
A COMPARATIVE STUDY OF METAHEURISTIC

ALGORITHMS FOR THE FERTILIZER

OPTIMIZATION PROBLEM

A Thesis Submitted to the

College of Graduate Studies and Research

in Partial Fulfillment of the Requirements

for the degree of Master of Science

in the Department of Computer Science

University of Saskatchewan

Saskatoon

By

Dai Chen

c©Dai Chen, October/2006. All rights reserved.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Saskatchewan's Research Archive

https://core.ac.uk/display/226162250?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

PERMISSION TO USE

In presenting this thesis in partial fulfilment of the requirements for a Postgraduate

degree from the University of Saskatchewan, I agree that the Libraries of this University

may make it freely available for inspection. I further agree that permission for copying

of this thesis in any manner, in whole or in part, for scholarly purposes may be granted

by the professor or professors who supervised my thesis work or, in their absence, by the

Head of the Department or the Dean of the College in which my thesis work was done.

It is understood that any copying or publication or use of this thesis or parts thereof for

financial gain shall not be allowed without my written permission. It is also understood

that due recognition shall be given to me and to the University of Saskatchewan in any

scholarly use which may be made of any material in my thesis.

Requests for permission to copy or to make other use of material in this thesis in whole

or part should be addressed to:

Head of the Department of Computer Science

176 Thorvaldson Building

110 Science Place

University of Saskatchewan

Saskatoon, Saskatchewan

Canada

S7N 5C9

i

ABSTRACT

Hard combinatorial optimization (CO) problems pose challenges to traditional algorithmic

solutions. The search space usually contains a large number of local optimal points and

the computational cost to reach a global optimum may be too high for practical use. In

this work, we conduct a comparative study of several state-of-the-art metaheuristic algo-

rithms for hard CO problems solving. Our study is motivated by an industrial application

called the Fertilizer Blends Optimization. We focus our study on a number of local search

metaheuristics and analyze their performance in terms of both runtime efficiency and so-

lution quality. We show that local search granularity (move step size) and the downhill

move probability are two major factors that affect algorithm performance, and we demon-

strate how experimental tuning work can be applied to obtain good performance of the

algorithms.

Our empirical result suggests that the well-known Simulated Annealing (SA) algo-

rithm showed the best performance on the fertilizer problem. The simple Iterated Im-

provement Algorithm (IIA) also performed surprisingly well by combining strict uphill

move and random neighborhood selection. A novel approach, called Delivery Network

Model (DNM) algorithm, was also shown to be competitive, but it has the disadvantage

of being very sensitive to local search granularity. The constructive local search method

(GRASPIIA), which combines heuristic space sampling and local search, outperformed

IIA without a construction phase; however, the improvement in performance is limited

and generally speaking, local search performance is not sensitive to initial search positions

in our studied fertilizer problem.

ii

ACKNOWLEDGEMENTS

First, I would sincerely like to thank Dr. Michael Horsch, my supervisor, for his guid-

ance, support, and constant encouragement throughout my two years’ research. Mike’s

inspiration has been an important factor for my accomplishment of the thesis work. I

would also like to thank Western Ag Inc. and PRECARN Corp. for funding this research

project. Specific thanks go to my program committee members, Dr. Nathaniel Osgood,

Dr. Raymond Spiteri, and Dr. Murray Bremner (external), for their suggestions and in-

sights. The Department of Computer Science at the University of Saskatchewan has been

such an encouraging place that I am proud of being one member of it. Also thanks go to

many of my colleagues in the department, especially people in the ARIES research lab,

for their help and support.

iii

DEDICATED TO MY PARENTS

XUE CHAO DAI AND YONG FEN CHEN

iv

CONTENTS

Permission to Use i

Abstract ii

Acknowledgements iii

Contents v

List of Tables vii

List of Figures ix

List of Abbreviations xii

List of Symbols xiii

1 Introduction 1

2 The Fertilizer Blends Optimization Problem 5
2.1 Nutrient Mixing Process . 5
2.2 Blends Delivery Process . 6
2.3 Optimizing the Objective Function . 7

3 Combinatorial Optimization Problems - An Introduction 10
3.1 Optimization in General . 11
3.2 Combinatorial Optimization Problems 13

3.2.1 Routing Problems . 13
3.2.2 Scheduling and Resource Allocation Problems 14
3.2.3 Multi-objective Combinatorial Optimization Problems (MCOP) . 15
3.2.4 CO Problems in Software Engineering 15

4 Metaheuristic Algorithms - An Introduction 16
4.1 Neighborhood Structure and Fitness Landscape 16
4.2 Metaheuristic Algorithms . 18

4.2.1 Local Search Metaheuristics . 18
4.2.2 Constructive Local Search . 22
4.2.3 Swarm Intelligence . 24
4.2.4 Variable Neighborhood Search (VNS) 26

4.3 A Unifying View for Metaheuristic Search 27
4.3.1 An Influence Diagram . 27
4.3.2 Landscape Topology Graph and Algorithm Search Behavior . . . 29

4.4 Algorithm Performance and Performance Measurement 31

v

4.4.1 Algorithm Performance . 31
4.4.2 Performance Measurement . 33

5 Applying Metaheuristic Algorithms to the Fertilizer Problem 35
5.1 Iterative Improvement Local Search for the Fertilizer Problem 35
5.2 Simulated Annealing Local Search for the Fertilizer Problem 36
5.3 DNM Local Search for the Fertilizer Problem 37

5.3.1 The DNM Local Search Algorithm 39
5.4 Constructive Local Search for the Fertilizer Problem 42

5.4.1 Solution Element and Greedy Function g(e) 42
5.4.2 Restricted Candidate List (RCL) and RCL Selection Scheme . . . 43

5.5 Other Metaheuristic Algorithms . 44

6 Empirical Results 46
6.1 Simulated Annealing . 47

6.1.1 Landscape Granularity . 47
6.1.2 Downhill Move Scheme . 52

6.2 DNM Local Search . 58
6.3 Constructive Local Search . 63

6.3.1 RCL Selection Parameter α . 63
6.3.2 Structure Similarity . 65

6.4 Performance Comparison . 68
6.5 One Compound Blend vs. Two Compound Blend 75
6.6 Hybrid Metaheuristics Using GRASP 75

7 Conclusion and Future Work 78
7.1 Conclusion and Discussion . 78
7.2 Future Work . 80

A Sample Tables 88

vi

LIST OF TABLES

4.1 Algorithm performance table. MPS∗

i specifies the ith element in MPS∗.
Each entry in the table is a text description of the best-found parameter
setting. 32

5.1 A decision table for the acceptance condition in Algorithm 6, Step 3. . . . 41

6.1 Local search step size tuning matrix. Each entry gives the average found
solution quality (total net profit) of SA under different granularity settings,
as well as the standard deviation and problem solvability (with respect to
98% of the best-known solution quality). Bolded text indicates the best
and second-best solution quality. 48

6.2 Solution quality comparison. Each entry gives the average best-found so-
lution quality (total net profit) of the algorithm under different downhill
move schemes. Both quality standard deviation and problem solvability
(with respect to 98% of best known solution quality) are given. Bolded
text indicates the optimal quality under each cooling schedule. The best-
known solution quality was obtained from preliminary experiments on
each studied problem instance, and was exceeded during the tuning ex-
periment (e.g., the 40-site canola problem). 53

6.3 The best-found meta-parameter settings for Simulated Annealing. Bolded
text represents the best setting(s) we found. 57

6.4 A parameter tuning matrix for DNM local search. δ is the flow augmenta-
tion size. α is the micro-tuning size. Each entry gives the average achieved
solution quality (total net profit) under one (α, δ) setting. Bolded text in-
dicates the best value of that column. 59

6.5 Performance comparison of nutrient selection schemes in DNM local search.
Each entry gives the average found solution quality under different nutri-
ent selection schemes. 63

6.6 Performance table for DNM local search. Each entry is a text description
of the best-found parameter range for the problem. Bolded text indicates
the best-found value. 63

6.7 Selection parameter α tuning in GRASPIIA. Measurements include: av-
erage and best runtime (local search steps) to 98% of best-known solution
quality (Avg.RT and Best.RT); average and best-found final solution qual-
ity (AvgF.Q and BestF.Q); average and best-found constructed solution
quality (AvgC.Q and BestC.Q). 64

vii

6.8 Structure similarity test. Measurements include: structure similarity of
constructed solutions set (Cons.A and Cons.V); structure similarity of final
solutions set (Final.A and Final.V); average Euclidean distance between
each constructed solution and its corresponding final solution (Eucli.A and
Eucli.V). Numbers in the bracket indicate the smallest euclidean distances
within the solutions set. 67

6.9 Comparison of algorithm performance using one compound blend and two
compound blends. Measurements include: average achieved yield using
one blend (Yield.1) and two blends (Yield.2), in bushels; average deliv-
ery cost under one blend (Cost.1) and two blends (Cost.2), in dollars; av-
erage achieved total net profit using one blend (Profit.1) and two blends
(Profit.2), in dollars. 76

viii

LIST OF FIGURES

2.1 Nutrient delivery process. A is the nutrient mixture table; V is the delivery
rate table. We first mix existing market nutrients to produce the compound
blend (containing two blends), then deliver the blends to different sites at
different rates. 8

4.1 The transformation of the problem definition into different model repre-
sentations. 17

4.2 A unifying view for metaheuristic search. 28
4.3 A conceptual local search landscape topology graph. Nodes represent

solution points. Edges represent possible transitions between solutions
(undirected). 29

4.4 A conceptual cluster landscape topology graph. Each cluster represents
one local optimal region including an attractor (local optimal point) and
the basin (a set of solution points that may lead to the attractor). 30

4.5 Algorithm Performance (AP) is affected by its Meta-Parameter Setting
(MPS) and problem instance P0. 31

5.1 A simple delivery network model. mi represents the ith market nutrient;
Kj represents the jth farm sites. Path Pij represents nutrient delivery flow
from mi to Kj. Box A is the decision point where we choose a particular
market nutrient mi to use. Box Y represents the point where we compute
the total net profits by summing up the profits of every site Kj. 38

6.1 RunTime Distribution (RTD) comparison of different SA granularity set-
tings on the 40-site canola problem. ∆a is the local search step size for
changing A table; ∆v is the local search step size for changing V table.
The quality threshold is set to 98% of the best known solution quality (q =
7280) for the problem. 49

6.2 RunTime Distribution (RTD) comparison of different SA granularity set-
tings on the 40-site wheat problem. ∆a is the local search step size for
changing A table; ∆v is the local search step size for changing V table.
The quality threshold is set to 98% of the best known solution quality (q =
2780) for the problem. 50

6.3 RunTime Distribution (RTD) comparison of different SA granularity set-
tings on the 100-site wheat problem. ∆a is the local search step size for
changing A table; ∆v is the local search step size for changing V table.
The quality threshold is set to 98% of the best known solution quality (q =
7100) for the problem. 51

ix

6.4 Downhill move experiment on the 40-site Canola problem, showing the
average runtime cost of the SA algorithm to reach a given solution quality
threshold under different Boltzmann constant settings and cooling sched-
ules. The threshold we use is 98% of the best known solution quality
(q = 7280). The granularity setting is fixed at ∆a = 0.001, ∆v = 5.
Runtime is measured in terms of number of local search moves. 54

6.5 Downhill move experiment on the 40-site Wheat problem, showing the
average runtime cost of the SA algorithm to reach a given solution quality
threshold under different Boltzmann constant settings and cooling sched-
ules. The threshold we use is 98% of the best known solution quality
(q = 2780). The granularity setting is fixed at ∆a = 0.001, ∆v = 5.
Runtime is measured in terms of number of local search moves. 55

6.6 Downhill move experiment on the 100-site Wheat problem, showing the
average runtime cost of the SA algorithm to reach a given solution quality
threshold under different Boltzmann constant settings and cooling sched-
ules. The threshold we use is 98% of the best known solution quality
(q = 7100). The granularity setting is fixed at ∆a = 0.001, ∆v = 5.
Runtime is measured in terms of number of local search moves. 56

6.7 Runtime quality comparison of DNM local search under different micro-
tuning size α on the 40-site Canola problem. 61

6.8 Runtime quality comparison of DNM local search under different augmen-
tation step size δ on the 40-site Canola problem. 62

6.9 Runtime quality comparison on the 40-site Canola problem of four meta-
heuristics including Simulated Annealing (SA), DNM local search (DNM),
Iterative Improvement Algorithm (IIA) and GRASPIIA. The figure shows
how the best-found solution quality (total net profit averaged over 100
runs) of the algorithm increases over runtime (best-known quality q = 7280). 69

6.10 Runtime quality comparison on the 40-site Wheat problem of four meta-
heuristics including Simulated Annealing (SA), DNM local search (DNM),
Iterative Improvement Algorithm (IIA) and GRASPIIA. The figure shows
how the best-found solution quality (total net profit averaged over 100
runs) of the algorithm increases over runtime (best-known quality q = 2780). 70

6.11 Runtime quality comparison on the 100-site Wheat problem of four meta-
heuristics including Simulated Annealing (SA), DNM local search (DNM),
Iterative Improvement Algorithm (IIA) and GRASPIIA. The figure shows
how the best-found solution quality (total net profit averaged over 100
runs) of the algorithm increases over runtime (best-known quality q = 7100). 71

6.12 Quality runtime measurement on the 40-site Canola problem of four meta-
heuristics including Simulated Annealing (SA), DNM local search (DNM),
Iterative Improvement Algorithm (IIA) and GRASPIIA. The figure gives
the average runtime cost of the algorithm to reach different solution quality
levels (total net profit) for the problem (best-known quality q = 7280). . . 72

x

6.13 Quality runtime measurement on the 40-site Wheat problem of four meta-
heuristics including Simulated Annealing (SA), DNM local search (DNM),
Iterative Improvement Algorithm (IIA) and GRASPIIA. The figure gives
the average runtime cost of the algorithm to reach different solution quality
levels (total net profit) for the problem (best-known quality q = 2780). . . 73

6.14 Quality runtime measurement on the 100-site Wheat problem of four meta-
heuristics including Simulated Annealing (SA), DNM local search (DNM),
Iterative Improvement Algorithm (IIA) and GRASPIIA. The figure gives
the average runtime cost of the algorithm to reach different solution quality
levels (total net profit) for the problem (best-known quality q = 7100). . . 74

xi

LIST OF ABBREVIATIONS

ACO Ant Colony Optimization
AP Algorithm Performance
ATSP Asymmetric Traveling Salesman Problem
BDSP Bus Driver Scheduling Problem
BPP Bin Packing Problem
CL Candidate List
CO Combinatorial Optimization
CSP Constraint Satisfaction Problem
DNM Delivery Network Model
ETSP Euclidean Traveling Salesman Problem
GRASP Greedy Randomized Adaptive Search Procedure
GRASPIIA GRASP using Iterative Improvement Algorithm as the local

search phase
GRASPSA GRASP using Simulated Annealing as the local search phase
GRASPDNM GRASP using DNM algorithm as the local search phase
IIA Iterative Improvement Algorithm
LS Local Search
MAGMA MultiAGent Metaheuristic Architecture
MCOP Multi-objective Combinatorial Optimization Problem
MDVRP Multiple Depot Vehicle Routing Problem
MPS Meta-Parameter Setting
NRO Network Routing Optimization
OR Operations Research
PSO Particle Swarm Optimization
QAP Quadratic Assignment Problem
QR Quality Runtime measurement
RCL Restricted Candidate List
RQ Runtime Quality measurement
RTD Run Time Distribution measurement
SA Simulated Annealing
SLS Stochastic Local Search
SI Swarm Intelligence
TSP Traveling Salesman Problem
TS Tabu Search
VNDS Variable Neighborhood Decomposition Search
VNS Variable Neighborhood Search
VRPTW Vehicle Routing Problem with Time Windows
VRP Vehicle Routing Problem

xii

LIST OF SYMBOLS

A The nutrients mixture table
B The compound blends
di The blend delivered at site i
gi Existing nutrients delivered at site i
mi The ith market nutrient
M The market nutrients set
oi Maximum allowable nutrients at site i
S The solution space of an optimization problem
V Delivery rate table
vj The delivery rate vector at site j
α Micro tuning step size in DNM local search
∆a The local search step size for changing A table in SA and IIA
δ Augmentation step size in DNM local search
∆E Change in fitness function value f(s′)− f(s)
∆v The local search step size for changing V table in SA and IIA
e Solution element in GRASP
η The heuristic value associated with the market nutrient in DNM

local search
f(s) The fitness function of an optimization problem
g(e) The greedy function in GRASP
â Attractor of the basin
ŝ Local optimum solution point
kB Boltzmann constant in Simulated Annealing
k Total number of farm sites
N

′

(s) The allow set in Tabu Search
N(s) The neighborhood of s
n Total number of market nutrients
pi The net profit at site i
£ Fitness landscape
P The total net profit in the fertilizer problem
α RCL selection parameter in GRASP
s∗ Global optimum solution point
T Temperature level in Simulated Annealing
ϕ Transient operator
ρ Solution quality threshold
ε Neighborhood granularity, or landscape granularity
Yi Crop yield at site i

xiii

CHAPTER 1

INTRODUCTION

Optimization refers to problems that require searching for a best configuration of a set

of variables to achieve certain goal. In optimization, there is a class of problems called

Combinatorial Optimization (CO) Problems [5, 55]. In CO, solutions are encoded with

discrete variables, and the search process usually involves exploring a problem space rep-

resented by sets of values, matrices, or graphs. Especially in recent years, work in CO has

been motivated by its various applications in both academic and industrial domains.

Hard combinatorial optimization problems usually feature a high number of degrees of

freedom, non-linearity, and the existence of large number of local optima [37, 20, 7]. The

intrinsic difficulty of these problems often leads to intractable amount of computational

time for solving them. As a target problem and case study, we consider the Fertilizer

Blends Optimization Problem. The fertilizer optimization problem deals with nutrient de-

livery during planting. The goal is to optimize the total net profit in the field using an

optimal nutrient delivery scheme. The delivery scheme defines what nutrients should be

delivered to each farm site, as well as the quantity applied. Because nutrient delivery

affects both the site output (the yield) and delivery cost, solving the problem of optimiz-

ing the total net profit requires searching among all possible nutrient delivery schemes to

obtain the best one.

The difficulty of the problem comes from the fact that each field on a farm contains

many sites, and each site has its specific need for a particular kind of nutrient blend. If

we want to optimize the yield of one site, we could deliver exactly the required nutrient

blend for it. However, this method becomes impractical for a large number of sites: both

the work effort and financial cost is too high for obtaining different nutrient blends for

different sites. One feasible way is to find a compound blend that is a mixture of several

1

available market nutrients. We then deliver the blend to different sites at different rates.

Because current seeding technology allows two independent blends to be applied at the

same time, two compound blends can be used. The solution for a given fertilizer prob-

lem instance (e.g., a specific farm field) contains two tables: a “Mixture” table A and a

“Delivery Rate” table V. Table A defines how several existing market nutrients are mixed

together to produce the two compound blends; table V, on the other hand, specifies the

quantity of the blend applied at each site.

Because one farm field may contain hundreds of sites, a systematic search method is

infeasible. The algorithm not only searches among all possible nutrient combinations for

the compound blend, but also the possible delivery rate combinations for all sites. Finding

an optimal solution involves exploring the combined high-dimensional space of both the

“Mixture” table and “Delivery Rate” table.

Hard combinatorial optimization problems pose challenges to search algorithms. The

solution space usually contains a large number of local optimal points, and the compu-

tational cost for reaching a global optimum may be too high for practical use. In this

work, we apply metaheuristic algorithms to solve the fertilizer problem. Metaheuristic

algorithms [27, 37, 5] belong to the class of approximation search algorithms. They differ

from traditional heuristic search [66] in that a set of high level strategies are usually in-

tegrated into the search framework in order to explore the solution space both effectively

and efficiently.

In this thesis, we conduct a comparative study of several state-of-the-art metaheuristic

algorithms for the fertilizer optimization problem. We focus our study on a number of local

search metaheuristics and analyze their performance in terms of both runtime efficiency

and solution quality.

Simulated Annealing (SA) [35, 46] is one of the well-established local search meta-

heuristics that has explicit strategies to escape from local optima. The idea originates

from how a low energy atom configuration is found in statistical mechanics [46]. In SA,

“temperature” is used as a meta-parameter to help direct the search. A cooling schedule

specifies how the temperature level drops adaptively from high to low. The basic idea is

to keep the algorithm actively exploring the solution space at the very beginning of the

2

search but force it to focus on refining the solutions found, so that high quality solutions

are more likely to be obtained.

We also propose in this work a delivery flow network model [3] for the fertilizer prob-

lem. The idea is to build the solution incrementally by considering the nutrient delivery

process as a resource-allocation problem [55]. We transform the problem of searching

for an optimal delivery scheme into the problem of finding a special nutrient flow in the

network that optimizes the network utility. Utility here refers to total net profit. A Deliv-

ery Network Model (DNM) local search algorithm is then presented to solve the problem.

Our empirical results show that the DNM local search algorithm is an efficient algorith-

mic candidate for the fertilizer problem. However, DNM local search performance is very

sensitive to its meta-parameter settings, and considerable experimental effort is required

for performance tuning.

An alternative approach to local search metaheuristics (SA and DNM) is to use a con-

struction method with local search. In this work, we apply the Greedy Randomized Adap-

tive Search Procedure (GRASP) [61, 34, 37] to the fertilizer problem. There are two major

phases in GRASP: solution construction followed by local search. In the first phase, we

construct the solution incrementally using a greedy randomized construction procedure.

Once a complete solution is obtained, we apply the local search to perform an intensified

regional search. Existing literature [61, 34] reports that combining a construction method

with local search usually yields higher solution quality than local search alone.

The results of this work are several algorithmic candidates that solve the fertilizer opti-

mization problem in terms of acceptable levels of runtime efficiency and solution quality.

Furthermore, we show that algorithms performance are affected by their meta-parameter

settings, and demonstrate how experimental tuning work could be applied to obtain a good

performance of our studied algorithms. We also investigate in this work how the balance

between search diversification and intensification is maintained during the search process,

and study how these factors affect the overall performance of the various metaheuristic

algorithms.

The remainder of the thesis is structured as follows: in Chapter 2, we give a formal

definition of the fertilizer blends optimization problem. In Chapter 3, we provide a brief

3

introduction to the general field of combinatorial optimization. We emphasize the notion

of fitness landscape and present an abstract view for understanding the search behavior

of metaheuristic algorithms. The literature review of some major metaheuristics is given

in Chapter 4. Problem-specific application issues are described in Chapter 5. Empirical

results, including meta-parameter tuning for each of the addressed algorithms, and the

comparison among them, are presented in Chapter 6. Conclusions and future work are

given in Chapter 7.

4

CHAPTER 2

THE FERTILIZER BLENDS OPTIMIZATION PROB-

LEM

Our study in this work is motivated by an industrial application called Fertilizer Blends

Optimization. In the fertilizer blend problem, nutrient blends are delivered to a number of

farm sites. There exists two stages in nutrient delivery: the nutrient mixing process and

the blend delivery process.

2.1 Nutrient Mixing Process

During the first stage, we combine several existing market nutrients to produce the com-

pound blends. Current farm machinery allows two compound blends to be delivered at the

same time as a way of improving the nutrient delivery quality. Thus, the nutrient mixing

process produces two blends. The market nutrient is defined as a quantity vector of four

chemical compounds1

m =





















N

P

K

S





















4×1

The set of all n market nutrients2 is

M =
(

m1 m2 . . . mn

)

4×n

1The four chemical compounds are Nitrogen (N), Phosphorus (P), Potassium (K) and Sulfur (S).
2Unless specified explicitly in the paper, n refers to the total number of market nutrients.

5

To obtain the two compound blends, we mix all market nutrients together using the

mixture table A. Table A defines the fraction of each nutrient m used in each of the two

compound blends, thus having the form

A =
(

a1 a2

)

n×2

, al =





















a1l

a2l

...

anl





















n×1

, l = 1, 2

where
n

∑

i=1

{ail} = 1, l = 1, 2.

The two compound blends produced are

B =
(

b1 b2

)

4×2

, bl =





















Nl

Pl

Kl

Sl





















4×1

, l = 1, 2.

The nutrient mixture process can be formalized as

B = MA

2.2 Blends Delivery Process

In the second stage, we deliver the compound blends B to various sites in the farm field at

different rates. The delivery rate table V is defined as

V =
(

v1 v2 . . . vk

)

2×k

where

vj =







v1j

v2j







2×1

, j = 1, 2, . . . , k.

Here, k is the total number of sites; vj represents the delivery rate of applying B at

site j, in lbs per acre. Since two independent blends are delivered at the same time, each

vj contains two quantity values. The total blend delivered at site j is denoted as

6

dj = Bvj, j = 1, 2, . . . , k.

To represent dj in a chemical compounds vector, we have

dj =





















Nj

Pj

Kj

Sj





















4×1

The blend delivery process can be formalized as

D = BV =
(

d1 d2 . . . dk

)

4×k

The whole nutrient delivery process is shown in Figure 2.1.

2.3 Optimizing the Objective Function

The objective function to be optimized is the total net profit. For each site i, there is

a known ground nutrient vector representing the amount of nutrients already in the site.

This is denoted as

gi =





















No
i

P o
i

Ko
i

So
i





















4×1

The maximum allowable quantity of nutrients at the site is also known in advance

oi =





















N̄i

P̄i

K̄i

S̄i





















4×1

The crop yield at site i is denoted by Yi, in bushels per acre. Given the blend deliv-

ered at site i as di, we are able to estimate the crop yield at that site using the following

empirical yield function

7

Figure 2.1: Nutrient delivery process. A is the nutrient mixture table; V is the delivery rate
table. We first mix existing market nutrients to produce the compound blend (containing
two blends), then deliver the blends to different sites at different rates.

Yi = (di, gi, oi)

= YmaxfN

(

Ni+No

i

N∗

i

)

fP

(

Pi+P o

i

P ∗

i

)

fK

(

Ki+Ko

i

K∗

i

)

fS

(

Si+So

i

S∗

i

)

Zi

Here, Ymax refers to the maximum yield of the crop and Zi represents the environ-

mental factors such as temperature and water level; fN , fP , fK, fS are called “fractional

sufficiency” functions that map a given chemical compound quantity to a sufficiency value

in the range [0, 1]. Both gi and oi are provided in the site data through an analysis of the

farm field; Ni, Pi, Ki, Si are the four chemical compounds in di.

The yield function Yi is specific to any given farm site and is an approximation of a

simulation process which is outside the scope of our work. A detailed analysis of the yield

function may lead to analytical methods for solving the problem. However, for the work

addressed in this paper, the yield function is generally considered a black-box. Thus the

8

fertilizer problem is a “black-box optimization” problem. On the other hand, our study

also shows that investigating the general features3 of the yield function using analytical

methods might provide useful intuitions for the design of problem-specific algorithmic

solutions.

The unit market value for the crop is specified by L, in dollars per bushel. Thus, the

total market value of a given yield Yi at site i is denoted by LYi, in dollars per acre. Cost

is also associated with each market nutrient. Given the available market nutrients set M,

there is an associated cost vector, denoted as

c =





















c1

c2

...

cn





















n×1

Each c ∈ c gives the unit cost of using the corresponding market nutrient m to produce

the compound blend, in dollars per unit mass. The total delivery cost at site i is

Ti = cTAvi

in dollars per acre. Here cT refers to the matrix transpose of c. The net profit at site i,

considering the nutrient delivery cost, is

pi = (LYi − Ti)Ri

in dollars. Here, Ri is the site area in acres. The total net profit is computed by summing

together the net profit at all sites, thus having the form

P =
k

∑

i=1

pi =
k

∑

i=1

(LYi − Ti)Ri

3For example, the factional sufficiency curves fN , fP , fK , fS; the nutrient overdose effect, and the com-
monality of gi and oi among sites.

9

CHAPTER 3

COMBINATORIAL OPTIMIZATION PROBLEMS - AN

INTRODUCTION

The fertilizer problem addressed in this work belongs to the general class of problem

called Combinatorial Optimization (CO) [5, 55].

Definition 1 A combinatorial optimization problem P = (X,D, f,C) is defined as

• A set of discrete variables X = {x1, ..., xn} representing the problem entity

• Variable domain D = {D1, ..., Dn} over X. Each Di gives the set of possible value

assignments for xi

• The objective function(s) f to be optimized, where

f : D1 × ...×Dn → <
+

• Constraints C = {C1, ..., Cm} over the problem P, where

Ci ⊆ D1 × ...×Dn

For a given problem P, the solution space S contains all feasible value assignments

for X that are subject to constraints C

S = { s = { (x1, v1), ..., (xn, vn) } | vi ∈ Di, s satisfies constraints C }

The goal of the optimization problem is to find an element s∗ ∈ S whose value assign-

ment maximizes1 the objective function f . Solution quality refers to the objective function

1In the literature, optimization could refer to either maximization or minimization, depending on the
given problem definition. For the work in this paper, maximization is used as the default definition.

10

value (f(s)) of a given solution point s, where s ∈ S. To be more formal, we define the

global optimum s∗ for a given problem P = (X,D, f,C) as follows:

Definition 2 A global optimum s∗ in solution space S has the following property:

∀s ∈ S, f(s∗) ≥ f(s)

Global optima refers to solution points that are globally best within the whole solution

space.

We provide in this chapter a brief discussion of the general area of optimization, then

we give an introduction into some well studied problems in the area of combinatorial

optimization.

3.1 Optimization in General

Combinatorial optimization belongs to the general problem class of optimization prob-

lems. In the literature, optimization usually refers to the general problem-solving process

of finding the best solution (global optimum) to achieve a certain goal. Real life opti-

mization problems also contain local optimal solutions. To define local optimum, we first

introduce the notion of neighborhood structure:

Definition 3 A neighborhood structure is a function N : S → 2S that assigns to every

solution point s ∈ S a set of neighbors N(s) ⊆ S.

N(s) is called the neighborhood of solution point s. For a given optimization problem

P, we define local optimum as follows:

Definition 4 Solution point ŝ ∈ S is a local optimum in P if

∀s ∈ N(ŝ), f(ŝ) ≥ f(s)

Local optima refers to solution points that are “locally” best among all their direct

neighborhood points.

11

Continuous vs. Discrete Optimization A given optimization problem may assume ei-

ther continuous or discrete values for its variable domains. Within the context of solving

optimization problems by searching, unless special restrictive assumptions are made to

the objective function f (e.g., convexity), it is known that continuous global optimization

problem is inherently unsolvable in a finite number of steps [44, 6, 11]. For any arbi-

trary continuous differentiable function f , one cannot verify with certainty that a given

solution point s is not the global optimum without evaluating the function in at least one

point in every neighborhood N of s. However, for continuous problems where real val-

ued domains are assumed, the choices of neighborhood N are infinite since the distance

‖ s′ − s ‖, where s′ ∈ N(s) representing the neighborhood of s, can be arbitrarily small.

Thus, it follows that search algorithms designed to solve a global, continuous and general

optimization problem would require an unbounded number of steps [11, 44], and we are

unable to find the global optimum s∗ in finite time. The goal of finding global optimum is

often stated as finding a point in

Nε(s
∗) = {s ∈ S, ‖ s− s∗ ‖≤ ε}

By doing this [11], we are transforming the original continuous problem into a dis-

crete global optimization problem by “discretizing” the solution space using an appropri-

ate neighborhood structure N and granularity level2 ε.

However, hard combinatorial optimization problems usually have the feature that a

large number of local optima exist. The computational time for solving these problems by

searching is often too long for practical use. In practical application, a given solution s

might be accepted if it is in Sρ, where

Sρ = {s ∈ S, f(s) ≥ ρ}.

Here, ρ is called the solution quality threshold.3 For problems where the global optimum

s∗ is known, we usually set ρ to a certain percentage of the optimal solution quality (e.g.,

98% of f(s∗)). For problems where s∗ is unknown, ρ is set to a certain percentage of the

best known solution quality.

2Our following discussion also refers to ε as the local search landscape granularity.
3Sρ is also referred to as the level set [11].

12

In the literature, the difference between local versus global optimization concerns

problem structure and acceptability of the solution found [60]. In the first case, some

problems have the feature that a local optimal solution is at the same time a global opti-

mum (e.g., the convex programming problem); in the latter case, a local optimum might

be accepted as long as its objective function value is above a given quality threshold ρ

as described previously [11]. From a general point of view, local optimization could be

considered a “sub-problem” of the more general case of global optimization problem.

Constrained vs. Unconstrained Optimization One common type of constrained opti-

mization problem is called Constraint Satisfaction Problems (CSP) [31, 50]. In CSP, it is

required to find a feasible solution that satisfies all constraints in C, regardless of the objec-

tive function f . Thus, the objective function is usually set to empty or defined as a mapping

to a constant value. There also exist some techniques that transform a constrained prob-

lem into a unconstrained optimization problem [55], then solve it using standard search

methods. For unconstrained problems, we have C = Ø.

3.2 Combinatorial Optimization Problems

Combinatorial optimization covers a wide range of applications in the fields of Operations

Research and Artificial Intelligence. Here we provide a brief introduction into some well

studied problems in this area.

3.2.1 Routing Problems

Traveling Salesman Problem (TSP) The TSP [64, 65] is the most well-studied CO

routing problem. In TSP, we try to find a shortest path that covers all cities on a map once

and only once. TSP provides a standard test bed for various search algorithms. Although

TSPs of small sizes were efficiently solved years ago, solving instances of larger sizes still

remains a challenge. Various extensions of TSP have been studied, including Asymmetric

TSP (ATSP), where distance between two nodes depends on the direction of the path

selected; and Euclidean TSP (ETSP), where path length represents ordinary Euclidean

13

distance. Other extensions of traveling salesman problem can be found in [54].

Vehicle Routing Problems (VRP) In VRP, the problem is to determine multiple routes

for a number of vehicles [9]. Vehicles are assigned to a set of geographically dispersed

cities or customers. The goal is to transport customers with known demands at the lowest

routing cost. VRP is a well-known integer programming problem and could be considered

as the combination of the Traveling Salesman Problem (TSP) and Bin Packing Problem

(BPP). In BPP, the problem is to pack a set of items into a number of bins where the total

item weight does not exceed a maximum value [19, 9]. The goal is to put in as many items

as possible using the least number of bins.

Other extensions of VRPs have been studied, for example, the Arc Routing Problem

(ARP), the Vehicle Routing Problem with Time Windows (VRPTW) and the Multiple

Depot Vehicle Routing Problem (MDVRP) [9]. Network Routing Optimization (NRO)

also has its important application in the field of telecommunication and packet-switching

networks [4].

3.2.2 Scheduling and Resource Allocation Problems

Scheduling usually refers to the problem of resource allocation under constraints. The

classical transportation problem is considered to be this type, where we assign goods from

a set of warehouses to a number of factories. The goal is to minimize the total trans-

portation cost, while in the meantime satisfying both the warehouse demands and factory

capacities.

Scheduling and allocation problems [19] cover a wide range of applications, especially

in the field of Operations Research (OR) and Management Science. Examples include ac-

tivity scheduling, machine scheduling, and project scheduling. One well-studied problem

is called the Quadratic Assignment Problem (QAP) [63], where we assign N activities

among N different locations. The goal is to minimize the overall transition cost among

different activities. The fertilizer problem addressed in this work could also be considered

as a resource allocation problem, where a number of market nutrients are delivered to a set

of farm sites. Further references regarding scheduling and resource allocation problems

14

can be found in [33].

3.2.3 Multi-objective Combinatorial Optimization Problems (MCOP)

MCOP refers to the problem of simultaneous optimization of several possibly conflict-

ing and incompatible objective functions [43, 8]. For a given MCOP problem P =

(X,D, f ,C), the function set f contains elements that are contradictory to each other.

The solution of a MCOP would be a set of non-dominated solution candidates. In Opera-

tions Research, managers make decisions from a set of candidate strategies. The choice of

one strategy over another represents the trade-off among various business objectives. In

MCOP, the optimal solution is referred to as Pareto Optimality, or Pareto Efficiency [17].

A solution s∗ is said to be a Pareto Optimum if there exists no feasible solution s that

further improves at least one function value within function set f , without decreasing the

function value of another in f . Example MCOPs include Bus Driver Scheduling Problem

(BDSP) and Project Portfolio Selection [43].

3.2.4 CO Problems in Software Engineering

Recent work has been extended into the joint area between Software Engineering and

Combinatorial Optimization [32, 1, 15]. One of this class of problems considers software

testing as an optimization process, and applies various search algorithms to optimize the

testing procedure [32]. Another application is called Software Project Scheduling and

Management. This class of problems concerns determining “who does what” during the

software development life cycle [1]. The major goal is to generate better project schemes

and help increase both the work efficiency and product quality. Further references can be

found in [14, 21].

15

CHAPTER 4

METAHEURISTIC ALGORITHMS - AN INTRODUC-

TION

We provide in this chapter some major concepts in the field of metaheuristics and give

an introduction into several state-of-the-art metaheuristic algorithms.

4.1 Neighborhood Structure and Fitness Landscape

Before applying any search algorithm to the target problem, a problem formalization pro-

cess is usually required, where we transform the target problem into an appropriate mathe-

matical representation. However, there are gaps between problem definition and modeling

[53]. There exists a conceptual process that transforms the original problem into an ap-

propriate model in the algorithm. The model definition is algorithm specific: “the solution

space, neighborhood structure, and objective function have to be tailored to the chosen

metaheuristics” [53]. As shown in Figure 4.1, this poses a potential problem since dif-

ferent algorithms may be associated with different models, making comparisons difficult.

Here, we introduce the important notion of fitness landscape.

Definition 5 Fitness landscape is a triple

£ = (S, N, f)

S represents the solution space; f is the fitness function; N is the neighborhood func-

tion, where

N : S→ 2S

16

Figure 4.1: The transformation of the problem definition into different model representa-
tions.

Conceptually, N defines a neighborhood structure by assigning every solution point

s ∈ S a set of solutions N(s), where N(s) ⊆ S. N(s) is called the neighborhood of s.

Here, we introduce the definition of transition operator ϕ:

Definition 6 A transition operator ϕ maps a given solution point s into a set of solution

points N(s) called the neighborhood set of s.

The notions of the fitness landscape [41, 70, 16] and transition operator enable us

to view the search algorithm as the process of exploring a problem-dependent landscape

graph. In the graph, nodes represent individual solutions; arcs represent state transitions

where we move from one solution point to another. A move is defined as the choice

of a solution s′ from the neighborhood set N(s) of current point s. One important fact

is that, given a problem definition, the choice of the transition operator ϕ is algorithm-

dependent: the one operator, one landscape concept [42] states that different algorithms

define different transition operators thus searching in different landscapes. Furthermore,

this fact implies that algorithm performance is affected by the underlying landscape model

it uses. In general, no best choice exists which leads to the best performance over all

problem instances. This “empirical result” is also theoretically supported by the No Free

Lunch Theorem [73]. In no free lunch theorem for search, it is shown that all algorithms,

17

when averaged over all optimization problem instances, perform generally the same; some

algorithms may outperform others on one problem but loses its superiority on another

problem, and in general, no one algorithm exists that performs best on all problems.

4.2 Metaheuristic Algorithms

Metaheuristic algorithms [5, 37] could be considered as a set of abstract algorithm frame-

works. They differ from traditional heuristic methods in that a number of search strategies

are integrated into the basic search process. The goal is to explore the solution space in

a more effective and efficient manner. The study of metaheuristic algorithms has now

become a joint interest in the field of Operations Research, Management Science, and

Artificial Intelligence. In recent years, work in this area produced a number of high-

performance algorithmic solutions that have successfully solved many hard CO problems.

Here we provide a brief introduction into some major metaheuristics in the literature.

We focus on describing a number of local search metaheuristics, but also extend our scope

into other advanced techniques including Ant Colony Optimization, Particle Swarm Al-

gorithm, and Agent-based Methods. The introduction is far from exhaustive but aims to

provide a sketch of some most active fields and recent advances that are related to our

work.

4.2.1 Local Search Metaheuristics

Local Search (LS) is one of the most studied metaheuristics. The search starts with an

initial solution, then moves iteratively into a nearby landscape region. Since the next

candidate solution is always selected within the current neighborhood set, the search is

always based on “local” information.

Local search is also entitled “trajectory methods” [5] since the search process consists

of a sequence of continuous trajectories in the solution space. Trajectory here refers to the

state transition from the current solution s to its neighbor point s′.

The use of local information inevitably leads to one problem: the algorithm is easily

trapped in local optima. An iterative improvement algorithm which accepts only better

18

solution points (strict uphill moves), for example, would stop whenever a local optimum

is reached. Although many established local search algorithms have strategies for escap-

ing local optima, finding a good balance between search diversification and intensification

still remains a major challenge. Here, diversification refers to search behavior that actively

explores the solution space without being trapped in some particular regions; intensifica-

tion, on the other hand, usually refers to an intensified search within promising solutions

area aiming at reaching high quality solutions.

Iterative Improvement Algorithm (IIA) The Iterative Improvement Algorithm (IIA)

moves towards solution points that only improve the best-found solution quality. IIA stops

whenever a local optimal point is reached. The algorithm is specified in Algorithm 1.

Algorithm 1 The Simple Iterative Improvement Algorithm
1: Initialize candidate solution s← s0

2: while s is not local optimum do

3: Randomly choose a neighbor s′ of s

4: if f(s′) > f(s) then

5: s← s′

6: end if

7: end while

8: return s

Simulated Annealing (SA) Simulated Annealing is an early metaheuristic algorithm

originating from an analogy of how an optimal atom configuration is found in statistical

mechanics [46, 35]. It uses temperature as an explicit strategy to guide the search. In

Simulated Annealing, the solution space is usually explored by taking random tries. An

uphill move is always accepted since it is a better solution. Downhill moves are accepted

with a probability that depends on both the current “temperature” level as well as the

change in solution quality. Here, change in solution quality is measured by the difference

in the objective function value: f(s′) − f(s). If we denote the temperature value as T ,

and the change in solutions quality as ∆E, the probability of accepting a downhill move

19

would be:

p = e
−

∆E

kBT

Here, kB is called the Boltzmann constant, which is used for adjusting the effect of

temperature T in computing the downhill probability. A cooling scheme defines how T

value drops from high towards low during the search. The basic idea is that we allow more

downhill moves at the early stage of the search to keep the algorithm actively exploring the

solution space (the higher T , the higher the probability to accept a downhill move); how-

ever, as the search continues, downhill moves become less likely so that the search would

focus on a limited area that is identified as “good” solution region. Theoretically, given a

good cooling scheme that decreases the temperature slowly enough, SA is guaranteed to

find the global optimal solution [2, 49].

Algorithm 2 The Simulated Annealing Algorithm
1: Initialize candidate solution s← s0, set sbest ← s

2: Initialize cooling scheme, set temperature T ← T0

3: while Termination criterion not met do

4: Randomly choose a neighbor s′ of s

5: if f(s′) > f(s) then

6: s← s′

7: else

8: s← s′ with probability p = e
−

∆E

kBT

9: end if

10: Update temperature T according to the cooling scheme

11: if f(s) > f(sbest) then

12: sbest ← s

13: end if

14: end while

15: return sbest

20

The choice of an appropriate temperature cooling scheme is important and is one of the

major meta-parameters1 to be tuned. Temperature affects the probability of taking a down-

hill move.2 The cost of “jumping” out of a local optimal region also depends on how well

the cooling scheme fits into the underlying search landscape. Although it is claimed that

there exists cooling schemes that guarantee the convergence to global optimum point, the

scheme is usually too slow for practical use [35]. Therefore, problem-specific algorithm

tuning is required in real applications. The Simulated Annealing algorithm is specified in

Algorithm 2. The termination criterion (Algorithm 2, Step 3) is usually defined as reaching

an upper bound local search moves.

Tabu Search (TS) Tabu Search [25, 76, 47, 26, 22] differs from Simulated Annealing in

the way candidate solutions are selected from the neighborhood set. The previous search

history is recorded in the tabu list TL. The algorithm avoids moves toward recently visited

areas by using the tabu list to “filter” the current neighborhood set. The filtered neighbor-

hood set forms the allow set for the next move:

Definition 7 An allow set is defined as

N ′(s) = N(s)− TL

Here, s is the current solution; N(s) is the neighborhood set of s; TL contains recently

visited solution points. In the search landscape, the use of tabu list resembles the behavior

of laying “land marks” along the search paths to help identify solution regions that are not

worth further exploration. Recently proposed algorithms also use long term memory as

the strategic guidance for the subsequent search [5]. Information collected during previous

search history is used to improve the performance of the algorithm.

Similar to the use of temperature value in Simulated Annealing, the length of the tabu

list affects the behavior of the algorithm. A long list represents long-term memory thus

forcing the algorithm to explore larger regions of the solution space; a short tabu list, on the

contrary, concentrates the search on relatively small solution region. Recently proposed

1Local search step size is another meta-parameter. Local search step size is discussed in Chapter 5.1.
2The Boltzmann constant kB is another factor affecting the downhill probability.

21

methods also use a dynamic tabu list scheme, where the tabu list length changes adaptively

according to the quality of recently visited solutions [5]. Since the list length balances the

effect between intensified regional search and diversified exploration, it is the major meta-

parameter to be tuned.

4.2.2 Constructive Local Search

The term constructive local search is used here in order to differentiate from the more

general class of approaches called constructive search. Constructive search refers to the

general search technique of generating candidate solutions by iteratively adding solution

elements into the partial solution, for example, the classical Dijkstra’s algorithm for find-

ing the shortest path in a graph structure. In this section, we are concerned with a more spe-

cific approach in which a candidate starting point is constructed prior to local search. The

algorithm we study is called Greedy Randomized Adaptive Search Procedure (GRASP)

[61, 34, 37]. GRASP consists of two major phases: solution construction and local search.

During the first phase, we sample the search space by constructing a set of initial solution

candidates. These solutions are then used as the starting points of the subsequent local

search. The GRASP algorithm is described in Algorithm 3.

Algorithm 3 Greedy Randomized Adaptive Search Procedure (GRASP)
1: Initialize sbest ← ø

2: while termination criterion not met do

3: Construct initial solution s0

4: Perform local search on s0 to obtain s1

5: if sbest = ø then

6: sbest ← s1

7: else if f(s1) > f(sbest) then

8: sbest ← s1

9: end if

10: end while

11: return sbest

22

The construction phase in GRASP (Step 3, Algorithm 3) uses a greedy randomized

construction procedure. In GRASP, each solution s consists of a set of solution elements

(e.g., individual paths in a route, bits in a string, or entries in a table). The construction

begins with an empty partial solution s0. During each step of the construction, solution el-

ements are ranked and sorted into the Candidate list (CL). The ranked order in CL reflects

each element’s potential contribution to the partial solution quality. A greedy function g(e)

is defined to capture this potential contribution to solution quality, and is used to compute

the rank value for each element e.

To decide which element to add into the partial solution s0, we select from CL a number

of high ranking elements into the Restricted Candidate List (RCL). RCL ensures that the

final solution built includes some of the most “promising” elements. A selection scheme

is used here to specify what elements are selected into RCL. We then randomly choose

from RCL one target element e to add into s0. The construction repeats until a complete

solution s0 is obtained. This process is described in Algorithm 4.

Algorithm 4 Greedy Randomized Construction
1: Initialize RCL selection scheme and greedy function g(e)

2: Initialize solution s0 ← ø

3: while solution s0 not complete do

4: Compute the sorted candidate list CL using greedy function g(e)

5: Compute the restricted candidate list RCL using the RCL selection scheme

6: Select element e from RCL randomly. Update s0 ← s0 ∪ {e}

7: end while

8: return s0

The second phase in GRASP is the local search (Step 4, Algorithm 3). We may choose

the basic Iterative Improvement Algorithm (IIA), or more complex schemes such as Sim-

ulated Annealing (SA) and Tabu Search (TS). The basic idea in GRASP is to combine

heuristic space sampling with local search to conduct an efficient exploration of the solu-

tion space. While the construction phase helps identify good solution regions in the search

space, the local search enables an intensified exploration of the identified regions. Previous

23

work [61] shows that, given a good combination of construction scheme and local search

process, GRASP usually yields high solution quality. To explain the search behavior of

GRASP, we first introduce the notions of an attractor and a basin of attraction [75, 74].

Definition 8 An attractor â is a local optimum point in the fitness landscape £. The basin

of attraction for â is the set of all solution points s ∈ S from which we could reach the

attractor â by applying local search.

The selection of an appropriate construction scheme is important in GRASP. First, we

would like to generate initial points that belong to “promising” solution regions; second,

we wish to generate points that are within the basins of attraction of different local op-

tima. The task of search diversification is achieved through a good sampling of the space.

Local search takes the role of improving the initial solution by “climbing” the basin until

it reaches an attractor. However, for hard optimization problems where a large number

of local optima exist, the local search should also be allowed to “move out” of the ini-

tial point’s basin and perform an intensified search in nearby regions. This improves the

chance of finding a higher-quality result. As a consequence, it is crucial to select both a

good construction phase and local search that together work well for the given problem

instance.

4.2.3 Swarm Intelligence

A new class of metaheuristic algorithms has been recently studied that integrates the idea

of swarm intelligence into the algorithm framework design. Swarm Intelligence (SI) [45]

is a new computational paradigm based on the underlying principle of natural system be-

haviors. The system consists of many individuals, such as a colony of ants or a flock of

birds. Especially in recent years, the growing interest in applying swarm intelligence to

CO problem domain has lead to the emergence of two successful metaheuristic frame-

works: Ant Colony Optimization (ACO) [13, 12] and Particle Swarm Optimization (PSO)

[38, 45, 68, 67]. In these swarm algorithms, each individual uses simple rules to govern

their local search activity. The individuals in the swarm interact with each other during

the search process to achieve the same optimization goal. Recent work [69, 51, 67, 71]

24

shows that these swarm algorithms are capable of solving many hard CO problems and

can outperform some traditional metaheuristics.

Ant Colony Optimization (ACO) The underlying model in the ACO algorithm is called

the Ant System (AS) [13, 12], whose overall goal is defined as finding a shortest route

between the nest and food resource.3 The foraging behavior of real ants provides a model

to achieve this goal: while walking from nest to food and vice versa, each ant deposits

a substance called pheromone on the path. When deciding the next direction to search,

they choose with higher probability those paths that are marked with stronger pheromone

concentration. The amount of pheromone each ant deposits is proportional to its own

evaluation of that path’s importance (e.g., the path length). As a result, a shorter path will

have a greater chance of being visited again by the following ants. This basic behavior

is referred to as a distributed auto catalytic process [13]. It serves as the foundation for

a cooperative interaction within the ant system and usually leads to the finding of the

shortest route.

In the ACO algorithm, ants communicate with each other through the amount of

pheromone on a path. Each ant incrementally builds its partial solution (a route from nest

to food) by exploring the environment and sensing the pheromone along the path. The

environment here usually refers to a linked graph. Each node in the graph is associated

with an Ant Routing Table. The ant at node i chooses the next node j to expand with tran-

sition probability pij as recorded in the routing table. Whenever an ant reaches the food

resource, it returns to the nest following its constructed route and updates the pheromone

value τij along each visited path (τij ← τij + ∆τij). The amount of pheromone deposited

(∆τij) by the ant is related to the quality of the route found (e.g., the length of the route).

The ant routing table on each visited node is also updated according to the changes in

pheromone values on all associated paths. The ant may restart the searching process again

after returning to the nest and construct another route.

3Both food resource and nest are represented as nodes in a graph structure in ACO.

25

Particle Swarm Optimization PSO [45] is a recently proposed population-based meta-

heuristic framework. Similar to ACO, the algorithm is inspired by the natural behavior of

bird flocks searching for food and has been applied for solving various combinatorial op-

timization problems [67, 71, 38]. The basic ideas in PSO are distributed problem solving

and information sharing: search task is dispatched among a swarm of agents called “parti-

cles”; each particle acts independently by conducting a local search process in the problem

solution space. The best solution found within the whole swarm (global information) is

shared among all particles; each particle also maintains the best-solution found by its own

search process (local information). In the algorithm, each particle conducts a thorough

search within the region between the “global-best” solution point and its own “local-best”

solution point. Literature [45, 68] reports that these regions might have a better chance

of containing good solutions and the idea of “flying from one good solution location to

another” [45] may be a better way of obtaining high-quality result.

Some recent work also views metaheuristic algorithms from the perspective of an

agent-based framework [24, 23, 53, 48]. The idea is based on the fact that many state-of-

the-art metaheuristic algorithms have encompassed inherent agent-based concepts. The

use of agent terminology to describe metaheuristic procedures might help provide a sys-

tematic view for understanding the problem solving process of these algorithms. One of

these works, named MultiAGent Metaheuristic Architecture (MAGMA) [53], represents a

metaheuristic algorithm as a four-level multi-agent architecture. Agent-based cooperative

search [10, 62, 71, 36] also draws much attention in the literature for solving combinatorial

optimization problems.

4.2.4 Variable Neighborhood Search (VNS)

In VNS [29, 30], we change the search landscape dynamically by switching among dif-

ferent neighborhood structures. The idea is based on the fact that an existing local opti-

mum in one search landscape is not necessarily a local optimum in another. Changing the

landscape may help the search process effectively escape from local optima and keep it

actively exploring the solution space. One variation of VNS is called Variable Neighbor-

hood Decomposition Search (VNDS) [28]. In VNDS, the solution space is decomposed

26

and represented in a set of neighborhood structures. Each neighborhood structure Ni is

defined in such a way that several selected dimensions of the solution variables remain

constant.4 The algorithm usually starts by applying a local search (e.g., strict uphill move)

within one Ni landscape until a local optimal solution is reached; it then switches to an-

other (e.g., Nj) landscape using a pre-defined switch scheme. VNDS could be considered

a space partitioning search technique.

4.3 A Unifying View for Metaheuristic Search

We present in this section an influence diagram that describes the search behavior of the

metaheuristic algorithms discussed in this section.

4.3.1 An Influence Diagram

Different algorithms search in different landscapes. For a given problem instance, the un-

derlying fitness landscape is determined by two major factors: solution space and neigh-

borhood structure. For illustrative purposes, we use the more general term landscape

topology instead of fitness landscape. While solution space could be viewed as a set of

solution nodes where no connections exist between them, landscape topology defines how

solution nodes are expanded into their nearby nodes set thus describing the spatial struc-

ture of the search landscape. A search graph, on the other hand, represents the search

history (search path) of one typical run of the algorithm. Different runs of the algorithm

may visit a different solution points set, thus having different search graphs.

The transition operator ϕ defines how the search process moves from one solution

point to another. Applying ϕ to the current solution generates a neighborhood set contain-

ing all candidate solutions for the next move. Different algorithms may define different

transition operators, thus having different neighborhood structures. Another factor that

differentiates one search algorithm from another is the solution acceptance scheme. The

4This is different from a problem decomposition, since each neighborhood structure (thus its associated
landscape) still maintains full features of the original problem, only that some selected dimensions have
fixed value during the search.

27

acceptance scheme affects how the next solution is selected from the neighborhood set.

Its non-deterministic feature is the major cause of the variance among different search

graphs.

To summarize these relations, we present an influence diagram shown in Figure 4.2.

In this figure, solution space is determined by three factors: the problem instance, the

constraints over the problem, and the fitness function. A given candidate algorithm has

two major components: transition operator and solution acceptance scheme. The land-

scape topology defines the spatial structure of the underlying search landscape, and it is

determined by both the solution space and neighborhood structure. Landscape topology is

associated with multiple search graphs, each representing one typical run of the algorithm.

Since the acceptance scheme affects how solution points are visited during the search, it

is associated with each search graph.

Figure 4.2: A unifying view for metaheuristic search.

28

4.3.2 Landscape Topology Graph and Algorithm Search Behavior

Figure 4.2 indicates that, for a given problem instance, the search behavior of the meta-

heuristic algorithm is mainly affected by the underlying landscape topology it uses. Local

search, for example, iteratively moves from the current solution point into one of its direct

neighbors. Conceptually, the landscape topology in local search could be described using

an undirected “Local Search (LS) Graph” (Figure 4.3). In Figure 4.3, nodes represent

individual solutions; an edge exists between two nodes if one node could be reached by

applying the transition operator on the other. Local search graphs have high degree of

connectivity, since connections usually occur between two nearby nodes with high proba-

bility.5

Figure 4.3: A conceptual local search landscape topology graph. Nodes represent solution
points. Edges represent possible transitions between solutions (undirected).

Due to the local connectivity feature of the landscape topology, escaping local optima

becomes a major issue in local search algorithms. The search process is easily trapped

since solution points are locally connected. Jumping out of a local optimal region requires

mechanisms such as probabilistic downhill move (e.g., the cooling scheme in SA) or short-

5Local search topology graph is a static view of the spatial structure of the fitness landscape, and con-
nections between nodes exist throughout the search process of a given algorithm.

29

term memory (e.g., the tabu list in TS). Local search methods are good at quickly obtaining

quality solution points, but require extra runtime cost for actively exploring the whole

solution space.

In GRASP, however, the joint effect of space sampling and local search would result

in a landscape topology that could be described using a “cluster landscape graph” (Figure

4.4). In Figure 4.4, each cluster has an attractor, which is itself a local optimum. The

“body” of that cluster is the basin of attraction consisting the set of solution points from

where a local search could be applied to reach the attractor. The attractor and its basin

together define the cluster.

Figure 4.4: A conceptual cluster landscape topology graph. Each cluster represents one
local optimal region including an attractor (local optimal point) and the basin (a set of
solution points that may lead to the attractor).

The cluster landscape topology indicates that the search behavior in GRASP follows a

hierarchical pattern: it first jumps to the attraction basin of one cluster, then climbs up (or

down) the basin until it reaches the attractor. The first step requires identifying a “good”

cluster in the solution space. In GRASP, the greedy randomized construction process takes

this role. GRASP then works on “micro-level” by performing a local search process.

In Variable Neighborhood Search (VNS), however, we switch among different neigh-

borhood structures. The landscape topology in VNS forms a “multi-layer graph”. Each

30

layer is a typical “local search graph”, however, different layers now represent different

neighborhood structures, thus having different landscapes.

4.4 Algorithm Performance and Performance Measure-

ment

4.4.1 Algorithm Performance

Empirical experiments show that Algorithm Performance (AP) is affected by its Meta-

Parameter Setting (MPS) and the target optimization problem P0. This relation could be

described in an influence diagram shown in Figure 4.5.

Figure 4.5: Algorithm Performance (AP) is affected by its Meta-Parameter Setting
(MPS) and problem instance P0.

Meta-parameters usually refer to the set of high-level control strategies in various

metaheuristic algorithms. Examples would include the cooling schedule in Simulated An-

nealing and tabu list length in Tabu Search. Algorithm performance generally describes

the algorithm’s capability of solving the problem, and it can be measured by a number

of performance metrics (e.g., average best-found solution quality, runtime distribution).

One major work in our experiment is to tune MPS in order to obtain an optimal or near-

optimal algorithm performance. Optimal algorithm performance achieves either highest

best-found solution quality or highest problem solvability. For a given optimal setting

31

Table 4.1: Algorithm performance table. MPS∗

i specifies the ith element in MPS∗. Each
entry in the table is a text description of the best-found parameter setting.

MPS∗

1 MPS∗

2 ... MPS∗

n

Problem 1 * * ... *

Problem 2 * * ... *

Problem 3 * * ... *

MPS∗ on problem P0, we are expected to obtain the optimal performance of the algo-

rithm on P0.

However, since meta-parameters are usually inter-dependent, the tuning work itself

might be complex enough to be considered an optimization problem. Systematic mecha-

nisms are usually required to obtain MPS∗. In practice, however, manual tuning obtains

only the best-found MPS that is close to MPS∗.

Furthermore, the optimal meta-parameter setting may vary among different problem

instances. To summarize the best-found MPS∗ for each problem, we use the Performance

Table (Table 4.1).

Table 4.1 could be used by application programmers who implement the algorithm

for the specific problem. The variance in MPS∗ over different problem instances also

indicates the robustness feature of the algorithm; furthermore, the correlation between

meta-parameter setting and problem feature could be inferred from this table, for example,

how parameter setting changes with respect to problem size.6 This might help us “predict”

potential MPS∗ of the algorithm whenever new problem instances are encountered that

have not been studied. New problems might be different in a number of features such as

problem size and landscape difficulty. The correlation observed in the tuning work might

help us estimate the new optimal meta-parameter settings for the new problem without

conducting the whole meta-parameter tuning work again.

One important fact is that in real applications, algorithm performance might also be af-

fected by a number of factors such as program implementation and running environments.

6To allow this, problem size and various other problem features should be examined as well.

32

This indicates one potential problem where our best-found MPS∗ in Table 4.1 might not

be accurate enough in actual implementation. One solution is to provide graphical user

interfaces that allow the manual “micro-tuning” of the suggested meta-parameter values.

An alternative way is to provide an automatic tuning mechanism that optimizes algorithm

performance for each of the encountered problem instances [40, 39]. However, as men-

tioned earlier, this brings significant computational cost and is outside the scope of the

work in the thesis.

4.4.2 Performance Measurement

The comparative study of metaheuristic algorithms is complicated by the fact that there

usually exists a trade-off between solution quality and runtime cost: one algorithm may

outperform another given longer runtime bound; on the other hand, algorithms that obtain

on-average good solutions may lose their superiority if higher solution quality is required.

As a result, the preference of one algorithm over another should be discussed within the

context of a given runtime or quality threshold.

A second issue concerning algorithm comparison is that algorithm performance (AP)

changes according to different MPS. To compare the performance of two algorithms, we

need to first fix each algorithm’s MPS at its best-found MPS∗ level for each encoun-

tered problem instance. This gives a “peak” performance comparison of the algorithms.

Throughout our empirical study, the following performance measurement methods have

been used.

Runtime Quality (RQ) Measurement A RQ graph shows how average best-found so-

lution quality changes over runtime. Solution quality refers to the evaluation function

value of the target problem (e.g., total net profit in the fertilizer problem). For each run

of the algorithm on a particular problem instance, we record the best-found solution qual-

ity at each fixed runtime intervals (e.g., every 1 CPU second, or every 100 local search

steps). Average best-found quality at each runtime interval is obtained over multiple runs.

Runtime quality measurement shows how the search algorithm converges to good solu-

tions over the entire runtime range. It gives a general picture of the trade-off between

33

solution quality and runtime cost. Comparing RQ graphs for different algorithms shows

their different rates of convergence, as well as the best-found quality they are capable of

achieving.

Similar to runtime quality, a method called Quality Runtime (QR) Measurement is also

adopted. In QR, we calculate the average runtime cost r of the algorithm to reach solution

quality threshold q0 (over multiple runs). Runtime is measured in both number of local

search moves and CPU seconds (for comparison across algorithms). QR graphs show how

the computing cost of the algorithm varies over different solution quality requirements.

QR measurement could be used as a supplementary measurement metric for RQ measure-

ment.

Run Time Distribution (RTD) Measurement In the RTD measurement, we measure

the probability that the algorithm achieves a given solution quality threshold q0 over time.

The threshold q0 represents an acceptable solution quality in practical application, and

is usually set to a certain percentage of the best-known7 solution quality (e.g., 98%) for

each of the encountered problem instances. Multiple runs of the algorithm are performed,

and each run’s best-found solution quality is recorded at fixed runtime intervals. The

percentage of successful runs whose best-found quality reach q0 (at each runtime interval)

is computed. RTD gives a good measurement of that algorithm’s problem solvability over

runtime. Generally speaking, algorithm whose solvability achieves 1 within an upper

runtime bound indicates it is q0 complete for the problem. On the other hand, an algorithm

whose solvability fails to reach 1 indicates it is essentially q0 incomplete [37].

7The best-known solution quality is used here since we don’t know the global optima for the fertilizer
problem.

34

CHAPTER 5

APPLYING METAHEURISTIC ALGORITHMS TO THE

FERTILIZER PROBLEM

Our work applied a number of local search metaheuristic algorithms to the fertil-

izer problem, including the Iterative Improvement Algorithm (IIA), Simulated Annealing

(SA), DNM Local Search and Constructive Local Search (GRASP).

5.1 Iterative Improvement Local Search for the Fertilizer

Problem

We applied a simple Iterative Improvement Algorithm (IIA) to the fertilizer problem. As

described in Algorithm 1, IIA accepts only uphill moves that improve the best found solu-

tion quality. In the fertilizer problem, the solution s consists of both the nutrient mixture

table A and delivery rate table V. The transition operator defines how the search process

moves from one solution point to another. In IIA, we make random changes to both table

A and V together at each local search move. The transition operator in IIA is specified

below.

• First, randomly select al ∈ A, randomly select ail ∈ al, then set ail ← ail ± ∆a.1

Normalize al so that ∑n
i=1 ail = 1. Here, i = 1, 2, . . . , n; l = 1, 2.

• Second, randomly select vj ∈ V, randomly select vlj ∈ vj, then set vlj ← vlj±∆v.

Here, l = 1, 2; j = 1, 2, . . . , k.

1The selection of + and − is also random.

35

Tuning local search step size ∆a and ∆v is one of the major experimental work in our

following empirical study. The step size tuning experiment is discussed in Chapter 6.1.1.

5.2 Simulated Annealing Local Search for the Fertilizer

Problem

The Simulated Annealing algorithm is described previously in Algorithm 2. In Simulated

Annealing, we also make random changes to both table A and table V together. Thus,

the SA algorithm uses the same transition operator as previously described in IIA. The

solution acceptance scheme in SA, however, takes a different form: we always accept

uphill moves that increase the total net profit (Step 5, Algorithm 2). A downhill move

is accepted (Step 8, Algorithm 2) with a probability that depends on both the current

“temperature” level T and the change in solution quality. In the fertilizer problem, the

change in solution quality is measured by the relative difference in total net profit. We

denote P as the original total net profit and P
′ as the new profit after changes. Assuming

P
′

< P , indicating a downhill move, the relative change in solution quality2 is defined as

∆E = P−P
′

P

Thus, the probability of taking a downhill move is

p = e
−

∆E

kBT

In Step 10 of Algorithm 2, the cooling scheme controls how temperature T changes at

each local search move. In the fertilizer problem, two schemes have been examined:

• Geometric cooling scheme changes temperature by Tk+1 = α×Tk, where α = (1

T0
)

1

n ,

k = 0, 1, ..., n − 1. Here, T0 is the initial temperature value; n is the total number

of local search moves (the while loop in Algorithm 2); k is the current number of

local search moves.

2The relative change is used here so that ∆E has smaller variance within different local search moves.

36

• Arithmetic cooling scheme changes temperature by Tk+1 = Tk − θ, where θ = T0−1

n
.

Here, T0 is the initial temperature value, n is the total number of local search moves.

In the above cooling schemes, we set the initial temperature T0 = 100 so that the

value range of Tk is traversed from T0 to 1 during the search process. Our preliminary

experiments show that Simulated Annealing is a good candidate for solving the fertil-

izer problem. However, tuning various meta-parameters (e.g., ∆a, ∆v, kB and cooling

schemes) remains a major challenge. The SA tuning experiment is discussed in Chapter

6.1.

5.3 DNM Local Search for the Fertilizer Problem

An alternative way to solve the fertilizer problem is to consider nutrient delivery as a

resource allocation problem. In this work, we proposed a Delivery Network Model (DNM)

to solve the problem. The basic idea is that, instead of exploring the large space of two

tables A and V directly, we deliver nutrients incrementally by repeatedly adding “nutrient

flows” into the network.

In the network, one set of nodes represents the market nutrients, another set represents

the farm sites. A path represents the nutrient flow coming out from a particular nutrient

node into a site node. The flow value on path Pij is

fij = aivj, ai ∈ A, vj ∈ V

To simplify the description of the model, we assume only one compound blend is used

in the fertilizer problem. Thus A table contains only one column; ai refers to either ai1

or ai2 as described in Chapter 2; vj refers to either v1j or v2j in table V. The model can

be easily extended for two compound blends by using two identical delivery networks.

Figure 5.1 gives an example of the delivery network with three market nutrients and four

field sites. The delivery network model transforms the original problem of finding an

optimal delivery scheme into the calculation of a special delivery flow in the network that

optimizes the network utility. Utility here refers to the total net profit.

37

Y

K1

K2

K3

K4

Pij

m1

A m2

m3

Figure 5.1: A simple delivery network model. mi represents the ith market nutrient; Kj

represents the jth farm sites. Path Pij represents nutrient delivery flow from mi to Kj .
Box A is the decision point where we choose a particular market nutrient mi to use. Box
Y represents the point where we compute the total net profits by summing up the profits
of every site Kj .

We implemented a local search algorithm that operates on the network to obtain the

optimal flow configuration. The network is first initialized with small flows, then the

algorithm iteratively adds nutrients into the network and raises the flow values on some

selected paths. We might always accept flow augmentation that increases the network

utility. This would result in a strict uphill local search. However, downhill moves may

also be accepted as a way of bringing more diversification into the search process.

The termination state is that, after a series of flow augmentations, the algorithm would

run into a state where no flow could be added that further increases the network utility.3

This is the case where the search process is trapped in a local optimum. In this situation,

although no larger profit could be obtained by increasing the current flow, it is still possible

for us to decrease flows on certain paths and increase the others, resulting in a better

solution. To solve the problem, a restart scheme could be applied, where we reset the

network flow and restart the augmentation process again. An alternative way is to alter the

current flow configuration by allowing “negative flows” into the network so that the local

search process is able to jump out of local optima.

3This is mainly due to the overdose effect in the field, where too much nutrient delivery would cause site
output to be reduced.

38

5.3.1 The DNM Local Search Algorithm

The DNM algorithm is described in Algorithm 5. In Step 4 of Algorithm 5, the flow

augmentation process alters the current flow configuration by selectively adding nutrients

into the network. This process is described in Algorithm 6.

Algorithm 5 The DNM Local Search Algorithm
1: Initialize network flow F← F0

2: Initialize solution s← s0, set sbest ← s

3: while Termination criterion not met do

4: Perform flow augmentation, update F

5: if Overdose effect happens then

6: Perform micro tuning, update F

7: end if

8: Compute candidate solution s from F

9: if f(s) > f(sbest) then

10: sbest ← s

11: end if

12: end while

13: return sbest

For the fertilizer problem, we implemented two types of nutrient selection schemes

(Step 1, Algorithm 6): random nutrient selection and adaptive nutrient selection. In the

random scheme, we select one nutrient mo randomly and perform the flow augmentation.

In the adaptive scheme, each market nutrient is associated with a heuristic value ηo. Simi-

lar to the ant colony algorithms (Chapter 4.2.3) where good choices are marked with high

pheromone value, the adaptive scheme enables market nutrients that are previously shown

“good” to be more likely selected in the future. The probability of selecting nutrient mo is

po =
ηo

∑n
i=1 ηi

Here ηi is the heuristic value associated with mi; the heuristic value ηo is updated in

the following two ways:

39

Algorithm 6 The Flow Augmentation Process
Require: Current network flow F

Require: Augmentation step size δ

1: Probabilistically select nutrient mo from {mi}

2: Increase all nutrient flows going out of mo

{ foj ← foj + δvj }, vj ∈ V

3: if Acceptance condition satisfied then

4: Update F

5: end if

6: return F

• Linear Heuristic Scheme: if total profit increases by using mo, then ηo ← ηo + ∆,

otherwise ηo ← ηo −∆

• Proportional Heuristic Scheme: if total profit increases by using mo, ηo ← ηo × θ,

otherwise ηo ← ηo/θ

In step 2 of Algorithm 6, foj is the flow value on path Poj representing the amount

of nutrient flow that comes out of nutrient mo into farm site Kj . Value vj is the nutrient

delivery rate at site Kj. The operation in step 2 ensures that the flow value consistency is

maintained among all nutrient flows that come out of the same nutrient.4

The solution acceptance scheme (Step 3, Algorithm 6) is described in Table 5.1. Here,

a flow augmentation that increases the network profit (uphill move) is always accepted;

however, a downhill move indicates the situation where an overdose happens at some

farm sites. To alleviate the overdose effect and avoid the algorithm being trapped in a

local optimum, we perform the micro tuning operation whenever this happens (Step 6,

Algorithm 5). The micro tuning process is specified in Algorithm 7.

Here in Algorithm 7, fij is the flow value on path Pij representing the amount of flow

going from nutrient mi into site Kj. Value ai is the percentage value of using market

nutrient mi in mixture table A. The micro tuning process decreases the nutrient delivery

4In DNM, all flows coming out of nutrient mo use the same ao to calculate the flow value. Augmenting
flow on one flow path without changing the others will cause an invalid ao to be computed.

40

Table 5.1: A decision table for the acceptance condition in Algorithm 6, Step 3.

Decision

Profit Increased Accept

Profit Decreased Reject (Overdose)

Algorithm 7 The Micro Tuning Process
Require: Current network flow F

Require: Tuning step size α

1: for Each farm site Kj do

2: if Overdose effect observed at Kj then

3: Reduce all nutrient flows going into site Kj using

{fij ← fij − αai}, ai ∈ A

4: end if

5: end for

6: return F

41

rates at some farm sites and enables the search to move out of local optimal areas thus

being able to explore other regions of the solution space. Our empirical results show that

using micro-tuning process effectively improves the best-found solution quality.

5.4 Constructive Local Search for the Fertilizer Problem

We also applied Greedy Randomized Adaptive Search Procedure (GRASP) to the fertilizer

problem. The GRASP algorithm is previously described in Chapter 4.2.2. There are two

major phases in GRASP: solution construction and local search. The construction phase

begins by first initializing an empty partial solution s0 = ø, then iteratively adding solution

elements into s0 until a complete solution is obtained. Multiple runs of the construction

would generate a set of solution points. These solutions are then used as the initial search

points of the subsequent local search algorithm.

5.4.1 Solution Element and Greedy Function g(e)

In the fertilizer problem, solution s consists of two tables: mixture table A and delivery ta-

ble V. The solution elements in the fertilizer problem refer to different value assignments

of entries of table A or V. Let C be the value domain over variable ail, where ail ∈ A; let

D be the value domain over variable vlj, where vlj ∈ V. The solution element is defined

as:

e ∈ {ail = c|c ∈ C}
⋃

{vlj = d|d ∈ D}

In the fertilizer problem, since each solution variable (ail or vlj) may take a number of

discrete value assignments, the total number of solution elements is

|C| ∗ |A|+ |D| ∗ |V|

Since the continuous spaces of C and D are discretized at a certain granularity level,

the degree of granularity directly affects the computing cost of the GRASP construction

process. The construction phase might be computationally costly if too small granularity

is used (thus more value choices for each variable). We found that for C with value range

42

[0, 1], a granularity of 0.01 is usually appropriate (thus leading to approximately 100 value

choices for each ail ∈ A). For D with value range [40, 200] as constraint,5 a granularity

of 10 is appropriate.

The greedy function g(e) in GRASP is used for ranking a given solution element e. The

function provides a heuristic estimation of using e to update the current partial solution s0.

Thus, the greedy function considers both the value of e and s0 together. In the fertilizer

problem, our greedy function takes the following form:

g(e) = f(s0 ∪ {e})− f(s0)

Here s0 represents the partial solution under construction; e is the solution element

being evaluated and f(s0) refers to the total net profit P of s0 in the fertilizer problem.

However, since s0 is a partial solution, there are certain variables in s0 (e.g., ail ∈ A or

vlj ∈ V) whose values have not been determined during the construction. To represent

an incomplete solution s0 and allow the evaluation of its function value, we initialize all

variables in the table A and V with minimum allowable values. Adding an element e into

s0 is then equivalent to the operation of setting the corresponding variable to that element’s

value.

5.4.2 Restricted Candidate List (RCL) and RCL Selection Scheme

The restricted candidate list contains a set of promising solution elements that could be

used for solution construction. The selection scheme defines how elements are selected

into RCL from candidate list CL. In a value-based scheme, we select elements from CL

that satisfy the following property:

∀e ∈ CL, g(e) ≥ gmax − α(gmax − gmin)

where

gmax = max{g(e)|e ∈ CL},

gmin = min{g(e)|e ∈ CL}

5The farm machinery has constraint that the delivery rate can only be set to within a certain quantity
range.

43

Parameter α controls the number of elements that are selected into RCL and affects the

quality of the constructed solution. The construction phase with α = 0 is equivalent to a

greedy process where only the best elements are used; larger α leads to a more random

element selection process.

The selection of local search procedures also has an important effect on the over-

all performance of GRASP. Three different local search algorithms are applied including

Simulated Annealing, DNM Local Search, and Iterative Improvement Algorithm.

5.5 Other Metaheuristic Algorithms

We also attempted to apply Ant Colony Optimization (ACO) algorithm to the fertilizer

problem. In ACO, the optimization goal is defined as finding the shortest route (global

optimum) between the nest and food resource. However, the challenge is to transform

the fertilizer problem into an appropriate graph structure representation. ACO is usually

considered a construction method, since the search begins with an initial empty solution

(an empty route, starting from the nest) and terminates whenever a complete solution

is obtained (a complete route, ended at food resource). The high-dimensional solution

space in the fertilizer problem (e.g., A table and V table) complicates the issue since the

number of potential nodes and paths in the graph structure might be very large, making

the representation of the fertilizer problem inefficient.

Some other thoughts include applying Evolutionary Algorithms, for example, Genetic

Algorithm (GA) [72] to the problem. In GA, solutions are first encoded in strings; we

then iteratively apply to the strings a series of operators including crossover, mutation and

selection. In the crossover operation, two selected parent strings are used to produce the

child string; the mutation operation is similar to a local search process, where alterations

are made to the child string after crossover; in the selection operation, we strategically pick

a number of strings having high evaluation function value (e.g., the total net profit in the

fertilizer problem) and promote them into the next strings generation. The whole process

repeats until a given criterion is met, for example, the average fitness value of the string

population is above a given threshold. Although string encoding is rather straightforward

44

for the fertilizer problem (e.g., directly view table A and table V as strings), the large

uncertainty involved in defining and specifying various operators is a major challenge.

From the perspective of metaheuristic algorithm, GA can be considered a “hybrid” algo-

rithm combining local search (mutation), solution set filtering (selection), and construc-

tion method (crossover). Finding an appropriate combination of different problem-solving

strategies that together work well and lead to the convergence of good solutions requires

significant experimental effort.

45

CHAPTER 6

EMPIRICAL RESULTS

The algorithms we studied include: Simulated Annealing (SA), DNM Local Search,

Iterative Improvement Algorithm, and GRASP. The empirical experiment contained two

parts: we first tuned each of the studied algorithms to obtain their near-optimal meta-

parameter settings. The performance of the algorithm under different meta-parameter

settings were evaluated and compared to each other. We then conducted a comparative

study of these algorithms. Each experiment focused on analyzing certain aspects of the

algorithm and all experiments were run against three instances of the fertilizer problems:

• 40-site Canola instance

• 40-site Wheat instance

• 100-site Wheat instance

The 40-site Canola and 100-site Wheat are considered two different problems since

the data are obtained from two different farm fields. The 40-site Wheat is a subset of the

100-site Wheat data. In order to compare algorithm performance on problem instances of

the same size, we randomly picked 40 sites from the larger 100-site wheat and obtained the

40-site Wheat instance. Our experiments were run on a PC with double 1.80 GHz Pentium

IV CPU, 1024KB cache, 1024 MB RAM and Mandrake Linux 10.2. One typical run of

the algorithm generally takes 30 CPU seconds on 40-site problems with fixed local search

moves n at 160, 000. On the 100-site problem, this time is approximately 180 CPU sec-

onds. Each basic measurement (e.g., quality runtime measurement, runtime distribution

measurement) was based on 100 independent runs of the algorithm and all measurements

were tested against the three studied problem instances.

46

6.1 Simulated Annealing

6.1.1 Landscape Granularity

Our first experiment adjusted the local search move size (Chapter 5.1) to obtain a good

neighborhood structure. Tuning step sizes ∆a and ∆v requires comparing algorithm per-

formance under different value settings. Since these two parameters control the granu-

larity of the local search landscape, they affect the performance of the algorithm signifi-

cantly. To estimate an appropriate value range for ∆a and ∆v, we first note the constraints

a ∈ [0, 1] and v ∈ [40, 200]. Our preliminary experiments found a reasonable value

range of [0.001, 0.01] for ∆a and [1, 10] for ∆v. We tested a number of (∆a, ∆v) pairs

and computed for each pair the average best-found solution quality of the algorithm over

100 runs. To eliminate the effect of the temperature cooling schedule and the Boltzmann

constant setting, no downhill moves were used in this tuning.1 The empirical results are

summarized in Table 6.1

Table 6.1 shows that the optimal granularity are found within range [0.001, 0.005] for

∆a and [5, 10] for ∆v over all problem instances. It is also observed that changes in

∆a have a larger effect over solution quality and generally speaking, ∆a requires smaller

granularity. For example, a series of good settings are found along the column at ∆a =

0.001. The explanation is as follows: since the mixture table is used for producing the

two compound blends for all farm sites, small changes in table A would result in an

accumulated large changes in nutrient delivery at all farm sites. The empirical result in

Table 6.1 suggests that the mixture table A may require a more detailed search, using finer

granularity, than the delivery rate table V.

To see how the granularity setting affects the runtime performance of the local search,

we selected 9 (∆a, ∆v) pairs and conducted the RunTime Distribution (RTD) measure-

ments showing how the problem solvability of the algorithm increases over runtime. Prob-

lem solvability here refers to the probability of the algorithm in reaching a given solution

1Under this setting, the algorithm is identical to the Iterative Improvement Algorithm (IIA) where only
strict uphill move is allowed.

47

Table 6.1: Local search step size tuning matrix. Each entry gives the average found so-
lution quality (total net profit) of SA under different granularity settings, as well as the
standard deviation and problem solvability (with respect to 98% of the best-known solu-
tion quality). Bolded text indicates the best and second-best solution quality.

(a) 40-site Canola problem, best-known quality q = 7280

∆v / ∆a 0.001 0.005 0.01

1 7166±32(82%) 7130±24(44%) 7130±28(42%)

5 7212±37(99%) 7172±35(92%) 7159±31(84%)

10 7235±40(99%) 7198±37(99%) 7178±31(96%)
(b) 40-site Wheat problem, best-known quality q = 2780

∆v / ∆a 0.001 0.005 0.01

1 2726±24(65%) 2711±27(36%) 2701±30(24%)

5 2734±22(72%) 2723±21(62%) 2716±23(44%)

10 2732±21(68%) 2728±22(73%) 2718±24(50%)
(c) 100-site Wheat problem, best-known quality q = 7100

∆v / ∆a 0.001 0.005 0.01

1 6940±47(36%) 6894±63(4%) 6861±87(1%)

5 6974±29(77%) 6939±59(44%) 6898±72(10%)

10 6974±34(78%) 6954±49(64%) 6927±59(29%)

solution threshold. The results are shown in Figure 6.1, Figure 6.2 and Figure 6.3.

Our observation is that large granularity generally speed up the algorithm’s converg-

ing process to good solutions, raising the problem solvability during the early time of the

search; however, it also suffers from an earlier performance stagnation (e.g., curves in Fig-

ure 6.2 and Figure 6.3 at ∆a = 0.01 and ∆v = 10), where the problem solvability ceases

to increase even though longer runtime is given. Our explanation for this phenomenon is

as follows: since a small granularity setting (small search step) discretizes the continuous

solution space of the fertilizer problem into a large number of discrete points, it consid-

erably increases the runtime cost of the local search for traversing the search space thus

impeding the finding of good solutions. A large granularity setting, on the other extreme,

enables the algorithm to quickly reach the good solution region by taking large steps;

48

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20000 40000 60000 80000 100000 120000 140000 160000

S
ol

vi
ng

 P
ro

ba
bi

lit
y

Runtime (Local Search Moves)

 ∆a = 0.001, ∆v = 1
 ∆a = 0.005, ∆v = 5
 ∆a = 0.01, ∆v = 10

Figure 6.1: RunTime Distribution (RTD) comparison of different SA granularity settings
on the 40-site canola problem. ∆a is the local search step size for changing A table; ∆v
is the local search step size for changing V table. The quality threshold is set to 98% of
the best known solution quality (q = 7280) for the problem.

49

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20000 40000 60000 80000 100000 120000 140000 160000

S
ol

vi
ng

 P
ro

ba
bi

lit
y

Runtime (Local Search Moves)

 ∆a = 0.001, ∆v = 1
 ∆a = 0.005, ∆v = 5
 ∆a = 0.01, ∆v = 10

Figure 6.2: RunTime Distribution (RTD) comparison of different SA granularity settings
on the 40-site wheat problem. ∆a is the local search step size for changing A table; ∆v is
the local search step size for changing V table. The quality threshold is set to 98% of the
best known solution quality (q = 2780) for the problem.

50

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50000 100000 150000 200000 250000 300000

S
ol

vi
ng

 P
ro

ba
bi

lit
y

Runtime (Local Search Moves)

 ∆a = 0.001, ∆v = 1
 ∆a = 0.005, ∆v = 5
 ∆a = 0.01, ∆v = 10

Figure 6.3: RunTime Distribution (RTD) comparison of different SA granularity settings
on the 100-site wheat problem. ∆a is the local search step size for changing A table; ∆v
is the local search step size for changing V table. The quality threshold is set to 98% of
the best known solution quality (q = 7100) for the problem.

51

however, it has the disadvantage of bypassing a number of potentially good local optimal

solutions, resulting in an earlier performance stagnation and low problem solvability to

be observed by the end of the search. An optimal step size achieves the balance between

search efficiency and result quality by using an appropriate landscape granularity level for

the underlying problem instance.

6.1.2 Downhill Move Scheme

In this section, we compared algorithm performance under different downhill move schemes.

In SA, since both the temperature cooling schedule and the Boltzmann constant kB affect

the probability of taking downhill moves, we performed a combinatorial examination of

both these two parameters together. For each of the two cooling schedules (Geometric

scheme and Arithmetic scheme), we measured algorithm performance under a series of kB

values. The experimental results are shown in Table 6.2, Figure 6.4, Figure 6.5 and Figure

6.6.

Our first observation from Table 6.2 is that there exists an optimal kB value for each

cooling scheme that achieves highest solution quality, and this value does not vary signifi-

cantly across fertilizer problem instances. For the arithmetic scheme, we found the optimal

value at kB = 0.005; for the geometric scheme, optimal value is found near kB = 0.05.

Similar optimal value ranges are also shown in Figure 6.4, Figure 6.5 and Figure 6.6. Our

second observation is that the arithmetic scheme outperforms the geometric one for small

kB values (e.g., kB = 5×10−5), but loses its superiority for large kB (e.g., kB = 0.5). The

optimal kB shifts to large value under geometric scheme and equivalent optimal perfor-

mance is observed using either arithmetic cooling schedule with kB = 0.005, or geometric

cooling schedule with kB = 0.05.

Our explanation for the first observation is as follows: the Boltzmann constant kB con-

trols the value scale for the temperature thus affecting the probability of taking a downhill

move; a small kB value indicates less chance of taking a downhill move thus representing

a strong intensification of the search strategy. The local search might be easily trapped in

local optima and fail to reach the given quality threshold. On the other hand, a large kB

value allows more downhill moves to be taken thus increasing the probability of finding

52

Table 6.2: Solution quality comparison. Each entry gives the average best-found solution quality (total net profit) of the algorithm under
different downhill move schemes. Both quality standard deviation and problem solvability (with respect to 98% of best known solution
quality) are given. Bolded text indicates the optimal quality under each cooling schedule. The best-known solution quality was obtained
from preliminary experiments on each studied problem instance, and was exceeded during the tuning experiment (e.g., the 40-site canola
problem).

(a) 40-site Canola problem, best-known quality q = 7280

Cooling/ kB 5× 10−5 5× 10−4 5× 10−3 5× 10−2 5× 10−1

Arithmetic 7226±33(100%) 7253±29(100%) 7312±24(100%) 7306±24(100%) 7152±112(92%)

Geometric 7217±34(100%) 7239±29(100%) 7298±26(100%) 7315±20(100%) 7281±28(100%)
(b) 40-site Wheat problem, best-known quality q = 2780

Cooling/ kB 5× 10−5 5× 10−4 5× 10−3 5× 10−2 5× 10−1

Arithmetic 2737±18(78%) 2756±25(93%) 2777±9(99%) 2770±9(100%) 265428(0%)

Geometric 2737±18(77%) 2751±14(94%) 2776±9(99%) 2775±15(98%) 2751±14(94%)
(c) 100-site Wheat problem, best-known quality q = 7100

Cooling/ kB 5× 10−5 5× 10−4 5× 10−3 5× 10−2 5× 10−1

Arithmetic 6983±24(86%) 7028±23(98%) 7057±49(98%) 7041±42(97%) 6749±85(0%)

Geometric 6973±45(79%) 7006±25(96%) 7059±24(99%) 7064±15(99%) 6982±47(84%)

53

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 1e-04 0.001 0.01 0.1

A
ve

ra
ge

 R
un

tim
e

C
os

t (
Lo

ca
l S

ea
rc

h
S

te
ps

)

Bolztman Constant

Arithmetic Cooling
Geometric Cooling

Figure 6.4: Downhill move experiment on the 40-site Canola problem, showing the av-
erage runtime cost of the SA algorithm to reach a given solution quality threshold under
different Boltzmann constant settings and cooling schedules. The threshold we use is
98% of the best known solution quality (q = 7280). The granularity setting is fixed at
∆a = 0.001, ∆v = 5. Runtime is measured in terms of number of local search moves.

54

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 1e-04 0.001 0.01 0.1

A
ve

ra
ge

 R
un

tim
e

C
os

t (
Lo

ca
l S

ea
rc

h
S

te
ps

)

Bolztman Constant

Arithmetic Cooling
Geometric Cooling

Figure 6.5: Downhill move experiment on the 40-site Wheat problem, showing the av-
erage runtime cost of the SA algorithm to reach a given solution quality threshold under
different Boltzmann constant settings and cooling schedules. The threshold we use is
98% of the best known solution quality (q = 2780). The granularity setting is fixed at
∆a = 0.001, ∆v = 5. Runtime is measured in terms of number of local search moves.

55

 0

 50000

 100000

 150000

 200000

 250000

 300000

 1e-04 0.001 0.01 0.1

A
ve

ra
ge

 R
un

tim
e

C
os

t (
Lo

ca
l S

ea
rc

h
S

te
ps

)

Bolztman Constant

Arithmetic Cooling
Geometric Cooling

Figure 6.6: Downhill move experiment on the 100-site Wheat problem, showing the av-
erage runtime cost of the SA algorithm to reach a given solution quality threshold under
different Boltzmann constant settings and cooling schedules. The threshold we use is
98% of the best known solution quality (q = 7100). The granularity setting is fixed at
∆a = 0.001, ∆v = 5. Runtime is measured in terms of number of local search moves.

56

better solutions. However, since the benefit of taking downhill moves requires longer run-

time to manifest, the average runtime cost to reach the given quality threshold increases

significantly (e.g., shown in Figure 6.4 at kB = 0.5). In such situations, the algorithm

either solves the problem using longer runtime, or fails to solve it within the experimental

runtime bound. Thus, an optimal kB value achieves the balance between computational

cost and solution quality.

Our intuitive explanation for the second observation is as follows: there seems to exist

a constant amount of downhill moves required in the problem that allows the algorithm

to achieve an optimal performance using different downhill scheme combinations.2 Since

the temperature level drops more slowly in the arithmetic cooling scheme than in the

geometric one, there is a larger probability of taking downhill moves under arithmetic

scheme (given the same kB value); on the other hand, the Boltzmann constant controls the

value scale for the temperature thus also affecting the probability of taking downhill (small

kB, small downhill probability). Combining these two factors, we are able to achieve the

same optimal performance by either using the arithmetic scheme with small kB, or the

geometric scheme with large kB .

Table 6.3: The best-found meta-parameter settings for Simulated Annealing. Bolded text
represents the best setting(s) we found.

MPS∗ / Problems 40-site Canola 40-site Wheat 100-site Wheat

Arithmetic Cooling k∗

B = 5× 10−3 k∗

B = 5× 10−3 k∗

B = 5× 10−3

Geometric Cooling k∗

B = 5× 10−2 k∗

B = 5× 10−3 k∗

B = 5× 10−2

Step Size ∆a [0.001, 0.005] [0.001, 0.005] [0.001, 0.005]

Step Size ∆v [5, 10] [5, 10] [5, 10]

We recorded the best-found meta-parameter settings in Table 6.3. To conclude, we

found an optimal landscape granularity setting near ∆a = 0.001 and ∆v = 5. Optimal

downhill move scheme is found by either using arithmetic cooling with kB = 0.005 or

2Another assumption is that there exists an optimal scheme of changing the downhill probability over
runtime that allow the algorithm to achieve an optimal performance; however, this factor is difficult to
measure.

57

geometric cooling with kB = 0.05. It is generally observed from Table 6.3 that the opti-

mal meta-parameter setting does not vary across different problem instances.3 Although

intuitively, a large problem instance (e.g., 100-site Wheat) usually requires large search

steps (e.g., ∆a and ∆v) in order to maintain an efficient exploration of the larger solution

space (e.g., larger delivery rate table V), this effect might be neutralized by an increase

in the total number of local search moves used in our experiment for the 100-site problem

instance. Similar arguments may be applied to the downhill move scheme, where there is

no observed increase of optimal kB value on the 100-site Wheat instance since the total

number of downhill moves also increases with the total number of local search moves.

Unless specified explicitly, we will use the default granularity setting at ∆a = 0.001 and

∆v = 5; the downhill move scheme is fixed at arithmetic cooling, and kB = 0.005.

6.2 DNM Local Search

In this experiment, we conducted the tuning of two meta-parameters in DNM local search:

the augmentation size δ and the micro-tuning size α. We examined a number of (α, δ) pair

settings for each of the studied problem instances and the empirical results are summarized

in Table 6.4.

First, Table 6.4 shows that a series of good value settings are found along the row at

α = 0.005. This indicates that the optimal negative flow α might be independent of the

flow augmentation size δ. One feasible explanation is as follows: in DNM local search,

the micro-tuning operation reduces delivery rates at farm sites where the overdose effect

happens. It is possible that the average effort for alleviating the overdose effect is constant

and related only to the underlying nature of the field data (e.g., nutrient response curves in

Chapter 2). Although a larger flow augmentation size δ allows more flow to be added into

the network thus potentially increases the effort for micro-tuning, it also causes nutrient

overdose to happen much earlier.

Second, the optimal setting for δ is found within value range [0.01, 0.10] for all prob-

lem instances. We had to reject the intuition that larger problem size requires larger flow

3It might also be the case that the changes are too small to be observable from our experiments.

58

Table 6.4: A parameter tuning matrix for DNM local search. δ is the flow augmentation size. α is the micro-tuning size. Each entry gives
the average achieved solution quality (total net profit) under one (α, δ) setting. Bolded text indicates the best value of that column.

(a) 40-site Canola problem

α / δ 0.01 0.05 0.1 0.15 0.2

0.001 6941 6972 6980 6965 6970

0.005 7225 7203 7176 7148 7151

0.01 7136 7128 7100 7076 7062

0.015 7117 7106 7092 7082 7068

0.02 7101 7089 7078 7059 7050

(b) 40-site Wheat problem

α / δ 0.01 0.05 0.1 0.15 0.2

0.001 2469 2545 2563 2578 2549

0.005 2538 2603 2588 2694 2539

0.01 2551 2598 2582 2583 2539

0.015 2545 2589 2572 2571 2538

0.2 2543 2580 2565 2558 2520
(c) 100-site Wheat problem

α / δ 0.01 0.05 0.1 0.15 0.2

0.001 6214 6186 6160 6180 6135

0.005 6718 6706 6664 6633 6460

0.01 6494 6566 6569 6556 6423

0.015 6646 6636 6650 6592 6453

0.2 6633 6651 6642 6607 6461

59

augmentation step. One feasible explanation is as follows: since the flow augmentation

operation (Algorithm 6, Step 2) increases the nutrient flows for all farm sites at every local

search move, an increase in site number (e.g., from 40-site Wheat to 100-site Wheat) does

not necessarily increase the average effort required to conduct the flow augmentation.

To further examine how these two meta-parameters affect algorithm performance, we

compared the runtime performance of DNM algorithm under a series of (α, δ) settings.

The empirical results are shown in Figure 6.7 and Figure 6.8. It is observed from Figure

6.7 that changes in the α setting has the similar effect as what we found in the SA granu-

larity experiments: large micro-tuning size leads to an early convergence of the algorithm

towards good solutions but also suffers from an earlier performance stagnation (e.g., Fig-

ure 6.7 at δ = 0.01, α = 0.015); small micro-tuning size, on the other hand, considerably

increases the runtime cost of the algorithm to reach good solutions thus performing sig-

nificantly poorly within the given runtime upper bound (e.g., Figure 6.7 at δ = 0.01,

α = 0.001). An optimal micro-tuning size achieves the balance by providing an appropri-

ate granularity level that enables the algorithm to maintain an efficient exploration of the

near-overdose solution region in the fertilizer problem. Similar patterns are also observed

for augmentation size δ, as shown in Figure 6.8.

Our next experiment compared three types of nutrient selection schemes (Chapter

5.3.1) including the random nutrient selection, linear heuristic selection and proportional

heuristic selection scheme. Empirical results are summarized in Table 6.5. It is observed

from Table 6.5 that DNM algorithm performance is less sensitive to different nutrient se-

lection schemes, and heuristic schemes have no demonstrated significant superiority over

the random scheme.

We summarized the meta-parameter tuning results in Table 6.6. To conclude, we found

an optimal augmentation size δ within range [0.05, 0.1] and micro-tuning size α at 0.005.

Generally speaking, DNM algorithm performance is very sensitive to granularity settings

(α, δ) and less sensitive to nutrient selection schemes. Unless specified explicitly, our

experiments will use a random nutrient selection scheme, and (α, δ) setting would be

fixed at the best-found values indicated as bolded text in Table 6.6.

60

 6500

 6600

 6700

 6800

 6900

 7000

 7100

 7200

 7300

 0 20000 40000 60000 80000 100000 120000 140000 160000

A
ve

ra
ge

 S
ol

ut
io

n
Q

ua
lit

y
(T

ot
al

 N
et

 P
ro

fit
)

Runtime (Local Search Moves)

 δ = 0.01, α = 0.001
 δ = 0.01, α = 0.005
 δ = 0.01, α = 0.010
 δ = 0.01, α = 0.015

Figure 6.7: Runtime quality comparison of DNM local search under different micro-
tuning size α on the 40-site Canola problem.

61

 6850

 6900

 6950

 7000

 7050

 7100

 7150

 7200

 7250

 7300

 0 20000 40000 60000 80000 100000 120000 140000 160000

A
ve

ra
ge

 S
ol

ut
io

n
Q

ua
lit

y
(T

ot
al

 N
et

 P
ro

fit
)

Runtime (Local Search Moves)

 δ = 0.01, α = 0.005
 δ = 0.1, α = 0.005
 δ = 0.2, α = 0.005

Figure 6.8: Runtime quality comparison of DNM local search under different augmenta-
tion step size δ on the 40-site Canola problem.

62

Table 6.5: Performance comparison of nutrient selection schemes in DNM local search.
Each entry gives the average found solution quality under different nutrient selection
schemes.

Selection Scheme / Problem 40-site Canola 40-site Wheat 100-site Wheat

Random 7225 2602 6734

Linear 7229 2610 6690

Proportional 7226 2616 6716

Table 6.6: Performance table for DNM local search. Each entry is a text description of the
best-found parameter range for the problem. Bolded text indicates the best-found value.

MPS∗ / Problem 40-site Canola 40-site Wheat 100-site Wheat

Flow augmentation size δ [0.01, 0.1] [0.05, 0.15] [0.01, 0.1]

Micro-tuning size α [0.005, 0.01] [0.005, 0.01] 0.005

Nutrient selection scheme Random Random Random

6.3 Constructive Local Search

6.3.1 RCL Selection Parameter α

Our first experiment evaluated how the RCL parameter α (Chapter 6.4.2) affects the overall

performance of the GRASP algorithm. In the experiment, we tested a series of α values

and measured GRASPIIA performance under each α setting. The algorithm was run

against all three problem instances, and the empirical results are summarized in Table

6.7. Here, we measured a number of performance metrics including: average and best

local search runtime to reach 98% of best-known solution quality; average and best-found

solution quality for both constructed and final solutions. Since IIA is used as the default

local search phase in GRASP, the corresponding standalone IIA performance is also given

in Table 6.7 for comparison.

Our first observation is that GRASPIIA outperforms IIA on most measurement met-

63

Table 6.7: Selection parameter α tuning in GRASPIIA. Measurements include: average
and best runtime (local search steps) to 98% of best-known solution quality (Avg.RT and
Best.RT); average and best-found final solution quality (AvgF.Q and BestF.Q); average
and best-found constructed solution quality (AvgC.Q and BestC.Q).

(a) 40-site Canola problem

α Avg. RT Best.RT AvgF.Q BestF.Q AvgC.Q BestC.Q

0(greedy) 10798 9885 7225 7292 3919 3919

0.2 9085 6541 7214 7283 3374 4356

0.4 7515 3808 7215 7279 3194 5218

0.6 7125 3548 7211 7294 2570 6201

0.8 8763 4430 7219 7288 694 5783

1(random) 9205 4121 7216 7296 1247 5428

IIA 8760 3251 7217 7293 * *
(b) 40-site Wheat problem

α Avg.RT Best.RT AvgF.Q BestF.Q AvgC.Q BestC.Q

0(greedy) 94229 14488 2729 2767 703 703

0.2 73372 9105 2731 2773 401 1916

0.4 94346 6654 2723 2779 365 1739

0.6 57925 4982 2733 2766 357 2042

0.8 42999 6048 2741 2773 -98 1692

1(random) 41615 7000 2742 2774 -379 1700

IIA 51710 5549 2731 2767 * *
(c) 100-site Wheat problem

α Avg.RT Best.RT AvgF.Q BestF.Q AvgC.Q BestC.Q

0(greedy) 101350 23367 6964 7014 1846 1846

0.2 78410 16917 6984 7039 1038 3892

0.4 76057 16933 6980 7025 1171 5263

0.6 72937 14862 6977 7020 654 4678

0.8 65289 18384 6983 7027 -250 4361

1(random) 59227 18636 6985 7034 -798 3969

IIA 93102 17075 6971 7028 * *

64

rics, however, there is no specific α value range that has demonstrated significant supe-

riority on all measurement metrics. Generally speaking, a greedy construction process

(α = 0) usually leads to worse performance than other schemes; random construction

scheme4 (α = 1) has an observed good performance in measurements that compute av-

eraged values (e.g., average runtime and average quality); greedy randomized schemes

(α ∈ [0.2, 0.8]) usually has a good record in measurements computing the best-found

features (e.g., best runtime and best solution quality).

6.3.2 Structure Similarity

Our next experiment analyzed the pairwise structure similarity within both the constructed

solution set and the final solution set. The similarity experiment gives an estimation of how

solutions obtained by GRASPIIA are “structurally” close to each other in the solution

space. For a given solution point set D, assuming two solutions

s1 = (x1, x2, ..., xn), s1 ∈ D

and

s2 = (y1, y2, ..., yn), s2 ∈ D

, where xi and yi refer to solution variables (components) in the fertilizer problem (either

ail ∈ A or vlj ∈ V), the structure similarity between two solution points s1 and s2 is

defined to be the number of similar components5 shared between them, in the following

form:

g(s1, s2) = |{(xi, yi)|xi = yi, xi ∈ s1, yi ∈ s2, i = 1, 2, ..., n}|

Here, n is the total number of solution variables. Since solution s consists of table A

and table V, the total number of solution variables n is equal to |A|+ |V|. The structure

similarity SS for data set D is calculated in the following way:

SS =
∑

i<j

g(si, sj)

K

4A random construction scheme in GRASP is different from a random start scheme in IIA local search
since the granularity setting in GRASP construction leads to a “region sampling” process.

5Similarity is defined as equal value assignments between xi and yi. However, because of the issue of
discretization, equality here refers to similar values within a given value range determined by the granularity
level. Here, we use the same granularity setting as described for GRASP construction.

65

Here K is the total number of solution pairs in data set D. The above formula gives the

expected number of similar components that are shared by solution pairs in data set D. In

the fertilizer problem, since a solution consists of both mixture table A and delivery rate

table V, we computed the similarity for A and V separately. We conducted the similarity

test on both the constructed solution points set (generated by the GRASP construction)

and the final solutions set obtained by the following IIA local search. For each α value,

100 GRASPIIA independent runs were performed, and 100 constructed and final solution

points were obtained. The empirical results are shown in Table 6.8. For comparative

purposes, the standalone IIA local search results are also summarized in Table 6.8.

First, it is observed in Table 6.8 that at α = 0, the solution set obtained by local search

has smaller structure similarity (Final.A and Final.V in Table 6.8) than the constructed set

(Cons.A and Cons.V in Table 6.8). At α = 0, the construction phase in GRASP becomes

a greedy procedure where the same components are promoted and built into the initial

solution. However, initializing from the same solutions, different runs of the subsequent

local search may reach different local optima. This usually results in a smaller structure

similarity to be observed in final solution set. As α increases and more randomness is

used, the construction phase allows more components to be added in and usually leads to

smaller similarity for both the constructed and final solution set.

Second, the final solution set usually has larger similarity value than the constructed

set at α = 1.6 This suggests the fact that good solutions in the fertilizer problem share

similar structure.7 Starting from random positions, the IIA local search converges to a

number of local optima where a certain degree of common components are shared.

We also examined the average Euclidean distance between each constructed solution

point and its corresponding final solution point (local optima obtained by local search).

As shown in Table 6.8, the greedy construction process (α=0) leads to larger initial-final

Euclidean distance (Eucli.A and Eucli.V in Table 6.8); a random construction scheme

(α=1), however, has relatively smaller Euclidean distance between constructed and final

solution points.

6The only exception is Cons.V and Final.V at α = 1 in Table 6.8(a).
7According to the Proximate Optimality Principle[25], many combinatorial optimization problems con-

tain good solutions having similar structures.

66

Table 6.8: Structure similarity test. Measurements include: structure similarity of con-
structed solutions set (Cons.A and Cons.V); structure similarity of final solutions set (Fi-
nal.A and Final.V); average Euclidean distance between each constructed solution and its
corresponding final solution (Eucli.A and Eucli.V). Numbers in the bracket indicate the
smallest euclidean distances within the solutions set.

(a) 40-site Canola

α Cons.A Final.A Cons.V Final.V Eucli.A Eucli.V

0(greedy) 8.0 1.2 67.9 28.0 1.10(1.02) 515(453)

0.2 2.0 0.9 32.7 21.2 0.93(0.66) 453(368)

0.4 1.3 1.0 25.6 19.6 0.79(0.39) 454(339)

0.6 0.6 0.8 21.4 18.5 0.67(0.20) 487(300)

0.8 0.5 0.6 20.4 19.2 0.79(0.25) 564(398)

1(random) 0.4 0.6 20.0 18.5 0.67(0.29) 542(336)

IIA 0.4 0.6 9.7 15.4 0.61(0.12) 491(356)
(b) 40-site Wheat

α Cons.A Final.A Cons.V Final.V Eucli.A Eucli.V

0(greedy) 6.0 1.4 78.0 44.9 1.16(1.12) 664(618)

0.2 1.2 0.8 48.6 23.0 0.97(0.30) 571(335)

0.4 0.6 0.9 30.7 20.9 0.77(0.37) 508(360)

0.6 0.4 0.8 21.8 21.3 0.61(0.22) 513(336)

0.8 0.4 0.9 20.1 22.7 0.66(0.24) 551(421)

1(random) 0.4 0.9 20.0 23.1 0.69(0.15) 575(440)

IIA 0.5 0.9 9.8 20.1 0.63(0.21) 516(390)
(c) 100-site Wheat

α Cons.A Final.A Cons.V Final.V Eucli.A Eucli.V

0(greedy) 6.1 1.9 193.2 111.4 1.21(1.18) 1020(970)

0.2 1.3 1.1 132.7 73.3 1.06(0.71) 913(561)

0.4 0.6 1.2 77.0 57.0 0.87(0.25) 785(588)

0.6 0.3 1.4 52.8 52.7 0.72(0.29) 786(643)

0.8 0.4 1.5 50.4 55.0 0.72(0.19) 830(642)

1(random) 0.4 1.5 50.0 56.1 0.78(0.23) 857(647)

IIA 0.5 1.2 24.4 50.0 0.73(0.25) 786(643)

67

To conclude, we found that adding construction process to local search (IIA) generally

produce better solution quality and improves algorithm performance. We had to reject the

intuition that there exists an optimal value range for selection parameter α that achieves

an optimal algorithm performance. A greedy randomized construction that combines both

greediness and randomness can lead to the finding of better solution points, however, it

does not necessarily result in an improvement in average algorithm performance. Unless

specified explicitly, our remaining experiments will use α = 1 as the default GRASPIIA

setting.

6.4 Performance Comparison

In this section, we compared the runtime performance of four studied metaheuristics: Sim-

ulated Annealing (SA), DNM Local Search (DNM), Iterative Improvement Algorithm (IIA)

and Constructive Local Search (GRASPIIA). We fixed the meta-parameter of each algo-

rithm at the best-found parameter settings as described in our previous tuning experiments.

The algorithms were applied to all three problem instances, and the comparative results

are summarized in Figure 6.9, Figure 6.10, Figure 6.11 (Runtime Quality comparison) and

Figure 6.12, Figure 6.13, Figure 6.14 (Quality Runtime Comparison).

First, it is observed from Figure 6.9, Figure 6.10 and Figure 6.11 that SA outperforms

other algorithms over all problem instances. IIA has been observed to converge more

quickly than SA: IIA reaches higher solution quality early in the search. Both SA and

GRASPIIA outperform IIA given longer runtime and generally achieves higher solution

quality. DNM performs well on the 40-site Canola problem but poorly on the 40-site

Wheat and 100-site Wheat problem.

Second, Figure 6.12, Figure 6.13, Figure 6.14 shows that the average runtime cost of

our studied algorithms increases significantly on certain quality thresholds (e.g., 98% of

best-known quality for Canola problem and 97% for Wheat problem). SA has a smaller

runtime cost growth rate compared to both IIA and GRASPIIA, and requires less runtime

to reach higher solution quality.

To conclude, we found Simulated Annealing (SA) to be an efficient algorithmic so-

68

 0.9

 0.91

 0.92

 0.93

 0.94

 0.95

 0.96

 0.97

 0.98

 0.99

 1

 0 5 10 15 20

S
ol

ut
io

n
Q

ua
lit

y
(P

er
ce

nt
ag

e
of

 B
es

t-
kn

ow
n)

Runtime Cost (CPU seconds)

SA
DNM

IIA
GRASPIIA

Figure 6.9: Runtime quality comparison on the 40-site Canola problem of four metaheuris-
tics including Simulated Annealing (SA), DNM local search (DNM), Iterative Improve-
ment Algorithm (IIA) and GRASPIIA. The figure shows how the best-found solution
quality (total net profit averaged over 100 runs) of the algorithm increases over runtime
(best-known quality q = 7280).

69

 0.9

 0.91

 0.92

 0.93

 0.94

 0.95

 0.96

 0.97

 0.98

 0.99

 1

 0 5 10 15 20

S
ol

ut
io

n
Q

ua
lit

y
(P

er
ce

nt
ag

e
of

 B
es

t-
kn

ow
n)

Runtime Cost (CPU seconds)

SA
DNM

IIA
GRASPIIA

Figure 6.10: Runtime quality comparison on the 40-site Wheat problem of four meta-
heuristics including Simulated Annealing (SA), DNM local search (DNM), Iterative Im-
provement Algorithm (IIA) and GRASPIIA. The figure shows how the best-found so-
lution quality (total net profit averaged over 100 runs) of the algorithm increases over
runtime (best-known quality q = 2780).

70

 0.9

 0.91

 0.92

 0.93

 0.94

 0.95

 0.96

 0.97

 0.98

 0.99

 1

 0 10 20 30 40 50 60 70 80 90

S
ol

ut
io

n
Q

ua
lit

y
(P

er
ce

nt
ag

e
of

 B
es

t-
kn

ow
n)

Runtime Cost (CPU seconds)

SA
DNM

IIA
GRASPIIA

Figure 6.11: Runtime quality comparison on the 100-site Wheat problem of four meta-
heuristics including Simulated Annealing (SA), DNM local search (DNM), Iterative Im-
provement Algorithm (IIA) and GRASPIIA. The figure shows how the best-found so-
lution quality (total net profit averaged over 100 runs) of the algorithm increases over
runtime (best-known quality q = 7100).

71

 0

 5

 10

 15

 20

 0.9 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99 1

A
ve

ra
ge

 R
un

tim
e

C
os

t (
C

P
U

 s
ec

on
ds

)

Solution Quality (Percentage of Best-known)

SA
DNM

IIA
GRASPIIA

Figure 6.12: Quality runtime measurement on the 40-site Canola problem of four meta-
heuristics including Simulated Annealing (SA), DNM local search (DNM), Iterative Im-
provement Algorithm (IIA) and GRASPIIA. The figure gives the average runtime cost
of the algorithm to reach different solution quality levels (total net profit) for the problem
(best-known quality q = 7280).

72

 0

 5

 10

 15

 20

 0.9 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99 1

A
ve

ra
ge

 R
un

tim
e

C
os

t (
C

P
U

 s
ec

on
ds

)

Solution Quality (Percentage of Best-known)

SA
DNM

IIA
GRASPIIA

Figure 6.13: Quality runtime measurement on the 40-site Wheat problem of four meta-
heuristics including Simulated Annealing (SA), DNM local search (DNM), Iterative Im-
provement Algorithm (IIA) and GRASPIIA. The figure gives the average runtime cost
of the algorithm to reach different solution quality levels (total net profit) for the problem
(best-known quality q = 2780).

73

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0.9 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99 1

A
ve

ra
ge

 R
un

tim
e

C
os

t (
C

P
U

 s
ec

on
ds

)

Solution Quality (Percentage of Best-known)

SA
DNM

IIA
GRASPIIA

Figure 6.14: Quality runtime measurement on the 100-site Wheat problem of four meta-
heuristics including Simulated Annealing (SA), DNM local search (DNM), Iterative Im-
provement Algorithm (IIA) and GRASPIIA. The figure gives the average runtime cost
of the algorithm to reach different solution quality levels (total net profit) for the problem
(best-known quality q = 7100).

74

lution for the fertilizer problem, and the Iterative Improvement Algorithm (IIA) also per-

forms surprisingly well. The Constructive Local Search (GRASPIIA) produces better

solutions than IIA but also brings in extra computing cost for initial solution construction.

6.5 One Compound Blend vs. Two Compound Blend

We investigate in this section whether there is an advantage of using two compound blends

instead of one. In the case of one compound blend, both mixture table A and delivery

rate table V contain one column. We applied all four studied algorithms to the fertilizer

problem using one compound blend and measured both the average achieved yield and

total net profit. The comparative results are summarized in Table 6.9.

Empirical results show that, using two blends instead of one, there is an on-average

3% to 5% increase in yield8 on the 40-site Canola problem, and 9% to 12% yield increase

on the 40-site Wheat and 100-site Wheat problem.

Current farm machinery has limits on using only two compound blends, however, it

is conceivable to deliver more than two blends. Our empirical results show that using

two compound blends generally improves the solution quality, compared to the one blend

situation. However, further adding of the compound blend (e.g., three or four blends)

might have a reduced rate of improvement in solution quality, since using two compound

blends has provided a reasonably large solution space for including many good nutrient

delivery schemes, and it is not clear how much space there is for further improvement9. It

is also not clear whether the improvement of using more blends will be noticeable given

the uncertainty of other factors during farming (e.g., weather condition).

6.6 Hybrid Metaheuristics Using GRASP

We also investigated the possibility of hybridizing other local search metaheuristics into

GRASP, including DNM local search and Simulated Annealing. Our experiments show

8We measure the improvement in yield here since the crop market value L is subject to change each year.
A default value of L = 3.5 (dollars per bushel) is used in our experiment for calculating the net profit.

9To know this, further experimental work is needed.

75

Table 6.9: Comparison of algorithm performance using one compound blend and two
compound blends. Measurements include: average achieved yield using one blend
(Yield.1) and two blends (Yield.2), in bushels; average delivery cost under one blend
(Cost.1) and two blends (Cost.2), in dollars; average achieved total net profit using one
blend (Profit.1) and two blends (Profit.2), in dollars.

(a) 40-site Canola, maximum total yield Ymax = 2863

Algs Yield.1 Yield.2 Yield Increase Cost.1 Cost.2 Profit.1 Profit.2

SA 2259 2422 5.7% 922 1162 6984 7314

DNM 2295 2394 3.5% 1145 1151 6889 7228

IIA 2252 2383 4.6% 908 1124 6975 7217

GRASPIIA 2289 2388 3.5% 962 1143 7048 7214

(b) 40-site Wheat, maximum total yield Ymax = 1452

Algs Yield.1 Yield.2 Yield Increase Cost.1 Cost.2 Profit.1 Profit.2

SA 1029 1212 12.6% 1164 1464 2439 2777

DNM 1016 1175 11.0% 1293 1510 2264 2602

IIA 1020 1190 11.7% 1147 1434 2422 2731

GRASPIIA 1057 1199 9.8% 1198 1453 2501 2743

(c) 100-site Wheat, maximum total yield Ymax = 3605

Algs Yield.1 Yield.2 Yield Increase Cost.1 Cost.2 Profit.1 Profit.2

SA 2580 3059 13.3% 2881 3639 6149 7066

DNM 2670 2948 7.7% 3365 3582 5982 6738

IIA 2583 3021 12.1% 2872 3603 6168 6971

GRASPIIA 2680 3034 9.8% 3009 3630 6370 6987

76

that GRASPDNM performs significantly poorly on all three problem instances. A de-

tailed look at the experimental data shows that the A table and V table generated by the

GRASP construction process contain entries of large value (either large ail in A, or high

delivery rate vlj in V). Since the greedy construction phase in GRASP promotes solution

elements having larger contribution to the partial solution quality,10 this usually leads to

a number of high ranking elements being selected into the constructed solution s0. In the

subsequent DNM local search phase, the flow augmentation further adds nutrient flows

into farm sites having high delivery rate, causing nutrient overdose rather early. Although

the DNM micro-tuning process attempts to alleviate this effect by subtracting flows from

the network, the significant effort required to do so usually leads to an observed poor per-

formance. In terms of the search landscape in DNM, this indicates the situation where

the DNM local search is trapped in local optima and fails to move away from the initial

attraction basin(s) identified by the GRASP construction.

The experiments for GRASPSA, however, shows the hybridization to be rather un-

stable: small changes in a SA meta-parameter setting (e.g., the downhill scheme) might

result in different algorithm performance to be observed. Generally speaking, SA local

search is less sensitive to initial search positions in our studied fertilizer problem, mainly

due to the use of downhill moves. In the SA search landscape, this indicates the fact that

SA is able to move away from the initial basin(s) identified by the GRASP construction

phase and reaches other regions of the solution space. This makes our performance eval-

uation of GRASPSA less valuable in terms of algorithm comparison, since the observed

performance of GRASPSA is very similar to what has been observed in SA local search

experiments. Furthermore, the computational cost for constructing an initial solution is

high, however, the constructed initial solution does not affect the final solution quality

obtained by SA very much.

10This is due to the greedy function we defined: g(e) = f(s0 ∪ {e}) - f(s0)

77

CHAPTER 7

CONCLUSION AND FUTURE WORK

7.1 Conclusion and Discussion

In this work, we conducted an empirical study of several state-of-the-art metaheuristic al-

gorithms and applied them to the fertilizer optimization problem. We found that Simulated

Annealing (SA) is an efficient algorithmic solution to the problem and outperforms other

metaheuristics. Downhill moves, although bringing in extra computing cost, allow the

local search to explore larger regions of the solution space and generally result in higher

solution quality.

Second, we found that the Iterated Improvement Algorithm (IIA) performs surpris-

ingly well, given the fact that there exists a large number of good local optima in the

fertilizer problem search landscape, and these local optima regions (basins of attraction)

are highly overlapped.1 The use of a random neighborhood selection in IIA enables a strict

uphill search to traverse multiple attraction basins before a local optimum is reached. Gen-

erally speaking, this leads to the finding of good solutions.

We also proposed and implemented in this work a problem-specific algorithm to the

fertilizer problem: DNM local search. Empirical results show that DNM performs well

on the Canola instance but poorly on the Wheat problem instances. Using nutrient deliv-

ery network is an efficient way of exploring the high-dimensional solution space of the

fertilizer problem, however, substantial experimental tuning effort is required to find the

balance between the flow augmentation size and the micro-tuning size that achieves a good

algorithm performance.

1The overlap feature can be inferred from the fact that in the fertilizer problem, starting from one initial
search position, different independent runs of IIA local search reaches different local optima.

78

Our study of the Constructive Local Search method shows that combining construc-

tion process with local search (GRASPIIA) can lead to the finding of better solutions.

However, the improvement in overall algorithm performance is not significant, and there

is no specific α value range that achieves an optimal algorithm performance. The greedy

randomized construction process might produce initial solutions having high quality level.

However, applying the subsequent local search on these good initial points does not nec-

essarily leads to the finding of high quality local optima: our empirical experiments show

that there is no observed strong correlation between constructed solution quality and final

solution (local optima) quality in the fertilizer problem. It is also surprising to find that a

random construction process (α = 1) yields good results: independent runs of the local

search (IIA) are initialized at different regions of the solution space thus providing a uni-

form re-distribution of search effort within the high dimensional solution space. However,

it is generally observed from our experiments that IIA local search performance is less

sensitive to initial search positions in the context of high dimensional search landscape of

our studied fertilizer optimization problem.

We also demonstrated in this work how the experimental tuning work can be applied

to obtain a good performance of our studied metaheuristic algorithms. The local search

granularity (move step sizes) and the downhill move scheme are two major types of meta-

parameters that affect the overall performance of the algorithms. An optimal granularity

setting (e.g., step size ∆a, ∆v in SA and IIA, flow augmentation size δ and micro-tuning

size α in DNM) achieves the balance between search efficiency and landscape “accuracy”

by discretizing the continuous solution space at an appropriate granularity level and in-

cluding a large number of good discrete solution points. Our empirical experiments show

that we are able to approximate the optimal granularity through a combinatorial examina-

tion of several associated parameters together (e.g., a granularity tuning matrix in both SA

and DNM experiments). However, significant experimental time is usually required.

The optimal downhill move scheme (e.g., cooling schedule and kB in SA), on the other

hand, achieves balance between search diversification and intensification. Our empirical

results show that adding downhill move to strict uphill search (e.g., IIA as an extreme case

of intensified search) improves algorithms’ performance by allowing the search to conduct

79

a more diversified exploration of the solution space; furthermore, our tuning result in

Simulated Annealing (SA) suggests that there seems to exist an “optimal” distribution of

downhill moves over runtime that allows SA to achieve an optimal algorithm performance

using different parameter settings (e.g., arithmetic cooling with small kB , or geometric

cooling with large kB).

7.2 Future Work

The significant effort required for metaheuristics performance tuning remains a major

challenge. Although our empirical results show that the optimal meta-parameter setting

does not vary significantly across fertilizer problem instances, the finding of such optimal

setting usually requires a combinatorial examination of various parameters. There has

been an increasing interest in the literature applying machine learning techniques to auto-

mate the meta-parameter tuning process [40, 39]. The objective is to achieve an on-line

prediction of the optimal meta-parameter settings for each encountered problem instance

so that more robust algorithmic solutions can be produced.

Our study in this work assumed that the objective function is a black box. Future work

may be extended into exploring certain features of the profit function that might provide

intuitions for new search algorithm design. Our structure similarity test in GRASPIIA

experiment indicates that good solutions in the fertilizer optimization problem share sim-

ilar structures. One intuition is to conduct a post-analysis of the set of good solutions for

the problem and construct probabilistic models to capture the structure similarity of the

good solution set [56, 58, 57, 59]. Integrating a probability model into metaheuristic algo-

rithm framework might help us predict and identify good solution regions, leading to an

improvement in overall search efficiency.

Throughout our experiments, a number of performance metrics have been adopted

including RunTime Distributions (RTD), Runtime Quality and Quality Runtime. RTD

measurement is sensitive to algorithm performance since it computes the frequency with

which the algorithm reaches a pre-defined solution quality threshold (e.g., 98% of the

reference solution quality) within multiple runs. Our experiment has been using the best

80

known solution quality as the reference solution quality, since we cannot find the global

optima using currently implemented techniques. To improve the performance evaluation

work, it is beneficial to obtain the global optima using global optimization packages in

some existing mathematical tools, for example, GAMS [18] and Maple [52].

The scope of our work is limited to solving combinatorial (discrete) optimization

problems by searching. Metaheuristic algorithms (an alternative name is Stochastic Lo-

cal Search) belongs to stochastic search techniques where randomness is used and non-

deterministic factors are applied.2 We aim at providing acceptable good solutions within

limited runtime and assume no utilization of the target problem structure (black box opti-

mization). Future work could be extended into investigating various global optimization

techniques for hard combinatorial optimization problem solving. Our intuition is that this

requires effort investigating the target problem structure (e.g., net profit function in the

fertilizer problem) using analytical methods in order to provide feasible algorithmic solu-

tions.

2Its counterpart is deterministic algorithms such as branch-and-bound that conducts a complete (exhaus-
tive) investigation of the problem solution space.

81

REFERENCES

[1] SEMINAL Network: Software Engineering with Metaheuristic INnovative ALgo-
rithms. http://www.brunel.ac.uk/ csstmmh2/seminal/.

[2] AARTS, E., AND LAARHOVEN, P. Statistical Cooling: A General Approach to
Combinatorial Optimization. Phillips Journal of Research 40 (1985), 193–226.

[3] AHUJA, R. K., MAGNANTI, T. L., AND ORLIN, J. B. Network Flows: Theory,
Algorithms and Applications. Prentice Hall, 1993.

[4] BALL, M. O., MAGNANTI, T. L., MONMA, C. L., AND NEMHAUSER, G. L., Eds.
Network Routing, vol. 8 of Handbooks In Operations Research And Management
Science. 1995.

[5] BLUM, C., AND ROLI, A. Metaheuristics in Combinatorial Optimization: Overview
and Conceptual Comparison. ACM Computing Surveys 35, 3 (September 2003),
268–308.

[6] BOENDER, C. G. E., AND ROMEIJN, H. E. Stochastic Methods. In Handbook
of Global Optimization, R. Horst and P. M. Pardalos, Eds., vol. 2 of Nonconvex
Optimization and its Applications. Kluwer Academic Publishers, 1995.

[7] CHIARANDINI, M., AND STÜTZLE, T. A Landscape Analysis for A Hybrid Algo-
rithm on Timetabling Problem. Technical Report No. AIDA-03-05, FG Intellektik,
FB Informatik, TU Darmstadt, Germany, April 2003.

[8] COELLO, C. A., AND CORTÉS, N. C. Solving Multiobjective Optimization Prob-
lems using an Artificial Immune System. Genetic Programming and Evolvable Ma-
chines 6, 2 (June 2005).

[9] D ÍAZ, B. D. The VRP Web. AUREN and the Languages and Computation Sciences
Department of the University of Málaga, http://neo.lcc.uma.es/radi-aeb/WebVRP/,
2005.

[10] D ÍAZ, D. M. +CARPS: Configuration of Metaheuristics Based on Cooperative
Agents. In HM ’04: Proceedings of the First International Workshop On Hybrid
Metaheuristics (August 2004), pp. 115–126.

[11] DIXON, L. C. W. Global optima without convexity. Tech. rep., Numerical Opti-
mization Centre, Hatfield Polytechnic, Hatfield, England, 1978.

82

[12] DORIGO, M., AND CARO, G. D. The Ant Colony Optimization Meta-Heuristic. In
New Ideas in Optimization, D. Corne, M. Dorigo, and F. Glover, Eds. McGraw-Hill,
London, UK, 1999, pp. 11–32.

[13] DORIGO, M., MANIEZZO, V., AND COLORNI, A. The Ant System: Optimiza-
tion by a Colony of Cooperating Agents. IEEE Transactions on System, Man and
Cybernetics-Part B 26, 1 (1996), 1–13.

[14] DORNE, R., AND VOUDOURIS, C. HSF: A Generic Framework to Easily Design
Meta-Heuristic Methods. In Metaheuristics: Computer Decision-Making, M. G.
Resende and J. P. de Sousa, Eds., vol. 86 of Applied Optimization. Springer, 2004.

[15] FINK, A., AND VOSS, S. Reusable Metaheuristic Software Components and
their Application via Software Generators. In Metaheuristics: Computer Decision-
Making, M. G. Resende and J. P. de Sousa, Eds., vol. 86 of Applied Optimization.
Springer, 2004.

[16] FONLUPT, C., ROBILIARD, D., PREUX, P., AND TALBI, E. G. Fitness Landscapes
and Performance of Meta-heuristics. In Metaheuristics – Advances and Trends in
Local Search Paradigms for Optimization. Kluwer Academic Press, 1999, ch. 18,
pp. 255–266.

[17] FUDENBERG, D., AND TIROLE, J., Eds. Game Theory. 1983.

[18] GAMS DEVELOPMENT CORPORATION. The General Algebraic Modeling System
(GAMS). http://www.gams.com.

[19] GAREY, M. R., AND JOHNSON, D. S., Eds. Computers and Intractability: A Guide
to the Theory of NP-Completeness. 1979.

[20] GARNIER, J., AND KALLEL, L. Efficiency of Local Search with Multiple Local
Optima. SIAM Journal on Discrete Mathematics 15, 1 (2002), 122–141.

[21] GASPERO, L. D., AND SCHAERF, A. EasyLocal++: An Object-Oriented Frame-
work for the Design of Local Search Algorithms and Metaheuristics. In Metaheuris-
tics: Computer Decision-Making, M. G. Resende and J. P. de Sousa, Eds., vol. 86 of
Applied Optimization. Springer, 2004.

[22] GENDREAU, M. An Introduction to Tabu Search.

[23] GLOVER, F., AND KOCHENBERGER, G. Metaheuristic Agent Processes (MAPs).
In Metaheuristics: Progress as Real Problem Solvers. Springer, Operation Research
and Decision Theory, 2003.

[24] GLOVER, F., AND KOCHENBERGER, G. A. Asynchronous Teams. In Handbook of
Metaheuristics. Kluwer Academic Publishers, 2003.

[25] GLOVER, F., AND LAGUNA, M. Tabu Search. In Modern Heuristic Techniques
for Combinatorial Problems (Oxford, England, 1993), C. Reeves, Ed., Blackwell
Scientific Publishing.

83

[26] GLOVER, F., AND LAGUNA, M., Eds. Tabu Search. Kluwer Academic Publishers,
1997.

[27] GLOVER, F. W., AND KOCHENBERGER, G. A., Eds. Handbook of Metaheuris-
tics. Kluwer’s International Series in Operations Research and Management Science.
Kluwer Academic Publishers, 2003.

[28] HANSEN, P., AND MLADENOVIĆ, N. Variable Neighborhood Decomposition
Search. Journal of Heuristics 7 (2001), 335–350.

[29] HANSEN, P., AND MLADENOVIĆ, N. A Tutorial on Variable Neighborhood Search.
GERAD, Group for Research in Decision Analysis (2003).

[30] HANSEN, P., AND MLADENOVIĆ, N. Variable Neighborhood Search. In Handbook
of Metaheuristics. Kluwer Academic Publishers, 2003.

[31] HARALICK, R., AND ELLIOT, G. Increasing Tree Search Efficiency for Constraint
Satisfaction Problems. In Artificial Intelligence, vol. 14. 1980, pp. 263–313.

[32] HARMAN, M., AND JONES, B. F. The SEMINAL workshop: Reformulating Soft-
ware Engineering as a Metaheuristic Search Problem. SIGSOFT Softw. Eng. Notes
26, 6 (2001), 62–66.

[33] HART, E., ROSS, P., AND CORNE, D. Evolutionary Scheduling: A Review. Genetic
Programming and Evolvable Machines 6, 2 (June 2005).

[34] HENDERSON, D., JACOBSON, S. H., AND JOHNSON, A. W. Greedy Randomized
Adaptive Search Procedures. In Handbook of Metaheuristics. Kluwer Academic
Publishers, 2003.

[35] HENDERSON, D., JACOBSON, S. H., AND JOHNSON, A. W. The Theory and
Practice of Simulated Annealing. In Handbook of Metaheuristics. Kluwer Academic
Publishers, 2003.

[36] HOGG, T., AND HUBERMAN, B. A. Better Than The Best: The Power of Coopera-
tion. In Lectures in Complex Systems. Addison-Wesley, 1993, pp. 165–184.

[37] HOOS, H. H., AND STÜTZLE, T. Stochastic Local Search: Foundations and Appli-
cations. Morgan Kaufmann, 2005.

[38] HU, X. Particle Swarm Optimization tutorial. www.swarmintelligence.org, 2003.

[39] HUTTER, F., AND HAMADI, Y. Parameter Adjustment Based on Performance Pre-
diction: Towards an Instance-Aware Problem Solver. Tech. Rep. MSR-TR-2005-
125, Microsoft Research, Redmond, WA 98052.

[40] HUTTER, F., HAMADI, Y., HOOS, H. H., AND LEYTON-BROWN, K. Performance
Prediction and Automated Tuning of Randomized and Parametric Algorithms. In
Twelfth International Conference on Principles and Practice of Constraint Program-
ming (CP06) (2006).

84

[41] JONES, T. C. Evolutionary Algorithms, Fitness Landscapes and Search. PhD thesis,
Univ. of New Mexico, 1995.

[42] JONES, T. C. One Operator, One Landscape. Santa Fe Institute, 1399 Hyde Park
Road, Santa Fe, NM 87501, USA, 1995.

[43] K. F. DOERNER AND W. J. GUTJAHR AND R. F. HARTL AND C. STRAUSS AND
C. STUMMER. Pareto Ant Colony Optimization With ILP Preprocessing In Mul-
tiobjective Project Portfolio Selection. European Journal of Operational Research
(2005).

[44] KAN, A. H. G. R., AND TIMMER, G. T. Global Optimization. In Handbooks
in Operations Research and Management Science, vol. 1 of Optimization. North-
Holland, Amsterdam, 1989, pp. 631–662.

[45] KENNEDY, J., AND EBERHART, R. C. Particle Swarm Optimization. Proceedings
of IEEE International Conference on Neural Networks (Perth, Australia) 4 (1995),
1942–1948.

[46] KIRKPATRICK, S., GELATT, C. D., AND VECCHI, M. P. Optimization by Simu-
lated Annealing. SCIENCE 220, 4598 (May 1983), 671–678.

[47] K.MIYAMOTO, AND YASUDA, K. Multipoint-based Tabu Search Using Proximate
Optimality Principle. IEEE International Conference on Systems, Man and Cyber-
netics 4 (Oct. 2005), 3094 – 3099.

[48] LAU, H. C., AND WANG, H. A Multi-Agent Approach for Solving Optimization
Problems involving Expensive Resources. In SAC ’05: Proceedings of the 2005
ACM symposium on Applied computing (2005), ACM Press, pp. 79–83.

[49] LUNDY, M., AND MEES, A. Convergence of an Annealing Algorithm. Mathemati-
cal Programming 34 (1986), 111–124.

[50] MACKWORTH, A. Consistency in Networks of Relations in Artificial Intelligence.
In Artificial Intelligence, vol. 8. 1977, pp. 99–118.

[51] MAIER, H. R., SIMPSON, A. R., ZECCHIN, A. C., FOONG, W. K., PHANG, K. Y.,
SEAH, H. Y., AND TAN, C. L. Ant Colony Optimization for Design of Water
Distribution Systems. Journal of Water Resources Planning And Management 129,
3 (May/June 2003), 200–209.

[52] MAPLESOFT. Maple. http://www.maplesoft.com.

[53] MILANO, M., AND ROLI, A. MAGMA: A Multiagent Architecture for Metaheuris-
tics. IEEE Transactions On System, Man, And Cybernetics - Part B. Cybernetics 33,
2 (April 2004).

[54] P. MOSCATO. TSPBIB. http://www.ing.unlp.edu.ar/cetad/mos/TSPBIB home.html.

85

[55] PARADIMITRIOU, C., AND STEIGLITZ, K., Eds. Combinatorial Optimization: Al-
gorithms and Complexity. Dover Publications Inc., New York, 1982.

[56] PELIKAN, M. Bayesian Optimization Algorithm (BOA). http://www.cs.umsl.edu/ pe-
likan/boa.html, 2005.

[57] PELIKAN, M., GOLDBERG, D. E., AND CANTÚ-PAZ, E. BOA: The Bayesian Op-
timization Algorithm. In Proceedings of the Genetic and Evolutionary Computation
Conference GECCO-99 (Orlando, FL), vol. I, Morgan Kaufmann Publishers, San
Fransisco, CA.

[58] PELIKAN, M., GOLDBERG, D. E., AND LOBO, F. A Survey of Optimization by
Building and Using Probabilistic Models. Computational Optimization and Appli-
cations 21, 1 (2002), 5–20.

[59] PELIKAN, M., GOLDBERG, D. E., OCENASEK, J., AND TREBST, S. Robust and
Scalable Black-Box Optimization, Hierarchy and Ising Spin Glasses. IlliGAL Re-
port No. 2003019, Illinois Genetic Algorithms Laboratory, University of Illinois at
Urbana-Champaign, Urbana, IL, 2003.

[60] PINTÉR, J. D., Ed. Global Optimization in Action: Continuous and Lipschitz Op-
timization, Algorithm, Implementation and Applications, vol. 6 of Nonconvex Opti-
mization and Its Applications. Kluwer Academic Publishers, 1996.

[61] PITSOULIS, L. S., AND RESENDE, M. G. C. Greedy Randomized Adaptive Search
Procedures. Tech. Rep. TD-53RSJY, AT&T Labs Research, 2001.

[62] PRASAD, N., LANDER, S. E., AND LESSER, V. R. Cooperative Learning over
Composite Search Spaces: Experiences with a Multi-agent Design System. Pro-
ceedings of the Thirteenth National Conference on Artificial Intelligence 1 (January
1996), 68–73.

[63] R.E. BURKARD AND S.E. KARISCH AND F. RENDL. QAPLIB - A Quadratic As-
signment Problem Library, 1997.

[64] REGO, C., AND GLOVER, F. In The Traveling Salesman Problem and Its Varia-
tions, G. Gutin and A. Punnen, Eds. Kluwer Academic Publishers, Combinatorial
Optimization Series, 2002, ch. 12, pp. 309–368.

[65] REINELT, G. TSPLIB - A Traveling Salesman Problem Library. vol. 3, ORSA J.
Comput., pp. 376–384.

[66] RUSSELL, S., AND NORVIG, P. Artificial Intelligence: A Modern Approach, sec-
ond ed. Prentice Hall Series in Artificial Intelligence, 2003.

[67] SCHUTTE, J. F., REINBOLT, J. A., FREGLY, B. J., HAFTKA, R. T., AND GEORGE,
A. D. Parallel Global Optimization With The Particle Swarm Algorithm. Interna-
tional Journal of Numerical Methods in Engineering 61 (2004), 2296–2315.

86

[68] SHI, Y., AND EBERHART, R. C. Empirical Study of Particle Swarm Optimization.
Proceedings of the 1999 Congress on Evolutionary Computation (1999), 1945–1950.

[69] SHMYGELSKA, A., AND HOOS, H. H. An Improved Ant Colony Optimization Al-
gorithm for the 2D HP Protein Folding Problem. In Proc. of the Sixteenth Canadian
Conference on Artificial Intelligence (AI’2003) (2003).

[70] STADLER, P. F. Fitness Landscapes. In Biological Evolution and Statistical Physics,
M. Lässig and A. Valleriani, Eds. Springer-Verlag, Berlin, 2002, pp. 187–207.

[71] VINCENT, P., AND RUBIN, I. A Framework and Analysis for Cooperative Search
Using UAV Swarms. In SAC ’04: Proceedings of the 2004 ACM symposium on
Applied computing (2004), ACM Press, pp. 79–86.

[72] WHITLEY, D. A Genetic Algorithm Tutorial. Computer Science Department, Col-
orado State University, http://samizdat.mines.edu/ga tutorial.

[73] WOLPERT, D. H., AND MACREADY, W. G. No Free Lunch Theorems for Search.
Tech. rep., The Santa Fe Institute, Santa Fe, NM, 1995.

[74] WUENSCHE, A. Attractor Basins Of Discrete Networks - Implications of self-
organization and memory. PhD thesis, Univ. of Sussex, 1997.

[75] WUENSCHE, A. Genomic Regulation Modeled As a Network With Basins of At-
traction. Pac. Symp. Biocomput (1998), 89–102.

[76] YASUDA, K., AND KANAZAWA, T. Proximate Optimality Principle Based Tabu
Search. IEEE International Conference on Systems, Man and Cybernetics 2 (Oct.
2003), 1560 – 1565.

87

APPENDIX A

SAMPLE TABLES

An example of the nutrients set M containing four market nutrients:

M =
(

m1 m2 m3 m4

)

4×4

=





















46 11 0 21

0 55 0 0

0 0 60 0

0 0 0 24





















4×4

An example of the nutrient mixture table A for M:

A =
(

a1 a2

)

4×2

=





















0.5 0.1

0.0 0.3

0.2 0.0

0.3 0.6





















4×2

An example of the compound blends B:

B = MA =
(

b1 b2

)

4×2

=





















29.3 20.5

0.0 16.5

12.0 0.0

7.2 14.4





















4×2

An example of the delivery rate vector vj at site j:

vj =







137

82







2×1

An example of the blend delivery dj at site j, in lbs per acre:

dj = Bvj =





















56.95

13.53

16.44

21.67





















4×1

88

