19,928 research outputs found

    Particles with selective wetting affect spinodal decomposition microstructures

    Full text link
    We have used mesoscale simulations to study the effect of immobile particles on microstructure formation during spinodal decomposition in ternary mixtures such as polymer blends. Specifically, we have explored a regime of interparticle spacings (which are a few times the characteristic spinodal length scale) in which we might expect interesting new effects arising from interactions among wetting, spinodal decomposition and coarsening. In this paper, we report three new effects for systems in which the particle phase has a strong preference for being wetted by one of the components (say, A). In the presence of particles, microstructures are not bicontinuous in a symmetric mixture. An asymmetric mixture, on the other hand, first forms a non-bicontinuous microstructure which then evolves into a bicontinuous one at intermediate times. Moreover, while wetting of the particle phase by the preferred component (A) creates alternating A-rich and B-rich layers around the particles, curvature-driven coarsening leads to shrinking and disappearance of the first A-rich layer, leaving a layer of the non-preferred component in contact with the particle. At late simulation times, domains of the matrix components coarsen following the Lifshitz-Slyozov-Wagner law, R1(t)t1/3R_1(t) \sim t^{1/3}.Comment: Accepted for publication in PCCP on 24th May 201

    A mass-loss rate determination for zeta Puppis from the quantitative analysis of X-ray emission line profiles

    Get PDF
    We fit every emission line in the high-resolution Chandra grating spectrum of zeta Pup with an empirical line profile model that accounts for the effects of Doppler broadening and attenuation by the bulk wind. For each of sixteen lines or line complexes that can be reliably measured, we determine a best-fitting fiducial optical depth, tau_* = kappa*Mdot/4{pi}R_{\ast}v_{\infty}, and place confidence limits on this parameter. These sixteen lines include seven that have not previously been reported on in the literature. The extended wavelength range of these lines allows us to infer, for the first time, a clear increase in tau_* with line wavelength, as expected from the wavelength increase of bound-free absorption opacity. The small overall values of tau_*, reflected in the rather modest asymmetry in the line profiles, can moreover all be fit simultaneously by simply assuming a moderate mass-loss rate of 3.5 \pm 0.3 \times 10^{-6} Msun/yr, without any need to invoke porosity effects in the wind. The quoted uncertainty is statistical, but the largest source of uncertainty in the derived mass-loss rate is due to the uncertainty in the elemental abundances of zeta Pup, which affects the continuum opacity of the wind, and which we estimate to be a factor of two. Even so, the mass-loss rate we find is significantly below the most recent smooth-wind H-alpha mass-loss rate determinations for zeta Pup, but is in line with newer determinations that account for small-scale wind clumping. If zeta Pup is representative of other massive stars, these results will have important implications for stellar and galactic evolution.Comment: Accepted for publication in the Monthly Notices of the Royal Astronomical Society. 17 pages, including 14 figures (7 color

    The Spectroscopic Footprint of the Fast Solar Wind

    Full text link
    We analyze a large, complex equatorial coronal hole (ECH) and its immediate surroundings with a focus on the roots of the fast solar wind. We start by demonstrating that our ECH is indeed a source of the fast solar wind at 1AU by examining in situ plasma measurements in conjunction with recently developed measures of magnetic conditions of the photosphere, inner heliosphere and the mapping of the solar wind source region. We focus the bulk of our analysis on interpreting the thermal and spatial dependence of the non-thermal line widths in the ECH as measured by SOHO/SUMER by placing the measurements in context with recent studies of ubiquitous Alfven waves in the solar atmosphere and line profile asymmetries (indicative of episodic heating and mass loading of the coronal plasma) that originate in the strong, unipolar magnetic flux concentrations that comprise the supergranular network. The results presented in this paper are consistent with a picture where a significant portion of the energy responsible for the transport of heated mass into the fast solar wind is provided by episodically occurring small-scale events (likely driven by magnetic reconnection) in the upper chromosphere and transition region of the strong magnetic flux regions that comprise the supergranular network.Comment: 25 pages, accepted to appear in the Astrophysical Journal. Supporting movies can be found in http://download.hao.ucar.edu/pub/mscott/papers/ECH

    Modeling the near-infrared lines of O-type stars

    Get PDF
    We use a grid of 30 line-blanketed unified stellar photosphere and wind models for O-type stars; computed with the code CMFGEN in order to evaluate its potential in the near-infrared spectral domain. The grid includes dwarfs, giants and supergiants. We analyse the equivalent width behaviour of the 20 strongest lines of hydrogen and helium in spectral windows that can be observed using ground-based instrumentation and compare the results with observations. Our main findings are that: i) HeI/HeII line ratios in the J, H and K bands correlate well with the optical ratio employed in spectral classification, and can therefore be used to determine the spectral type; ii) in supergiant stars the transition from the stellar photosphere to the wind follows a shallower density gradient than the standard approach followed in our models, which can be mimicked by adopting a lower gravity in our prescription of the density stratification. iii) the Brackett gamma line poses a number of peculiar problems which partly might be related to wind clumping, and iv) the Brackett alpha line is an excellent mass-loss indicator. For the first and last item we provide quantitative calibrations.Comment: 14 pages, 7 figures, accepted by A&

    A Mass-Loss Rate Determination For Zeta Puppis From The Quantitative Analysis Of X-Ray Emission-Line Profiles

    Get PDF
    We fit every emission line in the high-resolution Chandra grating spectrum of. Pup with an empirical line profile model that accounts for the effects of Doppler broadening and attenuation by the bulk wind. For each of 16 lines or line complexes that can be reliably measured, we determine a best-fitting fiducial optical depth, tau(*) equivalent to kappa(M) over dot/4 pi R(*)upsilon(infinity), and place confidence limits on this parameter. These 16 lines include seven that have not previously been reported on in the literature. The extended wavelength range of these lines allows us to infer, for the first time, a clear increase in tau(*) with line wavelength, as expected from the wavelength increase of bound-free absorption opacity. The small overall values of tau(*), reflected in the rather modest asymmetry in the line profiles, can moreover all be fitted simultaneously by simply assuming a moderate mass-loss rate of 3.5 +/- 0.3 x 10(-6) M(circle dot) yr(-1), without any need to invoke porosity effects in the wind. The quoted uncertainty is statistical, but the largest source of uncertainty in the derived mass-loss rate is due to the uncertainty in the elemental abundances of zeta Pup, which affects the continuum opacity of the wind, and which we estimate to be a factor of 2. Even so, the mass-loss rate we find is significantly below the most recent smooth-wind H alpha mass-loss rate determinations for zeta Pup, but is in line with newer determinations that account for small-scale wind clumping. If zeta Pup is representative of other massive stars, these results will have important implications for stellar and Galactic evolution

    Spin coating of an evaporating polymer solution

    Get PDF
    We consider a mathematical model of spin coating of a single polymer blended in a solvent. The model describes the one-dimensional development of the thin layer of the mixture as the layer thins due to flow created by a balance of viscous forces and centrifugal forces and due to evaporation of the solvent. In the model both the diffusivity of the solvent in the polymer and the viscosity of the mixture are very rapidly varying functions of the solvent volume fraction. Guided by numerical solutions an asymptotic analysis reveals a number of different possible behaviours of the thinning layer dependent on the nondimensional parameters describing the system.\ud \ud The main practical interest is in controlling the appearance and development of a ``skin'' on the polymer where the solvent concentration reduces rapidly on the outer surface leaving the bulk of the layer still with high concentrations of solvent. The critical parameters controlling this behaviour are found to be ϵ\epsilon the ratio of the diffusion to advection time scales, δ\delta the ratio of the evaporation to advection time scales and exp(γ)\exp(\gamma), the ratio of the diffusivity of the initial mixture and the pure polymer. In particular, our analysis shows that for very small evaporation with δ<<exp(3/(4γ))ϵ3/4\delta << \exp(-3/(4\gamma)) \epsilon^{3/4} skin formation can be prevented
    corecore