289 research outputs found

    Identificación y detección de fallas en accionamiento utilizando NN-NARX

    Get PDF
    In this paper, the use of a Nonlinear Auto Regressive eXogenous Neural Networks model or NN-NARX for identification and fault detection in the actuator of an industrial thermal process is presented. Initially, the techniques of fault detection and diagnosis are exposed; then, emphasis is placed on the models of Artificial Neural Networks for identification and fault detection. Subsequently, the control system of a thermal process used as a case study is described. A monitoring system allows data recording under normal operation conditions for identification using the NN-NARX model. The model is used for residual online generation due to faults that are introduced randomly. Finally, the results of residual generation and evaluation are presented. The designed system is useful for implementation through a hardware device that can be incorporated into the process equipment and support the operator in the presence of failures.En este artículo se presenta la utilización de un modelo de Red Neuronal no lineal Auto Regresivo de Variable Exógena o NN-NARX (por sus siglas en inglés), para la identificación y detección de fallas en un accionamiento de un proceso térmico industrial. Inicialmente, se exponen las técnicas de detección y diagnóstico de fallas; luego, se hace énfasis en los modelos de Redes Neuronales Artificiales para identificación y detección de fallas. Posteriormente, se describe el sistema de control de un proceso térmico utilizado como caso de estudio. Un sistema de monitorización permite el registro de datos en condiciones normales de operación para la identificación usando el modelo NN-NARX. El modelo es utilizado para la generación en línea de residuos ante fallas que son introducidas aleatoriamente. Finalmente, se presentan los resultados de la generación y evaluación de residuos. El sistema diseñado es útil para la implementación a través de un dispositivo hardware que puede incorporarse en el equipo del proceso y apoyar al operador ante la presencia de fallas

    Neural nonlinear autoregressive model with exogenous input (Narx) for turboshaft aeroengine fuel control unit model†

    Get PDF
    none3noOne of the most important parts of a turboshaft engine, which has a direct impact on the performance of the engine and, as a result, on the performance of the propulsion system, is the engine fuel control system. The traditional engine control system is a sensor-based control method, which uses measurable parameters to control engine performance. In this context, engine component degradation leads to a change in the relationship between the measurable parameters and the engine performance parameters, and thus an increase of control errors. In this work, a nonlinear model predictive control method for turboshaft direct fuel control is implemented to improve engine response ability also in presence of degraded conditions. The control objective of the proposed model is the prediction of the specific fuel consumption directly instead of the measurable parameters. In this way is possible decentralize controller functions and realize an intelligent engine with the development of a distributed control system. Artificial Neural Networks (ANN) are widely used as data-driven models for modelling of complex systems such as aeroengine performance. In this paper, two Nonlinear Autoregressive Neural Networks have been trained to predict the specific fuel consumption for several transient flight maneuvers. The data used for the ANN predictions have been estimated through the Gas Turbine Simulation Program. In particular the first ANN predicts the state variables based on flight conditions and the second one predicts the performance parameter based on the previous predicted variables. The results show a good approximation of the studied variables also in degraded conditions.openDe Giorgi M.G.; Strafella L.; Ficarella A.De Giorgi, M. G.; Strafella, L.; Ficarella, A

    Defining and applying prediction performance metrics on a recurrent NARX time series model.

    No full text
    International audienceNonlinear autoregressive moving average with exogenous inputs (NARMAX) models have been successfully demonstrated for modeling the input-output behavior of many complex systems. This paper deals with the proposition of a scheme to provide time series prediction. The approach is based on a recurrent NARX model obtained by linear combination of a recurrent neural network (RNN) output and the real data output. Some prediction metrics are also proposed to assess the quality of predictions. This metrics enable to compare different prediction schemes and provide an objective way to measure how changes in training or prediction model (Neural network architecture) affect the quality of predictions. Results show that the proposed NARX approach consistently outperforms the prediction obtained by the RNN neural network

    NARX models for simulation of the start-up operation of a single-shaft gas turbine

    Get PDF
    In this study, nonlinear autoregressive exogenous (NARX) models of a heavy-duty single-shaft gas turbine (GT) are developed and validated. The GT is a power plant gas turbine (General Electric PG 9351FA) located in Italy. The data used for model development are three time series data sets of two different maneuvers taken experimentally during the start-up procedure. The resulting NARX models are applied to three other experimental data sets and comparisons are made among four significant outputs of the models and the corresponding measured data. The results show that NARX models are capable of satisfactory prediction of the GT behavior and can capture system dynamics during start-up operation

    Improving the prediction accuracy of recurrent neural network by a PID controller.

    No full text
    International audienceIn maintenance field, prognostic is recognized as a key feature as the prediction of the remaining useful life of a system which allows avoiding inopportune maintenance spending. Assuming that it can be difficult to provide models for that purpose, artificial neural networks appear to be well suited. In this paper, an approach combining a Recurrent Radial Basis Function network (RRBF) and a proportional integral derivative controller (PID) is proposed in order to improve the accuracy of predictions. The PID controller attempts to correct the error between the real process variable and the neural network predictions

    Wind Turbine Noise and Wind Speed Prediction

    Get PDF
    In order to meet the US Department of Energy projected target of 35% of US energy coming from wind by 2050, there is a strong need to study the management and development of wind turbine technology and its impact on human health, wildlife and environment. The prediction of wind turbine noise and its propagation is very critical to study the impacts of wind turbine noise for long term adoption and acceptance by neighboring communities. The prediction of wind speed is critical in the assessment of feasibility of a potential wind turbine site. This work presents a study on prediction of wind turbine noise and wind speed using a noise propagation model and artificial neural network (ANN) methods respectively. The noise propagation model utilized Openwind, a software package used for wind project design and optimization, to predict a noise map based on inputs acquired from a potential wind energy demonstration site in Georgia. The resultant noise of the wind turbines and the ambient surroundings were predicted in the neighborhood for different scenarios. The nonlinear autoregressive (NAR) neural network and nonlinear autoregressive neural network with exogenous inputs (NARX) were used to predict wind speed utilizing one year of hourly weather data from four locations around the US to train, validate, and test these networks. This study optimized both neural network configurations and it was demonstrated that both models were suitable for wind speed prediction. Both models were implemented for single-step and multi-step ahead prediction of wind speed for all four locations and results were compared. NARX model gave better prediction performance than NAR model and the difference was statistically significant

    Stock Marketing Prediction Using Narx Algorithm

    Get PDF
    Computational technologies have offered faster and efficient solutions to financial sector. In the financial market, the advancements in computational field have been achieved by the use of neural networks and machine learning that delivered a number of financial tools. Thus, in this thesis, we aim to predict the stock index marketing for the “Dow Jones” index by using deep learning algorithms. We propose a model based on an adaptive NARX neural network to predict the closing price of a moderately stable market. In our model, non-linear auto regressive exogenous input model inserts delays into the input as well as the output acting as memory slots thereby raising the accuracy of the prediction. Moreover, Levenberg-Marquardt algorithm has been used for training the network. The accuracy of the model is determined by the mean squared error. We also used LR model, with the same parameters as NARX, to improve the overall accuracy

    Developing dynamic machine learning surrogate models of physics-based industrial process simulation models

    Get PDF
    Abstract. Dynamic physics-based models of industrial processes can be computationally heavy which prevents using them in some applications, e.g. in process operator training. Suitability of machine learning in creating surrogate models of a physics-based unit operation models was studied in this research. The main motivation for this was to find out if machine learning model can be accurate enough to replace the corresponding physics-based components in dynamic modelling and simulation software Apros® which is developed by VTT Technical Research Centre of Finland Ltd and Fortum. This study is part of COCOP project, which receive funding from EU, and INTENS project that is Business Finland funded. The research work was divided into a literature study and an experimental part. In the literature study, the steps of modelling with data-driven methods were studied and artificial neural network architectures suitable for dynamic modelling were investigated. Based on that, four neural network architectures were chosen for the case studies. In the first case study, linear and nonlinear autoregressive models with exogenous inputs (ARX and NARX respectively) were used in modelling dynamic behaviour of a water tank process build in Apros®. In the second case study, also Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) were considered and compared with the previously mentioned ARX and NARX models. The workflow from selecting the input and output variables for the machine learning model and generating the datasets in Apros® to implement the machine learning models back to Apros® was defined. Keras is an open source neural network library running on Python that was utilised in the model generation framework which was developed as a part of this study. Keras library is a very popular library that allow fast experimenting. The framework make use of random hyperparameter search and each model is tested on a validation dataset in dynamic manner, i.e. in multi-step-ahead configuration, during the optimisation. The best models based in terms of average normalised root mean squared error (NRMSE) is selected for further testing. The results of the case studies show that accurate multi-step-ahead models can be built using recurrent artificial neural networks. In the first case study, the linear ARX model achieved slightly better NRMSE value than the nonlinear one, but the accuracy of both models was on a very good level with the average NRMSE being lower than 0.1 %. The generalisation ability of the models was tested using multiple datasets and the models proved to generalise well. In the second case study, there were more difference between the models’ accuracies. This was an expected result as the studied process contains nonlinearities and thus the linear ARX model performed worse in predicting some output variables than the nonlinear ones. On the other hand, ARX model performed better with some other output variables. However, also in the second case study the model NRMSE values were on good level, being 1.94–3.60 % on testing dataset. Although the workflow to implement machine learning models in Apros® using its Python binding was defined, the actual implementation need more work. Experimenting with Keras neural network models in Apros® was noticed to slow down the simulation even though the model was fast when testing it outside of Apros®. The Python binding in Apros® do not seem to cause overhead to the calculation process which is why further investigating is needed. It is obvious that the machine learning model must be very accurate if it is to be implemented in Apros® because it needs to be able interact with the physics-based model. The actual accuracy requirement that Apros® sets should be also studied to know if and in which direction the framework made for this study needs to be developed.Dynaamisten surrogaattimallien kehittäminen koneoppimismenetelmillä teollisuusprosessien fysiikkapohjaisista simulaatiomalleista. Tiivistelmä. Teollisuusprosessien toimintaa jäljittelevät dynaamiset fysiikkapohjaiset simulaatiomallit voivat laajuudesta tai yksityiskohtien määrästä johtuen olla laskennallisesti raskaita. Tämä voi rajoittaa simulaatiomallin käyttöä esimerkiksi prosessioperaattorien koulutuksessa ja hidastaa simulaattorin avulla tehtävää prosessien optimointia. Tässä tutkimuksessa selvitettiin koneoppimismenetelmillä luotujen mallien soveltuvuutta fysiikkapohjaisten yksikköoperaatiomallien surrogaattimallinnukseen. Fysiikkapohjaiset mallit on luotu teollisuusprosessien dynaamiseen mallinnukseen ja simulointiin kehitetyllä Apros®-ohjelmistolla, jota kehittää Teknologian tutkimuskeskus VTT Oy ja Fortum. Työ on osa COCOP-projektia, joka saa rahoitusta EU:lta, ja INTENS-projektia, jota rahoittaa Business Finland. Työ on jaettu kirjallisuusselvitykseen ja kahteen kokeelliseen case-tutkimukseen. Kirjallisuusosiossa selvitettiin datapohjaisen mallinnuksen eri vaiheet ja tutkittiin dynaamiseen mallinnukseen soveltuvia neuroverkkorakenteita. Tämän perusteella valittiin neljä neuroverkkoarkkitehtuuria case-tutkimuksiin. Ensimmäisessä case-tutkimuksessa selvitettiin lineaarisen ja epälineaarisen autoregressive model with exogenous inputs (ARX ja NARX) -mallin soveltuvuutta pinnankorkeuden säädöllä varustetun vesisäiliömallin dynaamisen käyttäytymisen mallintamiseen. Toisessa case-tutkimuksessa tarkasteltiin edellä mainittujen mallityyppien lisäksi Long Short-Term Memory (LSTM) ja Gated Recurrent Unit (GRU) -verkkojen soveltuvuutta power-to-gas prosessin metanointireaktorin dynaamiseen mallinnukseen. Työssä selvitettiin surrogaattimallinnuksen vaiheet korvattavien yksikköoperaatiomallien ja siihen liittyvien muuttujien valinnasta datan generointiin ja koneoppimismallien implementointiin Aprosiin. Koneoppimismallien rakentamiseen tehtiin osana työtä Python-sovellus, joka hyödyntää Keras Python-kirjastoa neuroverkkomallien rakennuksessa. Keras on suosittu kirjasto, joka mahdollistaa nopean neuroverkkomallien kehitysprosessin. Työssä tehty sovellus hyödyntää neuroverkkomallien hyperparametrien optimoinnissa satunnaista hakua. Jokaisen optimoinnin aikana luodun mallin tarkkuutta dynaamisessa simuloinnissa mitataan erillistä aineistoa käyttäen. Jokaisen mallityypin paras malli valitaan NRMSE-arvon perusteella seuraaviin testeihin. Case-tutkimuksen tuloksien perusteella neuroverkoilla voidaan saavuttaa korkea tarkkuus dynaamisessa simuloinnissa. Ensimmäisessä case-tutkimuksessa lineaarinen ARX-malli oli hieman epälineaarista tarkempi, mutta molempien mallityyppien tarkkuus oli hyvä (NRMSE alle 0.1 %). Mallien yleistyskykyä mitattiin simuloimalla usealla aineistolla, joiden perusteella yleistyskyky oli hyvällä tasolla. Toisessa case-tutkimuksessa vastemuuttujien tarkkuuden välillä oli eroja lineaarisen ja epälineaaristen mallityyppien välillä. Tämä oli odotettu tulos, sillä joidenkin mallinnettujen vastemuuttujien käyttäytyminen on epälineaarista ja näin ollen lineaarinen ARX-malli suoriutui niiden mallintamisesta epälineaarisia malleja huonommin. Toisaalta lineaarinen ARX-malli oli tarkempi joidenkin vastemuuttujien mallinnuksessa. Kaiken kaikkiaan mallinnus onnistui hyvin myös toisessa case-tutkimuksessa, koska käytetyillä mallityypeillä saavutettiin 1.94–3.60 % NRMSE-arvo testidatalla simuloitaessa. Koneoppimismallit saatiin sisällytettyä Apros-malliin käyttäen Python-ominaisuutta, mutta prosessi vaatii lisäselvitystä, jotta mallit saadaan toimimaan yhdessä. Testien perusteella Keras-neuroverkkojen käyttäminen näytti hidastavan simulaatiota, vaikka neuroverkkomalli oli nopea Aprosin ulkopuolella. Aprosin Python-ominaisuus ei myöskään näytä itsessään aiheuttavan hitautta, jonka takia asiaa tulisi selvittää mallien implementoinnin mahdollistamiseksi. Koneoppimismallin tulee olla hyvin tarkka toimiakseen vuorovaikutuksessa fysiikkapohjaisen mallin kanssa. Jatkotutkimuksen ja Python-sovelluksen kehittämisen kannalta on tärkeää selvittää mikä on Aprosin koneoppimismalleille asettama tarkkuusvaatimus
    corecore