266 research outputs found

    A Look at Basics of Distributed Computing *

    Get PDF
    International audienceThis paper presents concepts and basics of distributed computing which are important (at least from the author's point of view), and should be known and mastered by Master students and engineers. Those include: (a) a characterization of distributed computing (which is too much often confused with parallel computing); (b) the notion of a synchronous system and its associated notions of a local algorithm and message adversaries; (c) the notion of an asynchronous shared memory system and its associated notions of universality and progress conditions; and (d) the notion of an asynchronous message-passing system with its associated broadcast and agreement abstractions, its impossibility results, and approaches to circumvent them. Hence, the paper can be seen as a guided tour to key elements that constitute basics of distributed computing

    On vertex ranking for permutation and other graphs

    Get PDF

    Termination Detection of Local Computations

    Full text link
    Contrary to the sequential world, the processes involved in a distributed system do not necessarily know when a computation is globally finished. This paper investigates the problem of the detection of the termination of local computations. We define four types of termination detection: no detection, detection of the local termination, detection by a distributed observer, detection of the global termination. We give a complete characterisation (except in the local termination detection case where a partial one is given) for each of this termination detection and show that they define a strict hierarchy. These results emphasise the difference between computability of a distributed task and termination detection. Furthermore, these characterisations encompass all standard criteria that are usually formulated : topological restriction (tree, rings, or triangu- lated networks ...), topological knowledge (size, diameter ...), and local knowledge to distinguish nodes (identities, sense of direction). These results are now presented as corollaries of generalising theorems. As a very special and important case, the techniques are also applied to the election problem. Though given in the model of local computations, these results can give qualitative insight for similar results in other standard models. The necessary conditions involve graphs covering and quasi-covering; the sufficient conditions (constructive local computations) are based upon an enumeration algorithm of Mazurkiewicz and a stable properties detection algorithm of Szymanski, Shi and Prywes

    Consensus using Asynchronous Failure Detectors

    Get PDF
    The FLP result shows that crash-tolerant consensus is impossible to solve in asynchronous systems, and several solutions have been proposed for crash-tolerant consensus under alternative (stronger) models. One popular approach is to augment the asynchronous system with appropriate failure detectors, which provide (potentially unreliable) information about process crashes in the system, to circumvent the FLP impossibility. In this paper, we demonstrate the exact mechanism by which (sufficiently powerful) asynchronous failure detectors enable solving crash-tolerant consensus. Our approach, which borrows arguments from the FLP impossibility proof and the famous result from CHT, which shows that Ω\Omega is a weakest failure detector to solve consensus, also yields a natural proof to Ω\Omega as a weakest asynchronous failure detector to solve consensus. The use of I/O automata theory in our approach enables us to model execution in a more detailed fashion than CHT and also addresses the latent assumptions and assertions in the original result in CHT

    A comparative study of metaheuristic algorithms for the fertilizer optimization problem

    Get PDF
    Hard combinatorial optimization (CO) problems pose challenges to traditional algorithmic solutions. The search space usually contains a large number of local optimal points and the computational cost to reach a global optimum may be too high for practical use. In this work, we conduct a comparative study of several state-of-the-art metaheuristic algorithms for hard CO problems solving. Our study is motivated by an industrial application called the Fertilizer Blends Optimization. We focus our study on a number of local search metaheuristics and analyze their performance in terms of both runtime efficiency and solution quality. We show that local search granularity (move step size) and the downhill move probability are two major factors that affect algorithm performance, and we demonstrate how experimental tuning work can be applied to obtain good performance of the algorithms. Our empirical result suggests that the well-known Simulated Annealing (SA) algorithm showed the best performance on the fertilizer problem. The simple Iterated Improvement Algorithm (IIA) also performed surprisingly well by combining strict uphill move and random neighborhood selection. A novel approach, called Delivery Network Model (DNM) algorithm, was also shown to be competitive, but it has the disadvantage of being very sensitive to local search granularity. The constructive local search method (GRASP), which combines heuristic space sampling and local search, outperformed IIA without a construction phase; however, the improvement in performance is limited and generally speaking, local search performance is not sensitive to initial search positions in our studied fertilizer problem

    Control Theory: A Mathematical Perspective on Cyber-Physical Systems

    Get PDF
    Control theory is an interdisciplinary field that is located at the crossroads of pure and applied mathematics with systems engineering and the sciences. Recently the control field is facing new challenges motivated by application domains that involve networks of systems. Examples are interacting robots, networks of autonomous cars or the smart grid. In order to address the new challenges posed by these application disciplines, the special focus of this workshop has been on the currently very active field of Cyber-Physical Systems, which forms the underlying basis for many network control applications. A series of lectures in this workshop was devoted to give an overview on current theoretical developments in Cyber-Physical Systems, emphasizing in particular the mathematical aspects of the field. Special focus was on the dynamics and control of networks of systems, distributed optimization and formation control, fundamentals of nonlinear interconnected systems, as well as open problems in control

    GT-VC 2005 Preliminary Version Semi-local model of computations on graphs to break the local symmetry Work in Progress

    Get PDF
    Abstract We consider finite connected undirected graphs without self-loops as a model of computer networks. The nodes of the graph represent computers or processors, while the edges of the graph correspond to the links between them. We present a model of distributed computations, called semi-local. This extension of the classical local model breaks the local symmetry. As a result, many useful tasks become deterministically solvable in every network assuming a very small initial knowledge about its graph representation. One of these tasks is a creation of a token in an arbitrary anonymous ring -an example of election of a leader. A semi-local solution to this problem is presented
    • 

    corecore