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Abstract 

Dynamic physics-based models of industrial processes can be computationally heavy which prevents using them in 

some applications, e.g. in process operator training. Suitability of machine learning in creating surrogate models of 

a physics-based unit operation models was studied in this research. The main motivation for this was to find out if 

machine learning model can be accurate enough to replace the corresponding physics-based components in dynamic 

modelling and simulation software Apros® which is developed by VTT Technical Research Centre of Finland Ltd 

and Fortum. This study is part of COCOP project, which receive funding from EU, and INTENS project that is 

Business Finland funded. 

 

The research work was divided into a literature study and an experimental part. In the literature study, the steps of 

modelling with data-driven methods were studied and artificial neural network architectures suitable for dynamic 

modelling were investigated. Based on that, four neural network architectures were chosen for the case studies. In 

the first case study, linear and nonlinear autoregressive models with exogenous inputs (ARX and NARX respectively) 

were used in modelling dynamic behaviour of a water tank process build in Apros®. In the second case study, also 

Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) were considered and compared with the 

previously mentioned ARX and NARX models. The workflow from selecting the input and output variables for the 

machine learning model and generating the datasets in Apros® to implement the machine learning models back to 

Apros® was defined. Keras is an open source neural network library running on Python that was utilised in the model 

generation framework which was developed as a part of this study. Keras library is a very popular library that allow 

fast experimenting. The framework make use of random hyperparameter search and each model is tested on a 

validation dataset in dynamic manner, i.e. in multi-step-ahead configuration, during the optimisation. The best models 

based in terms of average normalised root mean squared error (NRMSE) is selected for further testing. 

 

The results of the case studies show that accurate multi-step-ahead models can be built using recurrent artificial neural 

networks. In the first case study, the linear ARX model achieved slightly better NRMSE value than the nonlinear 

one, but the accuracy of both models was on a very good level with the average NRMSE being lower than 0.1 %. 

The generalisation ability of the models was tested using multiple datasets and the models proved to generalise well. 

In the second case study, there were more difference between the models’ accuracies. This was an expected result as 

the studied process contains nonlinearities and thus the linear ARX model performed worse in predicting some output 

variables than the nonlinear ones. On the other hand, ARX model performed better with some other output variables. 

However, also in the second case study the model NRMSE values were on good level, being 1.94–3.60 % on testing 

dataset.  

 

Although the workflow to implement machine learning models in Apros® using its Python binding was defined, the 

actual implementation need more work. Experimenting with Keras neural network models in Apros® was noticed to 

slow down the simulation even though the model was fast when testing it outside of Apros®. The Python binding in 

Apros® do not seem to cause overhead to the calculation process which is why further investigating is needed. It is 

obvious that the machine learning model must be very accurate if it is to be implemented in Apros® because it needs 

to be able interact with the physics-based model. The actual accuracy requirement that Apros® sets should be also 

studied to know if and in which direction the framework made for this study needs to be developed. 
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Tiivistelmä 

Teollisuusprosessien toimintaa jäljittelevät dynaamiset fysiikkapohjaiset simulaatiomallit voivat laajuudesta tai 

yksityiskohtien määrästä johtuen olla laskennallisesti raskaita. Tämä voi rajoittaa simulaatiomallin käyttöä 

esimerkiksi prosessioperaattorien koulutuksessa ja hidastaa simulaattorin avulla tehtävää prosessien optimointia. 

Tässä tutkimuksessa selvitettiin koneoppimismenetelmillä luotujen mallien soveltuvuutta fysiikkapohjaisten 

yksikköoperaatiomallien surrogaattimallinnukseen. Fysiikkapohjaiset mallit on luotu teollisuusprosessien 

dynaamiseen mallinnukseen ja simulointiin kehitetyllä Apros®-ohjelmistolla, jota kehittää Teknologian 

tutkimuskeskus VTT Oy ja Fortum. Työ on osa COCOP-projektia, joka saa rahoitusta EU:lta, ja INTENS-projektia, 

jota rahoittaa Business Finland. 

 

Työ on jaettu kirjallisuusselvitykseen ja kahteen kokeelliseen case-tutkimukseen. Kirjallisuusosiossa selvitettiin 

datapohjaisen mallinnuksen eri vaiheet ja tutkittiin dynaamiseen mallinnukseen soveltuvia neuroverkkorakenteita. 

Tämän perusteella valittiin neljä neuroverkkoarkkitehtuuria case-tutkimuksiin. Ensimmäisessä case-tutkimuksessa 

selvitettiin lineaarisen ja epälineaarisen autoregressive model with exogenous inputs (ARX ja NARX) -mallin 

soveltuvuutta pinnankorkeuden säädöllä varustetun vesisäiliömallin dynaamisen käyttäytymisen mallintamiseen. 

Toisessa case-tutkimuksessa tarkasteltiin edellä mainittujen mallityyppien lisäksi Long Short-Term Memory (LSTM) 

ja Gated Recurrent Unit (GRU) -verkkojen soveltuvuutta power-to-gas prosessin metanointireaktorin dynaamiseen 

mallinnukseen. Työssä selvitettiin surrogaattimallinnuksen vaiheet korvattavien yksikköoperaatiomallien ja siihen 

liittyvien muuttujien valinnasta datan generointiin ja koneoppimismallien implementointiin Aprosiin. 

Koneoppimismallien rakentamiseen tehtiin osana työtä Python-sovellus, joka hyödyntää Keras Python-kirjastoa 

neuroverkkomallien rakennuksessa. Keras on suosittu kirjasto, joka mahdollistaa nopean neuroverkkomallien 

kehitysprosessin. Työssä tehty sovellus hyödyntää neuroverkkomallien hyperparametrien optimoinnissa satunnaista 

hakua. Jokaisen optimoinnin aikana luodun mallin tarkkuutta dynaamisessa simuloinnissa mitataan erillistä aineistoa 

käyttäen. Jokaisen mallityypin paras malli valitaan NRMSE-arvon perusteella seuraaviin testeihin.  

 

Case-tutkimuksen tuloksien perusteella neuroverkoilla voidaan saavuttaa korkea tarkkuus dynaamisessa 

simuloinnissa. Ensimmäisessä case-tutkimuksessa lineaarinen ARX-malli oli hieman epälineaarista tarkempi, mutta 

molempien mallityyppien tarkkuus oli hyvä (NRMSE alle 0.1 %). Mallien yleistyskykyä mitattiin simuloimalla 

usealla aineistolla, joiden perusteella yleistyskyky oli hyvällä tasolla. Toisessa case-tutkimuksessa vastemuuttujien 

tarkkuuden välillä oli eroja lineaarisen ja epälineaaristen mallityyppien välillä. Tämä oli odotettu tulos, sillä joidenkin 

mallinnettujen vastemuuttujien käyttäytyminen on epälineaarista ja näin ollen lineaarinen ARX-malli suoriutui niiden 

mallintamisesta epälineaarisia malleja huonommin. Toisaalta lineaarinen ARX-malli oli tarkempi joidenkin 

vastemuuttujien mallinnuksessa. Kaiken kaikkiaan mallinnus onnistui hyvin myös toisessa case-tutkimuksessa, 

koska käytetyillä mallityypeillä saavutettiin 1.94–3.60 % NRMSE-arvo testidatalla simuloitaessa. 

 

Koneoppimismallit saatiin sisällytettyä Apros-malliin käyttäen Python-ominaisuutta, mutta prosessi vaatii 

lisäselvitystä, jotta mallit saadaan toimimaan yhdessä. Testien perusteella Keras-neuroverkkojen käyttäminen näytti 

hidastavan simulaatiota, vaikka neuroverkkomalli oli nopea Aprosin ulkopuolella. Aprosin Python-ominaisuus ei 

myöskään näytä itsessään aiheuttavan hitautta, jonka takia asiaa tulisi selvittää mallien implementoinnin 

mahdollistamiseksi. Koneoppimismallin tulee olla hyvin tarkka toimiakseen vuorovaikutuksessa fysiikkapohjaisen 

mallin kanssa. Jatkotutkimuksen ja Python-sovelluksen kehittämisen kannalta on tärkeää selvittää mikä on Aprosin 

koneoppimismalleille asettama tarkkuusvaatimus. 

Muita tietoja 
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1 INTRODUCTION 

Mathematical modelling and simulation are important tools in different phases of process 

and automation engineering projects. These tools can be used for example in creating new 

information that can be valuable in the process design tasks and in optimising existing 

processes. Dynamic modelling and simulation also fall into this class of tools and can be 

utilised in e.g. building a virtual version of industrial processes. These virtual plants are 

used in e.g. process operator training as it is more risk free than training on a real plant, 

and all kinds of new operating and control methods can be developed without fear of 

accidents. (Lappalainen et al. 2012). 

Running physics-based dynamic process simulation can be computationally expensive 

when the simulation models are large and include high amount of details. Simulation 

speed of this kind of models might be slower than real-time which can be a problem when 

the model is needed for example in operator training, plant design or optimisation tasks. 

Especially when using a simulator for operator training it is a requirement for the 

simulator to run in real-time. The main objective of this research is to study feasibility of 

building computationally light dynamic machine learning surrogate models of physics-

based unit operation models that are built in dynamic process modelling and simulation 

software Apros. This is to see if the machine learning model could be implemented in 

Apros to replace computationally heavy components of the model and this way increase 

the simulation speed to make the model usable in more applications. In this work, data-

driven models created using machine learning methods are referred to as machine 

learning models. Different kinds of models can be derived using machine learning 

methods but in this study, the scope is in using artificial neural networks. 

A lot of literature is available for data-driven dynamic simulation, often referred to as 

multi-step-ahead predicting or forecasting, e.g. (Taieb and Hyndman 2012), (Sun et al. 

2010) and (Papacharalampous et al. 2019). However, combining physics-based and 

machine learning models in a dynamic modelling and simulation environment is a less 

studied topic. Hybrid modelling in process engineering is discussed e.g. in (Stosch et al., 

2014) in which also references to literature on utilising artificial neural networks together 

with physics-based models are given. 
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Apros is a so called first principle modelling and simulation tool in which physical and 

chemical laws and principles are taken into account. Including machine learning models 

as black-box components is in the scope of interest not only to increase the simulation 

speed but also to enable possibility of hiding confidential information included in the 

model from the simulation model user without affecting other parts of the simulation 

model. This research is carried out as a combination of literature and case studies. The 

literature part gives an introduction in topics such as modelling of dynamic systems, 

physics-based modelling and finally dynamic data-driven modelling and the steps 

included in it. Artificial neural networks, being the approach for data-driven dynamic 

modelling in this study, are presented in more detail although the steps of the modelling 

can be applied in most other data-driven model types as well. 

In the experimental part, the workflow from selecting one ore multiple unit operation 

models to be modelled using machine learning methods to finally implementing the data-

driven surrogate model back to Apros is defined. The main focus in this research is in the 

data-driven modelling using artificial neural networks and for that, a framework to build 

machine learning models was implemented. The framework includes steps from pre-

processing to model selection. Data for the models is generated in Apros and the data-

driven models in this study are created using Keras (Chollet 2015). The studied model 

types are linear and nonlinear versions of an autoregressive neural network model with 

exogenous inputs (ARX and NARX respectively), Gated Recurrent Unit (GRU) neural 

network and Long Short-Term Memory (LSTM) neural network. Although the way to 

implement Python-based machine learning models in Apros is defined in this study, that 

part of the process requires more work in order to get the machine learning models work 

properly in Apros together with the physics-based model. 

This research has been executed in COCOP and INTENS projects. The COCOP project 

receive funding from the European Union’s Horizon 2020 research and innovation 

programme under grant agreement No 723661. In COCOP project, the objective is to 

define, design and implement a concept that integrates existing industrial control systems 

with efficient data management and optimisation methods. The objective is also to 

provide methods to monitor and control large industrial processes. (Anon 2019f) 

Simulation models are utilised which speed requirement is high in the optimisation tasks. 

In this study, machine learning methods to improve the speed of the simulation models 

are investigated. INTENS project is Business Finland funded project that focus on 
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advancing, promoting and digitalising Finnish marine industries. Special focus in 

INTENS is on improving energy efficiency and decreasing emissions of ship energy 

systems. (Anon 2019g) 
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2 MODELLING OF DYNAMIC SYSTEMS 

Dynamic process models can be used e.g. in process design, process control design and 

testing, process optimisation and fault detection purposes (Ikonen and Najim 2002, p. 3–

4). A system can be described as a group of components that interact with each other. 

Current state of a system is defined by state variables, which contain information about 

the system. Factors that externally affect the behaviour of a system are called inputs. The 

input and state variables can be used to define the next state and the output of the system. 

(Stanislaw 2003, p. 1) For example, a sequence of three water tanks is defined as a system 

by choosing the boundaries so that the system begins from the inlet pipe of the first tank 

and ends at the outlet pipe of the third tank, as shown in Figure 1. Any of the three tanks 

can also be considered as a subsystem of the original system or as a system on its own. 

Considering the sequence of tanks, we could define the system boundaries so that the 

mass flow in the inlet pipe to the first tank acts as an input and the outlet flow from the 

third tank acts as an output. In this example, water levels in the tanks could be selected as 

state variables. 

 

Figure 1. System of three sequential water tanks (blue boundary) and tank 2 defined as a 

subsystem (orange boundary). 

 

Systems can be classified in many ways, for example to linear and nonlinear. A system, 

H, is linear if it obeys superposition principle, which is mathematically described such 

that (1) is true for any constants c1 and c2, and inputs x1 = x1(t) and x2 = x2(t). By the same 

principle, there can be any number of vectors on left hand side and longer combination 

on right hand side in (1) when the system is linear. A system is nonlinear if it does not 
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comply with one or both properties of superposition principle. The superposition principle 

is given by: (Bendat 1998, p. 1-2) 

  H[c1x1 + c2x2] = c1H[x1] + c2H[x2].   (1) 

This means that the relations between input and output of a linear system are additive (2) 

and homogenous (3). (Bendat 1998, p. 1–2) 

  H[x1 + x2] = H[x1] + H[x2]  (2) 

  H[cx] = cH[x]  (3) 

A system can also classified by whether it is static or dynamic. Behaviour of a static 

system is not dependent on the previous external stimuli but only on the current, i.e. if 

there is change in the input, the output will change immediately. In dynamic systems, 

values of output variables may change even when there are no changes in the external 

stimuli, i.e. the output depends on the past in addition to current stimuli. (Ljung and Glad 

1994, p. 19) As stated in (Haykin 2009, p. 797), the state of a dynamic system includes 

all the necessary information about the earlier behaviour of the system that can be used 

together with external inputs to predict the next state and output. Whether the system is 

static, dynamic or classified in some other way, we can use mathematical equations to 

define relationships between the components of a system and we get a mathematical 

model of the system (Ljung 1987, p. 5). 

Beside division between nonlinear and linear, and static and dynamic, process models can 

also be divided into physics-based (white-box), data-driven (black-box) and hybrid (grey-

box) models. In surrogate modelling, there is already an existing model of a system, but 

it may be originally designed for other purposes and does not meet requirements for some 

other use and therefore a surrogate model is needed. For example in this research, the 

main motivation to study suitability of data-driven methods in modelling dynamic 

industrial processes is to find out if physics-based unit operation model of a process model 

in Apros can be replaced with a data-driven surrogate. Physics-based modelling is 

discussed in Section 2.1 and Apros is presented in Section 2.2. 
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2.1 Physics-based modelling 

Physics-based, which are also called first principle models, are built of mathematical 

equations, which have proved to explain the physical laws and principles describing the 

behaviour of the process (Ikonen and Najim 2002, p. 4). Modelling begins with 

structuring the problem that is dividing it into smaller problems, or the system to 

subsystems. The purpose of the model is taken into consideration at the very beginning. 

Inputs, outputs, variables and constants of the system or subsystem are defined and time-

dependency of those is looked into. In addition, the relations between variables and 

constants are examined to define if are they static and dynamic. (Ljung and Glad 1994, p. 

83–84) Next, the known physical laws are applied to the variables and constants in the 

subsystems to form relations between them. Physical relations can be divided to 

conservation laws like conservation of mass and energy and constitutive relations that for 

example define how the ratio of input and output flows in a tank system is related to the 

water level in the tank. (Ljung and Glad, 1994, p. 92)  

Usually some assumptions are also required in order to simplify the model enough for the 

purpose it is going to be used for. Simplification of a model can be made in multiple ways. 

Firstly, variables that has only small effect on the system can be neglected or a 

compressible fluid could be assumed incompressible to simplify the model. In addition, 

the complexity can be reduced by choosing time constants by the most interesting 

phenomena in the system and simplifying the subsystems that haves significantly slower 

or faster dynamics. This can be made by replacing significantly smaller time constants by 

using static relationships and bigger time constants by using constants. When there are 

time constants considerably different in values with each other, stiffness of differential 

equations representing the system increases. Stiffness makes numerical solving of 

differential equations less efficient. (Ljung and Glad 1994, p. 98–101)  

Now that the relations are defined, one can choose state variables for the system. In the 

earlier tank sequence example, water levels in the tanks were proposed as state variables. 

To be able to calculate the next states and outputs of the system, time-derivatives of the 

state variables must be formed as a function of previous state and input. To simplify the 

model, state variables could be aggregated that practically means reducing the amount of 

similar state variables by combining them. (Ljung and Glad 1994, p. 100–101 & 105) 
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2.2 Apros® – Dynamic process modelling and simulation software 

Apros is a physics-based advanced dynamic process modelling and simulation software 

developed by VTT Technical Research Centre of Finland and Fortum since 1986. There 

are multiple Apros products – Apros Thermal, Apros Nuclear, Apros Nuclear 3D + 

Containment and Apros Pulp & Paper, each targeted for modelling different processes. 

Each of the versions include all the thermal hydraulic solvers, water-steam material 

properties, basic process components, automation and electrical components and data 

logging and visualization features. The nuclear version includes also nuclear process 

components and 1D reactor model whereas in the Nuclear 3D + Containment version 

there are also 3D reactor and containment models. The Pulp & Paper version adds process 

components related to pulp and paper industry to the Thermal version as the name 

suggests. (Anon 2019a)  

Apros can be used for modelling and simulation of e.g. nuclear power plants, thermal 

power plants, and pulp and paper processes including their automation and electrical 

systems. It is a tool that can be utilised e.g. in process and control design, optimisation 

and automation system testing tasks. In addition, it can be used in analysing the processes, 

troubleshooting tasks, training purposes and to execute safety analysis. (Anon 2018a) The 

model building in Apros is based on using ready-made basic component models such as 

pipes, pumps, tanks and heat exchangers that are included in a symbol library. These 

component models in Apros are called modules and this term is also used in this thesis 

from now on. The modules are implemented in models by dragging-and-dropping them 

from a symbol library to a diagram in the graphical user interface (see Figure 2). 

Automation modules include e.g. controllers, actuators and measurement modules. 

Alternating and direct current systems can be modelled with included electrical modules 

like generator, transformer or battery. Custom modules can be built by using User 

Component and External Model modules. By utilising External Model module, the user 

can also include C, C++ or FORTRAN code in form of a DLL file to add custom 

calculations. Once Apros solver encounters an external model, it will call a predefined 

function in which the functionality of the model is stored. (Anon 2018b) User 

Components are presented in Subsection 2.2.1. 
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Figure 2. Graphical user interface of Apros. 

 

Mechanistic models in Apros combine structure of the modelled process, first principles 

of physics and chemistry, empirical correlations such as heat transfer correlations, and 

properties of a set of materials. During simulation, in addition to partial and ordinary 

differential equations, nonlinear and linear algebraic equations are solved at each time 

step. (Anon 2018a) Apros includes multiple flow models that are computed differently. 

The six-equation flow model is the most extensive flow model in Apros and includes one-

dimensional mass, momentum and energy equations for liquid and gas phases which 

results in six partial differential equations. These equations are first discretised and 

nonlinear components are linearised. The discretisation is made with respect to space and 

time with staggered grid method in which the values of state variables like pressure and 

enthalpy are calculated in the center of the grid’s cells and e.g. velocities of the fluid flows 

two phases are calculated in the edge of the cell. In numerical solution, implicit method 

is used iteratively until convergence and in each iteration, pressure, void fraction and 

enthalpies of the two phases are calculated sequentially. Liquid and gas properties like 

density and temperatures are calculated based on pressure and enthalpy. (Hänninen and 

Ylijoki 2005) The simulation time step can change dynamically in Apros. For example, 
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if fast transients occur, a shorter time step may be needed to increase the accuracy until 

the process gets back to more stable operation, when the time step can be extended. (Anon 

2019b). 

2.2.1 Apros User Components 

As mentioned, in addition to using modules in the symbol library presented earlier, the 

user can create re-usable and customizable modules called User Components that can be 

built of symbol library modules and other user components. SCL scripts (Simantics 

Constraint Language) can also be attached to User Components to include custom 

calculations. User Components can be built similarly as model diagrams are built, i.e. by 

dragging and dropping modules from the symbol library to the User Components 

diagram. Data transfer between User Component and other Apros modules can be done 

in multiple ways. One way is to create terminal connection points for the User Component 

symbol in which input and output signals can be connected. In this study, however, the 

User Component module is utilised in a way that terminal connection points are not 

needed. All the functionality of the User Component, i.e. the data-driven model, is 

included in SCL scripts that are attached to the User Component. Data from physics-

based Apros modules can be read directly to SCL variables and also after performing 

operations using SCL, the values of SCL variables can be written directly to properties of 

Apros modules. 

2.2.2 Python binding in Apros 

Python binding was used in Apros in this work to enable the use of data-driven models 

written in Python. The binding allows execution of Python statements within SCL. In 

practice this means that user can assign values from process components, e.g. mass flow 

in a pipe to a Python variable using SCL. The Python variable can then be used during 

execution of Python statements and the output can be assigned back to SCL variable to 

be used in Apros. The use of Python binding in implementing data-driven models in 

Apros is explained in Chapter 5 in detail.  

2.2.3 Logging input and output data 

Apros includes options to write and read data between Apros models and text files during 

the simulation. In this research, values of the input and output variables are written to text 
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files during dataset generation simulation run. The data logging is set up before generating 

datasets for data-driven modelling by defining the modules and the properties of the 

modules, i.e. the input and output variables, which need to be logged. Also, the sampling 

time of data logging can be defined. In this study, the sampling time was 0.2 s in both 

case studies which are presented in Sections 5.2 and 5.3. Data transfer can be controlled 

with SCL commands which are included in the SCL script that is used to run the 

experiments. 

 



17 

 

3 DYNAMIC MODELLING WITH ARTIFICIAL NEURAL 

NETWORKS 

Data-driven modelling is a method of system identification that is based on input-output 

data extracted from the system. Creating a data-driven model includes several steps, 

which are the same whether the modelled system is static or dynamic. The first step is to 

gather the data that describe the behaviour of the system. Next, a model structure that is 

suitable for the case is chosen. The model gets its shape when the model is fitted with 

data which practically means that the parameters of the selected model structure are 

estimated so that the input-output behaviour of the model is sufficient. In other words, 

one or more functions are approximated during the identification process so that they 

represent the input-output relationships with sufficient accuracy. Final step is to measure 

the performance of the model which is called model validation. Performance 

requirements for models may vary but often we want the model to be as accurate as 

possible and generalise well at the same time. However, the purpose in which the model 

is used may also set additional requirements such as high computational efficiency. 

(Ikonen and Najim 2002, p. 9–11) 

There are numerous different methods available to be applied in every step of the 

identification process. Choosing a suitable model type is essential to capture the 

characteristics and properties of modelled process. When dealing with dynamic systems, 

output of the system often does not only depend on the current input but also on the past 

inputs, outputs and states of the system. (Ikonen and Najim 2002, p. 113). In this chapter, 

the process of modelling with artificial neural networks is explained beginning from the 

data generation and pre-processing to model selection. Although choosing the model type 

is a part of the modelling process, the different recurrent artificial neural network 

architectures suitable for dynamic modelling are presented in Chapter 4 together with 

introduction to autoregressive models and artificial neural network models in general. 

3.1 Designing the experiments for data generation 

To be able to create machine learning models based on data generated in Apros, an 

experiment design needs to be made or selected in order to first generate the data. An 

experiment design is a plan that is used to create data of a system in a way that the 
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relations between inputs and outputs of the system become visible in the data. During the 

dataset generation, changes are caused in the values of excitation variables, i.e. the input 

variables of the system, which cause some kind of effect in the observation variables, i.e. 

the outputs of the system. There are multiple things to take into account when choosing 

the experiment design. The most important thing is to consider the use for what the data-

driven model is to be constructed. (Sun and Sun 2015) When making a data-driven 

surrogate model to be used in dynamic simulation environment, the coverage and 

reliability requirements for the model are high. 

3.1.1 Experiment designs 

Full factorial experiment design includes two or more levels for each input factors. In a 

two-level full factorial design, the levels are often called low and high, or -1 and 1 level. 

The number of experiments in a full factorial design depends on the number of input 

factors and the number of levels. Each combination of the input factors on different levels 

are included in the design. Full factorial design grows very large quickly as the number 

of input factors and their levels increases and for example in (NIST/SEMATECH 2012) 

it is recommended not to use it if the number of input factors is more than 4. However, 

this is not necessarily a problem when the experiments are made in simulation 

environment which is the case in this study, although it increases the time to develop the 

models. To decrease the amount of needed experiments, fractional factorial experiment 

designs can be used. Fractional factorial designs include only a part of the experiments of 

full factorial design. (NIST/SEMATECH 2012) 

Central Composite Design (CCD) is another experiment design that has multiple different 

configurations (see Figure 3 for illustration of case with two input factors). Central 

Composite Circumscribed (CCC) design includes five levels which are called the edge 

points, the star points and the center point. Edge points are the same as the low and high 

level in a factorial design. Distance of the star points is related to the number of input 

factors that are included in the design. In Central Composite Inscribed (CCI) design there 

are also five levels, and the structure is the same as in CCC, but the star points are located 

at the same locations where the edge points are in CCC, i.e. they are closer to the center 

points and the operation range is narrower than in CCC. Central Composite Face centered 

(CCF) design on the other hand have only three levels. (NIST/SEMATECH 2012) 



19 

 

 

Figure 3. The three types of Central Composite Design of experiments. Adapted from 

(NIST/SEMATECH 2012). 

 

Box-Behnken (BB) experiment design, illustrated in Figure 4 for three input factors, is a 

quadratic design that require less experiments than full factorial design. It also requires 

less experiments than CCI or CCC when the number of input factors is less than five. In 

BB design, there are three levels which are at the midpoints of edges and in the center. 

Therefore it does not include the corner points which means that input factor extremes 

are excluded from the experiments. (NIST/SEMATECH 2012) 

 

Figure 4. Illustration of Box-Behnken experiment design for three input factors. 

Adapted from (NIST/SEMATECH 2012). 

 

Modelled processes in Apros are dynamic, include multiple variables and often include 

nonlinearities with different kind of interactions between the variables. Thus a two-level 

experiment design does not necessarily provide enough information to reveal the possible 

nonlinearities which requires three-level or higher level experiment design. The principle 

for this is demonstrated in Figure 5 A and C. In 5A, there are two levels used in 

experiment design and as a result, the relation between variables appears to be linear. 

However, if the third point is added to the middle point in experiment design, the results 

may reveal that the relation is actually nonlinear. 
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Figure 5. Demonstration of differences between different relationships of two variables. 

Adapted from (Leiviskä 2013). 

 

If behaviour of the modelled output variables is cubic (see Figure 6), the experiment 

design should contain at least four levels. It can be concluded from this section, that the 

selection of a suitable experiment design is of high importance when a data-driven model 

of a system is to be built. In the first case study of this research, a tailor-made experiment 

design was used as there was only one input factor. In the second case study, CCI design 

that include five levels, was used in the experiments as there was five input factors and 

experiments with full factorial design would have led to impractically high amount of 

data for developing models. CCI was chosen over Box-Behnken design as it includes 

more levels, i.e. more complex relationships can be revealed if there are some to be found. 

Wide range of other experiment designs can be found from literature apart from the ones 

presented in this section (see NIST/SEMATECH 2012). 

 

Figure 6. Linear (A), quadratic (B) and cubic (C) functions demonstrating how many 

levels are needed in experiment design for different kind of functions that are modelled. 

Adapted from (NIST/SEMATECH 2012). 
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3.1.2 Importance of sampling rate 

Sampling rate, or sampling time, defines how often the data is stored during the 

experiments. Choosing a suitable sampling rate for a specific case is an important thing 

to consider when a data-driven model is to be built. Sampling theorem of Nyquist-

Shannon, that was originally introduced in (Shannon 1949), states that to be able to 

reconstruct the original continuous-time signal from data sampled in discrete time steps, 

there is a limit for the discrete-time sampling frequency. According to the theorem, the 

sampling frequency must equal at least the signal’s highest frequency multiplied by two, 

i.e. fs ≥ 2fh, where fs is the required sampling frequency and fh is the highest frequency of 

the original signal. If the sampling frequency is lower than the Nyquist-Shannon theorem 

states, the discrete-time sampled version of the original signal will be distorted due to 

aliasing or frequency-folding. (Van den Hof 2012) 

In this study, the data is in time series form and is sampled with a constant frequency 

during the data generation run in Apros. Sampling time and simulation time step in Apros 

are not required to be equal even though this is the case in this study, i.e. the simulation 

time step and sampling time is 0.2 s in the case studies. This mean that all information 

calculated by Apros is stored during the experiments in the datasets and no data loss 

occurs. However, in the second case study the amount of data was reduced by down 

sampling the data from 0.2 s sampling time to 5 s in order to keep the neural network 

training times in reasonable limits. The training time of a neural network depends on the 

amount of data used and thus choosing unnecessarily low sampling time would make the 

training process slower even though longer sampling time would have been enough to 

reveal the dynamics of the process. By decreasing the sampling time by a factor of two, 

e.g. from 2 s to 1 s, the amount of data increase by the same factor of two.  

3.2 Pre-processing of data 

Pre-processing of data is an important step to perform before data-driven modelling. In 

cases where the system consists of multiple input and/or output variables, there may be 

variables whose units are different and have differences in their orders of magnitude. 

Without pre-processing, modelling becomes difficult because values of variables with 

low order of magnitude and range seem to vary less than the variables with higher order 

of magnitude. Consequently, the model emphasises the latter more. In normalization, the 



22 

 

scale of each variable is modified so that each variable has the same scale. (Dreyfus 2005) 

In data-driven modelling it is often called min-max feature scaling where final scale is 

often -1–1 or 0–1. Another data pre-processing procedure used often in data-driven 

modelling is standardization. In standardization, the data is processed so that each of the 

variables have mean of zero and standard deviation of one (Graves 2012). According to 

(Graves 2012), standardization of input data can affect the performance of a machine 

learning model significantly. However, when modelling dynamic industrial processes, the 

machine learning models need to include an autoregressive component, i.e. previous 

output values are used in the input, also the output values need to be pre-processed 

accordingly. 

Other time series data related pre-processing methods are detrending and deseasonalising 

which remove trend or seasonal effects from data to make it easier to model. Seasonal 

effects occur periodically. For example, outdoor temperature has a seasonal component 

on a yearly scale as it is lower during winter and higher during summer on average. Trend 

in time series values means that the values are increasing or decreasing over time. When 

using a model trained on detrended and/or deseasonalised data, the trend and seasonal 

component are included back to the prediction. (NIST/SEMATECH 2012) 

Data from Apros can be considered noiseless and in that point of view, training a machine 

learning model to fit the data becomes easier than it would be with noisy data. 

Furthermore, it also reduces pre-processing needs as there are e.g. no outliers or missing 

values in the data that would need to be taken care of before modelling. It is of great 

importance to notice that the validation and testing datasets need to be pre-processed in 

the same way as the training dataset. For example, if input variable pressure is scaled into 

range -1–1 by using its minimum and maximum values in the training set, the same 

minimum and maximum values must be used when scaling the values of input variable 

pressure in the validation and testing sets as well. 

3.3 Input variable selection 

When building a data-driven model, the dataset may consist of tens, hundreds or even 

more candidate input variables that are measured or created by using feature engineering 

methods. The purpose of input variable selection, or input feature selection, is to find the 

most relevant variables of these candidates to be included into the model and also to 
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exclude irrelevant and redundant variables from the input data. Input variable selection 

has an important role in data-driven modelling regardless of the modelling technique. 

Irrelevant variables are variables that do not provide any predicting power to the model 

which means that they only cause noise and increase the amount of model parameters 

without making model performance better. Redundant variables may be relevant but do 

not increase the predicting power of the model because some other variable provides the 

same information. The selected input variables should provide information that is needed 

to explain the behaviour of the outputs with required accuracy and provide good 

generalisation ability at the same time. (Galelli et al. 2014). In (May et al. 2011) it is also 

stated that when dealing with artificial neural networks, the input variable selection is 

important because redundant and irrelevant input variables make the training process 

harder as they increase the amount of local optimum solutions in the error function. This 

is problematic especially with training algorithms based on gradient descent as it becomes 

more probable that they converge to a local optimum and thus the generalisation ability 

of the model would be weak. (May et al. 2011) 

In feature engineering, new features are generated from the existing features and these 

new features are also taken into consideration in input variable selection. When dealing 

with time series data, this may include generating lagged versions of the original inputs. 

Therefore, the input variable selection problem expands in time series cases as the optimal 

number of lags, i.e. the number of values from previous time steps, must also be 

determined. Increasing number of lagged variables increases the number inputs which 

practically leads to a more complex model. (Bowden et al. 2005) 

Input variable selection methods can be divided in two classes – model-based methods 

and filter methods. Filter methods do not require creation of models whilst the model-

based input variable selection methods include a model to measure the performance of 

each selected input variable combination. Model-based methods include two subclasses 

which are wrapper methods and embedded methods. (Galelli et al. 2014) & (Guyon et al. 

2006, p. 6–7) Different search strategies can be utilised to find the best input variables 

when there are too many possible combinations to try separately (Guyon et al. 2006, p. 

6–7). When modelling complex nonlinear processes with artificial neural networks, it is 

important to choose an input variable selection method that is able to take into account 

the nonlinearities and redundancy of the input variables, i.e. if there are two or more 

candidate variables that provide the same information, only one is selected. (May et al. 
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2011) This kind of methods are listed in Table 1 and are discussed in the following 

Subsections 3.3.1–3.3.2. 

Table 1. Input variable selection methods suitable for nonlinear systems taking 

redundancy into account. (May et al. 2011). 

Input variable selection method Type 

Forward selection Wrapper 

Backward selection Wrapper 

GA-ANN (Genetic Algorithm - ANN) Wrapper 

MIF (Mutual Information Forward) Filter 

PMI (Partial Mutual Information) Filter 

RFE (Recursive Feature Elimination) Embedded 

EANN (Evolutionary ANN) Embedded 

 

For linear systems, the selection of the number of lagged values to be included in the 

model can be estimated for example by calculating autocorrelation for the output 

variables and cross-correlation of input and output variables. (Bowden et al. 2005) 

According to (Yu et al. 2000), selection of the input variables and determining the order 

and time-delay of the modelled system are often carried out by building models with 

different combinations of these and selecting the one with the lowest error. They argue 

that the approach is not easy to use with complex industrial processes that include 

multiple variables and present an alternative in which the orders and delays are found out 

by building simpler linearized models of a nonlinear process in multiple operating points. 

(Yu et al. 2000) 

Reinforcement learning has also been used in estimating optimal input variables and time 

delay between the input and output variables in (Liu et al. 2005). Reinforcement learning 

is out of the scope of this research although it has been applied to time series modelling 

problems. For example in (Venkatraman 2017), the author of the thesis introduces a new 

training algorithm that can be used in time series modelling and shows that multi-step-

ahead predicting performance with recurrent neural networks can be improved. In the 

introduced Data as Demonstrator algorithm, the training data is used to generate synthetic 

training examples which can be used in correcting the multi-step-ahead predictions. 

(Venkatraman 2017) 
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3.3.1 Wrapper methods 

Wrapper methods apply a model to measure the performance that the selected input 

variables provide and therefore the efficiency of this method is related to the model’s 

capability to describe the data it is trained with. The requirement of building a separate 

model for each selected input variable combination also has an impact on the time that is 

needed to find the best combination. Using nonlinear models in the process enables 

accounting for nonlinear relationships between the input and output variables. 

Stepwise variable selection methods are simple techniques in which either none (forward 

selection) or all (backward elimination) input variables candidates are used initially in the 

model. In forward selection, a separate model is first built for each of the input variable 

candidates and the candidate that explains the data better than others, is selected to the 

next round. During the following rounds, variables that are not selected yet are tested one 

by one in model building together with the already selected input variable or variables. In 

backward elimination, the process is reversed as initially all the input variable candidates 

are used in the model. At each round one variable at a time is eliminated to find out which 

is the least promising considering the model performance. This least promising candidate 

is discarded, and the process continues to the next round. (May et al. 2011) 

Genetic algorithms combined with artificial neural network have also been used in input 

variable selection by (Bowden et al. 2005). In their approach, a hybrid genetic algorithm 

and generalised regression neural network (GRNN) is used to find the best input variables 

and as a pre-processing step, a self-organizing map (SOM) is used to reduce the number 

of candidate input variables and to find independent inputs. Self-organising maps can be 

used for finding redundant variables in both linear and nonlinear cases. (Bowden et al. 

2005) 

3.3.2 Embedded methods 

In embedded methods, the input variable selection is included in the training process of 

artificial neural networks. The difference between the embedded and wrapper methods is 

that the wrapper methods take into account only the model performance with selected 

input variables as a group whereas an embedded algorithm takes into account how the 

input variables affect the model performance separately. Recursive feature elimination 

(RFE) is one embedded algorithm which is based on backward elimination. In RFE, first 
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the models are built using all the input variables and which are then dropped one by one 

as in backward elimination procedure. Evolutionary artificial neural network (EANN) is 

also classified as embedded method. Gradient descent is not used in the training of 

EANN, but the weights of EANN are optimised using some evolutionary algorithm (EA). 

In (May et al. 2011) this approach is suggested to be more robust in converging to near-

global optimum than gradient descent. (May et al. 2011) 

A hybrid algorithm called GASA-RBF was proposed in (Alexandridis et al. 2005) which 

combines genetic algorithm with simulated annealing and radial basis function (RBF) 

neural network, being suitable for nonlinear systems. In their approach, genetic algorithm 

is first used to find an input variable combination that minimises prediction error of RBF 

network and then Generalised Simulated Annealing algorithm is used to find out if the 

amount of input variables can be reduced. (Alexandridis et al. 2005) 

3.3.3 Filter methods 

Filter methods in input variable selection differ from embedded and wrapper methods by 

being a model-free technique. Filter methods can be divided in linear correlation-based 

methods and methods based on information theoretic measures. Linear correlation is a 

commonly used input variable selection method. For example in equation y = 2x, 

variables x and y are correlated linearly. (May et al. 2011) & (Anon 2019h) Mutual 

information (MI) and partial mutual information (PMI) are filter methods that are suitable 

for nonlinear cases. MI and PMI methods are based on probability distributions, i.e. they 

do not make assumptions of the structure of the relationship of the variables (i.e. 

linearity/nonlinearity). With the PMI method, the significance of input candidates can be 

found out. (May et al. 2011) 

3.4 Neural network training 

Training of a neural network means adjusting the parameters, i.e. the weights, of the 

neural network in a way that the neural network model fits well on the data it has been 

developed with (i.e. training data). Neural network must also have the ability to generalise 

well which means that it should perform well also on data that is different from the data 

used in the training phase. Neural network training is performed usually inside a 

hyperparameter optimisation loop, where multiple of models are trained with different 
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hyperparameters to find the optimal ones. Hyperparameter optimisation is presented in 

Section 3.5. 

Machine learning, including the training of neural networks, can be divided in multiple 

classes according to the problem set up and how the model is built. When there is data 

for both input and output variables that match each other, the learning process is called 

supervised learning. Thus, supervised learning is based on comparing predicted output 

values with ground truth output values and the model is adjusted in a way that the error 

between these two is minimized. (Graves 2012) In unsupervised learning, there is no 

information of the outputs and the learning is based on observing features from data. 

Clustering is one example of an unsupervised learning problem, where a set of data points 

are divided into groups. This is made by measuring pairwise dissimilarities of two data 

points in the same cluster and in other clusters. Dissimilarity of two data points in the 

same cluster is smaller than that of data points belonging to different clusters. (Hastie et 

al. 2009) When the learning is based on minimising or maximizing a cost function instead 

of comparing predicted values with ground truth values as in supervised learning, we are 

talking about reinforcement learning. Reinforcement learning is applied e.g. when it is 

too difficult to obtain input and output values of the problem for modelling. (Graves 2012) 

In this study, input and output pairs are known and thus supervised learning methods are 

applied. 

Training of complex artificial neural networks require considerable amount of calculation 

resources. During last decades, the calculation capabilities of computers have increased 

significantly, allowing artificial neural networks to be used more and more as a nonlinear 

modelling tool. (Dreyfus 2005 p. 1) Recurrent neural networks are often trained using a 

technique called teacher forcing. In this technique, the true outputs are used in the input 

of the network whilst when using the model, the actual output of the model is used. 

(Haykin 2009, p. 817). The teacher forcing technique is demonstrated in Figure 11 in 

Subsection 4.2.1. When using the trained model, the calculated output signals are fed back 

to the inputs instead of true values. The teacher forcing technique can be applied in other 

model types as well if they have autoregressive inputs. Different autoregressive model 

structures are presented in Chapter 4. 

The training process of neural networks can be monitored by plotting the training and 

validation errors on each epoch as illustrated in Figure 7. In Figure 7, the validation loss 
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begins to eventually increase after certain number of training epochs, i.e. training 

iterations, have passed. This implicates overfitting which means that the network has 

learned the training data too well and is not able to generalise, i.e. the model does not 

work with any other data than the original training data. Therefore, it can be useful in 

some cases to use the so called early stopping technique to find optimal generalisation 

ability of the network. When early stopping is applied in the training process, the 

validation loss is measured after each training epoch and based on the method, the training 

can be stopped by different criteria, e.g. if the validation loss starts to grow implicating 

overfitting or if the validation loss has not decreased during the last N epochs. (Orr and 

Müller 1998) However in this study, the early stopping was not found useful because the 

relationship between one-step-ahead (or input-output mapping) and multi-step-ahead 

validation loss seems to be uncorrelated. On the other hand, there are other ways of 

addressing overfitting in addition to early stopping, called regularisation methods. Some 

regularisation methods are presented in Subsection 3.4.2. 

 

Figure 7. Illustration of how training and validation loss may behave during the training 

of neural network. The model in this example would be over fitted if the training is 

continued after the epoch marked by the vertical green line, i.e. if the validation loss starts 

increasing. Adapted from (Orr and Müller 1998)  

3.4.1 Gradient descent based weight optimisation 

Algorithms based on gradient descent are used widely in optimizing weights of a neural 

network during the training. The efficiency of gradient descent optimisation stems from 

the need to only calculate first-order partial derivatives (Kingma and Ba 2014). In 

gradient descent optimisation algorithm, finding the global minimum of an objective 

function is carried out by calculating the gradient of the objective function, i.e. the 
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gradient of the loss function in neural network training. The parameters are then updated 

in the direction of negative gradient, i.e. in the direction in which the loss decrease the 

most. How much the values of parameters are updated depends on parameter called step 

size that is called the learning rate in neural network training. Backpropagation is a 

popular gradient descent based method and an efficient way of calculating gradients that 

are used to optimise neural network weights (LeCun et al. 1998). The loss, i.e. the error, 

is calculated in the neural networks output and distributed back towards the inputs in 

order to update the weights. (Dreyfus 2005) Detailed description of the backpropagation 

algorithm can be found for example in (Dreyfus 2005) and (Haykin 2009).  

Weights of a neural network must be initialised before the network training with gradient 

descent based algorithm can be started. Initialisation of the weights has a great impact on 

the resulting model. When made properly, the training converges quickly. (Cui and Fearn 

2018) When the weights are initialised randomly, the experiments should be performed 

multiple times to ensure that the result is reliable. (Graves 2012) In this study, the weights 

are initialised randomly in Keras by drawing values randomly from either uniform 

distribution or normal distribution. Default parameters that define the distributions in 

Keras are used, which are mean of zero and standard deviation of 0.05 for normal 

distribution and range -0.05–0.05 for uniform distribution. (Anon 2019c) 

In this study, a backpropagation-based algorithm called Adaptive moment algorithm 

(Adam) is used in the neural network training. Adam was introduced by (Kingma and Ba 

2014) and it is a stochastic gradient descent method. Instead of using fixed learning rate, 

Adam calculates learning rates for each weight of the network adaptively. (Kingma and 

Ba 2014). Other gradient descent based weight optimisation algorithms included in many 

neural network libraries are presented for example in (Ruder 2016). 

3.4.2 Regularisation 

Overfitting of a neural network on training set can be prevented or decreased by using 

one or more regularization methods. L2 is a common regularisation method which helps 

the network to use all the weights of the network so that each contributes useful 

information regarding the behaviour of the modelled system. It is based on penalising the 

weights’ sum of squared amplitude. (Cui and Fearn 2018) In L1 regularisation, a 

maximum value for the sum of neural network weights is set which affects the learning 
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capacity of the network thus reducing overfitting. The penalty term in L1 and L2 methods 

is applied to the loss function.  

Dropout is another regularisation method, in which neurons in the neural network are 

turned off during an epoch in the network training phase when the weights of these 

neurons are not updated on that epoch. Practically it has the same effect as applying noise 

to the signals going to the units (Srivastava et al. 2014) Applying noise to the model inputs 

can also be used in regularisation. In Keras, e.g. dropout can be applied on layer and by 

defining dropout rate to e.g. 0.2, then 20 % of randomly selected input units to that layer 

are set to 0. (Anon 2019d) Max-norm regularisation specifies a maximum length for the 

vector of weights that are connected to each hidden unit in a neural network layer. In 

practice, the methods constraints the Euclidian norm p given by: (Anon 2019e) 

 𝑝 =  √𝑤1
2 + ⋯ + 𝑤𝑛

2,          (4) 

where p is the norm, 

 w is the value of the weight and 

 n is the number of connections 

 

For example, consider a neural network with four neurons in the input layer and one in 

the hidden layer and therefore four connections in total to the hidden neuron. Applying 

the max-norm regularisation with value 2 constraints maximum value of p in equation 4 

to 2, i.e. the maximum value that the weights can get is constrained. Dropout and max-

norm were found to regularise neural networks well when applied together. (Srivastava 

et al. 2014) Both of these were included in the hyperparameter search during the case 

study 2 of this research. In the first case study, no regularisation methods was applied. 

3.5 Hyperparameter optimisation 

Hyperparameters, such as the number of hidden neurons in a hidden layer and the number 

of hidden layers, defines the size of a neural network. Other hyperparameters like the 

optimiser and its learning rate have an effect on the training process. Purpose of 

hyperparameter optimisation is to find hyperparameters that provide good model 

performance and thus is an essential phase in neural network modelling. Tuning 

hyperparameters manually is time consuming even when performed by an expert. 
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Multiple different hyperparameter optimization strategies exist. Grid search is an 

exhaustive brute-force method for hyperparameter optimisation. In grid search, limits and 

step size in the grid for numerical hyperparameters and options for non-numerical 

hyperparameters are defined (see Table 2). (Bergstra and Bengio 2012) 

Table 2. Example of a search grid specified for three model hyperparameters. 

Hyperparameter 
Low 

limit 

High 

limit 

Step size 

in grid 

Possible values/ 

options 

Number of hidden layers 1 5 1 1,2,3,4,5 

Number of hidden neurons 4 32 4 4,8,12,16,20,24,28,32 

Optimisation algorithm - - - ‘adam', 'sgd' 

 

The total number of different hyperparameter combinations is calculated by multiplying 

the numbers of possible values of each hyperparameter. In the example in Table 2, there 

are five possible values for number of layers, eight possible values for number of neurons 

and two possible options for optimisation algorithm. Thus, the number of different models 

to be created would be 5 × 8 × 2 = 80. Including more hyperparameters and making the 

step size smaller in the grid search lead to so called curse of dimensionality as the amount 

of possible hyperparameter combinations increase exponentially. The number of 

hyperparameters that have significant effect on the neural network performance varies 

between different datasets and applications which suggests that grid search is not an 

optimal way for hyperparameter tuning. (Bergstra and Bengio 2012) 

Random search is another brute-force optimisation method in which the hyperparameters 

of the neural network are drawn randomly from a specified search space to be used in 

training. Bergstra and Bengio (2012) compared random search and grid search in HPO of 

single-layer network, proving that random search is more efficient than grid search if 

given the same computational resources and the hyperparameters are chosen from the 

same search space. Their studies suggest that this is due to differences in significances of 

hyperparameters. (Bergstra and Bengio 2012).  

Neither grid nor random search make use of performance results of already trained 

models. Sequential, adaptive search methods address this by directing the search in 

promising search space by taking previous results into account. (Bergstra and Bengio 

2012). This kind of directed search algorithms are also referred to as informed search 
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algorithms in the literature due to their nature of taking the results of previously tested 

hyperparameter combinations into account when deciding which are tried next. Gaussian 

Process (GP) and Tree-structured Parzen Estimator (TPE) are two sequential model-based 

search methods that may be useful when the actual objective function is computationally 

too heavy, as they approximate the objective function with a lighter surrogate. (Bergstra 

et al. 2011) TPE algorithm was tested in the second case study but it did not provide more 

accurate models than random search, thus it was no further experimented with in this 

research. 

Also various other algorithm-based hyperparameter optimisation strategies for automatic 

tuning have been developed to find optimal hyperparameters efficiently, i.e. to find global 

optimum solution with least amount of computational resources. Differential evolution 

algorithm is proposed in (Nakisa et al. 2018). Also optimisation methods such as genetic 

algorithm, particle swarm optimisation, simulated annealing and tree of Parzen estimators 

have been used in hyperparameter optimisation. In context of deep CNN networks, Hinz 

et al. (2018) suggest that optimal hyperparameters for a model trained on specific image 

dataset can be found by using lower resolution images at first and then the higher 

resolution images are used in training. 

3.6 Model selection 

Input variable selection and hyperparameter optimisation results in many candidate 

models which need to be evaluated to find the best one. When dealing with data-driven 

models, the model needs to be able to mimic the relationship between input and output 

variables with high enough accuracy and to generalise well at the same time. In practice, 

a compromise has to be made with these two targets because training a model that learns 

the whole training dataset with all the noise, is not a model that is able to produce accurate 

predictions with unseen data, i.e. data that is different from the training data. In model 

selection, the models that are overfitting are rejected and the generalisation errors are 

estimated to find the lowest one. (Dreyfus 2005, p. 131 & 133) 

Cross-validation is one method to estimate model generalisation. In cross-validation, the 

training dataset is split in K parts which are about the same size and one of these parts is 

used for validation whilst the others are used for training. This procedure is repeated K 
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times so that each of the K parts have been used in validation (see Figure 8). (Dreyfus 

2005, p. 135) 

  

Figure 8. Principle of data division in k-fold cross-validation with K = 5 as an example. 

 

In (Dreyfus 2005, p. 135), it is mentioned that multiple models should be created with 

each dataset combination by using different initial conditions. With neural networks, this 

means e.g. initialising the network with different weights. Mean squared error on the 

validation is calculated for each model with different initial values and the lowest one is 

saved. After doing this for each K dataset combinations, a cross-validation score is 

calculated. Statistically, the cross-validation score is a better estimate of the 

generalisation error than a score that is calculated by using only one static, e.g. 20 % share 

of the dataset, in validation. (Dreyfus 2005, p. 135) The division of the dataset into K 

parts is usually made pseudo-randomly and thus, the process needs to be repeated multiple 

times. (Baumann 2003) 

 

After good hyperparameters are found by measuring the model performance on the 

validation dataset, the model needs to be tested against an independent testing dataset. 

This is required to see whether the model work on previously unseen data and thus shows 

if the generalisation ability of the model is good. This is because when using the 

validation dataset to fine tune the hyperparameters by creating maybe thousands of 

models, the estimation of the model generalisation ability using the validation dataset 

becomes unreliable. (Ng 2009) In this study, separate training, validation and testing 

datasets are used. The validation dataset is used to test each of the generated model in 

multi-step-ahead configuration because one-step-ahead results were noticed not to be a 

reliable measure on the model performance, i.e. generalisation. Normalised root mean 

square error (NRMSE) value for the validation dataset is used to rank the models. The 

models of each model type are then tested using the independent testing dataset to get 

more reliable measure on the model generalisation ability. 
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4 DYNAMIC ARTIFICIAL NEURAL NETWORK 

ARCHITECTURES 

Depending on the application, the model should be able to either map the input-output 

relationships between variables, i.e. produce one-step-ahead predictions, or produce 

multi-step-ahead predictions. Multi-step-ahead predicting is within the scope of this 

study, as it is a baseline requirement for the data-driven model to produce new predictions 

in Apros on each simulation time step. A machine learning model that is producing multi-

step-ahead predictions can be also called a simulator (Dreyfus 2005). In this chapter, 

autoregressive models that lay foundation for dynamic modelling are presented and then 

multiple recurrent artificial neural network architectures are presented. Many other neural 

network architectures exist in addition to the ones presented in this study. These include 

for example convolutional neural networks (CNN) that are commonly used in image 

recognition tasks. Although CNNs are not considered in this study, CNN models have 

been used in sequence modelling for example in (Bai et al. 2018). The authors present a 

generic temporal convolutional network (TCN) and show that it can outperform e.g. 

LSTM network in many sequential modelling problems. They mention that in addition to 

being more accurate, the TCN model is also easier to interpret. 

 

Different techniques for making multi-step-ahead predictions have been used. In indirect 

techniques, one-step-ahead model is used recursively to produce predictions for the next 

time step using the predictions from the previous time step. Thus the indirect methods are 

often also referred to as recursive strategies. The model may also include the so called 

exogenous inputs which is the case in this study. Direct techniques include so called 

prediction horizon which defines how many time steps ahead the model produces 

predictions at once. The recursive methods mentioned above may be inaccurate in 

problems with a long horizon because the models are trained to produce accurate one-

step-ahead predictions. In addition to that, the prediction errors at previous time steps 

cumulate to the next ones. (Taieb et al. 2010) & (Taieb 2014). According to (Taieb 2014), 

determining if recursive or direct method is the most suitable, needs to be done 

empirically for each case separately. 

 

Artificial neural networks have been used in creating static and dynamic models from 

simulator data for example in (Li et al. 2015). Li et al. (2015) modelled post-combustion 
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CO2 capture process using simulated data and performed multi-step-ahead predictions 

with the indirect approach. In their case study, the model was able to produce accurate 

multi-step-ahead predictions for about 90 steps ahead, which the authors comment to be 

enough for model predictive control and online optimisation tasks. (Li et al. 2015) 

4.1 Autoregressive models 

Autoregressive (AR) model as a model class is defined by having its own output values 

from previous time steps as regressors in calculating the next output. The number of 

lagged values of the output variable can be specified and the lagged values do not need 

to be successive ones. For example, previous values from time steps k - 1, k - 3, and k - 5 

could be used instead of k - 1, k - 2 and k - 3. The most simple autoregressive model is 

AR (see Equation 5) that does not include any other inputs but only the output values 

from previous time steps:  (Aguirre and Letellier 2009) 

 𝑦(𝑘) = 𝑎1𝑦(𝑘 − 1) + ⋯ + 𝑎𝑛𝑦
𝑦(𝑘 − 𝑛𝑦), (5) 

where y(k) is the output to be predicted,  

y(k-ny) is the output from the previous time step(s),   

𝑎𝑛𝑦
 is a parameter (or regressor coefficient) and  

ny is the maximum number of output lags used. 

ARX (autoregressive model with exogenous inputs) model includes the same components 

as AR model but adds a so called exogenous input, or the system input, to the right hand 

side of the (5). The structure of an ARX model is: (Dreyfus 2005) & (Aguirre and Letellier 

2009) 

  𝑦(𝑘) = 𝑎1𝑦(𝑘 − 1) + ⋯ + 𝑎𝑛𝑦
𝑦(𝑘 − 𝑛𝑦) + 

                𝑏1𝑢(𝑘 − 1) + ⋯ + 𝑏𝑛𝑢
𝑢(𝑘 − 𝑛𝑢) , (6) 

where 𝑏𝑛𝑢
 are the parameters for the exogenous input regressors and  

nu is the maximum number of input lags used. 

A NARX (Nonlinear ARX) model is based on ARX model but the right-hand side of (5) 

is a nonlinear function. Thus the NARX model can be used to model nonlinear 

relationships between the input and output variables with their lagged values. 
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4.2 Artificial neural networks 

The idea of artificial neural networks is to mimic human brains and its way of processing 

information. Artificial neural networks are data-driven models that are trained to do 

specific computational tasks. (Haykin 2009, p. 2) Artificial neural network models can be 

divided in two broad classes: regression models and classification models. In regression 

modelling, the target is to find a model that explains the behaviour of one or more 

response variables, using values of the regressor variables. In classification problems, the 

target is to classify a given input vector into one discrete class. Classical example is to 

take an image and classify whether there is a dog or a cat in it. (Bishop 2006) An industrial 

example of a classification problem is identifying different faults occurring in a process 

plant. In this study, the task is to use synthetic simulator data to model dynamic chemical 

processes. Regression type of the artificial neural networks are applied in making multi-

time-step predictions on how the process behaves. 

Artificial neural networks can be built using different architectures that are suitable for 

different kinds of applications. One of the most traditional artificial neural network 

architectures is multilayer perceptron (MLP) shown in Figure 9. The multilayer 

perceptron is a feed-forward network which means that neurons’ output values are not 

fed back locally or globally (Haykin 2009, p. 124). Globally recurrent linear ARX and 

NARX network architectures are presented in Subsections 4.2.1 and 4.2.2 and Long 

Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) architectures that include 

local feedback loops are presented in Subsections 4.2.3 and 4.2.4, respectively. In the case 

studies of this research, each of the model types are built in a way that they include 

exogenous inputs and autoregressive inputs. 
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Figure 9. Multilayer perceptron with an input layer, two hidden layers and an output layer. 

Adapted from (Haykin, 2009 p. 124). 

 

The first layer of the neural network is called the input layer where the input values are 

fed. Neurons in the input layer (green neurons in Figure 9) do not include calculations but 

they connect each of the input signals to each neuron in the following layer. The last layer 

is called the output layer which neurons output (blue neurons in Figure 9) the values that 

the network has calculated. In between, there is one or more hidden layers which neurons 

are marked in grey in Figure 9. Each of the neurons in a single layer of the network is 

connected to each of the neurons in preceding and subsequent layers. 

Hidden neurons and output neurons of an artificial neural network are simple 

computational units that together form the network. Structure of a single hidden neuron 

is shown in Figure 10. The output of this neuron is the function of input signals values, 

weights and bias. Depending on the chosen activation function, the output is linear or 

nonlinear. (Haykin 2009) Neuron output y in a case of linear activation function is in a 

mathematical for: 
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Figure 10. Structure of hidden and output neurons in an artificial neural network. Adapted 

from (Haykin 2009, p. 12). 

  𝑦 = 𝑥1𝑤1 + 𝑥2𝑤2 + ⋯ + 𝑥n𝑤n + 𝑏,  (7) 

where y is the neuron output, 

 x1, x2, …, xn are the values of the neurons input signals, 

 w1, w2, …, wn are the weights of the respective input signals and 

 b is the bias term. 

 

The number of hidden layers and neurons, the connections between them and activation 

functions are hyperparameters of a neural network. The more layers and neurons network 

have, the more complex considering the number of mathematical operations. This also 

increases the mapping capability of the network, meaning that more complex functions 

can be approximated. Activation functions commonly used in neural networks include 

e.g. linear function, sigmoid function and hyperbolic tangent function (Haykin 2009, p. 

14). 

4.2.1 Autoregressive network with exogenous inputs 

Autoregressive neural network model with exogenous inputs (ARX) is a linear model 

structure that can be used in dynamic modelling. Compared to NARX model, the only 

difference is that NARX include nonlinear elements such as nonlinear activation function 

in a neural network. In this study, linear ARX neural network model is developed in both 

case studies to act as a benchmark model for the nonlinear neural network types to see if 

there is differences in the accuracy of the models. The simplicity of ARX model structure 

(see Figure 11) makes it easy to train in neural network form which makes it a preferable 

choice if there are no nonlinearities in the modelled dynamics. (Haykin 2009, p. 792-793) 
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Figure 11. Structure of the ARX neural network in open-loop and closed-loop 

configurations. Adapted from (Haykin 2009, p. 792). 

4.2.2 Nonlinear autoregressive network with exogenous inputs 

Neural networks can include local or global feedback loops. Feedback connection is local 

when it is applied to only one neuron, although there may be multiple neurons that has 

local feedback. In recurrent neural networks, outputs of one or more layers and/or of the 

whole network are fed back as input. Nonlinear dynamic model is achieved when 

recurrent neural network architecture that contain nonlinear activation functions is 

combined with feedback loops that contain unit-time delay components. (Haykin 2009, 

p. 23 & 836) Nonlinear autoregressive neural network with exogenous inputs (NARX) is 

an architecture which can be used for multi-step-ahead predicting by feeding the output 

signals back as inputs, forming a closed-loop NARX neural network architecture shown 

in Figure 12. The teacher forcing training strategy introduced in the previous chapter can 

be applied in training the NARX neural network alike with the ARX neural network. The 

network configuration in that case is as shown in Figure 13. 
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Figure 12. NARX neural network in closed-loop configuration, showing how the output 

signals are connected to the input layer of the network. Adapted from (Haykin 2009, p. 

792). 

 

 

Figure 13. NARX neural network in open-loop configuration that is used during the 

teacher forcing training. (Haykin, 2009, p. 817). 

 

NARX neural network has been applied in modelling nonlinear behaviour of reactor-

exchanger process in (Chetouani 2008). The NARX neural network have been also used 
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in multi-step-ahead predicting of water level in a floodwater storage pond in (Chang et 

al. 2014), and in dynamic modelling of braking torque behaviour in (Ćirović et al. 2012). 

4.2.3 Long Short-Term Memory network 

Inputs and outputs of real nonlinear dynamic systems may include short-term or long-

term dependencies, or both (Haykin, 2009, p. 818–819). Traditional recurrent neural 

networks (see Figure 14) are unable to address long-term dependencies when predicting 

due to vanishing gradient problem that occurs with traditional back-propagation through 

time (BPTT) and real-time recurrent learning (RTRL) training methods. It means that 

during the training, the value of error signal going backwards in the network vanishes or 

grows exponentially depending on the activation functions. When the error signal is 

vanishing, the learning of long-term dependencies is prevented or takes excessively long. 

Exponentially growing error signal may cause weights of the network to oscillate. 

(Hochreiter and Schmidhuber 1997).  

 

Figure 14. Structure of a single unit of a traditional recurrent neural network unit which 

includes a local feedback loop. 

 

Long Short-Term Memory (LSTM) is a type of recurrent neural network architecture that 

was introduced in 1997 to address the vanishing gradients problem. According to 

developers, the network is able to learn long-term dependencies up to 1000 time steps. 

(Hochreiter and Schmidhuber 1997) The LSTM network is built of LSTM units, i.e. cells, 

with input and output gates. One variant of LSTM adds a forget gate as shown in Figure 

15. The forget gate gives the memory cell an ability to reset itself that in practice means 

forgetting irrelevant previous inputs. (Graves 2012, p. 38 & 42) Thus, the network is able 

to produce good results even when the network is fed with inputs for endless amount of 

time steps (Gers and Schmidhuber 2001). The LSTM units have a built-in recurrent 

connection with a Constant Error Carousel (CEC) unit that defines the state of that cell, 

Sc, in form of an activation value. The CEC unit is the component that solves the vanishing 
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gradient problem as it prevents error flow from vanishing. The input gate unit prevents 

memory content of the LSTM unit from being affected by currently irrelevant inputs. 

Likewise, the output gate unit prevents other LSTM units from being affected by currently 

irrelevant elements in the memory content. (Gers and Schmidhuber 2000b) & (Hochreiter 

and Schmidhuber 1997) This means that e.g. when the input gate has an activation of 0 

and thus is closed, the input will not affect the activation value of the cell. Therefore, the 

information stored in form of cells activation value remains and can be taken into use 

later by opening the output gate. The next state of an LSTM cell is given by: (Gers and 

Schmidhuber 2000a) 

  𝑆𝑐(k) =  𝑆𝑐(k − 1) × 𝑦𝑓 + 𝑦𝑖𝑛 × 𝑔,  (8) 

where Sc is the cell state, 

 yf  is the forget gate activation value, 

 yin  is the input gate activation value and 

 g is the cell input signal squashed through hyperbolic tangent function. 

 

Figure 15. LSTM unit with input, output and forget gates, showing the connections in the 

unit. Adapted from (Gers and Schmidhuber 2000b). 

The input, output and forget gates include sigmoid functions that outputs values in range 

-1–1. The signals connected to the gates have each their own weights W which are not 

shown in (8) and (9) (see equations (10)–(12) in Subsection 4.2.4 for example of how the 

signals are weighted). Other activation functions are in the unit are hyperbolic tangent 

functions, outputting values in range 0–1. The output of an LSTM cell is defined by: (Gers 

and Schmidhuber 2000a) 
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  𝑦(k) =  𝑡𝑎𝑛ℎ(𝑆𝑐(𝑘)) × 𝑦𝑜𝑢𝑡,  (9) 

where y is the cell output, 

 Sc is the cell state and 

 yout is the output gate activation value. 

 

Another LSTM variant adds peephole connections to the original architecture. The 

peephole connections are weighted connections from the previously mentioned CEC to 

each gate of the unit that are not shown in Figure 15. During the training, the errors are 

not backpropagated through the peepholes towards CEC. Through peepholes on the other 

hand, the gates get information about the state of the memory cell (Gers and Schmidhuber 

2000a). In this study, Keras Python library is used which LSTM network implementation 

does not include peephole connections. 

LSTM networks has been used in various applications such as speech and handwriting 

recognition that are cases in which the long-term memory is valuable (Graves 2012, p. 

41). LSTM network was used in multi-step-ahead predicting of wind speed in (Wang et 

al. 2018). LSTM, traditional RNN and GRU that is presented in the next section, were 

compared in predicting remaining useful life of an aircraft turbofan in (Wu et al. 2018), 

concluding that LSTM performed better in each studied case. In (Yuan et al. 2019), a 

modified LSTM called Supervised LSTM (SLSTM) was used in developing nonlinear 

dynamic soft sensor model of debutanizer column unit operation and penicillin 

fermentation process, in which it performed better than LSTM and traditional RNN. In 

this study, each of the studied models include exogenous inputs in addition to 

autoregressive ones. This is also the case in (Guo and Lin 2017), where LSTM neural 

network was compared to many alternatives on multiple datasets, showing that the LSTM 

network was more accurate in making predictions and also easier to interpret. 

4.2.4 Gated Recurrent Unit network 

Gated Recurrent Unit (GRU) neural network architecture was introduced in (Cho et al. 

2014). GRU network share similarities with LSTM neural network but has a simpler 

structure. It includes components that make it also capable for remembering longer 

dependencies. The GRU cell do not include separate output signal y(k) and the hidden 
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state signal h(k) like the LSTM cell but instead, y(k) = h(k). There are two gates in the 

Gated Recurrent Unit which are the update gate and the reset gate (see Figure 16).  

 

Figure 16. Structure of a Gated Recurrent Unit, showing the reset and update gates. (Cho 

et al. 2014). 

 

The update gate controls what information from the GRU cells state from the previous 

time steps is used to calculate the next state of the cell, i.e. how much the activation of 

the unit is updated. The reset gate on the other hand allows the control of forgetting the 

previously computed state. (Chung et al. 2014) Activation of the reset gate of a single 

Gated Recurrent Unit can be expressed as: (Cho et al. 2014) 

  𝑟 =  𝑠𝑖𝑔𝑚𝑜𝑖𝑑([𝑊𝑟𝑥(𝑘)] + [𝑈𝑟ℎ(𝑘 − 1)]), (10) 

where r is the reset gate activation 

 𝑊𝑟 and 𝑈𝑟 are weight matrices (i.e. parameters which are learned), 

 x(k) is the input signal to the unit and 

 h(k-1) is the the previous hidden state of the unit. 

 

Activation of the update gate is given by:  

  𝑧 =  𝑠𝑖𝑔𝑚𝑜𝑖𝑑([𝑊𝑧𝑥(𝑘)] + [𝑈𝑧ℎ(𝑘 − 1)]), (11) 

where z is the update gate activation 

 𝑊𝑧 and 𝑈𝑧 are weight matrices and 

 x(k) and h(k-1) as in (9). 
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So called candidate activation ℎ̃ of the cell is given by:  

  ℎ̃(k) =  𝑡𝑎𝑛ℎ([𝑊𝑥(𝑘)] + [𝑈 × (𝑟 ∘ ℎ(𝑘 − 1))]), (12) 

where ℎ̃(k) is the candidate activation of the cell, 

 W and U are weight matrices, 

 x(k) and h(k-1) as in (9) and (10), and 

 ∘ denotes Hadamard product. 

Now, the activation of the GRU cell, ℎ(𝑘), can expressed as: (Cho et al. 2014) 

  ℎ(𝑘) =  𝑧 × ℎ(𝑘 − 1) + (1 − 𝑧) × ℎ̃(𝑘). (13) 

Traditional RNN with hyperbolic tangent activation function, LSTM and GRU neural 

networks were compared in music and speech signal data sequence modelling in (Chung 

et al. 2014), concluding that both LSTM and GRU were better than the traditional RNN. 

4.3 Modular and ensemble models 

With very complex systems, it might be difficult to build a single model that can describe 

the behaviour of this system. One solution is to build a modular model that contain 

multiple so called local models, each responsible for some specific operation area. 

(Abrahart et al. 2008) For example, slow and fast dynamics of the system could be 

modelled with separate models or each of the output variables could have their own 

dedicated models. Ensembling methods are techniques that are used in machine learning 

to reduce generalisation error by using multiple models. One ensemble method is 

bagging, where multiple models are trained individually and a voting mechanism in the 

final ensemble model determines the model’s output. Other ensembling methods use 

model averaging that is also the case in the bagging method. Multiple different models 

most likely do not produce the same mistakes which can make model averaging valuable. 

(Goodfellow et al. 2016) & (Abrahart et al. 2008) Bagging neural network models have 

been built in (Wu and Peng 2017) for the same purpose in predicting the amount of power 

generated by a wind turbine. 
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Boosting is another ensemble modelling method that makes use of multiple models to 

build up a better predictor than an individual model can. The approach in boosting is to 

divide the original training dataset into multiple datasets and use each to train separate 

models. The prediction, that this kind of boosting ensemble model produces, is e.g. a 

weighted average of the separate models’ outputs. Boosting has been used with neural 

networks for example in (Bian et al. 2018), showing that it can improve stability and 

accuracy of the neural network model. 

Hybrid models that combine multiple different model types can also be classified as 

modular models. One hybrid neural network approach for time series predicting is 

proposed in (Xu et al. 2019). In their approach, the hybrid model consists of linear 

autoregressive model or autoregressive integrated moving average (ARIMA) model 

combined with a nonlinear deep belief network (DBN). The idea in the approach is that 

first, a linear model is fitted to the data and then the residuals of the linear model are 

modelled with nonlinear DBN. Summing up the prediction of the linear model and the 

DBN forms the actual prediction. (Xu et al. 2019) 
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5 CASE STUDIES 

Data-driven modelling with artificial neural networks was discussed in the previous 

chapters. In this chapter, the general workflow of creating a data-driven surrogate model 

of a physics-based unit operation model in Apros is presented. Also, the steps to 

implement the surrogate model back in Apros are defined. This research included two 

case studies. The first one includes a simple physics-based model of a water tank which 

liquid level is controlled. The second case study model is a methanation reactor in a 

power-to-gas process. The case specific details are presented in Sections 5.2 and 5.3. 

5.1 Workflow and modelling framework 

The overall workflow presented in Figure 17, starts from having a dynamic physics-based 

Apros model from which a unit operation model is selected to be modelled with data-

driven methods. The process continues by selecting input and output variables that are 

relevant to the selected unit operation.  

 

Figure 17. Overall workflow to create a surrogate model of a unit operation process in 

Apros showing the steps from selecting the unit operation model to implementing the 

machine learning model in Apros. 
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To generate data for data-driven modelling, an experiment design is needed. According 

to the selected experiment design, experiments in Apros are run and the values of 

previously selected input and output variables are logged in a text file. Data is generated 

separately for training, validation and testing purposes. The machine learning framework 

built for this study is based on building neural networks with Keras (Chollet 2015). Before 

the data is imported into the framework, it is pre-processed by scaling the variables values 

in the same scale. The framework is presented in more detail in Subsection 5.1.3. 

5.1.1 Selecting input and output variables 

The selection step includes choosing Apros modules which will be included in the 

surrogate and which will act as an interface between the physics-based model and the 

data-driven model. As a consequence, input and output variables of the data-driven model 

are defined. For this step, it is necessary to understand how different Apros modules can 

be configured so that they use the outputs of the data-driven model as inputs, instead of 

the Apros solver calculating them. In practice this means setting up component properties 

in a way that allows values of properties like enthalpy or pressure to be set on each 

simulation time step. This is looked into in more detail in the case studies. After the input 

and output variables for the model have been selected, the process to produce dataset for 

data-driven modelling continues as shown in Figure 17. 

5.1.2 Experiment design and dataset generation 

After the input and output variables have been selected for the data-driven model, the next 

step is to make a design of experiments which in practice is a sequence of changes in 

variables that cause either A) direct or B) indirect excitation in the input variables of the 

system (see Figure 18). Direct excitation means that if e.g. pressure in Apros point module 

PO03 is the selected input of the data-driven model, then the pressure value of PO03 is 

changed directly during experimentation which causes response in the output variables. 

Causing indirect excitation to PO03 pressure can be made for example by adjusting 

opening of a control valve located before point PO03 that leads to change in PO03 

pressure as the pressure loss over the control valve changes.
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Figure 18. Alternatives for causing excitation to an input (pressure of PO03) of a data-

driven model. A) Changing pressure directly. B) Changing controller setpoint value that 

indirectly cause change in pressure by adjusting pressure loss over control valve COV2. 

 

In the first case study of this research, a tailor-made experiment design was used as the 

model included only one excitation variable. In the second case study, the inscribed type 

of central composite experiment design presented in Subsection 3.1.1 was chosen for the 

generation of neural network training data. The experiment designs are shown in Sections 

5.2 and 5.3. 

Having input and output variables selected and experiment design ready, the dataset is 

generated by running the experiments in Apros as shown in Figure 19. After this, data 

logging in Apros is set up so that input and output variables are logged in separate files. 

In both of the case studies, the sampling frequency was set to 0.2 s in Apros, which is the 

same as the simulation time step. Input and output data files from Apros are combined 

into a single CSV-file in which headers are created to show which variable is input and 

which is output (by “I” and “O”). Also, the description of the variable is marked in the 

header. This procedure is repeated three times to generate training, validation and testing 

datasets. 
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Figure 19. The workflow to generate dataset in Apros for surrogate modelling. 

5.1.3 Machine learning framework 

The framework built for this study is based on neural network modelling using Keras 

which is an open source Python library and a neural network API (Application 

Programming Interface) that utilises TensorFlow as the backend. Keras is designed for 

quick development and testing of neural networks and is widely used in research. It is 

able to use both CPU and GPU in performing calculations. (Chollet 2015) TensorFlow is 

an open source software library that can be used for machine learning and deep learning 

(Anon 2015). Calculations in this study are performed on a laptop CPU (i5-7300U, 8 GB 

RAM) and on a GPU-server with Nvidia Tesla P100 GPU. 

The framework allows the user to build linear ARX, NARX, LSTM and GRU neural 

networks using Keras. The basic structure of the algorithms for each is the same. First, 

the user specifies files that contain the training and the validation datasets. The inputs and 

outputs in the datasets are marked by “I” and “O” respectively, as mentioned in the 

previous section. In the modelling framework, this allows the user to select individual 

input and output variables that are to be included in the model. The user can also choose 

the number of lagged values for input and output variables. For example, if the chosen 

number of input lags is three, then three lagged values of each selected input variable are 

included in the model as additional inputs. 

Next step in the framework is specifying the hyperparameter space that is to be used in 

the random hyperparameter optimisation process. The number of neural network layers 
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and their hidden neurons, hidden layers’ activation functions, output activation functions 

and weight initialisation method can be chosen. Adam weight optimiser was used in this 

study and the framework allows to choose its parameters which are the learning rate (i.e. 

step size), learning rate decay and exponential decay rates β1 and β2 for moment estimates 

that the algorithm calculates. Also the range for the number of training epochs and the 

batch size can be specified. The training samples are shuffled during training.  

Multiple strategies for applying dropout regularisation to the network are provided for the 

hyperparameter optimisation. Hyperparameter n_dropout is set to 0 if no dropout is 

applied, to 1 if dropout is applied to the input layer of the network, to 2 if it is applied to 

the output layer and to 3 if it is applied to the input and output layers. Dropout_rate 

specifies the fraction of the input units that are set to 0 randomly during the training 

process. Maxnorm hyperparameter specifies a maximum value to the norm of each hidden 

unit’s weights. These regularisation methods were introduced shortly in Subsection 3.4.2. 

Based on the user specified hyperparameter space and the number of hyperparameter 

combinations, N, to be generated, the algorithm generates the combinations pseudo-

randomly in a list. After that, the algorithm loads the training and validation datasets and 

modifies them according to which input and output variables the user chose previously 

and how many input and output variables are to be included in the model. The input data 

is then reshaped from two to three-dimensional array if LSTM or GRU neural networks 

are chosen as the layers in these networks require three dimensional input shape. The 

dimensions in the 3D-array represent batch size, time steps and input dimension (i.e. 

number of input variables) as shown in Figure 20. The batch size specifies how many 

input samples are used in the training before the weights are updated. For example in case 

of 1 000 input samples and batch size of 100, one epoch of training contain 10 batches. 

Time steps specify how many previous time steps are included in the model. 

After the input has been reshaped, the algorithm goes into the hyperparameter 

optimisation loop, in which neural network models are trained using the previously 

generated hyperparameter combinations. Inside the loop and right after the model has 

been trained, the models are tested using the validation dataset in closed-loop, i.e. multi-

step-ahead, configuration as shown in Figure 12 in Subsection 4.2.2. This is because one-

step-ahead performance was noticed to be uncorrelated with the multi-step-ahead 

performance, i.e. the validation loss that Keras calculated was not a reliable measure for 
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goodness of the model. Example of one-step-ahead and multi-step-ahead performance of 

800 linear ARX models can be seen in Chapter 6. 

 

Figure 20. The axes of three-dimensional input data that the recurrent layers in Keras 

require. 

 

The predicted values from each time step in multi-step-ahead test bench are stored and 

root mean square error (RMSE) value for each output variable is calculated. To make the 

error values between variables and datasets comparable, the RMSE values are normalised 

which gives the NRMSE values. In addition, the average of the outputs NRMSE values 

is stored. These NRMSE values are written in a data file together with the 

hyperparameters that were used to obtain the results, and the data file is updated as the 

hyperparameter optimisation loop continues. The algorithm also prints the NRMSE 

values of each model and output variable after testing and also the current best NRMSE 

values. For the model, the current best value is the average over all the outputs. This way 

the user can monitor the hyperparameter optimisation process and stop it if a model with 

high enough performance has been found before all N hyperparameter combinations have 

been gone through. The algorithm was also set to save each model that achieved an 

average NRMSE value lower than 2 % on the validation dataset in the multi-step-ahead 

test bench. The model with the best average NRMSE value is then tested in a separate 

test bench that allows to use of any dataset for testing the model in multi-step-ahead 

configuration. 



53 

5.1.4 Implementing machine learning model into Apros 

The machine learning model created using Keras can be implemented in Apros by using 

a User Component module and attaching two SCL scripts and a SCL module in it. The 

SCL module contains two strings that include multiple lines of Python commands. These 

strings are from now on called 1) initialisation statement and 2) prediction statement in 

this study. The SCL scripts are executed during different phases of the simulation and 

make use of the statements defined in the above-mentioned SCL module. As shown in 

Figure 21, the initialisation statement is executed during preparation of the Apros model 

that is performed always when the simulation is started if new modules are added to the 

Apros model or properties of existing ones are modified. The initialisation includes 

importing necessary Python modules, loading Keras model into the Python environment 

and defining parameters for scaling the input and output variables of the machine learning 

model during simulation. On the other hand, the prediction statement is executed at each 

time step during the simulation to produce predictions of the next output values. In the 

prediction phase, the scaling parameters are first used to scale the input values to correct 

scale and then the Keras model is called with the scaled inputs. The predicted output of 

the data-driven Keras model is then scaled back to original range and assigned to SCL 

variables that are used to transfer the output values to corresponding Apros modules. 

 

Figure 21. Initialisation and prediction SCL-scripts that are needed to run the machine 

learning model in Apros using the Python binding. 
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5.2 Case 1 – Water tank with liquid level control 

The first case study considers a water tank model in which there is one continuous flow 

into the tank and one continuous flow out of the tank as shown in Figure 22. Height of 

the water tank is 10 m and its cross-sectional area is 0.8 m². The inlet pipe is 6 m long 

with a control valve in the beginning. The liquid level is measured and controlled with a 

PI-controller that gives control signal to the control valve. Liquid level setpoint values 

are limited to range between 4 and 6 m. A pump is used in the outlet pipeline to force 

flow out from the tank. After the pump, there is a control valve for controlling the outlet 

flow with a PI-controller, which setpoint in this study is fixed to 45 kg/s. A check valve 

after the outlet control valve prevents the flow from turning back towards the tank. Both 

PI-controllers were manually tuned for stable operation. Input and output variable 

selection was made as shown in Figure 22 and the variables are also listed in Table 3 

 

 

Figure 22. The water tank model studied in case 1. The inputs and outputs are marked in 

orange and blue respectively. Components inside the green lines are replaced with a 

machine learning model in this case. 
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Table 3. Input and output variable selection for data-driven modelling in the 1st case study. 

Input variables 

# Apros module Apros module property Description Unit 

1 PO03 PO11_PRESSURE Pressure before the tank (I) [MPa] 

2 PIP04 PI12_MIX_MASS_FLOW Mass flow before the tank [kg/s] 

3 XA07 ANALOG_VALUE Liquid level setpoint value [m] 

4 PO12 PO11_PRESSURE Pressure after the tank [MPa] 

5 XA11 ANALOG_VALUE 
Difference between flow after the 

tank and its setpoint 
[kg/s] 

 

Output variables 

# Apros module Apros module property Description Unit 

1 PO11 PO11_PRESSURE Pressure before the tank (O) [MPa] 

2 PIP06 PI12_MIX_MASS_FLOW Mass flow after the tank [kg/s] 

3 HTA01 TA13_LIQ_LEVEL Liquid level in the tank [m] 

 

As the tank outlet flow controller setpoint is fixed during the experiments, the only 

excitation variable for the system is the tank liquid level setpoint. Thus, the experiment 

design for case study 1 was a simple tailor-made design that included totally 23 

experiments. The liquid level setpoint of the tank was changed within specified low and 

high limits, 4 and 6 m, respectively (see Figure 23). The training and validation datasets 

were generated in a single experiment run. Data from the first 17 experiments were used 

in training and the last 6 experiments in validation of the models. After each change in 

the setpoint value, the Apros model was simulated for 70 min which was found out to be 

enough for the flows and liquid level to reach steady-state. Exception to this is the first 

experiment that was simulated for 2 min, although the first experiment in the validation 

dataset include almost 70 min of simulation. Sampling time was set to 0.2 s for the data 

logging and therefore the training and validation datasets consists of 336 600 and 126 000 

time steps respectively. This counts to total amount of 2 692 800 and 1 008 000 data 

points with 8 variables respectively for training and validation datasets. Also the setpoints 

used in generating testing and extrapolation datasets are shown in Figure 23.  

Two testing datasets were generated using the same setpoint values. In the first testing 

dataset, the model was simulated for 70 min after each setpoint change. In the second 

testing dataset, the simulation time after each setpoint change was shorter (see Figure 31 

in Subsection 6.1.4) so that the process did not have time to settle to new steady-state 

conditions before the next experiment was started. The simulation time varied between 

6.66 and 60 min. This dataset was generated to test the generalisation ability of the 

models. The generation of extrapolation dataset included experiments in which the liquid 
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level setpoint exceeded the limits (4–6 m) that were used in the generation of training 

dataset. Setpoint values in testing and extrapolation experiments are shown in Figure 23. 

The testing datasets consist of 33 720 and 9720 time steps respectively and the 

extrapolation dataset include 33 720 time steps. Thus, the total amounts of data points in 

these datasets are 1 348 800, 388 800 and 1 348 800 respectively. It should be noted that 

although the experiment design contains step changes in the setpoint value, the actual 

values that are sent to the respective controller are fed through a gradient module in Apros 

to smooth out the controller behaviour. The gradient module allowed the liquid level 

setpoint to change 0.25 m/min, i.e. a setpoint change from 5 to 6 m took 4 min. 

 

Figure 23. Experiment design used in the data generation for data-driven modelling in 

case study 1, showing the liquid level controller setpoint values that were used in 

generation of the datasets. 

 

In the first case study, linear ARX and NARX type of neural network models were 

developed utilising random search in hyperparameter optimisation (see Table 4). A total 

of 500 randomly generated hyperparameter combinations were used to build linear ARX 

models. Development of the NARX model was executed in two steps. In the first step, 

1400 models were built (NARX first in Table 4) and then based on the results, the second 

search was executed in a bit different space. In the second search, 200 models were built. 
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Adam optimiser that is included in Keras was used in the weight optimisation during 

model building. The used linear ARX model structure did not include a hidden layer but 

the input neurons are directly connected to the output neurons that include a linear 

activation function. This means that the outputs of the network are linear combinations 

of the inputs with each having their own weights that are optimised during the network 

training. NARX models include one hidden layer in which a hyperbolic tangent function 

was used as the activation function. For training of both model types, the input samples 

were used in shuffled order that might increase the efficiency of the training according to 

(Goodfellow et al. 2016). Batch size was set to 8 800 samples which is the amount of 

input samples for which the predictions are calculated before updating the weights during 

a training epoch. Thus, a training epoch includes 52 batches of size 8 800 and the rest of 

samples are not used in the training. The batch size affects the neural network training 

time. Therefore, the batch size was increased in initial hyperparameter optimisations until 

the training time did not decrease anymore. The batch size was not noticed to affect the 

network performance in the case studies. Weights of the network were initialised by 

drawing values randomly either from uniform or normal distribution. The mean and 

standard deviation of the normal distribution are 0 and 0.05 respectively whilst the 

uniform distribution is characterized by minimum value of -0.05 and maximum value of 

0.05. (Chollet 2015) The results of the first case study are presented in Chapter 6. 

 

Table 4. Hyperparameter spaces used in hyperparameter optimisation in the first case 

study to find the best ARX and NARX neural network models. 

Hyperparameter ARX NARX first NARX final 

N hyperparameter comb. 500 1400 200 

N input lags 1 1–2 1 

N of output lags 1 1–2 1 

N of hidden layers No hidden layer 1 1 

N of hidden neurons None 3–6 6–8 

Weight init. randUn, randNo randUn, randNo randUn, randNo 

Learning rate 1e-4–5e-3 1e-4–1e-3 4e-4–1e-3 

Learning rate decay 0 1e-8–1e-7 0 

N of training epochs 10–150 250–1000 100–1000 
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5.3 Case 2 – Methanation reactor in a power-to-gas process 

The second case study in this research is a power-to-gas (P2G or PtG) process. Extensive 

review of electrolysis and methanation technologies that can be utilised in a power-to-gas 

process can be found in (Götz et al. 2016). Power-to-gas process is designed to produce 

hydrogen (H2) or methane (CH4) using electricity. The process is two-staged. In the first 

stage, hydrogen and oxygen are produced in water electrolysis and in the second stage, 

the produced hydrogen is converted to methane in methanation process that utilise carbon 

monoxide (CO) or carbon dioxide (CO2) as a second reactant. Alkaline electrolysis 

(AEL), polymer electrolyte membranes (PEM) and solid oxide electrolysis (SOEC) are 

technologies used in water electrolysis in P2G process. Hydrogen produced in the 

electrolysis process can also be stored before feeding it to the methanation process. This 

makes power-to-gas process suitable to be used as a seasonal energy storage as surplus 

electricity can be converted into gas that is more convenient to store for later use than 

electricity. (Götz et al. 2016)  

Biological or catalytic reactor can be used in the methanation process. Quality 

requirement for the methanation product, i.e. substitute natural gas (SNG), can be 

compared to that of natural gas that is distributed into a gas grid. Methane concentration 

is usually over 80 % in natural gas which also contains other hydrocarbons such as ethane, 

propane and butane that increase its calorific value and inert CO2 or N2 that lowers the 

calorific value. (Götz et al. 2016) 

An Apros model of a two-stage power-to-gas process is studied in the second case study. 

In the Apros model (see Figure 24 for an overview), hydrogen is produced in PEM 

electrolysis units and after that the hydrogen is compressed before feeding it into the 

storage tanks. The storage unit consists of low pressure (3 MPa), medium pressure (12 

MPa) and high pressure (30 MPa) tanks with 6, 30 and 10 m³ volumes respectively.  
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Figure 24. Overview of the PtG Apros model. Electrolysis unit operation process is 

marked in blue, hydrogen storage in green and methanation process in orange. 

 

The methanation unit operation model that is under the scope in this study, is presented 

in Figure 25. The main part of the model is the methanation reactor that is a custom made 

Apros User Component. In the feed pipeline, pure H2 and CO2 are first mixed together 

and then recycled CH4 is added to the mix. Hydrogen feed to the methanation process is 

controlled with a PI-controller. The molar ratio of H2 and CO2 is controlled with a PI-

controller by adjusting the CO2 flow. The mixture of H2, CO2 and CH4 is fed into the 

methanation reactor whose temperature is controlled by using cooling steam. Mass flow 

of the cooling steam is controlled with a PI-controller.  

 

Figure 25. Apros diagram of the studied methanation unit operation process that is part 

of the power-to-gas Apros model, showing the input and output selection. 
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Product from the reactor is cooled down to about 25 °C in a separate heat exchanger for 

water separation. The temperature of the product is controlled with a PI-controller that 

adjusts mass flow of the cooling water. After the water has been separated from the 

product, part of it is recycled back to the reactor feed flow. Rest of the product is fed out 

of the process through a pipe where the H2, CO2 and CH4 concentrations are measured. 

The recycling flow is controlled by the CH4 in the product for which a setpoint is given. 

 

Input and output variable selection in the second case study was made as shown in Figure 

25 and the variables are also listed in Table 5 and Table 6. The inputs include hydrogen 

mass flow in to the unit operation process, four setpoints for the controllers that were 

mentioned in the previous section and the pressure of the product which is not calculated 

during the simulation but changed manually to modify the conditions in the process. 

 

Table 5. Input variables selected in the second case study. 

# Apros module Module property Description Unit 

1 PIP03 PI12_MIX_MASS_FLOW H2 feed mass flow measured [kg/s] 

2 XA271 ANALOG_VALUE H2 feed mass flow setpoint [kg/s] 

3 XA257 ANALOG_VALUE 
Methanation reactor maximum 

temperature 
[°C] 

4 XA258 ANALOG_VALUE H2:CO2 molar ratio setpoint [1] 

5 XA260 ANALOG_VALUE Product CH4-% setpoint [1] 

6 PO276 PO11_PRESSURE Product pressure [MPa] 

Table 6. Output variables selected in the second case study. 

# Apros module Module property Description Unit 

1 PO11 PO11_PRESSURE H2 feed in pressure [MPa] 

2 PIP06 PI12_MIX_MASS_FLOW Product mass flow out [kg/s] 

3 PO18_CM1 FGCO_CONCENTRATION(2) Product CH4-% [1] 

4 PO18_CM1 FGCO_CONCENTRATION(6) Product H2-% [1] 

5 PO18_CM1 FGCO_CONCENTRATION(4) Product CO2-% [1] 

6 XA289 ANALOG_VALUE Reactor average temperature [°C] 

7 XA180 ANALOG_VALUE Reactor maximum temperature [°C] 

8 PIP109 PI12_MIX_MASS_FLOW Cooling steam mass flow out [kg/s] 

9 PO14 PO11_STEAM_ENTH Cooling steam enthalpy out [kJ/kg] 

10 XA285 ANALOG_VALUE Reactor cooling power [kW] 

11 CR03 CM11_MIX_MASS_FLOW Recycling mass flow [kg/s] 

12 CR03 CM11_POWER Recycling compressor power [MW] 

 

To cause excitation in the system and reveal the dynamics of the process, the values of 

inputs 2–6 were changed during data generation that was executed according to inscribed 

type of Central Composite design of experiments presented in Subsection 3.1.1. The 
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experiment design includes 46 different operating conditions, i.e. setpoint value 

combinations (see Figure 26). The values of the excitation variables (input variables 2–

6) are varied during the experiments within the limits shown in Table 7. First datasets 

were generated using wider limits but it led to unstable operating conditions. Thus, the 

training data generation process was executed in an iterative manner to test what are the 

low and high limits for the input factor to keep the Apros process in stable operation. 

 

Table 7. Low and high limits and gradient values for the excitation variables in the second 

case study that were used in the training dataset generation. 

Description 
Low 

limit 

High 

limit 
Unit 

Gradient 

[unit/min] 

H2 feed mass flow setpoint 0.02 0.03 [kg/s] 5e-3 

Methanation reactor maximum temperature 550 600 [°C] 25 

H2:CO2 ratio setpoint 4 4.5 [1] 0.5 

Product CH4-% setpoint 93 96.6 [%] 2 

Product pressure 0.6 0.6 [MPa] 0.05 

 

It should be noted that although the input variable 5, i.e. the methane concentration in the 

product, does not have unit in Table 5, the corresponding variable in the experiment 

design and in Table 7 is reported in percent. As in the first case study, also in this case 

the setpoint values are fed to the controller through a gradient module in Apros for 

smoother operation. The gradient values are included in Table 7. For example the setpoint 

of methanation reactor maximum temperature controller is allowed to change 25 °C/min. 

 

In each experiment and after the changes in the setpoint values, the Apros model was 

simulated for 200 min which was found out to be enough for the outputs to settle in new 

steady-state operation. In Figure 26 and 27, the first experiment marked by “1”, is the 

initial condition in which the process is simulated for 200 min. After that, the first 

transient occurs, i.e. the H2 feed setpoint is changed. Sampling time was set to 0.2 s for 

the data logging which leads to 2 760 000 time steps, which results to a total amount of 

49 680 000 data points with 18 variables. However, the training, validation and testing 

datasets were each sampled down from 0.2 to 5 s sampling time which reduced the total 

amount of data points to 1 987 200. Experiment designs for generating validation and 

testing datasets were tailor made and contained 11 experiments both (see Figure 27), 

resulting in 26 400 time steps with total amount of 475 200 data points after down 

sampling. The experiment designs are shown in Figure 27 which shows the levels for 

each input factor, i.e. excitation variables, in the experiments. 
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Figure 26. CCI experiment design to generate the training dataset, illustrated for each five 

input factors, showing the five levels of each. 

 

 

Figure 27. Setpoint levels of the five input factors in the experiment designs for validation 

and testing data, showing each factor having two levels. 

 

The model building was executed in multiple hyperparameter optimisation runs, utilising 

random search having different search space in each run. The hyperparameter search 
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spaces for each model type presented in Table 8 are the ones that were used in deriving 

the final versions of each model type. The results that were obtained using the 

hyperparameters are presented in Section 6.2. Other hyperparameter optimisation runs 

and their search spaces together with the best single model obtained with each run are 

shown in Appendix 1. The selection of the final models was made by selecting the one 

with the lowest average NRMSE value which had input lag and one output lag values 

only from the previous time step included in the inputs. 

Table 8. Hyperparameter optimisation runs of which the final models of each model type 

were selected. Other optimisation runs are in the Appendix 1. 

Hyperparameter ARX-2 NARX-6 LSTM-3 GRU-3 

N hyperparameter combs 2119 2213 527 267 

N of hidden neurons - 64–128 64–128 64–128 

Learning rate 1e-4–5e-3 2e-4–1e-3 2e-4–1e-3 2e-4–1e-3 

N of training epochs 10–150 100–250 200–500 200–500 

N_dropout - 1 1–3 1 

Dropout rate - 0.05–0.2 0.05–0.3 0.05–0.2 

Maxnorm - 0–5 0–5 0–5 
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6 RESULTS 

This study includes a literature review on matters related to data-driven modelling and 

especially modelling with neural networks. In the case studies, suitability of selected 

neural network architectures on multi-step-ahead predicting of dynamic behaviour of two 

processes. The case specific results are divided in sections which present the performance 

of the models on training, validation and testing datasets. The results of the two case 

studies are presented in Sections 6.1 and 6.2. In this section, generic findings related to 

both cases are presented. 

Early stopping of the neural network training process was tested in some hyperparameter 

optimisation experiments and it did not provide better results compared to experiments 

without early stopping. Keras calculates one or more user specified error metrics which 

can be used in monitoring the neural network training process. The metrics are calculated 

on the training and validation datasets. The problem when deriving a model with the best 

multi-step-ahead accuracy is that the metrics Keras calculates are not useful in the same 

way as when building one-step-ahead models. This is because the one-step-ahead 

accuracy that Keras calculates do not correlate to multi-step-ahead accuracy. To 

demonstrate this, one-step-ahead and multi-step-ahead NRMSE values of 800 linear ARX 

models on the validation dataset of the second case study are plotted in Figure 28. The 

best models in terms of average NRMSE value in multi-step-ahead configuration are on 

the left and the worst on the right. It is visible from Figure 28 that the models with the 

lowest one-step-ahead NRMSE are not the best models in multi-step-ahead configuration. 

The models with the best multi-step-ahead accuracy, i.e. NRMSE ≈ 1.6 %, have NRMSE 

of 0.5…0.75 % one-step-ahead configuration. As the multi-step-ahead NRMSE increase 

when going to the right in Figure 28, it can be seen that the one-step-ahead NRMSE have 

a decreasing trend as shown by the black line. In addition to that, the variance of one-

step-ahead NRMSE seems to increase as the multi-step-ahead NRMSE increase. This is 

expected because in the one-step-ahead configuration, the ground truth values of outputs 

are used as the autoregressive inputs and in the multi-step-ahead configuration, the 

autoregressive inputs are network output values from previous time steps. 



65 

Due to this, a test bench for testing the models in multi-step-ahead configuration was 

implemented. In the test bench, the models are used as simulators, i.e. their outputs are 

fed back to their inputs as the models are autoregressive. 

 

Figure 28. Multi-step-ahead and one-step-ahead NRMSE values for 800 linear ARX 

neural network models on validation dataset in the second case study, showing that the 

models with the lowest one-step-ahead errors do not seem to be the best models in multi-

step-ahead configuration. 

6.1 Case 1 – Water tank with liquid level control 

Performance of linear ARX and nonlinear NARX neural network models was studied 

with a water tank process which includes two control loops – liquid level control that 

adjusts the inlet flow going to the tank and outlet flow control. The hyperparameter search 

spaces that were used to obtain these results were presented in Table 4 in Section 5.2 and 

the hyperparameters of the selected models are described below in Subsection 6.1.1. 

During hyperparameter optimisation, multi-step-ahead accuracy of each model was 

measured on the validation dataset and the model with the lowest NRMSE value was 

selected for testing. Results on validation, multiple testing and training datasets are 

presented in the following Subsections 6.1.2–6.1.6. 
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6.1.1 Selected models 

The final linear ARX model in the first case study includes 5 exogenous inputs, i.e. input 

values from the previous time steps, and 3 autoregressive inputs, i.e. output values from 

the previous time steps. The weights were initialised by drawing randomly values from 

uniform distribution. During the training, the weights were optimised using Adam 

training algorithm with learning rate and learning rate decay were 4.061e-3 and 0 

respectively. Adam algorithm’s β1 and β2 parameters were kept at their default values in 

Keras (β1 = 0.9, β2 = 0.999). The model was trained for 150 epochs. 

The final NARX model included the same inputs as the ARX model but the structure has 

a hidden layer with hyperbolic tangent activation function to model nonlinearities. The 

hidden layer in the final NARX model contains 8 hidden neurons and the weights of the 

network were initialised by drawing randomly values from normal distribution. As with 

the linear ARX model, Adam was also used with the NARX model to optimise the 

weights during training. The learning rate of Adam was 7.901e-4 and other parameters as 

with the linear ARX model. The NARX model was trained for 829 epochs and no 

regularisation was applied. 

6.1.2 Results on validation dataset 

The final models which structure and hyperparameters were presented in the previous 

section, were selected based on their multi-step-ahead performance on the validation 

dataset. The results of simulating the validation dataset are shown in Figure 29. The 

average NRMSE value of both linear ARX and NARX models are shown in the title in 

Figure 29 and the three output specific NRMSE values in their respective subfigures. As 

the errors are so low, it is hard to see any difference but the NRMSE values show that 

pressure before the tank has the highest and mass flow after the tank has the lowest 

NRMSE with both model types. The linear ARX model outperforms the nonlinear NARX 

model in prediction of each individual output variable. All in all, the accuracy of both 

models is very good as the average NRMSE values are 0.07 % for linear ARX and 0.11 

% for NARX model. 
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Figure 29. Multi-step-ahead prediction performance of the final ARX and NARX models 

on the validation dataset, showing slightly lower average NRMSE for the linear ARX. 

6.1.3 Results on testing dataset 

The next step was to measure the performance of the selected models using an individual 

testing dataset that was not been used in the hyperparameter optimisation and thus can 

provide more reliable estimate of the model generalisation ability. The results on the 

testing dataset are presented in Figure 29 which shows that the linear ARX model 

achieved the same NRMSE values as it did on the validation dataset. Figure 29 also shows 

that the NARX model performs even better on the testing dataset than on the validation 

dataset but still had slightly worse average and output specific NRMSE values than the 

linear ARX model. The results on the testing dataset suggest that the generalisation ability 

of both models is sufficient. 
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Figure 30. Multi-step-ahead prediction performance of the final ARX and NARX models 

on the testing dataset.  

6.1.4 Results on testing dataset with faster changes 

The final models were also tested on a dataset which contained operating conditions that 

change before the steady state is reached, i.e. the setpoint of the liquid level controller 

was changed faster than in the validation and testing datasets. The results obtained using 

this dataset are presented in Figure 31, showing that the final models are able to handle 

also this kind of situations fairly well. However, the average NRMSE values of both 

models show deterioration compared to the validation and testing datasets which is 

expected as the training dataset does not contain any examples on this kind of situations. 

The only output variable which prediction accuracy is not deteriorated is the mass flow 

after the tank predicted with the linear ARX model. 
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Figure 31. Multi-step-ahead performance of case study 1 models on dataset that contain 

faster changes in the liquid level setpoint value. 

6.1.5 Results on testing dataset with extrapolation 

Extrapolation capability of the model was also tested. In the extrapolation dataset, the 

minimum and maximum setpoint values of the liquid level controller were slightly over 

the limits (3–7 m) of the other datasets (4–6 m). Results on the extrapolation dataset are 

presented in Figure 32. The results show more deterioration, i.e. much worse NRMSE 

values, than the previous test with faster occurring setpoint changes. The average NRMSE 

of linear ARX model increase from 0.07 to 0.60 % and from 0.09 to 0.92 % respectively 

with the NARX model. The largest errors with both model types occur at about time step 

130 000, when the liquid level setpoint was just set to 7 m. Both of the models predict the 

pressure before the tank to be lower than the ground truth is. However, both of the models 

recover from the extrapolation situation. 
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Figure 32. Multi-step-ahead performance of case study 1 model on extrapolation dataset, 

showing more deterioration on the accuracy of the final model’s performance. 

6.1.6 Results on training dataset 

Accuracy of the models on the training dataset was also measured in multi-step-ahead 

configuration and the results are shown in Figure 33. The results on the training dataset 

show slightly higher NRMSE values than on the validation and testing datasets. This is 

expected because the range of the liquid level setpoint in the training dataset is a bit wider 

than in the other datasets. 
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Figure 33. Multi-step-ahead simulation of the final models of case study 1 on the dataset 

that was used in training the models. 

 

In summary, the performance of both linear ARX and NARX model is very good based 

on the testing with multiple different datasets. The results are summarized in Table 9 in 

which Test. 1 refers to the testing dataset and Test. 2 to the testing dataset with faster 

changes. The models were able to extrapolate with only small deterioration in the 

accuracy and are able to recover from the extrapolation situations back to steady state 

well. The results suggest that linear ARX model is the best model choice for this case, 

having better accuracy than the nonlinear NARX model and being much simpler in terms 

of the number of model parameters. 

Table 9. Summary of the NRMSE values of both model types on the five datasets. 

Model type Dataset NRMSE values of output variables 

  1 2 3 Avg. 

 Valid. 0.15 0.01 0.06 0.07 

 Test. 1 0.15 0.01 0.06 0.07 

ARX Test. 2 0.28 0.01 0.09 0.13 

 Extrap. 1.67 0.02 0.11 0.60 

 Train. 0.14 0.01 0.06 0.07 

 Valid. 0.18 0.05 0.11 0.11 

 Test. 1 0.17 0.03 0.09 0.09 

NARX Test. 2 0.30 0.06 0.09 0.15 

 Extrap. 1.39 0.25 1.11 0.92 

 Train. 0.19 0.03 0.09 0.10 
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6.2 Case 2 – Methanation reactor in a power-to-gas process 

Linear ARX, NARX, LSTM and GRU multi-step-ahead neural networks were developed 

in the second case study and the results obtained with the final models are presented in 

this section. In this case study, multiple hyperparameter optimisation runs were executed. 

The results of each model type and run are presented in Appendix 1. The results that are 

presented in this section are produced with models that were selected based on their 

performance on the validation dataset and are from hyperparameter optimisation runs 

ARX-2, NARX-6, LSTM-3 and GRU-3, names referring to the ones in Appendix 1. The 

hyperparameter spaces that were used in these runs were presented in Section 5.3 in Table 

8. During the testing of these selected models on the three different datasets, the time to 

make the predictions was measured. The average time to make one prediction with 

different model types are presented in Table 10 showing that the linear ARX network is 

the fastest and LSTM the slowest. This is expected as the ARX model is the simplest one 

and LSTM the most complex. The models were tested on validation, testing and training 

datasets and the results are presented in Subsections 6.2.2–6.2.4. 

Table 10. Average time to produce one prediction during multi-step-ahead prediction. 

The results are obtained using the selected models. 

 Prediction time [ms] 

Model type Training Validation Testing 

ARX 0,23 0,20 0,22 

NARX 0,27 0,28 0,29 

LSTM 0,43 0,44 0,41 

GRU 0,40 0,41 0,39 

 

6.2.1 Selected models 

The final linear ARX model in the first case study include 6 exogenous inputs, i.e. input 

values from the previous time steps, and 12 autoregressive inputs, i.e. output values from 

the previous time steps. The weights were initialised by drawing randomly values from 

normal distribution. During the training, the weights were optimised using Adam 

algorithm with learning rate and learning rate decay were 4.74e-2 and 0 respectively. 

Adam algorithm’s β1 and β2 parameters were 0.8942 and 0.9962 respectively. The model 
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was trained for 36 epochs which provided the best multi-step-ahead accuracy based on 

the validation set.  

The selected NARX, LSTM and GRU models each have hyperbolic tangent activation 

function in the hidden layer and the weights of the network are initialised by drawing 

values randomly from uniform distribution. As with linear ARX model, Adam algorithm 

was used as weight optimiser with learning rate decay set to 0. Adam’s parameters β1 and 

β2 parameters during training of each of the three nonlinear models were set to 0.9 and 

0.999 respectively. The rest of the hyperparameters of the final NARX, LSTM and GRU 

models are presented in Table 11. 

Table 11. Hyperparameters of the final NARX, LSTM and GRU models. 

Hyperparameter NARX LSTM GRU 

N of hidden units 119 86 93 

Learning rate 8.245e-4 5.654 e-4 7.105 e-4 

N of training epochs 178 241 349 

N_dropout 1 1 1 

Dropout rate 0.051 0.103 0.065 

Maxnorm 4 3 4 

 

6.2.2 Results on validation dataset 

Accuracy of the final models presented in the previous section was tested in multi-step-

ahead configurations using the validation, testing and training datasets. The results on the 

validation dataset are presented in Figure 34 and Figure 35 showing that the lowest 

average NRMSE value was achieved with the GRU model (0.96 %) and the highest with 

the linear ARX model (1.63 %). The output variables are marked in Figure 34, Figure 36 

and Figure 38 using numbers 1–12. The respective variable names can be found in Section 

5.3 in Table 6.  
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Figure 34. NRMSE values of final models and individual output variables on the 

validation dataset for each model type. 

 

As it can be seen in Figure 34 and Figure 35, there are significant differences between 

model types and their prediction accuracy for individual output variables. For example, 

the simplest linear ARX model outperforms the nonlinear models in predicting output 

variable 1 (H2 feed pressure), 7 (reactor maximum temperature) and 11 (Recycling mass 

flow) but it still has the worst overall performance. The biggest difference between the 

linear ARX model and the nonlinear models is in predicting output variable 8 (Cooling 

steam outlet mass flow). Although having the lowest average NRMSE, the GRU model 

performs worse in prediction of output variables 3 (CH4-% of the product), 5 (CO2-% of 

the product) and 6 (reactor average temperature) than NARX or LSTM. 

The methanation process dynamics is known to contain nonlinearities which supports the 

results shown in Figure 34 as the nonlinear models predict the fraction of CH4, H2 and 

CO2 in the product more accurately than the linear model. This can be easily also seen in 

Figure 35 in which the predictions of the final models are plotted together with the ground 

truth values. On average, the NARX neural network model seems to perform worse than 

LSTM and GRU based on the validation dataset results. 

1 2 3 4 5 6 7 8 9 10 11 12 AVG

ARX 0,25 0,56 3,63 2,03 2,50 2,91 0,54 3,08 1,78 0,46 0,27 1,51 1,63

NARX 0,55 0,66 1,43 1,18 1,73 3,09 1,23 0,61 1,54 0,61 0,60 1,08 1,19

LSTM 0,62 0,78 1,52 1,13 1,65 1,26 0,95 0,61 0,90 0,78 0,61 1,11 0,99

GRU 0,57 0,59 1,74 1,11 1,83 1,33 1,22 0,30 0,82 0,46 0,49 1,06 0,96
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Figure 35. Multi-step-ahead prediction performance of the final models on the validation 

dataset, with GRU being the most accurate one. 

6.2.3 Results on testing dataset 

The respective results on the testing dataset are presented in Figure 36 and Figure 37. 

Based on the results, the model accuracy with each model type is much worse according 

to the testing dataset compared to the validation dataset. This questions the generalisation 

ability of the models, although the average NRMSE values are still on quite good level 

(1.94–3.60 %). The accuracy of GRU network, that had the best accuracy on average on 

the validation dataset, is the worst model based on the testing dataset. This shows why 

the independent testing dataset is needed. The difference in the linear ARX model 

accuracy between the validation and the testing datasets is the smallest compared to other 

model types. 
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Figure 36. NRMSE values of final models and individual output variables on the testing 

dataset for each model type. 

 

 

Figure 37. Multi-step-ahead prediction performance of the final models on the testing 

dataset, showing the LSTM model having the best performance. 

 

1 2 3 4 5 6 7 8 9 10 11 12 AVG

ARX 0,34 0,75 7,26 1,91 5,92 5,10 1,30 3,04 2,50 0,50 0,29 1,66 2,55

NARX 1,44 0,86 2,10 1,54 2,29 8,27 3,28 1,11 3,84 0,91 1,48 1,83 2,41

LSTM 0,80 0,95 2,15 2,85 4,17 2,83 1,49 1,64 1,56 0,83 0,77 3,19 1,94

GRU 0,88 0,92 3,91 11,14 5,28 2,81 3,65 1,09 1,50 0,56 2,14 9,32 3,60
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6.2.4 Results on training dataset 

The accuracy of the final models in the second case study were also tested on the training 

dataset and the results are shown in Figure 38 and Figure 39. The results are similar to 

the first case but the effect shows in bigger scale, i.e. the NRMSE value on the training 

dataset is higher than on the validation or testing datasets. This holds true for each model 

type but GRU network, which accuracy on the testing dataset is the lowest of the three 

datasets. 

 

Figure 38. NRMSE values of final models and individual output variables on the training 

dataset for each model type. 

 

1 2 3 4 5 6 7 8 9 10 11 12 AVG

ARX 0,48 1,27 7,75 3,95 7,12 3,58 1,75 4,63 2,16 1,21 0,70 3,56 3,18

NARX 1,16 1,32 6,04 3,90 6,44 3,37 2,01 1,98 2,40 1,61 1,20 3,66 2,92

LSTM 1,11 1,35 6,74 4,02 7,06 3,04 2,08 2,18 2,32 1,64 1,12 3,84 3,04

GRU 1,54 1,31 6,73 5,78 7,25 3,58 2,08 1,99 2,32 1,43 0,86 5,46 3,36
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Figure 39. Multi-step-ahead prediction performance of the final models on the training 

dataset, showing that the NARX neural network has the best performance on that dataset. 

 

In summary, the results of the second case study show more differences between 

prediction accuracy of individual output variables than the first case study. As expected, 

some of the output variables are more accurately predicted with nonlinear models and on 

the other hand some with linear ARX model (see Table 12). The multi-step-ahead 

accuracy of each model type is worse on the testing and training datasets than on the 

validation dataset. This is also the case for almost all individual output variables. Overall, 

the model accuracy achieved with each model type is on a quite good level. The lowest 

average NRMSE value on the second case study was 3.36 % with GRU model on the 

training dataset. Although the average values are promising, the prediction accuracy of 

e.g. output variables 3–6 and 12 are lower on average than others. 
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Table 12. Summary of the NRMSE values of all four model types on the three datasets. 

Dataset NRMSE values of output variables [%] 

 1 2 3 4 5 6 7 8 9 10 11 12 Avg. 

 ARX             

Valid. 0.25 0.56 3.63 2.03 2.50 2.91 0.54 3.08 1.78 0.46 0.27 1.51 1.63 

Test. 0.34 0.75 7.26 1.91 5.92 5.10 1.30 3.04 2.50 0.50 0.29 1.66 2.55 

Train. 0.48 1.27 7.75 3.95 7.12 3.58 1.75 4.63 2.16 1.21 0.70 3.56 3.18 

 NARX             

Valid. 0.55 0.66 1.43 1.18 1.73 3.09 1.23 0.61 1.54 0.61 0.60 1.08 1.19 

Test. 1.44 0.86 2.10 1.54 2.29 8.27 3.28 1.11 3.84 0.91 1.48 1.83 2.41 

Train. 1.16 1.32 6.04 3.90 6.44 3.37 2.01 1.98 2.40 1.61 1.20 3.66 2.92 

 LSTM             

Valid. 0.62 0.78 1.52 1.13 1.65 1.26 0.95 0.61 0.90 0.78 0.61 1.11 0.99 

Test. 0.80 0.95 2.15 2.85 4.17 2.83 1.49 1.64 1.56 0.83 0.77 3.19 1.94 

Train. 1.11 1.35 6.74 4.02 7.06 3.04 2.08 2.18 2.32 1.64 1.12 3.84 3.04 

 GRU             

Valid. 0.57 0.59 1.74 1.11 1.83 1.33 1.22 0.30 0.82 0.46 0.49 1.06 0.96 

Test. 0.88 0.92 3.91 11.14 5.28 2.81 3.65 1.09 1.50 0.56 2.14 9.32 3.60 

Train. 1.54 1.31 6.73 5.78 7.25 3.58 2.08 1.99 2.32 1.43 0.86 5.46 3.36 

 

6.3 Implementation of data-driven model in Apros 

In this study, the workflow to implement the final machine learning model in Apros was 

defined and tested using the final NARX model of the first case study. Despite the very 

high accuracy of the final model, it started to oscillate quickly when implemented in 

Apros, getting also the physics-based part to produce bad results. One thing that may 

cause oscillation is the automatically changing time step in Apros. It should be studied in 

more detail with a very simple Apros model to find out the reason. Testing also showed 

that although the Apros Python binding itself is fast, including the Keras model and 

making predictions using the binding cause the simulation to slow down even though the 

Keras model was fast in making predictions. 
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7 DISCUSSION AND FUTURE WORK 

The results of the case studies show that high multi-step-ahead accuracy can be achieved 

with recurrent neural networks in modelling simulated industrial process responses. The 

results of the first case study show good accuracy with both linear and nonlinear ARX 

models. In the second case study, the differences between capabilities of different model 

types are more visible. The behaviour of some output variables can be predicted more 

accurately with a simple linear ARX model while some others require a nonlinear model. 

In general, these networks show promising performance in multi-step-ahead predicting. 

One thing that may improve the results of this study is using a sophisticated method to 

select the number of input and output lags even though it would be at the cost of increased 

number of model parameters. At the moment, the machine learning framework developed 

in this study allows to choose the number of lags for input and output variables. For 

example, if the chosen number of input lags is 1, then the input values from previous time 

step of each input variable is included in the model. Better results could be achieved by 

allowing the selection for individual variables by e.g. giving the number of lags as a vector 

containing the number of lags for each variable separately. Including the selection of the 

number of input and output lags in the hyperparameter optimisation was tested with linear 

ARX model in the second case study (see hyperparameter optimisation run ARX-3 in 

Appendix 1), showing promising results in terms of lower NRMSE value compared to 

the results of linear ARX model shown in Section 6.2. The number of lags for inputs and 

outputs varied between 1 and 5 in that hyperparameter optimisation and after 540 models 

were generated, the model with the lowest NRMSE value on validation dataset had 

NRMSE of 1.41 % which was achieved using 1 input lag and 5 output lags. The best 

model with 1 input and output lag values achieved NRMSE of 1.63 %. 

The second case study showed that the physics-based model and especially the unit 

operation process that we want to replace with a machine learning model needs to be 

tested and validated properly before data generation. In this study, the time to create the 

datasets took reasonable amount of time, e.g. the generation of the training dataset of the 

second case study took about one day when all the experiments of experiment design 

were ran sequentially. However, if the Apros models are more complex compared to the 

ones in the case study, more data for training and testing purposes is required to make 
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more reliable and accurate models. In addition, the computation time of one experiment 

may take a longer time if the model is more complex. Therefore, utilising cloud services 

or other means of decentralized computation to parallelise the data generation would be 

beneficial. In the same way, the process of model building through hyperparameter 

optimisation would benefit from parallelization especially if random hyperparameter 

search is used. 

In the second case study, an experiment design that includes only the statistically most 

significant level combinations of the input factors was used. Using Apros to produce more 

data of the second case study process by using e.g. full factorial design with three levels, 

could enhance the model performance and is seen e.g. in (Goodfellow et al. 2016) to be 

a better option than trying out different training algorithms when the model has learned 

the previous training dataset well. As can be seen from the results of the second case 

study, each of the neural networks except GRU has worse multi-step-ahead NRMSE on 

the training dataset than on the validation and testing datasets. This is as expected because 

the validation and testing datasets include less experiments than the training data. In 

addition, the levels of the input factors in those datasets were well inside the minimum 

and maximum range of the training data experiments. Using more extensive validation 

and testing datasets could provide a better estimate of the performance of the generated 

models. To model the second case study system in more detail, the original dataset with 

0.2 s sampling time should be used instead of the data down sampled to 5 s sampling time 

that was used in the case. 

Early stopping, presented in the literature part of the study, can be thought of as one way 

of regularisation as the training is stopped based on some criterion before the neural 

network either stops improving in terms of validation loss or if the validation loss starts 

to increase. In this study, the early stopping mechanism was not found useful as the one-

step-ahead accuracy that is measured during the training of the neural networks seems not 

to correlate with the multi-step-ahead accuracy. Instead of early stopping, the number of 

epochs was included in the hyperparameter search as one factor. 

Neural network pruning is a technique in which insignificant weights of a network are 

removed if they do not contribute any information, i.e. their value is very close to zero. 

This is one way to reduce the number of model parameters after the model has been built. 

(Haykin 2009, p. 176–177) In that sense, pruning could be considered in the further 
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studies as one tool to make the final models lighter if it can be made without sacrificing 

the accuracy. 

The results show that there are differences between the accuracy of model types and 

between individual output variables. Therefore, it could be beneficial to use a modular 

model which was presented in Section 4.3, if the model complexity does not increase too 

much, i.e. the model would be too slow to be implemented in Apros. Modular models 

could be even put together by using models that have worse NRMSE value but are good 

in predicting certain output variables. During the hyperparameter optimisation runs, in 

which the neural network models were trained, the multi-step-ahead accuracy of all 

models was tested on the validation dataset and saved in a text file for analysing the results 

later on. These results include the average NRMSE value of all the models and the 

NRMSE values of the individual output variables. Analysing these results show that 

NRMSE values of the individual output variables of the model with the best average 

NRMSE value are not necessarily the global minimum values for that output variable, i.e. 

the best model structure depends on the output variable predicted. This means that there 

are worse models in terms of average NRMSE value having individual output variables 

with lower NRMSE value than that of the best model by average NRMSE. This indicates 

that if the computational cost does not increase too much by using separate models for 

different output variables, it could be beneficial to make a modular model of the 

aforementioned models to achieve even lower average NRMSE. However, as the machine 

learning model implementation process in Apros requires more work, the speed 

requirement is not yet known and should be studied to find out if modular models could 

be used to increase the prediction accuracy. 

Many more neural network architectures and model types exist in addition to the ones 

studied in this research. For example, convolutional neural networks (CNNs) were not 

considered in this study but according to Bai et al. (2018), CNNs might be good 

alternative to the studied architectures. Neural networks were used in this work in a way 

that they recursively produce multi-step-ahead predictions using one-step-ahead 

predictions, i.e. to act as a simulator. In addition to neural networks, other model 

structures which can be derived using machine learning methods exist as well. Examples 

of such are support vector machines (SVM) (Vapnik, 1999), decision trees and random 

forests that combine multiple decision trees using bagging (Breiman, 2001). However, 
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methods based decision tree regression does not generally work as well for nonlinear data 

as neural networks (Tso and Yau, 2007). 

The motivation to study the suitability of machine learning models in dynamic process 

modelling was to find out if machine learning models could be implemented in physics-

based modelling and simulation software so that the two model types would work 

together. In this study, it was found out that high accuracy can be achieved using neural 

networks in this application. Related to the future work, the model implementation 

process in Apros should be studied in more detail due to reasons mentioned in Section 

6.3. In addition, the accuracy requirement that Apros sets for the machine learning models 

needs to be defined. 
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8 CONCLUSIONS 

The purpose of this research was to study the suitability of machine learning methods in 

the dynamic simulation of industrial processes and to find out how these models can be 

implemented in dynamic physics-based modelling and simulation software Apros. The 

main motivation is to find out if computationally heavy Apros models can be made faster 

by replacing unit operation process models with machine learning models. The study was 

executed in two phases. First, a literature study was made in order to find out which data-

driven modelling techniques are suitable for dynamic modelling. The different steps of 

data-driven modelling were also studied. Then, an experimental study was made in order 

to test the modelling methods that were selected based on the literature study. In practice, 

the simulation accuracy of four recurrent neural network architectures were measured 

with two case study models. The simulation accuracy of the neural network models was 

compared to the physics-based simulation results. 

The process of creating a surrogate model of a physics-based model starts from selecting 

the unit operation model that is to be replaced with a machine learning model. Next, the 

input and output variables for the unit operation model are selected and, according to the 

process and its characteristics, an experiment design is made to generate data for data-

driven modelling. In this study, the importance of finding the limits for the operating 

conditions of the physics-based unit operation model before data generation to avoid 

generating useless datasets was found through trial and error. After the data has been 

generated, it needs to be pre-processed. In this study, the pre-processing included 

normalising the values of each variable into the same scale. A framework that utilises 

Keras in building neural network models was built as a part of this study. Random search 

strategy was used in the neural network hyperparameter optimisation. Each of the trained 

models were tested in a multi-step-ahead configuration on a validation dataset, and after 

the hyperparameter optimisation the models were ranked by their average NRMSE 

values. The best of each model type was selected for further testing with an independent 

testing dataset which is needed to get a more reliable measure of the generalisation ability 

of the models which tells how well the model perform on data different from the training 

data. 
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Recurrent neural networks were chosen to be experimented in the case studies of this 

research. A linear ARX model and a nonlinear NARX model were compared in the first 

case study. The results show that the linear ARX model is better in predicting the dynamic 

behaviour of the studied water tank model with liquid level control. In the second case 

study, a linear ARX and a nonlinear NARX, LSTM and GRU neural networks were 

compared in terms of multi-step-ahead accuracy. The process model in the second case 

study was a methanation unit operation process, which was one part of a larger power-to-

gas process. The results of the second case study show lower overall accuracies with 

machine learning models compared to the first case. This was expected as the methanation 

process is much more complex than the tank process. The methanation process also 

contains nonlinearities and because of this, the accuracy of the linear ARX model was 

lower than the ones of the nonlinear neural networks. Overall, the accuracy of each model 

type in the second case study was on a good level. However, using modular models could 

provide even better results if the computational cost of the model does not increase too 

much. 

The NARX model of the first case study was implemented in Apros. However, it was 

noticed that the simulation actually slows down when Keras model is used through the 

Python binding of Apros. The physics-based model and neural network model also started 

to oscillate soon after starting the simulation in Apros. This may be partly due to 

automatically changing length of time step in Apros and should be considered in the 

future work. The next step to find out if machine learning models can be implemented in 

Apros, requires closer look into the Apros Python binding. In addition, the speed 

requirement for the machine learning model should be specified in order to know how 

much the machine learning framework needs development in order to achieve it. 
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