18𝑑5𝜆𝑎−1− 18𝑑4𝜆2𝑎−1 − 36𝑑4𝜇V𝑎−1 + 6𝑑4V𝑎2−1 − 6𝑑3𝜆3𝑎−1− 36𝑑3𝜆𝜇V𝑎−1 + 6𝑑3𝜆V𝑎2−1 + 18𝑑4𝜇𝑎−1 − 3𝑑4𝑎2−1+ 36𝑑3𝜆𝜇𝑎−1 − 6𝑑3𝜆𝑎2−1 + 18𝑑2𝜆2𝜇𝑎−1− 3𝑑2𝜆2𝑎2−1 + 18𝑑2𝜇2V𝑎−1 − 6𝑑2𝜇V𝑎2−1− 18𝑑2𝜇2𝑎−1 + 6𝑑2𝜇𝑎2−1 − 18𝑑𝜆𝜇2𝑎−1 + 6𝑑𝜆𝜇𝑎2−1+ 6𝜇3𝑎−1 − 3𝜇2𝑎2−1 = 0.
(48)

Using the symbolic computation software Maple 17 to
solve the above system in (48), we obtain the following three
cases of unknown constants 𝑎0, 𝑎1, 𝑎−1, 𝑑, and 𝑉.
Case 1.

𝑎1 = 0,𝑎−1 = 2𝑑2V − 2𝑑2 − 2𝑑𝜆 + 2𝜇,
𝑉 = 12𝜆2 − 2𝜇V + 2𝜇 − 32 ,𝑎0, 𝜇, 𝜆, V, 𝑑 are arbitrary constants.

(49)

Case 2. 𝑎1 = −2V + 2,𝑎−1 = 0,
𝑉 = 12𝜆2 − 2𝜇V + 2𝜇 − 32 ,𝑎0, 𝜇, 𝜆, V, 𝑑 are arbitrary constants.

(50)

Case 3. 𝑎1 = −2V + 2,
𝑎−1 = −𝜆2 − 4𝜇V + 4𝜇2 (V − 1) ,
𝑑 = 𝜆2 (V − 1) ,
𝑉 = 2𝜆2 − 8𝜇V + 8𝜇 − 32 ,𝑎0, 𝜇, 𝜆, V ̸= 1 are arbitrary constants.

(51)

All of the following exact solutions 𝑢(𝑥, 𝑦, 𝑧, 𝑡) of (28)
are constructed by using the solutions of the generalized
Riccati equation (A.1) which are classified into four families
as mentioned in the Appendix. Then they are verified by
substituting back into (30) with the aid of the Maple 17
package program to check that all of the solutions satisfy (30).
In order to obtain the exact solutions 𝑢(𝑥, 𝑦, 𝑧, 𝑡) of (28), we
must use the change of variable

𝜉 = 𝑥𝜂Γ (1 + 𝜂) + 𝑦𝛽Γ (1 + 𝛽) + 𝑧𝛾Γ (1 + 𝛾) − 𝑉𝑡𝛼Γ (1 + 𝛼) , (52)

with the values of 𝑉 obtained from each case of unknown
constants. Comparing (A.1) to (27), we have that 𝑝 = 𝜆,𝑞 = (V − 1), 𝑟 = 𝜇. For convenience, we set

Δ = 𝜆2 − 4𝜇 (V − 1) . (53)

The Exact Solutions of (28) Obtained Using the Unknown
Constants of Case 1. Substituting (49) into (47) together with
using (52) and (53), we obtain the following.

Family 1. When Δ > 0 and 𝜆(V − 1) ̸= 0 (or 𝜇(V − 1) ̸= 0), the
hyperbolic function solutions of (28) are as follows:

𝑢11 (𝑥, 𝑦, 𝑧, 𝑡) = 2𝑑2V − 2𝑑2 − 2𝑑𝜆 + 2𝜇𝑑 − (1/ (2 (V − 1))) [𝜆 + √Δ tanh ((1/2)√Δ𝜉)] + 𝑎0, (54)

𝑢12 (𝑥, 𝑦, 𝑧, 𝑡) = 2𝑑2V − 2𝑑2 − 2𝑑𝜆 + 2𝜇𝑑 − (1/ (2 (V − 1))) [𝜆 + √Δ coth ((1/2)√Δ𝜉)] + 𝑎0, (55)

𝑢13,4 (𝑥, 𝑦, 𝑧, 𝑡) = 2𝑑2V − 2𝑑2 − 2𝑑𝜆 + 2𝜇𝑑 − (1/ (2 (V − 1))) [𝜆 + √Δ (tanh (√Δ𝜉) ± 𝑖 sech (√Δ𝜉))] + 𝑎0, (56)



10 Mathematical Problems in Engineering

𝑢15,6 (𝑥, 𝑦, 𝑧, 𝑡) = 2𝑑2V − 2𝑑2 − 2𝑑𝜆 + 2𝜇𝑑 − (1/ (2 (V − 1))) [𝜆 + √Δ (coth (√Δ𝜉) ± csch (√Δ𝜉))] + 𝑎0, (57)

𝑢17 (𝑥, 𝑦, 𝑧, 𝑡) = 2𝑑2V − 2𝑑2 − 2𝑑𝜆 + 2𝜇𝑑 − (1/ (4 (V − 1))) [2𝜆 + √Δ (tanh ((1/4)√Δ𝜉) + coth ((1/4)√Δ𝜉))] + 𝑎0, (58)

𝑢18,9 (𝑥, 𝑦, 𝑧, 𝑡) = 2𝑑2V − 2𝑑2 − 2𝑑𝜆 + 2𝜇𝑑 + (1/ (2 (V − 1))) [−𝜆 + (±√(𝐴2 + 𝐵2) Δ − 𝐴√Δ cosh (√Δ𝜉)) / (𝐴 sinh (√Δ𝜉) + 𝐵)] + 𝑎0, (59)

𝑢110,11 (𝑥, 𝑦, 𝑧, 𝑡) = 2𝑑2V − 2𝑑2 − 2𝑑𝜆 + 2𝜇𝑑 + (1/ (2 (V − 1))) [−𝜆 − (±√(𝐵2 − 𝐴2) Δ + 𝐴√Δ sinh (√Δ𝜉)) / (𝐴 cosh (√Δ𝜉) + 𝐵)] + 𝑎0, (60)

where 𝐴 and 𝐵 are two nonzero real constants and satisfy𝐵2 − 𝐴2 > 0,
𝑢112 (𝑥, 𝑦, 𝑧, 𝑡) = 2𝑑2V − 2𝑑2 − 2𝑑𝜆 + 2𝜇[𝑑 + 2𝜇 cosh ((1/2)√Δ𝜉) / (√Δ sinh ((1/2)√Δ𝜉) − 𝜆 cosh ((1/2)√Δ𝜉))] + 𝑎0, (61)

𝑢113 (𝑥, 𝑦, 𝑧, 𝑡) = 2𝑑2V − 2𝑑2 − 2𝑑𝜆 + 2𝜇[𝑑 − 2𝜇 sinh ((1/2)√Δ𝜉) / (𝜆 sinh ((1/2)√Δ𝜉) − √Δ cosh ((1/2)√Δ𝜉))] + 𝑎0, (62)

𝑢114,15 (𝑥, 𝑦, 𝑧, 𝑡) = 2𝑑2V − 2𝑑2 − 2𝑑𝜆 + 2𝜇[𝑑 + 2𝜇 cosh (√Δ𝜉) / (√Δ sinh (√Δ𝜉) − 𝜆 cosh (√Δ𝜉) ± 𝑖√Δ)] + 𝑎0, (63)

𝑢116,17 (𝑥, 𝑦, 𝑧, 𝑡) = 2𝑑2V − 2𝑑2 − 2𝑑𝜆 + 2𝜇[𝑑 + 2𝜇 sinh (√Δ𝜉) / (−𝜆 sinh (√Δ𝜉) + √Δ cosh (√Δ𝜉) ± √Δ)] + 𝑎0, (64)

𝑢118 (𝑥, 𝑦, 𝑧, 𝑡)
= 2𝑑2V − 2𝑑2 − 2𝑑𝜆 + 2𝜇[𝑑 + 4𝜇 sinh ((1/4)√Δ𝜉) cosh ((1/4)√Δ𝜉) / (−2𝜆 sinh ((1/4)√Δ𝜉) cosh ((1/4)√Δ𝜉) + 2√Δ cosh2 ((1/4)√Δ𝜉) − √Δ)]
+ 𝑎0.

(65)

Family 2. When Δ < 0 and 𝜆(V − 1) ̸= 0 (or 𝜇(V − 1) ̸= 0), the
trigonometric function solutions of (28) are as follows:

𝑢119 (𝑥, 𝑦, 𝑧, 𝑡) = 2𝑑2V − 2𝑑2 − 2𝑑𝜆 + 2𝜇𝑑 + (1/ (2 (V − 1))) [−𝜆 + √−Δ tan ((1/2)√−Δ𝜉)] + 𝑎0, (66)

𝑢120 (𝑥, 𝑦, 𝑧, 𝑡) = 2𝑑2V − 2𝑑2 − 2𝑑𝜆 + 2𝜇𝑑 − (1/ (2 (V − 1))) [𝜆 + √−Δ cot ((1/2)√−Δ𝜉)] + 𝑎0, (67)

𝑢121,22 (𝑥, 𝑦, 𝑧, 𝑡) = 2𝑑2V − 2𝑑2 − 2𝑑𝜆 + 2𝜇𝑑 + (1/ (2 (V − 1))) [−𝜆 + √−Δ (tan (√−Δ𝜉) ± sec (√−Δ𝜉))] + 𝑎0, (68)

𝑢123,24 (𝑥, 𝑦, 𝑧, 𝑡) = 2𝑑2V − 2𝑑2 − 2𝑑𝜆 + 2𝜇𝑑 − (1/ (2 (V − 1))) [𝜆 + √−Δ (cot (√−Δ𝜉) ± csc (√−Δ𝜉))] + 𝑎0, (69)
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𝑢125 (𝑥, 𝑦, 𝑧, 𝑡) = 2𝑑2V − 2𝑑2 − 2𝑑𝜆 + 2𝜇𝑑 + (1/ (4 (V − 1))) [−2𝜆 + √−Δ (tan ((1/4)√−Δ𝜉) − cot ((1/4)√−Δ𝜉))] + 𝑎0, (70)

𝑢126,27 (𝑥, 𝑦, 𝑧, 𝑡) = 2𝑑2V − 2𝑑2 − 2𝑑𝜆 + 2𝜇𝑑 + (1/ (2 (V − 1))) [−𝜆 + (±√− (𝐴2 − 𝐵2) Δ − 𝐴√−Δ cos (√−Δ𝜉)) / (𝐴 sin (√−Δ𝜉) + 𝐵)] + 𝑎0, (71)

𝑢128,29 (𝑥, 𝑦, 𝑧, 𝑡) = 2𝑑2V − 2𝑑2 − 2𝑑𝜆 + 2𝜇𝑑 + (1/ (2 (V − 1))) [−𝜆 − (±√− (𝐴2 − 𝐵2) Δ + 𝐴√−Δ cos (√−Δ𝜉)) / (𝐴 sin (√−Δ𝜉) + 𝐵)] + 𝑎0, (72)

where 𝐴 and 𝐵 are two nonzero real constants and satisfy𝐴2 − 𝐵2 > 0,
𝑢130 (𝑥, 𝑦, 𝑧, 𝑡) = 2𝑑2V − 2𝑑2 − 2𝑑𝜆 + 2𝜇[𝑑 − 2𝜇 cos ((1/2)√−Δ𝜉) / (√−Δ sin ((1/2)√−Δ𝜉) + 𝜆 cos ((1/2)√−Δ𝜉))] + 𝑎0, (73)

𝑢131 (𝑥, 𝑦, 𝑧, 𝑡) = 2𝑑2V − 2𝑑2 − 2𝑑𝜆 + 2𝜇[𝑑 + 2𝜇 sin ((1/2)√−Δ𝜉) / (−𝜆 sin ((1/2)√−Δ𝜉) + √−Δ cos ((1/2)√−Δ𝜉))] + 𝑎0, (74)

𝑢132,33 (𝑥, 𝑦, 𝑧, 𝑡) = 2𝑑2V − 2𝑑2 − 2𝑑𝜆 + 2𝜇[𝑑 − 2𝜇 cos (√−Δ𝜉) / (√−Δ sin (√−Δ𝜉) + 𝜆 cos (√−Δ𝜉) ± √−Δ)] + 𝑎0, (75)

𝑢134,35 (𝑥, 𝑦, 𝑧, 𝑡) = 2𝑑2V − 2𝑑2 − 2𝑑𝜆 + 2𝜇[𝑑 + 2𝜇 sin (√−Δ𝜉) / (−𝜆 sin (√−Δ𝜉) + √−Δ cos (√−Δ𝜉) ± √−Δ)] + 𝑎0, (76)

𝑢136 (𝑥, 𝑦, 𝑧, 𝑡)
= 2𝑑2V − 2𝑑2 − 2𝑑𝜆 + 2𝜇[𝑑 + 4𝜇 sin ((1/4)√−Δ𝜉) cos ((1/4)√−Δ𝜉) / (−2𝜆 sin ((1/4)√−Δ𝜉) cos ((1/4)√−Δ𝜉) + 2√−Δ cos2 ((1/4)√−Δ𝜉) − √−Δ)]
+ 𝑎0.

(77)

Family 3. When 𝜇 = 0 and 𝜆(V − 1) ̸= 0, the hyperbolic
function solutions of (28) are as follows:

𝑢137 (𝑥, 𝑦, 𝑧, 𝑡) = 2𝑑2V − 2𝑑2 − 2𝑑𝜆[𝑑 − 𝜆𝑐1/ ((V − 1) 𝑐1 + cosh (𝜆𝜉) − sinh (𝜆𝜉))] + 𝑎0, (78)

𝑢138 (𝑥, 𝑦, 𝑧, 𝑡) = 2𝑑2V − 2𝑑2 − 2𝑑𝜆[𝑑 − 𝜆 (cosh (𝜆𝜉) + sinh (𝜆𝜉)) / ((V − 1) (𝑐1 + cosh (𝜆𝜉) + sinh (𝜆𝜉)))] + 𝑎0, (79)

where 𝑐1 is an arbitrary constant.

Family 4. When𝜇 = 𝜆 = 0 and V−1 ̸= 0, the rational function
solution of (28) is as follows:

𝑢139 (𝑥, 𝑦, 𝑧, 𝑡) = 2𝑑2V − 2𝑑2[𝑑 − 1/ ((V − 1) 𝜉 + 𝑐2)] + 𝑎0, (80)

where 𝑐2 is an arbitrary constant.

The Exact Solutions of (28) Obtained Using the Unknown
Constants of Case 2. Substituting (50) into (47) together with
using (52) and (53), we obtain the following.

Family 1. When Δ > 0 and 𝜆(V − 1) ̸= 0 (or 𝜇(V − 1) ̸= 0), the
hyperbolic function solutions of (28) are as follows:

𝑢21 (𝑥, 𝑦, 𝑧, 𝑡) = 𝑎0 − 2 (V − 1) [𝑑 − 12 (V − 1) (𝜆
+ √Δ tanh(12√Δ𝜉))] ,

(81)
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𝑢22 (𝑥, 𝑦, 𝑧, 𝑡) = 𝑎0 − 2 (V − 1) [𝑑 − 12 (V − 1) (𝜆
+ √Δ coth(12√Δ𝜉))] ,

(82)

𝑢23,4 (𝑥, 𝑦, 𝑧, 𝑡) = 𝑎0 − 2 (V − 1) [𝑑 − 12 (V − 1) (𝜆
+ √Δ (tanh (√Δ𝜉) ± 𝑖 sech (√Δ𝜉)))] , (83)

𝑢25,6 (𝑥, 𝑦, 𝑧, 𝑡) = 𝑎0 − 2 (V − 1) [𝑑 − 12 (V − 1) (𝜆
+ √Δ (coth (√Δ𝜉) ± csch (√Δ𝜉)))] , (84)

𝑢27 (𝑥, 𝑦, 𝑧, 𝑡) = 𝑎0 − 2 (V − 1) [𝑑 − 14 (V − 1) (2𝜆
+ √Δ(tanh(14√Δ𝜉) + coth(14√Δ𝜉)))] ,

(85)

𝑢28,9 (𝑥, 𝑦, 𝑧, 𝑡) = 𝑎0 − 2 (V − 1)[[[𝑑 +
12 (V − 1) (−𝜆

+ ±√(𝐴2 + 𝐵2) Δ − 𝐴√Δ cosh (√Δ𝜉)𝐴 sinh (√Δ𝜉) + 𝐵 )]]] ,
(86)

𝑢210,11 (𝑥, 𝑦, 𝑧, 𝑡) = 𝑎0 − 2 (V − 1)[[[𝑑 +
12 (V − 1) (−𝜆

− ±√(𝐵2 − 𝐴2) Δ + 𝐴√Δ sinh (√Δ𝜉)𝐴 cosh (√Δ𝜉) + 𝐵 )]]] ,
(87)

where𝐴 and𝐵 are two nonzero real constants and satisfy𝐵2−𝐴2 > 0.
𝑢212 (𝑥, 𝑦, 𝑧, 𝑡) = 𝑎0 − 2 (V − 1) [𝑑 + 2𝜇 cosh ((1/2)√Δ𝜉)√Δ sinh ((1/2)√Δ𝜉) − 𝜆 cosh ((1/2)√Δ𝜉)] , (88)

𝑢213 (𝑥, 𝑦, 𝑧, 𝑡) = 𝑎0 − 2 (V − 1) [𝑑 − 2𝜇 sinh ((1/2)√Δ𝜉)𝜆 sinh ((1/2)√Δ𝜉) − √Δ cosh ((1/2)√Δ𝜉)] , (89)

𝑢214,15 (𝑥, 𝑦, 𝑧, 𝑡) = 𝑎0 − 2 (V − 1) [𝑑 + 2𝜇 cosh (√Δ𝜉)√Δ sinh (√Δ𝜉) − 𝜆 cosh (√Δ𝜉) ± 𝑖√Δ] , (90)

𝑢216,17 (𝑥, 𝑦, 𝑧, 𝑡) = 𝑎0 − 2 (V − 1) [𝑑 + 2𝜇 sinh (√Δ𝜉)−𝜆 sinh (√Δ𝜉) + √Δ cosh (√Δ𝜉) ± √Δ] , (91)

𝑢218 (𝑥, 𝑦, 𝑧, 𝑡) = 𝑎0 − 2 (V − 1) [𝑑 + 4𝜇 sinh ((1/4)√Δ𝜉) cosh ((1/4)√Δ𝜉)−2𝜆 sinh ((1/4)√Δ𝜉) cosh ((1/4)√Δ𝜉) + 2√Δ cosh2 ((1/4)√Δ𝜉) − √Δ] . (92)

Family 2. When Δ < 0 and 𝜆(V − 1) ̸= 0 (or 𝜇(V −1) ̸= 0), the trigonometric function solutions of (28) are as
follows:

𝑢219 (𝑥, 𝑦, 𝑧, 𝑡) = 𝑎0 − 2 (V − 1) [𝑑 + 12 (V − 1) (−𝜆
+ √−Δ tan(12√−Δ𝜉))] ,

(93)

𝑢220 (𝑥, 𝑦, 𝑧, 𝑡) = 𝑎0 − 2 (V − 1) [𝑑 − 12 (V − 1) (𝜆
+ √−Δ cot(12√−Δ𝜉))] ,

(94)

𝑢221,22 (𝑥, 𝑦, 𝑧, 𝑡) = 𝑎0 − 2 (V − 1) [𝑑 + 12 (V − 1) (−𝜆
+ √−Δ (tan (√−Δ𝜉) ± sec (√−Δ𝜉)))] , (95)

𝑢223,24 (𝜉) = 𝑎0 − 2 (V − 1) [𝑑 − 12 (V − 1) (𝜆
+ √−Δ (cot (√−Δ𝜉) ± csc (√−Δ𝜉)))] , (96)

𝑢225 (𝑥, 𝑦, 𝑧, 𝑡) = 𝑎0 − 2 (V − 1) [𝑑 + 14 (V − 1) (−2𝜆
+ √−Δ(tan(14√−Δ𝜉) − cot(14√−Δ𝜉)))] ,

(97)
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𝑢226,27 (𝑥, 𝑦, 𝑧, 𝑡) = 𝑎0 − 2 (V − 1)[[[𝑑 +
12 (V − 1) (−𝜆

+ ±√− (𝐴2 − 𝐵2) Δ − 𝐴√−Δ cos (√−Δ𝜉)𝐴 sin (√−Δ𝜉) + 𝐵 )]]] ,
(98)

𝑢228,29 (𝑥, 𝑦, 𝑧, 𝑡) = 𝑎0 − 2 (V − 1)[[[𝑑 +
12 (V − 1) (−𝜆

− ±√− (𝐴2 − 𝐵2) Δ + 𝐴√−Δ cos (√−Δ𝜉)𝐴 sin (√−Δ𝜉) + 𝐵 )]]] ,
(99)

where𝐴 and𝐵 are two nonzero real constants and satisfy𝐴2−𝐵2 > 0,
𝑢230 (𝑥, 𝑦, 𝑧, 𝑡) = 𝑎0 − 2 (V − 1) [𝑑 − 2𝜇 cos ((1/2)√−Δ𝜉)√−Δ sin ((1/2)√−Δ𝜉) + 𝜆 cos ((1/2)√−Δ𝜉)] , (100)

𝑢231 (𝑥, 𝑦, 𝑧, 𝑡) = 𝑎0 − 2 (V − 1) [𝑑 + 2𝜇 sin ((1/2)√−Δ𝜉)−𝜆 sin ((1/2)√−Δ𝜉) + √−Δ cos ((1/2)√−Δ𝜉)] , (101)

𝑢232,33 (𝑥, 𝑦, 𝑧, 𝑡) = 𝑎0 − 2 (V − 1) [𝑑 − 2𝜇 cos (√−Δ𝜉)√−Δ sin (√−Δ𝜉) + 𝜆 cos (√−Δ𝜉) ± √−Δ] , (102)

𝑢234,35 (𝑥, 𝑦, 𝑧, 𝑡) = 𝑎0 − 2 (V − 1) [𝑑 + 2𝜇 sin (√−Δ𝜉)−𝜆 sin (√−Δ𝜉) + √−Δ cos (√−Δ𝜉) ± √−Δ] , (103)

𝑢236 (𝑥, 𝑦, 𝑧, 𝑡) = 𝑎0 − 2 (V − 1) [𝑑 + 4𝜇 sin ((1/4)√−Δ𝜉) cos ((1/4)√−Δ𝜉)−2𝜆 sin ((1/4)√−Δ𝜉) cos ((1/4)√−Δ𝜉) + 2√−Δ cos2 ((1/4)√−Δ𝜉) − √−Δ] . (104)

Family 3. When 𝜇 = 0 and 𝜆(V − 1) ̸= 0, the hyperbolic
function solutions of (28) are as follows:

𝑢237 (𝑥, 𝑦, 𝑧, 𝑡) = 𝑎0 − 2 (V − 1)
⋅ [𝑑 − 𝜆𝑐1(V − 1) 𝑐1 + cosh (𝜆𝜉) − sinh (𝜆𝜉)] , (105)

𝑢238 (𝑥, 𝑦, 𝑧, 𝑡) = 𝑎0 − 2 (V − 1)
⋅ [𝑑 − 𝜆 (cosh (𝜆𝜉) + sinh (𝜆𝜉))(V − 1) (𝑐1 + cosh (𝜆𝜉) + sinh (𝜆𝜉))] , (106)

where 𝑐1 is an arbitrary constant.

Family 4. When𝜇 = 𝜆 = 0 and V−1 ̸= 0, the rational function
solution of (28) is as follows:

𝑢239 (𝑥, 𝑦, 𝑧, 𝑡) = 𝑎0 − 2 (V − 1) [𝑑 − 1(V − 1) 𝜉 + 𝑐2 ] , (107)

where 𝑐2 is an arbitrary constant.

The Exact Solutions of (28) Obtained Using the Unknown
Constants of Case 3. Substituting (51) into (47) together with
using (52) and (53), we obtain the following.

Family 1. When Δ > 0 and 𝜆(V − 1) ̸= 0 (or 𝜇(V − 1) ̸= 0), the
hyperbolic function solutions of (28) are as follows:

𝑢31 (𝑥, 𝑦, 𝑧, 𝑡) = Δ√Δ tanh ((1/2)√Δ𝜉) + 𝑎0 + √Δ tanh(12√Δ𝜉) , (108)

𝑢32 (𝑥, 𝑦, 𝑧, 𝑡) = Δ√Δ coth ((1/2)√Δ𝜉) + 𝑎0 + √Δ coth(12√Δ𝜉) , (109)

𝑢33,4 (𝑥, 𝑦, 𝑧, 𝑡) = Δ√Δ [tanh (√Δ𝜉) ± 𝑖 sech (√Δ𝜉)] + 𝑎0 + √Δ [tanh (√Δ𝜉) ± 𝑖 sech (√Δ𝜉)] , (110)
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𝑢35,6 (𝑥, 𝑦, 𝑧, 𝑡) = Δ√Δ [coth (√Δ𝜉) ± csch (√Δ𝜉)] + 𝑎0 + √Δ [coth (√Δ𝜉) ± 𝑖 csch (√Δ𝜉)] , (111)

𝑢37 (𝑥, 𝑦, 𝑧, 𝑡) = Δ(√Δ/2) [tanh ((1/4)√Δ𝜉) + coth ((1/4)√Δ𝜉)] + 𝑎0 + √Δ2 [tanh(14√Δ𝜉) + coth(14√Δ𝜉)] , (112)

𝑢38,9 (𝑥, 𝑦, 𝑧, 𝑡) = − Δ[(±√(𝐴2 + 𝐵2) Δ − 𝐴√Δ cosh (√Δ𝜉)) / (𝐴 sinh (√Δ𝜉) + 𝐵)] + 𝑎0

− [[[
±√(𝐴2 + 𝐵2) Δ − 𝐴√Δ cosh (√Δ𝜉)𝐴 sinh (√Δ𝜉) + 𝐵 ]]] ,

(113)

𝑢310,11 (𝑥, 𝑦, 𝑧, 𝑡) = Δ[(±√(−𝐴2 + 𝐵2) Δ + 𝐴√Δ sinh (√Δ𝜉)) / (𝐴 cosh (√Δ𝜉) + 𝐵)] + 𝑎0

+ [[[
±√(−𝐴2 + 𝐵2) Δ + 𝐴√Δ sinh (√Δ𝜉)𝐴 cosh (√Δ𝜉) + 𝐵 ]]] ,

(114)

where 𝐴 and 𝐵 are two nonzero real constants and satisfy𝐵2 − 𝐴2 > 0.
𝑢312 (𝑥, 𝑦, 𝑧, 𝑡) = − 12 (V − 1) Δ[𝜆/ (2 (V − 1)) + 2𝜇 cosh ((1/2)√Δ𝜉) / (√Δ sinh ((1/2)√Δ𝜉) − 𝜆 cosh ((1/2)√Δ𝜉))] + 𝑎0 − 2 (V − 1)

⋅ [ 𝜆2 (V − 1) + 2𝜇 cosh ((1/2)√Δ𝜉)√Δ sinh ((1/2)√Δ𝜉) − 𝜆 cosh ((1/2)√Δ𝜉)] ,
(115)

𝑢313 (𝑥, 𝑦, 𝑧, 𝑡) = − 12 (V − 1) Δ[𝜆/ (2 (V − 1)) − 2𝜇 sinh ((1/2)√Δ𝜉) / (𝜆 sinh ((1/2)√Δ𝜉) − √Δ cosh ((1/2)√Δ𝜉))] + 𝑎0 − 2 (V − 1)
⋅ [ 𝜆2 (V − 1) − 2𝜇 sinh ((1/2)√Δ𝜉)𝜆 sinh ((1/2)√Δ𝜉) − √Δ cosh ((1/2)√Δ𝜉)] ,

(116)

𝑢314,15 (𝑥, 𝑦, 𝑧, 𝑡) = − 12 (V − 1) Δ[𝜆/ (2 (V − 1)) + 2𝜇 cosh (√Δ𝜉) / (√Δ sinh (√Δ𝜉) − 𝜆 cosh (√Δ𝜉) ± 𝑖√Δ)] + 𝑎0 − 2 (V − 1)
⋅ [ 𝜆2 (V − 1) + 2𝜇 cosh (√Δ𝜉)√Δ sinh (√Δ𝜉) − 𝜆 cosh (√Δ𝜉) ± 𝑖√Δ] ,

(117)

𝑢316,17 (𝑥, 𝑦, 𝑧, 𝑡) = − 12 (V − 1) Δ[𝜆/ (2 (V − 1)) + 2𝜇 sinh (√Δ𝜉) / (−𝜆 sinh (√Δ𝜉) + √Δ cosh (√Δ𝜉) ± √Δ)] + 𝑎0 − 2 (V − 1)
⋅ [ 𝜆2 (V − 1) + 2𝜇 sinh (√Δ𝜉)−𝜆 sinh (√Δ𝜉) + √Δ cosh (√Δ𝜉) ± √Δ] ,

(118)

𝑢318 (𝑥, 𝑦, 𝑧, 𝑡) = − 12 (V − 1)
⋅ Δ[𝜆/ (2 (V − 1)) + 4𝜇 sinh ((1/4)√Δ𝜉) cosh ((1/4)√Δ𝜉) / (−2𝜆 sinh ((1/4)√Δ𝜉) cosh ((1/4)√Δ𝜉) + 2√Δ cosh2 ((1/4)√Δ𝜉) − √Δ)]
+ 𝑎0 − 2 (V − 1) [ 𝜆2 (V − 1) + 4𝜇 sinh ((1/4)√Δ𝜉) cosh ((1/4)√Δ𝜉)−2𝜆 sinh ((1/4)√Δ𝜉) cosh ((1/4)√Δ𝜉) + 2√Δ cosh2 ((1/4)√Δ𝜉) − √Δ] .

(119)
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Family 2. When Δ < 0 and 𝜆(V − 1) ̸= 0 (or 𝜇(V − 1) ̸= 0), the
trigonometric function solutions of (28) are as follows:

𝑢319 (𝑥, 𝑦, 𝑧, 𝑡) = − Δ√−Δ tan ((1/2)√−Δ𝜉) + 𝑎0 − √−Δ tan(12√−Δ𝜉) , (120)

𝑢320 (𝑥, 𝑦, 𝑧, 𝑡) = Δ√−Δ cot ((1/2)√−Δ𝜉) + 𝑎0 + √−Δ cot(12√−Δ𝜉) , (121)

𝑢321,22 (𝑥, 𝑦, 𝑧, 𝑡) = − Δ[√−Δ (tan (√−Δ𝜉) ± sec (√−Δ𝜉))] + 𝑎0 − [√−Δ (tan (√−Δ𝜉) ± sec (√−Δ𝜉))] , (122)

𝑢323,24 (𝑥, 𝑦, 𝑧, 𝑡) = Δ[√−Δ (cot (√−Δ𝜉) ± csc (√−Δ𝜉))] + 𝑎0 + [√−Δ (cot (√−Δ𝜉) ± csc (√−Δ𝜉))] , (123)

𝑢325 (𝑥, 𝑦, 𝑧, 𝑡) = − Δ(√−Δ/2) [tan ((1/4)√−Δ𝜉) − cot ((1/4)√−Δ𝜉)] + 𝑎0
− √−Δ2 [tan(14√−Δ𝜉) − cot(14√−Δ𝜉)] ,

(124)

𝑢326,27 (𝑥, 𝑦, 𝑧, 𝑡) = − Δ[(±√− (𝐴2 − 𝐵2) Δ − 𝐴√−Δ cos (√−Δ𝜉)) /𝐴 sin (√−Δ𝜉 + 𝐵)] + 𝑎0
− [[[

±√− (𝐴2 − 𝐵2) Δ − 𝐴√−Δ cos (√−Δ𝜉)𝐴 sin (√−Δ𝜉 + 𝐵) ]]] ,
(125)

𝑢328,29 (𝑥, 𝑦, 𝑧, 𝑡) = Δ[(±√− (𝐴2 − 𝐵2) Δ + 𝐴√−Δ cos (√−Δ𝜉)) / (𝐴 sin (√−Δ𝜉) + 𝐵)] + 𝑎0
+ [[[

±√− (𝐴2 − 𝐵2) Δ + 𝐴√−Δ cos (√−Δ𝜉)𝐴 sin (√−Δ𝜉) + 𝐵 ]]] ,
(126)

where 𝐴 and 𝐵 are two nonzero real constants and satisfy𝐴2 − 𝐵2 > 0,
𝑢330 (𝑥, 𝑦, 𝑧, 𝑡) = − 12 (V − 1) Δ[𝜆/ (2 (V − 1)) − 2𝜇 cos ((1/2)√−Δ𝜉) / (√−Δ sin ((1/2)√−Δ𝜉) + 𝜆 cos ((1/2)√−Δ𝜉))] + 𝑎0 − 2 (V − 1)

⋅ [ 𝜆2 (V − 1) − 2𝜇 cos ((1/2)√−Δ𝜉)√−Δ sin ((1/2)√−Δ𝜉) + 𝜆 cos ((1/2)√−Δ𝜉)] ,
(127)

𝑢331 (𝑥, 𝑦, 𝑧, 𝑡) = − 12 (V − 1) Δ[𝜆/ (2 (V − 1)) + 2𝜇 sin ((1/2)√−Δ𝜉) / (−𝜆 sin ((1/2)√−Δ𝜉) + √−Δ cos ((1/2)√−Δ𝜉))] + 𝑎0 − 2 (V − 1)
⋅ [ 𝜆2 (V − 1) + 2𝜇 sin ((1/2)√−Δ𝜉)−𝜆 sin ((1/2)√−Δ𝜉) + √−Δ cos ((1/2)√−Δ𝜉)] ,

(128)

𝑢332,33 (𝑥, 𝑦, 𝑧, 𝑡) = − 12 (V − 1) Δ[𝜆/ (2 (V − 1)) − 2𝜇 cos (√−Δ𝜉) / (√−Δ sin (√−Δ𝜉) + 𝜆 cos (√−Δ𝜉) ± √−Δ)] + 𝑎0 − 2 (V − 1)
⋅ [ 𝜆2 (V − 1) − 2𝜇 cos (√−Δ𝜉)√−Δ sin (√−Δ𝜉) + 𝜆 cos (√−Δ𝜉) ± √−Δ] ,

(129)
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𝑢334,35 (𝑥, 𝑦, 𝑧, 𝑡) = − 12 (V − 1) Δ[𝜆/ (2 (V − 1)) + 2𝜇 sin (√−Δ𝜉) / (−𝜆 sin (√−Δ𝜉) + √−Δ cos (√−Δ𝜉) ± √−Δ)] + 𝑎0 − 2 (V − 1)
⋅ [ 𝜆2 (V − 1) + 2𝜇 sin (√−Δ𝜉)−𝜆 sin (√−Δ𝜉) + √−Δ cos (√−Δ𝜉) ± √−Δ] ,

(130)

𝑢336 (𝑥, 𝑦, 𝑧, 𝑡) = − 12 (V − 1)
⋅ Δ[𝜆/ (2 (V − 1)) + 4𝜇 sin ((1/4)√−Δ𝜉) cos ((1/4)√−Δ𝜉) / (−2𝜆 sin ((1/4)√−Δ𝜉) cos ((1/4)√−Δ𝜉) + 2√−Δ cos2 ((1/4)√−Δ𝜉) − √−Δ)]
+ 𝑎0 − 2 (V − 1) [ 𝜆2 (V − 1) + 4𝜇 sin ((1/4)√−Δ𝜉) cos ((1/4)√−Δ𝜉)−2𝜆 sin ((1/4)√−Δ𝜉) cos ((1/4)√−Δ𝜉) + 2√−Δ cos2 ((1/4)√−Δ𝜉) − √−Δ] .

(131)

Family 3. When 𝜇 = 0 and 𝜆(V − 1) ̸= 0, the hyperbolic
function solutions of (28) are as follows:

𝑢337 (𝑥, 𝑦, 𝑧, 𝑡) = − 12 (V − 1) 𝜆2[𝜆/ (2 (V − 1)) − 𝜆𝑐1/ ((V − 1) 𝑐1 + cosh (𝜆𝜉) − sinh (𝜆𝜉))] + 𝑎0
− 2 (V − 1) [ 𝜆2 (V − 1) − 𝜆𝑐1(V − 1) 𝑐1 + cosh (𝜆𝜉) − sinh (𝜆𝜉)] ,

(132)

𝑢338 (𝑥, 𝑦, 𝑧, 𝑡) = − 𝜆2[𝜆 − 2𝜆 (cosh (𝜆𝜉) + sinh (𝜆𝜉)) / (𝑐1 + cosh (𝜆𝜉) + sinh (𝜆𝜉))] + 𝑎0
− [𝜆 − 2𝜆 (cosh (𝜆𝜉) + sinh (𝜆𝜉))𝑐1 + cosh (𝜆𝜉) + sinh (𝜆𝜉) ] ,

(133)

where 𝑐1 is an arbitrary constant.

Family 4. When𝜇 = 𝜆 = 0 and V−1 ̸= 0, the rational function
solution of (28) is as follows:

𝑢339 (𝑥, 𝑦, 𝑧, 𝑡) = 𝑎0 − −2V + 2(V − 1) 𝜉 + 𝑐2 , (134)

where 𝑐2 is an arbitrary constant.

Our solutions in (81)–(107) for Case 2 are more general
than the exact solutions obtained in [68] in which the authors
employed the generalized Riccati equation mapping method
to seek the exact solutions of (28) with 𝜂 = 𝛽 = 𝛾 = 𝛼 =1. However, their work did not produce the exact solutions
for Cases 1 and 3, that is, (54)–(80) and (108)–(134). In
addition, our exact solutions in (54), (66), (105), and (107) are
equivalent to that, which were constructed by the exp(−Φ(𝜉))
method, in [66] in which they were expressed in (28), (29),
(30), and (32), respectively. Furthermore, our exact solutions
in (79) and (106) have the same mathematical structure as
solution (29) in [67] using the exp-function method. Hence,
the novel (𝐺󸀠/𝐺)-expansion method used in our work have
provided more new forms of the exact solutions of (28) since
the method gives more free parameters than the existing
methods utilized previously.

4. Some Graphical Representations of Some
Solutions and Their Physical Explanations

The exact explicit solutions of the (3 + 1)-dimensional
nonlinear space-time fractional Jimbo-Miwa equation in (28)
are very useful for describing the diverse types of solitary
wave solutions in physics. In this section, we will therefore
provide some graphical representations of some interesting
exact solutions of the equation. In addition, we will also
discuss the physical explanations of such exact solutions.The
selected exact explicit solutions of (28), which are plotted
only for −15 ≤ 𝑥, 𝑦 ≤ 15 with various values of 𝜂, 𝛽, are
characterized by their shapes and physical meanings. The
used values of 𝜂, 𝛽 are mixed among 𝜂 = 1, 0.99, 0.9 and𝛽 = 1, 0.99, 0.8. For the fixed values 𝜂 = 0.9, 𝛽 = 0.8, the
absolute value of the selected exact solutions |𝑢(𝑥, 𝑦, 𝑧, 𝑡)| is
also plotted since the solutions 𝑢(𝑥, 𝑦, 𝑧, 𝑡) sometimes arise
in a complex form or produce complex values according
to the variations of the used parameters and the plotting
domain. The selected exact solutions of (28) obtained using
the (𝐺󸀠/𝐺, 1/𝐺)-expansion method and the novel (𝐺󸀠/𝐺)-
expansion method are graphically portrayed as follows.
The results in (36), (39), and (44), constructed using the(𝐺󸀠/𝐺, 1/𝐺)-expansion method, are chosen in presenting
their graphs and physical meanings. By the novel (𝐺󸀠/𝐺)-
expansion method, we show graphical representations and
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Figure 1: Associated plots of 𝑢12(𝑥, 𝑦, 𝑧, 𝑡) in (36) with −15 ≤ 𝑥, 𝑦 ≤ 15 using the (𝐺󸀠/𝐺, 1/𝐺)-expansion method: (a) solitary wave solution
of singular kink type for 𝑢12(𝑥, 𝑦, 𝑧, 𝑡) with 𝜂 = 𝛽 = 1, (b) 1-soliton solitary wave solution for 𝑢12(𝑥, 𝑦, 𝑧, 𝑡) with 𝜂 = 𝛽 = 0.99, (c) 1-soliton
solitary wave solution for 𝑢12(𝑥, 𝑦, 𝑧, 𝑡) with 𝜂 = 0.9, 𝛽 = 0.8, and (d) |𝑢12(𝑥, 𝑦, 𝑧, 𝑡)| with 𝜂 = 0.9, 𝛽 = 0.8.

physical explanations of some chosen exact solutions of (28)
for only Case 3.

Using the fixed values 𝜇 = 0.5, 𝜆 = −1, 𝐴1 = 2,
and 𝐴2 = 1 and the various values of 𝜂, 𝛽, the hyperbolic
function solutions of (28) generated employing 𝑢12(𝑥, 𝑦, 𝑧, 𝑡)
in (36) are demonstrated graphically as follows. The solution𝑢12(𝑥, 𝑦, 𝑧, 𝑡) with 𝜂 = 𝛽 = 1, describing the solitary wave
solution of singular kink type, is depicted in Figure 1(a).
In addition, the exact 1-soliton solitary wave solutions𝑢12(𝑥, 𝑦, 𝑧, 𝑡) corresponding to 𝜂 = 𝛽 = 0.99 and 𝜂 = 0.9, 𝛽 =0.8 are shown in Figures 1(b) and 1(c), respectively. Figure 1(d)
displays the graph of |𝑢12(𝑥, 𝑦, 𝑧, 𝑡)| with 𝜂 = 0.9, 𝛽 = 0.8.

For the fixed values 𝜇 = 0, 𝜆 = 1, 𝐴1 = 2, and 𝐴1 =1 and the specified variation of of 𝜂, 𝛽, the trigonometric
exact solutions 𝑢21(𝑥, 𝑦, 𝑧, 𝑡) in (39) of (28) are as follows.
The solution 𝑢21(𝑥, 𝑦, 𝑧, 𝑡) with 𝜂 = 𝛽 = 1 describing the
periodic traveling wave solution is depicted in Figure 2(a).
The solution 𝑢21(𝑥, 𝑦, 𝑧, 𝑡) with 𝜂 = 𝛽 = 0.99 demon-
strating singular double-soliton solution is presented in
Figure 2(b).The graph, which is shown in Figure 2(c) and rep-
resents the singular multiple-soliton solution, corresponds
to 𝑢21(𝑥, 𝑦, 𝑧, 𝑡) with 𝜂 = 0.9, 𝛽 = 0.8. We can observe
that their graphs are not plotted on the entire domain since
these solutions have real values only on a certain part of the
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Figure 2: Associated plots of 𝑢21(𝑥, 𝑦, 𝑧, 𝑡) in (39) with −15 ≤ 𝑥, 𝑦 ≤ 15 using the (𝐺󸀠/𝐺, 1/𝐺)-expansion method: (a) periodic traveling wave
solution for 𝑢21(𝑥, 𝑦, 𝑧, 𝑡) with 𝜂 = 𝛽 = 1, (b) singular double-soliton solution for 𝑢21(𝑥, 𝑦, 𝑧, 𝑡) with 𝜂 = 𝛽 = 0.99, (c) singular multiple-soliton
solution for 𝑢21(𝑥, 𝑦, 𝑧, 𝑡) with 𝜂 = 0.9, 𝛽 = 0.8, and (d) |𝑢21(𝑥, 𝑦, 𝑧, 𝑡)| with 𝜂 = 0.9, 𝛽 = 0.8.
domain. The graph of |𝑢21(𝑥, 𝑦, 𝑧, 𝑡)| with 𝜂 = 0.9, 𝛽 = 0.8 is
shown in Figure 2(d).

Varying the values of 𝜂, 𝛽 as specified above, the rational
function solution 𝑢31(𝑥, 𝑦, 𝑧, 𝑡) in (44) of (28) provides the
physical behaviors similar to the behaviors of 𝑢12(𝑥, 𝑦, 𝑧, 𝑡) as
shown previously. In other words, for the fixed values 𝜇 = 0.5,𝜆 = 0, 𝐴1 = 2, and 𝐴2 = 1, the solitary wave solution of
singular kink type 𝑢31(𝑥, 𝑦, 𝑧, 𝑡) with 𝜂 = 𝛽 = 1 is plotted
on the domain and represented in Figure 3(a). In addition,
the solutions 𝑢31(𝑥, 𝑦, 𝑧, 𝑡) with 𝜂 = 𝛽 = 0.99 and 𝜂 = 0.9,𝛽 = 0.8 characterize the same physical interpretations as
demonstrated in Figures 3(b) and 3(c), respectively. They are
1-soliton solitary wave solutions occurring only for positive

values of 𝑥, 𝑦 since they become complex for 𝑥 < 0 or 𝑦 < 0.
The graph of |𝑢31(𝑥, 𝑦, 𝑧, 𝑡)| with 𝜂 = 0.9, 𝛽 = 0.8 is shown in
Figure 3(d).

The following graphical representations are portrayed
below using the chosen exact solutions constructed from the
novel (𝐺󸀠/𝐺)-expansionmethod. For the fixed values 𝜇 = 0.5,𝜆 = 1, V = 0.5, and 𝑎0 = 1, the solutions generated using𝑢33(𝑥, 𝑦, 𝑧, 𝑡) in (110) of (28) with the specified values of 𝜂, 𝛽
are as follows. The solution 𝑢33(𝑥, 𝑦, 𝑧, 𝑡) with 𝜂 = 𝛽 = 1 gives
the exact kink type solitary wave solution which occurs from
one asymptotic state to another and approaches a constant at
infinity. Its plot is shown in Figure 4(a). The discontinuous
solitary wave solutions of kink type for 𝑢33(𝑥, 𝑦, 𝑧, 𝑡) with 𝜂 =
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Figure 3: Associated plots of 𝑢31(𝑥, 𝑦, 𝑧, 𝑡) in (44) with −15 ≤ 𝑥, 𝑦 ≤ 15 using the (𝐺󸀠/𝐺, 1/𝐺)-expansion method: (a) solitary wave solution
of singular kink type for 𝑢31(𝑥, 𝑦, 𝑧, 𝑡) with 𝜂 = 𝛽 = 1, (b) 1-soliton solitary wave solution for 𝑢31(𝑥, 𝑦, 𝑧, 𝑡) with 𝜂 = 𝛽 = 0.99, (c) 1-soliton
solitary wave solution for 𝑢31(𝑥, 𝑦, 𝑧, 𝑡) with 𝜂 = 0.9, 𝛽 = 0.8, and (d) |𝑢31(𝑥, 𝑦, 𝑧, 𝑡)| with 𝜂 = 0.9, 𝛽 = 0.8.

𝛽 = 0.99 and 𝜂 = 0.9, 𝛽 = 0.8 are depicted in Figures 4(b) and
4(c), respectively. Their graphs are not plotted on the entire
domain since these solutions have complex values only on a
certain part of the domain. The graph of |𝑢33(𝑥, 𝑦, 𝑧, 𝑡)| with𝜂 = 0.9, 𝛽 = 0.8 is displayed in Figure 4(d).

The solution 𝑢312(𝑥, 𝑦, 𝑧, 𝑡) of (28), expressed in (115), is
characterized as the soliton solitary wave solution which is
used to explain many physical phenomena such as soliton
propagation in optical fibers. For the fixed values 𝜇 = 0.5,𝜆 = 1, V = 0.5, and 𝑎0 = 1 and on the specified domain, the
exact soliton solitary wave solution 𝑢312(𝑥, 𝑦, 𝑧, 𝑡), obtained
using (115) with 𝜂 = 𝛽 = 1, is represented in Figure 5(a).
Figures 5(b) and 5(c) show the discontinuous shapes of the

exact soliton solitary wave solutions 𝑢312(𝑥, 𝑦, 𝑧, 𝑡) with 𝜂 =𝛽 = 0.99 and 𝜂 = 0.9, 𝛽 = 0.8, respectively. The graph
of |𝑢312(𝑥, 𝑦, 𝑧, 𝑡)| with 𝜂 = 0.9, 𝛽 = 0.8 is displayed in
Figure 5(d).

The example of a singular periodic travelingwave solution
of (28) can be investigated in the exact explicit solution𝑢325(𝑥, 𝑦, 𝑧, 𝑡) obtained from (124) with 𝜂 = 𝛽 = 1 and the
fixed values 𝜇 = 1, 𝜆 = 0.5, V = 1.5, and 𝑎0 = 1. Its graph is
represented in Figure 6(a). Using the same values of 𝜇, 𝜆, V,
and 𝑎0, the exact singular double-soliton andmultiple-soliton
solutions for 𝑢325(𝑥, 𝑦, 𝑧, 𝑡) corresponding to 𝜂 = 𝛽 = 0.99
and 𝜂 = 0.9, 𝛽 = 0.8 are plotted in Figures 6(b) and 6(c),
respectively. In these cases, we show the solutions only for
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Figure 4: Associated plots of 𝑢33(𝑥, 𝑦, 𝑧, 𝑡) in (110) with −15 ≤ 𝑥, 𝑦 ≤ 15 using the novel (𝐺󸀠/𝐺)-expansion method: (a) solitary wave solution
of kink type for 𝑢33(𝑥, 𝑦, 𝑧, 𝑡) with 𝜂 = 𝛽 = 1, (b) discontinuous solitary wave solution of kink type for 𝑢33(𝑥, 𝑦, 𝑧, 𝑡) with 𝜂 = 𝛽 = 0.99, (c)
discontinuous solitary wave solution of kink type for 𝑢33(𝑥, 𝑦, 𝑧, 𝑡) with 𝜂 = 0.9, 𝛽 = 0.8, and (d) |𝑢33(𝑥, 𝑦, 𝑧, 𝑡)| with 𝜂 = 0.9, 𝛽 = 0.8.

positive values of 𝑥,𝑦 since they become complex for 𝑥 < 0 or𝑦 < 0. Consequently, the graph of |𝑢325(𝑥, 𝑦, 𝑧, 𝑡)|with 𝜂 = 0.9,𝛽 = 0.8 is plotted in Figure 6(d).
In Figure 7(a), we have presented the exact periodic trav-

eling wave solution of 𝑢330(𝑥, 𝑦, 𝑧, 𝑡) on the domain using 𝜂 =𝛽 = 1 and the fixed values 𝜇 = 1, 𝜆 = 0.5, V = 1.5, 𝑎0 = 1, 𝐴 =1, and 𝐵 = 0.5. Using the same values of 𝜇, 𝜆, V, 𝑎0, 𝐴, 𝐵, the
exact singular double-soliton and multiple-soliton solutions
for 𝑢330(𝑥, 𝑦, 𝑧, 𝑡) corresponding to 𝜂 = 𝛽 = 0.99 and 𝜂 = 0.9,𝛽 = 0.8 are plotted in Figures 7(b) and 7(c), respectively.
In Figures 7(b) and 7(c), the solutions 𝑢330(𝑥, 𝑦, 𝑧, 𝑡) become
complex values on the region in which the values of 𝑥 or 𝑦 are

negative. In addition, the plot of |𝑢330(𝑥, 𝑦, 𝑧, 𝑡)| with 𝜂 = 0.9,𝛽 = 0.8 is displayed in Figure 7(d).
For the fixed values 𝜇 = 0, 𝜆 = 0.5, V = 1.5, 𝑎0 = 1,

and 𝑐1 = 1, the exact explicit solution 𝑢337(𝑥, 𝑦, 𝑧, 𝑡) of (28),
obtained using (132) and 𝜂 = 𝛽 = 1, describes the solitary
wave solution of singular kink type, which is shaped as in
Figure 8(a). Figures 8(b) and 8(c) demonstrate the shapes of
the exact 1-soliton solitary wave solutions of singular kink
type using 𝑢337(𝑥, 𝑦, 𝑧, 𝑡) with 𝜂 = 𝛽 = 0.99 and 𝜂 = 0.9,𝛽 = 0.8, respectively. The graph of |𝑢337(𝑥, 𝑦, 𝑧, 𝑡)| with 𝜂 =0.9, 𝛽 = 0.8 is displayed in Figure 8(d).

For the fixed values 𝜇 = 𝜆 = 0, V = 1.5, 𝑎0 = 1, and𝑐1 = 1 and on the mentioned domain, the exact explicit
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Figure 5: Associated plots of 𝑢312(𝑥, 𝑦, 𝑧, 𝑡) in (115) with −15 ≤ 𝑥, 𝑦 ≤ 15 using the novel (𝐺󸀠/𝐺)-expansion method: (a) Soliton solitary
wave solution for 𝑢312(𝑥, 𝑦, 𝑧, 𝑡) with 𝜂 = 𝛽 = 1, (b) discontinuous soliton solitary wave solution for 𝑢312(𝑥, 𝑦, 𝑧, 𝑡) with 𝜂 = 𝛽 = 0.99, (c)
discontinuous soliton solitary wave solution for 𝑢312(𝑥, 𝑦, 𝑧, 𝑡) with 𝜂 = 0.9, 𝛽 = 0.8, and (d) |𝑢312(𝑥, 𝑦, 𝑧, 𝑡)| with 𝜂 = 0.9, 𝛽 = 0.8.
solutions 𝑢339(𝑥, 𝑦, 𝑧, 𝑡) of (28) obtained using (134) and the
various values of 𝜂, 𝛽 are shown in Figure 9. The solitary
wave solution of singular kink type for 𝑢339(𝑥, 𝑦, 𝑧, 𝑡) with𝜂 = 𝛽 = 1 has the shape as shown in Figure 9(a). Figures
9(b) and 9(c) demonstrate the shapes of the exact 1-soliton
solitary wave solutions 𝑢339(𝑥, 𝑦, 𝑧, 𝑡) with 𝜂 = 𝛽 = 0.99 and𝜂 = 0.9, 𝛽 = 0.8, respectively. The graph of |𝑢339(𝑥, 𝑦, 𝑧, 𝑡)|
with 𝜂 = 0.9, 𝛽 = 0.8 is displayed in Figure 9(d).

5. Conclusions

In this article, we have applied the (𝐺󸀠/𝐺, 1/𝐺)-expansion
method and the novel (𝐺󸀠/𝐺)-expansionmethod to construct

exact solitary wave solutions of the (3 + 1)-dimensional non-
linear space-time fractional Jimbo-Miwa equation expressed
in (28) with themodified Riemann-Liouville derivative.With
the aid of the fractional complex transform and the sym-
bolic computation package Maple 17, abundant exact solu-
tions, including generalized hyperbolic function solutions,
generalized trigonometric function solutions, and rational
function solutions, are obtained using the two methods.
Furthermore, some of these exact solutions obtained by the
methods have been graphically characterized into a variety
of distinct physical structures such as a solitary wave solution
of (singular) kink type, a 1-soliton solitary wave solution, a
periodic traveling wave solution, a singular multiple-soliton
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Figure 6: Associated plots of 𝑢325(𝑥, 𝑦, 𝑧, 𝑡) in (124) with −15 ≤ 𝑥, 𝑦 ≤ 15 using the novel (𝐺󸀠/𝐺)-expansion method: (a) singular periodic
traveling wave solution for 𝑢325(𝑥, 𝑦, 𝑧, 𝑡) with 𝜂 = 𝛽 = 1, (b) singular double-soliton solution for 𝑢325(𝑥, 𝑦, 𝑧, 𝑡) with 𝜂 = 𝛽 = 0.99, (c) singular
multiple-soliton solution for 𝑢325(𝑥, 𝑦, 𝑧, 𝑡) with 𝜂 = 0.9, 𝛽 = 0.8, and (d) |𝑢325(𝑥, 𝑦, 𝑧, 𝑡)| with 𝜂 = 0.9, 𝛽 = 0.8.

solution, and a soliton solitary wave solution. It is observed
that applying the novel (𝐺󸀠/𝐺)-expansion method to the
equation has provided much more exact explicit solutions
than the (𝐺󸀠/𝐺, 1/𝐺)-expansion method and other existing
methods employed previously such as the (𝐺󸀠/𝐺)-expansion
method. All of our results obtained by themethods have been
constructed and verified by substituting them back into the
original equation with the help of the Maple 17 program.
In summary, the two methods with the aid of symbolic
computation packages, used to solve the fractional Jimbo-
Miwa equation, are reliable, efficient, and convenient. Some
of the obtained results are new and have not been attained
previously.Theymay be of significant benefit for investigating

some special traveling waves. The two methods could also
be applied efficiently for a wide range of nonlinear fractional
partial differential equations.

Appendix

Solutions of the Generalized Riccati Equation

Consider the following generalized Riccati equation:

𝜙󸀠 (𝜉) = 𝑟 + 𝑝𝜙 (𝜉) + 𝑞𝜙2 (𝜉) , (A.1)

where 𝑟,𝑝, and 𝑞 are variable real constants. In 2008, Zhu [60]
provided twenty-seven exact solutions of (A.1) which can be
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Figure 7: Associated plots of 𝑢330(𝑥, 𝑦, 𝑧, 𝑡) in (127) with −15 ≤ 𝑥, 𝑦 ≤ 15 using the novel (𝐺󸀠/𝐺)-expansion method: (a) periodic traveling
wave solution for 𝑢330(𝑥, 𝑦, 𝑧, 𝑡) with 𝜂 = 𝛽 = 1, (b) singular double-soliton solution for 𝑢330(𝑥, 𝑦, 𝑧, 𝑡) with 𝜂 = 𝛽 = 0.99, (c) singular multiple-
soliton solution for 𝑢330(𝑥, 𝑦, 𝑧, 𝑡) with 𝜂 = 0.9, 𝛽 = 0.8, and (d) |𝑢330(𝑥, 𝑦, 𝑧, 𝑡)| with 𝜂 = 0.9, 𝛽 = 0.8.
used for the generalized Riccati equation mapping method.
In 2009, Zheng [61] gave some comments on Zhu’s paper
that some of the provided solutions by Zhu are wrong from
typewriting carelessness. However, we have here scrutinized
which exact solutions provided by Zhu [60] are not a solution
of (A.1). We have corrected the wrong ones, verifying the
corrections by substitution back into (A.1) with the aid of
the Maple 17 program. For the sake of easy identification, we

have relabelled all of the solutions obtained by [60] and our
corrections with our numbering system which are displayed
as thirty-nine solutions.The corrected exact solutions of (A.1)
are demonstrated below.

Family A.1. When 𝑝2 − 4𝑞𝑟 > 0 and 𝑝𝑞 ̸= 0 (or 𝑞𝑟 ̸= 0), the
hyperbolic function solutions of (A.1) are as follows:

𝜙1 = − 12𝑞 [[[𝑝 + √𝑝
2 − 4𝑞𝑟 tanh(√𝑝2 − 4𝑞𝑟2 𝜉)]]] , (A.2)
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Figure 8: Associated plots of 𝑢337(𝑥, 𝑦, 𝑧, 𝑡) in (132) with −15 ≤ 𝑥, 𝑦 ≤ 15 using the novel (𝐺󸀠/𝐺)-expansion method: (a) solitary wave
solution of singular kink type for 𝑢337(𝑥, 𝑦, 𝑧, 𝑡) with 𝜂 = 𝛽 = 1, (b) 1-soliton solitary wave solution of singular kink type for 𝑢337(𝑥, 𝑦, 𝑧, 𝑡) with𝜂 = 𝛽 = 0.99, (c) 1-soliton solitary wave solution of singular kink type for 𝑢337(𝑥, 𝑦, 𝑧, 𝑡) with 𝜂 = 0.9, 𝛽 = 0.8, and (d) |𝑢337(𝑥, 𝑦, 𝑧, 𝑡)| with𝜂 = 0.9, 𝛽 = 0.8.

𝜙2 = − 12𝑞 [[[𝑝 + √𝑝
2 − 4𝑞𝑟 coth(√𝑝2 − 4𝑞𝑟2 𝜉)]]] , (A.3)

𝜙3,4 = − 12𝑞 [𝑝 + √𝑝2 − 4𝑞𝑟 (tanh(√𝑝2 − 4𝑞𝑟𝜉) ± 𝑖 sech(√𝑝2 − 4𝑞𝑟𝜉))] , (A.4)

𝜙5,6 = − 12𝑞 [𝑝 + √𝑝2 − 4𝑞𝑟 (coth(√𝑝2 − 4𝑞𝑟𝜉) ± csch(√𝑝2 − 4𝑞𝑟𝜉))] , (A.5)

𝜙7 = − 14𝑞 [[[2𝑝 + √𝑝
2 − 4𝑞𝑟(tanh(√𝑝2 − 4𝑞𝑟4 𝜉) + coth(√𝑝2 − 4𝑞𝑟4 𝜉))]]] , (A.6)
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Figure 9: Associated plots of 𝑢339(𝑥, 𝑦, 𝑧, 𝑡) in (134) with −15 ≤ 𝑥, 𝑦 ≤ 15 using the novel (𝐺󸀠/𝐺)-expansionmethod: (a) solitary wave solution
of singular kink type for 𝑢339(𝑥, 𝑦, 𝑧, 𝑡) with 𝜂 = 𝛽 = 1, (b) 1-soliton solitary wave solution for 𝑢339(𝑥, 𝑦, 𝑧, 𝑡) with 𝜂 = 𝛽 = 0.99, (c) 1-soliton
solitary wave solution for 𝑢339(𝑥, 𝑦, 𝑧, 𝑡) with 𝜂 = 0.9, 𝛽 = 0.8, and (d) |𝑢339(𝑥, 𝑦, 𝑧, 𝑡)| with 𝜂 = 0.9, 𝛽 = 0.8.

𝜙8,9 = 12𝑞 [[[−𝑝 +
±√(𝐴2 + 𝐵2) (𝑝2 − 4𝑞𝑟) − 𝐴√𝑝2 − 4𝑞𝑟 cosh (√𝑝2 − 4𝑞𝑟𝜉)

𝐴 sinh(√𝑝2 − 4𝑞𝑟𝜉) + 𝐵 ]]] , (A.7)

𝜙10,11 = 12𝑞 [[[−𝑝 −
±√(𝐵2 − 𝐴2) (𝑝2 − 4𝑞𝑟) + 𝐴√𝑝2 − 4𝑞𝑟 sinh(√𝑝2 − 4𝑞𝑟𝜉)

𝐴 cosh(√𝑝2 − 4𝑞𝑟𝜉) + 𝐵 ]]] , (A.8)

where𝐴 and 𝐵 are two nonzero real constants that satisfy the
condition 𝐵2 − 𝐴2 > 0,
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𝜙12 = 2𝑟 cosh ((√𝑝2 − 4𝑞𝑟/2) 𝜉)
√𝑝2 − 4𝑞𝑟 sinh((√𝑝2 − 4𝑞𝑟/2) 𝜉) − 𝑝 cosh((√𝑝2 − 4𝑞𝑟/2) 𝜉) , (A.9)

𝜙13 = −2𝑟 sinh((√𝑝2 − 4𝑞𝑟/2) 𝜉)
𝑝 sinh((√𝑝2 − 4𝑞𝑟/2) 𝜉) − √𝑝2 − 4𝑞𝑟 cosh((√𝑝2 − 4𝑞𝑟/2) 𝜉) , (A.10)

𝜙14,15 = 2𝑟 cosh (√𝑝2 − 4𝑞𝑟𝜉)
√𝑝2 − 4𝑞𝑟 sinh(√𝑝2 − 4𝑞𝑟𝜉) − 𝑝 cosh(√𝑝2 − 4𝑞𝑟𝜉) ± 𝑖√𝑝2 − 4𝑞𝑟 , (A.11)

𝜙16,17 = 2𝑟 sinh(√𝑝2 − 4𝑞𝑟𝜉)
−𝑝 sinh(√𝑝2 − 4𝑞𝑟𝜉) + √𝑝2 − 4𝑞𝑟 cosh(√𝑝2 − 4𝑞𝑟𝜉) ± √𝑝2 − 4𝑞𝑟 , (A.12)

𝜙18
= 4𝑟 sinh((√𝑝2 − 4𝑞𝑟/4) 𝜉) cosh ((√𝑝2 − 4𝑞𝑟/4) 𝜉)
−2𝑝 sinh((√𝑝2 − 4𝑞𝑟/4) 𝜉) cosh ((√𝑝2 − 4𝑞𝑟/4) 𝜉) + 2√𝑝2 − 4𝑞𝑟 cosh2 ((√𝑝2 − 4𝑞𝑟/4) 𝜉) − √𝑝2 − 4𝑞𝑟 .

(A.13)

Family A.2. When 𝑝2 − 4𝑞𝑟 < 0 and 𝑝𝑞 ̸= 0 (or 𝑞𝑟 ̸= 0), the
trigonometric function solutions of (A.1) are as follows:

𝜙19 = 12𝑞 [[[−𝑝 + √4𝑞𝑟 − 𝑝
2 tan(√4𝑞𝑟 − 𝑝22 𝜉)]]] , (A.14)

𝜙20 = − 12𝑞 [[[𝑝 + √4𝑞𝑟 − 𝑝
2 cot(√4𝑞𝑟 − 𝑝22 𝜉)]]] , (A.15)

𝜙21,22 = 12𝑞 [−𝑝 + √4𝑞𝑟 − 𝑝2 (tan(√4𝑞𝑟 − 𝑝2𝜉) ± sec(√4𝑞𝑟 − 𝑝2𝜉))] , (A.16)

𝜙23,24 = − 12𝑞 [𝑝 + √4𝑞𝑟 − 𝑝2 (cot(√4𝑞𝑟 − 𝑝2𝜉) ± csc(√4𝑞𝑟 − 𝑝2𝜉))] , (A.17)

𝜙25 = 14𝑞 [[[−2𝑝 + √4𝑞𝑟 − 𝑝
2(tan(√4𝑞𝑟 − 𝑝24 𝜉) − cot(√4𝑞𝑟 − 𝑝24 𝜉))]]] , (A.18)

𝜙26,27 = 12𝑞 [[[−𝑝 +
±√(𝐴2 − 𝐵2) (4𝑞𝑟 − 𝑝2) − 𝐴√4𝑞𝑟 − 𝑝2 cos(√4𝑞𝑟 − 𝑝2𝜉)

𝐴 sin(√4𝑞𝑟 − 𝑝2𝜉) + 𝐵 ]]] , (A.19)
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𝜙28,29 = 12𝑞 [[[−𝑝 −
±√(𝐴2 − 𝐵2) (4𝑞𝑟 − 𝑝2) + 𝐴√4𝑞𝑟 − 𝑝2 cos(√4𝑞𝑟 − 𝑝2𝜉)

𝐴 sin(√4𝑞𝑟 − 𝑝2𝜉) + 𝐵 ]]] , (A.20)

where𝐴 and 𝐵 are two nonzero real constants that satisfy the
condition 𝐴2 − 𝐵2 > 0,

𝜙30 = − 2𝑟 cos((√4𝑞𝑟 − 𝑝2/2) 𝜉)
√4𝑞𝑟 − 𝑝2 sin((√4𝑞𝑟 − 𝑝2/2) 𝜉) + 𝑝 cos((√4𝑞𝑟 − 𝑝2/2) 𝜉) , (A.21)

𝜙31 = 2𝑟 sin((√4𝑞𝑟 − 𝑝2/2) 𝜉)
−𝑝 sin((√4𝑞𝑟 − 𝑝2/2) 𝜉) + √4𝑞𝑟 − 𝑝2 cos((√4𝑞𝑟 − 𝑝2/2) 𝜉) , (A.22)

𝜙32,33 = − 2𝑟 cos(√4𝑞𝑟 − 𝑝2𝜉)
√4𝑞𝑟 − 𝑝2 sin(√4𝑞𝑟 − 𝑝2𝜉) + 𝑝 cos(√4𝑞𝑟 − 𝑝2𝜉) ± √4𝑞𝑟 − 𝑝2 , (A.23)

𝜙34,35 = 2𝑟 sin(√4𝑞𝑟 − 𝑝2𝜉)
−𝑝 sin(√4𝑞𝑟 − 𝑝2𝜉) + √4𝑞𝑟 − 𝑝2 cos(√4𝑞𝑟 − 𝑝2𝜉) ± √4𝑞𝑟 − 𝑝2 , (A.24)

𝜙36 = 4𝑟 sin((√4𝑞𝑟 − 𝑝2/4) 𝜉) cos((√4𝑞𝑟 − 𝑝2/4) 𝜉)
−2𝑝 sin((√4𝑞𝑟 − 𝑝2/4) 𝜉) cos((√4𝑞𝑟 − 𝑝2/4) 𝜉) + 2√4𝑞𝑟 − 𝑝2 cos2 ((√4𝑞𝑟 − 𝑝2/4) 𝜉) − √4𝑞𝑟 − 𝑝2 . (A.25)

Family A.3. When 𝑟 = 0 and 𝑝𝑞 ̸= 0, the hyperbolic function
solutions of (A.1) are as follows:

𝜙37 = −𝑝𝑐1𝑞𝑐1 + cosh (𝑝𝜉) − sinh (𝑝𝜉) , (A.26)

𝜙38 = − 𝑝 (cosh (𝑝𝜉) + sinh (𝑝𝜉))𝑞 (𝑐1 + cosh (𝑝𝜉) + sinh (𝑝𝜉)) , (A.27)

where 𝑐1 is an arbitrary constant.

Family A.4. When 𝑞 ̸= 0 and 𝑟 = 𝑝 = 0, the rational function
solution of (A.1) is as follows:

𝜙39 = − 1𝑞𝜉 + 𝑐2 , (A.28)

where 𝑐2 is an arbitrary constant.
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Salete, “Solving second order non-linear elliptic partial differ-
ential equations using generalized finite difference method,”
Journal of Computational and AppliedMathematics, vol. 318, pp.
378–387, 2017.

[23] J. Jose, S.-J. Choi, K. E. T. Giljarhus, and O. T. Gudmestad, “A
comparison of numerical simulations of breaking wave forces
on a monopile structure using two different numerical models
based on finite difference and finite volume methods,” Ocean
Engineering, vol. 137, pp. 78–88, 2017.

[24] M. Agrawal and C. S. Jog, “A quadratic time finite element
method for nonlinear elastodynamics within the context of
hybrid finite elements,” Applied Mathematics and Computation,
vol. 305, pp. 203–220, 2017.

[25] I. Podlubny, Fractional Differential Equations, vol. 198 ofMath-
ematics in Science and Engineering, Academic Press, San Diego,
Calif, USA, 1999.

[26] Q. Feng, “A new analytical method for seeking traveling wave
solutions of space-time fractional partial differential equations
arising in mathematical physics,” Optik—International Journal
for Light and Electron Optics, vol. 130, pp. 310–323, 2017.

[27] C. Huang, J. Cao, M. Xiao, A. Alsaedi, and F. E. Alsaadi,
“Controlling bifurcation in a delayed fractional predator-prey
systemwith incommensurate orders,”AppliedMathematics and
Computation, vol. 293, pp. 293–310, 2017.

[28] O. Marom and E. Momoniat, “A comparison of numerical
solutions of fractional diffusion models in finance,” Nonlinear
Analysis. Real World Applications. An International Multidisci-
plinary Journal, vol. 10, no. 6, pp. 3435–3442, 2009.

[29] C. M. Pinto and A. R. Carvalho, “A latency fractional order
model for HIV dynamics,” Journal of Computational and
Applied Mathematics, vol. 312, pp. 240–256, 2017.

[30] P. V. Ramana and B. K. R. Prasad, “Modified Adomian Decom-
position Method for Van der Pol equations,” International
Journal of Non-Linear Mechanics, vol. 65, pp. 121–132, 2014.

[31] J.-S. Duan, T. Chaolu, andR. Rach, “Solutions of the initial value
problem for nonlinear fractional ordinary differential equa-
tions by the Rach-Adomian-Meyers modified decomposition
method,” Applied Mathematics and Computation, vol. 218, no.
17, pp. 8370–8392, 2012.

[32] G.-C. Wu and D. Baleanu, “Variational iteration method for
the Burgers’ flow with fractional derivatives-new Lagrange
multipliers,” Applied Mathematical Modelling, vol. 37, no. 9, pp.
6183–6190, 2013.

[33] N. J. Ford, J. Xiao, and Y. Yan, “A finite element method for time
fractional partial differential equations,” Fractional Calculus
and Applied Analysis. An International Journal for Theory and
Applications, vol. 14, no. 3, pp. 454–474, 2011.
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